Science.gov

Sample records for 4-methylbenzylidene camphor 4-mbc

  1. Improving photoprotection: 4-methylbenzylidene camphor microspheres.

    PubMed

    Centini, Marisanna; Miraglia, Giovanna; Quaranta, Valeria; Buonocore, Anna; Anselmi, Cecilia

    2014-05-22

    Abstract We propose a new approach for photoprotection. 4-Methylbenzylidene camphor (4-MBC), one of the most widely used UV filters, was encapsulated in microspheres, with a view to overcoming problems (percutaneous absorption, photodegradation and lack of lasting effect) arising with organic sunscreens, and to achieve safe photoprotection. We focused on this filter in the light of the Cosmetics Europe opinion concerning its possible effects on the thyroid gland. Microspheres were prepared by emulsification-solvent evaporation, using different amounts of 4-MBC and characterized for morphology, encapsulation efficiency and particle size. The particles were then mixed in O/W emulsions. The in vitro sun protection factors, in vitro release and photostability were investigated and compared with emulsions containing the free sunscreen. The new microspheres offer good morphology and loading (up to 40%), and the same photoprotection as the free filter while at the same time protecting it from photodegradation. The systems also give a slower release from the emulsions.

  2. [Monograph for 3-(4-methylbenzylidene)camphor (4-MBC)--HBM values for the sum of metabolites 3-(4-carboxybenzylidene)camphor (3-4CBC) and 3-(4-carboxybenzylidene)-6-hydroxycamphor (3-4 CBHC) in the urine of adults and children. Statement of the HBM Commission of the German Federal Environment Agency].

    PubMed

    2016-01-01

    The substance 3-(4-methylbenzylidene)camphor (4-MBC, CAS-No. 36861-47-9 as well as 38102-62-4) is used as UV-filter in cosmetics, mainly in sunscreen lotions. National as well as European evaluations are available for the substance, especially from the Scientific Committee on Consumer Products (SCCP). The SCCP did not derive a TDI-value, but used for a MoS assessment a NOAEL of 25 mg/(kg bw · d) based on effects on the thyroid gland of rats in a subchronic study with oral administration. Newer studies, however, indicate lower NOAEL values, leading to tolerable daily intakes of 0,01 mg/kg bw. The HBM Commission established for the metabolite 3-(4-carboxybenzylidene)camphor (3-4CBC) HBM-I values of 0,09 mg/l urine for adults and 0,06 mg/l urine for children. HBM-I values for the metabolite 3-(4-carboxybenzylidene)-6-hydroxycamphor (3-4CBHC) were set at 0,38 mg/l urine for adults and 0,25 mg/l urine for children. The rounded HBM-I value for the sum of metabolites 3-4CBC und 3-4CBHC is accordingly 0,5 mg/l urine for adults and 0,3 mg/l urine for children.

  3. Comparison of effects of estradiol (E2) with those of octylmethoxycinnamate (OMC) and 4-methylbenzylidene camphor (4MBC) - 2 filters of UV light - on several uterine, vaginal and bone parameters

    SciTech Connect

    Seidlova-Wuttke, D.; Jarry, H.; Christoffel, J.; Rimoldi, G.; Wuttke, W. . E-mail: ufkendo@med.uni-goettingen.de

    2006-02-01

    OMC and 4MBC are 2 absorbers of ultraviolet light which are used in unknown quantities in sunscreens, cosmetics and plastic products to protect against UV light-induced damage of the skin or of fragrances or plastic material. From there, they were shown to reach surface water and/or by direct contamination or ingestion the human. Under various conditions in mice and rats, both substances were shown to be estrogenic. Therefore, we compared in vitro and in vivo the effects of chronic application of these compounds at 2 doses with those of E2, all administered via food. No signs of toxicity were observed under application of 0.6 mg E2, 57.5 or 275 mg of OMC, 57.5 or 250 mg of 4MBC; these amounts were ingested with 21 g of control food, 17.8 g E2 food, 20.6 g or 22.3 g OMC food and 23.7 or 22.8 g 4MBC food. In the uterus, vagina and bone, E2 exerted the expected stimulatory effects which were minimally shared by OMC and 4MBC in the uterus and vagina as assessed by histology and determination of a variety of estrogen-regulated genes such as insulin-like growth factor-1, progesterone receptor and estrogen receptor {beta}. In the bone, OMC had no effect, while 4MBC shared the antiosteoporotic effects of E2 as measured by quantitative computer tomography in the metaphysis of the tibia. The mechanism of action of 4MBC, however, appears to be different as E2 reduced serum osteocalcin and the C-terminal breakdown products of collagen-1{alpha}1 which were both increased by 4MBC. Taken together, these data indicate a very weak estrogenic effect of OMC and 4MBC in the uterus and in the vagina but not in the bone where 4MBC exerted antiosteoporotic effects by a different mechanism than E2.

  4. Toxicokinetics and biotransformation of 3-(4-methylbenzylidene)camphor in rats after oral administration

    SciTech Connect

    Voelkel, Wolfgang; Colnot, Thomas; Schauer, Ute M.D.; Broschard, Thomas H.; Dekant, Wolfgang . E-mail: dekant@toxi.uni-wuerzburg.de

    2006-10-15

    3-(4-Methylbenzylidene)camphor (4-MBC) is an UV-filter frequently used in sunscreens and cosmetics. Equivocal findings in some screening tests for hormonal activity initiated a discussion on a possible weak estrogenicity of 4-MBC. In this study, the toxicokinetics and biotransformation of 4-MBC were characterized in rats after oral administration. Male and female Sprague-Dawley rats (n = 3 per group) were administered single oral doses of 25 or 250 mg/kg bw of 4-MBC in corn oil. Metabolites formed were characterized and the kinetics of elimination for 4-MBC and its metabolites from blood and with urine were determined. Metabolites of 4-MBC were characterized by {sup 1}H NMR and LC-MS/MS as 3-(4-carboxybenzylidene)camphor and as four isomers of 3-(4-carboxybenzylidene)hydroxycamphor containing the hydroxyl group located in the camphor ring system with 3-(4-carboxybenzylidene)-6-hydroxycamphor as the major metabolite. After oral administration of 4-MBC, only very low concentrations of 4-MBC were present in blood and the peak concentrations of 3-(4-carboxybenzylidene)camphor were approximately 500-fold above those of 4-MBC; blood concentrations of 3-(4-carboxybenzylidene)-6-hydroxycamphor were below the limit of detection. Blood concentration of 4-MBC and 3-(4-carboxybenzylidene)camphor peaked within 10 h after 4-MBC administration and then decreased with half-lives of approximately 15 h. No major differences in peak blood levels between male and female rats were seen. In urine, one isomer of 3-(4-carboxybenzylidene)hydroxycamphor was the predominant metabolite [3-(4-carboxybenzylidene)-6-hydroxycamphor], the other isomers and 3-(4-carboxybenzylidene)camphor were only minor metabolites excreted with urine. However, urinary excretion of 4-MBC-metabolites represents only a minor pathway of elimination for 4-MBC, since most of the applied dose was recovered in feces as 3-(4-carboxybenzylidene)camphor and, to a smaller extent, as 3-(4-carboxybenzylidene)-6-hydroxycamphor

  5. Influence of solid lipid microparticle carriers on skin penetration of the sunscreen agent, 4-methylbenzylidene camphor.

    PubMed

    Scalia, Santo; Mezzena, Matteo; Iannuccelli, Valentina

    2007-12-01

    The objective of this study was to prepare lipid microparticles (LMs) loaded with the sunscreen agent, 4-methylbenzylidene camphor (4-MBC), to achieve decreased skin penetration of this UV filter. The microparticles were produced by the melt dispersion technique using tristearin as lipidic material and hydrogenated phosphatidylcholine as the surfactant. The obtained microparticles were characterized by scanning electron microscopy and differential scanning calorimetry. Release of 4-MBC from the LMs was found to be slower than its dissolution rate. The influence of the LMs' carrier system on percutaneous penetration was evaluated after their introduction in a model topical formulation (emulsion). In-vitro measurements were performed with cellulose acetate membranes in Franz diffusion cells. The 4-MBC release and diffusion was decreased by 66.7-77.3% with the LM formulation, indicating that the retention capacity of the microparticles was maintained after incorporation into the emulsion. In-vivo human skin penetration of 4-MBC was investigated by tape stripping, a technique for selectively removing the upper cutaneous layers. The amount of sunscreen penetrating into the stratum corneum was greater for the emulsion containing non-encapsulated 4-MBC (36.55% of the applied dose) compared with the formulation with the sunscreen-loaded microparticles (24.57% of the applied dose). The differences between the two formulations were statistically significant in the first (2-4) horny layer strips. Moreover, the LMs' effect measured in-vivo was less pronounced than in-vitro. The increased 4-MBC retention on the skin surface achieved by its incorporation in the LMs should enhance its efficacy and reduce the potential toxicological risk associated with skin penetration.

  6. Estrogenic activity and estrogen receptor beta binding of the UV filter 3-benzylidene camphor. Comparison with 4-methylbenzylidene camphor.

    PubMed

    Schlumpf, Margret; Jarry, Hubert; Wuttke, Wolfgang; Ma, Risheng; Lichtensteiger, Walter

    2004-07-01

    UV filters represent new classes of estrogenic [Environ. Health Perspect. 109 (2001) 239] or antiandrogenic [Toxicol. Sci. 74 (2003) 43] chemicals. We tested 3-benzylidene camphor (3-BC), reported as estrogenic in fish [Pharmacol. Toxicol. 91 (2002) 204], and mammalian systems in comparison to 4-methylbenzylidene camphor (4-MBC), shown to be active in rats, and analyzed binding to estrogen receptor subtypes. 3-BC and 4-MBC stimulated MCF-7 cell proliferation (EC(50): 0.68 and 3.9 microM). The uterotrophic assay of 3-BC (oral gavage) in immature rats showed unexpected potency with ED50 45.3mg/kg per day; lowest effective dose 2mg/kg per day, and maximum effect with 70% of ethinylestradiol. After comparing with literature data, we found that the oral 3-BC was considerably more potent than oral bisphenol A and almost as active as subcutaneous genistein. 3-BC and 4-MBC displaced 16alpha 125I-estradiol from porcine uterine cytosolic receptors (IC(50): 14.5 and 112 microM), and from recombinant human estrogen receptor beta (hERbeta) (IC(50): 3-BC, 11.8 microM; 4-MBC, 35.3 microM), whereas no displacement was detected at human estrogen receptor alpha (hERalpha) up to 3mM. This subtype selectivity makes the two camphor derivatives interesting model compounds. Their activity on immature rat uterus is not easily explained by ERbeta activation. It cannot be excluded that active metabolites with possibly different receptor binding characteristics are formed in vivo.

  7. Comparison of effects of estradiol with those of octylmethoxycinnamate and 4-methylbenzylidene camphor on fat tissue, lipids and pituitary hormones

    SciTech Connect

    Seidlova-Wuttke, Dana; Christoffel, Julie; Rimoldi, Guillermo; Jarry, Hubertus; Wuttke, Wolfgang . E-mail: ufkendo@med.uni-goettingen.de

    2006-07-01

    Octylmethoxycinnamate (OMC) and 4-methylbenzylidene camphor (4MBC) are commercially used absorbers of ultraviolet (UV) light. In rats, they were shown to exert endocrine disrupting including uterotrophic, i.e. estrogenic effects. Estrogens have also metabolic effects, therefore the impact of oral application of the two UV absorbers at 2 doses for 3 months on lipids and hormones were compared with those of estradiol-17{beta} (E2). E2, OMC and 4MBC reduced weight gain, the size of fat depots and serum leptin, a lipocyte-derived hormone, when compared to the ovariectomized control animals. Serum triglycerides were also reduced by the UV screens but not by E2. On the other hand, E2 and OMC reduced serum cholesterol, low density lipoproteins and high density lipoproteins; this effect was not shared by 4MBC. While E2 inhibited, OMC and 4MBC stimulated serum LH levels. In the uterus, both UV filters had mild stimulatory effects. 4MBC inhibited serum T4 resulting in increased serum TSH levels. It is concluded that OMC and 4MBC have effects on several metabolic parameters such as fat and lipid homeostasis as well as on thyroid hormone production. Many of these effects are not shared by E2. Hence, other than estrogen-receptive mechanisms may be responsible for these effects.

  8. Estrogen target gene regulation and coactivator expression in rat uterus after developmental exposure to the ultraviolet filter 4-methylbenzylidene camphor.

    PubMed

    Durrer, Stefan; Maerkel, Kirsten; Schlumpf, Margret; Lichtensteiger, Walter

    2005-05-01

    Because the estrogen receptor (ER) ligand type influences transactivation, it is important to obtain information on molecular actions of nonclassical ER agonists. UV filters from cosmetics represent new classes of endocrine active chemicals, including the preferential ER beta ligands 4-methylbenzylidene camphor (4-MBC) and 3-benzylidene camphor. We studied estrogen target gene expression in uterus of Long Evans rats after developmental exposure to 4-MBC (0.7, 7, 24, and 47 mg/kg x d) administered in feed to the parent generation before mating, during pregnancy and lactation, and to the offspring until adulthood. 4-MBC altered steady-state levels of mRNAs encoding for ER alpha, ER beta, progesterone receptor (PR), IGF-I, androgen receptor, determined by real-time RT-PCR in uterus of 12-wk-old offspring. Western-blot analyses of the same tissue homogenates indicated changes in ER alpha and PR but not ER beta proteins. To assess sensitivity to estradiol (E2), offspring were ovariectomized on d 70, injected with E2 (10 or 50 microg/kg sc) on d 84, and killed 6 h later. Acute up-regulation of PR and IGF-I and down-regulation of ER alpha and androgen receptor by E2 were dose-dependently reduced in 4-MBC-exposed rats. The reduced response to E2 was accompanied by reduced coactivator SRC-1 mRNA and protein levels. Our data indicate that developmental exposure to 4-MBC affects the regulation of estrogen target genes and the expression of nuclear receptor coregulators in uterus at mRNA and protein levels.

  9. Sexually dimorphic gene regulation in brain as a target for endocrine disrupters: Developmental exposure of rats to 4-methylbenzylidene camphor

    SciTech Connect

    Maerkel, Kirsten; Durrer, Stefan; Henseler, Manuel; Schlumpf, Margret; Lichtensteiger, Walter . E-mail: Walter.Lichtensteiger@access.unizh.ch

    2007-01-15

    The developing neuroendocrine brain represents a potential target for endocrine active chemicals. The UV filter 4-methylbenzylidene camphor (4-MBC) exhibits estrogenic activity, but also interferes with the thyroid axis. We investigated effects of pre- and postnatal exposure to 4-MBC in the same rat offspring at brain and reproductive organ levels. 4-MBC (7, 24, 47 mg/kg/day) was administered in chow to the parent generation before mating, during gestation and lactation, and to the offspring until adulthood. mRNA of estrogen target genes involved in control of sexual behavior and gonadal functions was measured by real-time RT-PCR in ventromedial hypothalamic nucleus (VMH) and medial preoptic area (MPO) of adult offspring. 4-MBC exposure affected mRNA levels of ER alpha, progesterone receptor (PR), preproenkephalin (PPE) and insulin-like growth factor-I (IGF-I) in a sex- and region-specific manner. In order to assess possible changes in sensitivity of target genes to estrogens, offspring were gonadectomized on day 70, injected with estradiol (E2, 10 or 50 {mu}g/kg s.c.) or vehicle on day 84, and sacrificed 6 h later. The acute induction of PR mRNA, and repression (at 6 h) of PPE mRNA by E2 was enhanced by 4-MBC in male and female VMH and female MPO, whereas male MPO exhibited reduced responsiveness of both genes. Steroid receptor coactivator SRC-1 mRNA levels were increased in female VMH and MPO. The data indicate profound sex- and region-specific alterations in the regulation of estrogen target genes at brain level. Effect patterns in baseline and E2-induced gene expression differ from those in uterus and prostate.

  10. Kinetics of 3-(4-methylbenzylidene)camphor in rats and humans after dermal application

    SciTech Connect

    Schauer, Ute M.D.; Voelkel, Wolfgang; Heusener, Alexander; Colnot, Thomas; Broschard, Thomas H.; Landenberg, Friedrich von; Dekant, Wolfgang . E-mail: dekant@toxi.uni-wuerzburg.de

    2006-10-15

    The toxicokinetics of 4-MBC after dermal administration were investigated in human subjects and in rats. Humans (3 male and 3 female subjects) were exposed to 4-MBC by topical application of a commercial sunscreen formulation containing 4% 4-MBC (w/w), covering 90% of the body surface and resulting in a mean dermal 4-MBC dose of 22 mg/kg bw. In rats, dermal 4-MBC doses of 400 and 2000 mg/kg bw were applied in a formulation using an occlusive patch for 24 h. Concentrations of 4-MBC and its metabolites were monitored over 96 h in plasma (rats and humans) and urine (humans). In human subjects, plasma levels of 4-MBC peaked at 200 pmol/ml in males and 100 pmol/ml in females 6 h after application and then decreased to reach the limit of detection after 24 h (females), respectively, 36 h (males). After dermal application of 4-MBC, peak plasma concentrations of 3-(4-carboxybenzylidene)-6-hydroxycamphor were 50-80 pmol/ml at 12 h and of 3-(4-carboxybenzylidene)camphor were 100-200 pmol/ml at 24 h. In male and female rats, peak plasma levels of 4-MBC were 200 (dose of 400 mg/kg bw) and 1 200 pmol/ml (dose of 2000 mg/kg bw). These levels remained constant for up to 24-48 h after dermal application. Peak plasma concentrations of 3-(4-carboxybenzylidene)-6-hydroxycamphor were 18,000 pmol/ml (males) and of 3-(4-carboxybenzylidene)camphor were 55,000 pmol/ml (females) between 48 and 72 h after application of the high dose of 4-MBC. In human subjects, only a small percentage of the dermally applied dose of 4-MBC was recovered in the form of metabolites in urine, partly as glucuronides. The obtained results suggest a more intensive biotransformation of 4-MBC in rats as compared to humans after dermal application and a poor absorption of 4-MBC through human skin.

  11. Occurrence of UV filters 4-methylbenzylidene camphor and octocrylene in fish from various Swiss rivers with inputs from wastewater treatment plants.

    PubMed

    Buser, Hans-Rudolf; Balmer, Marianne E; Schmid, Peter; Kohler, Martin

    2006-03-01

    UV filters are widely used compounds in many personal care products and cosmetics, such as sunscreens. After use, UV filters are washed off from skin and clothes and enter the aquatic environment. Recent studies indicate that some lipophilic UV filters do accumulate in biota and act as endocrine disruptors. In this study, concentrations of 4-MBC (4-methylbenzylidene camphor) and OC (octocrylene), two widely used UV filters, were determined in the muscle tissue of fish (brown trout, Salmo trutta fario) from seven small Swiss rivers, all receiving inputs from wastewater treatment plants (WWTPs). Lipid-weight based concentrations of up to 1800 (4-MBC) and 2400 ng g(-1) (OC) were found. These levels were distinctly higher than those previously observed in white fish (Coregonus sp.) and roach (Rutilus rutilus) from Swiss lakes with inputs from WWTPs. This suggests a higher availability of these contaminants for fish in rivers than in lakes and identifies WWTPs as a major source for UV filters in the aquatic environment. As compared to lake fish, individual fish from a river showed much greater variation in 4-MBC and OC concentrations, likely as a result of a wider range of exposure in rivers than in lakes. 4-MBC concentrations correlated reasonably well with concentrations of methyl triclosan, a chemical marker for lipophilic WWTP-derived contaminants. The ratio P/Q of population (P) in a watershed to water throughflow (Q) is considered to be a measure of the domestic burden from WWTPs. A correlation of methyl triclosan with P/Q was previously observed with lake fish. However, such a correlation could not be confirmed with river fish. The higher average concentrations of OC as compared to 4-MBC in river fish, and the fact that OC was mostly absent in lake fish, suggests differences in bioaccumulation and availability of these two UV filters.

  12. Screening the Toxicity of Selected Personal Care Products Using Embryo Bioassays: 4-MBC, Propylparaben and Triclocarban.

    PubMed

    Torres, Tiago; Cunha, Isabel; Martins, Rosário; Santos, Miguel M

    2016-10-21

    Recently, several emerging pollutants, including Personal Care Products (PCPs), have been detected in aquatic ecosystems, in the ng/L or µg/L range. Available toxicological data is limited, and, for certain PCPs, evidence indicates a potential risk for the environment. Hence, there is an urgent need to gather ecotoxicological data on PCPs as a proxy to improve risk assessment. Here, the toxicity of three different PCPs (4-Methylbenzylidene Camphor (4-MBC), propylparaben and triclocarban) was tested using embryo bioassays with Danio rerio (zebrafish) and Paracentrotus lividus (sea urchin). The No Observed Effect Concentration (NOEC) for triclocarban was 0.256 µg/L for sea urchin and 100 µg/L for zebrafish, whereas NOEC for 4-MBC was 0.32 µg/L for sea urchin and 50 µg/L for zebrafish. Both PCPs impacted embryo development at environmentally relevant concentrations. In comparison with triclocarban and 4-MBC, propylparaben was less toxic for both sea urchin (NOEC = 160 µg/L) and zebrafish (NOEC = 1000 µg/L). Overall, this study further demonstrates the sensitivity of embryo bioassays as a high-throughput approach for testing the toxicity of emerging pollutants.

  13. Screening the Toxicity of Selected Personal Care Products Using Embryo Bioassays: 4-MBC, Propylparaben and Triclocarban

    PubMed Central

    Torres, Tiago; Cunha, Isabel; Martins, Rosário; Santos, Miguel M.

    2016-01-01

    Recently, several emerging pollutants, including Personal Care Products (PCPs), have been detected in aquatic ecosystems, in the ng/L or µg/L range. Available toxicological data is limited, and, for certain PCPs, evidence indicates a potential risk for the environment. Hence, there is an urgent need to gather ecotoxicological data on PCPs as a proxy to improve risk assessment. Here, the toxicity of three different PCPs (4-Methylbenzylidene Camphor (4-MBC), propylparaben and triclocarban) was tested using embryo bioassays with Danio rerio (zebrafish) and Paracentrotus lividus (sea urchin). The No Observed Effect Concentration (NOEC) for triclocarban was 0.256 µg/L for sea urchin and 100 µg/L for zebrafish, whereas NOEC for 4-MBC was 0.32 µg/L for sea urchin and 50 µg/L for zebrafish. Both PCPs impacted embryo development at environmentally relevant concentrations. In comparison with triclocarban and 4-MBC, propylparaben was less toxic for both sea urchin (NOEC = 160 µg/L) and zebrafish (NOEC = 1000 µg/L). Overall, this study further demonstrates the sensitivity of embryo bioassays as a high-throughput approach for testing the toxicity of emerging pollutants. PMID:27775672

  14. Effects of 4-MBC and triclosan in embryos of the frog Pelophylax perezi.

    PubMed

    Martins, Diana; Monteiro, Marta S; Soares, Amadeu M V M; Quintaneiro, Carla

    2017-07-01

    The widespread and increasing use of personal care products (PCPs) have led to environmental contamination by substances included in these products. These substances have been detected in aquatic compartments and shown to cause adverse effects on non-target aquatic organisms. In this work toxicity of the antimicrobial triclosan (TCS) and of the UV-filter 3-(4-methylbenzylidene) camphor (4-MBC) was assessed in the embryos of Perez' frog Pelophylax perezi. Lethal and sub-lethal parameters were evaluated in embryos in Gosner stage 8-9 exposed to 0.00013-1.3 mg/l of 4-MBC and 0.25-2.50 mg/l of TCS during 144 h. Survival, malformations, length and hatching were evaluated as apical endpoints. Biomarkers of neurotransmission, oxidative stress, energy metabolism and estrogenicity were determined at the biochemical level through the activities of cholinesterase (ChE), catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenase (LDH) and levels of lipid peroxidation (LPO) and vitellogenin (Vtg). Embryo exposure to 4-MBC led to few developmental malformations (up to 3%) and a GST induction at 0.013 mg/l. Triclosan exposure reduced survival, delayed hatching (at 72 h) and development and induced malformations. In addiction ChE was inhibited in the highest concentrations tested and GST and LDH were induced at 0.79 mg/l, the LOEC registered for TCS in Perez' frogs. Overall, our study showed that TCS might exert adverse effects on P. perezi early life stages, but only at four orders of magnitude above the concentrations found in environment. Furthermore, our results highlight the need to assess PCPs toxicity at different levels of biological organization.

  15. Effects of in vivo exposure to UV filters (4-MBC, OMC, BP-3, 4-HB, OC, OD-PABA) on endocrine signaling genes in the insect Chironomus riparius.

    PubMed

    Ozáez, Irene; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2013-07-01

    There is increasing evidence indicating that several UV filters might have endocrine disruptive effects. Numerous studies have evaluated hormonal effects in vertebrates, mainly reporting estrogenic and androgenic activities in mammals and fishes. There is only limited knowledge about potential endocrine activity in invertebrate hormonal systems. In this work, the effects on endocrine signaling genes of six frequently used UV filters were investigated in Chironomus riparius, a reference organism in aquatic toxicology. The UV filters studied were: octyl-p-methoxycinnamate (OMC) also called 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4-MBC); benzophenone-3 (BP-3); 4-hidroxybenzophenone (4-HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). After in vivo exposure at different dosages, expression levels of the genes coding for the ecdysone receptor (EcR), the ultraspiracle (usp, ortholog of the RXR) and the estrogen-related receptor (ERR) were quantified by Real Time PCR. The EcR gene was significantly upregulated by 4-MBC, OMC/EHMC and OD-PABA, with a dose-related response following 24h exposure. In contrast, the benzophenones, BP-3 and 4-HB, as well as OC did not alter this gene at the same exposure conditions. The transcription profiles of the usp and ERR genes were not significantly affected, except for BP-3 that inhibited the usp gene at the highest concentration. To our knowledge, this is the first experimental evidence in invertebrates of a direct effect of UV filters on endocrine-related genes, and is consistent with the known effects on vertebrate hormonal receptor genes. The capability of 4-MBC, OMC/EHMC and OD-PABA to stimulate the expression of the ecdysone receptor, a key transcription factor for the ecdysone-genomic response in arthropods, suggests the possibility of a broad and long-term effect on this hormonal pathway. These findings strengthen the need for further research about the ecotoxicological implications

  16. Sorption and degradation of selected organic UV filters (BM-DBM, 4-MBC, and OD-PABA) in laboratory water-sediment systems.

    PubMed

    Li, Sheng; Lu, Guanghua; Xie, Zhengxin; Ding, Jiannan; Liu, Jianchao; Li, Yi

    2016-05-01

    Organic UV filters that have been widely used in sunscreens and other personal care products have drawn much public concern because of their widespread contamination in the environment and their potential ecological risks to ecosystems. We selected three UV filters with high frequency of detection in the environment, namely butyl methoxy dibenzoylmethane (BM-DBM), ethylhexyl dimethyl p-aminobenzoate (OD-PABA), and 4-methylbenzylidene camphor (4-MBC), to investigate the sorption and degradation behaviors of these compounds in lab-scale water-sediment systems set up with natural water and sediment samples collected from different rivers and lakes (i.e., Yangtze River, Qinhuai River, Xuanwu Lake, and Mochou Lake) in Nanjing, East China. The sorption isotherms of these UV filters were well described by the Freundlich equation (C s   = K f  × C w (n) ). The sorption of three UV filters in four sediments was all linear or close to it, with n values between 0.92 and 1.13. A moderate to strong sorption affinity was observed for these compounds, and the sorption appears to be irreversible. For the combined sorption and degradation studies, sorption was found to be a primary mechanism for the disappearance of these UV filters from the water phase, and biotransformation appears to be the predominant factor for the degradation of the target compounds in the water-sediment systems. All three UV filters were found to be slightly resistant to the microbes in these systems, with DT50total and DT90total values-the disappearance time (DT) describes the time in which the initial total mass of the UV filters in the whole system is reduced by 50 and 90 %-ranging between 18 and 31 days and 68 and 101 days, respectively.

  17. Systemic absorption of the sunscreens benzophenone-3, octyl-methoxycinnamate, and 3-(4-methyl-benzylidene) camphor after whole-body topical application and reproductive hormone levels in humans.

    PubMed

    Janjua, Nadeem Rezaq; Mogensen, Brian; Andersson, Anna-Maria; Petersen, Jørgen Holm; Henriksen, Mette; Skakkebaek, Niels E; Wulf, Hans Christian

    2004-07-01

    Recent in vitro and animal studies have reported estrogen-like activity of chemicals used in sunscreen preparations. We investigated whether the three sunscreens benzophenone-3 (BP-3), octyl-methoxycinnamate (OMC), and 3-(4-methylbenzylidene) camphor (4-MBC) were absorbed and influenced endogenous reproductive hormone levels in humans after topical application. In this 2-wk single-blinded study 32 healthy volunteers, 15 young males and 17 postmenopausal females, were assigned to daily whole-body topical application of 2 mg per cm(2) of basic cream formulation without (week 1) and with (week 2) the three sunscreens at 10% (wt/wt) of each. Maximum plasma concentrations were 200 ng per mL BP-3, 20 ng per mL 4-MBC, and 10 ng per mL OMC for females and 300 ng per mL BP-3, 20 ng per mL 4-MBC, and 20 ng per mL OMC for men. All three sunscreens were detectable in urine. The reproductive hormones FSH, LH were unchanged but minor differences in testosterone levels were observed between the 2 wk. A minor difference in serum estradiol and inhibin B levels were observed in men only. These differences in hormone levels were not related to sunscreen exposure.

  18. Camphor overdose

    MedlinePlus

    ... treated as appropriate. The person may receive: Activated charcoal (used if other substances were taken along with the camphor, since activated charcoal does not adsorb camphor very well) Airway support, ...

  19. Comparative experimental and theoretical studies of N-(4-Methylbenzylidene)-N'-(2-carboxyphenyl) hydrazine novel Schiff base.

    PubMed

    Tunç, Tuncay; Tezcan, Habibe; Sağlam, Semran; Dilek, Nefise

    2014-06-05

    In this work, N-(4-Methylbenzylidene)-N'-(2-carboxyphenyl) hydrazine, C15H14N2O2, Schiff base molecule has been synthesized and characterized by elemental analyses, UV-Vis and IR spectroscopy and single crystal X-ray determination. The molecule of the title compound adopt an E configuration about the azomethine CN double bond. The benzene and phenyl rings are planar and the dihedral angle between the planes is 7.2(2)°. The crystal structure is stabilized by intermolecular OH⋯O and intramoleculer NH⋯O hydrogen bonding interactions. X-ray diffraction analyses show that, N-(4-Methylbenzylidene)-N'-(2-carboxyphenyl) hydrazine Schiff base molecule crystallizes in the monoclinic system, P21/c space group, a=4.392(5)Å, b=22.340(5)Å, c=13.528(5)Å, β=92.882(5)°, V=1325.7(16)Å(3), Z=4. The conformational analysis of N-(4-Methylbenzylidene)-N'-(2-carboxyphenyl) hydrazine was performed by the density functional theory (DFT) B3LYP method using the 6-311++G(d,p) basis set. Also, theoretical values of FTIR and UV-Vis were performed by the same method. The calculated geometry parameters, IR and UV-Vis results were compared with experimental results.

  20. "Vibrational spectroscopic analysis and molecular docking studies of (E)-4-methoxy-N‧-(4-methylbenzylidene) benzohydrazide by DFT"

    NASA Astrophysics Data System (ADS)

    Maheswari, R.; Manjula, J.

    2016-07-01

    (E)-4-methoxy-N‧-(4-methylbenzylidene)benzohydrazide (4MN'MBH) a novel, organic, hydrazone Schiff base compound was synthesized and its structure was characterized by Fourier Transform Infrared (4000-400 cm-1), Fourier Transform Raman (3500-50 cm-1), Ultraviolet-Visible (200-800 nm) and 1H and 13C NMR spectroscopic analysis. Optimized molecular structure, vibrational frequencies and corresponding vibrational assignments regarding 4MN'MBH has become screened tentatively as well as hypothetically utilizing Gaussian09Wprogram package. Potential energy distributions of the normal modes of vibrations connected with vibrations are generally accomplished by applying VEDA program. Natural Bonding Orbital (NBO) assessment was completed with a reason to clarify charge transfer or conjugative interaction, the intra-molecular-hybridization and delocalization of electron density within the molecule. Electronic transitions were studied employing UV-Visible spectrum and the observed values were compared with theoretical values. 1H and13C NMR spectral assessment had been made with choosing structure property relationship by chemical shifts along with magnetic shielding effects of title compound. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of 4MN'MBH were calculated. The computed first order hyperpolarizability commensurate with the documented worth of very similar structure and could be an interesting thing for more experiments on non linear optics. Molecular docking study has been performed by in silico method to analysis their antituberculosis aspects against Enoyl acyl carrier protein reductase (Mycobacterium tuberculosis InhA) protein.

  1. Endocrine activity and developmental toxicity of cosmetic UV filters--an update.

    PubMed

    Schlumpf, Margret; Schmid, Peter; Durrer, Stefan; Conscience, Marianne; Maerkel, Kirsten; Henseler, Manuel; Gruetter, Melanie; Herzog, Ingrid; Reolon, Sasha; Ceccatelli, Raffaella; Faass, Oliver; Stutz, Eva; Jarry, Hubertus; Wuttke, Wolfgang; Lichtensteiger, Walter

    2004-12-01

    UV filters represent a new class of endocrine active chemicals. In vitro, 8/9 chemicals showed estrogenic (MCF-7 cells), and 2/9 antiandrogenic activity (MDA-kb2 cells). Six/nine filters (benzophenone (Bp)-1, Bp-2, Bp-3, 3-benzylidene camphor (3-BC), 4-methylbenzylidene camphor (4-MBC), octyl-methoxycinnamate (OMC)) increased uterine weight in immature rats. 3-Benzylidene camphor and 4-MBC displaced 16alpha125I-estradiol from human estrogen receptor (ER)beta, not ERalpha. Developmental toxicity of 4-MBC (0.7-47 mg/kg body weight/day) and 3-BC (0.24-7 mg/kg), administered in chow was investigated in Long Evans (LE) rats. Weight gain of pregnant rats was reduced only by 3-BC, early postnatal survival rate and thymus weight by both compounds at higher doses. 4-Methylbenzylidene camphor and 3-BC delayed male puberty, and dose-dependently affected reproductive organ weights of adult male and female F1 offspring, with partly different effect patterns. Thyroid weight was increased by higher 4-MBC doses. Tissue-specific changes in mRNA levels of estrogen-regulated genes in prostate, uterus and brain regions, determined by real-time PCR, and in their response to acute estradiol challenge in adult gonadectomized offspring were observed. Lowest effective doses were 0.24 mg/kg/day for 3-BC and 7 mg/kg/day for 4-MBC. Fat tissue levels at 7 mg/kg 4-MBC (GC-MS) approached the range of UV filters in fish (Nagtegaal et al., 1997; Balmer et al., 2004).

  2. (E)-2-(4-Methylbenzylidene)hydrazinecarboxamide.

    PubMed

    Kia, Yalda; Osman, Hasnah; Murugaiyah, Vikneswaran Al; Hemamalini, Madhukar; Fun, Hoong-Kun

    2011-01-08

    The title compound, C(9)H(11)N(3)O, was synthesized by the reaction of 4-methyl-benzaldehyde with semicarbazide. The mol-ecule adopts an E configuration about the central C=N double bond and the dihedral angle between the mean planes of the benzene ring and the carboxamide groups is 17.05 (9)°. The hydrazine N atoms are twisted slightly out of the plane of the carboxamide group [C-C-N-N torsion angle = 178.39 (14)°] and an intra-molecular N-H⋯N bond generates an S(5) ring. In the crystal, adjacent mol-ecules are connected via a pair of N-H⋯O hydrogen bonds, generating R(2) (2)(8) loops, resulting in supra-molecular [001] ribbons.

  3. Endocrine modulation and toxic effects of two commonly used UV screens on the aquatic invertebrates Potamopyrgus antipodarum and Lumbriculus variegatus.

    PubMed

    Schmitt, Claudia; Oetken, Matthias; Dittberner, Olaf; Wagner, Martin; Oehlmann, Jörg

    2008-03-01

    The two UV screens 3-benzylidene-camphor (3-BC) and 3-(4'-methylbenzylidene)-camphor (4-MBC) were tested regarding their toxicity and estrogenic activity. The Yeast Estrogen Screen (YES) and two sediment assays with the freshwater invertebrates Lumbriculus variegatus and Potamopyrgus antipodarum were performed. In the YES, both substances activated the human estrogen receptor alpha with EC50 values of 44.2 microM for 3-BC and 44.3 microM for 4-MBC, whereby 4-MBC attained only 8% of the maximal response of 17beta-estradiol. For P. antipodarum embryo production increased after exposure to both substances (EC50 of 4.60 microM 4-MBC=1.17 mg kg(-1)dw) while mortality increased at high concentrations. The reproduction of L. variegatus was decreased by 3-BC with an EC50 of 5.95 microM (=1.43 mg kg(-1)dw) and also by 4-MBC, where no EC50 could be calculated. While reproduction decreased, the worms' weight increased after exposure to 3-BC with an EC50 of 26.9 microM (=6.46 mg kg(-1) dw), hence the total biomass remained unaffected.

  4. Developmental toxicity of UV filters and environmental exposure: a review.

    PubMed

    Schlumpf, Margret; Durrer, Stefan; Faass, Oliver; Ehnes, Colin; Fuetsch, Michaela; Gaille, Catherine; Henseler, Manuel; Hofkamp, Luke; Maerkel, Kirsten; Reolon, Sasha; Timms, Barry; Tresguerres, Jesus A F; Lichtensteiger, Walter

    2008-04-01

    Several ultraviolet (UV) filters exhibit estrogenic, some also anti-androgenic activity. They are present in waste water treatment plants, surface waters and biosphere including human milk, suggesting potential exposure during development. Developmental toxicity was studied in rats for the UV filters 4-methylbenzylidene camphor (4-MBC, 0.7, 7, 24, 47 mg/kg/day) and 3-benzylidene camphor (3-BC, 0.07, 0.24, 0.7, 2.4, 7 mg/kg/day) administered in chow to the parent generation before mating, during pregnancy and lactation, and to the offspring until adulthood. Neonates exhibited enhanced prostate growth after 4-MBC and altered uterine gene expression after both chemicals. 4-MBC and 3-BC delayed male puberty and affected reproductive organ weights of adult offspring. Effects on the thyroid axis were also noted. Expression and oestrogen sensitivity of oestrogen-regulated genes and nuclear receptor coregulator levels were altered at mRNA and protein levels in adult uterus, prostate and brain regions involved in gonadal control and sexual behaviour. Female sexual behaviour was impaired by both filters; 3-benzylidene camphor caused irregular cycles. Classical endpoints exhibited lowest observed adverse effect levels (LOAELs) and no observed adverse effect levels (NOAELs) of 7/0.7 mg/kg for 4-MBC and 0.24/0.07 mg/kg for 3-BC. Molecular endpoints were affected by the lowest doses studied. Our data indicate that the potential risk posed by endocrine active UV filters warrants further investigations.

  5. Metabolism of camphors and related compounds

    PubMed Central

    Robertson, J. S.; Hussain, M.

    1969-01-01

    1. The metabolism of (±)-norcamphor, (+)-camphor, (−)-camphor, (+)-epicamphor, (±)-camphorquinone, (±)-camphane-2,5-dione and camphane was investigated in rabbits. All the compounds except camphane-2,5-dione increased the content of glucuronide in the urine. 2. (±)-Norcamphor was reduced to endo-norborneol; (+)-camphor, contrary to expectation, was reduced to (+)-borneol, as well as being hydroxylated to (+)-5-endo-hydroxycamphor and (+)-3-endo-hydroxycamphor, 5-endo-hydroxycamphor being the predominant product. (+)-Epicamphor was reduced mainly to (+)-epiborneol; (±)-camphorquinone gave 3-endo-hydroxycamphor and 2-endo-hydroxyepicamphor, the former being the major metabolite. (±)-Camphane-2,5-dione was reduced to 5-endo-hydroxycamphor. Camphane was hydroxylated to borneol and epiborneol, the latter predominating. 3. An explanation of these findings is given in terms of steric hindrance and thermodynamic stability. 4. The possibility was investigated that NADH was involved in the reductions. PMID:4308838

  6. Biotransformations of 2-methylisoborneol by camphor-degrading bacteria.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many camphor-degrading bacteria that are able to transform 2-methylisoborneol (MIB) have been identified. Three strains representative of these, have been examined in detail. Rhodococcus ruber T1 metabolizes camphor through 6-hydroxycamphor, but converts MIB to 2,3-dihydroxy-2-methylbornane. Pseu...

  7. [Historical study of a moth repellent "Fujisawa Camphor" (4) - newspaper advertisements for "Fujisawa Camphor" in the Meiji Era].

    PubMed

    Hattori, Akira

    2004-01-01

    Newspaper advertisements were frequently available as one way of communicating news about new products to the general public during the middle of the Meiji Era. The first newspaper advertisement of "Fujisawa Camphor"' appeared in the Osaka Asahi on June 1, 1989. At that time, the newspaper advertisements of OTC were brilliant and the space taken by them was large, in some cases covering a full page. They appeared daily. However, the ad for Fujisawa Camphors was small and simple. The appeal points of the Fujisawa Camphor advertisement were as follows: 1. Fujisawa Camphor, crystals of refined camphor, are hard and colorless.2. It is effective for insecticide and prevents moisture.3. It is widely used by governments and the military.4. It removes bad smell to protect against infectious diseases.

  8. Sorption of pharmaceuticals and personal care products to polyethylene debris.

    PubMed

    Wu, Chenxi; Zhang, Kai; Huang, Xiaolong; Liu, Jiantong

    2016-05-01

    Presence of plastic debris in marine and freshwater ecosystems is increasingly reported. Previous research suggested plastic debris had a strong affiliation for many pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and heavy metals. In this study, the sorption behavior of pharmaceuticals and personal care products (PPCPs), including carbamazepine (CBZ), 4-methylbenzylidene camphor (4MBC), triclosan (TCS), and 17α-ethinyl estradiol (EE2), to polyethylene (PE) debris (250 to 280 μm) was investigated. The estimated linear sorption coefficients (K d) are 191.4, 311.5, 5140, and 53,225 L/kg for CBZ, EE2, TCS, and 4MBC, and are related to their hydrophobicities. Increase of salinity from 0.05 to 3.5 % did not affect the sorption of 4MBC, CBZ, and EE2 but enhanced the sorption of TCS, likely due to the salting-out effect. Increase of dissolved organic matter (DOM) content using Aldrich humic acid (HA) as a proxy reduced the sorption of 4MBC, EE2, and TCS, all of which show a relatively strong affiliation to HA. Results from this work suggest that microplastics may play an important role in the fate and transport of PPCPs, especially for those hydrophobic ones.

  9. Camphorated oil: still endangering the lives of Canadian children.

    PubMed Central

    Theis, J G; Koren, G

    1995-01-01

    Camphor is a volatile, aromatic compound familiar to many people as a principal ingredient in topical home remedies for colds. It is highly toxic when ingested. Although camphorated oil in concentrations of 11% or greater is not longer sold in the United States, preparations containing concentrations of up to 20% are still sold over the counter in Canada. The authors describe two children who suffered severe poisoning after accidental ingestion of a small amount of camphorated oil. Both children exhibited generalized tonic-clonic seizures with subsequent respiratory depression. Treatment was symptomatic, consisting of seizure control and respiratory assistance. The authors argue that because camphorated oil is of questionable benefit and poses a danger to the public it should be removed from the market. PMID:7773898

  10. [Historical study of moth repellent, "Fujisawa Camphor" (6) - manufacturing and selling of "Fujisawa Camphor" during World War II.].

    PubMed

    Hattori, Akira

    2005-01-01

    During World War II, the amount of camphor production did not decrease, since it was used for munitions. At that time, camphor was not use for moth repellents, are not a life supporting necessity. The factory that took charge of camphor production was busy producing medicine for military use. Due to the war, an abnormal situation in the factory arose when the procurement department requested supplementation because of reinforcement of a lack of materials. Additionally, in the home, the use of moth repellent for clothing was not a concern. Of importance where was ensuring sufficient food to survive. The supply of "Fujisawa Camphor" for home use started in the post-war days, 1947.

  11. [Starting with camphor--the progress of Nippon Fine Chemical].

    PubMed

    Kimura, Osamu

    2010-01-01

    In 1918, Nippon Fine Chemical Co., Ltd. (NFC) was founded under the name, Nippon Camphor Co., Ltd. for the purpose of unifying the camphor business throughout Japan. The company manufactured purified camphor as a government-monopolized good. Camphor was used as a plasticizer for nitrocellulose, as a moth repellent, as an antimicrobial substance, as a rust inhibitor, and as an active ingredient in medicine. It was also a very important good exported in order to obtain foreign currency. Later on, after World War II and the abolition of the camphor monopoly, the company started manufacturing products related to oils and fats, including higher fatty acids, and expanded its business by developing a new field of chemical industry. In 1971 the company changed its name to Nippon Fine Chemical Co., Ltd., and made a new start as a diversified fine chemicals company. Recently, the fine chemicals division of NFC has concentrated on rather complex molecules, such as active pharmaceutical ingredients, and other chemicals. Since 2000, NFC have started to supply "Presome", precursors of liposome DDS drugs. NFC is strengthening marketing strategies in foreign countries with unique technologies and products.

  12. In vitro effect of parachlorophenol and camphorated parachlorophenol on macrophages.

    PubMed

    Llamas, R; Segura, J J; Jiménez-Rubio, A; Jiménez-Planas, A

    1997-12-01

    The purpose of this study was to investigate the "in vitro" effect of parachlorophenol and camphorated parachlorophenol, used in endodontics for the disinfection of root canals, on the substrate adherence capacity of macrophages. Inflammatory macrophages were obtained from Wistar rats and resuspended in RPMI-1640 medium. As a test of macrophage phagocytic function, the adherence capacity of macrophages to a plastic surface was determined. Assays were conducted in Eppendorf tubes for 15 min of incubation at 37 degrees C in a humidified atmosphere of 5% CO2. The adherence index was calculated. Results showed that parachlorophenol and camphorated parachlorophenol significantly decreased the substrate adherence capacity of inflammatory macrophages. Taking into account that adhesion is the first step in the phagocytic process of macrophages and in antigen presentation, parachlorophenol and camphorated parachlorophenol could inhibit macrophage function and modulate immune and inflammatory reactions in periapical tissues.

  13. Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata.

    PubMed

    Paredes, E; Perez, S; Rodil, R; Quintana, J B; Beiras, R

    2014-06-01

    Due to the concern about the negative effects of exposure to sunlight, combinations of UV filters like 4-Methylbenzylidene-camphor (4-MBC), Benzophenone-3 (BP-3), Benzophenone-4 (BP-4) and 2-Ethylhexyl-4-methoxycinnamate (EHMC) are being introduced in all kind of cosmetic formulas. These chemicals are acquiring a concerning status due to their increasingly common use and the potential risk for the environment. The aim of this study is to assess the behaviour of these compounds in seawater, the toxicity to marine organisms from three trophic levels including autotrophs (Isochrysis galbana), herbivores (Mytilus galloprovincialis and Paracentrotus lividus) and carnivores (Siriella armata), and set a preliminary assessment of potential ecological risk of UV filters in coastal ecosystems. In general, EC50 results show that both EHMC and 4-MBC are the most toxic for our test species, followed by BP-3 and finally BP-4. The most affected species by the presence of these UV filters are the microalgae I. galbana, which showed toxicity thresholds in the range of μg L(-1) units, followed by S. armata>P. Lividus>M. galloprovincialis. The UV filter concentrations measured in the sampled beach water were in the range of tens or even hundreds of ng L(-1). The resulting risk quotients showed appreciable environmental risk in coastal environments for BP-3 and 4-MBC.

  14. Female sexual behavior, estrous cycle and gene expression in sexually dimorphic brain regions after pre- and postnatal exposure to endocrine active UV filters.

    PubMed

    Faass, Oliver; Schlumpf, Margret; Reolon, Sasha; Henseler, Manuel; Maerkel, Kirsten; Durrer, Stefan; Lichtensteiger, Walter

    2009-03-01

    The developing female brain represents a potential target for estrogenic environmental chemicals because it depends on estrogen but is exposed to low endogenous estrogen levels, thus facilitating competition by exogenous estrogen receptor (ER) agonists. We investigated effects of two estrogenic UV filters, 4-methylbenzylidene camphor (4-MBC) and 3-benzylidene camphor (3-BC). 4-MBC has been detected in human milk, indicating potential exposure of fetus and infant. The two chemicals were administered in chow to rats of the parent generation before mating, during pregnancy and lactation, and to their offspring until adulthood. Female sexual behavior was recorded on videotape in adult female offspring on proestrus evening at the beginning of the dark phase. 4-MBC (7 and 24mg/kg bw/day) and 3-BC (2.4 and 7mg/kg bw/day) reduced proceptive behavior (jump and ear wiggling) and receptive behavior (lordosis quotient), and increased rejection behavior towards the male. Estrous cycles were not affected by 4-MBC but disturbed by 3-BC. mRNAs encoding for genes involved in female sexual behavior, ERalpha, ERbeta, progesterone receptor (PR) and steroid receptor coactivator-1 (SRC-1), were measured by real-time RT-PCR in ventromedial hypothalamic nucleus (VMH) and medial preoptic area of adult male and female offspring (studied in diestrus) after pre- and postnatal exposure to 3-BC (0.24, 0.7, 2.4 and 7mg/kg bw/day). Gene expression was affected in a sex- and region-specific manner. PR mRNA in female VMH was reduced to male levels at dose levels of 2.4 and 7mg/kg bw/day 3-BC. Our data demonstrate that female sexual behavior represents a sensitive target of endocrine disrupters and point to an involvement of PR in VMH.

  15. Region-Specific Growth Effects in the Developing Rat Prostate Following Fetal Exposure to Estrogenic Ultraviolet Filters

    PubMed Central

    Hofkamp, Luke; Bradley, Sarahann; Tresguerres, Jesus; Lichtensteiger, Walter; Schlumpf, Margret; Timms, Barry

    2008-01-01

    Background and objectives Exposure to environmental endocrine disruptors is a potential risk factor for humans. Many of these chemicals have been shown to exhibit disruption of normal cellular and developmental processes in animal models. Ultraviolet (UV) filters used as sunscreens in cosmetics have previously been shown to exhibit estrogenic activity in in vitro and in vivo assays. We examined the effects of two UV filters, 4-methylbenzylidene camphor (4-MBC) and 3-benzylidene camphor (3-BC), in the developing prostate of the fetal rat. Methods Pregnant Long Evans rats were fed diets containing doses of 4-MBC and 3-BC that resulted in average daily intakes of these chemicals corresponding to the lowest observed adverse effects level (LOAEL) and the no observed adverse effects level (NOAEL) doses in prior developmental toxicity studies. Using digital photographs of serial sections from postnatal day 1 animals, we identified, contoured, and aligned the epithelial ducts from specific regions of the developing prostate, plus the accessory sex glands and calculated the total volume for each region from three-dimensional, surface-rendered models. Results Fetal exposure to 4-MBC (7.0 mg/kg body weight/day) resulted in a significant increase (p < 0.05) in tissue volume in the prostate and accessory sex glands. Treated males exhibited a 62% increase in the number of ducts in the caudal dorsal prostate. Increased distal branching morphogenesis appears to be a consequence of exposure in the ventral region, resulting in a 106% increase in ductal volume. Conclusions 4-MBC exposure during development of the male reproductive accessory sex glands exhibited classical growth effects associated with estrogenic endocrine disruptors. The different regional responses suggest that the two developmental processes of ductal outgrowth and branching morphogenesis are affected independently by exposure to the environmental chemicals. PMID:18629307

  16. Severe camphor poisoning, a seven-year observational study.

    PubMed

    Rahimi, Mitra; Shokri, Fatemeh; Hassanian-Moghaddam, Hossein; Zamani, Nasim; Pajoumand, Abdolkarim; Shadnia, Shahin

    2017-03-21

    In a retrospective case series from 2007 to 2014, we searched for any accidental/intentional, and recreational cases of pure camphor poisoning through hospital records. Epidemiological data, as well as factors correlated with seizure, were evaluated. Thirty cases including 29 males were recruited with a median age of 18 years (range; 0.2-87). Patient's reported ingestion rate of camphor was 1.5-15 grams. Almost all of the patients (96.7%) were conscious on arrival time and the ingestion to the presentation time ratio was 7±5h. It was observed that in a majority of the cases (53.4%), decreasing libido was the main intent of Camphor ingestion. Nausea and vomiting occurred in 22 (73.3%) cases and tonic-clonic seizure was seen in 12 (40%) patients. Mean presentation time was significantly longer in patients who experienced seizure (9.1±6.1h vs. 5.2±2.8h, p=0.05). No correlation was found between the amount of ingested camphor (grams or mg/kg) and vital signs along with the bio-chemistry results. Not only did all of our cases survive but also they exclusively received supportive care.

  17. Hydrodynamics of a fixed camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Singh, Dhiraj; Akella, Sathish; Singh, Ravi; Mandre, Shreyas; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when introduced at the air-water interface undergoes sublimation and the camphor vapour spreads radially outwards across the surface. This radial spreading of camphor is due to Marangoni forces setup by the camphor concentration gradient. We report experiments on the hydrodynamics of this process for a camphor tablet held fixed at the air-water interface. During the initial transient, the time-dependent spread radius R (t) of camphor scales algebraically with time t (R (t) ~t 1 / 2) in agreement with empirical scalings reported for spreading of volatile oils on water surface. But unlike surfactants, the camphor stops spreading when the influx of camphor from the tablet onto the air-water interface is balanced by the outflux of camphor due to evaporation, and a steady-state condition is reached. The spreading camphor however, shears the underlying fluid and sets up bulk convective flow. We explain the coupled steady-state dynamics between the interfacial camphor spreading and bulk convective flow with a boundary layer approximation, supported by experimental evidence. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  18. The effects of binary UV filter mixtures on the midge Chironomus riparius.

    PubMed

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-06-15

    Organic ultraviolet (UV) filters are used in a wide variety of products, including cosmetics, to prevent damage from UV light in tissues and industrial materials. Their extensive use has raised concerns about potential adverse effects in human health and aquatic ecosystems that accumulate these pollutants. To increase sun radiation protection, UV filters are commonly used in mixtures. Here, we studied the toxicity of binary mixtures of 4-methylbenzylidene camphor (4MBC), octyl-methoxycinnamate (OMC), and benzophenone-3 (BP-3), by evaluating the larval mortality of Chironomus riparius. Also molecular endpoints have been analyzed, including alterations in the expression levels of a gene related with the endocrine system (EcR, ecdysone receptor) and a gene related with the stress response (hsp70, heat shock protein 70). The results showed that the mortality caused by binary mixtures was similar to that observed for each compound alone; however, some differences in LC50 were observed between groups. Gene expression analysis showed that EcR mRNA levels increased in the presence of 0.1mg/L 4MBC but returned to normal levels after exposure to mixtures of 4MBC with 0.1, 1, and 10mg/L of BP-3 or OMC. In contrast, the hsp70 mRNA levels increased after exposure to the combinations tested of 4MBC and BP-3 or OMC mixtures. These data suggest that 4MBC, BP-3, and OMC may have antagonist effects on EcR gene transcription and a synergistic effect on hsp70 gene activation. This is the first experimental study to show the complex patterned effects of UV filter mixtures on invertebrates. The data suggest that the interactions within these chemicals mixtures are complex and show diverse effects on various endpoints.

  19. Synthesis and Biological Activities of Camphor Hydrazone and Imine Derivatives

    PubMed Central

    da Silva, Emerson T.; da Silva Araújo, Adriele; Moraes, Adriana M.; de Souza, Leidiane A.; Silva Lourenço, Maria Cristina; de Souza, Marcus V. N.; Wardell, James L.; Wardell, Solange M. S. V.

    2015-01-01

    Both sonochemical and classical methodologies have been employed to convert camphor, 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one, C9H16C=O, into a number of derivatives including hydrazones, C9H16C=N-NHAr 3, imines, C9H16C=N-R 7, and the key intermediate nitroimine, C9H16C=N-NO2 6. Reactions of nitroamine 6 with nucleophiles by classical methods provided the desired compounds in a range of yields. In evaluations of activity against Mycobacterium tuberculosis, compound 7j exhibited the best activity (minimal inhibitory concentration (MIC) = 3.12 µg/mL), comparable to that of the antitubercular drug ethambutol. The other derivatives displayed modest antimycobacterial activities at 25–50 µg/mL. In in vitro tests against cancer cell lines, none of the synthesized camphor compounds exhibited cytotoxic activities. PMID:28117313

  20. Bimodal effects of cinnamaldehyde and camphor on mouse TRPA1.

    PubMed

    Alpizar, Yeranddy A; Gees, Maarten; Sanchez, Alicia; Apetrei, Aurelia; Voets, Thomas; Nilius, Bernd; Talavera, Karel

    2013-06-01

    TRPA1 is a nonselective cation channel activated by a wide variety of noxious chemicals. Intriguingly, several TRPA1 modulators induce a bimodal effect, activating the channel at micromolar concentrations and inhibiting it at higher concentrations. Here we report the bimodal action of cinnamaldehyde (CA) and camphor, which are thus far reported as agonist and antagonist of TRPA1, respectively. Whole-cell patch-clamp experiments in TRPA1-expressing CHO cells revealed that, as previously reported, extracellular application of 100 μM CA strongly stimulates TRPA1 currents. However, subsequent application of 3 mM CA induced fast and reversible current inhibition. Application of 3 mM CA in basal conditions induced a rather small current increase, followed by current inhibition and a dramatic rebound of current amplitude upon washout. These observations are reminiscent of the effects of TRPA1 modulators having bimodal effects, e.g., menthol and nicotine. In line with previous reports, extracellular application of 1 mM camphor induced a decrease of basal TRPA1 currents. However, the current amplitude showed a significant overshoot upon washout. On the other hand, application of 100 μM camphor induced a 3-fold increase of the basal current amplitude measured at -75 mV. The bimodal effects of CA and camphor on TRPA1 were also observed in microfluorimetric measurements of intracellular Ca(2+) in intact TRPA1-expressing CHO cells and in primary cultures of mouse dorsal root ganglion neurons. These findings are essential for the understanding of the complex sensory properties of these compounds, as well as their utility when used to study the pathophysiological relevance of TRPA1.

  1. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth.

    PubMed

    Santos, Thaisa B; Vieira, Angela A; Paula, Luciana O; Santos, Everton D; Radi, Polyana A; Khouri, Sônia; Maciel, Homero S; Pessoa, Rodrigo S; Vieira, Lucia

    2017-04-01

    Camphor was incorporated in diamond-like carbon (DLC) films to prevent the Candida albicans yeasts fouling on polyurethane substrates, which is a material commonly used for catheter manufacturing. The camphor:DLC and DLC film for this investigation was produced by plasma enhanced chemical vapor deposition (PECVD), using an apparatus based on the flash evaporation of organic liquid (hexane) containing diluted camphor for camphor:DLC and hexane/methane, mixture for DLC films. The film was deposited at a low temperature of less than 25°C. We obtained very adherent camphor:DLC and DLC films that accompanied the substrate flexibility without delamination. The adherence of camphor:DLC and DLC films on polyurethane segments were evaluated by scratching test and bending polyurethane segments at 180°. The polyurethane samples, with and without camphor:DLC and DLC films were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical profilometry. Candida albicans biofilm formation on polyurethane, with and without camphor:DLC and DLC, was assessed. The camphor:DLC and DLC films reduced the biofilm growth by 99.0% and 91.0% of Candida albicans, respectively, compared to bare polyurethane. These results open the doors to studies of functionalized DLC coatings with biofilm inhibition properties used in the production of catheters or other biomedical applications.

  2. In vitro-assessment of putative antiprogestin activities of phytochemicals and synthetic UV absorbers in human endometrial Ishikawa cells.

    PubMed

    Yin, Qinan; Fischer, Lara; Noethling, Claudia; Schaefer, Wolfgang R

    2015-07-01

    Critical steps of embryo implantation are controlled by progesterone. These processes can be interrupted by progesterone receptor (PR) antagonists, e.g. drugs used for abortion. Antiprogestin effects induced by natural compounds and environmental chemicals have been rarely addressed. In our in vitro study, we investigated putative antiprogestin activities of the plant compounds apigenin (API) and trans-ferulic acid (t-FA) as well as the UV absorbers octyl methoxycinnamate (OMC) and 4-methylbenzylidene camphor (4-MBC). They were compared with the selective progesterone receptor modulators (SPRMs) mifepristone (RU486) and ulipristal acetate (UPA) as well as the full PR-antagonist ZK137316. Effects of test compounds in combination with progesterone on the progesterone-sensitive target gene estrogen sulfotransferase (SULT1E1) were characterized by sigmoidal concentration-response curves obtained by RT-qPCR. The agonistic effect of progesterone on SULT1E1 mRNA levels was concentration-dependently antagonized by RU486, UPA and ZK137316 as well as, with lower potency, apigenin. t-FA, OMC and 4-MBC had no effect on SULT1E1 mRNA levels. We demonstrated that apigenin, although at higher concentrations, exerts a similar effect as the well-characterized SPRMs RU486 and UPA or the progesterone antagonist ZK137316 in this model. Our endometrium-specific Ishikawa cell assay is a useful complement to artificial transactivation assays for the identification of environmental substances with antiprogestin activities.

  3. Concentrations and specific loads of UV filters in sewage sludge originating from a monitoring network in Switzerland.

    PubMed

    Plagellat, Cécile; Kupper, Thomas; Furrer, Reinhard; de Alencastro, Luiz Felippe; Grandjean, Dominique; Tarradellas, Joseph

    2006-02-01

    Many substances related to human activities end up in wastewater and accumulate in sewage sludge. The present study focuses on the analysis of widely used UV filters 3-(4-methylbenzylidene) camphor (4-MBC), octyl-methoxycinnamate (OMC), octocrylene (OC) and octyl-triazone (OT) in sewage sludge originating from a monitoring network in Switzerland. Mean concentrations in stabilised sludge from 14 wastewater treatment plants were 1780, 110, 4840 and 5510 microg/kg dry matter for 4-MBC, OMC, OC and OT, respectively. Specific loads in sewage sludge show that UV filters originate mainly from private households, but surface runoff and industries may be considered as additional sources. This indicates that besides use for sunscreens and cosmetics UV filters might occur in plastics and other materials and be released to the environment by volatilization or leaching. Differences between the modeled per capita loads of UV filters in sewage sludge and the observed specific loads in sewage sludge are probably due to erroneous figures of production volumes, degradation and sorption during wastewater treatment as well as degradation processes during transport in the sewer or sludge treatment. Thus, further research is needed to elucidate the fate of UV filters after application and release into the environment. Other compounds used as UV filters should be included in future studies.

  4. Occurrence of eight UV filters in beaches of Gran Canaria (Canary Islands). An approach to environmental risk assessment.

    PubMed

    Sánchez Rodríguez, A; Rodrigo Sanz, M; Betancort Rodríguez, J R

    2015-07-01

    Due to the growing concern about human health effects of ultraviolet (UV) radiation, the use of UV filters has increased in recent decades. Unfortunately, some common UV filters are bioaccumulated in aquatic organisms and show a potential for estrogenic activity. The aim of the present study is to determine the presence of some UV filters in the coastal waters of six beaches around Gran Canaria Island as consequence of recreational seaside activities. Eight commonly used UV filters: benzophenone-3 (BP-3), octocrylene (OC), octyl-dimethyl-PABA (OD-PABA), ethylhexyl methoxy cinnamate (EHMC), homosalate (HMS), butyl methoxydibenzoyl methane (BMDBM), 4-methylbenzylidene camphor (4-MBC) and diethylamino hydroxybenzoyl hexyl benzoate (DHHB), were monitored and, with the exception of OD-PABA, all were detected in the samples collected. 99% of the samples showed some UV filters and concentration levels reached up to 3316.7 ng/L for BP-3. Environmental risk assessment (ERA) approach showed risk quotients (RQ) higher than 10, which means that there is a significant potential for adverse effects, for 4-MBC and EHMC for those samples with highest levels of UV filters.

  5. Distribution and seasonal occurrence of UV filters in rivers and wastewater treatment plants in Korea.

    PubMed

    Ekpeghere, Kalu Ibe; Kim, Un-Jung; O, Sung-Hee; Kim, Hee-Young; Oh, Jeong-Eun

    2016-01-15

    The occurrence and distribution of eight UV filters benzophenone (BP), benzophenone-3 (BP-3), ethylhexyl methoxy cinnamate (EHMC), 4-methylbenzylidene camphor (4-MBC), 2-ethylhexyl 4-dimethylaminobenzoate (OD-PABA), 2-ethylhexyl salicylate (EHS), isoamyl benzoate, and benzyl cinnamate in eleven sites among three rivers, five sewage treatment plants (STPs), and four wastewater treatment plants (WWTPs) located in different parts of Korea was investigated. The total concentrations of UV filters in the three sampled seasons were 62.9-412 ng L(-1) (river), 417-5055 ng L(-1) (STP influent), 108-2201 ng L(-1) (STP effluent), 122-4154 ng L(-1) (WWTP influent), and 120-849 ng L(-1) (WWTP effluent). The concentration of the target pollutants in the influent of the treatment systems was directly proportional to the resident population density. A seasonal increase of >27% was observed in the total concentration of the UV filters in the rivers and influents of the treatment plants (TPs) during summer. BP, BP-3, EHMC, 4-MBC, and EHS were the most dominant, showing a distinct distribution pattern that was dependent on the effectiveness of the treatment process and properties of each compound. The concentrations of the UV filters were higher in the TPs influents than in the rivers, and the most dominant UV filters in the rivers were those with low removal rate. Although biological treatment processes favored the removal of the UV filter compounds in the TPs, complete removal was not achieved before discharge into the rivers.

  6. Hydrodynamics of a self-propelled camphor boat at the air-water interface

    NASA Astrophysics Data System (ADS)

    Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh

    2015-11-01

    A camphor tablet, when placed at the air-water interface undergoes sublimation and camphor vapour spreads radially outwards across the surface due to Marangoni forces. This steady camphor influx from tablet onto the air-water interface is balanced by the camphor outflux due to evaporation. When spontaneous fluctuations in evaporation break the axial symmetry of Marangoni force acting radially outwards, the camphor tablet is propelled like a boat along the water surface. We report experiments on the hydrodynamics of a self-propelled camphor boat at air-water interfaces. We observe three different modes of motion, namely continuous, harmonic and periodic, due to the volatile nature of camphor. We explain these modes in terms of ratio of two time-scales: the time-scale over which viscous forces are dominant over the Marangoni forces (τη) and the time-scale over which Marangoni forces are dominant over the viscous forces (τσ). The continuous, harmonic and periodic motions are observed when τη /τσ ~ 1 , τη /τσ >= 1 and τη /τσ >> 1 respectively. Experimentally, the ratio of the time scales is varied by changing the interfacial tension of the air-water interface using Sodium Dodecyl Sulfate. This work was supported by the Collective Interactions Unit, OIST Graduate University.

  7. Anti-flatulence treatment and status epilepticus: a case of camphor intoxication.

    PubMed

    Guilbert, J; Flamant, C; Hallalel, F; Doummar, D; Frata, A; Renolleau, S

    2007-12-01

    We describe a case of a young child who lived in Hong Kong who presented with a severe epilepticus status after a return flight to Paris. Routine laboratory tests failed to establish a cause. Upon further questioning, the parents reported that the nanny had given an abdominal massage to the child with an unlabelled solution reported to have anti-flatulence effects. Toxicological analysis of this solution revealed the presence of camphor. Although the highly toxic effects of camphor have long been established, the present case illustrates that camphor continues to be a source of paediatric exposure. This case highlights the importance of systematic questioning and recalls the extreme danger associated with camphor even when administered transcutaneously.

  8. Relationship of Camphor Biosynthesis to Leaf Development in Sage (Salvia officinalis) 12

    PubMed Central

    Croteau, Rodney; Felton, Mark; Karp, Frank; Kjonaas, Robert

    1981-01-01

    The camphor content of sage (Salvia officinalis L.) leaves increases as the leaves expand, and the increase is roughly proportional to the number of filled peltate oil glands which appear on the leaf surface during the expansion process. 14CO2 is more rapidly incorporated into camphor and its direct progenitors in expanding leaves than in mature leaves, and direct in vitro measurement of the key enzymes involved in the conversion of geranyl pyrophosphate to camphor indicates that these enzymes, including the probable rate-limiting cyclization step, are at the highest levels during the period of maximum leaf expansion. These results clearly demonstrate that immature sage leaves synthesize and accumulate camphor most rapidly. Images PMID:16661761

  9. Acute toxicity assessment of camphor in biopesticides by using Daphnia magna and Danio rerio

    PubMed Central

    Yim, Eun-Chae; Kim, Hyeon-Joe; Kim, Seong-Jun

    2014-01-01

    Objectives An ecofriendly alternative to chemical pesticides is bio-pesticides, which are derived from natural sources. The interest in bio-pesticides is based on the disadvantages associated with chemical pesticides. Methods We conducted acute toxicity assessments of camphor, a major component of bio-pesticides, by using Daphnia magna (D. magna) as well as assessed the morphological abnormalities that occurred in Danio rerio (D. rerio) embryos. Results The median effective concentration of camphor on D. magna after 48 hours was 395.0 μM, and the median lethal concentration on D. rerio embryos after 96 hours was 838.6 μM. The no observed effect concentration and predicted no effect concentration of camphor on D. magna, which was more sensitive than D. rerio, were calculated as 55.2 μM and 3.95 μM, respectively. Morphological abnormalities in D. rerio embryos exposed to camphor increased over time. Coagulation, delayed hatching, yolk sac edema, pericardial edema, and pigmentation of embryos mainly appeared between 24 and 48 hours. Further, symptoms of scoliosis and head edema occurred after 72 hours. In addition, bent tails, ocular defects and collapsed symptoms of fertilized embryonic tissue were observed after 96 hours. Conclusions The camphor toxicity results suggest that continuous observations on the ecosystem are necessary to monitor toxicity in areas where biological pesticides containing camphor are sprayed. PMID:25234414

  10. Determination of camphor and borneol in Flos Chrysanthemi Indici by UAE and GC-FID.

    PubMed

    Ye, Qing; Deng, Chunhui

    2009-04-01

    In the work, ultrasonic-assisted extraction (UAE) followed by gas chromatography with flame ionization detector (GC-FID) is developed for the quantitative analysis of the bioactive components of camphor and borneol in a traditional Chinese medicine (TCM) of Flos Chrysanthemi Indici. The extraction parameters are investigated. The optimum extraction conditions found are: solvent, methanol; solvent to sample ratio, 12:1 (v/w); extraction time, 15 min. Camphor and borneol are determined using this extraction method in Flos Chrysanthemi Indici samples from 5 different growing areas. The relative standard deviation values for camphor and borneol are 8.4% and 5.6%, respectively. The recoveries for camphor and borneol are 89% and 95%, respectively, and the method detection limits are lower than 0.23 microg/mL. To demonstrate the method feasibility, steam distillation is also used to analyze camphor and borneol in Flos Chrysanthemi Indici samples from these different growing areas. The statistical comparison by t-test (95% confidence level) showed no significant difference between these results. It has been shown that the proposed UAE-GC-FID is a simple, rapid, and reliable method for quantitative analysis of camphor and borneol in TCM, and a potential tool for quality assessment of Flos Chrysanthemi Indici.

  11. Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters.

    PubMed

    Sang, Ziye; Leung, Kelvin Sze-Yin

    2016-10-01

    Organic UV filters, now considered to be emerging contaminants in aquatic ecosystems, are being intensively tracked in environmental waters worldwide. However, their environmental fate and impact of these contaminants on marine organisms remains largely unknown, especially in Asia. This work elucidates the occurrence and the ecological risks of seven UV filters detected in farmed fish, wild mussels and some other wild organisms collected from local mariculture farms in Hong Kong. For all of the organisms, ethylhexyl methoxycinnamate (EHMC) and octyl dimethyl p-aminobenzoic acid (OD-PABA) were the predominant contaminants with the highest concentrations up to 51.3 and 24.1ng/g (dw), respectively; lower levels were found for benzophenone-8 (BP-8), octocrylene (OC) and benzophenone-3 (BP-3) from 4-methylbenzylidene camphor (4-MBC) and 3-benzylidene camphor (3-BC) were rarely detected. Additionally, the detection frequencies and measured concentrations of all targets were clearly higher in mussels than in fish. Spatial distribution of studied UV filters indicated a positive correlation between their measured concentrations and the anthropogenic activities responsible for their direct emission. The ecological risk assessment specific to the marine aquatic environment was carried out. The risk quotient (RQ) values of EHMC and BP-3 were calculated as 3.29 and 2.60, respectively, indicating these two UV filters may pose significant risks to the marine aquatic environment.

  12. The effect of UV-filters on the viability of neuroblastoma (SH-SY5Y) cell line.

    PubMed

    Broniowska, Żaneta; Pomierny, Bartosz; Smaga, Irena; Filip, Małgorzata; Budziszewska, Bogusława

    2016-05-01

    Topical application of cosmetic products, containing ultraviolet filters (UV filters) are recommended as a protection against sunburns and in order to reduce the risk of skin cancer. However, some UV filters can be absorbed through skin and by consuming contaminated food. Among the chemical UV filters, benzophenone-3 (BP-3), 3-(4-methylbenzylidene)camphor (4-MBC) and 2-ethylhexyl-4-methoxycinnamate (OMC) are absorbed through the skin to the greatest extent. So far, these lipophilic compounds were demonstrated to influence the gonadal and thyroid hormone function, but their effect on central nervous system cells has not been investigated, yet. In the present study, we investigated the effect of some UV filters on cell viability and caspase-3 activity in SH-SY5Y cells. It has been found that benzophenone-2 (BP-2), BP-3, 4-methylbenzophenone (4-MBP) and OMC present in the culture medium for 72h in high concentration (10(-5) and 10(-4)M) and 4-MBC only 10(-4)M produced a significant cytotoxic effect, as determined both by the MTT reduction test and LDH release assay. In contrast to necrotic changes, all tested UV filters increased caspase-3 activity in much lower concentrations (from 10(-8) to 10(-7)M). Proapoptotic properties of the test compounds were positively verified by Hoechst staining. The obtained results indicated that UV filters adversely affected the viability of nerve cells, most likely by enhancing the process of apoptosis. The most potent effect was exerted by BP-3 and 4-MBC and at concentrations that may be reached in vivo. Since human exposure to UV filters is significant these compound should be taken into consideration as one of the possible factors involved in pathogenesis of neurodegenerative diseases.

  13. Biodegradation of UV-filters in marine sediments.

    PubMed

    Volpe, Angela; Pagano, Michele; Mascolo, Giuseppe; Grenni, Paola; Rossetti, Simona

    2017-01-01

    The degradation of two of the most frequently used UV-filters was investigated through microcosm studies. Marine sediments sampled from two sites in Italy (La Spezia harbour and Sarno river estuary, S1 and S2 respectively) were used to set up aerobic and anaerobic sets of reactors. The sediments were spiked with a methanol solution of 3-(4-methylbenzylidene)camphor (4-MBC) and 2-ethylhexyl 4-(dimethylamino)benzoate (EH-DPAB), at concentrations of either 25 or 50mgkg(-1) each. Methanol (6.3g/L) also served as an organic amendment and growth substrate for improving microbial activity. Monitoring of the biotic and abiotic degradation of the selected contaminants over 16months revealed that 4-MBC biodegradation was very slow and incomplete, whereas over 90% of EH-DPAB was degraded both in the aerobic and the anaerobic reactors by the natural microbial communities of both sediments. Repeated spikes of EH-DPAB were followed by complete decay, characterised by first-order kinetics. The calculated kinetic rate constants under aerobic and anaerobic conditions were similar. In reactors inoculated with the S1 sediment the degradation rate constants progressively increased after each spike, up to the value of 0.039d(-1). For the S2 sediment the rate constant was around 0.020d(-1) throughout the duration of the experiment. Mass spectrometry analysis of sediment extracts allowed detection of potential transformation products of EH-DPAB and 4-MBC. Moreover, the natural microbial community of the sediments was studied using the CAtalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) both in the initial sediments and after degradation under aerobic and anaerobic conditions.

  14. Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of Chironomus riparius.

    PubMed

    Ozáez, Irene; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Several organic UV filters have hormonal activity in vertebrates, as demonstrated in fishes, rodents and human cells. Despite the accumulation of filter contaminants in aquatic systems, research on their effects on the endocrine systems of freshwaters invertebrates is scarce. In this work, the effects of five frequently used UV filters were investigated in embryos and larvae of Chironomus riparius, which is a reference organism in ecotoxicology. LC50 values for larvae as well as the percentage of eclosion of eggs were determined following exposures to: octyl-p-methoxycinnamate (OMC) also known as 2-ethylhexyl-4-methoxycinnamate (EHMC); 4-methylbenzylidene camphor (4MBC); 4-hydroxybenzophenone (4HB); octocrylene (OC); and octyldimethyl-p-aminobenzoate (OD-PABA). To assess sublethal effects, expression levels of the genes coding for the ecdysone receptor (EcR) and heat shock protein HSP70 were investigated as biomarkers for endocrine and stress effects at the cellular level. Life-stage-dependent sensitivity was found. In embryos, all of the UV filters provoked a significant overexpression of EcR at 24h after exposure. OC, 4MBC and OD-PABA also triggered transcriptional activation of the hsp70 stress gene in embryos. In contrast, in larvae, only 4MBC and OMC/EHMC increased EcR and hsp70 mRNA levels and OD-PABA upregulated only the EcR gene. These results revealed that embryos are particularly sensitive to UV filters, which affect endocrine regulation during development. Most UV filters also triggered the cellular stress response, and thus exhibit proteotoxic effects. The differences observed between embryos and larvae and the higher sensitivity of embryos highlight the importance of considering different life stages when evaluating the environmental risks of pollutants, particularly when analyzing endocrine effects.

  15. Renoprotective Effects of Shout Camphor Medicinal Mushroom (Taiwanofungus camphorates, Basidiomycetes) Mycelia on Several Media in Mice with Chronic Kidney Disease.

    PubMed

    Wang, Shu-Chi; Yang, Chih-Hui; Grumezescu, Alexandru Mihai; Lin, Yu-Mei; Huang, Keng-Shiang; Wang, Wei-Ting; Su, Hsin-Yi; Jhang, Cing-Yan; Chung, Ruo-Yun; Chou, Jiun-Hua

    2016-01-01

    Taiwanofungus camphoratus has been widely used in Taiwan as a folk medicine to prevent and treat liver diseases, diarrhea, abdominal pain, itchy skin, and hypertension. Recent studies have shown that T. camphoratus mycelia extracts exert anti-inflammatory and antioxidant effects on some types of renal disease, but the effect of T. camphoratus mycelia on chronic kidney disease (CKD) remains unclear. In this study we used the Bioresource Collection and Research Center (BCRC) medium and modified media (e.g., BCRC+A, HKS1, and HKS1+A media) to incubate T. camphorates mycelia and detect the feasible benefits of renal protection in mice with CKD. Five groups of mice with a partial nephrectomy (each mouse weighed approximately 30 g) received a daily administration of different media-treated T. camphoratus mycelia water solutions (3 mg dried mycelia dissolved in 0.3 mL water) by oral gavage for 30 days, while a control group received distilled water. The results show that progressive increased blood urea nitrogen and serum creatinine were significantly inhibited in the HKS1+A group on days 10 and 30. Plasma total protein was effectively increased in the HKS1 and HKS1+A groups. The BCRC and BCRC+A groups exhibited no obvious improvement in renal function. The results suggest that the HKS1+A medium provides the optimal effect in preventing the deterioration of kidney function and might have a renoprotective effect on CKD.

  16. The German adaptation of the Cambridge pulmonary hypertension outcome review (CAMPHOR)

    PubMed Central

    2012-01-01

    Background Individuals with precapillary pulmonary hypertension (PH) experience severely impaired quality of life. A disease-specific outcome measure for PH, the Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR) was developed and validated in the UK and subsequently adapted for use in additional countries. The aim of this study was to translate and assess the reliability and validity of the CAMPHOR for German-speaking populations. Methods Three main adaptation stages involved; translation (employing bilingual and lay panels), cognitive debriefing interviews with patients and validation (assessment of the adaptation’s psychometric properties). The psychometric evaluation included 107 patients with precapillary PH (60 females; age mean (standard deviation) 60 (15) years) from 3 centres in Austria, Germany and Switzerland. Results No major problems were found with the translation process with most items easily rendered into acceptable German. Participants in the cognitive debriefing interviews found the questionnaires relevant, comprehensive and easy to complete. Psychometric analyses showed that the adaptation was successful. The three CAMPHOR scales (symptoms, activity limitations and quality of life) had excellent test-retest reliability correlations (Symptoms = 0.91; Activity limitations = 0.91; QoL = 0.90) and internal consistency (Symptoms = 0.94; Activity limitations = 0.93; QoL = 0.94). Predicted correlations with the Nottingham Health Profile provided evidence of the construct validity of the CAMPHOR scales. The CAMPHOR adaptation also showed known group validity in its ability to distinguish between participants based on perceived general health, perceived disease severity, oxygen use and NYHA classification. Conclusions The CAMPHOR has been shown to be valid and reliable in the German population and is recommend for use in clinical practice. PMID:22971041

  17. Oscillatory motion of a camphor grain in a one-dimensional finite region

    NASA Astrophysics Data System (ADS)

    Koyano, Yuki; Sakurai, Tatsunari; Kitahata, Hiroyuki

    2016-10-01

    The motion of a self-propelled particle is affected by its surroundings, such as boundaries or external fields. In this paper, we investigated the bifurcation of the motion of a camphor grain, as a simple actual self-propelled system, confined in a one-dimensional finite region. A camphor grain exhibits oscillatory motion or remains at rest around the center position in a one-dimensional finite water channel, depending on the length of the water channel and the resistance coefficient. A mathematical model including the boundary effect is analytically reduced to an ordinary differential equation. Linear stability analysis reveals that the Hopf bifurcation occurs, reflecting the symmetry of the system.

  18. Use of Camphor and Essential Oil Balms for Infants in Cambodia.

    PubMed

    Bazzano, Alessandra N; Var, Chivorn; Grossman, Francoise; Oberhelman, Richard A

    2017-02-01

    Balms and oils containing terpenic compounds, such as camphor, menthol and eucalyptus, are potentially toxic, and numerous reports of adverse events stemming from their use in infants and young children have been published. During qualitative research on newborn practices in rural Cambodia, these products were found to be commonly applied to the skin of newborns and infants and available in most households. Parents and caregivers of infants in Cambodia and other settings where use of camphor- and menthol-containing products are common should be educated on the risks of these to prevent child morbidity and potential mortality.

  19. Induction Specificity and Catabolite Repression of the Early Enzymes in Camphor Degradation by Pseudomonas putida

    PubMed Central

    Hartline, Richard A.; Gunsalus, I. C.

    1971-01-01

    The ability of bornane and substituted bornanes to induce the early enzymes for d(+)-camphor degradation and control of these enzymes by catabolite repression were studied in a strain of a Pseudomonas putida. Bornane and 20 substituted bornane compounds showed induction. Of these 21 compounds, bornane and 8 of the substituted bornanes provided induction without supporting growth. Oxygen, but not nitrogen, enhanced the inductive potency of the unsubstituted bornane ring. All bornanedione isomers caused induction, and those with substituents on each of the three consecutive carbon atoms, including the methyl group at the bridgehead carbon, showed induction without supporting growth. Although it was not possible to obtain experimental data for a case of absolute gratuitous induction by compounds not supporting growth, indirect evidence in support of gratuitous induction is presented. It is proposed that the ability of P. putida to tolerate the unusually high degree of possible gratuitous induction observed for camphor catabolism may be related to the infrequent occurrence of bicyclic ring structures in nature. Survival of an organism with a broad specificity for gratuitous induction is discussed. Glucose and succinate, but not glutamate, produced catabolite repression of the early camphor-degrading enzymes. Pathway enzymes differ in their degree of sensitivity to succinate-provoked catabolite repression. The ability of a compound to produce catabolite repression is not, however, directly related to the duration of the lag period (diauxic lag) between growth on camphor and growth on the repressing compound. PMID:5573731

  20. Induction and characterization of a cytochrome P-450-dependent camphor hydroxylase in tissue cultures of common sage (Salvia officinalis)

    SciTech Connect

    Funk, C.; Croteau, R. )

    1993-04-01

    (+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O[sub 2]-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl[sub 2], camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn[sup 2+]-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases. 44 refs., 6 figs., 2 tabs.

  1. Induction and Characterization of a Cytochrome P-450-Dependent Camphor Hydroxylase in Tissue Cultures of Common Sage (Salvia officinalis).

    PubMed Central

    Funk, C.; Croteau, R.

    1993-01-01

    (+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O2-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl2, camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn2+-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases. PMID:12231778

  2. Identification of camphor oxidation and reduction products in Pseudomonas putida: new activity of the cytochrome P450cam system.

    PubMed

    Prasad, Brinda; Rojubally, Adina; Plettner, Erika

    2011-06-01

    P450 enzymes are known for catalyzing hydroxylation reactions of non-activated C-H bonds. For example, P450(cam) from Pseudomonas putida oxidizes (1R)-(+)-camphor to 5-exo-hydroxy camphor and further to 5-ketocamphor. This hydroxylation reaction proceeds via a catalytic cycle in which the reduction of dioxygen (O(2)) is coupled to the oxidation of the substrate. We have observed that under conditions of low oxygen, P. putida and isolated P450(cam) reduce camphor to borneol. We characterized the formation of borneol under conditions of low oxygen or when the catalytic cycle is shunted by artificial oxidants like m-chloro perbenzoic acid, cumene hydroperoxide, etc. We also tested the toxicity of camphor and borneol with P. putida and Escherichia coli. We have found that in P. putida borneol is less toxic than camphor, whereas in E. coli borneol is more toxic than camphor. We discuss a potental ecological advantage of the camphor reduction reaction for P. putida.

  3. Broadband Microwave Spectroscopy as a Tool to Study Dispersion Interactions in Camphor-Alcohol Systems

    NASA Astrophysics Data System (ADS)

    Fatima, Mariyam; Perez, Cristobal; Schnell, Melanie

    2016-06-01

    Many biological processes such as chemical recognition and protein folding are mainly controlled by the interplay between hydrogen bonds and dispersive forces. Broadband rotational spectroscopy studies of weakly bound complexes are able to accurately reveal the structures and internal dynamics of molecular clusters isolated in the gas phase. To investigate the influence of the interplay between different types of weak intermolecular interactions and how it controls the preferred active sites of an amphiphilic molecule, we are using camphor (C10H16O, 1,7,7-trimethylbicyclo[2.2.1]hepta-2-one) with different aliphatic alcohol systems. Camphor is a conformationally rigid bicyclic molecule endowed with considerable steric hindrance and has a single polar group (-C=O). The rotational spectrum of camphor and its structure has been previously reported [1] as well as multiple clusters with water [2]. In order to determine the structure of the camphor-alcohol complexes, we targeted low energy rotational transitions in the 2-8 GHz range under the isolated conditions of a molecular jet in the gas phase. The data obtained suggests that camphor forms one complex with methanol and two with ethanol, with differences in the intermolecular interaction in both complexes. With these results, we aim to study the shift in intermolecular interaction from hydrogen bonding to dispersion with the increase in the size of the aliphatic alcohol. [1] Z. Kisiel, et al., Phys. Chem. Chem. Phys., 5 (2003), 820-826. [2] C. Pérez, et al, J. Phys. Chem. Lett., 7 (2016), 154-160.

  4. Enantioselective Addition of Diethylzinc to Aldehydes Catalyzed by Chiral O,N,O-tridentate Phenol Ligands Derived From Camphor.

    PubMed

    Lee, Dong-Sheng; Chang, Shu-Ming; Ho, Chun-Ying; Lu, Ta-Jung

    2016-01-01

    Chiral O,N,O-tridentate phenol ligands bearing a camphor backbone were found to be effective chiral catalysts for the enantioselective addition of diethylzinc to aromatic aldehydes, resulting in high enantioselectivities (80-95% ee) at room temperature.

  5. Development of a Tightly Controlled Off Switch for Saccharomyces cerevisiae Regulated by Camphor, a Low-Cost Natural Product

    PubMed Central

    Ikushima, Shigehito; Zhao, Yu; Boeke, Jef D.

    2015-01-01

    Here we describe the engineering of a distant homolog of the Tet repressor, CamR, isolated from Pseudomonas putida, that is regulated by camphor, a very inexpensive small molecule (at micromolar concentrations) for use in Saccharomyces cerevisiae. The repressor was engineered by expression from a constitutive yeast promoter, fusion to a viral activator protein cassette, and codon optimization. A suitable promoter responsive to the CamR fusion protein was engineered by embedding a P. putida operator binding sequence within an upstream activating sequence (UAS)-less CYC1 promoter from S. cerevisiae. The switch, named the Camphor-Off switch, activates expression of a reporter gene in camphor-free media and represses it with micromolar concentrations of camphor. PMID:26206350

  6. Chemical Properties of Carbon Nanotubes Prepared Using Camphoric Carbon by Thermal-CVD

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Chemical properties and surface study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The chemical properties of the CNTs were conducted using FTIR spectroscopy and PXRD analysis. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs.

  7. Investigations on the electrical and structural properties of polyaniline doped with camphor sulphonic acid

    NASA Astrophysics Data System (ADS)

    Saravanan, S.; Joseph Mathai, C.; Anantharaman, M. R.; Venkatachalam, S.; Prabhakaran, P. V.

    2006-07-01

    Polyaniline is chemically synthesised and doped with camphor sulphonic acid. FTIR studies carried out on these samples indicate that the aromatic rings are retained after polymerisation. The percentage of crystallinity for polyaniline doped with camphor sulphonic acid has been estimated from the X-ray diffraction studies and is around 56% with respect to polyaniline emeraldine base. The change in dielectric permittivity with respect to temperature and frequency is explained on the basis of interfacial polarisation. AC conductivity is evaluated from the observed dielectric permittivity. The values of AC and DC conductivity and activation energy are calculated. The activation energy values suggested that the hopping conduction is the prominent conduction mechanism in this system.

  8. Three 2D Ag(I)-framework isomers with helical structures controlled by the chirality of camphor-10-sulfonic acid.

    PubMed

    Guo, Peng

    2011-02-28

    Three 2D Ag(I)-framework isomers were constructed from enantiopure camphor-10-sulfonic acids or racemic camphor-10-sulfonic acids, together with achiral 4-aminobenzoic acids. In complex 1, (+)-camphor-10-sulfonic acids bridge the single left-handed helices that are made up of Ag ions and 4-aminobenzoic acids, generating a homochiral 2D layer. In such a structure, the interweaving of triple left-handed homohelices was also found. It is worth noting that the helicity of complex 2 could be controlled by the handedness of the camphor-10-sulfonic acid. In complex 2, there are right-handed helical structures, including single right-handed and triple right-handed helical structures connected by (-)-camphor-10-sulfonic acids. For a comparative study, (±)-camphor-10-sulfonic acids were utilized to synthesize complex 3, in which equal numbers of right-handed or left-handed double-helical chains are created. All the complexes were characterized by single-crystal X-ray structure determination, powder X-ray diffraction, IR, TGA and element analysis. Circular dichroism spectra of complexes 1 and 2 were been studied to confirm the fact that enantiopure bridging ligands do not racemize.

  9. [Determination of five representative ultraviolet filters in water by gas chromatography-mass spectrometry].

    PubMed

    Ding, Yiran; Huang, Yun; Zhao, Tingting; Cai, Qian; Luo, Yu; Huang, Bin; Zhang, Yuxia; Pan, Xuejun

    2014-06-01

    A method for the determination of five representative organic UV filters: ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), 4-methylbenzylidene camphor (4-MBC), octocrylene (OC), homosalate (HMS) in water was investigated. The method was ased on derivatization, solid phase extraction (SPE), followed by determination with gas chromatography-mass spectrometry (GC-MS). The variables involved in the derivatization of BP-3 and HMS were optimized, and SPE conditions were studied. For derivatization, 100 microL N,O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) was used as derivatization reagent and reacted with BP-3 and HMS at 100 degrees C for 100 min. For SPE, the pH value of water sample was adjusted to 3-5. The Oasis HLB cartridges were employed and the solution of ethyl acetate and dichloromethane (1 : 1, v/v) was used as the eluting solvent, and good recoveries of the target compounds were obtained. The limits of detection (LODs) and the limits of quantification (LOQs) for the five target compounds in water samples were 0.5-1.2 ng/L and 1.4-4.0 ng/L, respectively. The recoveries of spiked water samples were 87.85%-102.34% with good repeatability and reproducibility (RSD < 5%, n = 3) for all the target compounds. Finally, the validated method was applied to analysis the representative UV filters in water samples collected from a wastewater treatment plant in Kunming city of Yunnan province.

  10. Determination of personal care products and hormones in leachate and groundwater from Polish MSW landfills by ultrasound-assisted emulsification microextraction and GC-MS.

    PubMed

    Kapelewska, Justyna; Kotowska, Urszula; Wiśniewska, Katarzyna

    2016-01-01

    Determination of the endocrine disrupting compounds (EDCs) in leachate and groundwater samples from the landfill sites is very important because of the proven harmful effects of these compounds on human and animal organisms. A method combining ultrasound-assisted emulsification microextraction (USAEME) and gas chromatography-mass spectrometry (GC-MS) was developed for simultaneous determination of seven personal care products (PCPs): methylparaben (MP), ethylparaben (EP), propylparaben (PP), buthylparaben (BP), benzophenone (BPh), 3-(4-methylbenzylidene)camphor (4-MBC), N,N-diethyltoluamide (DEET), and two hormones: estrone (E1) and β-estradiol (E2) in landfill leachate and groundwater samples. The limit of detection (LOD)/limit of quantification (LOQ) values in landfill leachate and groundwater samples were in the range of 0.003-0.083/0.009-0.277 μg L(-1) and 0.001-0.015/0.002-0.049 μg L(-1), respectively. Quantitative recoveries and satisfactory precision were obtained. All studied compounds were found in the landfill leachates from Polish municipal solid waste (MSW) landfills; the concentrations were between 0.66 and 202.42 μg L(-1). The concentration of pollutants in groundwater samples was generally below 0.1 μg L(-1).

  11. Vertical flow soil filter for the elimination of micro pollutants from storm and waste water.

    PubMed

    Janzen, Niklas; Banzhaf, Stefan; Scheytt, Traugott; Bester, Kai

    2009-11-01

    A technical scale activated soil filter has been used to study the elimination rates of diverse environmentally relevant micro pollutants from storm and waste water. The filter was made of layers of peat, sand and gravel. The upper (organic) layer was planted with reed (phragmites australis) to prevent clogging and was spiked with activated sludge to enhance microbial biomass and biodegradation potential. Compounds used as UV filters, antioxidants or plasticizers, namely 4-methylbenzylidene camphor (4-MBC), benzophenone-3 (BP-3), butylated hydroxytoluene (BHT), N-butylbenzenesulfonamide (NBBS), 2,6-di-tert-butyl-1,4-benzoquinone (2,6-DTB-1,4-BQ), 1,1-biphenyl-3,3-dimethyl (1,1-BP-3,3-DM) and dibenzyl (DB) have been included in this study. The chemical characteristics of these compounds ranged from the hydrophilic (pK(OW) 2.6) to the lipophilic (pK(OW) 5) properties. For the elimination studies, synthetic waste water spiked to 3000 ng L(-1) with the selected compounds was used. Elimination rates with low hydraulic load (61 L m(-2)d(-1), water retention time: 2d) were higher than 96%. During a storm water simulation experiment (hydraulic load: 255 L m(-2), water retention time: <1h), the elimination rates of the most analytes decreased to 79-96%. The elimination performance of the hydrophilic compound NBBS declined to 21%. Balancing studies including the soil of the filter system revealed that degradation or transformation were both relevant elimination mechanism.

  12. [Historical study of the moth repellent, "Fujisawa Camphor" (3) An exposition as an advertisement media].

    PubMed

    Hattori, Akira

    2003-01-01

    Newspaper advertisements were the predominant medium in informing people about new products midway through the Meiji Era. Subscribers to these newspapers, however, were still limited. At the time, expositions were wildly popular. Seizing the opportunity , in 1903 Fujisawa promoted his "Fujisawa Camphor" through aggressive advertising at the 5th Domestic Industrial Exposition in Osaka. The advertising proved to be a success, as Fujisawa took 2nd Prize of the exposition.

  13. Thermodynamic description and unidirectional solidification of eutectic organic alloys: III. Binary systems neopentylglycol-(D)camphor and amino-methyl-propanediol-(D)camphor

    SciTech Connect

    Witusiewicz, V.T. . E-mail: victor@access.rwth-aachen.de; Sturz, L.; Hecht, U.; Rex, S.

    2004-11-08

    The temperature and enthalpy of transformation of organic alloys from the binary systems neopentylglycol-(D)camphor (NPG-DC) and 2-amino-2-methyl-1,3-propanediol-(D)camphor (AMPD-DC) were measured by means of differential scanning calorimetry (DSC). The phase diagrams of these binary systems were assessed via the CALPHAD approach using Thermo-Calc by simultaneously optimizing the thermodynamic and phase equilibrium data measured in the present work. Proper agreements between the experimental and calculated data for the phase diagrams as well as for the thermochemical properties were achieved. Experiments and calculations show that both the NPG-DC and the AMPD-DC system exhibit a nonvariant eutectic reaction with the eutectic point at 36.2 mol% DC and 326.0 K and at 9.3 mol% DC and 362.0 K, respectively. In each system the temperature of the eutectic reaction is higher than the temperature of the transformation from the ordered crystals to the orientationally disordered (plastic) crystals. Unidirectional solidification experiments were performed with several alloys in order to verify the nature of eutectic growth: We find that in both systems eutectic growth occurs with both solid phases being non-facetted and with a lamellar or rod-like eutectic structure. Due to the optical activity of DC its distribution in the solid samples is well detectible in polarised light.

  14. [Polybrominated diphenyl ethers in camphor bark from speedy developing urban in Jiangsu Province].

    PubMed

    Shi, Shuang-Xin; Zeng, Liang-Zi; Zhou, Li; Zhang, Li-Fei; Zhang, Ting; Dong, Liang; Huang, Ye-Ru

    2011-09-01

    Polybrominated Diphenyl Ethers (PBDEs) were measured in camphor bark samples from 40 locations in Suzhou, Nantong and Wuxi, Jiangsu Province. The samples were extracted by accelerated solvent extraction (ASE) and analyzed using gas chromatography/mass spectrometry (GC-MS). The 8 PBDEs were detected in all samples and the average concentrations of total PBDEs (BDE28, 47, 100, 99, 153, 154, 183, 209) was 835 microg/kg lipid weight (ranged from 112 to 7 460 microg/kg lipid weight). The BDE209 was the main homologues and accounted for 65.7% -99.6% of sigma 8 PBDEs. The predominant commercial products source for PBDEs in bark was Deca-BDE commercial products. Concentration of sigma 8 PBDEs detected in central district of Nantong were significantly higher than those in industrial park, suggesting the discharge of industrial point source might be the main source of PBDEs in this city. No significant difference was found between the levels of sigma 8 PBDEs in camphor bark collected from Suzhou and Wuxi. It can be concluded that the two cities are contaminated interactionally by PBDEs through atmospheric dispersion. The homologue and congener profiles of penta-BDEs for camphor bark were not consistent with commercial products, atmosphere and dust soil, which related with adsorption effect of tree bark and degradation effect of PBDEs.

  15. Effect of Nanosilver Gel, Chlorhexidine Gluconate, and Camphorated Phenol on Enterococcus faecalis Biofilm.

    PubMed

    Bo, Dong; Kayombo, Cecilia Marcellino

    2014-01-01

    Aim. To assess the effectiveness of nanosilver gel (NSG) in comparison to chlorhexidine gluconate (CHX) and camphorated phenol (CP) against Enterococcus faecalis (E.f) biofilm. Methods and Materials. Two tests were done, methyl thiazolyl tetrazolium (MTT) assay and confocal laser scanning microscopy (CLSM) analysis, to determine the effectiveness of NSG, CHX, and CP on E.f biofilm. Polystyrene microtiter 96- and 6-well plates were used for MTT and CLSM, respectively. Nanosilver gel was in three concentrations (0.05%, 0.1%, and 0.2%), chlorhexidine gluconate used was 2%, and camphorated phenol and normal saline were as control. Analysis was done using one-way ANOVA; the post hoc test was run for multiple comparisons. The level of statistical significance was set at P < 0.05. Results. One-way ANOVA showed significant differences among groups (0.05% NSG and CP, 0.1% NSG and CP, 0.2% NSG and CP, 0.1% NSG and 2% CHX, 0.2% and NSG and 2% CHX) (P < 0.001) and also showed significant difference between groups (P < 0.001), f-ratio 87.823. A post hoc Tukey's test revealed no significant difference between chlorhexidine gluconate and 0.05% nanosilver gel (P > 0.05). Conclusions. 0.1% and 0.2% nanosilver gel is more effective on Enterococcus faecalis biofilm as compared to chlorhexidine gluconate and camphorated phenol.

  16. Surface Study of Carbon Nanotubes Prepared by Thermal-CVD of Camphor Precursor

    NASA Astrophysics Data System (ADS)

    Azira, A. A.; Rusop, M.

    2010-03-01

    Surface morphology study on the influence of starting carbon materials by using thermal chemical vapor deposition (Thermal-CVD) to produced carbon nanotubes (CNTs) is investigated. The CNTs derived from camphor were synthesized as the precursor material due to low sublimation temperature, which indirectly maybe cost effective. The major parameters are also evaluated in order to obtain high-yield and high-quality CNTs. The prepared CNTs are examined using field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HR-TEM) to determine the microstructure of nanocarbons. The FESEM investigation of the CNTs formed on the support catalysts provides evidence that camphor is suitable as a precursor material for nanotubes formation. The high-temperature graphitization process induced by the Thermal-CVD enables the hydrocarbons to act as carbon sources and changes the aromatic species into the layered graphite structure of CNTs. The camphoric hydrocarbons not only found acts as the precursors but also enhances the production rate and the quality of CNTs.

  17. Determination of selected UV filters in indoor dust by matrix solid-phase dispersion and gas chromatography-tandem mass spectrometry.

    PubMed

    Negreira, N; Rodríguez, I; Rubí, E; Cela, R

    2009-07-31

    A simple, inexpensive sample preparation procedure, based on the matrix solid-phase dispersion (MSPD) technique, for the determination of six UV filters: 2-ethylhexyl salicylate (EHS), 3,3,5-trimethylcyclohexyl salicylate (Homosalate, HMS), 3-(4-methylbenzylidene) camphor (4-MBC), isoamyl-p-methoxycinnamate (IAMC), 2-ethylhexyl-p-methoxycinnamate (EHMC) and octocrylene (OCR), in dust from indoor environments is presented and the influence of several operational parameters on the extraction performance discussed. Under the final working conditions, sieved samples (0.5 g) were mixed with the same amount of anhydrous sodium sulphate and dispersed with 2 g of octadecyl bonded silica (C18) in a mortar with a pestle. This blend was transferred to a polypropylene solid-phase extraction cartridge containing 2 g of activated silica, as the clean-up co-sorbent. The cartridge was first rinsed with 5 mL of n-hexane and the analytes were then recovered with 4 mL of acetonitrile. This extract was adjusted to 1 mL, filtered and the compounds were determined by gas chromatography combined with tandem mass spectrometry (GC-MS/MS). Recoveries for samples spiked at two different concentrations ranged between 77% and 99%, and the limits of quantification (LOQs) of the method between 10 and 40 ng g(-1). Analysis of settled dust from different indoor areas, including private flats, public buildings and vehicle cabins, showed that EHMC and OCR were ubiquitous in this matrix, with maximum concentrations of 15 and 41 microg g(-1), respectively. Both UV filters were also quantified in dust reference material SRM 2585 for first time. EHS, 4-MBC and IAMC were detected in some of the analyzed samples, although at lower concentrations than EHMC and OCR.

  18. Sunscreen products as emerging pollutants to coastal waters.

    PubMed

    Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Basterretxea, Gotzon; Benedé, Juan L; Chisvert, Alberto; Salvador, Amparo; Moreno-Garrido, Ignacio; Blasco, Julián

    2013-01-01

    A growing awareness of the risks associated with skin exposure to ultraviolet (UV) radiation over the past decades has led to increased use of sunscreen cosmetic products leading the introduction of new chemical compounds in the marine environment. Although coastal tourism and recreation are the largest and most rapidly growing activities in the world, the evaluation of sunscreen as source of chemicals to the coastal marine system has not been addressed. Concentrations of chemical UV filters included in the formulation of sunscreens, such as benzophehone 3 (BZ-3), 4-methylbenzylidene camphor (4-MBC), TiO₂ and ZnO, are detected in nearshore waters with variable concentrations along the day and mainly concentrated in the surface microlayer (i.e. 53.6-577.5 ng L⁻¹ BZ-3; 51.4-113.4 ng L⁻¹ 4-MBC; 6.9-37.6 µg L⁻¹ Ti; 1.0-3.3 µg L⁻¹ Zn). The presence of these compounds in seawater suggests relevant effects on phytoplankton. Indeed, we provide evidences of the negative effect of sunblocks on the growth of the commonly found marine diatom Chaetoceros gracilis (mean EC₅₀ = 125±71 mg L⁻¹). Dissolution of sunscreens in seawater also releases inorganic nutrients (N, P and Si forms) that can fuel algal growth. In particular, PO₄³⁻ is released by these products in notable amounts (up to 17 µmol PO₄³⁻g⁻¹). We conservatively estimate an increase of up to 100% background PO₄³⁻ concentrations (0.12 µmol L⁻¹ over a background level of 0.06 µmol L⁻¹) in nearshore waters during low water renewal conditions in a populated beach in Majorca island. Our results show that sunscreen products are a significant source of organic and inorganic chemicals that reach the sea with potential ecological consequences on the coastal marine ecosystem.

  19. Sunscreen Products as Emerging Pollutants to Coastal Waters

    PubMed Central

    Tovar-Sánchez, Antonio; Sánchez-Quiles, David; Basterretxea, Gotzon; Benedé, Juan L.; Chisvert, Alberto; Salvador, Amparo; Moreno-Garrido, Ignacio; Blasco, Julián

    2013-01-01

    A growing awareness of the risks associated with skin exposure to ultraviolet (UV) radiation over the past decades has led to increased use of sunscreen cosmetic products leading the introduction of new chemical compounds in the marine environment. Although coastal tourism and recreation are the largest and most rapidly growing activities in the world, the evaluation of sunscreen as source of chemicals to the coastal marine system has not been addressed. Concentrations of chemical UV filters included in the formulation of sunscreens, such as benzophehone 3 (BZ-3), 4-methylbenzylidene camphor (4-MBC), TiO2 and ZnO, are detected in nearshore waters with variable concentrations along the day and mainly concentrated in the surface microlayer (i.e. 53.6–577.5 ng L-1 BZ-3; 51.4–113.4 ng L-1 4-MBC; 6.9–37.6 µg L-1 Ti; 1.0–3.3 µg L-1 Zn). The presence of these compounds in seawater suggests relevant effects on phytoplankton. Indeed, we provide evidences of the negative effect of sunblocks on the growth of the commonly found marine diatom Chaetoceros gracilis (mean EC50 = 125±71 mg L-1). Dissolution of sunscreens in seawater also releases inorganic nutrients (N, P and Si forms) that can fuel algal growth. In particular, PO43− is released by these products in notable amounts (up to 17 µmol PO43− g−1). We conservatively estimate an increase of up to 100% background PO43− concentrations (0.12 µmol L-1 over a background level of 0.06 µmol L-1) in nearshore waters during low water renewal conditions in a populated beach in Majorca island. Our results show that sunscreen products are a significant source of organic and inorganic chemicals that reach the sea with potential ecological consequences on the coastal marine ecosystem. PMID:23755233

  20. Camphor--a fumigant during the Black Death and a coveted fragrant wood in ancient Egypt and Babylon--a review.

    PubMed

    Chen, Weiyang; Vermaak, Ilze; Viljoen, Alvaro

    2013-05-10

    The fragrant camphor tree (Cinnamomum camphora) and its products, such as camphor oil, have been coveted since ancient times. Having a rich history of traditional use, it was particularly used as a fumigant during the era of the Black Death and considered as a valuable ingredient in both perfume and embalming fluid. Camphor has been widely used as a fragrance in cosmetics, as a food flavourant, as a common ingredient in household cleaners, as well as in topically applied analgesics and rubefacients for the treatment of minor muscle aches and pains. Camphor, traditionally obtained through the distillation of the wood of the camphor tree, is a major essential oil component of many aromatic plant species, as it is biosynthetically synthesised; it can also be chemically synthesised using mainly turpentine as a starting material. Camphor exhibits a number of biological properties such as insecticidal, antimicrobial, antiviral, anticoccidial, anti-nociceptive, anticancer and antitussive activities, in addition to its use as a skin penetration enhancer. However, camphor is a very toxic substance and numerous cases of camphor poisoning have been documented. This review briefly summarises the uses and synthesis of camphor and discusses the biological properties and toxicity of this valuable molecule.

  1. Flavin-Dependent Redox Transfers by the Two-Component Diketocamphane Monooxygenases of Camphor-Grown Pseudomonas putida NCIMB 10007

    PubMed Central

    Willetts, Andrew; Kelly, David

    2016-01-01

    The progressive titres of key monooxygenases and their requisite native donors of reducing power were used to assess the relative contribution of various camphor plasmid (CAM plasmid)- and chromosome-coded activities to biodegradation of (rac)-camphor at successive stages throughout growth of Pseudomonas putida NCIMB 10007 on the bicylic monoterpenoid. A number of different flavin reductases (FRs) have the potential to supply reduced flavin mononucleotide to both 2,5- and 3,6-diketocamphane monooxygenase, the key isoenzymic two-component monooxygenases that delineate respectively the (+)- and (−)-camphor branches of the convergent degradation pathway. Two different constitutive chromosome-coded ferric reductases able to act as FRs can serve such as role throughout all stages of camphor-dependent growth, whereas Fred, a chromosome-coded inducible FR can only play a potentially significant role in the relatively late stages. Putidaredoxin reductase, an inducible CAM plasmid-coded flavoprotein that serves an established role as a redox intermediate for plasmid-coded cytochrome P450 monooxygenase also has the potential to serve as an important FR for both diketocamphane monooxygenases (DKCMOs) throughout most stages of camphor-dependent growth. PMID:27754389

  2. Discovery of a new class of antiviral compounds: camphor imine derivatives.

    PubMed

    Sokolova, Anastasiya S; Yarovaya, Olga I; Shernyukov, Andrey V; Gatilov, Yuriy V; Razumova, Yuliya V; Zarubaev, Vladimir V; Tretiak, Tatiana S; Pokrovsky, Andrey G; Kiselev, Oleg I; Salakhutdinov, Nariman F

    2015-11-13

    A new class of compounds featuring a camphor moiety has been discovered that exhibits potent inhibitory activity against influenza A(H1N1)pdm09 and A(H5N1) viruses. The synthesized compounds were characterized by spectroscopic analysis; in addition the structures of compound 2 and 14 were elucidated by the X-ray diffraction technique. Structure-activity relationship studies have been conducted to identify the 1,7,7-trimethylbicyclo[2.2.1]heptanes2-ylidene group as the key functional group responsible for the observed antiviral activity. The most potent antiviral compound is imine 2 with therapeutic index more than 500.

  3. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon.

    PubMed

    Hernández-Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2011-04-01

    Ozonation and adsorption onto activated carbon were tested for the removal micropollutants of personal care products from aerobically treated grey water. MilliQ water spiked with micropollutants (100-1600 μgL(-1)) was ozonated at a dosing rate of 1.22. In 45 min, this effectively removed (>99%): Four parabens, bisphenol-A, hexylcinnamic aldehyde, 4-methylbenzylidene-camphor (4MBC), benzophenone-3 (BP3), triclosan, galaxolide and ethylhexyl methoxycinnamate. After 60 min, the removal efficiency of benzalkonium chloride was 98%, tonalide and nonylphenol 95%, octocrylene 92% and 2-phenyl-5-benzimidazolesulfonic acid (PBSA) 84%. Ozonation of aerobically treated grey water at an applied ozone dose of 15 mgL(-1), reduced the concentrations of octocrylene, nonylphenol, triclosan, galaxolide, tonalide and 4-methylbenzylidene-camphor to below limits of quantification, with removal efficiencies of at least 79%. Complete adsorption of all studied micropollutants onto powdered activated carbon (PAC) was observed in batch tests with milliQ water spiked with 100-1600 μgL(-1) at a PAC dose of 1.25 gL(-1) and a contact time of 5 min. Three granular activated carbon (GAC) column experiments were operated to treat aerobically treated grey water. The operation of a GAC column with aerobically treated grey water spiked with micropollutants in the range of 0.1-10 μgL(-1) at a flow of 0.5 bed volumes (BV)h(-1) showed micropollutant removal efficiencies higher than 72%. During the operation time of 1728 BV, no breakthrough of TOC or micropollutants was observed. Removal of micropollutants from aerobically treated grey water was tested in a GAC column at a flow of 2 BVh(-1). Bisphenol-A, triclosan, tonalide, BP3, galaxolide, nonylphenol and PBSA were effectively removed even after a stable TOC breakthrough of 65% had been reached. After spiking the aerobically treated effluent with micropollutants to concentrations of 10-100 μgL(-1), efficient removal to below limits of quantification

  4. Camphor burns of the palm and non-suicidal self-injury: An uncommonly reported, but socially relevant issue

    PubMed Central

    Chittoria, Ravi Kumar; Mohapatra, Devi Prasad; Friji, Meethale Thiruvoth; Kumar, S. Dinesh; Asokan, Arjun; Pandey, Sandhya

    2014-01-01

    Camphor is a waxy white sublimating chemical derived from natural as well as synthetic sources and widely used in various communities worldwide for a number of medicinal, culinary, and religious reasons. Camphor is burnt as an offering to God in many religious communities. We report three incidences of self inflicted injury from burning camphor on the palm resulting in full thickness burns. Non-suicidal self-injury is socially unacceptable destruction or alteration of body tissue when there is no suicidal intent or pervasive developmental disorder and we have explored an association between this and burn injury. This report also highlights the unique social and cultural pattern of this burn injury and the importance of psycho-therapeautic help for these victims. PMID:25190924

  5. Camphor burns of the palm and non-suicidal self-injury: An uncommonly reported, but socially relevant issue.

    PubMed

    Chittoria, Ravi Kumar; Mohapatra, Devi Prasad; Friji, Meethale Thiruvoth; Kumar, S Dinesh; Asokan, Arjun; Pandey, Sandhya

    2014-05-01

    Camphor is a waxy white sublimating chemical derived from natural as well as synthetic sources and widely used in various communities worldwide for a number of medicinal, culinary, and religious reasons. Camphor is burnt as an offering to God in many religious communities. We report three incidences of self inflicted injury from burning camphor on the palm resulting in full thickness burns. Non-suicidal self-injury is socially unacceptable destruction or alteration of body tissue when there is no suicidal intent or pervasive developmental disorder and we have explored an association between this and burn injury. This report also highlights the unique social and cultural pattern of this burn injury and the importance of psycho-therapeautic help for these victims.

  6. Around a camphoric-acid boat, is the surfactant adsorbed on to the interface or dissolved in the bulk?

    NASA Astrophysics Data System (ADS)

    Mandre, Shreyas; Akella, Sathish; Singh, Dhiraj; Singh, Ravi; Bandi, Mahesh

    2016-11-01

    A camphoric-acid boat (c-boat for short), a cylindrical gel tablet infused with camphoric acid, moves spontaneously when placed on an air-water interface. This system is a classic example of propulsion driven by Marangoni forces. Despite rich history on particles propelled by Marangoni forces, including contributions by figures such as Benjamin Franklin, Allesandro Volta, and Giovanni Venturi, the underlying fluid dynamics remains poorly understood. A key missing piece is the nature of the surfactant; in our case, the question is whether the camphoric acid is dissolved in the bulk or adsorbed on to the interface. We gain insight into this piece by holding the c-boat stationary and measuring the surrounding axisymmetric flow velocity to a precision needed to distinguish between the two possibilities. For soluble surfactants, it is known that the velocity field decays as r - 2 / 3, where r is the distance from the center of the c-boat. Whereas, for surfactant adsorbed on to the air-water interface, we derive that the surrounding velocity fields decays as r - 3 / 5. Based on our measurements we deduce that, even though soluble in water, the Marangoni flow results from a layer of camphoric acid adsorbed to the air-water interface.

  7. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  8. Fumigant Toxicity and Repellence Activity of Camphor Essential Oil from Cinnamonum camphora Siebold Against Solenopsis invicta Workers (Hymenoptera:Formicidae)

    PubMed Central

    Fu, J. T.; Tang, L.; Li, W. S.; Wang, K.; Cheng, D. M.; Zhang, Z. X.

    2015-01-01

    The red imported fire ant (RIFA) Solenopsis invicta Buren causes severe damage to humans and animals as well as the environment. Chemical treatment is the main strategy of RIFA management, which also is potentially toxic to the environment. Plant essential oils (EOs) are considered as potential substance that can be used to control insects. This study aimed to identify the chemical composition of camphor EO and investigate the insecticidal activity on RIFAs. The chemical composition of the EO was analyzed by gas chromatography/mass spectrometry and gas chromatography with flame ionization detection. Results revealed that 36.61% camphor and 30.05% cineole were the major components. The insecticidal activity of camphor EO was assessed against RIFA workers by conducting two different bioassays: fumigant toxicity and repellence. Fumigant toxicity assay results showed that the lethal dose (LC50) of the EO at 24 h was 1.67 and 4.28 μg/ml for minor and major workers, respectively; knockdown time (KT50) was 10.82 and 14.73 h. At 2.55 μg/ml, the highest average mortality of the ants was 84.89% after 72 h. Camphor EO exhibited fumigant toxicity against minor and major workers as indicated by the effects on attacking, feeding, and climbing behaviors. This EO was also strongly repellent to the two size workers of the colony as observed in their behavior against Tenebrio molitor treated with 5 µl EO. The fumigant toxicity and repellence of camphor EO against RIFA indicated that this substance could be a potential alternative for the development of eco-friendly products used to control pests. PMID:26392574

  9. Adaptation of the Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR) into French-Canadian and English-Canadian

    PubMed Central

    Coffin, Donna; Duval, Karine; Martel, Simon; Granton, John; Lefebvre, Marie-Claude; Meads, David M; Twiss, James; McKenna, Stephen P

    2008-01-01

    BACKGROUND: The Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR) is the first disease-specific instrument for assessing patient-reported symptoms, functioning and quality of life (QoL) in pulmonary arterial hypertension (PAH). OBJECTIVES: To create and validate French-Canadian (FC) and English-Canadian (EC) language versions of the CAMPHOR. METHODS: A translation panel (for the FC version) and lay panels (for both versions) were convened to adapt the questionnaires (dual-panel methodology). Subsequently, these new questionnaires were field-tested in 15 FC PAH and 15 EC PAH patients. Finally, in a postal validation study, the new language versions of the CAMPHOR underwent psychometric evaluation in 41 FC and 52 EC PAH patients to test for reliability and validity. RESULTS: The FC and EC field-test interview participants found the questionnaires relevant, comprehensible and easy to complete. Psychometric analyses showed that the FC and EC adaptations were successful. High test-retest coefficients for the scales after controlling for change in respondent’s QoL (FC: 0.92 to 0.96; EC: 0.85 to 0.99) indicated a high degree of reliability. The FC and EC CAMPHOR scales had good internal consistency (Cronbach’s alpha coefficients 0.90 to 0.92 and 0.88 to 0.92, respectively). Predicted correlations with the Nottingham Health Profile provided evidence of the construct validity of the FC and EC scales. The FC and EC adaptations also showed known groups validity. CONCLUSIONS: The FC and EC adaptations of the CAMPHOR have been shown to be reliable and valid for measures of health-related QoL and QoL in PAH, and thus can be recommended for use in clinical studies and routine practice in PAH. PMID:18354747

  10. Aliphatic and alicyclic camphor imines as effective inhibitors of influenza virus H1N1.

    PubMed

    Sokolova, Anastasiya S; Yarovaya, Оlga I; Baev, Dmitry S; Shernyukov, Аndrey V; Shtro, Anna A; Zarubaev, Vladimir V; Salakhutdinov, Nariman F

    2017-02-15

    A series of camphor derived imines was synthesised and evaluated in vitro for antiviral activity. Theoretical evaluations of ADME properties were also carried out. Most of these compounds exhibited significant activity against the drug-resistant strains of influenza A virus. Especially, compounds 2 (SI = 632) and 3 (SI = 417) presented high inhibition against influenza subtypes A/Puerto Rico/8/34 and A/California/07/09 of H1N1pdm09. Analysis of the structure-activity relationship showed that the activity was strongly dependent on the length of the aliphatic chain: derivatives with a shorter chain possessed higher activity, while the suppressing action of compounds with long aliphatic chains was lower.

  11. Antimicrobial effect of camphorated chloroxylenol (ED 84) in the treatment of infected root canals.

    PubMed

    Schäfer, E; Bössmann, K

    1999-08-01

    During and after chemomechanical preparation, particularly before the definitive filling of an infected root canal, a temporary intracanal dressing with an antimicrobial activity is generally indicated. Therefore, the aim of this study was to investigate the antimicrobial effect of ED 84, a liquid root canal disinfectant containing chloroxylenol (10%) and camphor (15%), against selected test organisms (Staphylococcus aureus, Streptococcus faecalis, Escherichia coli, and Candida albicans) both in vitro and under clinical conditions, using extracted teeth. With a contact time of 180 min between undiluted ED 84 and the four bacterial suspensions in the canal, there was a 2 to 3 log reduction in the number of organisms. Under in vitro conditions, the reduction was even greater than 3 logs. When using a liquid medication as a temporary root canal dressing for a duration of approximately 2 days, ED 84 can definitely be used.

  12. Dynamics of camphor sulfonic acid in polyaniline (PANI-CSA): a quasielastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Bée, M.; Djurado, D.; Combet, J.; Telling, M.; Rannou, P.; Pron, A.; Travers, J. P.

    2001-07-01

    PolyAniline (PANI) doped by camphor sulphonic acid (CSA) exhibits an electronic conductivity of several hundreds of S/cm. All the authors agree to invoke in various extents the role of disorder in the evolution of the transport properties as a function of temperature. The IRIS spectrometer at the Rutherford-Appleton Laboratory was used to remove uncertainties of previous IN6-IN16 experiments at Institut Laue-Langevin. The rigidity of the PANI chains was confirmed, in both a conducting and a partially doped sample. All the observable quasielastic scattering occurs from the CSA dynamics. However, this contribution is too weak in the case of the partially doped specimen to conclude about the coupling of the counter-ion disorder with the electronic transport properties.

  13. Metabolism of monoterpanes: metabolic fate of (+)-camphor in sage (Salvia officinalis). [Salvia officinalis

    SciTech Connect

    Croteau, R.; El-Bialy, H.; Dehal, S.S.

    1987-07-01

    The bicyclic monoterpene ketone (+)-camphor undergoes lactonization to 1,2-campholide in mature sage (Salvia officinalis L.) leaves followed by conversion to the ..beta..-D-glucoside-6-O-glucose ester of the corresponding hydroxy acid (1-carboxymethyl-3-hydroxy-2,2,3-trimethyl cyclopentane). Analysis of the disposition of (+)-(G-/sup 3/H)camphor applied to midstem leaves of intact flowering plants allowed the kinetics of synthesis of the bis-glucose derivative and its transport from leaf to root to be determined, and gave strong indication that the transport derivative was subsequently metabolized in the root. Root extracts were shown to possess ..beta..-glucosidase and acyl glucose esterase activities, and studies with (+)-1,2(U-/sup 14/C)campholide as substrate, using excised root segments, revealed that the terpenoid was converted to lipid materials. Localization studies confirmed the radiolabeled lipids to reside in the membranous fractions of root extracts, and analysis of this material indicated the presence of labeled phytosterols and labeled fatty acids (C/sub 14/ to C/sub 20/) of acyl lipids. Although it was not possible to detail the metabolic steps between 1,2-campholide and the acyl lipids and phytosterols derived therefrom because of the lack of readily detectable intermediates, it seemed likely that the monoterpene lactone was degraded to acetyl CoA which was reincorporated into root membrane components via standard acyl lipid and isoprenoid biosynthetic pathways. Monoterpene catabolism thus appears to represent a salvage mechanism for recycling mobile carbon from senescing oil glands on the leaves to the roots.

  14. Essential oil composition and enantiomeric distribution of fenchone and camphor of Lavandula cariensis and L. stoechas subsp. stoechas grown in Greece.

    PubMed

    Tzakou, Olga; Bazos, Ioannis; Yannitsaros, Artemios

    2009-08-01

    The essential oils from leaves and inflorescences of L. cariensis Boiss. and L. stoechas L. subsp. stoechas collected in Greece were analyzed by GC and GC/MS. In the inflorescences and leaves essential oils of L. cariensis the most abundant metabolite was camphor (51.8, 48.8% respectively), whereas in the essential oils of L. stoechas subsp. stoechas, the main constituents were fenchone (39.9, 21.0% respectively) and camphor (24.2, 26.3% respectively). Both enantiomers of camphor were present, whereas only (+) fenchone was detected.

  15. Occurrence of some organic UV filters in wastewater, in surface waters, and in fish from Swiss Lakes.

    PubMed

    Balmer, Marianne E; Buser, Hans-Rudolf; Müller, Markus D; Poiger, Thomas

    2005-02-15

    Organic UV filters are used in personal care products such as sunscreen products, and in cosmetics, beauty creams, skin lotions, lipsticks, hair sprays, hair dyes, shampoos, and so forth. The compounds enter the aquatic environmentfrom showering, wash-off, washing (laundering), and so forth via wastewater treatment plants (WWTPs) ("indirect inputs") and from recreational activities such as swimming and bathing in lakes and rivers ("direct inputs"). In this study, we investigated the occurrence of four important organic UV filter compounds (benzophenone-3, BP-3; 4-methylbenzylidene camphor, 4-MBC; ethylhexyl methoxy cinnamate, EHMC; octocrylene, OC) in wastewater, and in water and fish from various Swiss lakes, using gas chromatographic/mass spectrometric analyses. All four UV filters were present in untreated wastewater (WWTP influent) with a maximum concentration of 19 microg L(-1) for EHMC. The data indicate a seasonal variation with influent loads higher in the warmer season (June 2002) than in the colder one (April 2002). The influent loads were in the order EHMC > 4-MBC approximately BP-3 > OC. The concentrations in treated wastewater (WWTP effluent) were considerably lower, indicating substantial elimination in the plants. 4-MBC was usually the most prevalent compound (maximum concentration, 2.7 microg L(-1)), followed by BP-3, EHMC, and OC. UV filters were also detected in Swiss midland lakes and a river (Limmat) receiving inputs from WWTPs and recreational activities. However, all concentrations were low (<2-35 ng L(-1)); no UV filters (<2 ng L(-1)) were detected in a remote mountain lake. Data from passive sampling using semipermeable membrane devices (SPMDs) supported the presence of these UV filters in the lakes and the river and suggested some potential for accumulation of these compounds in biota. SPMD-derived water concentrations increased in the order Greifensee < Zürichsee < Hüttnersee. This order is reversed from that observed for methyl

  16. Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging

    PubMed Central

    Oza, Goldie; Ravichandran, M.; Merupo, Victor-Ishrayelu; Shinde, Sachin; Mewada, Ashmi; Ramirez, Jose Tapia; Velumani, S.; Sharon, Madhuri; Sharon, Maheshwar

    2016-01-01

    A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent. PMID:26905737

  17. Terahertz disorder-localized rotational modes and lattice vibrational modes in the orientationally-disordered and ordered phases of camphor.

    PubMed

    Nickel, Daniel V; Ruggiero, Michael T; Korter, Timothy M; Mittleman, Daniel M

    2015-03-14

    The temperature-dependent terahertz spectra of the partially-disordered and ordered phases of camphor (C10H16O) are measured using terahertz time-domain spectroscopy. In its partially-disordered phases, a low-intensity, extremely broad resonance is found and is characterized using both a phenomenological approach and an approach based on ab initio solid-state DFT simulations. These two descriptions are consistent and stem from the same molecular origin for the broad resonance: the disorder-localized rotational correlations of the camphor molecules. In its completely ordered phase(s), multiple lattice phonon modes are measured and are found to be consistent with those predicted using solid-state DFT simulations.

  18. Robust superhydrophobic PDMS/camphor based composite coatings with self-cleaning and self-healing properties

    NASA Astrophysics Data System (ADS)

    Mitra, Sushanta; Sahoo, Bichitra; Nanda, Sonil; Kozinski, Janusz

    2016-11-01

    We report a novel process for the preparation of self-cleaning polymer composite with self-healing ability to self-repair from chemical and mechanical damages using readily available materials like Polydimethylsiloxane (PDMS) and camphor soot particles. When the camphor soot particles loading attained a critical level, the composite coating on glass and stainless steel surfaces reveals self-cleaning property with water contact angle of 1710. We also demonstrate that any degradation of its surface energy under the oxygen plasma etching can be recuperated, illustrating that the obtained superhydrophobic surface has a good self-healing ability. The fabricated PDMS/Camphor soot hybrid coating exhibited excellent retention of superhydrophobicity against impact of sand particles from a height of 10-70 cm. In addition, after being damaged chemically by strong acid treatment (2M HNO3 solution), the coating can also restore its properties after a short thermal cycle. Such versatile superhydrophobic surfaces can have wide applications ranging from under-water marine vessels to coating for surfaces to protect them from moisture and unwanted penetration of water.

  19. Total degradation of pentachloroethane by an engineered Alcaligenes strain expressing a modified camphor monooxygenase and a hybrid dioxygenase.

    PubMed

    Iwakiri, Ryo; Yoshihira, Kunichika; Ngadiman; Futagami, Taiki; Goto, Masatoshi; Furukawa, Kensuke

    2004-06-01

    We engineered biphenyl-degrading Alcaligenes sp. strain KF711 for total degradation of pentachloroethane (PCA), which expresses a modified camphor monooxygenase and a hybrid dioxygenase consisting of TodC1 (a large subunit of toluene dioxygenase of Pseudomonas putida F1) and BphA2-BphA3-pbhA4 (a small subunit, ferredoxin and ferredoxin reductase of biphenyl dioxygenase, respectively, in strain KF707). Modified camphor monooxygenase genes (camCAB) were supplied as a plasmid and the todC1 gene was integrated within the chromosomal bph gene cluster by a single crossover recombination. The resultant strain KF711S-3cam dechlorinated PCA to trichloroethene by the action of the modified camphor monooxygenase under anaerobic conditions. The same strain subsequently degraded trichloroethene formed oxidatively by the action of the Tol-Bph hybrid dioxygenase under aerobic conditions. Thus sequential anaerobic and aerobic treatments of the KF711S-3cam resting cells resulted in efficient and total degradation of PCA.

  20. Circular dichroism in valence photoelectron spectroscopy of free unoriented chiral molecules: Camphor and bromocamphor

    SciTech Connect

    Lischke, T.; Boewering, N.; Schmidtke, B.; Mueller, N.; Khalil, T.; Heinzmann, U.

    2004-08-01

    The circular dichroism in the photoelectron angular distribution was investigated for valence photoionization of randomly oriented pure enantiomers of camphor and bromocamphor molecules using circularly polarized light in the vacuum ultraviolet. The forward-backward electron emission spectra were recorded simultaneously with two spectrometers at several opposite angles relative to the propagation direction of the photon beam and compared for each of the two substances. Measurements were also carried out for reversed light helicity and opposite molecular handedness. For the left- and right-handed enantiomers of both molecules we observed asymmetries of comparable magnitude up to several percent. The measured asymmetry parameters vary strongly for different orbital binding energies and also for the selected photon energies in the valence region. The results for both molecules are compared. They suggest a strong influence of the final states on the asymmetry, depending on the chiral geometry of the molecular electronic structure, as well as a significant dependence on the initial states involved. They also confirm theoretical predictions describing the effect in pure electric-dipole approximation.

  1. Resolving issues of content uniformity and low permeability using eutectic blend of camphor and menthol.

    PubMed

    Gohel, M C; Nagori, S A

    2009-11-01

    The aim of present study were to arrest the problem of content uniformity without the use of harmful organic solvent and to improve ex vivo permeability of captopril, a low dose class III drug as per biological classification system. Eutectic mixture of camphor and menthol was innovatively used in the work. Captopril solution in eutectic mixture was blended with Avicel PH 102 and then the mixture was blended with mannitol in different ratios. Formulated batches were characterized for angle of repose and Carr's index. A selected batch was filled in hard gelatin capsule. Tablet dosage form was also developed. Capsules and tablets were characterized for in vitro drug release in 0.1N HCl. Additionally, the captopril tablets were analyzed for content uniformity and ex vivo drug permeation study using rat ileum in modified apparatus. The measurement of angle of repose and Carr's index revealed that the powder blend exhibited good flow property and compressibility. The captopril capsules and tablets exhibited immediate drug release in 0.1 N HCl. The captopril tablets passed content uniformity test as per IP 1996. Ex vivo permeation of captopril, formulated with eutectic mixture, was faster than control. The permeation was increased by 15% at the end of 3 h. Tablets and capsule exhibited reasonable short term stability with no considerable change in performance characteristics.

  2. Determination of the biologically active flavour substances thujone and camphor in foods and medicines containing sage (Salvia officinalis L.)

    PubMed Central

    2011-01-01

    Background The sage plant Salvia officinalis L. is used as ingredient in foods and beverages as well as in herbal medicinal products. A major use is in the form of aqueous infusions as sage tea, which is legal to be sold as either food or medicine. Sage may contain two health relevant substances, thujone and camphor. The aim of this study was to develop and validate an analytical methodology to determine these active principles of sage and give a first overview of their concentrations in a wide variety of sage foods and medicines. Results A GC/MS procedure was applied for the analysis of α- and β-thujone and camphor with cyclodecanone as internal standard. The precision was between 0.8 and 12.6%, linearity was obtained from 0.1 - 80 mg/L. The recoveries of spiked samples were between 93.7 and 104.0% (average 99.1%). The time of infusion had a considerable influence on the content of analytes found in the teas. During the brewing time, thujone and camphor show an increase up to about 5 min, after which saturation is reached. No effect was found for preparation with or without a lid on the pot used for brewing the infusion. Compared to extracts with ethanol (60% vol), which provide a maximum yield, an average of 30% thujone are recovered in the aqueous tea preparations. The average thujone and camphor contents were 4.4 mg/L and 16.7 mg/L in food tea infusions and 11.3 mg/L and 25.4 mg/L in medicinal tea infusions. Conclusions The developed methodology allows the efficient determination of thujone and camphor in a wide variety of sage food and medicine matrices and can be applied to conduct surveys for exposure assessment. The current results suggest that on average between 3 and 6 cups of sage tea could be daily consumed without reaching toxicological thresholds. PMID:21777420

  3. Characterization and comparison of lidocaine-tetracaine and lidocaine-camphor eutectic mixtures based on their crystallization and hydrogen-bonding abilities.

    PubMed

    Gala, Urvi; Chuong, Monica C; Varanasi, Ravi; Chauhan, Harsh

    2015-06-01

    Eutectic mixtures formed between active pharmaceutical ingredients and/or excipients provide vast scope for pharmaceutical applications. This study aimed at the exploration of the crystallization abilities of two eutectic mixtures (EM) i.e., lidocaine-tetracaine and lidocaine-camphor (1:1 w/w). Thermogravimetric analysis (TGA) for degradation behavior whereas modulated temperature differential scanning calorimetry (MTDSC) set in first heating, cooling, and second heating cycles, was used to qualitatively analyze the complex exothermic and endothermic thermal transitions. Raman microspectroscopy characterized vibrational information specific to chemical bonds. Prepared EMs were left at room temperature for 24 h to visually examine their crystallization potentials. The degradation of lidocaine, tetracaine, camphor, lidocaine-tetracaine EM, and lidocaine-camphor EM began at 196.56, 163.82, 76.86, 146.01, and 42.72°C, respectively, which indicated that eutectic mixtures are less thermostable compared to their individual components. The MTDSC showed crystallization peaks for lidocaine, tetracaine, and camphor at 31.86, 29.36, and 174.02°C, respectively (n = 3). When studying the eutectic mixture, no crystallization peak was observed in the lidocaine-tetracaine EM, but a lidocaine-camphor EM crystallization peak was present at 18.81°C. Crystallization occurred in lidocaine-camphor EM after being kept at room temperature for 24 h, but not in lidocaine-tetracaine EM. Certain peak shifts were observed in Raman spectra which indicated possible interactions of eutectic mixture components, when a eutectic mixture was formed. We found that if the components forming a eutectic mixture have crystallization peaks close to each other and have sufficient hydrogen-bonding capability, then their eutectic mixture is least likely to crystallize out (as seen in lidocaine-tetracaine EM) or vice versa (lidocaine-camphor EM).

  4. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries.

    PubMed

    Tsui, Mirabelle M P; Leung, H W; Wai, Tak-Cheung; Yamashita, Nobuyoshi; Taniyasu, Sachi; Liu, Wenhua; Lam, Paul K S; Murphy, Margaret B

    2014-12-15

    Organic UV filters are common ingredients of personal care products (PCPs), but little is known about their distribution in and potential impacts to the marine environment. This study reports the occurrence and risk assessment of twelve widely used organic UV filters in surface water collected in eight cities in four countries (China, the United States, Japan, and Thailand) and the North American Arctic. The number of compounds detected, Hong Kong (12), Tokyo (9), Bangkok (9), New York (8), Los Angeles (8), Arctic (6), Shantou (5) and Chaozhou (5), generally increased with population density. Median concentrations of all detectable UV filters were <250 ng/L. The presence of these compounds in the Arctic is likely due to a combination of inadequate wastewater treatment and long-range oceanic transport. Principal component analysis (PCA) and two-way analysis of variance (ANOVA) were conducted to explore spatiotemporal patterns and difference in organic UV filter levels in Hong Kong. In general, spatial patterns varied with sampling month and all compounds showed higher concentrations in the wet season except benzophenone-4 (BP-4). Probabilistic risk assessment showed that 4-methylbenzylidene camphor (4-MBC) posed greater risk to algae, while benzophenone-3 (BP-3) and ethylhexyl methoxycinnamate (EHMC) were more likely to pose a risk to fishes and also posed high risk of bleaching in hard corals in aquatic recreational areas in Hong Kong. This study is the first to report the occurrence of organic UV filters in the Arctic and provides a wider assessment of their potential negative impacts in the marine environment.

  5. UV filters induce transcriptional changes of different hormonal receptors in Chironomus riparius embryos and larvae.

    PubMed

    Ozáez, Irene; Aquilino, Mónica; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2016-07-01

    Organic ultraviolet (UV) filters are emerging contaminants that are ubiquitous in fresh and marine aquatic systems due to their extensive use in cosmetics, plastics, paints, textiles, and many other industrial products. The estrogenic effects of organic UV filters have been long demonstrated in vertebrates, and other hormonal activities may be altered, according to more recent reports. The impact of UV filters on the endocrine system of invertebrates is largely unknown. We have previously reported that some UV filters may affect ecdysone-related genes in the aquatic insect Chironomus riparius, an ecotoxicologically important model organism. To further analyze other possible effects on endocrine pathways, we first characterized four pivotal genes related with hormonal pathways in insects; thereafter, these genes were assessed for alterations in transcriptional activity after exposure to 4-methylbenzylidene camphor (4MBC) or benzophenone-3 (BP-3), two extensively used sunscreens. We found that both chemicals disturbed the expression of all four genes analyzed: hormonal receptor 38 (HR38), methoprene-tolerant (Met), membrane-associate progesterone receptor (MAPR) and insulin-like receptor (INSR), measured by changes in mRNA levels by real-time PCR. An upregulatory effect at the genomic level was detected in different developmental stages. Interestingly, embryos appeared to be more sensitive to the action of the UV filters than larvae. Our results suggest that the risk of disruption through different endocrine routes is not negligible, considering the significant effects of UV filters on key hormonal receptor and regulatory genes. Further effort is needed to develop environmental risk assessment studies on these pollutants, particularly for aquatic invertebrate model organisms.

  6. UV filters bioaccumulation in fish from Iberian river basins.

    PubMed

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2015-06-15

    The occurrence of eight organic UV filters (UV-Fs) was assessed in fish from four Iberian river basins. This group of compounds is extensively used in cosmetic products and other industrial goods to avoid the damaging effects of UV radiation, and has been found to be ubiquitous contaminants in the aquatic ecosystem. In particular, fish are considered by the scientific community to be the most feasible organism for contamination monitoring in aquatic ecosystems. Despite that, studies on the bioaccumulation of UV-F are scarce. In this study fish samples from four Iberian river basins under high anthropogenic pressure were analysed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Benzophenone-3 (BP3), ethylhexyl methoxycinnamate (EHMC), 4-methylbenzylidene camphor (4MBC) and octocrylene (OC) were the predominant pollutants in the fish samples, with concentrations in the range of ng/g dry weight (d.w.). The results indicated that most polluted area corresponded to Guadalquivir River basin, where maximum concentrations were found for EHMC (241.7 ng/gd.w.). Sediments from this river basin were also analysed. Lower values were observed in relation to fish for OC and EHMC, ranging from below the limits of detection to 23 ng/gd.w. Accumulation levels of UV-F in the fish were used to calculate biota-sediment accumulation factors (BSAFs). These values were always below 1, in the range of 0.04-0.3, indicating that the target UV-Fs are excreted by fish only to some extent. The fact that the highest concentrations were determined in predators suggests that biomagnification of UV-F may take place along the freshwater food web.

  7. Extraction of thymol, eucalyptol, menthol, and camphor residues from honey and beeswax. Determination by gas chromatography with flame ionization detection.

    PubMed

    Nozal, M J; Bernal, J L; Jiménez, J J; González, M J; Higes, M

    2002-04-19

    A gas chromatographic method to determine thymol, eucalyptol (cineole), menthol and camphor residues in honey and beeswax is proposed. To isolate the compounds, three methods involving liquid-liquid extraction with methylene chloride, distillation, or solid-phase extraction on octadecylsilica cartridges can be used. The GC separation is carried out on a 60 m x 0.53 mm Stabilwax DA capillary column, using a flame ionization detector. The method is applied to the analysis of natural honey and also honey and beeswax samples from beehives treated with the above compounds.

  8. Study of the inclusion of the (R)- and (S)-camphor enantiomers in alpha-cyclodextrin by X-ray crystallography and molecular dynamics.

    PubMed

    Kokkinou, Areti; Tsorteki, Frantzeska; Karpusas, Michael; Papakyriakou, Athanasios; Bethanis, Kostas; Mentzafos, Dimitris

    2010-05-27

    The inclusion of (R)- and (S)-camphor compounds in alpha-cyclodextrin has been studied by X-ray crystallography. The crystal structures of the complexes reveal that one guest molecule is accommodated inside the cavity formed by a head-to-head cyclodextrin dimer. In the crystal lattice, the dimers form layers which are successively shifted by half a dimer. In both (R)- and (S)-cases, the camphor molecule exhibits disorder and occupies three major sites with orientations that can be described as either 'polar' or 'equatorial'. Molecular dynamics simulations performed for the observed complexes indicate that although the carbonyl oxygen of both (R)- and (S)-camphor switches between different hydrogen bonding partners, it maintains the observed mode of 'polar' or 'equatorial' alignment.

  9. Mutagenicity testing (+/-)-camphor, 1,8-cineole, citral, citronellal, (-)-menthol and terpineol with the Salmonella/microsome assay.

    PubMed

    Gomes-Carneiro, M R; Felzenszwalb, I; Paumgartten, F J

    1998-08-07

    The essential oils and their monoterpenoid constituents have been widely used as fragrances in cosmetics, as flavouring food additives, as scenting agents in a variety of household products, as active ingredients in some old drugs, and as intermediates in the synthesis of perfume chemicals. The present study was undertaken to investigate the mutagenic potential of six monoterpenoid compounds: two aldehydes (citral and citronellal), a ketone ((+/-)-camphor), an oxide (1,8-cineole, also known as eucalyptol), and two alcohols (terpineol and (-)-menthol). It is part of a more comprehensive toxicological screening of monoterpenes under way at our laboratory. Mutagenicity was evaluated by the Salmonella/microsome assay (TA97a, TA98, TA100 and TA102 tester strains), without and with addition of an extrinsic metabolic activation system (lyophilized rat liver S9 fraction induced by Aroclor 1254). In all cases, the upper limit of the dose interval tested was either the highest non-toxic dose or the lowest dose of the monoterpene toxic to TA100 strain in the preliminary toxicity test. No mutagenic effect was found with (+/-) camphor, citral, citronellal, 1,8-cineole, and (-) menthol. Terpineol caused a slight but dose-related increase in the number of his+ revertants with TA102 tester strain both without and with addition of S9 mixture. The results from this study therefore suggest that, with the exception of terpineol, the monoterpenoid compounds tested are not mutagenic in the Ames test.

  10. Additive estrogenic effects of mixtures of frequently used UV filters on pS2-gene transcription in MCF-7 cells.

    PubMed

    Heneweer, Marjoke; Muusse, Martine; van den Berg, Martin; Sanderson, J Thomas

    2005-10-15

    In order to protect consumers from ultraviolet (UV) radiation and enhance light stability of the product, three to eight UV filters are usually added to consumer sunscreen products. High lipophilicity of the UV filters has been shown to cause bioaccumulation in fish and humans, leading to environmental levels of UV filters that are similar to those of PCBs and DDT. In this paper, estrogen-regulated pS2 gene transcription in the human mammary tumor cell line MCF-7 was used as a measure of estrogenicity of four individual UV filters. Since humans are exposed to more than one UV filter at a time, an equipotent binary mixture of 2-hydroxy-4-methoxy-benzophenone (BP-3) and its metabolite 2,4-dihydroxy benzophenone (BP-1), as well as an equipotent multi-component mixture of BP-1, BP-3, octyl methoxy cinnamate (OMC) and 3-(4-methylbenzylidene) camphor (4-MBC), were also evaluated for their ability to induce pS2 gene transcription in order to examine additivity. An estrogen receptor-mediated mechanism of action was expected for all UV filters. Therefore, our null-hypothesis was that combined estrogenic responses, measured as increased pS2 gene transcription in MCF-7 cells after exposure to mixtures of UV filters, are additive, according to a concentration-addition model. Not all UV filters produced a full concentration-response curve within the concentration range tested (100 nM-1 microM). Therefore, instead of using EC50 values for comparison, the concentration at which each compound caused a 50% increase of basal pS2 gene transcription was defined as the C50 value for that compound and used to calculate relative potencies. For comparison, the EC50 value of a compound is the concentration at which the compound elicits an effect that is 50% of its maximal effect. Individual UV filters increased pS2 gene transcription concentration-dependently with C50 values of 0.12 microM, 0.5 microM, 1.9 microM, and 1.0 microM for BP-1, BP-3, 4-MBC and OMC, respectively. Estradiol (E2

  11. Additive estrogenic effects of mixtures of frequently used UV filters on pS2-gene transcription in MCF-7 cells

    SciTech Connect

    Heneweer, Marjoke . E-mail: M.Heneweer@iras.uu.nl; Muusse, Martine; Berg, Martin van den; Sanderson, J. Thomas

    2005-10-15

    In order to protect consumers from ultraviolet (UV) radiation and enhance light stability of the product, three to eight UV filters are usually added to consumer sunscreen products. High lipophilicity of the UV filters has been shown to cause bioaccumulation in fish and humans, leading to environmental levels of UV filters that are similar to those of PCBs and DDT. In this paper, estrogen-regulated pS2 gene transcription in the human mammary tumor cell line MCF-7 was used as a measure of estrogenicity of four individual UV filters. Since humans are exposed to more than one UV filter at a time, an equipotent binary mixture of 2-hydroxy-4-methoxy-benzophenone (BP-3) and its metabolite 2,4-dihydroxy benzophenone (BP-1), as well as an equipotent multi-component mixture of BP-1, BP-3, octyl methoxy cinnamate (OMC) and 3-(4-methylbenzylidene) camphor (4-MBC), were also evaluated for their ability to induce pS2 gene transcription in order to examine additivity. An estrogen receptor-mediated mechanism of action was expected for all UV filters. Therefore, our null-hypothesis was that combined estrogenic responses, measured as increased pS2 gene transcription in MCF-7 cells after exposure to mixtures of UV filters, are additive, according to a concentration-addition model. Not all UV filters produced a full concentration-response curve within the concentration range tested (100 nM-1 {mu}M). Therefore, instead of using EC{sub 50} values for comparison, the concentration at which each compound caused a 50% increase of basal pS2 gene transcription was defined as the C50 value for that compound and used to calculate relative potencies. For comparison, the EC{sub 50} value of a compound is the concentration at which the compound elicits an effect that is 50% of its maximal effect. Individual UV filters increased pS2 gene transcription concentration-dependently with C50 values of 0.12 {mu}M, 0.5 {mu}M, 1.9 {mu}M, and 1.0 {mu}M for BP-1, BP-3, 4-MBC and OMC, respectively. Estradiol

  12. Effect of Calcium Hydroxide, Chlorhexidine Digluconate and Camphorated Monochlorophenol on the Sealing Ability of Biodentine Apical Plug

    PubMed Central

    Srivastava, Harshit; Prasad, Ashwini B; Raisingani, Deepak; Soni, Dileep

    2016-01-01

    Introduction Teeth with immature apex are managed by establishing an apical plug using various materials and techniques. However, the use of previously placed intracanal medicament may affect the sealing ability of permanent filling material used as an apical plug. Aim To evaluate the effect of removal of previously placed Calcium Hydroxide, Chlorhexidine Digluconate and Camphorated Monochlorophenol as an intracanal medicament on the sealing ability of the Biodentine as an apical plug. Materials and Methods A total of 72 recently extracted human permanent teeth with single root were selected and stored in saline at room temperature. The crown portion of each tooth was removed at the level of cemento enamel junction; 14mm root length was taken as standard length. All the roots were submerged in 20% sulphuric acid up to 3 mm from the apex, for four days for root resorption. One sample was cut longitudinally to look for root resorption under stereo microscope. The canal preparation was done; the roots were kept in moist gauze after instrumentation. A total of 71 roots were randomly divided into three groups. GROUP 1:Calcium hydroxide paste, GROUP 2: Chlorhexidine digluconate, GROUP 3: Camphorated Monochlorophenol (CMCP). The medicaments were removed with stainless steel hand files and 0.5% sodium hypochlorite irrigation. After removal of medicament Biodentine was placed in apical third of resorbed roots and the remaining portion of the canals was filled with gutta-percha. All the 71 roots were analysed with fluid filtration method for evaluating microleakage. Results Comparing all the three groups statistically there was no significant difference. The mean values were found more for group 1 followed by group 2 & 3. Conclusion All the groups showed microleakage. Calcium hydroxide showed the maximum microleakage followed by Chlorhexidine digluconate and least with CMCP. PMID:27504409

  13. Determination of accurate electron chiral asymmetries in fenchone and camphor in the VUV range: sensitivity to isomerism and enantiomeric purity.

    PubMed

    Nahon, Laurent; Nag, Lipsa; Garcia, Gustavo A; Myrgorodska, Iuliia; Meierhenrich, Uwe; Beaulieu, Samuel; Wanie, Vincent; Blanchet, Valérie; Géneaux, Romain; Powis, Ivan

    2016-05-14

    Photoelectron circular dichroism (PECD) manifests itself as an intense forward/backward asymmetry in the angular distribution of photoelectrons produced from randomly-oriented enantiomers by photoionization with circularly-polarized light (CPL). As a sensitive probe of both photoionization dynamics and of the chiral molecular potential, PECD attracts much interest especially with the recent performance of related experiments with visible and VUV laser sources. Here we report, by use of quasi-perfect CPL VUV synchrotron radiation and using a double imaging photoelectron/photoion coincidence (i(2)PEPICO) spectrometer, new and very accurate values of the corresponding asymmetries on showcase chiral isomers: camphor and fenchone. These data have additionally been normalized to the absolute enantiopurity of the sample as measured by a chromatographic technique. They can therefore be used as benchmarking data for new PECD experiments, as well as for theoretical models. In particular we found, especially for the outermost orbital of both molecules, a good agreement with CMS-Xα PECD modeling over the whole VUV range. We also report a spectacular sensitivity of PECD to isomerism for slow electrons, showing large and opposite asymmetries when comparing R-camphor to R-fenchone (respectively -10% and +16% around 10 eV). In the course of this study, we could also assess the analytical potential of PECD. Indeed, the accuracy of the data we provide are such that limited departure from perfect enantiopurity in the sample we purchased could be detected and estimated in excellent agreement with the analysis performed in parallel via a chromatographic technique, establishing a new standard of accuracy, in the ±1% range, for enantiomeric excess measurement via PECD. The i(2)PEPICO technique allows correlating PECD measurements to specific parent ion masses, which would allow its application to analysis of complex mixtures.

  14. Nitrogen isotope variations in camphor (Cinnamomum Camphora) leaves of different ages in upper and lower canopies as an indicator of atmospheric nitrogen sources.

    PubMed

    Xiao, Hua-Yun; Wu, Liang-Hong; Zhu, Ren-Guo; Wang, Yan-Li; Liu, Cong-Qiang

    2011-02-01

    Nitrogen isotopic composition of new, middle-aged and old camphor leaves in upper and lower canopies has been determined in a living area, near a motorway and near an industrial area (Jiangan Chemical Fertilizer Plant). We found that at sites near roads, more positive δ(15)N values were observed in the camphor leaves, especially in old leaves of upper canopies, and ∆δ(15)N=δ(15)N(upper)-δ(15)N(lower)>0, while those near the industrial area had more negative δ(15)N values and ∆δ(15)N<0. These could be explained by two isotopically different atmospheric N sources: greater uptake from isotopically heavy pools of atmospheric NO(x) by old leaves in upper canopies at sites adjacent to roads, and greater uptake of (15)N-depleted NH(y) in atmospheric deposition by leaves at sites near the industrial area. This study presents novel evidence that (15)N natural abundance of camphor leaves can be used as a robust indicator of atmospheric N sources.

  15. Identification of 1,8-cineole, borneol, camphor, and thujone as anti-inflammatory compounds in a Salvia officinalis L. infusion using human gingival fibroblasts.

    PubMed

    Ehrnhöfer-Ressler, Miriam M; Fricke, Kristina; Pignitter, Marc; Walker, Joel M; Walker, Jessica; Rychlik, Michael; Somoza, Veronika

    2013-04-10

    Drinking or gargling Salvia officinalis L. infusion (sage infusion) is thought to soothe a sore throat, tonsillitis, and inflamed, red gums, although structure-based scientific evidence for the key anti-inflammatory compounds in sage infusion is scarce. Human gingival fibroblasts (HGF-1) were treated with sage infusion (SI) or SI fractions containing either its volatile components and water (aqueous distillate, AD) or its dry matter (DM) for six hours. SI, AD, and DM reduced a mean phorbol-12-myristate-13-acetate/ionomycin (PMA/I)-stimulated release of the pro-inflammatory interleukins IL-6 and IL-8 by more than 50% (p < 0.05). Cellular uptake experiments and subsequent GC-MS analysis using stable-isotope-labeled internal standards revealed the presence of 1,8-cineole, borneol, camphor, and α-/β-thujone in SI-treated cells; LC-MS analysis demonstrated the presence of rosmarinic acid. A significant, more than 50% mean inhibition of PMA/I-induced IL-6 and IL-8 release was demonstrated for the volatile compounds 1,8-cineole, borneol, camphor, and thujone, but not for the nonvolatile rosmarinic acid when applied in concentrations representative of sage infusion. Therefore, the volatile compounds were found to be more effective than rosmarinic acid. 1,8-Cineole, borneol, camphor, and α-/β-thujone chiefly contribute to the anti-inflammatory activity of sage infusion in human gingival fibroblasts.

  16. Camphor-3-thioxo-2-oxime as an analytical reagent for extractive spectrophotometric determination and separation of lead

    NASA Astrophysics Data System (ADS)

    Ninan, S.; Varadarajan, A.; Jadhav, S. B.; Kulkarni, A. J.; Malve, S. P.

    1999-04-01

    Camphor-3-thioxo-2-oxime (HCTO) is proposed as a new sensitive analytical reagent for the extractive spectrophotometric determination of trace amounts of lead. The method is based on the instantaneous formation of a stable yellow-orange colored 1:2 chelate with lead at room temperature in the pH range 9.3-9.6 selectively extracted in carbon tetrachloride. The extracted species exhibits an absorption maximum at 400 nm with a molar absorptivity of 4.14×10 4 mol -1 cm -1, complying with Beer's law over the concentration range 0.1-0.5 μg ml -1 of lead with an optimum concentration range 0.18-0.37 μg ml -1. The effects of pH, concentration of reagent and salting-out agents, time of equilibration, order of addition of diluents and the tolerance limit of the method towards various cations and anions usually associated with lead are reported. The developed method is successfully used for the determination of traces of lead in synthetic mixtures, alloys and ore samples.

  17. Indicating atmospheric sulfur by means of S-isotope in leaves of the plane, osmanthus and camphor trees.

    PubMed

    Xiao, Hua-Yun; Wang, Yan-Li; Tang, Cong-Guo; Liu, Cong-Qiang

    2012-03-01

    Foliar δ(34)S values of three soil-growing plant species (Platanus Orientalis L., Osmanthus fragrans L. and Cinnamomum camphora) have been analyzed to indicate atmospheric sulfur. The foliar δ(34)S values of the three plant species averaged -3.11±1.94‰, similar to those of both soil sulfur (-3.73±1.04‰) and rainwater sulfate (-3.07±2.74‰). This may indicate that little isotopic fractionation had taken place in the process of sulfur uptake by root or leaves. The δ(34)S values changed little in the transition from mature leaves to old/senescing leaves for both the plane tree and the osmanthus tree, suggestive of little isotope effect during sulfur redistribution in plant tissues. Significantly linear correlation between δ(34)S values of leaves and rainwater sulfate for the plane and osmanthus trees allowed the tracing of temporal variations of atmospheric sulfur by means of foliar sulfur isotope, while foliage δ(34)S values of the camphor is not an effective indicator of atmospheric sulfur.

  18. Residual antibacterial activity of chlorhexidine digluconate and camphorated p-monochlorophenol in calcium hydroxide-based root canal dressings.

    PubMed

    Soares, Janir Alves; Leonardo, Mario Roberto; Tanomaru Filho, Mário; Silva, Léa Assed Bezerra da; Ito, Izabel Yoko

    2007-01-01

    The purpose of this study was to evaluate the residual antibacterial activity of several calcium hydroxide [Ca(OH)2]-based pastes, placed in root canals of dogs' teeth with induced chronic periapical lesions. Root canals were instrumented with the ProFile rotary system and filled with 4 pastes: G1 (n=16): Ca(OH)2 paste + anesthetic solution; G2 (n=20): Calen paste + camphorated p-monochlorophenol (CMCP); G3 (n=18): Calen; and G4 (n=18): Ca(OH)2 paste + 2% chlorhexidine digluconate. After 21 days, the pastes were removed with size 60 K-files and placed on Petri plates with agar inoculated with Micrococcus luteus ATCC 9341. Pastes that were not placed into root canals served as control. After pre-diffusion, incubation and optimization, the inhibition zones of bacterial growth were measured and analyzed by Mann-Whitney U test at 5% significance level. All pastes showed residual antibacterial activity. The control samples had larger halos (p<0.05). The mean residual antibacterial activity halos in G1, G2, G3 and G4 were 7.6; 10.4; 17.7 and 21.4 mm, respectively. The zones of bacterial growth of G4 were significantly larger than those of G1 and G2 (p<0.05). In conclusion, regardless of the vehicle and antiseptic, all Ca(OH)2-based pastes showed different degrees of measurable residual antibacterial activity. Furthermore, unlike CMCP, chlorhexidine increased significantly the antibacterial activity of Ca(OH)2.

  19. Transient Proliferation of Proanthocyanidin-Accumulating Cells on the Epidermal Apex Contributes to Highly Aluminum-Resistant Root Elongation in Camphor Tree1[W

    PubMed Central

    Osawa, Hiroki; Endo, Izuki; Hara, Yukari; Matsushima, Yuki; Tange, Takeshi

    2011-01-01

    Aluminum (Al) is a harmful element that rapidly inhibits the elongation of plant roots in acidic soils. The release of organic anions explains Al resistance in annual crops, but the mechanisms that are responsible for superior Al resistance in some woody plants remain unclear. We examined cell properties at the surface layer of the root apex in the camphor tree (Cinnamomum camphora) to understand its high Al resistance mechanism. Exposure to 500 μm Al for 8 d, more than 20-fold higher concentration and longer duration than what soybean (Glycine max) can tolerate, only reduced root elongation in the camphor tree to 64% of the control despite the slight induction of citrate release. In addition, Al content in the root apices was maintained at low levels. Histochemical profiling revealed that proanthocyanidin (PA)-accumulating cells were present at the adjacent outer layer of epidermis cells at the root apex, having distinctive zones for cell division and the early phase of cell expansion. Then the PA cells were gradually detached off the root, leaving thin debris behind, and the root surface was replaced with the elongating epidermis cells at the 3- to 4-mm region behind the tip. Al did not affect the proliferation of PA cells or epidermis cells, except for the delay in the start of expansion and the accelerated detachment of the former. In soybean roots, the innermost lateral root cap cells were absent in both PA accumulation and active cell division and failed to protect the epidermal cell expansion at 25 μm Al. These results suggest that transient proliferation and detachment of PA cells may facilitate the expansion of epidermis cells away from Al during root elongation in camphor tree. PMID:21045123

  20. Syntheses, structures and properties of two new coordination polymers based on D-camphoric acid and 2-phenyl-4,6-diamino-1,3,5-triazine

    SciTech Connect

    Lun, Huijie; Yang, Jinghe; Jin, Linyu; Cui, Sasa; Bai, Yanlong; Zhang, Xudong; Li, Yamin

    2015-05-15

    By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]{sub n} (1), [Ni(ca)(phdat).0.125H{sub 2}O]{sub n} (2) (H{sub 2}ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co{sub 2}(CO{sub 2}){sub 4}/Ni{sub 2}(CO{sub 2}){sub 4} SBUs by ca{sup 2−} ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1–2 exhibit antiferromagnetic behavior and compound 2 displays a good activity for methanol oxidation. - Graphical abstract: Two new coordination compounds 1–2 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses, magnetic and electrochemical measurement. - Highlights: • This paper reports two new coordination polymers based on D-camphoric acid. • Both the compounds feather two-dimensional layered networks built up from paddle-wheel SBUs. • The magnetism and electrochemical property are investigated.

  1. Syntheses, structures and properties of two new coordination polymers based on D-camphoric acid and 2-phenyl-4,6-diamino-1,3,5-triazine

    NASA Astrophysics Data System (ADS)

    Lun, Huijie; Yang, Jinghe; Jin, Linyu; Cui, Sasa; Bai, Yanlong; Zhang, Xudong; Li, Yamin

    2015-05-01

    By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]n (1), [Ni(ca)(phdat).0.125H2O]n (2) (H2ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co2(CO2)4/Ni2(CO2)4 SBUs by ca2- ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1-2 exhibit antiferromagnetic behavior and compound 2 displays a good activity for methanol oxidation.

  2. Camphor revisited: involvement of a unique monooxygenase in metabolism of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid by Pseudomonas putida.

    PubMed Central

    Ougham, H J; Taylor, D G; Trudgill, P W

    1983-01-01

    Previously, Pseudomonas putida was shown to degrade (+)-camphor, and cleavage of the first ring of the bicyclic structure involved two monooxygenases (a hydroxylase and a ring oxygen-inserting enzyme), a dehydrogenase, and spontaneous cleavage of an unstable oxygenation product (lactone). Cleavage of the second ring was not demonstrated but was assumed also to occur by ring oxygen insertion, since the predicted oxygenation product was extracted from whole-cell incubation systems. Our investigation established that metabolism of the first ring cleavage intermediate, 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid, occurred through the sequential action of two inducible enzymes, a coenzyme A ester synthetase and an oxygenase. The oxygenase was purified to homogeneity and had a molecular weight of 106,000. This enzyme carried a single molecule of flavin adenine dinucleotide and consisted of two identical subunits. Iron was not present at a significant level. The oxygenase was specific for NADPH as the electron donor and absolutely specific for the coenzyme A ester of 2-oxo-delta 3-4,5,5-trimethylcyclopentenylacetic acid as the substrate. The reaction stoichiometry was compatible with this enzyme being a monooxygenase, and a mass spectral analysis of the methyl ester of the product confirmed the insertion of a single oxygen atom. The enzyme appeared to be analogous to, although distinct from. 2,5-diketocamphane 1,2-monooxygenase in catalyzing a "biological Baeyer-Villiger" reaction with the formation of a lactone. Structural analogy suggested that this lactone, like the first, was also unstable and susceptible to spontaneous ring opening, although this was not experimentally established. Images PMID:6848481

  3. Pre-clinical development as microbicide of zinc tetra-ascorbo-camphorate, a novel terpenoid derivative: Potent in vitro inhibitory activity against both R5- and X4-tropic HIV-1 strains without significant in vivo mucosal toxicity

    PubMed Central

    Saïdi, Héla; Jenabian, Mohammad-Ali; Gombert, Bernard; Charpentier, Charlotte; Mannarini, Aurèle; Bélec, Laurent

    2008-01-01

    Background Terpenoid derivatives originating from many plants species, are interesting compounds with numerous biological effects, such as anti-HIV-1 activity. The zinc tetra-ascorbo-camphorate complex (or "C14"), a new monoterpenoid derivative was evaluated in vitro for its anti-HIV-1 activity on both R5- and X4-HIV-1 infection of primary target cells (macrophages, dendritic cells and T cells) and on HIV-1 transfer from dendritic cells to T cells. Results The toxicity study was carried out in vitro and also with the New Zealand White rabbit vaginal irritation model. C14 was found to be no cytotoxic at high concentrations (CC50 > 10 μM) and showed to be a potential HIV-1 inhibitor of infection of all the primary cells tested (EC50 = 1 μM). No significant changes could be observed in cervicovaginal tissue of rabbit exposed during 10 consecutive days to formulations containing up to 20 μM of C14. Conclusion Overall, these preclinical studies suggest that zinc tetra-ascorbo-camphorate derivative is suitable for further testing as a candidate microbicide to prevent male-to-female heterosexual acquisition of HIV-1. PMID:18522743

  4. Dinuclear cadmium(II), zinc(II), and manganese(II), trinuclear nickel(II), and pentanuclear copper(II) complexes with novel macrocyclic and acyclic Schiff-base ligands having enantiopure or racemic camphoric diamine components.

    PubMed

    Jiang, Jue-Chao; Chu, Zhao-Lian; Huang, Wei; Wang, Gang; You, Xiao-Zeng

    2010-07-05

    Four novel [3 + 3] Schiff-base macrocyclic ligands I-IV condensed from 2,6-diformyl-4-substituted phenols (R = CH(3) or Cl) and enantiopure or racemic camphoric diamines have been synthesized and characterized. Metal-ion complexations of these enantiopure and racemic [3 + 3] macrocyclic ligands with different cadmium(II), zinc(II), manganese(II), nickel(II), and copper(II) salts lead to the cleavage of Schiff-base C horizontal lineN double bonds and subsequent ring contraction of the macrocyclic ligands due to the size effects and the spatial restrictions of the coordination geometry of the central metals, the steric hindrance of ligands, and the counterions used. As a result, five [2 + 2] and one [1 + 2] dinuclear cadmium(II) complexes (1-6), two [2 + 2] dinuclear zinc(II) (7 and 8), and two [2 + 2] dinuclear manganese(II) (9 and 10) complexes together with one [1 + 1] trinuclear nickel(II) complex (11) and one [1 + 2] pentanuclear copper(II) complex (12), bearing enantiopure or racemic ligands, different substituent groups in the phenyl rings, and different anionic ligands (Cl(-), Br(-), OAc(-), and SCN(-)), have been obtained in which the chiral carbon atoms in the camphoric backbones are arranged in different ways (RRSS for the enantiopure ligands in 1, 2, 4, 5, and 7-10 and RSRS for the racemic ligands in 3, 6, 11, and 12). The steric hindrance effects of the methyl group bonded to one of the chiral carbon atoms of camphoric diamine units are believed to play important roles in the formation of the acyclic [1 + 1] trinuclear complex 11 and [1 + 2] dinuclear and pentanuclear complexes 6 and 12. In dinuclear cadmium(II), zinc(II), and manganese(II) complexes 1-10, the sequence of separations between the metal centers is consistent with that of the ionic radii shortened from cadmium(II) to manganese(II) to zinc(II) ions. Furthermore, UV-vis, circular dichroism, (1)H NMR, and fluorescence spectra have been used to characterize and compare the structural

  5. Cloning, Baeyer-Villiger Biooxidations, and Structures of the Camphor Pathway 2-Oxo-Δ3-4,5,5-Trimethylcyclopentenylacetyl-Coenzyme A Monooxygenase of Pseudomonas putida ATCC 17453

    PubMed Central

    Leisch, Hannes; Shi, Rong; Grosse, Stephan; Morley, Krista; Bergeron, Hélène; Cygler, Miroslaw; Iwaki, Hiroaki; Hasegawa, Yoshie

    2012-01-01

    A dimeric Baeyer-Villiger monooxygenase (BVMO) catalyzing the lactonization of 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-coenzyme A (CoA), a key intermediate in the metabolism of camphor by Pseudomonas putida ATCC 17453, had been initially characterized in 1983 by Ougham and coworkers (H. J. Ougham, D. G. Taylor, and P. W. Trudgill, J. Bacteriol. 153:140–152, 1983). Here we cloned and overexpressed the 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetyl-CoA monooxygenase (OTEMO) in Escherichia coli and determined its three-dimensional structure with bound flavin adenine dinucleotide (FAD) at a 1.95-Å resolution as well as with bound FAD and NADP+ at a 2.0-Å resolution. OTEMO represents the first homodimeric type 1 BVMO structure bound to FAD/NADP+. A comparison of several crystal forms of OTEMO bound to FAD and NADP+ revealed a conformational plasticity of several loop regions, some of which have been implicated in contributing to the substrate specificity profile of structurally related BVMOs. Substrate specificity studies confirmed that the 2-oxo-Δ3-4,5,5-trimethylcyclopentenylacetic acid coenzyme A ester is preferred over the free acid. However, the catalytic efficiency (kcat/Km) favors 2-n-hexyl cyclopentanone (4.3 × 105 M−1 s−1) as a substrate, although its affinity (Km = 32 μM) was lower than that of the CoA-activated substrate (Km = 18 μM). In whole-cell biotransformation experiments, OTEMO showed a unique enantiocomplementarity to the action of the prototypical cyclohexanone monooxygenase (CHMO) and appeared to be particularly useful for the oxidation of 4-substituted cyclohexanones. Overall, this work extends our understanding of the molecular structure and mechanistic complexity of the type 1 family of BVMOs and expands the catalytic repertoire of one of its original members. PMID:22267661

  6. Synthetic ultraviolet light filtering chemical contamination of coastal waters of Virgin Islands National Park, St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Bargar, Timothy A.; Alvarez, David; Garrison, Virginia H.

    2015-01-01

    Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r2 = 0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.

  7. Synthetic ultraviolet light filtering chemical contamination of coastal waters of Virgin Islands national park, St. John, U.S. Virgin Islands.

    PubMed

    Bargar, Timothy A; Alvarez, David A; Garrison, Virginia H

    2015-12-15

    Contamination of surface waters by synthetic ultraviolet light (UV) filtering chemicals is a concern for the Virgin Islands National Park (VINP). Discrete water samples were collected from VINP bays to determine UV filter chemical presence in the coastal waters. Spatial distribution and the potential for partitioning between subsurface waters and the sea surface microlayer (SML) were also examined. The UV filter chemicals 4-methylbenzylidene camphor, benzophenone-3, octinoxate, homosalate, and octocrylene were detected at concentrations up to 6073 ng/L (benzophenone-3). Concentrations for benzophenone-3 and homosalate declined exponentially (r(2)=0.86 to 0.98) with distance from the beach. Limited data indicate that some UV filter chemicals may partition to the SML relative to the subsurface waters. Contamination of VINP coastal waters by UV filter chemicals may be a significant issue, but an improved understanding of the temporal and spatial variability of their concentrations would be necessary to better understand the risk they present.

  8. Effects of four commonly used UV filters on the growth, cell viability and oxidative stress responses of the Tetrahymena thermophila.

    PubMed

    Gao, Li; Yuan, Tao; Zhou, Chuanqi; Cheng, Peng; Bai, Qifeng; Ao, Junjie; Wang, Wenhua; Zhang, Haimou

    2013-11-01

    UV filters are increasingly used in sunscreens and other personal care products. Although their residues have been widely identified in aquatic environment, little is known about the influences of UV filters to protozoan. The growth inhibition effects, cell viability and oxidative stress responses of four commonly used UV filters, 2-ethylhexyl 4-methoxycinnamate (EHMC), benzophenone-3 (BP-3), 4-methyl-benzylidene camphor (4-MBC) and octocrylene (OC), to protozoan Tetrahymena thermophila were investigated in this study. The 24-h EC50 values with 95% confidence intervals for BP-3 and 4-MBC were 7.544 (6.561-8.675) mg L(-1) and 5.125 (4.874-5.388) mg L(-1), respectively. EHMC and OC did not inhibit the growth of T. thermophila after 24h exposure at the tested concentrations. The results of cell viability assays with propidium iodide (PI) staining were consistent with that of the growth inhibition tests. As for BP-3 and 4-MBC, the relatively higher concentrations, i.e. of 10.0 and 15.0 mg L(-1), could lead to the cell membranes impairment after 4h exposure. With the increase of the exposure time to 6h, their adverse effects on cell viability of T. thermophila were observed at the relatively lower concentration groups (1.0 mg L(-1) and 5.0 mg L(-1)). In addition, it is noticeable that at environmentally relevant concentration (1.0 μg L(-1)), BP-3 and 4-MBC could lead to the significant increase of catalase (CAT) activities of the T. thermophila cells. Especially for the BP-3, the oxidative injuries were further confirmed by the reduction of glutathione (GSH) content. It is imperative to further investigate the additive action of UV filters and seek other sensitive endpoint, especially at environmentally relevant concentration.

  9. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    SciTech Connect

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S.

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  10. Transport Properties of 60% camphor sulfonic acid (CSA) doped polyanilines.

    NASA Astrophysics Data System (ADS)

    Lee, W.-P.; Gudmundsdottir, A.; Platz, M. S.; Epstein, A. J.; Monkman, A. P.

    1998-03-01

    We report correlated σ_DC(T) and S(T) of unstretched and stretched polyaniline films prepared from m-cresol using 0.60 HCSA per ring. For unstretched film with σ_DC(300K) ~ 270 S/cm and σ(10K)/σ(300K) ~ 0.6 showing a metallic state near an insulator-metal transition(IMT), S(300K) is +8.5 ± 0.5 μV/K with nearly linear S(T) similar to that reported earlier for PAN-CSA fibers.(Y.Z. Wang, et al.), Synth. Met. 68, 207 (1995) For unstretched film on the insulator side of the IMT, σ_DC(300K) is ~ 85 S/cm with σ(10K)/σ(300K) ~ 0.28 and S(300K) is +5.5 ± 0.5 μV/K. For stretched film, σ_DC(300K) and S(300K) for parallel and perpendicular the stretched direction are ~ 630, ~ 90 S/cm, and +10 ± 0.5 and +7 ± 0.5 μV/K, respectively. They are on the metallic side of the IMT with σ(10K)/σ(300K) ~ 0.45, have nearly temperature independent σ_parallel(T)/σ_perpendicular(T), and have nearly linear S(T). Thermoelectric power results for these CSA doped polyaniline samples with different σ(T) are discussed in terms of an effective medium model in accord with inhomogeneous disorder present.(F. Zuo, et al.), Phys. Rev. B 36, 3475 (1987)

  11. Simultaneous determination of some ultraviolet-absorbing chemicals in sunscreen cosmetics using a high-performance liquid chromatography method.

    PubMed

    Liu, T; Wu, D

    2011-10-01

    A method of gradient elution high-performance liquid chromatography (HPLC) for simultaneous determination of 11 different ultraviolet-absorbing chemicals of phenylbenzlmldazole sulphonic acid, 4-aminobenzoic acid, benzophenone-4, benzophenone-3, isoamyl p-methoxycinnamate, 4-methylbenzylidene camphor, octocrylene, ethylhexyl methoxycinnamate, homosalate, ethylhexyl salicylate, methylene bis-benzotriazolyl tetramethylbutyl phenol was developed for the application to sunscreen cosmetic products. In this study, an Agilent SB-C18 analytical column (250 × 4.6 mm, 5 μm) was utilized and methanol, tetrahydrofuran and perchloric acid aqueous solution (0.2 mL HClO(4) + 300 mL H(2)O) were used for gradient elution at a total flow rate of 1.0 mL min(-1). The optimum conditions for 11 different ultraviolet-absorbing chemicals analyses were investigated. All calibration curves showed good linear regression with UV detection (311 nm) within test ranges. The correlation coefficients were better than 0.999 in all cases. The assay was simple, selective, convenient and reproducible and is suitable for the determination of ultraviolet-absorbing chemicals in commercial sunscreen cosmetic products. The use frequency of 11 different ultraviolet absorbents in 100 sunscreen cosmetics was investigated and statistically analysed. The ultraviolet absorbent of maximum use frequency was ethylhexyl methoxycinnamate.

  12. Simultaneous Liquid Chromatographic Determination of 10 Ultra-Violet Filters in Sunscreens.

    PubMed

    Wharton, Mary; Geary, Michael; O'Connor, Niamh; Curtin, Laura; Ketcher, Krystal

    2015-09-01

    A rapid HPLC method was developed for the simultaneous determination of 10 UV filters found in sunscreen. The following UV filters were analyzed in this method; 2-phenylbenzimidazole-5-sulfonic acid, benzophenone-3, isoamyl p-methoxycinnamate, 4-methylbenzylidene camphor, octocrylene, ethylhexyl dimethyl 4-aminobenzoic acid, ethylhexyl methoxycinnamate, butyl methoxydibenzoylmethane, ethylhexyl salicylate and homosalate. The method was developed on two columns; a Thermo Hypersil C18 BDS, 3 µm column (4.6 × 100 mm) and a Chromolith RP-18e Monolithic column (4.6 × 100 mm). The same mobile phase of ethanol and 1% acetic acid (70:30, v/v) was employed for both columns. The separation of the 10 UV filters was carried out successfully on both columns; the optimal resolution was obtained on the Thermo Scientific Hypersil column in a time frame of 7 min. An isocratic elution utilizing ethanol and acetic acid (70:30, v/v) at a temperature of 35°C was employed. The method was applied to a number of commercial samples of sunscreen and lotions and was validated according to International Conference on Harmonisation guidelines for selectivity, linearity, accuracy, precision and robustness. A comparison of the performances of both columns was also carried out.

  13. Development and application of a HPLC method for eight sunscreen agents in suncare products.

    PubMed

    Peruchi, L M; Rath, S

    2012-06-01

    This work describes the development, validation and application of a simple and fast high-performance liquid chromatography-with diode array dectection (HPLC-DAD) method for the determination of eight sunscreen agents: benzophenone-3, octocrylene, ethylhexyl methoxycinnamate, ethylhexyl salicylate, homosalate (used in two isomeric forms), butyl methoxydibenzoylmethane, 4-methylbenzylidene camphor and ethylhexyl dimethyl PABA in sunscreen formulations. The separation of the eight sunscreen compounds was achieved using an ACE C18 column (250 × 4.6 mm, 5 μm), with a column temperature 20°C, and a mobile phase of 88 : 12 (v/v) methanol-water with isocratic elution. Column temperature strongly influences the retention time and resolution of the compounds. The flow rate was 1.0 mL min(-1) and quantitation was performed by external calibration at the maximum wavelength of each compound. The sample preparation was simple and consisted basically of sample dilution with methanol, centrifugation and filtration in syringe filters before quantitation. Total run time was 18 min. The method was validated according to the parameters: linear range, linearity, selectivity, intra-day and inter-day precision and accuracy. Ten samples of sunscreen emulsions commercially available in Brazil (SPF 30) from different manufacturers were analysed using the proposed method. The number of the sunscreen agents varied between one and five in a single sample. The concentrations of all compounds were in the range of 0.9-10% (w/w) and were in accordance with the current Brazilian legislation.

  14. Distribution, mass inventories, and ecological risk assessment of legacy and emerging contaminants in sediments from the Pearl River Estuary in China.

    PubMed

    Pintado-Herrera, Marina G; Wang, Cuicui; Lu, Jungtai; Chang, Yuan-Pin; Chen, Weifang; Li, Xiaolin; Lara-Martín, Pablo A

    2017-02-05

    This study focused on comparing the occurrences and environmental toxic risks for diverse priority and emerging contaminants (>100 chemicals) in the sediments from the Pearl River Estuary (PRE, China). The most predominant compounds were cationic surfactants, organophosphate flame retardants (e.g., triisobutylphosphate), and polycyclic aromatic hydrocarbons (PAHs), accounting for >75% of the total mass inventory (∼330 metric tons). Wastewater discharges seem to be one of the main sources of pollution in the area, as the highest concentrations (>1000ngg(-1) for some chemicals) were reported in the upper part of the PRE (near Guangzhou city) and Macau. Highest levels of ultraviolet (UV) filters, however, were observed in recreational areas, revealing the importance of direct sources (e.g., outdoor activities). An environmental risk assessment showed that PAHs and dichlorodiphenyl dichloroethylene had the highest hazard quotient (HQ) values (up to 233). Nonylphenol, a metabolite from nonionic surfactant, and two UV filters (2-ethyl-hexyl-4-trimethoxycinnamate and 4-methylbenzylidene camphor) also posed a significant threat to benthic species (HQ>1). Further research through the realization of monitoring campaigns and toxicity tests is encouraged, as the exposure of the resident aquatic organisms and human population to these and other emerging chemicals is expected to increase over the years.

  15. New specific and sensitive biomonitoring methods for chemicals of emerging health relevance.

    PubMed

    Leng, Gabriele; Gries, Wolfgang

    2016-09-20

    In this publication the challenges to cope for the aim to obtain innovative biomonitoring methods in our laboratory are visualized for di(2-propylheptyl)phthalate, 2-mercaptobenzothiazole, 3,5-di-tert-butyl-4-hydroxytoluene, 4-nonylphenol, 4-tert-octylphenol, 3-(4-methylbenzylidene)camphor, 4,4'-methylene diphenyl diisocyanate, and Hexabromocyclododecane. For these substances new specific markers were explored based on animal or human kinetic data with urine being the preferred matrix compared to blood. The determination of these markers was complex in all cases, because the sample preparation as well as the detection by high performance liquid chromatography, capillary gas chromatography coupled to tandem mass spectrometers or high resolution mass spectrometry should enable the lowest possible detection limit by use of minimal biological sample volumes. To get a first hint of a possible background level, the analytical methods were applied to urine samples of about 40 persons for each chemical. For Di(2-propylheptyl)phthalate and 2-Mercaptobenzothiazole first results are presented from population biomonitoring.

  16. Chemometrics-Assisted Fast-Elution HPLC-DAD for the Quantification of Selected UV Filters and Parabens in Suncare Formulations.

    PubMed

    Vosough, Maryam; Shekari, Nafiseh; Salemi, Amir; Heidar, Koorosh Tabar

    2017-03-01

    In the present study, a fast LC method coupled with multivariate curve resolution (MCR) alternating least-squares (ALS) and alternating trilinear decomposition (ATLD) was developed for the determination of the resolution of and quantitation of benzophenone-3, 4-methylbenzylidene camphor, octocrylene, ethylhexyl dimethyl para-aminobenzoic acid, butyl methoxydibenzoilmethane, and methyl and propyl parabens in suncare products. Chromatographic separation was optimized using full factorial and Box-Behnken designs. MCR-ALS and ATLD performance in quantitating the analytes in synthetic mixtures (which were randomly prepared in ultra-pure water) and blank sunscreen products was studied, and satisfying results were obtained. Acceptable qualification and quantification results were also achieved in the presence of matrix interferences via a short chromatographic runtime (5 min), and the second-order advantage was fully exploited, with MCR-ALS clearly emerging as the superior model. Average recoveries ranged from 98.0 to 112.5%, and RSD values were lower than 6.5%. LODs between 0.066 and 0.243 μg/g were achieved. In addition to acceptable precision and accuracy, the merits of the proposed method are that the analysis is fast and there is minimal solvent consumption. Moreover, coelution of analytes and interference from components in the sample matrixes were overcome with multivariate analysis.

  17. Comparison of Individual and Combined Effects of Four Endocrine Disruptors on Estrogen Receptor Beta Transcription in Cerebellar Cell Culture: The Modulatory Role of Estradiol and Triiodo-Thyronine

    PubMed Central

    Jocsak, Gergely; Kiss, David Sandor; Toth, Istvan; Goszleth, Greta; Bartha, Tibor; Frenyo, Laszlo V.; Horvath, Tamas L.; Zsarnovszky, Attila

    2016-01-01

    Background: Humans and animals are continuously exposed to a number of environmental substances that act as endocrine disruptors (EDs). While a growing body of evidence is available to prove their adverse health effects, very little is known about the consequences of simultaneous exposure to a combination of such chemicals; Methods: Here, we used an in vitro model to demonstrate how exposure to bisphenol A, zearalenone, arsenic, and 4-methylbenzylidene camphor, alone or in combination, affect estrogen receptor β (ERβ) mRNA expression in primary cerebellar cell cultures. Additionally, we also show the modulatory role of intrinsic biological factors, such as estradiol (E2), triiodo-thyronine (T3), and glial cells, as potential effect modulators; Results: Results show a wide diversity in ED effects on ERβ mRNA expression, and that the magnitude of these ED effects highly depends on the presence or absence of E2, T3, and glial cells; Conclusion: The observed potency of the EDs to influence ERβ mRNA expression, and the modulatory role of E2, T3, and the glia suggests that environmental ED effects may be masked as long as the hormonal milieu is physiological, but may tend to turn additive or superadditive in case of hormone deficiency. PMID:27338438

  18. Multi-target determination of organic ultraviolet absorbents in organism tissues by ultrasonic assisted extraction and ultra-high performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Peng, Xianzhi; Jin, Jiabin; Wang, Chunwei; Ou, Weihui; Tang, Caiming

    2015-03-06

    A sensitive and reliable method was developed for multi-target determination of 13 most widely used organic ultraviolet (UV) absorbents (including UV filters and UV stabilizers) in aquatic organism tissues. The organic UV absorbents were extracted using ultrasonic-assisted extraction, purified via gel permeation chromatography coupled with silica gel column chromatography, and determined by ultra-high performance liquid chromatography-tandem mass spectrometry. Recoveries of the UV absorbents from organism tissues mostly ranged from 70% to 120% from fish filet with satisfactory reproducibility. Method quantification limits were 0.003-1.0ngg(-1) dry weight (dw) except for 2-ethylhexyl 4-methoxycinnamate. This method has been applied to analysis of the UV absorbents in wild and farmed aquatic organisms collected from the Pearl River Estuary, South China. 2-Hydroxy-4-methoxybenzophenone and UV-P were frequently detected in both wild and farmed marine organisms at low ngg(-1)dw. 3-(4-Methylbenzylidene)camphor and most of the benzotriazole UV stabilizers were also frequently detected in maricultured fish. Octocrylene and 2-ethylhexyl 4-methoxycinnamate were not detected in any sample. This work lays basis for in-depth study about bioaccumulation and biomagnification of the UV absorbents in marine environment.

  19. Organic UV filters inhibit multixenobiotic resistance (MXR) activity in Tetrahymena thermophila: investigations by the Rhodamine 123 accumulation assay and molecular docking.

    PubMed

    Gao, Li; Yuan, Tao; Cheng, Peng; Zhou, Chuanqi; Ao, Junjie; Wang, Wenhua; Zhang, Haimou

    2016-09-01

    Multixenobiotic resistance (MXR) transporters, which belong to ATP-binding cassette (ABC) family proteins, are present in living organisms as a first line of defense system against xenobiotics and environmental contaminants. The effects of six organic UV filters (4-methyl -benzylidene camphor, 4-MBC; benzophenone-3, BP-3; butyl methoxydibenzoyl-methane, BM-DBM; ethylhexyl methoxy cinnamate, EHMC; octocrylene, OC and homosalate, HMS) on multixenobiotic resistance (MXR) in Tetrahymena thermophila were investigated in this study. It was found that 4-MBC, BP-3 and BM-DBM could significantly inhibit activity of the MXR system, causing concentration dependent accumulation of rhodamine 123; while EHMC, OC and HMS had weak MXR inhibition. The IC50 (50 % inhibition concentration) values of 4-MBC, BP-3 and BM-DBM were 23.54, 40.59 and 26.37 μM, respectively, with inhibitory potentials of 23.1, 13.4 and 20.6 % relative to verapamil (VER, a model inhibitor of P-glycoprotein). Our results firstly provide the evidence for UV filters inhibition effect on MXR in aquatic organisms. In addition, it was revealed by molecular docking analysis that the selected six UV filters can occupy the same binding site on T. thermophila P-gp as VER does; and form H-bonds with residues Ser 328 and/or Asn 281. This study raises the awareness of aquatic ecological risk from the organic UV filters exposure, as they would be involved in potentiating toxic effects by chemosensitizing.

  20. [Estrogenic activity of ultraviolet absorbers and the related compounds].

    PubMed

    Matsumoto, Hisashi; Adachi, Shinichi; Suzuki, Yasuhiko

    2005-08-01

    The estrogenic activities of ultraviolet absorbers and their related compounds were investigated using MCF-7 cell proliferation assay. Nine of 33 chemicals (benzophenone, 2,4-dihydroxybenzophenone, 2,2',4,4'-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 4-hydroxybenzophenone, 3-(4-methylbenzylidene) camphor, ethyl 2-cyano-3,3-diphenylacrylate (etocrylene) and 2-ethylhexyl-2-cyano-3,3-diphenylacrylate (octocrylene)) were positive compared with the vehicle control. Benzhydrol, ethyl cinnamate and 2,2'-dihydroxy-4-methoxybenzophenone were weakly active. When each xenoestrogen was added to the cells along with ICI 182780, an estrogen receptor (ER) antagonist, the cell growth was reduced according to its doses. Therefore, the cell proliferation was suggested to generate through ER. Most of these chemicals were also positive using CHOOSER assay, a new method of testing estrogenic activity of xenoestrogen. Each xenoestrogen was also confirmed to bind to ERalpha and ERbeta using a human ER competitive binding assay against 17beta-estradiol. The concentration order of the strength of its inhibitory effect using both ERalpha and ERbeta was similar to that of MCF-7 cell proliferation assay, except for benzyl 4-hydroxybenzoate (B4HB). B4HB showed a stronger activity on CHOOSER assay and the competitive binding assay using both ERalpha and ERbeta, although there was no activity observed on MCF-7 cell proliferation assay. Our findings were to detect the estrogenic activity of etocrylene and octocrylene in vitro, in addition to confirming the activities of some ultraviolet absorbers as previously reported.

  1. Simultaneous analysis and monitoring of 16 UV filters in cosmetics by high-performance liquid chromatography.

    PubMed

    Kim, Dojung; Kim, Sangseop; Kim, Seol-A; Choi, Myoengsin; Kwon, Kyoung-Jin; Kim, Mijeong; Kim, Dong-Sup; Kim, Seung-Hee; Choi, Bo-Kyung

    2012-01-01

    Sixteen UV filters were simultaneously analyzed using the high-performance liquid chromatographic method. They were drometrizole (USAN Drometrizole), 4-methylbenzylidene camphor (USAN Enzacamene), menthyl anthranilate (USAN Menthyl anthranilate), benzophenone-3 (USAN Oxybenzone), benzophenone-8 (USAN Dioxybenzone), butyl methoxydibenzoylmethane (USAN Avobenzone), ethylhexyl triazone (USAN Octyl triazone), octocrylene (USAN Octocrylene), ethylhexyl dimethyl p-aminobenzoic acid (USAN Padimate O), ethylhexyl methoxycinnamate (USAN Octinoxate), p-aminobenzoic acid (USAN Aminobenzoic acid), 2-phenylbenzimidazole-5-sulfonic acid (USAN Ensulizole), isoamyl p-methoxycinnamate (USAN Amiloxate), and recent UV filters such as diethylhexyl butamidotriazone (USAN Iscotrizinol), methylene bis-benzotriazolyl tetramethylbutylphenol (USAN Bisoctrizole), and terephthalylidene dicamphor sulfonic acid (USAN Ecamsule). Separation of the UV filters was carried out in a C(18) column with a gradient of methanol-phosphate buffer, and the UV detection was at 300, 320, or 360 nm without any interference. The limits of detection were between 0.08 and 1.94 μg/ml, and the limits of quantitation were between 0.24 and 5.89 μg/ml. The extracting solvent for the UV filters was methanol, except for ethylhexyl triazone and methylene bis-benzotriazolyl tetramethylbutylphenol, which were prepared with tetrahydrofuran. The recoveries from spiked samples were between 94.90% and 116.54%, depending on the matrixes used. The developed method was applied to 23 sunscreens obtained from local markets, and the results were acceptable to their own criteria and to maximum authorized concentrations. Consequently, these results would provide a simple extracting method and a simultaneous determination for various UV filters, which can improve the quality control process as well as the environmental monitoring of sunscreens.

  2. Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlor pesticides, PBDEs, and PCBs in human milk: correlation of UV filters with use of cosmetics.

    PubMed

    Schlumpf, Margret; Kypke, Karin; Wittassek, Matthias; Angerer, Juergen; Mascher, Hermann; Mascher, Daniel; Vökt, Cora; Birchler, Monika; Lichtensteiger, Walter

    2010-11-01

    In order to assess potential risks of exposure to environmental chemicals, more information on concomitant exposure to different chemicals is needed. We present data on chemicals in human milk of a cohort study (2004, 2005, 2006) of 54 mother/child pairs, where for the first time, cosmetic UV filters, synthetic musks, parabens and phthalate metabolites were analyzed in the same sample along with persistent organochlor pollutants (POPs), i.e., organochlor pesticides and metabolites, polybrominated diphenylethers and polychlorinated biphenyls (PCBs). The two groups of chemicals exhibited different exposure patterns. Six out of seven PCB congeners and a majority of pesticides were present in all milk samples, with significant correlations between certain PCB congener and pesticide levels, whereas the cosmetic-derived compounds, UV filters, parabens and synthetic musks, exhibited a more variable exposure pattern with inter-individual differences. UV filters were present in 85.2% of milk samples, in the range of PCB levels. Comparison with a questionnaire revealed a significant correlation between use of products containing UV filters and their presence in milk for two frequently used and detected UV filters, 4-methylbenzylidene camphor and octocrylene, and for the whole group of UV filters. Concentrations of PCBs and organochlor pesticides were within ranges seen in Western and Southern European countries. For several POPs, mean and/or maximum daily intake calculated from individual concentrations was above recent US EPA reference dose values. Our data emphasize the need for analyses of complex mixtures to obtain more information on inter-individual and temporal variability of human exposure to different types of chemicals.

  3. Campho-Phenique overdose

    MedlinePlus

    Campho-Phenique contains both camphor and phenol. For information on products containing camphor alone, see camphor overdose . ... Both camphor and phenol are in Campho-Phenique. However, camphor and phenol may be found separately in other products.

  4. Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material.

    PubMed

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs.

  5. Antitumor Compounds from the Stout Camphor Mushroom Taiwanofungus camphoratus (Higher Basidiomycetes) Spent Culture Broth.

    PubMed

    Jia, Wei; Bai, Yan-Yan; Zhang, Zhong; Feng, Na; Feng, Jie; Yan, Meng-Qiu; Zhu, Li-Na; Jia, Xin-Cheng; Wang, Ming-Dao; Zhang, Jing-song; Fan, Hua

    2015-01-01

    A known compound, 5-(hydroxymethyl) furan-2-carbaldehyde, and a novel compound, 3-isobutyl-1-methoxy-4-(4'-(3-methylbut-2-enyloxy)phenyl)-1H-pyrrole-2,5-dione were isolated from spent broth from submerged cultures of Taiwanofungus camphoratus. Their structures were elucidated by nuclear magnetic resonance (1H, 13C, and 2D) and mass spectra. These compounds inhibited the proliferation of K562 and HepG2 tumor cells in vitro.

  6. Fast Synthesis of Multilayer Carbon Nanotubes from Camphor Oil as an Energy Storage Material

    PubMed Central

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs. PMID:25258714

  7. Inhibition of Na(+)/K(+) -ATPase by antcins, unique steroid-like compounds in Antrodia camphorate.

    PubMed

    Chung, Tse-Yu; Li, Feng-Yin; Chang, Chi-I; Jinn, Tzyy-Rong; Tzen, Jason T C

    2012-01-01

    The inhibition of Na(+)/K(+) -ATPase by versatile steroid-like compounds contributes to the putative therapeutic effects of many Chinese medicinal cardiac products via the same molecular mechanism triggered by cardiac glycosides. Five major steroid-like compounds, antcin A, B, C, H, and K were isolated from Niuchangchih (Antrodia camphorata), a unique Taiwan mushroom, and all inhibited Na(+)/K(+) -ATPase. Antcin A exhibited significantly higher inhibitory potency than the other four antcins, though weaker than ginsenoside Rh2 . In contrast, cortisone (an analogous steroid with anti-inflammatory effects stronger than antcin A) showed no detectable inhibitory potency. Molecular modeling has shown that antcins bind to Na(+)/K(+) -ATPase with the steroidal skeleton structurally upside-down in comparison with ginsenoside Rh2 . The inhibitory potency of antcin A is attributed to steroidal hydrophobic interaction within the binding pocket and the formation of three hydrogen bonds between its carboxyl group and two cationic residues around the cavity entrance of Na(+)/K(+) -ATPase. The presence of an additional carbonyl or hydroxyl group at C7 of the other four antcins leads to severe repulsion in the hydrophobic pocket, and thus significantly reduces inhibitory potency. It is proposed that antcin A is a bi-functional compound that exerts anti-inflammatory effects and that enhances blood circulation via two different molecular mechanisms.

  8. Separation of Americium from Europium using Camphor-BisTriazinyl Pyridine: A Fundamental Study

    SciTech Connect

    Tevepaugh, Kayron N.; Carrick, Jesse D.; Tai, Serene; Coonce, Janet G.; Delmau, Lætitia H.; Ensor, Dale D.

    2015-10-27

    Among the different components present in spent nuclear fuel, long-lived trivalent actinides are particularly difficult to separate from the shorter-lived lanthanide fission products due to their similar chemical properties. We achieved selective extraction of americium from acidic solution (up to 2M HNO3) containing tenth molar quantities of lanthanides using neutral pyridine-based ligands dissolved in polar diluents. Nitrogen-based Bis Triazinyl Pyridine (BTP) ligands are desirable for both their excellent An/Ln selectivity and incinerability. Our results pertaining to ligand solubility, kinetics, hydrolytic stability, and extraction performance in various nitric acid environments are presented.

  9. Separation of Americium from Europium using Camphor-BisTriazinyl Pyridine: A Fundamental Study

    DOE PAGES

    Tevepaugh, Kayron N.; Carrick, Jesse D.; Tai, Serene; ...

    2015-10-27

    Among the different components present in spent nuclear fuel, long-lived trivalent actinides are particularly difficult to separate from the shorter-lived lanthanide fission products due to their similar chemical properties. We achieved selective extraction of americium from acidic solution (up to 2M HNO3) containing tenth molar quantities of lanthanides using neutral pyridine-based ligands dissolved in polar diluents. Nitrogen-based Bis Triazinyl Pyridine (BTP) ligands are desirable for both their excellent An/Ln selectivity and incinerability. Our results pertaining to ligand solubility, kinetics, hydrolytic stability, and extraction performance in various nitric acid environments are presented.

  10. Occurrence, fate and ecotoxicological risk of personal care products in urban river-groundwater interface

    NASA Astrophysics Data System (ADS)

    Jurado, Anna; Pau Serra, Maria; Díaz-Cruz, M. Silvia; Vázquez-Suñé, Enric; Pujades, Estanislao; Barceló, Damià

    2016-04-01

    This work presents the occurrence and fate of selected personal care products (PCPs) in the urban river-groundwater interface. To this end, urban groundwater and river samples were collected in Sant Adrià del Besòs (NE of Spain) and a total of 16 PCPs were analyzed including benzophenone derivatives, camphor derivatives, p-aminobenzoic acid derivatives, triazoles and parabens in three different campaigns (from May 2010 to July 2014). These compounds reach the aquifer through the recharge of River Besòs that receives large amounts of effluents from waste water treatment plants. Results shown that most of compounds were not or barely detected (maximum concentrations around 30 ng/L) in groundwater samples during the different sampling campaigns. Only two triazoles, named as benzotriazole (BZT) and methyl benzotriazol (MeBZT) were found at high concentrations in groundwater samples (maximum concentration around 2000 ng/L). The fate of PCPs in the aquifer was assessed using mixing analysis considering the temporal variability of the River Besòs. Overall, measured groundwater concentrations were significantly much lower than those estimated by the mixing of the river water. This observation suggested that most of the PCPs are naturally removed when river water infiltrates the aquifer. However, some compounds were more persistent in the aquifer. These compounds were in descending order: the triazoles MeBZT and BZT followed by the camphor derivative 4MBC. The measured concentrations allowed us to assess the environmental risk posed by the selected UV-Fs (e.g. benzophenone derivatives) in the river-groundwater samples. Hazard Quotients (HQs) for diferent aquatic species were calculated in order to characterise the ecotoxicity potential of the studied compounds in the river-groundwater interface. HQ values will be presented and discussed in the presentation.

  11. Occurrence, fate and risk assessment of personal care products in river-groundwater interface.

    PubMed

    Serra-Roig, Maria Pau; Jurado, Anna; Díaz-Cruz, M Silvia; Vázquez-Suñé, Enric; Pujades, Estanislao; Barceló, Damià

    2016-10-15

    This work presents the occurrence and fate of selected personal care products (PCPs) in the urban river-groundwater interface. To this end, urban river and groundwater samples were collected in Sant Adrià del Besòs (NE of Spain) and a total of 16 PCPs were analyzed including benzophenone derivatives, camphor derivatives, p-aminobenzoic acid derivatives, triazoles and parabens in three different campaigns (from May 2010 to July 2014). These compounds reach the aquifer through the recharge of Besòs River that receives large amounts of effluents from waste water treatment plants. Results have shown that most of the compounds were not or barely detected (maximum concentrations around 200ng/L) in groundwater samples during the different sampling campaigns. Only two triazoles, namely benzotriazole (BZT) and methyl benzotriazol (MeBZT) were found at high concentrations in groundwater samples (maximum concentration around 2000ng/L). The fate of PCPs in the aquifer was assessed using mixing analysis considering the seasonal variability of the Besòs River. Overall, measured groundwater concentrations were significantly much lower than those estimated by the mixing of the river water. This observation suggested that most of the PCPs are naturally removed when river water infiltrates the aquifer. However, some compounds were more persistent in the aquifer. These compounds were in descending order: the triazoles BZT and MeBZT followed by the camphor derivative 4MBC and the paraben MePB. The measured concentrations allowed us to assess the environmental risk posed by the selected UV-filters and parabens in the river and groundwater samples. Hazard Quotients (HQs) for different aquatic species were calculated in order to characterize the ecotoxicity potential of the studied compounds in the river-groundwater interface. HQ values were always below 1 indicating that at the concentrations observed in the surface or aquifer water of Besòs River these compounds pose no risk to

  12. Occurrence and behavior of four of the most used sunscreen UV filters in a wastewater reclamation plant.

    PubMed

    Li, Weihong; Ma, Yongmin; Guo, Changsheng; Hu, Wei; Liu, Keming; Wang, Yuqiu; Zhu, Tan

    2007-08-01

    Four UV filters, benzophenone-3 (BP-3), 4-methylbenzylidence camphor (4-MBC), ethylhexyl methoxycinnamate (EHMC), and octocrylene (OC), have been examined along the different units of a wastewater reclamation plant (WWRP) located in Tianjin, North China. The analytical procedure included solid-phase extraction and gas chromatographic/mass spectrometric analyses. All four UV filters were detected in the influent during the three sampling campaigns (February, July, and September), and the concentrations ranged from 34 to 2128 ng L(-1). The concentrations of the four UV filters were higher in hot weather (July and September) than in cool weather (February). The monthly average removal ranged from 7.6% to 21% for the selected UV filters during coagulation-flocculation (C-F) treatment. The ozonation treatment achieved the maximum removal (16-28%); on the contrary, the continuous microfiltration (CMF) achieved the lowest removal (3.6-8.2%). The total removal efficiencies along the plant varied from 28% to 43%. These results indicate that the UV filters are not completely removed during WWRP treatment and may be carried over into the environment during the reuse applications.

  13. Occurrence of UV filter compounds from sunscreens in surface waters: regional mass balance in two Swiss lakes.

    PubMed

    Poiger, Thomas; Buser, Hans-Rudolf; Balmer, Marianne E; Bergqvist, Per-Anders; Müller, Markus D

    2004-05-01

    Consumer care products often contain UV filters, organic compounds which absorb ultraviolet light. These compounds may enter surface waters directly (when released from the skin during swimming and bathing) or indirectly via wastewater treatment plants (when released during showering or washed from textiles). Predicted and measured UV filter concentrations were compared in a regional mass balance study for two Swiss lakes: Lake Zurich, a typical midland lake which is also an important drinking water resource, and Hüttnersee, a small bathing lake. Both lakes are extensively used for recreational activities and considerable direct input of UV filters is thus expected. This input was estimated from the number of visitors at swimming areas around the lakes and a survey of the usage of sunscreen products among these visitors. Possible additional indirect input via wastewater treatment plants was not considered in this study. The quantitatively most important UV filters, as indicated by the survey data, ethylhexyl methoxycinnamate, octocrylene, 4-methylbenzylidene camphor, butyl methoxydibenzoylmethane, and benzophenone-3, all lipophilic compounds, were selected for analysis by gas chromatography-mass spectrometry. Concentrations of individual UV filters in water from Lake Zurich were low, ranging from <2 ng l(-1) (detection limit) to 29 ng l(-1), and somewhat higher at Hüttnersee, ranging from <2 to 125 ng l(-1), with the highest concentrations found in summer, consistent with direct inputs to the lakes during this time. The concentrations were clearly lower than predicted from input estimates based on the surveys. This may be in part due to (i) an overestimation of these inputs (e.g. less than the 50% wash-off of UV filters assumed to occur during swimming), and (ii) some removal of these compounds from the lakes by degradation and/or sorption/sedimentation. UV filters were also detected in semipermeable membrane devices (SPMDs) deployed at Lake Zurich and Greifensee

  14. 21 CFR 310.531 - Drug products containing active ingredients offered over-the-counter (OTC) for the treatment of...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... subnitrate, calomel, camphor, cholesterol, ergot fluid extract, hexachlorophene, ichthammol, isobutamben... aminacrine hydrochloride, bismuth subnitrate, calomel, camphor, cholesterol, ergot fluid...

  15. Camphor-derived C1-symmetric chiral diamine organocatalysts for asymmetric Michael addition of nitroalkanes to enones.

    PubMed

    Zhou, Yirong; Liu, Qiang; Gong, Yuefa

    2012-10-07

    A series of stable C(1)-symmetric chiral diamines (2a–2l) were conveniently synthesized by condensing exo-(-)-bornylamine or (+)-(1S,2S,5R)-menthylamine with various commercially available Cbz-protected amino acids. Among them, 2a can efficiently promote the Michael addition of nitroalkanes to a broad scope of enones with high yields (up to 96%) and excellent enantioselectivities (up to 98%) under mild conditions.

  16. Origins and evolution of cinnamon and camphor: A phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae).

    PubMed

    Huang, Jian-Feng; Li, Lang; van der Werff, Henk; Li, Hsi-Wen; Rohwer, Jens G; Crayn, Darren M; Meng, Hong-Hu; van der Merwe, Marlien; Conran, John G; Li, Jie

    2016-03-01

    Tropical and subtropical amphi-Pacific disjunction is among the most fascinating distribution patterns, but received little attention. Here we use the fossil-rich Cinnamomum group, a primarily tropical and subtropical Asian lineage with some species distributed in Neotropics, Australasia and Africa to shed light upon this disjunction pattern. Phylogenetic and biogeographic analyses were carried out using sequences of three nuclear loci from 94 Cinnamomum group and 13 outgroup samples. Results show that although there are three clades within a monophyletic Cinnamomum group, Cinnamomum and previously recognized subdivisions within this genus were all rejected as natural groups. The Cinnamomum group appears to have originated in the widespread boreotropical paleoflora of Laurasia during the early Eocene (ca. 55Ma). The formation and breakup of the boreotropics seems to have then played a key role in the formation of intercontinental disjunctions within the Cinnamomum group. The first cooling interval (50-48Ma) in the late early Eocene resulted in a floristic discontinuity between Eurasia and North America causing the tropical and subtropical amphi-Pacific disjunction. The second cooling interval in the mid-Eocene (42-38Ma) resulted in the fragmentation of the boreotropics within Eurasia, leading to an African-Asian disjunction. Multiple dispersal events from North into South America occurred from the early Eocene to late Miocene and a single migration event from Asia into Australia appears to have occurred in the early Miocene.

  17. Introducing Organic Chemistry Students to Natural Product Isolation Using Steam Distillation and Liquid Phase Extraction of Thymol, Camphor, and Citral, Monoterpenes Sharing a Unified Biosynthetic Precursor

    ERIC Educational Resources Information Center

    McLain, Katherine A.; Miller, Kenneth A.; Collins, William R.

    2015-01-01

    Plants have provided and continue to provide the inspiration and foundation for modern medicines. Natural product isolation is a key component of the process of drug discovery from plants. The purpose of this experiment is to introduce first semester undergraduate organic chemistry students, who have relatively few lab techniques at their…

  18. Carbene Chemistry. I. Stereochemical Integrity at C Alpha in Ketone Tosylhydrazones. II. Hydrogen Migration in 2-Carbena-6,6-Dimethylnorbornane.

    DTIC Science & Technology

    1978-02-01

    Tosylhydrazone Cleavage Methods ........... .. 19 2 Camphor Tosylhydrazone Cleavage Results ....... 20 3 Mass Spectral Results for the Camphor Sequence...Carbon .......... .................... 5 3 The Mechanism of Camphor Tosylhydrazone Decomposition in Protic Solvent .... ......... 6 4 The Mechanism of...Camphene Formation from Camphor Tosylhydrazone with Trivalent Metal Cations .......... ..................... 7 5 The Mechanism of Catecholborane

  19. Chondroitin sulfate

    MedlinePlus

    ... in combination with glucosamine sulfate, shark cartilage, and camphor. Some people also inject chondroitin sulfate into the ... in combination with glucosamine sulfate, shark cartilage, and camphor seems to reduce arthritis symptoms. However, any symptom ...

  20. Shark cartilage

    MedlinePlus

    ... in combination with chondroitin sulfate, glucosamine sulfate, and camphor reportedly reduce arthritis symptoms. However, any symptom relief is most likely due to the effect of camphor and not the other ingredients. Additionally, there is ...

  1. Parallel Synthesis and Biocatalytic Amplification of Marine-Inspired Libraries: An Integrated Approach Toward Discovering New Chemotherapeutics

    DTIC Science & Technology

    2007-09-01

    m (Cyt-m). We chose to study the oxidation of camphor to hydroxycamphor (Scheme 1) because it is the natural reaction for P450cam and there was...only one known reaction product. 10 O O HO camphor 5-exo-hydroxycamphor Scheme 1. The hydroxylation of camphor by P450cam, producing...phases, and 250 rpm. The oxidation of camphor to hydroxycamphor is 100% coupled with NADH oxidation, allowing for a direct correlation of NADH

  2. Acceleration or deceleration of self-motion by the Marangoni effect

    NASA Astrophysics Data System (ADS)

    Matsuda, Yui; Suematsu, Nobuhiko J.; Kitahata, Hiroyuki; Ikura, Yumihiko S.; Nakata, Satoshi

    2016-06-01

    We investigated the water-depth dependence of the self-motion of a camphor disk and camphor boat. With increasing water depth, the speed of motion of the camphor disk increased, but that of the camphor boat decreased in an annular one-dimensional system. We discussed the difference in the water-depth dependence of the speed of the camphor objects in relation to Marangoni flow. We concluded that Marangoni flow, which became stronger with increasing the water depth, positively and negatively affected the speed of the disk and boat, respectively.

  3. Parallel Synthesis and Biocatalytic Amplification of Marine-Inspired Libraries: An Integrated Approach Toward Discovering New Chemotherapeutics

    DTIC Science & Technology

    2005-09-01

    suspended in hexane. The activity of P450cam toward the oxidation of camphor was assayed for both systems. The formation of the product, hydroxycamphor...was monitored using gas chromatography for reactions containing varying amounts of camphor . Results from experiments in surfactant- stabilized...cofactor, NADH, near- 5 complete conversion of camphor into hydroxycamphor was achieved. The high product yields obtained with P450cam in two-phase

  4. Identification of Compounds from Etonia Rosemary (Conradina etonia)

    DTIC Science & Technology

    2007-05-15

    Eucalyptol Hexane, dcm Cymene All p-Mentha-1,4(8)-diene Hexane N,N-Dimethylformamide Hexane 5-Isopropyl-2-methylbicyclo[3.1.0]hexan-2-ol Hexane Camphor All...Etonia rosemary, are present in many lant species including other mints such as Monarda spp. [24], archonanthus camphorates [25], and Lantana camara...Conradina canescens (this species is ow called Conradina brevifolia) [27]. The most abundant com- b p r F udesmol ound in this extract was camphor , a

  5. Ablation and Viscous Effects on the Force and Moment Characteristics of Slender Cone Models at Mach 10 under Laminar Flow Conditions

    DTIC Science & Technology

    1975-10-01

    comparison of transpirationally cooling a model as opposed to using a subliming low-temperature ablator ( camphor ) has not been made on an identical model... subliming low-temperature ablator (i.e., camphor ) reveals small but significant differences in the moment and drag characteristics for a 5-deg cone...6 2. 5-deg Sharp Cone Test Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. Relative Axial Distribution of Camphor or

  6. Passive Nosetip Technology (PANT) Program. Volume XVIII. Nosetip Analyses Using the EROS Computer Code

    DTIC Science & Technology

    1975-06-01

    transfer Distribution Comarisons 3-7 3-6 Ran 207 Camphor Shape Change Prediction (Reg - 10 x 101/ft) 3-9 3-7 Run 208 Camphor Shape Change Prediction...environment. The film coefficient approach enables the modeling of heterogeneous reaction and sublimation kinetics, unequal species diffusion coefficients...ilar predictions. As an exercise of the shape change numerical procedures in the EROS com- puter code, two camphor shape change solutions were generated

  7. Efficacy of five volatile oils and their mixtures against the soft scale insect, Saissetia coffeae (Walker) (Hemiptera: Coccidae) infesting the Sago palm, Cycas revoluta in Alexandria, Egypt.

    PubMed

    Mesbah, H A; Nagda, A El Sayed; Mourad, A K; Abdel-Razak, I Soad; Samar, E Abd El-Rahman

    2010-01-01

    Five tested plant volatile oils and their mixtures were evaluated for controlling the coccid, Saissetia coffeae (Walker) on growing Sago palms Cycas revoluta in Antoniades public gardens, Alexandria, Egypt. The tested volatile oils at concentration rates of 0.5, 1 and 1.5% (v/v) were: Camphor 20%, Dill 20%, Rose 30%, Peppermint 20% and Clove 30% (v/v). Their mixtures were : Camphor/Peppermint, Camphor/Rose at a rate of 1:1, Camphor/Rose/Peppermint at 1:1:2 rate and Camphor/Rose/Dill at 2:1:1 rate. The results, as a general mean of residual reduction percent for the whole inspection intervals of the test lasted 2 days up to 9 days post treatment, indicated that the superior volatile oils in reducing the insect were both Camphor and Rose, followed by Dill, Peppermint and the least efficient one was the Clove oil. The evaluated mixtures of the volatile oils showed that each of Camphor/Rose/Peppermint, Camphor/Rose and Camphor/Peppermint mixtures attained a higher rank of efficiency against that of the assigned soft scale insect.

  8. Passive Nosetip Technology (PANT) Program. Volume 14. An Experimental Study to Evaluate the Irregular Nosetip Shape Regime - Data Report

    DTIC Science & Technology

    1974-04-01

    described in Section 2.3. 2.1 MODEL FABRICATION AND MOUNTING Camphor and camphor with distributed glass particles were the materials for the low...temperature ablator shape-change models tested in Series I. The models were fabricated by molding the camphor at room temperature and high pressure (20,000 psi...distributed glass particles were produced by thoroughly mixing glass beads, having diameters of 7.5 t 1.5 mils, with the camphor gran- ules prior to

  9. Active monoterpene ketones isolated from Rosmarinus officinalis with fumigant and contact action against Tyrophagus putrescentiae (Schrank).

    PubMed

    Jeon, Ju-Hyun; Park, Jun-Hwan; Chung, Namhyun; Lee, Hoi-Seon

    2014-08-01

    The acaricidal activities of an active material derived from Rosmarinus officinalis oil and its relative monoterpene ketones were determined using fumigant and contact toxicity bioassays against Tyrophagus putrescentiae and were compared with that of a commercial acaricide (benzyl benzoate). The active component of R. officinalis oil, isolated by silica gel column chromatography and high-performance liquid chromatography, was identified as camphor, based on various spectroscopic analyses. In the fumigant toxicity bioassay, camphor (2.25 μg/cm(3)) was 5.58 times more active than benzyl benzoate (12.56 μg/cm(3)) against T. putrescentiae, followed by (+)-camphor (3.89 μg/cm(3)) and (-)-camphor (5.61 μg/cm(3)). In the contact toxicity bioassay, camphor (1.34 μg/cm(2)) was 6.74 times more toxic than benzyl benzoate (9.03 μg/cm(2)) against T. putrescentiae, followed by (+)-camphor (2.23 μg/cm(2)) and (-)-camphor (2.94 μg/cm(2)). These results indicate that camphor and its derivatives are very useful as potential control agents against stored food mites regardless of the application method.

  10. Actions to Abate Critical Threats, Such as Encroachment and Invasive Species, Using GIS and Conservation Area Planning Across the Gulf Coastal Plain Ecosystem Partnership (GCPEP) Landscape, Phase 1

    DTIC Science & Technology

    2006-12-22

    2 Japanese Honeysuckle (Lonicera japonica) 2 Lantana (Lantana camara) 2 Vasey Grass (Paspalum urvillei) 1 Pampas Grass 1 Camphor Tree...Urban interface Main base 10+ Yes Treat 10. Camphor Road edges 1+ Yes Treat 29 PARTNER INVASIVE ASSESSMENT REPLIES Agency/Organization: __DOD

  11. Modeling of Spatial and Temporal Dynamics in Biological Olfactory Systems

    DTIC Science & Technology

    2007-09-21

    odorants were anisole, camphor , isoamyle acetate, and ilmonene, denoted by ANI, CAM, ISO, and LIM, respectively. The curve fitting resulted in the...much less dimensional connections to the mitral The investigated odorants were anisole (ANI), camphor (CAM), cells. The glomeruli are also highly

  12. Autonomous Self-Propelling Microcircuit Particles

    DTIC Science & Technology

    2006-11-01

    magnetic field20 , a camphor boat with ester vapor as a chemical stimulus 21, biomimetic swimming robots inspired by E. Coli motility22, a carbon-fiber...torque. Sensor Actuat. A-Phys. 91, 141-144 (2001). 21. Nakata, S. & Matsuo, K. Characteristic self-motion of a camphor boat sensitive to ester vapor

  13. China Report, Political, Sociological and Military Affairs

    DTIC Science & Technology

    2007-11-02

    ceremony to issue "Zhangshu" [ camphor tree] medals for promoting women and children work, sponsored for the first time by the Chinae Welfare...Keqing sent a letter of congratulations from Beijing. The gold- plated bronze "Zhangshu" medal derives its name from the fragrant camphor tree, a plant

  14. Small Angle Neutron Scattering (SANS) Characterization of Electrically Conducting Polyaniline Nanofiber/Polyimide Nanocomposites

    DTIC Science & Technology

    2011-10-25

    range, neither the D-B nor the IPL model could be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped...be used to characterize the size and shape of all PANI-0.5-CSA (polyaniline camphor sulfonic acid doped polymer)/polyimide blend systems. At 1 and 2

  15. A Classroom Experiment on Phase Equilibria Involving Orientational Disordering in Crystals.

    ERIC Educational Resources Information Center

    Mjojo, C. C.

    1985-01-01

    Background information, procedures used, and results obtained are provided for an experiment in which a phase diagram is determined using a differential scanning calorimeter. Commercial samples of D-camphoric anhydride (Eastman Kodak) and D,L-camphoric anhydride (Aldrich) were used in the experiment. (JN)

  16. Comparison of volatile compounds with characteristic odor in flowers and leaves of nojigiku (Chrysanthemum japonense).

    PubMed

    Usami, Atsushi; Ono, Toshirou; Marumoto, Shinsuke; Miyazawa, Mitsuo

    2013-01-01

    The aim of the present study was to investigate the essential oils isolated from flower and leaf in order to get insight into similarities and differences as to their aroma-active composition. The essential oil obtained from the two parts were analyzed by gas chromatography-mass spectrometry and gas chromatography olfactometry (GC-O). Flower and leaf oils, 38 and 36 constituents, representing 96.4 and 91.0% of the total oil composition, respectively, were identified. The main compounds in flower oil were camphor (47.64%), bornyl acetate (11.87%), and nojigiku alcohol (6.29%), whereas those in leaf oil were camphor (39.14%), nojigiku alcohol (10.76%) and γ-muurolene (7.02%). 13 Aroma-active compounds were identified by GC-O analysis in flower oil and 12 in leaf oil. The main aroma-active compounds in flower oil were camphor (camphor, FD (flavor dilution) = 7, OAV (odor active value) = 136913), bornyl acetate (camphor, FD = 6, OAV = 113711), and β-caryophyllene (spicy, FD = 5, OAV = 116480). In leaf oil, the main aroma-active compounds were camphor (camphor, FD = 7, OAV = 106784), nojigiku alcohol (camphor, FD = 5, OAV = not determined), and β-caryophyllene (spicy, FD = 6, OAV = 526267).

  17. Environmental Assessment: General Plan-Based Environmental Impact Analysis Process, Laughlin Air Force Base

    DTIC Science & Technology

    2007-05-01

    military personnel to ensure proper fit and wear of the mask in a chemical environment. Facility would allow for the release of tear gas and camphor ...would allow for the release of tear gas and camphor . 180 3.89 0.35 2008/2009 Build facility to house the Office of Special Investigations currently...ensure proper fit and wear of the mask in a chemical environment. Facility would allow for the release of tear gas and camphor . 180 2 0 0.00759

  18. Passive Nosetip Technology (PANT) Program

    DTIC Science & Technology

    1975-06-01

    flow conditions. Photographic coverage provided the primary shape response data. Two materials, camphor and paradichlorobenzene, were found to have...polycrystalline graphite manufacture. The two materials were tested and compared in the Series C wind tunnel tests; and camphor was found to be best... camphor , 50 mil grooves, 1.3 to 7.5 mil glass beads a Wall Temperature Ratio T walT/Ttotal = 0.4, 0.8 * Sonic Point Unit 0.4 < Re*/ft < 7 x 106 constant

  19. Final Environmental Assessment: Addressing An Army and Air Force Exchange Service (AAFES) Lifestyle Center at Eglin Air Force Base, Florida

    DTIC Science & Technology

    2008-11-01

    Category 2 species at Eglin AFB Category 1 Category 2 Mimosa (Albizia julibrissin) Tung oil tree (Aleurites fordii) (Vernicia fordii) Asparagus fern... Asparagus aethiopicus) Alligator weed (Alternanthera philoxeroides) Camphor-tree (Cinnamomum camphora) Coral vine (Antigonon leptopus) Wild taro

  20. Topical Pain Medications

    MedlinePlus

    ... causes the burning sensation you associate with chili peppers. Capsaicin creams deplete your nerve cells of a ... as menthol and camphor produce a sensation of hot or cold that may temporarily override your ability ...

  1. 21 CFR 310.531 - Drug products containing active ingredients offered over-the-counter (OTC) for the treatment of...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... over-the-counter (OTC) for the treatment of boils. (a) Aminacrine hydrochloride, benzocaine, bismuth..., petrolatum, phenol, pine tar, rosin, rosin cerate, sassafras oil, sulfur, thymol, triclosan, and zinc oxide... aminacrine hydrochloride, bismuth subnitrate, calomel, camphor, cholesterol, ergot fluid...

  2. Biotransformations of (+/-)-geosmin by terpene-degrading bacteria.

    PubMed

    Eaton, Richard W; Sandusky, Peter

    2010-02-01

    Two terpene-degrading bacteria able to transform (+/-)-geosmin have been identified. Pseudomonas sp. SBR3-tpnb, following growth on gamma-terpinene, converts (+/-)-geosmin to several products; the major products are ketogeosmins. Rhodococcus wratislaviensis DLC-cam, isolated on D-camphor, also converts (+/-)-geosmin to several oxidation products, primarily ketogeosmins identical to those produced by strain SBR3-tpnb as well as hydroxygeosmins. This conversion appears to be inducible by (+/-)-geosmin and not by D-camphor.

  3. Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni

    PubMed Central

    Tak, Jun-Hyung; Isman, Murray B.

    2015-01-01

    Synergistic interactions between constituents of essential oils have been reported for several areas of research. In the present study, mechanisms that could explain the synergistic action of the two major insecticidal constituents of rosemary oil, 1,8-cineole and camphor against the cabbage looper, Trichoplusia ni were investigated. 1,8-Cineole was more toxic than camphor when applied topically to larvae, and when coadministered in their ratio naturally occurring in rosemary oil, the binary mixture was synergistic. However, when injected directly into larvae, camphor was more toxic than 1,8-cineole. GC-MS analyses showed that penetration of topically-applied camphor was significantly enhanced when it was mixed with 1,8-cineole in the natural ratio. A bioassay combining injection and topical application methods confirmed the increased penetration of both compounds when mixed, showing the same bioactivity as seen for higher amounts applied individually. Lowered surface tension as well as increased solubility of camphor by 1,8-cineole, along with the interaction between 1,8-cineole and the lipid layer of the insect’s cuticle may explain the enhanced penetration of camphor. Because of the similarities in biological function of animal and microbial membranes, our finding has potential for application in other fields of study. PMID:26223769

  4. Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni.

    PubMed

    Tak, Jun-Hyung; Isman, Murray B

    2015-07-30

    Synergistic interactions between constituents of essential oils have been reported for several areas of research. In the present study, mechanisms that could explain the synergistic action of the two major insecticidal constituents of rosemary oil, 1,8-cineole and camphor against the cabbage looper, Trichoplusia ni were investigated. 1,8-Cineole was more toxic than camphor when applied topically to larvae, and when coadministered in their ratio naturally occurring in rosemary oil, the binary mixture was synergistic. However, when injected directly into larvae, camphor was more toxic than 1,8-cineole. GC-MS analyses showed that penetration of topically-applied camphor was significantly enhanced when it was mixed with 1,8-cineole in the natural ratio. A bioassay combining injection and topical application methods confirmed the increased penetration of both compounds when mixed, showing the same bioactivity as seen for higher amounts applied individually. Lowered surface tension as well as increased solubility of camphor by 1,8-cineole, along with the interaction between 1,8-cineole and the lipid layer of the insect's cuticle may explain the enhanced penetration of camphor. Because of the similarities in biological function of animal and microbial membranes, our finding has potential for application in other fields of study.

  5. Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ryoma; Utano, Tatsumi; Yasuhara, Shunya; Ishihara, Shota; Ohshima, Masahiro

    2015-05-01

    In this study, the core-back foam injection molding was used for preparing microcelluar polypropylene (PP) foam with either a 1,3:2,4 bis-O-(4-methylbenzylidene)-D-sorbitol gelling agent (Gel-all MD) or a fibros network polymer additive (Metablen 3000). Both agent and addiive could effectively control the celluar morphology in foams but somehow different ways. In course of cooling the polymer with Gel-all MD in the mold caity, the agent enhanced the crystal nucleation and resulted in the large number of small crystals. The crystals acted as effective bubble nucleation agent in foaming process. Thus, the agent reduced the cell size and increased the cell density, drastically. Furthermore, the small crystals provided an inhomogenuity to the expanding cell wall and produced the high open cell content with nano-scale fibril structure. Gell-all as well as Metablene 3000 formed a gel-like fibrous network in melt. The network increased the elongational viscosity and tended to prevent the cell wall from breaking up. The foaming temperature window was widened by the presence of the network. Especially, the temperature window where the macro-fibrous structure was formed was expanded to the higher temperature. The effects of crystal nucleating agent and PTFE on crystals' size and number, viscoelsticity, rheological propreties of PP and cellular morphology were compared and thorougly investigated.

  6. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    NASA Astrophysics Data System (ADS)

    Allen, Roland; Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li

    2015-03-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-Methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al. We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C =C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Research Fund for the Doctoral Program of Higher Education of China; Fundamental Research Funds for the Central Universities; Robert A. Welch Foundation; National Natural Science Foundation of China.

  7. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    NASA Astrophysics Data System (ADS)

    Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li; Allen, Roland E.

    2015-02-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C=C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Perhaps remarkably, but apparently because of electrostatic repulsion, the direction of rotation is the same for both reactions.

  8. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.

  9. Terpene-induced porphyria and the illness of Vincent van Gogh

    SciTech Connect

    Lambrecht, R.; Cable, E.; Cable, J.; Clements, E.; Donohue, S.; Greene, Y.; Srivastava, K.; Arnold, W.; Bonkovsky, H. Univ. of Kansas Medical Center, Kansas City )

    1992-01-01

    Vincent van Gogh suffered from recurrent bouts of an illness that may have been acute porphyria and abused camphor and alcohol, the latter particularly in the form of absinthe, a liqueur distilled from wormwood that was popular in 19th C France. To learn whether camphor or terpenes found in absinthe are porphyrogenic, the authors studied them in cultures of chick embryo liver cells. All were found to be porphyrogenic, especially in the presence of deferoxamine. The terpenes also induced the activity and protein amount of 5-aminolevulinate synthase and heme oxygenase, and induced activities of benzphetamine demethylase. The degree of porphyrin and enzyme induction produced by 1mM camphor was similar to that produced by 50uM glutethimide, a potent porphyrogen. Potency of pinene and thujone were lower. Camphor and glutethimide both produced accumulations of 8- and 7-COOH porphyrins, whereas pinene and thujone produced 4- and 2-COOH porphyrin accumulation. The authors conclude that camphor, pinen and thujone are porphyrogenic, cable of exacerbating acute porphyria, and may have done so in van Gogh.

  10. Active-Site Hydration and Water Diffusion in Cytochrome P450cam: A Highly Dynamic Process

    SciTech Connect

    Miao, Yinglong; Baudry, Jerome Y

    2011-01-01

    Long-timescale molecular dynamics simulations (300 ns) are performed on both the apo- (i.e., camphor-free) and camphor-bound cytochrome P450cam (CYP101). Water diffusion into and out of the protein active site is observed without biased sampling methods. During the course of the molecular dynamics simulation, an average of 6.4 water molecules is observed in the camphor-binding site of the apo form, compared to zero water molecules in the binding site of the substrate-bound form, in agreement with the number of water molecules observed in crystal structures of the same species. However, as many as 12 water molecules can be present at a given time in the camphor-binding region of the active site in the case of apo-P450cam, revealing a highly dynamic process for hydration of the protein active site, with water molecules exchanging rapidly with the bulk solvent. Water molecules are also found to exchange locations frequently inside the active site, preferentially clustering in regions surrounding the water molecules observed in the crystal structure. Potential-of-mean-force calculations identify thermodynamically favored trans-protein pathways for the diffusion of water molecules between the protein active site and the bulk solvent. Binding of camphor in the active site modifies the free-energy landscape of P450cam channels toward favoring the diffusion of water molecules out of the protein active site.

  11. Formulation design and optimization of mouth dissolve tablets of nimesulide using vacuum drying technique.

    PubMed

    Gohel, Mukesh; Patel, Madhabhai; Amin, Avani; Agrawal, Ruchi; Dave, Rikita; Bariya, Nehal

    2004-04-26

    The purpose of this research was to develop mouth dissolve tablets of nimesulide. Granules containing nimesulide, camphor, crospovidone, and lactose were prepared by wet granulation technique. Camphor was sublimed from the dried granules by exposure to vacuum. The porous granules were then compressed. Alternatively, tablets were first prepared and later exposed to vacuum. The tablets were evaluated for percentage friability, wetting time, and disintegration time. In the investigation, a 32 full factorial design was used to investigate the joint influence of 2 formulation variables: amount of camphor and crospovidone. The results of multiple linear regression analysis revealed that for obtaining a rapidly disintegrating dosage form, tablets should be prepared using an optimum concentration of camphor and a higher percentage of crospovidone. A contour plot is also presented to graphically represent the effect of the independent variables on the disintegration time and percentage friability. A checkpoint batch was also prepared to prove the validity of the evolved mathematical model. Sublimation of camphor from tablets resulted in superior tablets as compared with the tablets prepared from granules that were exposed to vacuum. The systematic formulation approach helped in understanding the effect of formulation processing variables.

  12. High diversity of indigenous populations of dalmatian sage (Salvia officinalis L.) in essential-oil composition.

    PubMed

    Jug-Dujaković, Marija; Ristić, Mihailo; Pljevljakušić, Dejan; Dajić-Stevanović, Zora; Liber, Zlatko; Hančević, Katarina; Radić, Tomislav; Satović, Zlatko

    2012-10-01

    Essential oils of 25 indigenous populations of Dalmatian sage (Salvia officinalis L.) that represent nearly half of native distribution area of the species were analyzed. Plantlets collected from wild populations were grown in the same field under the same environmental conditions and then sampled for essential-oil analysis. The yield of essential oil ranged from 1.93 to 3.70% with average of 2.83%. Among the 62 compounds detected, eight (cis-thujone, camphor, trans-thujone, 1,8-cineole, β-pinene, camphene, borneol, and bornyl acetate) formed 78.13-87.33% of essential oils of individual populations. Strong positive correlations were observed between camphor and β-pinene, β-pinene and borneol, as well as between borneol and bornyl acetate. The strongest negative correlation was detected between camphor and trans-thujone. Principal component analysis (PCA) on the basis of eight main compounds showed that first main component separated populations with high thujone content, from those rich in camphor, while the second component separated populations rich in cis-thujone from those rich in trans-thujone. Cluster analysis (CA) led to the identification of three chemotypes of S. officinalis populations: cis-thujone; trans-tujone, and camphor/β-pinene/borneol/bornyl acetate. We propose that differences in essential oils of 25 populations are mostly genetically controlled, since potential environmental factors were controlled in this study.

  13. Individual and joint activity of terpenoids, isolated from Calamintha nepeta extract, on Arabidopsis thaliana.

    PubMed

    Araniti, Fabrizio; Graña, Elisa; Reigosa, Manuel J; Sánchez-Moreiras, Adela M; Abenavoli, Maria Rosa

    2013-01-01

    Four terpenoids, camphor, pulegone, trans-caryophyllene and farnesene, previously found in Calamintha nepeta (L.) Savi methanolic extract and essential oils were assayed on germination and root growth of Arabidopsis thaliana (L.) Heynh. None of the terpenes, singularly or in combination, was able to inhibit the germination process. Farnesene and trans-caryophyllene caused a strong inhibitory effect on root growth, and pulegone, at the highest concentrations, reduced lateral root formation. Although the mixture of camphor-trans-caryophyllene with or without farnesene did not cause any effect on root growth, the addition of pulegone induced a marked synergistic activity. Moreover, the addition, at low concentration, of farnesene to pulegone-camphor-trans-caryophyllene mixture further increased the inhibitory effect on root elongation. These results suggested that the inhibitory effects caused by C. nepeta methanolic extract may depend on the combined action of different molecules.

  14. Water Oxidation by a Cytochrome P450: Mechanism and Function of the Reaction

    PubMed Central

    Prasad, Brinda; Mah, Derrick J.; Lewis, Andrew R.; Plettner, Erika

    2013-01-01

    P450cam (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450cam catalysis is controlled by oxygen levels: at high O2 concentration, P450cam catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using 17O and 2H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450cam, and we present a plausible mechanism that accounts for the 1∶1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450cam and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce. PMID:23634216

  15. Feeding stimulants for larvae of Graphium sarpedon nipponum (Lepidoptera: Papilionidae) from Cinnamomum camphora.

    PubMed

    Zhang, Yong; Zhan, Zhi-Hui; Tebayashi, Shin-Ichi; Kim, Chul-Sa; Li, Jing

    2015-01-01

    The feeding response of larvae of the swallowtail butterfly, Graphium sarpedon nipponum (Lepidoptera: Papilionidae), is elicited by a methanolic extract from camphor tree (Cinnamomum camphora) leaves. Based on bioassay-guided fractionation, three compounds, isolated from the methanolic extract of fresh leaves of the camphor tree, were revealed to be involved in a multi-component system of feeding stimulants. Structures of these feeding stimulants were identified as sucrose, 5-O-caffeoylquinic acid and quercetin 3-O-β-glucopyranoside by NMR and LC-MS.

  16. In vitro evaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of an organoselenium compound.

    PubMed

    Ibrahim, Mohammad; Muhammad, Niaz; Naeem, Muhammad; Deobald, Anna Maria; Kamdem, Jean Paul; Rocha, Joao Batista Teixeira

    2015-08-01

    The amine based diselenide, (Z)-N-(4-methylbenzylidene)-1-(2-((2-(1-((E)-4-methyl benzylideneamino)ethyl)phenyl)diselanyl)phenyl)ethanamine ethyl)phenyl) diselanyl) phenyl) ethylimino) methyl)phenol (Compound A) an organoselenium compound that can mimic endogenous antioxidant enzymes, such as glutathione peroxidase (GPx), and diphenyl diselenide (PhSe)2 were tested against lipid peroxidation induced by sodium nitroprusside (SNP) and Fe(II) in rat brain, interaction with 1,1-diphenyl-2-picrylhydrazyl stable free radical (DPPH) and glutathione peroxidase (GPx) like antioxidant activities with H2O2 or tBuOOH as substrates and with PhSH as thiol co-substrates as well as their ability to oxidize thiols were evaluated. From this study, we concluded that Compound A catalyze the reduction of H2O2 with thiol was ∼2-fold more active than (PhSe)2) in both tBuOOH and H2O2 systems when PhSH was used as a substrate. (PhSe)2 exhibited an increased ability to oxidize thiols while Compound A was not a good substrate for the oxidation of thiol used namely DTT and Cystine and showed DPPH radical-scavenging activity, while (PhSe)2 did not present radical scavenging activity. Compound A (amine based diselenide) presented better antioxidant profiles than (PhSe)2 against lipid peroxidation. The results clear showed that nitrogen atom in the Compound A can have a profound effect on their pharmacological properties.

  17. Formulation Design and Optimization of Orodispersible Tablets of Quetiapine Fumarate by Sublimation Method

    PubMed Central

    Kalyankar, P.; Panzade, P.; Lahoti, S.

    2015-01-01

    The objective of present study was to formulate directly compressible orodispersible tablets of quetiapine fumarate by sublimation method with a view to enhance patient compliance. A full 32 factorial design was used to investigate the effect of two variables viz., concentration of Indion 414 and camphor. Indion 414 (3-5 % w/w) was used as superdisintegrant and camphor (5-15 % w/w) as subliming agent. The tablets were evaluated for thickness, weight variation, hardness, friability, content uniformity, wetting time, porosity, in vitro disintegration time and in vitro drug release. The formulation containing 5% w/w of Indion 414 and 5% w/w camphor was emerged as promising based on evaluation parameters. The disintegration time for optimized formulation was 18.66 s. The tablet surface was evaluated for presence of pores by scanning electron microscopy before and after sublimation. Differential scanning colorimetric study did not indicate any drug excipient incompatibility, either during mixing or after compression. The effect of independent variables on disintegration time, % drug release and friability is presented graphically by surface response plots. Short-term stability studies on the optimized formulation indicated no significant changes in drug content and in vitro disintegration time. The directly compressible orodispersible tablets of quetiapine fumarate with lower friability, greater drug release and shorter disintegration times were obtained using Indion 414 and camphor at optimum concentrations. PMID:26180271

  18. Insecticidal, fumigant, and repellent activities of sweet wormwood oil and its individual components against red imported fire ant workers (Hymenoptera: Formicidae).

    PubMed

    Zhang, Ning; Tang, Liang; Hu, Wei; Wang, Kun; Zhou, You; Li, Hong; Huang, Congling; Chun, Jiong; Zhang, Zhixiang

    2014-01-01

    In total, 29 compounds from sweet wormwood (Artemisia annua L.) oil were identified using gas chromatography-mass spectrometry. The five active components were D-camphor, linalool, cineole, α-terpineol, and L(-)-borneol. The effectiveness of A. annua oil, as well as d-camphor, linalool, cineole, α-terpineol, and L(-)-borneol, as fumigants, contact insecticides, and repellents, were tested on the red imported fire ant Solenopsis invicta Buren. The results indicated that A. annua oil has no significant topical toxicity; however, the spray contact test revealed that it has strong insecticidal activity and the inhibitory effect is stronger during closed exposure than during open exposure. In the fumigant test, cineole and D-camphor exhibited strong fumigant toxicity on minor and major S. invicta workers. They also caused 100% mortality at 5, 3, 2, and 1 mg/centrifuge tube but not at 0.5 mg/centrifuge tube. The mortality rates of linalool, α-terpineol, and L(-)-borneol exceeded 80% at 5, 3, and 2 mg/centrifuge tube. In the repellent test, cineole and d-camphor showed significant repellency at 100, 10, and 1 mg/kg. However, linalool, α-terpineol, and L(-)-borneol significantly facilitated digging at 10 and 1 mg/kg.

  19. Hypersonic Boundary Layer Transition Experiments

    DTIC Science & Technology

    1980-10-01

    fabricated of the same sphere-cone configuration. The camphor models were machined from billets formed by vacuum compression molding of granular material stock...62-393 (August 1962). 35. A. M. Morrison, J. M. Solomon, M. Ciment , and R. E. Ferguson, IIHandbook of Inviscid Sphere-Cone Flow Fields and Pressure

  20. Protective and Therapeutic Agents for War Gases - Solutions of BAL

    DTIC Science & Technology

    1945-04-02

    Ascorbic Acid 1.07 Thiosorbitol :7 7§ Catechol 1.07 Menthol p-Toluene Sulfinic Gum Tragacanth .76 Acid 1.07 Glycine .74 Formamidlne Sulfinic...Hydrazine hydrochlorlde d-iao-ascorbic acid Iflcotlnlc acid Ascorbic acid "Avonex" (oat flour concentrate) Sulfanilamide Camphor Menthol Thiodiglycol

  1. Environment-related variations of the composition of the essential oils of rosemary (Rosmarinus officinalis L.) in the Balkan Penninsula.

    PubMed

    Lakušić, Dmitar V; Ristić, Mihailo S; Slavkovska, Violeta N; Sinžar-Sekulić, Jasmina B; Lakušić, Branislava S

    2012-07-01

    Composition of the essential oils of Rosmarinus officinalis of ten populations from the Balkan Peninsula were determined by GC/FID and GC/MS. The main constituents were 1,8-cineole, camphor, α-pinene, and borneol. Multivariate statistical analysis (UPGMA cluster analysis and principal-component analysis (PCA)) revealed two major types of rosemary oil, i.e., 1,8-cineole and camphor-type, and two intermediate types, i.e., camphor/1,8-cineole/borneol type and 1,8-cineole/camphor type. The regression analyses (simple linear regression and stepwise multiple regression) have shown that, with respect to basic geographic, orographic, and 19 bioclimatic characteristics of each population, bioclimatic factor temperature of habitat represented the dominant abiogenetic factor, which, in chemical sense, led to differentiation of populations in the studied region. Also, the regression analysis have shown that some constituents of essential oils are independent of any single bioclimatic factors. However, some constituents display statistically significant correlations with some abiotic factors.

  2. Formulation Design and Optimization of Orodispersible Tablets of Quetiapine Fumarate by Sublimation Method.

    PubMed

    Kalyankar, P; Panzade, P; Lahoti, S

    2015-01-01

    The objective of present study was to formulate directly compressible orodispersible tablets of quetiapine fumarate by sublimation method with a view to enhance patient compliance. A full 3(2) factorial design was used to investigate the effect of two variables viz., concentration of Indion 414 and camphor. Indion 414 (3-5 % w/w) was used as superdisintegrant and camphor (5-15 % w/w) as subliming agent. The tablets were evaluated for thickness, weight variation, hardness, friability, content uniformity, wetting time, porosity, in vitro disintegration time and in vitro drug release. The formulation containing 5% w/w of Indion 414 and 5% w/w camphor was emerged as promising based on evaluation parameters. The disintegration time for optimized formulation was 18.66 s. The tablet surface was evaluated for presence of pores by scanning electron microscopy before and after sublimation. Differential scanning colorimetric study did not indicate any drug excipient incompatibility, either during mixing or after compression. The effect of independent variables on disintegration time, % drug release and friability is presented graphically by surface response plots. Short-term stability studies on the optimized formulation indicated no significant changes in drug content and in vitro disintegration time. The directly compressible orodispersible tablets of quetiapine fumarate with lower friability, greater drug release and shorter disintegration times were obtained using Indion 414 and camphor at optimum concentrations.

  3. The Enantioselectivity of Odor Sensation: Some Examples for Undergraduate Chemistry Courses

    ERIC Educational Resources Information Center

    Kraft, Philip; Mannschreck, Albrecht

    2010-01-01

    This article discusses seven chiral odorants that demonstrate the enantioselectivity of odor sensation: carvone, Celery Ketone, camphor, Florhydral, 3-methyl-3-sulfanylhexan-1-ol, muscone, and methyl jasmonate. After a general introduction of the odorant-receptor interaction and the combinatorial code of olfaction, the olfactory properties of the…

  4. Genetic Analysis of the Nature of Genes Coding Early Enzymes in the Metabolism of Cresol in JPT3-4, a Derivative Strain of Pseudomonas Aeroginosis J1.

    DTIC Science & Technology

    1982-04-29

    sections, The cresols, phenol, and catechols were purchased from Aldrich. Crystalline catechols were vacuum- sublimated and stored in brown phials under...transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc, Nat. Acad. Sci. U.S.A. 70:855-889. Ribbons, D, W. 1966, Metabolism of o

  5. Phytotoxicity of Constituents of Glandular Trichomes and the Leaf Surface of Camphorweed, Heterotheca subaxillaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Camphorweed, Heterotheca subaxillaris (Lam.) Britt. & Rusby has a camphor-like odor, and its leaf surfaces contain glandular trichomes of the type shown to contain high levels of isoprenoids in other species. Phytotoxic calamenene-type sesquiterpenes (1-4, 8-10), borneol (11) and methylated flavone...

  6. Development and in-vivo evaluation of ondansetron gels for transdermal delivery.

    PubMed

    Patel, Dipal R; Joshi, Amit; Patel, Hiren H; Stagni, Grazia

    2015-06-01

    Nausea and vomiting are some of the major side effects caused by certain drug therapies, e.g. chemotherapy, radiotherapy and general anesthesia. Because of the nature of the symptoms, oral delivery is inappropriate, while intravenous administration may be unpractical. The aim of the present study was to develop a transdermal gel (2% Klucel®) for ondansetron, a first line 5-HT3-receptor-antagonist antiemetic. The effects of the penetration enhancer camphor and isopropyl-myristate (IPM) were first investigated in-vitro using modified Franz diffusion-cells and then tested in-vivo in a rabbit model by measuring skin and plasma concentrations. Since a disadvantage of transdermal delivery is a prolonged lag-time, the effect of skin treatment with a micro-needle roller was tested. The in-vitro permeation studies through excised porcine ear skin showed that the presence of 2.5% camphor or IPM increased steady state flux by 1.2- and 2.5-fold, respectively, compared to the control gel. Ondansetron was not detectable in either skin or plasma following in-vivo application of the base-gel, whereas the camphor gel and IPM gel delivered 20 and 81 µg/cm(2) of ondansetron, respectively. Microporation led to an increase in plasma Cmax and AUC by 10.47 ± 1.68-fold and 9.31 ± 4.91-fold, respectively, for the camphor gel, and by 2.31 ± 0.53-fold and 1.59 ± 0.38-fold, respectively for the IPM gel. In conclusion, the 2.5% IPM gel demonstrated optimal in-vivo transdermal flux. Skin pretreatment with a micro-needle roller slightly improved the delivery of the IPM gel, whereas dramatically increased the transdermal delivery of the camphor gel.

  7. Bioactivity of essential oil of Artemisia argyi Lévl. et Van. and its main compounds against Lasioderma serricorne.

    PubMed

    Zhang, Wen-Juan; You, Chun-Xue; Yang, Kai; Chen, Ran; Wang, Ying; Wu, Yan; Geng, Zhu-Feng; Chen, Hai-Ping; Jiang, Hai-Yan; Su, Yang; Lei, Ning; Ma, Ping; Du, Shu-Shan; Deng, Zhi-Wei

    2014-01-01

    Artemisia argyi Lévl. et Van., a perennial herb with a strong volatile odor, is widely distrbuted in the world. Essential oil obtained from Artemisia argyi was analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 32 components representing 91.74% of the total oil were identified and the main compounds in the oil were found to be eucalyptol (22.03%), β-pinene (14.53%), β-caryophyllene (9.24%) and (-)-camphor (5.45%). With a further isolation, four active constituents were obtained from the essential oil and identified as eucalyptol, β-pinene, β-caryophyllene and camphor. The essential oil and the four isolated compounds exhibited potential bioactivity against Lasioderma serricorne adults. In the progress of assay, it showed that the essential oil, camphor, eucalyptol, β-caryophyllene and β-pinene exhibited strong contact toxicity against L. serricorne adults with LD50 values of 6.42, 11.30, 15.58, 35.52, and 65.55 μg/adult, respectively. During the fumigant toxicity test, the essential oil, eucalyptol and camphor showed stronger fumigant toxicity against L. serricorne adults than β-pinene (LC50 = 29.03 mg/L air) with LC50 values of 8.04, 5.18 and 2.91 mg/L air. Moreover, the essential oil, eucalyptol, β-pinene and camphor also exhibited the strong repellency against L. serricorne adults, while, β-caryophyllene exhibited attracting activity relative to the positive control, DEET. The study revealed that the bioactivity properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components. The results indicate that the essential oil of A. argyi and the isolated compounds have potential to be developed into natural insecticides, fumigants or repellents in controlling insects in stored grains and traditional Chinese medicinal materials.

  8. Chemotype diversity of indigenous Dalmatian sage (Salvia officinalis L.) populations in Montenegro.

    PubMed

    Stešević, Danijela; Ristić, Mihailo; Nikolić, Vuko; Nedović, Marijana; Caković, Danka; Šatović, Zlatko

    2014-01-01

    To identify how many chemotypes of Salvia officinalis exist in Montenegro, the chemical composition of the essential oils of 12 wild-growing populations was determined by GC-FID and GC/MS analyses. Among the 40 identified constituents, the most abundant were cis-thujone (16.98-40.35%), camphor (12.75-35.37%), 1,8-cineol (6.40-12.06%), trans-thujone (1.5-10.35%), camphene (2.26-9.97%), borneol (0.97-8.81%), viridiflorol (3.46-7.8%), limonene (1.8-6.47%), α-pinene (1.59-5.46%), and α-humulene (1.77-5.02%). The composition of the essential oils under study did not meet the ISO 9909 requirements, while the oils of populations P02-P04, P09, and P10 complied with the German Drug Codex. A few of the main essential-oil constituents appeared to be highly intercorrelated. Strong positive correlations were observed between α-pinene and camphene, camphene and camphor, as well as between cis-thujone and trans-thujone. Strong negative correlations were evidenced between cis-thujone and α-pinene, cis-thujone and champhene, cis-thujone and camphor, as well as between trans-thujone and camphene. Multivariate analyses allowed the grouping of the populations into three distinct chemotypes, i.e., Chemotype A, rich in total thujones, Chemotype B, with intermediate contents of thujones, α-pinene, camphene, and camphor and high borneol contents, and Chemotype C, rich in camphor, camphene, and α-pinene. The chemotypes did not significantly differ in the total essential-oil content and the cis/trans-thujone ratio.

  9. Variation of chemical composition of essential oils in wild populations of Thymus algeriensis Boiss. et Reut., a North African endemic Species

    PubMed Central

    2012-01-01

    Background Thymus algeriensis is an endemic aromatic plant to Tunisia largely used in folk medicine and as a culinary herb. The bulks aromatic plants come from wild populations whose essential oils compositions as well as their biological properties are severely affected by the geographical location and the phase of the plant development. Therefore, the aim of the present work is to provide more information on the variation of essential oil composition of T. algeriensis collected during the vegetative and the flowering phases and from eight different geographical regions. Besides, influence of population location and phenological stage on yield and metal chelating activity of essential oils is also assessed. Methods The essential oil composition of Thymus algeriensis was determined mainly by GC/FID and GC/MS. The chemical differentiation among populations performed on all compounds was assessed by linear discriminate analysis and cluster analysis based on Euclidean distance. Results A total of 71 compounds, representing 88.99 to 99.76% of the total oil, were identified. A significant effect of the population location on the chemical composition variability of T. algeriensis oil was observed. Only 18 out of 71 compounds showed a statistically significant variation among population locations and phenological stages. Chemical differentiation among populations was high. Minor compounds play an important role to distinguish between chemical groups. Five chemotypes according to the major compounds have been distinguished. Chemotypes distribution is linked to the population location and not to bioclimate, indicating that local selective environmental factors acted on the chemotype diversity. Conclusions The major compounds at the species level were α-pinene (7.41-13.94%), 1,8-cineole (7.55-22.07%), cis-sabinene hydrate (0.10-12.95%), camphor (6.8-19.93%), 4-terpineol (1.55-11.86%), terpenyl acetate (0-14.92%) and viridiflorol (0-11.49%). Based on major compounds, the

  10. PROCEEDINGS ON SYNCHROTRON RADIATION: Transfer characterization of sulfur from coal-burning emission to plant leaves by PIXE and XANES

    NASA Astrophysics Data System (ADS)

    Bao, Liang-Man; Zhang, Gui-Lin; Zhang, Yuan-Xim; Li, Yan; Lin, Jun; Liu, Wei; Cao, Qing-Chen; Zhao, Yi-Dong; Ma, Chen-Yan; Han, Yong

    2009-11-01

    The impact of coal-burning emission on sulfur in camphor leaves was investigated using Proton Induced X-ray Emission (PIXE) and synchrotron radiation technique X-ray Absorption Near-Edge Structure (XANES) spectroscopy. The PIXE results show that the sulfur concentrations in the leaves collected at the polluted site are significantly higher than those in controls. The Sulfur XANES spectra show the presence of organic (disulfides, thiols, thioethers, sulfonates and sulfoxides) and inorganic sulfur (sulfates) in the leaves. The inorganic sulfur in the leaves of camphor tree polluted by coal combustion is 15% more than that of the control site. The results suggest that the long-term coal-burning pollution resulted in an enhanced content of the total sulfur and sulfate in the leaves, and the uptake of sulfur by leaves had exceeded the metabolic requirement of plants and the excess of sulfur was stored as SO2-4. It can monitor the sulfur pollution in atmosphere.

  11. Atomistic modeling of IR action spectra under circularly polarized electromagnetic fields: toward action VCD spectra.

    PubMed

    Calvo, Florent

    2015-03-01

    The nonlinear response and dissociation propensity of an isolated chiral molecule, camphor, to a circularly polarized infrared laser pulse was simulated by molecular dynamics as a function of the excitation wavelength. The results indicate similarities with linear absorption spectra, but also differences that are ascribable to dynamical anharmonic effects. Comparing the responses between left- and right-circularly polarized pulses in terms of dissociation probabilities, or equivalently between R- and S-camphor to a similarly polarized pulse, we find significant differences for the fingerprint C = O amide mode, with a sensitivity that could be sufficient to possibly enable vibrational circular dichroism as an action technique for probing molecular chirality and absolute conformations in the gas phase.

  12. Cyclodextrin-stabilized volatile substances for inhalation therapy.

    PubMed

    Gál-Füzy, M; Szente, L; Szejtli, J; Harangi, J

    1984-08-01

    Diapulmon (Chinoin) which comprise camphor, 1-menthol, eucalyptus oil and quinine dissolved in sunflower oil (Oleum helianthi) is marketed in ampoules of 2 ml but utilized almost exclusively for inhalation therapy. Complexing the active ingredients of Diapulmon with beta-cyclodextrin (beta-CD) a stable non hygroscopic microcrystalline substance is obtained. When this powder sprinkled on hot water, the included volatile compounds are gradually released and the desired pharmacological effect can be brought about.

  13. Chemical composition of essential oil from the root bark of Sassafras albidum.

    PubMed

    Kamdem, D P; Gage, D A

    1995-12-01

    The root bark of Sassafras albidum (Nuttall) Nees (Lauraceae) was extracted at room temperature with hexane and chloroform as solvents. The isolated essential oils were analyzed with GC and GC/MS. Thirty compounds were identified, nine of which have not been previously reported from this species. The major compounds were safrole (85%), camphor (3.25%), and methyleugenol (1.10%). Ten sesquiterpenes were also identified.

  14. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (coleoptera: curculionidae: scolytinae).

    PubMed

    Kendra, Paul E; Montgomery, Wayne S; Niogret, Jerome; Pruett, Grechen E; Mayfield, Albert E; MacKenzie, Martin; Deyrup, Mark A; Bauchan, Gary R; Ploetz, Randy C; Epsky, Nancy D

    2014-01-01

    The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were

  15. Preparation of functionalized cyclic enol phosphates by halogen-magnesium exchange and directed deprotonation reactions.

    PubMed

    Piller, Fabian M; Bresser, Tomke; Fischer, Markus K R; Knochel, Paul

    2010-07-02

    Cyclic enol phosphates were magnesiated by a halogen/magnesium exchange reaction or deprotonation using TMP-derived magnesium amide bases. The resulting magnesium reagents react readily with a wide range of electrophiles like allyl bromides and acid chlorides or can be used in Pd-catalyzed cross-coupling reactions. Several optically pure enol phosphates were prepared starting from readily available d-(+)-camphor derivatives.

  16. North American Lauraceae: Terpenoid Emissions, Relative Attraction and Boring Preferences of Redbay Ambrosia Beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae)

    PubMed Central

    Kendra, Paul E.; Montgomery, Wayne S.; Niogret, Jerome; Pruett, Grechen E.; Mayfield, Albert E.; MacKenzie, Martin; Deyrup, Mark A.; Bauchan, Gary R.; Ploetz, Randy C.; Epsky, Nancy D.

    2014-01-01

    The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were

  17. The Reactions of Nitrogen Peroxide with Possible Stabilisers for Propellants

    DTIC Science & Technology

    1957-03-01

    ethyl anilide Camphor Mineral jelly Cracked mineral jelly (as used for cordite M.C.) Terpineol Benzene-azo- . -naphthols Hydro.Vearbamite These...carbamite; clearly all the oxygen initially present had reacted and the brown fumes observed were due to oxidation of nitric oxide. This source of error...below), cyclohexanone, and terpineol . ii) Moderately reactive substances, including polynuclear hydrocarbons fluorene and phenamthrene) and an ether

  18. Design, development, and optimization of orally disintegrating tablets of etoricoxib using vacuum-drying approach.

    PubMed

    Patel, Dharmesh; Shah, Mohit; Shah, Sunny; Shah, Tejal; Amin, Avani

    2008-01-01

    Etoricoxib is a cyclooxygenase 2 (COX-2) inhibitor that selectively inhibits the COX-2 enzyme and decreases the incidences of side effects associated with these agents. It is commonly prescribed for acute pain, gouty arthritis, and rheumatoid arthritis. Conventional tablets of etoricoxib are not capable of rapid action, which is required for faster drug effect onset and immediate relief from pain. Thus, the aim of the present investigation is to formulate orally disintegrating tablets (ODTs) of etoricoxib. A combination of the superdisintegrants with a sublimation technique was used to prepare the tablets. Tablets were prepared using a direct compression method employing superdisintegrants such as low substituted hydroxylpropyl methyl cellulose (L-HPMC), low substituted hydroxyl-propyl cellulose (L-HPC), crospovidone, croscarmellose sodium, and sodium starch glycolate. Tablets of etoricoxib prepared using L-HPC exhibited the least friability and disintegration time (approximately 65 s). To decrease the disintegration time further, a sublimation technique was used along with the superdisintegrants for the preparation of ODTs. The use of sublimating agents including camphor, menthol, and thymol was explored. The addition of camphor lowered the disintegration time (approximately 30 s) further, but the percent friability was increased. A 3(2) full factorial design was employed to study the joint influence of the amount of superdisintegrant (L-HPC) and the amount of sublimating agent (camphor) on the percent of friability and the disintegration time. The results of multiple linear regression analysis revealed that for obtaining an effective ODT of etoricoxib, higher percentages of L-HPC and camphor should be used. Checkpoint batches were prepared to validate the evolved mathematical model. A response surface plot is also presented to graphically represent the effect of the independent variables on the percent of friability and the disintegration time. The approach using

  19. 29 CFR 1915.1000 - Air contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fraction — 5 — Camphor, synthetic 76-22-2 — 2 — Carbaryl (Sevin) 63-25-2 — 5 — Carbon black 1333-86-4 — 3.5 — Carbon dioxide 124-38-9 5000 9000 — Carbon disulfide 75-15-0 20 60 X Carbon monoxide 630-08-0 50 55 — Carbon tetrachloride 56-23-5 10 65 X Cellulose 9004-34-6 Total dust — 15 — Respirable fraction —...

  20. 29 CFR 1915.1000 - Air contaminants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fraction — 5 — Camphor, synthetic 76-22-2 — 2 — Carbaryl (Sevin) 63-25-2 — 5 — Carbon black 1333-86-4 — 3.5 — Carbon dioxide 124-38-9 5000 9000 — Carbon disulfide 75-15-0 20 60 X Carbon monoxide 630-08-0 50 55 — Carbon tetrachloride 56-23-5 10 65 X Cellulose 9004-34-6 Total dust — 15 — Respirable fraction —...

  1. Synthesis of 2-azaspiro[4.4]nonan-1-ones via phosphine-catalysed [3+2]-cycloadditions

    SciTech Connect

    Yong, Sarah R.; Williams, Morwenna C.; Pyne, Stephen G.; Ung, Alison T.; Skelton, Brian W.; White, Allan H.; Turner, Peter

    2008-10-03

    The phosphine-catalyzed [3+2]-cycloaddition of the 2-methylene {gamma}-lactams 4 and 5 and the acrylate 6 with the ylides derived from the ethyl ester, the amide or the chiral camphor sultam derivative of 2-butynoic acid (7a-c) give directly, or indirectly after reductive cyclization, spiro-heterocyclic products. The acid 32 underwent Curtius rearrangement and then acid hydrolysis to give two novel spiro-cyclic ketones, 41 and 42.

  2. Effects of Tracked Vehicle Activity on Terrestrial Mammals, Birds, and Vegetation at Fort Knox, KY

    DTIC Science & Technology

    1979-07-01

    stem (A. scoparious), and danthonia ( Danthonia spicata). Collectively, these grasses were more important than the lespedeza or the camphor. Other...species in this cleared site. Several grasses were well established, including panic grass ( Panicum spp.), Kentucky bluegrass (Poa pratense), and foxtail...of soils is abandoned, perennial herbs become established, in- cluding asters, goldenrods, poverty grass , and dozens of associated spe- cies. If soil

  3. Bornyl-diphosphate synthase from Lavandula angustifolia: A major monoterpene synthase involved in essential oil quality.

    PubMed

    Despinasse, Yolande; Fiorucci, Sébastien; Antonczak, Serge; Moja, Sandrine; Bony, Aurélie; Nicolè, Florence; Baudino, Sylvie; Magnard, Jean-Louis; Jullien, Frédéric

    2017-05-01

    Lavender essential oils (EOs) of higher quality are produced by a few Lavandula angustifolia cultivars and mainly used in the perfume industry. Undesirable compounds such as camphor and borneol are also synthesized by lavender leading to a depreciated EO. Here, we report the cloning of bornyl diphosphate synthase of lavender (LaBPPS), an enzyme that catalyzes the production of bornyl diphosphate (BPP) and then by-products such as borneol or camphor, from an EST library. Compared to the BPPS of Salvia officinalis, the functional characterization of LaBPPS showed several differences in amino acid sequence, and the distribution of catalyzed products. Molecular modeling of the enzyme's active site suggests that the carbocation intermediates are more stable in LaBPPS than in SoBPPS leading probably to a lower efficiency of LaBPPS to convert GPP into BPP. Quantitative RT-PCR performed from leaves and flowers at different development stages of L. angustifolia samples show a clear correlation between transcript level of LaBPPS and accumulation of borneol/camphor, suggesting that LaBPPS is mainly responsible of in vivo biosynthesis of borneol/camphor in fine lavender. A phylogenetic analysis of terpene synthases (TPS) pointed out the basal position of LaBPPS in the TPSb clade, suggesting that LaBPPS could be an ancestor of others lavender TPSb. Finally, borneol could be one of the first monoterpenes to be synthesized in the Lavandula subgenus. Knowledge gained from these experiments will facilitate future studies to improve the lavender oils through metabolic engineering or plant breeding. Accession numbers: LaBPPS: KM015221.

  4. Freeze-Spray Processing of Layered Ceramic Composites (Preprint)

    DTIC Science & Technology

    2006-04-01

    remove the ice by sublimation . In order to study the effect of green density on the sintered microstructure, a set of samples were isostatically...Ceram. Forum Int., 79 ( 9 , E35-E38, (2002). ’K. Araki and J. W. Halloran, "Room-Temperature Freeze Casting for Ceramics with Nonaqueous Sublimable ...Vehicles in the Naphtalene- Camphor Eutectic System," J. Am. Cerum Soc. 87 (1 1) 2014-2019 (2004). 9 ~ . Reed, Introduction to the Principles of

  5. Preparation of highly porous gastroretentive metformin tablets using a sublimation method.

    PubMed

    Oh, Tack-Oon; Kim, Ju-Young; Ha, Jung-Myung; Chi, Sang-Cheol; Rhee, Yun-Seok; Park, Chun-Woong; Park, Eun-Seok

    2013-04-01

    The present investigation is aimed to formulate floating gastroretentive tablets containing metformin using a sublimation material. In this study, the release of the drug from a matrix tablet was highly dependent on the polymer concentrations. In all formulations, initial rapid drug release was observed, possibly due to the properties of the drug and polymer. The effect of the amount of PEO on swelling and eroding of the tablets was determined. The water-uptake and erosion behavior of the gastroretentive (GR) tablets were highly dependent on the amount of PEO. The water-uptake increased with increasing PEO concentration in the tablet matrix. The weight loss from tablets decreased with increasing amounts of PEO. Camphor was used as the sublimation material to prepare GR tablets that are low-density and easily floatable. Camphor was changed to pores in the tablet during the sublimation process. SEM revealed that the GR tablets have a highly porous morphology. Floating properties of tablets and tablet density were affected by the sublimation of camphor. Prepared floating gastroretentive tablets floated for over 24 h and had no floating lag time. However, as the amount of camphor in the tablet matrix increased, the crushing strength of the tablet decreased after sublimation. Release profiles of the drug from the GR tablets were not affected by tablet density or porosity. In pharmacokinetic studies, the mean plasma concentration of the GR tablets after oral administration was greater than the concentration of glucophase XR. Also, the mean AUC(0-∞) values for the GR tablets were significantly greater than the plasma concentrations of glucophase XR.

  6. A Theory for the Scalar Roughness and the Scalar Transfer Coefficients over Snow and Sea Ice,

    DTIC Science & Technology

    1986-09-01

    and camphor ... 7 4. Model predictions for an aerodynamically rough surface compared with the ex- perimental data of Dipprey and Sabersky (1963...stability 4.,. Ls Latent heat of sublimation of ice , . Pr v/D, Prandtl number Q Water vapor density Qr Water vapor density at an arbitrary reference height...specific heat of air at constant pressure L, = latent heat of sublimation of ice. Equations 1-3 define the roughness lengths. z0 is the familiar

  7. Assessment of Acute Toxicity of Hexachloroethane in Laboratory Animals

    DTIC Science & Technology

    1978-01-09

    camphoraceous odor, readily sublimes without meltinq and is solubl,: in alcohol. benzene, chloroform, ether and oil: insoluble in water. It is used as a solvent...in explosives, as ý camphor suostitute in celluloid, and as a rubber vulcanizing accelerator.’ It is used in veterinary practice as an anthelminthic...moderately toxic orally, produced reversible eye irritation and little or no skin irritation. Although it sublimes at room temperature

  8. Sensitivity of Lead Azide to Electric Spark (Chuvstvitelnost Azida Svintsa k Elektricheskoi Iskre)

    DTIC Science & Technology

    1974-08-01

    On supplying a voltage pulse to the Incendiary electrode of the triple - electrode v.clay P, it operated, one of the specimen electrodes got connected...azide to electric spark. Substances which can cover particles of explosive materials (paraffin, ceresin, wax, castor oil, camphor , etc.) are often...modern concepts, excitation of explosion in an explo- sive material leads to the formation of "hot points " and to thermal trigger- ing. Increase of

  9. Laboratory Tests to Determine the Chemical and Physical Characteristics of Propellant-Solvent-Fuel Oil Mixtures

    DTIC Science & Technology

    1990-02-01

    isocyanates and many heterocyclic alcohols and ketones such as furfural and camphor also possess some I solvent power for nitrocellulose. Amines...amounts of volatile mate- D 56 Test Method for Flash Point by Tag Closed Tester3 -NOTE 2The U.S. Department of Transportation ( DOT )and U.S. E Specification...along the circumference of a circle having a or asphalts from solvent extraction processes. radius of at least 6 in. (150 mm). The center of the test

  10. Unexpected Irregular Monoterpene "Yomogi Alcohol" in the Volatiles of the Lathyrus L. species (Leguminosae) of Cyprus.

    PubMed

    Polatoğlu, Kaan; Arsal, Seniha; Demirci, Betül; Can Başer, Kemal Hüsnü

    2016-01-01

    Lathyrus species including L. ochrus and L. sativus are known for their food, feed and horticultural uses. Despite their widespread uses and cultivation, there is limited information on their chemistry. Previously, only the essential oil composition of L. rotundifolius, L. vernus and volatiles of L. odoratus have been reported. In the present research, volatiles of seven Lathyrus L. species, namely, L. aphaca, L. ochrus, L. cicera, L. sativus, L. gorgonei, L. saxatilis and L. blepharicarpos var. cyprius were analyzed by SPME GC-MS for the first time. Plant materials were collected from five different locations in Cyprus (February-March 2012). The main components of L. aphaca volatiles from four locations were yomogi alcohol 26.1-16.5%, camphor 21.6-10.1%, tetradecane 14.3-0%; L. cicera from five locations were yomogi alcohol 20.3-3.0%, camphor 18.7-2.0%; L. gorgonei from two locations were yomogi alcohol 24.5-13.1%, camphor 17.1-9.0% and L. sativus was yomogi alcohol 11.4%, camphor 9.0%. Yomogi alcohol was not present as the major compound in L. ochrus (2-methyl butanoic acid 7.2%), L. saxatilis (hexanal 7.7%) and L. blepharicarpos var. cyprius ((Z)-3-hexenal 8.6%) volatiles. The volatiles of the Lathyrus species were also compared with each other quantitative and qualitatively using AHC analysis to find out differences among the species. The irregular monoterpene yomogi alcohol is reported from the Lathyrus and the Leguminosae family for the first time. The existence of yomogi alcohol in Lathyrus volatiles points out that the irregular monoterpenes are not restricted solely to Asteraceae family.

  11. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).

    PubMed

    Schmiderer, Corinna; Grausgruber-Gröger, Sabine; Grassi, Paolo; Steinborn, Ralf; Novak, Johannes

    2010-07-01

    Common sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants, with antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, composed mainly of the monoterpenes 1,8-cineole, alpha-thujone, beta-thujone and camphor, is responsible for some of these effects. Gibberellins regulate diverse physiological processes in plants, such as seed germination, shoot elongation and cell division. In this study, we analyzed the effect of exogenously applied plant growth regulators, namely gibberellic acid (GA(3)) and daminozide, on leaf morphology and essential oil formation of two leaf stages during the period of leaf expansion. Essential oil content increased with increasing levels of gibberellins and decreased when gibberellin biosynthesis was blocked with daminozide. With increasing levels of gibberellins, 1,8-cineole and camphor contents increased. Daminozide blocked the accumulation of alpha- and beta-thujone. GA(3) at the highest level applied also led to a significant decrease of alpha- and beta-thujone. Monoterpene synthases are a class of enzymes responsible for the first step in monoterpene biosynthesis, competing for the same substrate geranylpyrophosphate. The levels of gene expression of the three most important monoterpene synthases in sage were investigated, 1,8-cineole synthase leading directly to 1,8-cineole, (+)-sabinene synthase responsible for the first step in the formation of alpha- and beta-thujone, and (+)-bornyl diphosphate synthase, the first step in camphor biosynthesis. The foliar application of GA(3) increased, while daminozide significantly decreased gene expression of the monoterpene synthases. The amounts of two of the end products, 1,8-cineole and camphor, were directly correlated with the levels of gene expression of the respective monoterpene synthases, indicating transcriptional control, while the formation of alpha- and beta

  12. Mosquito repellent activities of ocimum volatile oils.

    PubMed

    Chokechaijaroenporn, O; Bunyapraphatsara, N; Kongchuensin, S

    1994-09-01

    Essential oils obtained from Ocimum americanum, O. basilicum, O. basilicum fa. citratum, O. gratissimum and O. tenuiflorum, were tested for mosquito repellent and larvicidal activities. All the oils exhibited both activities. O. basilicum showed the strongest larvicidal activity (EC(50) = 81, EC(90) = 113 ppm), while O. gratissimum exhibited the longest duration of action for mosquito repellent activity (more than two hours). Gas chromatographic analysis indicated the presence of camphor, caryophyllene oxide, cineole, methyleugenol, limonene, myrcene, and thymol, all known insect repellents.

  13. Metabolism of monoterpenes in cell cultures of common sage (Salvia officinalis)

    SciTech Connect

    Falk, K.L.; Gershenzon, J.; Croteau, R. )

    1990-08-01

    Leaves of common sage (Salvia officinalis) accumulate monoterpenes in glandular trichomes at levels exceeding 15 milligrams per gram fresh weight at maturity, whereas sage cells in suspension culture did not accumulate detectable levels of monoterpenes (<0.3 nanograms per gram fresh weight) at any stage of the growth cycle, even in the presence of a polystyrene resin trap. Monoterpene biosynthesis from (U-{sup 14}C)sucrose was also virtually undetectable in this cell culture system. In vitro assay of each of the enzymes required for the sequential conversion of the ubiquitous isoprenoid precursor geranyl pyrophosphate to (+){minus}camphor (a major monoterpene product of sage) in soluble extracts of the cells revealed the presence of activity sufficient to produce (+){minus}camphor at a readily detectable level (>0.3 micrograms per gram fresh weight) at the late log phase of growth. Other monoterpene synthetic enzymes were present as well. In vivo measurement of the ability to catabolize (+){minus}camphor in these cells indicated that degradative capability exceeded biosynthetic capacity by at least 1,000-fold. Therefore, the lack of monoterpene accumulation in undifferentiated sage cultures could be attributed to a low level of biosynthetic activity (relative to the intact plant) coupled to a pronounced capacity for monoterpene catabolism.

  14. Chemical composition and antimicrobial activity of essential oils from Scabiosa arenaria Forssk: growing wild in Tunisia.

    PubMed

    Besbes, Malek; Omri, Amel; Cheraif, Imed; Daami, Mejda; Jannet, Hichem Ben; Mastouri, Maha; Aouni, Mahjoub; Selmi, Boulbaba

    2012-04-01

    The essential oils isolated from three organs, i.e., fruits, stems and leaves, and flowers, of the endemic North African plant Scabiosa arenaria Forssk. were screened for their chemical composition, as well as their possible antibacterial, anticandidal, and antifungal properties. According to the GC-FID and GC/MS analyses, 61 (99.26% of the total oil composition), 79 (98.43%), and 51 compounds (99.9%) were identified in the three oils, respectively. While α-thujone (34.39%), camphor (17.48%), and β-thujone (15.29%) constituted the major compounds of the fruit oil, chrysanthenone (23.43%), together with camphor (12.98%) and α-thujone (10.7%), were the main constituents of the stem and leaf oil. In the case of the flower oil, also chrysanthenone (38.52%), camphor (11.75%), and α-thujone (9.5%) were identified as the major compounds. Furthermore, the isolated oils were tested against 16 Gram-positive and Gram-negative bacteria, four Candida species, and nine phytopathogenic fungal strains. It was found that the oils exhibited interesting antibacterial and anticandidal activities, comparable to those of thymol, which was used as positive control, but no activity against the phytopathogenic fungal strains was observed.

  15. In vitro inhibition of the bovine viral diarrhoea virus by the essential oil of Ocimum basilicum (basil) and monoterpenes.

    PubMed

    Kubiça, Thaís F; Alves, Sydney H; Weiblen, Rudi; Lovato, Luciane T

    2014-01-01

    The bovine viral diarrhoea virus (BVDV) is suggested as a model for antiviral studies of the hepatitis C virus (HCV). The antiviral activity of the essential oil of Ocimum basilicum and the monoterpenes camphor, thymol and 1,8-cineole against BVDV was investigated. The cytotoxicities of the compounds were measured by the MTT (3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide) test, and the antiviral activities were tested by the plaque reduction assay. The oil or compounds were added to the assay in three different time points: a) pre-treatment of the virus (virucidal assay); b) pre-treatment of the cells; or c) post-treatment of the cells (after virus inoculation). The percentage of plaques inhibition for each compound was determined based on the number of plaques in the viral control. The results were expressed by CC50 (50% cytotoxic concentration), IC50 (inhibitory concentration for 50% of plaques) and SI (selectivity index = CC50/IC50). Camphor (CC50 = 4420.12 μg mL(-1)) and 1,8-cineole (CC50 = 2996.10 μg mL(-1)) showed the lowest cytotoxicities and the best antiviral activities (camphor SI = 13.88 and 1,8-cineol SI = 9.05) in the virucidal assay. The higher activities achieved by the monoterpenes in the virucidal assay suggest that these compounds act directly on the viral particle.

  16. In vitro antifungal activity of four chemotypes of Lippia alba (Verbenaceae) essential oils against Alternaria solani (Pleosporeaceae) isolates.

    PubMed

    Tomazoni, Elisa Z; Pansera, Márcia R; Pauletti, Gabriel F; Moura, Sidnei; Ribeiro, Rute T S; Schwambach, Joséli

    2016-05-31

    Several volatile natural compounds produced by plant secondary metabolism have been proven to present antimicrobial action, enabling their use in phytopathogen control. They also present low environmental impact when compared to conventional pesticides. Essential oils contain these compounds and can be found in several plant species, such as Lippia alba (Mill.) N.E. Brown (Verbenaceae). Essential oils of four chemotypes of L. alba, characterized by their major compounds, namely camphor, citral, linalool and camphor/1,8-cineole, were tested against the phytopathogen Alternaria solani Sorauer (Pleosporaceae), which causes early blight on tomatoes and is responsible for great economic losses regarding production. Essential oils antifungal action was tested in vitro using potato dextrose agar medium with essential oil concentrations at 0.1, 0.5, 1.0, 1.5 and 2.0 µL mL-1. The chemotype that had the best performance was citral, showing significant inhibition compared to the others, starting at the 0.5 µL mL-1 concentration. The essential oil belonging to the linalool chemotype was efficient starting at the 1.5 µL mL-1 concentration. Conversely, the camphor chemotype did not show any action against the phytopathogen. Moreover, the essential oils had no remarkable effect on tomato germination and growth. In conclusion, these essential oils presented fungicidal action against A. solani.

  17. Chemical Variability of the Essential Oil Isolated from Aerial Parts of Tetraclinis articulata from North-Western Algeria.

    PubMed

    Boussaïd, Maghnia; Bekhechi, Chahrazed; Beddou, Fawzia; Sari, Daoudi Chabane; Bighelli, Ange; Casanova, Joseph; Tomi, Félix

    2015-08-01

    The objective was to investigate the yield and chemical composition of 50 essential oil samples isolated from leaves and flowers of Tetraclinis articulata harvested in eight locations (coastal township and highlands) of Tlemcen Province (North-Western Algeria). Essential oil yields varied drastically from sample to sample (0.03 to 0.86%, w/w). No direct correlation was observed between the yield and the altitude of the harvest areas. The oils consisted mainly of monoterpenes: α-pinene (9.2-56.5%), bornyl acetate (1.2-45.1%), camphor (0.5-40.3%), borneol (0.2-12.9%), limonene (3.6-12.5%), and myrcene (1.6-9.7%). Sesquiterpenes were represented by germacrene D (up to 14.2%) and (E)-β-caryophyllene (up to 13.3%). PCA analysis of the data allowed the distinction of two groups within the samples. The composition of group I (9 samples) was dominated by camphor, (Mean = 30.9%) followed by α-pinene (M = 19.1%) and bornyl acetate (M = 11.4%). Group II was divided into two sub-groups. Samples of sub-group IIA (8 samples) contained mainly α-pinene (M = 45.4%). Samples of the largest group IIB (33 samples) were characterized by similar contents of α-pinene (M = 28.2%) and bornyl acetate (M = 24.5%) and the occurrence of camphor to a lesser extent (M = 10.0%).

  18. Lavandin (Lavandula × intermedia Emeric ex Loiseleur) essential oil from Spain: determination of aromatic profile by gas chromatography-mass spectrometry, antioxidant and lipoxygenase inhibitory bioactivities.

    PubMed

    Carrasco, Alejandro; Martinez-Gutierrez, Ramiro; Tomas, Virginia; Tudela, Jose

    2016-01-01

    Lavandin (Lavandula × intermedia Emeric ex Loiseleur) essential oils (EOs), from Abrial, Super and Grosso cultivars, cultivated and extracted in the South East of Spain, were analysed by using GC/MS to determine their composition, in both relative (peak area) and absolute (using standard curves) concentrations. Linalool (34-47%), linalyl acetate (17-34%), camphor (4-9%) and eucalyptol (3-7%) were determined as the main molecules. This characterisation was completed with the enantioselective gas chromatography, where ( - )-linalool, (+)-camphor and ( - )-linalyl acetate were determined as the main components. Antioxidant activity was evaluated positively by several methods: activity against free radicals, chelating and reducing power, probably due to linalool and linalyl acetate. Mild inhibitory activity on lipoxygenase was observed supporting potential anti-inflammatory activity, mainly due to linalool and camphor. These properties support the potential use of L. × intermedia essential oils as natural cosmetic and natural pharmaceutical ingredient to fight several skin diseases.

  19. Lavandula angustifolia and Lavandula latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities.

    PubMed

    Carrasco, Alejandro; Martinez-Gutierrez, Ramiro; Tomas, Virginia; Tudela, Jose

    2016-01-01

    Compositions of true lavender (Lavandula angustifolia) and spike lavender (Lavandula latifolia) essential oils, cultivated and extracted in the Southeast of Spain, were determined by gas chromatography coupled with mass spectrometry detection, obtaining both relative (peak area) and absolute (using standard curves) concentrations. Linalool (37-54 %), linalyl acetate (21-36 %) and (E)-β-caryophyllene (1-3 %) were the most abundant components for L. angustifolia. Linalool (35-51 %), eucalyptol (26-32 %), camphor (10-18 %), α-pinene (1-2 %), α-terpineol (1-2 %) and α-bisabolene (1-2 %) were the most abundant components for L. latifolia. The characterization was completed with enantioselective gas chromatography, in which the determined main molecules were (-)-linalool, (-)-linalyl acetate and (+)-camphor. (S)-(-)-camphene, (R)-(+)-limonene, (1R, 9S)-(-)-(E)-β-caryophyllene and (1R, 4R, 6R, 10S)-(-)-caryophyllene oxide were found in this study as the predominant enantiomers in Spanish L. angustifolia. The characterised essential oils were tested for their antioxidant activity against free radicals ABTS, DPPH, ORAC, chelating, and reducing power. Inhibitory activity on lipoxygenase was observed indicating a possible anti-inflammatory activity, mainly due to linalool, camphor, p-cymene and limonene. These results can be the starting point for a future study of the potential use of L. angustifolia and L. latifolia essential oils as natural cosmetic and natural pharmaceutical ingredients for several skin diseases.

  20. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav.

    PubMed

    Zuzarte, Monica; Gonçalves, Maria J; Cavaleiro, Carlos; Dinis, Augusto M; Canhoto, Jorge M; Salgueiro, Lígia R

    2009-08-01

    The chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav., harvested in North and Central Portugal, were investigated. The essential oils were isolated by hydrodistillation and analyzed by GC and GC/MS. The minimal-inhibitory concentration (MIC) and the minimal-lethal concentration (MLC) of the essential oils and of their major constituents were used to evaluate the antifungal activity against different strains of fungi involved in candidosis, dematophytosis, and aspergillosis. The oils were characterized by a high percentage of oxygenated monoterpenes, the main compounds being 1,8-cineole (2.4-55.5%), fenchone (1.3-59.7%), and camphor (3.6-48.0%). Statistical analysis differentiated the essential oils into two main types, one characterized by the predominance of fenchone and the other one by the predominance of 1,8-cineole. Within the 1,8-cineole chemotype, two subgroups were well-defined taking into account the percentages of camphor. A significant antifungal activity of the oils was found against dermatophyte strains. The essential oil with the highest content of camphor was the most active with MIC and MLC values ranging from 0.32-0.64 microl/ml.

  1. Preparation and evaluation of dual-mode floating gastroretentive tablets containing itraconazole.

    PubMed

    Kim, Ju-Young; Rhee, Yun-Seok; Park, Chun-Woong; Ha, Jung-Myung; Park, Eun-Seok

    2014-11-01

    The aims of the present study were to prepare new dual-mode floating gastroretentive tablets (DF-GRT) containing itraconazole (ITR) and to evaluate influence of the dosage forms on pharmacokinetic parameters of ITR. The solubility of ITR was enhanced around 200 times (from 1.54 to 248.38 µg/mL) by preparing solid dispersion (SD) with hydroxypropylmethyl cellulose. Buoyancy of DF-GRT containing ITR-SD was established by both camphor sublimation and gas generation. Camphor sublimation decreased density of DF-GRT by making pores in tablet matrix, which led to elimination of lag time for floating. Carbon dioxide generated by sodium bicarbonate and citric acid helped to maintain buoyancy of DF-GRT. Therefore DF-GRT floated on the medium without lag time until disintegrated entirely during in vitro release study. They released 89.11% of the drug at 2 h. Residual camphor was <0.5 wt% after sublimation. The pharmacokinetics of DF-GRT was evaluated in six miniature pigs and compared to immediate release tablets (IRT). Mean AUC ratio of GRT/IRT was 1.36 but there was no statistical difference between AUC values. However delayed tmax, increased MRT and equivalent Cmax of DF-GRT supposed it could be a promising tool for gastroretentive drug delivery system containing ITR.

  2. Formulation and evaluation of fast dissolving tablets of cinnarizine using superdisintegrant blends and subliming material

    PubMed Central

    Basu, Biswajit; Bagadiya, Abhishek; Makwana, Sagar; Vipul, Vora; Batt, Devraj; Dharamsi, Abhay

    2011-01-01

    The aim of this investigation was to develop fast dissolving tablet of cinnarizine. A combination of super disintegrants, i.e., sodium starch glycolate (SSG) and crosscarmellose sodium (CCS) were used along with camphor as a subliming material. An optimized concentration of camphor was added to aid the porosity of the tablet. A 32 full factorial design was applied to investigate the combined effect of two formulation variables: Amount of SSG and CCS. Infrared (IR) spectroscopy was performed to identify the physicochemical interaction between drug and polymer. IR spectroscopy showed that there is no interaction of drug with polymer. In the present study, direct compression was used to prepare the tablets. The powder mixtures were compressed into tablet using flat face multi punch tablet machine. Camphor was sublimed from the tablet by exposing the tablet to vacuum drier at 60°C for 12 hours. All the formulations were evaluated for their characteristics such as average weight, hardness, wetting time, friability, content uniformity, dispersion time (DT), and dissolution rate. An optimized tablet formulation (F 9) was found to have good hardness of 3.30 ± 0.10 kg/cm2, wetting time of 42.33 ± 4.04 seconds, DT of 34.67 ± 1.53 seconds, and cumulative drug release of not less than 99% in 16 minutes. PMID:22247895

  3. In vitro inhibition of the bovine viral diarrhoea virus by the essential oil of Ocimum basilicum (basil) and monoterpenes

    PubMed Central

    Kubiça, Thaís F.; Alves, Sydney H.; Weiblen, Rudi; Lovato, Luciane T.

    2014-01-01

    The bovine viral diarrhoea virus (BVDV) is suggested as a model for antiviral studies of the hepatitis C virus (HCV). The antiviral activity of the essential oil of Ocimum basilicum and the monoterpenes camphor, thymol and 1,8-cineole against BVDV was investigated. The cytotoxicities of the compounds were measured by the MTT (3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide) test, and the antiviral activities were tested by the plaque reduction assay. The oil or compounds were added to the assay in three different time points: a) pre-treatment of the virus (virucidal assay); b) pre-treatment of the cells; or c) post-treatment of the cells (after virus inoculation). The percentage of plaques inhibition for each compound was determined based on the number of plaques in the viral control. The results were expressed by CC50 (50% cytotoxic concentration), IC50 (inhibitory concentration for 50% of plaques) and SI (selectivity index = CC50/IC50). Camphor (CC50 = 4420.12 μg mL−1) and 1,8-cineole (CC50 = 2996.10 μg mL−1) showed the lowest cytotoxicities and the best antiviral activities (camphor SI = 13.88 and 1,8-cineol SI = 9.05) in the virucidal assay. The higher activities achieved by the monoterpenes in the virucidal assay suggest that these compounds act directly on the viral particle. PMID:24948933

  4. Essential oil from Artemisia phaeolepis: chemical composition and antimicrobial activities.

    PubMed

    Ben Hsouna, Anis; Ben Halima, Nihed; Abdelkafi, Slim; Hamdi, Naceur

    2013-01-01

    Artemisia phaeolepis, a perennial herb with a strong volatile odor, grows on the grasslands of Mediterranean region. Essential oil obtained from Artemisia phaeolepis was analyzed by gas chromatography-flame ionization detection and gas chromatography-mass spectrometry. A total of 79 components representing 98.19% of the total oil were identified, and the main compounds in the oil were found to be eucalyptol (11.30%), camphor (8.21%), terpine-4-ol (7.32%), germacrene D (6.39), caryophyllene oxide (6.34%), and caryophyllene (5.37%). The essential oil showed definite inhibitory activity against 10 strains of test microorganisms. Eucalyptol, camphor, terpine-4-ol, caryophyllene, germacrene D and caryophyllene oxide were also examined as the major components of the oil. Camphor showed the strongest antimicrobial activity; terpine-4-ol, eucalyptol, caryophyllene and germacrene D were moderately active and caryophyllene oxide was weakly active. The study revealed that the antimicrobial properties of the essential oil can be attributed to the synergistic effects of its diverse major and minor components.

  5. Specific and non-specific effects of potassium cations on substrate-protein interactions in cytochromes P450cam and P450lin.

    PubMed

    Deprez, Eric; Gill, Edward; Helms, Volkhard; Wade, Rebecca C; Hui Bon Hoa, Gaston

    2002-09-20

    Substrate binding to cytochrome P450cam is generally considered to be a two-step process. The first step corresponds to the entrance of the substrate, camphor, into the heme pocket. The second step corresponds to a spin transition (low spin-->high spin) of the iron in the protein-substrate complex. This spin transition is related to the mobility of the substrate inside the active site [Biochim Biophys Acta 1338 (1997) 77]. Potassium cations (K(+)) have a specific effect on the spin equilibrium. This is generally attributed to the K(+) ion-induced conformational change of tyrosine 96, the hydroxyl group of which is hydrogen bonded to the keto group of camphor and results in optimum substrate orientation and reduced mobility of this substrate in the active site. In the present paper, we show that K(+) not only affects the substrate-Tyr 96 couple, but acts more globally since K(+) effects are also observed in the Tyr96Phe mutant as well as in complexes with camphor-analogues. Large compounds, that fit well in the heme pocket and bind with higher affinity than camphor, display high spin contents that are less dependent on the presence of K(+). In contrast, K(+) has a significant effect on the high spin content of substrate-cytochrome P450cam complexes with looser interactions. We conclude that large compounds with higher affinities than camphor have more van der Waals contacts with the active site residues. Their mobilities are then reduced and less dependent on the presence of K(+). In this study, we also explored, for comparison, the K(+) effect on the spin transition state of another member of the P450 superfamily, cytochrome P450lin. This effect is not as strong as those observed for cytochrome P450cam. Even though the spin equilibrium does not change dramatically in the presence of K(+) or Na(+), the value of the dissociation constant (K(d)) for linalool binding is significantly affected by ionic strength. Analysis of the thermodynamic parameters for the linalool

  6. Pattern formation and growth kinetics in eutectic systems

    NASA Astrophysics Data System (ADS)

    Teng, Jing

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rod, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to

  7. Pattern Formation and Growth Kinetics in Eutectic Systems

    SciTech Connect

    Teng, Jing

    2007-01-01

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rodl, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to

  8. Endocrine disruption: fact or urban legend?

    PubMed

    Nohynek, Gerhard J; Borgert, Christopher J; Dietrich, Daniel; Rozman, Karl K

    2013-12-16

    Endocrine disruptors (EDs) are substances that cause adverse health effects via endocrine-mediated mechanisms in an intact organism or its progeny or (sub) populations. Purported EDCs in personal care products include 4-MBC (UV filter) or parabens that showed oestrogenic activity in screening tests, although regulatory toxicity studies showed no adverse effects on reproductive endpoints. Hormonal potency is the key issue of the safety of EDCs. Oestrogen-based drugs, e.g. the contraceptive pill or the synthetic oestrogen DES, possess potencies up to 7 orders of magnitude higher than those of PCP ingredients; yet, in utero exposure to these drugs did not adversely affect fertility or sexual organ development of offspring unless exposed to extreme doses. Additive effects of EDs are unlikely due to the multitude of mechanisms how substances may produce a hormone-like activity; even after uptake of different substances with a similar mode of action, the possibility of additive effects is reduced by different absorption, metabolism and kinetics. This is supported by a number of studies on mixtures of chemical EDCs. Overall, despite of 20 years of research a human health risk from exposure to low concentrations of exogenous chemical substances with weak hormone-like activities remains an unproven and unlikely hypothesis.

  9. The use of cryopreserved sea urchin embryos (Paracentrotus lividus) in marine quality assessment.

    PubMed

    Paredes, E; Bellas, J

    2015-06-01

    We have established for first time an ecotoxicological bioassay using cryopreserved sea urchin embryos (Paracentotus lividus) and provided a comparison to the already standardized sea urchin embryo-larval bioassay, using selected (organic and inorganic) pollutants and sediment elutriates from 4 different locations from Ria de Vigo harbour (Galicia, NW Iberian Peninsula). A cryopreservation protocol was designed in order to enable the successful cryopreservation and cryobanking of gametes and embryos to be used for marine quality assessment and ensure the accessibility to high quality reproductive material all year round, as an option to conditioning adults for out of season reproduction. The calculated EC50 using the cryopreserved blastula was 53.7 μg L(-1) for copper, 81.0 μg L(-1) for lead, 300.6 μg L(-1) for BP-3 and 300.6 μg L(-1) for 4-MBC. The sensitivity of the classic sea urchin embryo-larval bioassay was compared with the bioassay conducted with cryopreserved blastula. The results showed that the use of cryopreserved blastula bioassay allows detecting lower concentrations of pollutants in comparison with the classic bioassay.

  10. Rhodomyrtone: a new candidate as natural antibacterial drug from Rhodomyrtus tomentosa.

    PubMed

    Limsuwan, Surasak; Trip, Erik N; Kouwen, Thijs R H M; Piersma, Sjouke; Hiranrat, Asadhawut; Mahabusarakam, Wilawan; Voravuthikunchai, Supayang P; van Dijl, Jan Maarten; Kayser, Oliver

    2009-06-01

    Rhodomyrtone [6,8-dihydroxy-2,2,4,4-tetramethyl-7-(3-methyl-1-oxobutyl)-9-(2-methylpropyl)-4,9-dihydro-1H-xanthene-1,3(2H)-di-one] from Rhodomyrtus tomentosa (Aiton) Hassk. displayed significant antibacterial activities against gram-positive bacteria including Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Streptococcus gordonii, Streptococcus mutans, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus salivarius. Especially noteworthy was the activity against MRSA with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) ranging from 0.39 to 0.78 microg/ml. As shown for S. pyogenes, no surviving cells were detected within 5 and 6h after treatment with the compound at 8MBC and 4MBC concentrations, respectively. Rhodomyrtone displays no bacteriolytic activity, as determined by measurement of the optical density at 620 nm. A rhodomyrtone killing test with S. mutans using phase contrast microscopy showed that this compound caused a few morphological changes as the treated cells were slightly changed in color and bigger than the control when they were killed. Taken together, the results support the view that rhodomyrtone has a strong bactericidal activity on gram-positive bacteria, including major pathogens.

  11. Formulation Design and Optimization of Fast Dissolving Clonazepam Tablets by Sublimation Method

    PubMed Central

    Shirsand, S. B.; Suresh, Sarasija; Kusumdevi, V.; Swamy, P. V.

    2011-01-01

    Fast dissolving tablets of clonazepam were prepared by sublimation method with a view to enhance patient compliance. A 32 full factorial design was applied to investigate the combined effect of two formulation variables: amount of croscarmellose sodium and camphor. Croscarmellose sodium (2-8% w/w) was used as superdisintegrant and camphor (20-40% w/w) was used as subliming agent, to increase the porosity of the tablets, since it helps water to penetrate into the tablets, along with directly compressible mannitol to enhance mouth feel. The tablets were evaluated for hardness, friability, thickness, drug content uniformity, in vitro dispersion time, wetting time and water absorption ratio. Based on in vitro dispersion time (approximately 11 s); the formulation containing 5% w/w croscarmellose sodium and 40% w/w camphor was found to be promising and tested for in vitro drug release pattern (in pH 6.8 phosphate buffer). Short-term stability (at 40°/75% relative humidity for 3 mo) and drug-excipient interaction. Surface response plots are presented to graphically represent the effect of independent variables on the in vitro dispersion time. The validity of the generated mathematical model was tested by preparing two extra-design checkpoints. The optimized tablet formulation was compared with conventional commercial tablet formulation for drug release profiles. This formulation showed nearly nine-fold faster drug release (t50% 1.8 min) compared to the conventional commercial tablet formulation (t50% 16.4 min). Short-term stability studies on the formulation indicated that there are no significant changes in drug content and in vitro dispersion time (P<0.05). PMID:22923860

  12. The synthesis and microwave absorbing properties of MWCNTs and MWCNTs/ferromagnet composites

    NASA Astrophysics Data System (ADS)

    Sun, Zhi Gang; Qiao, Xiao Jing; Wan, Xiang; Ren, Qing Guo; Li, Wang Chang; Zhang, Shuai Zhong; Guo, Xiao Dang

    2016-02-01

    The multi-walled carbon nanotubes (MWCNTs) have been synthesized by chemical vapor deposition using camphor as carbon source and ferrocene as catalyst. The effect of different camphor/ferrocene ratio, calcination temperature and deposition substrates on the morphology and performance of the samples have been examined. The Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy and high-resolution transmission electron microscopy confirmed the structure and growing mechanism of the MWCNTs in detail. The optimized MWCNTs have been obtained at 900 °C by 100:1 camphor/ferrocene ratio, whose IR extinction coefficient(αe) can reach 0.66 m2/g at 1400 cm-1, with the bandwidth between 594 and 3233 cm-1. The magnetic properties and microwave absorbing capability of Fe NPs/MWCNTs and MWCNTs/ferrite composites have been investigated by vibrating sample magnetometer and Vector network analyzer. With the addition of MWCNTs, the dielectric properties of the FeNPs/MWCNTs are enhanced in the L, S and C bands. The bandwidth (BW) below -10 dB of the 2 mm thickness ranges from 6.50 to 9.15 GHz, with the maximum RL reaching -23.78 dB at 7.8 GHz. And the peak reflection loss (RL) of the MWCNTs/ferrite can reach -18.17 dB at 3.55 GHz under 5 mm thickness, with dual-frequency absorption appearing in Ku bands at 4 and 5 mm thickness. The difference in lower frequency between the two composites suggests that MWCNTs/ferrite is expected to be an excellent tunable and broadband absorber.

  13. Chemical Constituents and Insecticidal Activities of Ajania fruticulosa Essential Oil.

    PubMed

    Liang, Jun-Yu; Guo, Shan-Shan; You, Chun-Xue; Zhang, Wen-Juan; Wang, Cheng-Fang; Geng, Zhu-Feng; Deng, Zhi-Wei; Du, Shu-Shan; Zhang, Ji

    2016-08-01

    The insecticidal activity and chemical constituents of the essential oil from Ajania fruticulosa were investigated. Twelve constituents representing 91.0% of the essential oil were identified, and the main constituents were 1,8-cineole (41.40%), (+)-camphor (32.10%), and myrtenol (8.15%). The essential oil exhibited contact toxicity against Tribolium castaneum and Liposcelis bostrychophila adults with LD50 values of 105.67 μg/adult and 89.85 μg/cm(2) , respectively. The essential oil also showed fumigant toxicity against two species of insect with LC50 values of 11.52 and 0.65 mg/l, respectively. 1,8-Cineole exhibited excellent fumigant toxicity (LC50  = 5.47 mg/l) against T. castaneum. (+)-Camphor showed obvious fumigant toxicity (LC50  = 0.43 mg/l) against L. bostrychophila. Myrtenol showed contact toxicity (LD50  = 29.40 μg/cm(2) ) and fumigant toxicity (LC50  = 0.50 mg/l) against L. bostrychophila. 1,8-Cineole and (+)-camphor showed strong insecticidal activity to some important insects, and they are main constituents of A. fruticulosa essential oil. The two compounds may be related to insecticidal activity of A. fruticulosa essential oil against T. castaneum and L. bostrychophila.

  14. Formulation design and optimization of fast dissolving clonazepam tablets by sublimation method.

    PubMed

    Shirsand, S B; Suresh, Sarasija; Kusumdevi, V; Swamy, P V

    2011-09-01

    Fast dissolving tablets of clonazepam were prepared by sublimation method with a view to enhance patient compliance. A 3(2) full factorial design was applied to investigate the combined effect of two formulation variables: amount of croscarmellose sodium and camphor. Croscarmellose sodium (2-8% w/w) was used as superdisintegrant and camphor (20-40% w/w) was used as subliming agent, to increase the porosity of the tablets, since it helps water to penetrate into the tablets, along with directly compressible mannitol to enhance mouth feel. The tablets were evaluated for hardness, friability, thickness, drug content uniformity, in vitro dispersion time, wetting time and water absorption ratio. Based on in vitro dispersion time (approximately 11 s); the formulation containing 5% w/w croscarmellose sodium and 40% w/w camphor was found to be promising and tested for in vitro drug release pattern (in pH 6.8 phosphate buffer). Short-term stability (at 40°/75% relative humidity for 3 mo) and drug-excipient interaction. Surface response plots are presented to graphically represent the effect of independent variables on the in vitro dispersion time. The validity of the generated mathematical model was tested by preparing two extra-design checkpoints. The optimized tablet formulation was compared with conventional commercial tablet formulation for drug release profiles. This formulation showed nearly nine-fold faster drug release (t(50%) 1.8 min) compared to the conventional commercial tablet formulation (t(50%) 16.4 min). Short-term stability studies on the formulation indicated that there are no significant changes in drug content and in vitro dispersion time (P<0.05).

  15. Chemical composition and antifungal activity of essential oils from medicinal plants of Kazakhstan.

    PubMed

    Sampietro, Diego A; Gomez, Analía de Los A; Jimenez, Cristina M; Lizarraga, Emilio F; Ibatayev, Zharkyn A; Suleimen, Yerlan M; Catalán, Cesar A

    2017-06-01

    The composition of essential oils from leaves of Kazakhstan medicinal plants was analysed by GC-MS. The major compounds identified were 1,8-cineole (34.2%), myrcene (19.1%) and α-pinene (9.4%) in Ajania fruticulosa; 1,8-cineole (21.0%), β-thujone (11.0%), camphor (8.5%), borneol (7.3%) and α-thujone (6.5%), in Achillea nobilis; camphor (47.3%), 1,8-cineole (23.9%), camphene (9.8%) and β-thujone (6.0%) in Artemisia terrae-albae; 1,8-cineole(55.8%) and β-pinene (6.2%) in Hyssopus ambiguus; α-thuyene(46.3%) and δ-cadinene(6.3%) in Juniperus sibirica; sabinene (64%) in Juniperus sabina; and α-pinene (51.5%), β-phellandrene (11.2%) and δ-cadinene (6.3%) in Pinus sibirica. The essential oils did not show antifungal effect (MIC > 1.20 mg/mL) on Aspergillus carbonarius and Aspergillus niger, while the oils from A. nobilis, A. terrae-albae, H. ambiguus and J. sabina exhibited moderate and moderate to weak antimicrobial activities on Fusarium verticillioides (MIC = 0.60 mg/mL) and Fusarium graminearum (MIC = 0.60-1.20 mg/mL), respectively. A principal component analysis associated the antifungal activity (r(2) > 0.80, p = 0.05) with the presence of borneol, camphor, camphene, 1,8-cineole,α- and β-thujone, and of the oxygenated monoterpenes.

  16. The rate-limiting step in P450 hydroxylation of hydrocarbons a direct comparison of the "somersault" versus the "consensus" mechanism involving compound I.

    PubMed

    Bach, Robert D

    2010-09-02

    Model theoretical quantum mechanical (QM) calculations are described for the P-450 hydroxylation of methane, isobutane, and camphor that compare the concerted somersault H-abstraction mechanism with the oxidation step involving Cpd I. Special emphasis has been placed on maintaining a balanced basis set in the oxidation step. QM calculations, employing the 6-311+G(d,p) basis set on the Fe atom and all of the key surrounding atoms involved in the C-H abstraction step, reaffirm a mechanism involving rearrangement of the iron hydroperoxide group (FeO-OH --> FeO...HO(*)) in concert with hydrogen abstraction from the C-H bond of the substrate by the incipient bound hydroxyl radical HO(*). The barrier for the somersault rearrangement of model Cpd 0 (FeO-OH) is calculated to be 21.4 kcal/mol in the absence of substrate. The overall activation energy for the oxidation of camphor involving the somersault motion of the FeO-OH group of P450 model porphyrin iron(III) hydroperoxide [Por(SH)Fe(III)-OOH(-)] --> [Por(SH)Fe(III)-O....HO(-)] in concert with hydrogen abstraction is DeltaE(++) = 12.4 kcal/mol. The corresponding abstraction of the hydrogen atom from the C-H bond of camphor by Cpd I has an activation barrier of 17.6 kcal/mol. Arguments are presented that the somersault rearrangement is induced by steric compression at the active site. Kinetic isotope effect data are discussed that provides compelling evidence for a rate-limiting step involving C-H bond cleavage.

  17. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).

    PubMed

    Grausgruber-Gröger, Sabine; Schmiderer, Corinna; Steinborn, Ralf; Novak, Johannes

    2012-03-01

    Garden sage (Salvia officinalis L., Lamiaceae) is one of the most important medicinal and aromatic plants and possesses antioxidant, antimicrobial, spasmolytic, astringent, antihidrotic and specific sensorial properties. The essential oil of the plant, formed mainly in very young leaves, is in part responsible for these activities. It is mainly composed of the monoterpenes 1,8-cineole, α- and β-thujone and camphor synthesized by the 1,8-cineole synthase, the (+)-sabinene synthase and the (+)-bornyl diphosphate synthase, respectively, and is produced and stored in epidermal glands. In this study, the seasonal influence on the formation of the main monoterpenes in young, still expanding leaves of field-grown sage plants was studied in two cultivars at the level of mRNA expression, analyzed by qRT-PCR, and at the level of end-products, analyzed by gas chromatography. All monoterpene synthases and monoterpenes were significantly influenced by cultivar and season. 1,8-Cineole synthase and its end product 1,8-cineole remained constant until August and then decreased slightly. The thujones increased steadily during the vegetative period. The transcript level of their corresponding terpene synthase, however, showed its maximum in the middle of the vegetative period and declined afterwards. Camphor remained constant until August and then declined, exactly correlated with the mRNA level of the corresponding terpene synthase. In summary, terpene synthase mRNA expression and respective end product levels were concordant in the case of 1,8-cineole (r=0.51 and 0.67 for the two cultivars, respectively; p<0.05) and camphor (r=0.75 and 0.82; p<0.05) indicating basically transcriptional control, but discordant for α-/β-thujone (r=-0.05 and 0.42; p=0.87 and 0.13, respectively).

  18. [(1R)-3-Benzoyl-1,7,7-trimethyl­bicyclo­[2.2.1]heptan-2-onato-κ2 O,O′]chlorido(η6-p-cymene)ruthenium(II)

    PubMed Central

    Harrad, Mohamed Anouar; Valerga, Pedro; Puerta, M. Carmen; Ali, Mustapha Ait; El Firdoussi, Larbi; Karim, Abdellah

    2010-01-01

    The asymmetric unit of the title compound, [RuCl(C10H14)(C17H19O2)], contains two diastereomers. In both, the RuII ion has a tetra­hedral coordination, formed by two O atoms of the camphor-derived ligand and the p-cymene and Cl ligands. In the crystal structure, weak inter­molecular C—H⋯Cl inter­actions link the mol­ecules into columns propagated along [010]. PMID:21580227

  19. ION-pair liquid chromatography technique for the estimation of metformin in its multicomponent dosage forms.

    PubMed

    Vasudevan, M; Ravi, J; Ravisankar, S; Suresh, B

    2001-04-01

    A simple, precise and accurate high performance liquid chromatography (HPLC) method was developed for the simultaneous estimation of metformin with gliclazide and glipizide present in multicomponent dosage forms. The method was carried out on Inertsil C(18) column. A mobile phase composed of acetonitrile-water containing camphor sulphonic acid (adjusted to pH 7 using 0.1 N sodium hydroxide; 75 mM) at a flow rate of 1 ml min(-1) was used for the separation. Detection was carried out at 225 nm. Tolbutamide was used as internal standard. Validation of the developed HPLC method was carried out.

  20. [Electrophysiological study of sex pheromone reception in the boar, Sus scrofa].

    PubMed

    Minor, A V; Vasil'eva, V S

    1980-01-01

    Electroolfactograms were recorded in isolated olfactory epithelium of pigs, both females and castrated males, of various age. The boar pheromone, 5 alpha-androst-16-en-3-one, elicited negative electrical responses up to 2 mV in many preparations. The threshold response corresponded to as low as 10(-9) g of the pheromone on a filter paper. The specific anosmia to the boar pheromone was discovered in few preparations, where responses to the pheromone were absent and the sensitivity to common odour substances (butyl acetate, camphor, butyric acid, etc.) was unchanged.

  1. Charting the Inland Seas: A History of the U.S. Lake Survey

    DTIC Science & Technology

    1991-01-01

    engineers with experi- ence of benefit to the country in time of war. This public works policy resulted in a recommendation for the en- largement of the... Cinnamon 21 qts Salt 11/2 1bs Pepper Sauce 44 lbs Brown Soap Y4 gross Matches Along with food and equipment, the field parties carried their own...Camphor 1i2 pint Castor Oil 1 pint Aqua Ammonia Y2 pint Essence of Peppermint 1i2 pint Extract of Ginger 1i4 pint Laudanum 1i2 pint Cough

  2. Phytotoxicity of constituents of glandular trichomes and the leaf surface of camphorweed, Heterotheca subaxillaris.

    PubMed

    Morimoto, Masanori; Cantrell, Charles L; Libous-Bailey, Lynn; Duke, Stephen O

    2009-01-01

    Camphorweed, Heterotheca subaxillaris (Lam.) Britt. & Rusby, has a camphor-like odor, and its leaf surfaces contain glandular trichomes of the type shown to contain high levels of isoprenoids in other species. Borneol (1), the phytotoxic calamenene-type sesquiterpenes (2-5, 9-11), and methylated flavones (12-15) were isolated from the dichloromethane rinsate of camphorweed aerial tissues. The strongest plant growth inhibitor against Agrostis stolonifera and Lactuca sativa seedlings, as well as duckweed (Lemna pausicostata), was 2-methoxy-calamenene-14-carboxylic acid (2). Esterification of calamenene carboxylic acids decreased their biological activity.

  3. [Regulation of terpene metabolism]. Annual progress report, March 15, 1991--March 14, 1992

    SciTech Connect

    Croteau, R.

    1992-12-31

    This report describes accomplishments over the past year on understanding of terpene synthesis in mint plants and sage. Specifically reported are the fractionation of 4-S-limonene synthetase, the enzyme responsible for the first committed step to monoterpene synthesis, along with isolation of the corresponding RNA and DNA cloning of its gene; the localization of the enzyme within the oil glands, regulation of transcription and translation of the synthetase, the pathway to camphor biosynthesis,a nd studies on the early stages and branch points of the isoprenoid pathway.

  4. [Regulation of terpene metabolism

    SciTech Connect

    Croteau, R.

    1992-01-01

    This report describes accomplishments over the past year on understanding of terpene synthesis in mint plants and sage. Specifically reported are the fractionation of 4-S-limonene synthetase, the enzyme responsible for the first committed step to monoterpene synthesis, along with isolation of the corresponding RNA and DNA cloning of its gene; the localization of the enzyme within the oil glands, regulation of transcription and translation of the synthetase, the pathway to camphor biosynthesis,a nd studies on the early stages and branch points of the isoprenoid pathway.

  5. Analysis by gas chromatography-mass spectrometry of the volatiles from the fruits of Ammodaucus leucotrichus subsp. leucotrichus and subsp. nanocarpus grown in North Africa and the Canary Islands, respectively.

    PubMed

    Velasco-Negueruela, A; Pérez-Alonso, M J; Pérez de Paz, P L; Palá-Paúl, J; Sanz, J

    2006-03-10

    The volatiles from the fruits of Ammodaucus leucotrichus subsp. leucotrichus and subsp. nanocarpus (two endemic species, the first from North Africa and the second from the Canary Islands, Spain) were studied by gas chromatography and gas chromatography-mass spectrometry. The major components of the volatiles of subsp. nanocarpus were found to be, beta-pinene (22.2-33.6%), bornyl angelate (20.6-21.8%) and camphor (8.3-11.7%) whereas in the fruits of subsp. leucotrichus, the main constituents were perillaldehyde (63.6%) and limonene (26.8%). We also suggest that subsp. nanocarpus should have the status of species and should be named Ammodaucus nanocarpus.

  6. Characterization of molecular recognition in gas sensors

    SciTech Connect

    Hierlemann, A.; Ricco, A.J.; Bodenhoefer, K.; Goepel, W.

    1998-08-01

    Molecular recognition is an important topic when searching for new, selective coating materials for chemical sensing. Recently, the general idea of molecular recognition in the gas phase was challenged by Grate et al. However, in earlier thickness-shear mode resonator (TSMR) investigations, convincing evidence was presented for specific recognition of particular analyte target molecules. In this study, the authors systematically investigated coatings previously shown to be highly selective, such as the bucket-like cyclodextrins for chiral recognition, Ni-camphorates for the specific detection of the bases pyridine and DMMP (dimethylmethylphosphonate), and phthalocyanines to specifically detect benzene, toluene, and xylene (BTX).

  7. Composition of the Essential Oil of Allium neapolitanum Cirillo Growing Wild in Sicily and its Activity on Microorganisms Affecting Historical Art Crafts.

    PubMed

    Casiglia, Simona; Bruno, Maurizio; Senatore, Federica; Senatore, Felice

    2015-01-01

    Essential oil of the aerial parts of Allium neapolitanum Cirillo collected in Sicily were analyzed by gas-chromatography-flame-ionization detection and gas-chromatography-mass spectrometry. Nineteen compounds were identified in the oil and the main components were found to be (E)-chrysanthenyl acetate (28.1%), (Z)-chrysanthenyl acetate (23.8%), (E)-β-farnesene (9.6%), dimethyl trisulfide (9.6%), camphor (7.4%), methyl allyl disulfide (6.8%) and 1-methyl-3-allyl trisulfide (5.8%). The essential oil showed good antimicrobial activity against 11 strains of test microorganisms, including several species infesting historical material.

  8. Synthesis of Carbocyclic Hydantocidins via Regioselective and Diastereoselective Phosphine-Catalyzed [3 + 2]-Cycloadditions to 5-Methylenehydantoins

    SciTech Connect

    Pham, Tien Q.; Pyne, Stephen G.; Skelton, Brian W.; White, Allan H.

    2010-07-20

    The phosphine-catalyzed [3 + 2]-cycloaddition of 5-methylenehydantoins 4 with the ylides 5, derived from addition of tributylphosphine to the 2-butynoic acid derivatives, 6a-d, gives spiro-heterocyclic products. The camphor sultam derivative 6b gives optically active products. Noteable was that the ylides derived from ethyl 2-butynoate and the 3-(2-butynoyl)-1,3-oxazolidin-2-one derivatives 6c and 6d gave spiro-heterocyclic products with reverse regioselectivities. The N,N-dibenzylprotected cycloadduct has been converted to carbocyclic hydantocidin and 6,7-diepi-carbocyclic hydantocidin.

  9. Diameter Controlled of Carbon Nanotubes Synthesized on Nanoporous Silicon Support

    NASA Astrophysics Data System (ADS)

    Asli, N. A.; Shamsudin, M. S.; Maryam, M.; Yusop, S. F. M.; Suriani, A. B.; Rusop, M.; Abdullah, S.

    2013-06-01

    Carbon nanotubes (CNTs) have been successfully synthesized on nanoporous silicon template (NPSiT) using botanical source, camphor oil. Diameter of CNTs synthesized was controlled by pore size of NPSiT prepared by photo-electrochemical anodization method. The diameter of CNTs grown on different NPSiT corresponded to the pore diameter of NPSiT. FESEM images showed self-organized bundles of fiber-like structures of CNTs with diameter of around 20nm which were successfully grown directly on nanoporous silicon while raman spectra obtained ratio of ID/IG at 0.67.

  10. High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures

    SciTech Connect

    Nath, Chandrani; Kumar, Ashok E-mail: okram@csr.res.in; Kuo, Yung-Kang; Okram, Gunadhor Singh E-mail: okram@csr.res.in

    2014-09-29

    Thermoelectric coolers with figure of merit (ZT) close to unity at low temperatures are the need of the hour with new advances in high temperature superconductors, superconducting microelectronic circuits, quantum computers, and photonics. Here, we demonstrate that the conducting polymer polyaniline (Pani) doped with camphor sulfonic acid synthesized in semi-crystalline nanostructures, possesses a giant Seebeck effect at low temperatures. The resulting enormously large Seebeck coefficient (up to 0.6 V/K) combined with an intrinsically low electrical conductivity and thermal conductivity give rise to a ZT = 0.77 at 45 K and ZT = 2.17 at 17 K.

  11. High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures

    NASA Astrophysics Data System (ADS)

    Nath, Chandrani; Kumar, Ashok; Kuo, Yung-Kang; Okram, Gunadhor Singh

    2014-09-01

    Thermoelectric coolers with figure of merit (ZT) close to unity at low temperatures are the need of the hour with new advances in high temperature superconductors, superconducting microelectronic circuits, quantum computers, and photonics. Here, we demonstrate that the conducting polymer polyaniline (Pani) doped with camphor sulfonic acid synthesized in semi-crystalline nanostructures, possesses a giant Seebeck effect at low temperatures. The resulting enormously large Seebeck coefficient (up to 0.6 V/K) combined with an intrinsically low electrical conductivity and thermal conductivity give rise to a ZT = 0.77 at 45 K and ZT = 2.17 at 17 K.

  12. Ecosustainable Development of Novel Bio-inorganic Hybrid Materials as UV Protection Systems for Potential Cosmetic Applications.

    PubMed

    Villa, Carla; Lacapra, Chiara; Rosa, Roberto; Veronesi, Paolo; Leonelli, Cristina

    2015-01-01

    A new organoclay, bio-inorganic hybrid material, was successfully prepared following the "green chemistry" principles, exploiting microwave irradiation (as an alternative energetic source) in both the solvent-free synthesis of the organic filler (UVB filter) and in its hydrothermal intercalation in a sodium Bentonite clay (renewable natural inorganic source at low temperature). The organic filler is a benzylidene camphor derivative with the same cationic moiety as the well- known UV filter camphor benzalkonium methosulfate. The aim of the research was the ecosustainable development of a new UV protection model, suitable for use in cosmetic and pharmaceutical products, with potential advantages of stability, efficiency and safety compared to the commercially available UVB sunscreens. The organically modified clay was thoroughly investigated using X-ray diffraction (XRD), infrared spectroscopy (IR), thermo gravimetric analysis and differential thermal analysis (DTA). Results confirmed the complete intercalation of the organic filler in the interlayer region of the smectite clay, leading to a new bio-inorganic hybrid material with potential for cosmetic and pharmaceutical applications in the UV protection field, as confirmed by preliminary photochemical studies. This work represents the first example in the use of Na-Bentonite cationic clay (usually employed as rheological additive) as hosting agent of the synthesized quaternary UVB filter, as well as in the complete MW-assisted preparation of the organoclay, starting from the synthesis of the organic UV sunscreen to its hydrothermal intercalation.

  13. Evaluation of residues of essential oil components in honey after different anti-varroa treatments.

    PubMed

    Adamczyk, Sabine; Lázaro, Regina; Pérez-Arquillué, Consuelo; Conchello, Pilar; Herrera, Antonio

    2005-12-28

    Apiary trials on the use of three different treatments (Apilife Var, thymol solution in olive oil, and thymol solution in ethanol) for the control of Varroa destructor were conducted in Aragon (northeastern Spain). For the evaluation of the presence of residues of these treatments in honey an analytical method was developed. The method is applied to analyze honey samples before and after treatments with the acaricides mentioned. A solid-phase extraction on trifunctional silane SPE C18 cartridge and gas chromatography separation using a flame ionization detector allow reliable and precise determination of residues of thymol, menthol, eucalyptol, and camphor in honey. The results indicate that camphor is present in only low concentrations, residues of eucalyptol or menthol were not found at all, and only thymol left residues in high concentrations. Residues of thymol found in honey collected from the beehives ranged from 0.75 to 8.20 microg/g for Apilife Var, from 0.03 to 6.30 microg/g for thymol solution in olive oil, and from 0.05 to 6.20 microg/g for thymol solution in ethanol. Even so, natural treatments can be considered to be good alternatives for synthetic acaricides, especially because they do not represent a sanitary risk.

  14. Indoor air in beauty salons and occupational health exposure of cosmetologists to chemical substances.

    PubMed

    Tsigonia, Alexandra; Lagoudi, Argyro; Chandrinou, Stavroula; Linos, Athena; Evlogias, Nikos; Alexopoulos, Evangelos C

    2010-01-01

    The indoor environment in four beauty salons located in Athens (Greece) was examined in order to investigate the occupational health exposure of cosmetologists to various chemical products typically used in their work. Chemical substances chosen for investigation were volatile organic compounds (VOCs), formaldehyde, ozone and carbon dioxide. Total VOCs levels measured showed significant variation (100-1,450 microg m(-3)) depending on the products used and the number of treatments carried out, as well as ventilation. The main VOCs found in the salons were aromatics (toluene, xylene), esters and ketones (ethyl acetate, acetone, etc.) which are used as solvents in various beauty products; terpenes (pinene, limonene, camphor, menthenol) which have a particular odor and others like camphor which have specific properties. Ozone concentrations measured in all salons were quite low (0.1 and 13.3 microg m(-3)) and formaldehyde concentrations detected were lower than the detection limit of the method in all salons (<0.05 ppm). Carbon dioxide levels ranged between 402 and 1,268 ppm, depending on the number of people present in the salons during measurements and ventilation. Cosmetologists may be exposed to high concentrations of a mixture of volatile organic compounds although these levels could be decreased significantly by following certain practices such as good ventilation of the areas, closing the packages of the beauty products when not in use and finally selecting safer beauty products without strong odor.

  15. Preparation of Ecofriendly Formulations Containing Biologically Active Monoterpenes with Their Fumigant and Residual Toxicities against Adults of Culex pipiens

    PubMed Central

    Taktak, Nehad E. M.; Awad, Osama M.; Elfiki, Souraya A.; Abou El-Ela, Nadia E.

    2016-01-01

    Different mixtures of monoterpenes (ketone, alcohol, and alkene) were loaded on paper discs and wax and their knockdown activities were evaluated against Culex pipiens adults. Some individual monoterpenes were also evaluated by residual toxicity technique. Citronella oil as a reference was also loaded separately or in combination with monoterpenes on paper discs and wax. The ketone monoterpenes mixture (camphor, menthone, carvone, and fenchone) on paper discs was the most active (KT50 = 17.20 min) followed by ketone monoterpenes with citronella oil (KT50 = 20.79 min) and citronella oil alone (KT50 = 28.72 min). Wax formulations proved that the ketone and alcohol (geraniol, thymol, and menthol) monoterpenes gave the most activity as knockdown (KT50 = 31.79 and 43.39 min, resp.). Alcohol monoterpenes formulation recorded KT50 = 43.39 min. Residual activity of tested individual monoterpenes reported that the menthol was more toxic than camphor and camphene. Generally, this study suggests that the monoterpenes have the properties, which make them used as eco-friendly compounds in the control programs of Cx. pipiens adult. The use of paper discs is more applicable than wax in the adulticidal formulations. PMID:27891154

  16. Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique.

    PubMed

    Sahoo, Bichitra Nanda; Balasubramanian, Kandasubramanian

    2014-12-15

    We have elucidated a cost effective fabrication technique to produce superhydrophobic polyvinylidene fluoride (PVDF/DMF/candle soot particle and PVDF/DMF/camphor soot particle composite) porous materials. The water repellent dry composite was formed by the interaction of non-solvent (methanol) into PVDF/carbon soot particles suspension in N,N-dimethylformamide (DMF). It is seen that longer quenching time effectively changes the surface morphology of dry composites. The nano broccoli like hierarchical microstructure with micro or nano scaled roughen surface was obtained for PVDF/DMF/camphor soot particle, which reveals water contact angle of 172° with roll off angle of 2°. However, composite coating of PVDF/DMF/candle soot particle shows nano cauliflower like hierarchical, which illustrates water contact angle of 169° with roll off angle of 3°. To elucidate the enhancement of water repellent property of PVDF composites, we further divulge the evolution mechanism of nano cauliflower and nano broccoli structure. In order to evaluate the water contact angle of PVDF composites, surface diffusion of water inside the pores is investigated. Furthermore, the addition of small amount of carbon soot particles in composite not only provides the crystallization of PVDF, but also leads to dramatical amendment of surface morphology which increases the surface texture and roughness for superhydrophobicity.

  17. Study of α-, β-, and γ-relaxation processes in some supercooled liquids and supercooled plastic crystals

    NASA Astrophysics Data System (ADS)

    Gangasharan, Murthy, S. S. N.

    1993-12-01

    Using dielectric spectroscopy, we have studied different types of relaxation processes, namely, primary (α), secondary (β), and other sub-Tg processes, in the supercooled liquids of tritolylphosphate (TTP), 3-bromopentane (3BP), isopropylbenzene (IPB), glucose (GL), and also in the supercooled plastic crystals of cyclohexanol (CHOL) and camphor, over a wide frequency (10-3-106 Hz) and temperature (above 77 K) range. Asymmetric Cole-Cole plots are found at temperatures above Tg in all the systems except camphor where they are very symmetric. TTP and 3BP are found to have weak sub-Tg processes and the corresponding α process do not show significant change in the shape of Cole-Cole plots with temperature. TTP, 3BP, and IPB are found to possess at least two sub-Tg processes (designated as β and γ processes, respectively) and the evidence for any of them to be intermolecular in nature is not strong. The origin of these processes probably lies in a side group and/or segmental rotation which still survive in the glassy state. In both GL and CHOL, the sub-Tg process previously designated as the β process by earlier workers is found to be non-Arrhenius in character representing another glass transition below the main Tg. Calorimetric evidence is provided for the purpose. The origin of this process is probably due to the ``free'' molecules. The origin of the various sub-Tg processes has been discussed in greater detail.

  18. The Chemical Composition of Essential Oils from Cinnamomum camphora and Their Insecticidal Activity against the Stored Product Pests

    PubMed Central

    Guo, Shanshan; Geng, Zhufeng; Zhang, Wenjuan; Liang, Junyu; Wang, Chengfang; Deng, Zhiwei; Du, Shushan

    2016-01-01

    To investigate the chemical composition and insecticidal activity of the essential oils of certain Chinese medicinal herbs and spices, the essential oils were extracted from the stem barks, leaves, and fruits of Cinnamomum camphora (L.) Presl, which were found to possess strong fumigant toxicity against Tribolium castaneum and Lasioderma serricorne adults. The essential oils of the plants were extracted by the method of steam distillation using a Clavenger apparatus. Their composition was determined by gas chromatography/mass spectrometric (GC-MS) analyses (HP-5MS column), and their insecticidal activity was measured by seal-spaced fumigation. D-camphor (51.3%), 1,8-cineole (4.3%), and α-terpineol (3.8%), while D-camphor (28.1%), linalool (22.9%), and 1,8-cineole (5.3%) were the main constituents of its fruits. The essential oils of the C. camphora all showed fumigant and contact toxicity. Other compounds exhibited various levels of bioactivities. The results indicate that the essential oils of C. camphora and its individual compounds can be considered a natural resource for the two stored-product insect management. PMID:27827929

  19. Relative efficacy of various oils in repelling mosquitoes.

    PubMed

    Ansari, M A; Razdan, R K

    1995-09-01

    Field studies were carried out to determine the relative efficacy of repellant action of vegetable, essential and chemical base oils against vector mosquitoes. Results revealed that essential oils viz. Cymbopogan martinii martinii var. Sofia (palmarosa), Cymbopogan citratus (lemon grass) and Cymbopogan nardus (citronella) oils are as effective as chemical base oil namely mylol. These oils provide almost complete protection against Anopheles culicifacies and other anopheline species. Per cent protection against Culex quinquefasciatus ranged between 95-96%. Camphor (C. camphora) oil also showed repellent action and provided 97.6% protection against An. culicifacies and 80.7% against Cx. quinquefasciatus. Vegetable oils namely mustard (B. compestris) and coconut (C. nucisera) showed repellent action, however the efficacy of these oils was not much pronounced against Cx. quinquefasciatus. Results of statistical analysis revealed significant difference between vegetable and essential oils (p < 0.01) against tested species of mosquitoes. Essential oils were found marginally superior in repellancy than camphor and mylol (p < 0.01) against An. culicifacies and Cx. quinquefasciatus.

  20. Artemisia arborescens Essential Oil Composition, Enantiomeric Distribution, and Antimicrobial Activity from Different Wild Populations from the Mediterranean Area.

    PubMed

    Said, Mohammed El-Amin; Militello, Marcello; Saia, Sergio; Settanni, Luca; Aleo, Aurora; Mammina, Caterina; Bombarda, Isabelle; Vanloot, Pierre; Roussel, Christian; Dupuy, Nathalie

    2016-08-01

    Aerial parts of Artemisia arborescens were collected from different sites of the Mediterranean area (southwestern Algeria and southern Italy) and the chemical composition of their essential oil (EO) extracted by hydrodistillation was studied by both gas chromatography (GC) equipped with an enantioselective capillary column and GC/mass spectrometry (GC/MS). The EOs obtained were tested against several Listeria monocytogenes strains. Using GC and GC/MS, 41 compounds were identified, accounting for 96.0 - 98.8% of the total EO. All EOs showed a similar terpene profile, which was rich in chamazulene, β-thujone, and camphor. However, the concentration of such compounds varied among the EOs. A. arborescens EO inhibited up to 83.3% of the L. monocytogenes strains, but the inhibitory spectrum varied among the EOs, with those from Algeria showing a higher inhibition degree than the Italian EOs. Such effect likely depended on the ketone (β-thujone + camphor) content of the EO. The differences in the EO composition support the hypothesis that A. arborescens has at least two different chemotypes: a β-thujone and a chamazulene type. The EO inhibitory spectrum indicates the A. arborescens EO as a valuable option in the control of the food-borne pathogens.

  1. Inhibition of β-Secretase Activity by Monoterpenes, Sesquiterpenes, and C13 Norisoprenoids.

    PubMed

    Marumoto, Shinsuke; Okuno, Yoshiharu; Miyazawa, Mitsuo

    2017-04-04

    Inhibition of β-secretase (BACE1) is currently regarded as the leading treatment strategy for Alzheimer's disease. In the present study, we aimed to screen the in vitro inhibitory activity of 80 types of aroma compounds (monoterpenes, sesquiterpenes, and C13 norisoprenoids), including plant-based types, at a 200-μM concentration against a recombinant human BACE1. The results showed that the most potent inhibitor of BACE1 was geranyl acetone followed by (+)-camphor, (-)-fenchone, (+)-fenchone, and (-)-camphor with the half-maximal inhibitory concentration (IC50) values of 51.9 ± 3.9, 95.9 ± 11.0, 106.3 ± 14.9, 117.0 ± 18.6, and 134.1 ± 16.4 μM, respectively. Furthermore, the mechanism of inhibition of BACE1 by geranyl acetone was analyzed using Dixon kinetics plus Cornish-Bowden plots, which revealed mixedtype mode. Therefore aroma compounds may be used as potential lead molecules for designing anti-BACE1 agents.

  2. Plant coexistence alters terpene emission and content of Mediterranean species.

    PubMed

    Ormeño, Elena; Fernandez, Catherine; Mévy, Jean-Philippe

    2007-03-01

    There is evidence that secondary metabolism may modulate plant interactions and is modified by different biotic stress agents, such as herbivores or pathogens. However, it is poorly understood whether secondary metabolism is altered during competition among plants. The intraspecific and interspecific coexistence of some Mediterranean potted seedlings, namely Rosmarinus officinalis, Pinus halepensis, Cistus albidus and Quercus coccifera was investigated through their terpene accumulation within leaves (except for Q. coccifera, a non-storing species) and terpene emissions (for all species). Competition had both positive and negative effects for both terpene emissions and content, depending on the species a seedling coexisted with. For R. officinalis, terpene concentrations (1.8-cineole and camphor) and terpene emissions (camphene, camphor and overall monoterpenes) were lower when the neighbour species was P. halepensis. For C. albidus, no changes were observed in its content, while the overall sesquiterpene emissions (70% of total emissions) were reduced in all competition conditions, except in intraspecific competition. In the case of P. halepensis, the highest terpene content occurred when it grew with C. albidus, and in intraspecific competition, while its emissions were reduced under these conditions. Only emissions of Q. coccifera showed no significant changes in the different competition treatments.

  3. Camphorquinone-10-sulfonic acid and derivatives: convenient reagents for reversible modification of arginine residues

    SciTech Connect

    Pande, C.S.; Pelzig, M.; Glass, J.D.

    1980-02-01

    Camphorquinone-10-sulfonic acid hydrate was prepared by the action of selenous acid on camphor-10-sulfonic acid. Camphorquinone-10-sulfonylnorleucine was prepared either from the sulfonic acid via the sulfonyl chloride or by selenous acid oxidation of camphor-10-sulfonylnorleucine. These reagents are useful for specific, reversible modification of the guanidino groups of arginine residues. Camphorquinonsulfonic acid is a crystalline water-soluble reagent that is especially suitable for use with small arginine-containing molecules, because the sulfonic acid group of the reagent is a convenient handle for analytical and preparative separation of products. Camphorquinonesulfonylnorleucine is more useful for work with large polypeptides and proteins, because hydrolysates of modified proteins may be analyzed for norleucine to determine the extent of arginine modification. The adducts of the camphorquinone derivatives with the guanidino group are stable to 0.5 M hydroxylamine solutions at pH 7, the recommended conditions for cleavage of the corresponding cyclohexanedione adducts. At pH 8-9 the adducts of the camphorquinone derivatives with the guanidino group are cleaved by o-phenylenediamine. The modification and regeneration of arginine, of the dipeptide arginylaspartic acid, of ribonuclease S-peptide, and of soybean trypsin inhibitor are presented as demonstrations of the use of the reagents.The use of camphorquinonesulfonyl chloride to prepare polymers containing arginine-specific ligands is discussed.

  4. Machine Learning Based Dimensionality Reduction Facilitates Ligand Diffusion Paths Assessment: A Case of Cytochrome P450cam.

    PubMed

    Rydzewski, J; Nowak, W

    2016-04-12

    In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand-protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [ Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015 , 143 ( 12 ), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam-camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.

  5. The Chemical Composition of Essential Oils from Cinnamomum camphora and Their Insecticidal Activity against the Stored Product Pests.

    PubMed

    Guo, Shanshan; Geng, Zhufeng; Zhang, Wenjuan; Liang, Junyu; Wang, Chengfang; Deng, Zhiwei; Du, Shushan

    2016-11-04

    To investigate the chemical composition and insecticidal activity of the essential oils of certain Chinese medicinal herbs and spices, the essential oils were extracted from the stem barks, leaves, and fruits of Cinnamomum camphora (L.) Presl, which were found to possess strong fumigant toxicity against Tribolium castaneum and Lasioderma serricorne adults. The essential oils of the plants were extracted by the method of steam distillation using a Clavenger apparatus. Their composition was determined by gas chromatography/mass spectrometric (GC-MS) analyses (HP-5MS column), and their insecticidal activity was measured by seal-spaced fumigation. D-camphor (51.3%), 1,8-cineole (4.3%), and α-terpineol (3.8%), while D-camphor (28.1%), linalool (22.9%), and 1,8-cineole (5.3%) were the main constituents of its fruits. The essential oils of the C. camphora all showed fumigant and contact toxicity. Other compounds exhibited various levels of bioactivities. The results indicate that the essential oils of C. camphora and its individual compounds can be considered a natural resource for the two stored-product insect management.

  6. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plants of western Himalaya.

    PubMed

    Stappen, Iris; Wanner, Jürgen; Tabanca, Nurhayat; Wedge, David E; Ali, Abbas; Khan, Ikhlas A; Kaul, Vijay K; Lal, Brij; Jaitak, Vikas; Gochev, Velizar; Girova, Tania; Stoyanova, Albena; Schmidt, Erich; Jirovetz, Leopold

    2014-08-01

    Artemisia species possess pharmacological properties that are used for medical purposes worldwide. In this paper, the essential oils from the aerial parts of Artemisia nilagirica and Artemisia maritima from the western Indian Himalaya region are described. The main compounds analyzed by simultaneous GC/MS and GC/FID were camphor and 1,8-cineole from A. maritima, and camphor and artemisia ketone from A. nilagirica. Additionally, the oils were evaluated for their antibacterial, antifungal, mosquito biting deterrent, and larvicidal activities. A. nilagirica essential oil demonstrated nonselective antifungal activity against plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides, whereas A. maritima did not show antifungal activity. Both Artemisia spp. exhibited considerable mosquito biting deterrence, whereas only A. nilagirica showed larvicidal activity against Aedes aegypti. Antibacterial effects assessed by an agar dilution assay demonstrated greater activity of A. maritima essential oil against Staphylococcus aureus and Pseudomonas aeruginosa compared to A. nilagirica.

  7. Essential-oil diversity of Salvia tomentosa Mill. in Greece.

    PubMed

    Hanlidou, Effie; Karousou, Regina; Lazari, Diamanto

    2014-08-01

    Salvia tomentosa essential oils from Greece were studied for the first time here. The oils from five populations growing in Mediterranean pine forests on the island of Thassos (northern Aegean Sea) and from 14 populations situated in deciduous forests in Thrace (northeastern Greek mainland) were investigated. Their essential-oil contents ranged from 1.1 to 3.3% (v/w, based on the dry weight of the plant material). The populations from Thassos had high contents of α-pinene (18.0 ± 2.9%), 1,8-cineole (14.7 ± 3.0%), cis-thujone (14.0 ± 6.9%), and borneol (12.8 ± 2.2%) and smaller amounts of camphene, camphor, and β-pinene, whereas the populations from Thrace showed high α-pinene (16.7 ± 4.0%), β-pinene (22.8 ± 4.5%), camphor (18.3 ± 4.3%), and camphene (10.3 ± 2.4%) contents, much lower 1,8-cineole and borneol amounts, while cis-thujone was completely lacking. The comparison of the present results with published data showed that oils having cis-thujone as one of the main compounds were reported for the first time here. Multivariate statistical analyses indicate that the observed essential-oil variation was related to geographical and environmental factors.

  8. Theoretical description of circular dichroism in photoelectron angular distributions of randomly oriented chiral molecules after multi-photon photoionization

    NASA Astrophysics Data System (ADS)

    Goetz, R. E.; Isaev, T. A.; Nikoobakht, B.; Berger, R.; Koch, C. P.

    2017-01-01

    Photoelectron circular dichroism refers to the forward/backward asymmetry in the photoelectron angular distribution with respect to the propagation axis of circularly polarized light. It has recently been demonstrated in femtosecond multi-photon photoionization experiments with randomly oriented camphor and fenchone molecules [C. Lux et al., Angew. Chem., Int. Ed. 51, 4755 (2012) and C. S. Lehmann et al., J. Chem. Phys. 139, 234307 (2013)]. A theoretical framework describing this process as (2+1) resonantly enhanced multi-photon ionization is constructed, which consists of two-photon photoselection from randomly oriented molecules and successive one-photon ionization of the photoselected molecules. It combines perturbation theory for the light-matter interaction with ab initio calculations for the two-photon absorption and a single-center expansion of the photoelectron wavefunction in terms of hydrogenic continuum functions. It is verified that the model correctly reproduces the basic symmetry behavior expected under exchange of handedness and light helicity. When applied to fenchone and camphor, semi-quantitative agreement with the experimental data is found, for which a sufficient d wave character of the electronically excited intermediate state is crucial.

  9. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia.

    PubMed

    Sarker, Lukman S; Galata, Mariana; Demissie, Zerihun A; Mahmoud, Soheil S

    2012-12-15

    Several varieties of Lavandula x intermedia (lavandins) are cultivated for their essential oils (EOs) for use in cosmetic, hygiene and personal care products. These EOs are mainly constituted of monoterpenes including camphor, which contributes an off odor reducing the olfactory appeal of the oil. We have recently constructed a cDNA library from the glandular trichomes (the sites of EO synthesis) of L. x intermedia plants. Here, we describe the cloning of a borneol dehydrogenase cDNA (LiBDH) from this library. The 780 bp open reading frame of the cDNA encoded a 259 amino acid short chain alcohol dehydrogenase with a predicted molecular mass of ca. 27.5 kDa. The recombinant LiBDH was expressed in Escherichia coli, purified by Ni-NTA agarose affinity chromatography, and functionally characterized in vitro. The bacterially produced enzyme specifically converted borneol to camphor as the only product with K(m) and k(cat) values of 53 μM and 4.0 × 10(-4) s(-1), respectively. The LiBDH transcripts were specifically expressed in glandular trichomes of mature flowers indicating that like other Lavandula monoterpene synthases the expression of this gene is regulated in a tissue-specific manner. The cloning of LiBDH has far reaching implications in improving the quality of Lavandula EOs through metabolic engineering.

  10. Chemical composition and antimicrobial activity of the essential oils of Lavandula stoechas L. ssp. stoechas growing wild in Turkey.

    PubMed

    Kirmizibekmez, Hasan; Demirci, Betül; Yeşilada, Erdem; Başer, K Hüsnü Can; Demirci, Fatih

    2009-07-01

    The chemical compositions of the essential oils obtained by hydrodistillation from the dried leaves and flowers of Lavandula stoechas L. ssp. stoechas were separately identified by GC-FID and GC-MS analyses. The main components were alpha-fenchone (41.9 +/- 1.2%), 1,8-cineole (15.6 +/- 0.8%), camphor (12.1 +/- 0.5%), and viridiflorol (4.1 +/- 0.4%) in the leaves; and alpha-fenchone (39.2 +/- 0.9%), myrtenyl acetate (9.5 +/- 0.4%), alpha-pinene (6.1 +/- 0.09%), camphor (5.9 +/- 0.05%) and 1,8-cineole (3.8 +/- 0.1%) in the flowers. Overall, 55 and 66 constituents were identified in the leaf and flower essential oils representing more than 90% and 94% of the total, respectively. In addition, the essential oils were evaluated for their antibacterial and anticandidal activities by broth microdilution. The flower essential oil was found to be relatively more active than the leaf oil towards the tested pathogenic microorganisms. Methicillin-resistant Staphylococcus aureus was more susceptible to the flower oil (MIC = 31.2 microg/mL). The oils, evaluated for their free radical scavenging activity using a TLC-DPPH assay, were inactive at a concentration of 2 mg/mL.

  11. Comparing the effect of sub-critical water extraction with conventional extraction methods on the chemical composition of Lavandula stoechas.

    PubMed

    Giray, E Sultan; Kirici, Saliha; Kaya, D Alpaslan; Türk, Murat; Sönmez, Ozgür; Inan, Memet

    2008-01-15

    The volatile extract composition of Lavandula stoechas flowers obtained by hydrodistillation (HD), subcrtical water extraction (SbCWE) and organic solvent extraction under ultrasonic irradiation (USE) were estimated by gas chromatography-mass spectrometry (GC-MS). One hundred and twenty four components were detected in SbCWE extracts while 94 and 65 signals were gained from HD and USE extracts, respectively. Most of the constituents were identified. The major compounds in all three extracts were fenchon, camphor, myrtenyl acetate, myrtenol and 1,8-cineol, but they differ in quantitatively. The total monoterpene hydrocarbons are higher in HD and USE extracts than those of SbCWE extract. However, SbCWE extract had higher concentration of light oxygenated compounds which contributes to the fragrance of the oil in a major extension. Heavy-oxygenated compounds was also in higher abundance in SbCWE extract (9.90%) than those of HD and USE extracts (3.19 and 4.78%, respectively). Effect of temperature on the extraction yield of SbCWE was investigated and while oil yield was increasing with an increase in temperature, a decrease in the extraction ability of sub-critical water toward the more polar compounds such as, 1,8-cineol, camphor and fenchon, was observed. Kinetic studies shown that SbCWE is clearly quicker than conventional alternatives. Most of components of volatile compounds were extracted at 15min.

  12. Preparation and In Vitro/In Vivo Characterization of Porous Sublingual Tablets Containing Ternary Kneaded Solid System of Vinpocetine with β-Cyclodextrin and Hydroxy Acid

    PubMed Central

    Aburahma, Mona H.; El-Laithy, Hanan M.; Hamza, Yassin El-Said

    2010-01-01

    The demand for sublingual tablets has been growing during the previous decades especially for drugs with extensive hepatic first-pass metabolism. Vinpocetine, a widely used neurotropic agent, has low oral bioavailability due to its poor aqueous solubility and marked first-pass metabolism. Accordingly, the aim of this work was to develop tablets for the sublingual delivery of vinpocetine. Initially, the feasibility of improving vinpocetine’s poor aqueous solubility by preparing kneaded solid systems of the drug with β-Cyclodextrin and hydroxy acids (citric acid and tartaric acid) was assessed. The solid system with improved solubility and dissolution properties was incorporated into porous tablets that rapidly disintegrate permitting fast release of vinpocetine into the sublingual cavity. The pores were induced into these tablets by directly compressing the tablets’ excipients with a sublimable material, either camphor or menthol, which was eventually sublimated leaving pores. The obtained results demonstrated that the tablets prepared using camphor attained sufficient mechanical strength for practical use together with rapid disintegration and dissolution. In vivo absorption study performed in rabbits indicated that the sublingual administration of the proposed porous tablets containing vinpocetine solid system with β-Cyclodextrin and tartaric acid could be useful for therapeutic application. PMID:21179352

  13. Detection of substrate-dependent conformational changes in the P450 fold by nuclear magnetic resonance

    PubMed Central

    Colthart, Allison M.; Tietz, Drew R.; Ni, Yuhua; Friedman, Jessica L.; Dang, Marina; Pochapsky, Thomas C.

    2016-01-01

    Cytochrome P450 monooxygenases typically catalyze the insertion of one atom of oxygen from O2 into unactivated carbon-hydrogen and carbon-carbon bonds, with concomitant reduction of the other oxygen atom to H2O by NAD(P)H. Comparison of the average structures of the camphor hydroxylase cytochrome P450cam (CYP101) obtained from residual dipolar coupling (RDC)-restrained molecular dynamics (MD) in the presence and absence of substrate camphor shows structural displacements resulting from the essential collapse of the active site upon substrate removal. This collapse has conformational consequences that extend across the protein structure, none of which were observed in analogous crystallographic structures. Mutations were made to test the involvement of the observed conformational changes in substrate binding and recognition. All of the mutations performed based upon the NMR-detected perturbations, even those remote from the active site, resulted in modified substrate selectivity, enzyme efficiency and/or haem iron spin state. The results demonstrate that solution NMR can provide insights into enzyme structure-function relationships that are difficult to obtain by other methods. PMID:26911901

  14. Chemical and biological diversity in fourteen selections of four Ocimum species.

    PubMed

    Rao, Bhaskaruni R Rajeswara; Kotharia, Sushil K; Rajput, Dharmendra K; Patel, Rajendra P; Darokar, Mahendra P

    2011-11-01

    Biomass, essential oil yield, essential oil composition diversity, and antibacterial and antifungal activities of 14 selections of 4 Ocimum species [Ocimum basilicum L. (selections: T1-T10), O. gratissimum L. (selections: T11-T12), O. tenuiflorum L.f., syn. O. sanctum L. (selection: T13) and O. kilimandscharicum Baker ex. Guerke (selection: T14)] were investigated. O. basilicum selections T9 (methyl chavicol: 87.0%) and T10 {(Z)- and (E)-methyl cinnamate: 69.1%} produced higher biomass (67.8 and 56.7 t/ha) and oil (203.4 and 141.7 kg/ha) yields relative to 8 (T1-T8) linalool (up to 58.9%), or methyl chavicol (up to 61.8%) rich selections. O. gratissimum selection T12 (eugenol: 84.1%, 254.6 kg/ha oil yield) was significantly superior to T11 (62.1% eugenol and 18.4% camphor). O. tenuiflorum (T13, methyl eugenol: 72.5%) and O. kilimandscharicum (T14, camphor: 51.7%) produced 171.7 and 96.2 kg/ha essential oil, respectively. The essential oils exhibited broad spectrum antibacterial (against 5 Gram-positive and 7 Gram-negative bacteria) and antifungal (against 10 fungi) activities. The bacterial species Bacillus subtilis, Staphylococcus aureus, Streptococcus mutans, and Enterococcus faecalis, and the fungal species Epidermophyton floccosum, Microsporum gypseum, and Sporothrix schenckii were more sensitive to the essential oils.

  15. Insecticidal Potential of Defense Metabolites from Ocimum kilimandscharicum against Helicoverpa armigera

    PubMed Central

    Thulasiram, Hirekodathakallu V.; Kulkarni, Mahesh J.; Giri, Ashok P.

    2014-01-01

    Genus Ocimum contains a reservoir of diverse secondary metabolites, which are known for their defense and medicinal value. However, the defense-related metabolites from this genus have not been studied in depth. To gain deeper insight into inducible defense metabolites, we examined the overall biochemical and metabolic changes in Ocimum kilimandscharicum that occurred in response to the feeding of Helicoverpa armigera larvae. Metabolic analysis revealed that the primary and secondary metabolism of local and systemic tissues in O. kilimandscharicum was severely affected following larval infestation. Moreover, levels of specific secondary metabolites like camphor, limonene and β-caryophyllene (known to be involved in defense) significantly increased in leaves upon insect attack. Choice assays conducted by exposing H. armigera larvae on O. kilimandscharicum and tomato leaves, demonstrated that O. kilimandscharicum significantly deters larval feeding. Further, when larvae were fed on O. kilimandscharicum leaves, average body weight decreased and mortality of the larvae increased. Larvae fed on artificial diet supplemented with O. kilimandscharicum leaf extract, camphor, limonene and β-caryophyllene showed growth retardation, increased mortality rates and pupal deformities. Digestive enzymes of H. armigera - namely, amylase, protease and lipase- showed variable patterns after feeding on O. kilimandscharicum, which implies striving of the larvae to attain required nutrition for growth, development and metamorphosis. Evidently, selected metabolites from O. kilimandscharicum possess significant insecticidal activity. PMID:25098951

  16. GC×GC-TOFMS Analysis of Essential Oils Composition from Leaves, Twigs and Seeds of Cinnamomum camphora L. Presl and Their Insecticidal and Repellent Activities.

    PubMed

    Jiang, Hao; Wang, Jin; Song, Li; Cao, Xianshuang; Yao, Xi; Tang, Feng; Yue, Yongde

    2016-03-28

    Interest in essential oils with pesticidal activity against insects and pests is growing. In this study, essential oils from different parts (leaves, twigs and seeds) of Cinnamomum camphora L. Presl were investigated for their chemical composition, and insecticidal and repellent activities against the cotton aphid. The essential oils, obtained by hydrodistillation, were analyzed by GC×GC-TOFMS. A total of 96 components were identified in the essential oils and the main constituents found in the leaves and twigs were camphor, eucalyptol, linalool and 3,7-dimethyl-1,3,7-octatriene. The major components found in the seeds were eucalyptol (20.90%), methyleugenol (19.98%), linalool (14.66%) and camphor (5.5%). In the contact toxicity assay, the three essential oils of leaves, twigs and seeds exhibited a strong insecticidal activity against cotton aphids with LC50 values of 245.79, 274.99 and 146.78 mg/L (after 48 h of treatment), respectively. In the repellent assay, the highest repellent rate (89.86%) was found in the seed essential oil at the concentration of 20 μL/mL after 24 h of treatment. Linalool was found to be a significant contributor to the insecticidal and repellent activities. The results indicate that the essential oils of C. camphora might have the potential to be developed into a natural insecticide or repellent for controlling cotton aphids.

  17. Analysis of the major chiral compounds of Artemisia herba-alba essential oils (EOs) using reconstructed vibrational circular dichroism (VCD) spectra: En route to a VCD chiral signature of EOs.

    PubMed

    Said, Mohammed El-Amin; Vanloot, Pierre; Bombarda, Isabelle; Naubron, Jean-Valère; Dahmane, El Montassir; Aamouche, Ahmed; Jean, Marion; Vanthuyne, Nicolas; Dupuy, Nathalie; Roussel, Christian

    2016-01-15

    An unprecedented methodology was developed to simultaneously assign the relative percentages of the major chiral compounds and their prevailing enantiomeric form in crude essential oils (EOs). In a first step the infrared (IR) and vibrational circular dichroism (VCD) spectra of the crude essential oils were recorded and in a second step they were modelized as a linear weighted combination of the IR and VCD spectra of the individual spectra of pure enantiomer of the major chiral compounds present in the EOs. The VCD spectra of enantiomer of known enantiomeric excess shall be recorded if they are not yet available in a library of VCD spectra. For IR, the spectra of pure enantiomer or racemic mixture can be used. The full spectra modelizations were performed using a well known and powerful mathematical model (least square estimation: LSE) which resulted in a weighting of each contributing compound. For VCD modelization, the absolute value of each weighting represented the percentage of the associate compound while the attached sign addressed the correctness of the enantiomeric form used to build the model. As an example, a model built with the non-prevailing enantiomer will show a negative sign of the weighting value. For IR spectra modelization, the absolute value of each weighting represented the percentage of the compounds without of course accounting for the chirality of the prevailing enantiomers. Comparison of the weighting values issuing from IR and VCD spectra modelizations is a valuable source of information: if they are identical, the EOs are composed of nearly pure enantiomers, if they are different the chiral compounds of the EOs are not in an optically pure form. The method was applied on four samples of essential oil of Artemisia herba-alba in which the three major compounds namely (-)-α-thujone, (+)-β-thujone and (-)-camphor were found in different proportions as determined by GC-MS and chiral HPLC using polarimetric detector. In order to validate the

  18. Vapor phase toxicity of marjoram oil compounds and their related monoterpenoids to Blattella germanica (Orthoptera: Blattellidae).

    PubMed

    Jang, Young-Su; Yang, Young-Cheol; Choi, Dal-Soon; Ahn, Young-Joon

    2005-10-05

    The toxicity of marjoram, Origanum majorana L., oil, 41 monoterpenoids, and 2 sesquiterpenoids against adult females of the German cockroach, Blattella germanica L., was examined using direct contact and vapor phase toxicity bioassays and compared with those of deltamethrin, dichlorvos, permethrin, and propoxur, four commonly used insecticides. In a filter-paper contact toxicity bioassay, the adulticidal activities of pulegone (0.06 mg/cm2), (+/-)-camphor (0.07 mg/cm2), and verbenone (0.07 mg/cm2) were comparable to that of permethrin (0.05 mg/cm2) but more pronounced than that of propoxur (0.18 mg/cm2), as judged by the 24-h LC50 values. These compounds were less effective than either deltamethrin (0.013 mg/cm2) or dichlorvos (0.007 mg/cm2). The toxicity of marjoram oil, thymol, alpha-terpineol, (-)-alpha-thujone, linalool, 1,8-cineole, (-)-camphor, and (+)-carvone, ranging from 0.08 to 0.18 mg/cm2, was higher than that of propoxur. In vapor phase toxicity tests, verbenone (11.48 mg/L air) was the most toxic compound followed by (-)-alpha-thujone (18.43 mg/L of air), thymol (18.76 mg/L of air), alpha-terpineol (21.89 mg/L of air), (+/-)-camphor (24.59 mg/L of air), linalool (26.20 mg/L of air), and marjoram oil (38.28 mg/L of air) on the basis of the 24-h LC50 values. Dichlorvos (0.07 mg/L of air) was the most potent fumigant. Structure-activity relationships indicate that structural characteristics, such as degrees of saturation and types of functional groups rather than types of carbon skeleton, and hydrophobicity and vapor pressure parameters appear to play a role in determining the monoterpenoid toxicities to adult B. germanica. Marjoram oil and the monoterpenoids described merit further study as potential fumigants or leads for the control of B. germanica.

  19. TOXIC ACTIVITY AND DELAYED EFFECTS OF FIVE BOTANICAL OILS ON THE FOLLOWING GENERATIONS OF AGROTIS IPSILON (HUFNAGEL) (INSECTA: LEPIDOPTERA: NOCTUIDAE) AFTER PARENTS TREATMENT.

    PubMed

    Mesbah, H A; El-Sayed, N A; El-Kady, M B; Mourad, A K; Kordy, A M; Henaidy, Z M

    2014-01-01

    The present study is carried out to evaluate the toxic efficiency and delayed effects of five botanical oils on the greasy cut worm Agrotis ipsilon (Lepidoptera: Noctuidae), as a trial for the attainment of a possible use of an alternative safe and effective phytochemicals against the insect-pest. So as to minimize or prevent the repeated usage of conventional insecticides, then reduce the environmental pollution as well as the occurring hazards to man and domestic animal due to the use of the pesticides alone. Four tested concentrations (0.5, 1.0, 1.5 and 2.5% v/v) from each of camphor, red basil, menthol, rose and anise oils, were bioassayed by treating the offered castor oil bean leaves, to the 4th instar larvae along 48h, under the laboratory higrothermic conditions of 25±2 °C and 65±5% R.H. The obtained results showed that the five tested oils were found to have more or less toxic activity and drastic effects on the inspected parameters of fitness components of the treated parent generation of the insect, in particular, pupae, emerged adult moths and laid eggs/female. In this respect camphor and red basil oils were highly effective, followed by menthol oil, anise oil and the least effective one was rose oil. Moreover, the assessed unprofitable delayed effects on the going on of the biological performance within the treated insects showed the adverse effects on the fitness components of the consequent generations (fs) post (p) one treatment with each of the bioassyed oils. The prevalence of adverse effects and disturbance in the going on biological performance through the period of (p) generation; which is followed by the distinct failure of insect development in (f1) generation were recorded for each of the tested menthol oil at 0.5 and 1.5% (v/v); camphor oil at 1.5 and 2.5% and red basil oil at 2.5% (v/v). While anise and rose oils were somewhat less efficient causing the distinct failure of the following generations up to the 3rd and/or the 6th ones

  20. Synthesis and in vitro cytotoxicity of cross-conjugated prostaglandin A and J series and their hydroxy derivatives.

    PubMed

    Żurawiński, Remigiusz; Mikołajczyk, Marian; Cieślak, Marcin; Królewska, Karolina; Kaźmierczak-Barańska, Julia

    2015-07-07

    The synthesis of two cross-conjugated prostaglandin analogues of known neurotrophic activity and their new hydroxy derivatives was accomplished starting from the diastereoisomeric (+)-camphor protected 3-[(dimethoxyphosphoryl)methyl]-4,5-dihydroxycyclopent-2-enones. The cytotoxicity of these compounds was determined against HeLa, K562, HL-60 human cancer cell lines and normal human cells (HUVEC). We found that NEPP11 and its C7-hydroxy derivative demonstrated high anticancer activity against the HeLa and HL-60 human cancer cell lines at concentrations ranging from 1 to 2 μM. Moreover, the C7-hydroxy derivative of NEPP11 displayed high cytotoxic selectivity between cancer cell lines and normal human cells. On the other hand, the J-type prostaglandin analogue of NEPP11 and its C13-hydroxy derivatives were much less toxic or nontoxic against the cancer and normal cells at concentrations up to 1 mM.

  1. Water-Quality Data, Huron County, Michigan 2004

    DTIC Science & Technology

    2005-01-01

    1689-84-5 .017 µg/L irl Corn H Caffeine 58-08-2 .0096 µg/L irl NA NA Carbaryl 63-25-2 .0284 µg/L irl Cotton I Carbofuran 1563-66-2 .0056 µg/L irl...Vegetables H Propiconazole 60207-90-1 .021 µg/L irl Fruit F Propoxur 114-26-1 .008 µg/L irl Fruit I Siduron 1982-49-6 .0168 µg/L irl Non-crop H Sulfometuron...5 µg/L irl Beverages, diuretic Camphor 76-22-2 .5 µg/L irl Flavor, odorant, ointments Carbaryl 63-25-2 1 µg/L irl Insecticides, crop and garden use

  2. The role of flavor and fragrance chemicals in TRPA1 (transient receptor potential cation channel, member A1) activity associated with allergies.

    PubMed

    Mihara, Satoru; Shibamoto, Takayuki

    2015-01-01

    TRPA1 has been proposed to be associated with diverse sensory allergic reactions, including thermal (cold) nociception, hearing and allergic inflammatory conditions. Some naturally occurring compounds are known to activate TRPA1 by forming a Michael addition product with a cysteine residue of TRPA1 through covalent protein modification and, in consequence, to cause allergic reactions. The anti-allergic property of TRPA1 agonists may be due to the activation and subsequent desensitization of TRPA1 expressed in sensory neurons. In this review, naturally occurring TRPA1 antagonists, such as camphor, 1,8-cineole, menthol, borneol, fenchyl alcohol and 2-methylisoborneol, and TRPA1 agonists, including thymol, carvacrol, 1'S-1'- acetoxychavicol acetate, cinnamaldehyde, α-n-hexyl cinnamic aldehyde and thymoquinone as well as isothiocyanates and sulfides are discussed.

  3. Growth of well-oriented VACNTs using thermal chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Yousefi, Amin Termeh; Mahmood, Mohamad Rusop; Ikeda, Shoichiro

    2016-07-01

    The remarkable properties of carbon nanotubes (CNTs) make them attractive for biosensor applications, especially for medical detecting devices. In this paper, we describe a process to grow high oriented ratio CNT arrays to improve the electrical properties of the devices based on CNTs. Chemical vapor deposition (CVD) was used to grow highly oriented CNT using camphor as the carbon source, and argon and hydrogen as carrier gases to grow perpendicular CNTs on the surface of the silicon substrate in presence of ferrocene as a metallic catalyst. Images were revealed by FESEM indicates that the formation mechanism of oriented CNTs with high morphological purity nanotubes, which is depends significantly on deposition time and applied temperature to the furnaces. This method might be an effective method to produce oriented MWCNT in different length.

  4. Antibacterial and antifungal activities of Otanthus maritimus (L.) Hoffmanns. & Link essential oil from Sicily.

    PubMed

    Basile, Adriana; Rigano, Daniela; Sorbo, Sergio; Conte, Barbara; Rosselli, Sergio; Bruno, Maurizio; Senatore, Felice

    2013-01-01

    The chemical composition of the essential oil obtained from the flowers of Otanthus maritimus L., a perennial plant growing wild in maritime sands in the Mediterranean region, was investigated by GC and GC-MS analyses. Totally 66 were identified. The oil was dominated by the high content of monoterpene compounds, especially oxygenated monoterpenes which accounted for 73.1%. The most abundant components were yomogi alcohol (20.8%), camphor (15.8%), artemisyl acetate (15.3%) and artemisia alcohol (13.7%). The oil was tested against two Gram (+) and six Gram (-) bacterial strains, both American Type Culture Collection standard strains and clinically isolated (CI), one potentially pathogenic yeast (Candida albicans CI) and two filamentous phytopathogenic fungi (Botrytis cinerea and Rhizoctonia solani). The results show that the oil from O. maritimus exerts strong antibacterial and antifungal activities.

  5. High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior.

    PubMed

    Sansukcharearnpon, Aurapan; Wanichwecharungruang, Supason; Leepipatpaiboon, Natchanun; Kerdcharoen, Teerakiat; Arayachukeat, Sunatda

    2010-05-31

    The six fragrances, camphor, citronellal, eucalyptol, limonene, menthol and 4-tert-butylcyclohexyl acetate, which represent different chemical functionalities, were encapsulated with a polymer-blend of ethylcellulose (EC), hydroxypropyl methylcellulose (HPMC) and poly(vinyl alcohol) (PV(OH)) using solvent displacement (ethanol displaced by water). The process gave >or=40% fragrance loading capacity with >or=80% encapsulation efficiency at the fragrance to polymer weight ratio of 1:1 and at initial polymer concentrations of 2000-16,000 ppm and the obtained fragrance-encapsulated spheres showed hydrodynamic diameters of less than 450 nm. The release profile of the encapsulated fragrances, evaluated by both thermal gravimetric and electronic nose techniques, indicated different release characteristics amongst the six encapsulated fragrances. Limonene showed the fastest release with essentially no retention by the nanoparticles, while eucalyptol and menthol showed the slowest release.

  6. IR and py/GC/MS examination of amber relics excavated from 6th century royal tomb in Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Park, Jongseo; Yun, Eunyoung; Kang, Hyungtae; Ahn, Jooyoung; Kim, Gyuho

    2016-08-01

    Relics of amber were excavated from King Muryeong's tomb constructed in the 6th century on the Korean peninsula. To estimate the provenance, FTIR (Fourier transform infrared spectroscopy) and py/GC/MS (pyrolysis/gas chromatography/mass spectrometry) analysis were utilized. The reference Baltic amber sample was also analyzed with the same method for comparison. The relics were confirmed to be amber from the FTIR analysis where an absorption band near 1150 cm- 1, characteristic one in Baltic amber, was also observed. In py/GC/MS analysis, pyrolyzed products like butanedioic acid and dehydroabietic acid, known constituents of amber, were observed. In addition, D-fenchyl alcohol, camphor, borneol and butanedioic acid, typical constituents of Baltic amber, were observed in some samples. From this, it appears that some of relics were made from Baltic amber and that Baltic amber was transported to the Korean peninsula in the time of tomb construction.

  7. The de novo design of median molecules within a property range of interest.

    PubMed

    Brown, Nathan; McKay, Ben; Gasteiger, Johann

    2004-12-01

    In this paper an application is presented of the median molecule workflow to the de novo design of novel molecular entities with a property profile of interest. Median molecules are structures that are optimised to be similar to a set of existing molecules of interest as an approach for lead exploration and hopping. An overview of this workflow is provided together with an example of an instance using the similarity to camphor and menthol as objectives. The methodology of the experiments is defined and the workflow is applied to designing novel molecules for two physical property datasets: mean molecular polarisability and aqueous solubility. This paper concludes with a discussion of the characteristics of this method.

  8. Does antioxidant properties of the main component of essential oil reflect its antioxidant properties? The comparison of antioxidant properties of essential oils and their main components.

    PubMed

    Dawidowicz, Andrzej L; Olszowy, Małgorzata

    2014-01-01

    This study discusses the similarities and differences between the antioxidant activities of some essential oils: thyme (Thymus vulgaris), basil (Ocimum basilicum), peppermint (Mentha piperita), clove (Caryophyllus aromaticus), summer savory (Satureja hortensis), sage (Salvia hispanica) and lemon (Citrus limon (L.) Burm.) and of their main components (thymol or estragole or menthol or eugenol or carvacrol or camphor or limonene) estimated by using 2,2'-Diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and β-carotene bleaching assays. The obtained data show that the antioxidant properties of essential oil do not always depend on the antioxidant activity of its main component, and that they can be modulated by their other components. The conclusions concerning the interaction of essential oil components depend on the type of method applied for assessing the antioxidant activity. When comparing the antioxidant properties of essential oils and their main components, the concepts of synergism, antagonism and additivity are very relevant.

  9. 1,2-diketones promoted degradation of poly(epsilon-caprolactone)

    SciTech Connect

    Danko, Martin; Borska, Katarina; Ragab, Sherif Shaban; Janigova, Ivica; Mosnacek, Jaroslav

    2012-07-11

    Photochemical reactions of Benzil and Camphorquinone were used for modification of poly({epsilon}-caprolactone) polymer films. Photochemistry of dopants was followed by infrared spectroscopy, changes on polymer chains of matrix were followed by gel permeation chromatography. Benzoyl peroxide was efficiently photochemically generated from benzyl in solid polymer matrix in the presence of air. Following decomposition of benzoyl peroxide led to degradation of matrix. Photochemical transformation of benzil in vacuum led to hydrogen abstraction from the polymer chains in higher extent, which resulted to chains recombination and formation of gel. Photochemical transformation of camphorquinone to corresponding camphoric peroxide was not observed. Only decrease of molecular weight of polymer matrix doped with camphorquinone was observed during the irradiation.

  10. Chemical composition of the essential oil from basil (Ocimum basilicum Linn.) and its in vitro cytotoxicity against HeLa and HEp-2 human cancer cell lines and NIH 3T3 mouse embryonic fibroblasts.

    PubMed

    Kathirvel, Poonkodi; Ravi, Subban

    2012-01-01

    This study examines the chemical composition and in vitro anticancer activity of the essential oil from Ocimum basilicum Linn. (Lamiaceae), cultivated in the Western Ghats of South India. The chemical compositions of basil fresh leaves were identified by GC-MS: 11 components were identified. The major constituents were found to be methyl cinnamate (70.1%), linalool (17.5%), β-elemene (2.6%) and camphor (1.52%). The results revealed that this plant may belong to the methyl cinnamate and linalool chemotype. A methyl thiazol tetrazolium assay was used for in vitro cytotoxicity screening against the human cervical cancer cell line (HeLa), human laryngeal epithelial carcinoma cell line (HEp-2) and NIH 3T3 mouse embryonic fibroblasts. The IC(50) values obtained were 90.5 and 96.3 µg mL(-1), respectively, and the results revealed that basil oil has potent cytotoxicity.

  11. Tolerance of β-diketone hydrolases as representatives of the crotonase superfamily towards organic solvents.

    PubMed

    Siirola, Elina; Grischek, Barbara; Clay, Dorina; Frank, Annika; Grogan, Gideon; Kroutil, Wolfgang

    2011-12-01

    Crotonase superfamily enzymes catalyze a wide variety of reactions, including hydrolytic C-C bond cleavage in symmetrical β-diketones by 6-oxo camphor hydrolase (OCH) from Rhodococcus sp. The organic solvent tolerance and temperature stability of OCH and its structurally related ortholog Anabaena β-diketone hydrolase have been investigated. Both enzymes showed excellent tolerance toward organic solvents; for instance, even in the presence of 80% (v/v) THF or dioxane, OCH was still active. In most solvent mixtures, except methanol, the stereospecificity was conserved (>99% e.e. of product), hence neither the type of solvent nor its concentration appeared to have an effect on the stereoselectivity of the enzyme. Attempts to correlate the observed activities with log P, functional solvent group or denaturing capacity (DC) of the solvent were only successful in the case of DC for water miscible solvents. This study represents the first investigation of organic solvent stability for members of the crotonase superfamily.

  12. A practical catalytic asymmetric addition of alkyl groups to ketones.

    PubMed

    García, Celina; LaRochelle, Lynne K; Walsh, Patrick J

    2002-09-18

    Many catalysts will promote the asymmetric addition of alkylzinc reagents to aldehydes. In contrast, there are no reports of additions to ketones that are both general and highly enantioselective. We describe herein a practical catalytic asymmetric addition of ethyl groups to ketones. The catalyst is derived from reaction of camphor sulfonyl chloride and trans-1,2-diaminocyclohexane. The resulting diketone is reduced with NaBH4 to give the C2-symmetric exo diastereomer. Use of this ligand with titanium tetraisopropoxide and dialkylzinc at room temperature results in enantioselective addition of the alkyl group to the ketone. The resulting tertiary alcohols are isolated with high enantiomeric excess (all cases give greater than 87% ee, except one). The reaction has been run with 37 mmol (5 g) 3-methylacetophenone and 2 mol % catalyst to afford 73% yield of the resulting tertiary alcohol with 99% ee.

  13. [Regulation of terpene metabolism]. Progress report, [March 15, 1993--March 14, 1994

    SciTech Connect

    Croteau, R.

    1994-03-01

    Many lines of evidence suggest that the cyclases ((+){minus}bornyl pyrophosphate cyclases and ({minus}){minus}limonene cyclases) catalyze the rate-limiting steps of monoterpene biosynthesis in sage and mint, respectively. Similar evidence indicates that camphor hydroxylase, and the reductases that control the disposition of methone, are the critical steps of monoterpene catabolism in these systems. Related studies, based on in vitro assay of enzyme activities, have suggested that the accumulation and the compartmentation of these processes. Further studies directed toward localizing the pathways and determining the relevant protein and transcript levels require pure enzymes for antibody preparation and amino determining the relevant protein and transcript levels require pure enzymes for antibody preparation and amino acid sequence determination.

  14. Variation of terpenes in milk and cultured cream from Norwegian alpine rangeland-fed and in-door fed cows.

    PubMed

    Borge, Grethe Iren A; Sandberg, Ellen; Øyaas, Jorun; Abrahamsen, Roger K

    2016-05-15

    The terpene content of milk and cream made from milk obtained from cows fed indoors, and by early or late grazing, in alpine rangeland farms in Norway, were analysed for three consecutive years. The main terpenes identified and semi-quantified were the monoterpenes β-pinene, α-pinene, α-thujene, camphene, sabinene, δ-3-carene, d-limonene, γ-terpinene, camphor, β-citronellene, and the sesquiterpene β-caryophyllene. The average total terpene content increased five times during the alpine rangeland feeding period. The terpenes α-thujene, sabinene, γ-terpinene and β-citronellene were only detected in milk and cultured cream from the alpine rangeland feeding period and not in samples from the indoors feeding period. These four terpenes could be used, as indicators, to show that milk and cultured cream originate from the alpine rangeland feeding period. The terpenes did not influence the sensorial quality of the milk or the cultured cream.

  15. METHOD FOR PRODUCING CEMENTED CARBIDE ARTICLES

    DOEpatents

    Onstott, E.I.; Cremer, G.D.

    1959-07-14

    A method is described for making molded materials of intricate shape where the materials consist of mixtures of one or more hard metal carbides or oxides and matrix metals or binder metals thereof. In one embodiment of the invention 90% of finely comminuted tungsten carbide powder together with finely comminuted cobalt bonding agent is incorporated at 60 deg C into a slurry with methyl alcohol containing 1.5% paraffin, 3% camphor, 3.5% naphthalene, and 1.8% toluene. The compact is formed by the steps of placing the slurry in a mold at least one surface of which is porous to the fluid organic system, compacting the slurry, removing a portion of the mold from contact with the formed object and heating the formed object to remove the remaining organic matter and to sinter the compact.

  16. Volatile Components of the Essential Oil of Artemisia montana and Their Sedative Effects.

    PubMed

    Kunihiro, Kento; Myoda, Takao; Tajima, Noriaki; Gotoh, Kotaro; Kaneshima, Tai; Someya, Takao; Toeda, Kazuki; Fujimori, Takane; Nishizawa, Makoto

    2017-04-04

    The sedative effects of volatile components in the essential oil of Artemisia montana ("Yomogi") were investigated and measured using gas chromatography-mass spectrometry (GC-MS). Major components identified included 1,8-cineol, camphor, borneol, α-piperitone, and caryophyllene oxide. Among them, 1,8-cineol exhibited the highest flavor dilution (FD) value in an aroma extract dilution analysis (AEDA), followed by borneol, o-cymene, β-thujone, and bornyl acetate. The sedative effects of yomogi oil aroma were evaluated by sensory testing, analysis of salivary α-amylase activity, and measurement of relative fluctuation of oxygenated hemoglobin concentration in the brain using near-infrared spectroscopy (NIRS). All results indicated the stress-reducing effects of the essential oil following nasal exposure, and according to the NIRS analysis, 1,8-cineol is likely responsible for the sedative effects of yomogi oil.

  17. Recent Advances on Endocrine Disrupting Effects of UV Filters

    PubMed Central

    Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin

    2016-01-01

    Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives. PMID:27527194

  18. RAPD and phytochemical analysis of Thymus moroderi plantlets after cryopreservation.

    PubMed

    Marco-Medina, Ana; Casas, José Luis

    2013-01-01

    Cryopreservation is at present the most reliable strategy to preserve plant germplasm. When aromatic plants are the object of conservation it is necessary to assess not only the genetic but also the phytochemical stability to ensure that plant material maintains its qualities after storage. In this work we present molecular and phytochemical stability data related to a previously described vitrification-based cryopreservation protocol for Thymus moroderi Pau ex Martínez. RAPD markers have been used to assess the genetic stability of T. moroderi explants and revealed 0.34 percent of variation in the cryopreserved material studied. Phytochemical data collected from GC-MS analysis of dichloromethane extracts from cryopreserved plantlets rendered a profile in which 1,8-cineole (14.5 percent), camphor (5.9 percent) and borneol (5.2 percent) were the major components. Both data confirmed the suitability of the cryopreservation protocol applied.

  19. In situ and real time characterization of interface microstructure in 3D alloy solidification: benchmark microgravity experiments in the DECLIC-Directional Solidification Insert on ISS

    NASA Astrophysics Data System (ADS)

    Ramirez, A.; Chen, L.; Bergeon, N.; Billia, B.; Gu, Jiho; Trivedi, R.

    2012-01-01

    Dynamical microstructure formation and selection during solidification processing, which has a major influence on the properties in the use of elaborated materials, occur during the growth process. In situ observation of the solid-liquid interface morphology evolution is thus necessary. On earth, convection effects dominate in bulk samples and may strongly interact with microstructure dynamics and alter pattern characterization. Series of solidification experiments with 3D cylindrical sample geometry were conducted in succinonitrile (SCN) -0.24 wt%camphor (model transparent system), in microgravity environment in the Directional Solidification Insert of the DECLIC facility of CNES (French space agency) on the International Space Station (ISS). Microgravity enabled homogeneous values of control parameters over the whole interface allowing the obtaining of homogeneous patterns suitable to get quantitative benchmark data. First analyses of the characteristics of the pattern (spacing, order, etc.) and of its dynamics in microgravity will be presented.

  20. Bioactivity, proximate, mineral and volatile profiles along the flowering stages of Opuntia microdasys (Lehm.): defining potential applications.

    PubMed

    Chahdoura, Hassiba; Barreira, João C M; Fernández-Ruiz, Virginia; Morales, Patricia; Calhelha, Ricardo C; Flamini, Guido; Soković, Marina; Ferreira, Isabel C F R; Achour, Lotfi

    2016-03-01

    Opuntia spp. flowers have been traditionally used for medical purposes, mostly because of their diversity in bioactive molecules with health promoting properties. The proximate, mineral and volatile compound profiles, together with the cytotoxic and antimicrobial properties were characterized in O. microdasys flowers at different maturity stages, revealing several statistically significant differences. O. microdasys stood out mainly for its high contents of dietary fiber, potassium and camphor, and its high activities against HCT15 cells, Staphylococcus aureus, Aspergillus versicolor and Penicillium funiculosum. The vegetative stage showed the highest cytotoxic and antifungal activities, whilst the full flowering stage was particularly active against bacterial species. The complete dataset has been classified by principal component analysis, achieving clearly identifiable groups for each flowering stage, elucidating also the most distinctive features, and comprehensively profiling each of the assayed stages. The results might be useful to define the best flowering stage considering practical application purposes.

  1. Raman, IR and DFT studies of mechanism of sodium binding to urea catalyst

    NASA Astrophysics Data System (ADS)

    Kundu, Partha P.; Kumari, Gayatri; Chittoory, Arjun K.; Rajaram, Sridhar; Narayana, Chandrabhas

    2015-12-01

    Bis-camphorsulfonyl urea, a newly developed hydrogen bonding catalyst, was evaluated in an enantioselective Friedel-Crafts reaction. We observed that complexation of the sulfonyl urea with a sodium cation enhanced the selectivity of reactions in comparison to reactions performed with urea alone. To understand the role of sodium cation, we performed Infrared and Raman spectroscopic studies. The detailed band assignment of the molecule was made by calculating spectra using Density Functional theory. Our studies suggest that the binding of the cation takes place through the oxygen atoms of carbonyl and sulfonyl groups. Natural Bond Orbital (NBO) analysis shows the expected charge distribution after sodium binding. The changes in the geometrical parameter and charge distribution are in line with the experimentally observed spectral changes. Based on these studies, we conclude that binding of the sodium cation changes the conformation of the sulfonyl urea to bring the chiral camphor groups closer to the incipient chiral center.

  2. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model.

    PubMed

    Soković, Marina; Glamočlija, Jasmina; Marin, Petar D; Brkić, Dejan; van Griensven, Leo J L D

    2010-10-27

    The chemical composition and antibacterial activity of essential oils from 10 commonly consumed herbs: Citrus aurantium, C. limon, Lavandula angustifolia, Matricaria chamomilla, Mentha piperita, M. spicata, Ocimum basilicum, Origanum vulgare, Thymus vulgaris and Salvia officinalis have been determined. The antibacterial activity of these oils and their main components; i.e. camphor, carvacrol, 1,8-cineole, linalool, linalyl acetate, limonene, menthol, a-pinene, b-pinene, and thymol were assayed against the human pathogenic bacteria Bacillus subtilis, Enterobacter cloacae, Escherichia coli O157:H7, Micrococcus flavus, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enteritidis, S. epidermidis, S. typhimurium, and Staphylococcus aureus. The highest and broadest activity was shown by O. vulgare oil. Carvacrol had the highest antibacterial activity among the tested components.

  3. [Some glass instruments of Arabic alchemy].

    PubMed

    Kurzmann, Peter

    2009-01-01

    From an as yet unpublished collection, kept in the Linden Museum, Stuttgart, of some 20 Islamic glass items, 12 objects with an alchemical background have been selected and studied in detail. The most important items are two alchemical still heads which, according to an alchemical manuscript of al-Kindī, a significant 9th century Arabian philosopher, natural scientist, mathematician, physician and musician, are identified as still heads for the watersteam distillation of camphor in particular. Additionally the publication presented here features a medical utensil (probably recent), a measuring jug, a funnel, a mortar, a pestle, a test tube most probably 19th century and four small bottles--probably for perfume. Most of the objects originate in Iran, but some are from Egypt, Afghanistan and Palestine and date mainly from the 9th to the 13th century AD. Some misinterpretations and ambiguities to be found in the literature have been corrected and eliminated.

  4. The Origins of Stereoselectivity in the α-Alkylation of Chiral Hydrazones

    PubMed Central

    Krenske, Elizabeth H.; Lim, Daniel; Wengryniuk, Sarah E.

    2010-01-01

    Density functional theory calculations and experiment reveal the origin of stereoselectivity in the deprotonation–alkylation of chiral N-amino cyclic carbamate (ACC) hydrazones. When the ACC is a rigid, camphor-derived carbamate, the two conformations of the azaenolate intermediate differ in energy due to conformational effects within the oxazolidinone ring and steric interactions between the ACC and the azaenolate. An electrophile adds selectively to the less-hindered π-face of the azaenolate. Although it was earlier reported that use of ACC auxiliaries led to α-alkylated ketones with ers of 82:18 to 98:2, B3LYP calculations predict higher stereoselectivity. Direct measurement of the dr of an alkylated hydrazone prior to removal of the auxiliary confirms this prediction; the removal of the auxiliary can compromise the overall stereoselectivity of the process. PMID:21070023

  5. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina.

    PubMed

    Gillij, Y G; Gleiser, R M; Zygadlo, J A

    2008-05-01

    Mosquitoes are important vectors of diseases and nuisance pests. Repellents minimize contact with mosquitoes. Repellents based on essential oils (EO) are being developed as an alternative to DEET (N,N-diethyl-m-methylbenzamide), an effective compound that has disadvantages including toxic reactions, and damage to plastic and synthetic fabric. This work evaluated the repellency against Aedes aegypti of EO from aromatic plants that grow in Argentina: Acantholippia seriphioides, Achyrocline satureioides, Aloysia citriodora, Anemia tomentosa, Baccharis spartioides, Chenopodium ambrosioides, Eucalyptus saligna, Hyptis mutabilis, Minthostachys mollis, Rosmarinus officinalis, Tagetes minuta and Tagetes pusilla. Most EO were effective. Variations depending on geographic origin of the plant were detected. At a 90% EO concentration, A. satureoides and T. pusilla were the least repellent. At concentrations of 12.5% B. spartioides, R. officinalis and A. citriodora showed the longest repellency times. Comparisons of the principal components of each EO suggest that limonene and camphor were the main components responsible for the repellent effects.

  6. Naturally Efficient Emitters: Luminescent Organometallic Complexes Derived from Natural Products

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hua; Young, David J.

    2013-08-01

    Naturally occurring molecules offer intricate structures and functionality that are the basis of modern medicinal chemistry, but are under-represented in materials science. Herein, we review recent literature describing the use of abundant and relatively inexpensive, natural products for the synthesis of ligands for luminescent organometallic complexes used for organic light emitting diodes (OLEDs) and related technologies. These ligands are prepared from the renewable starting materials caffeine, camphor, pinene and cinchonine and, with the exception of caffeine, impart performance improvements to the emissive metal complexes and resulting OLED devices, with emission wavelengths that span the visible spectrum from blue to red. The advantages of these biologically-derived molecules include improved solution processibility and phase homogeneity, brighter luminescence, higher quantum efficiencies and lower turn-on voltages. While nature has evolved these carbon-skeletons for specific purposes, they also offer some intriguing benefits in materials science and technology.

  7. Headspace solid-phase microextraction for characterization of fragrances of lemon verbena (Aloysia triphylla) by gas chromatography-mass spectrometry.

    PubMed

    Kim, Nam-Sun; Lee, Dong-Sun

    2004-01-01

    Natural fragrances from lemon verbena (Aloysia triphylla) were studied by headspace solid phase microextraction (HS-SPME) techniques followed by gas chromatography-mass spectrometry (GC-MS), with six different fibre coatings being tested to evaluate the extraction efficiencies of several selected compounds. A total of 14 compounds were identified in the fragrances of lemon verbena. Geranial and neral were detected as major components and alpha-pinene, beta-pinene, beta-caryophyllene, and curcumene as minor components. Enantiomeric analysis of chiral compounds from lemon verbena was carried out on a chiral column. alpha-Pinene, limonene, and camphor in the fragrances emitted from lemon verbena were found in the (+), (-), and (-) forms, respectively.

  8. In vitro biological activity of Salvia leriifolia benth essential oil relevant to the treatment of Alzheimer's disease.

    PubMed

    Loizzo, Monica Rosa; Menichini, Federica; Tundis, Rosa; Bonesi, Marco; Conforti, Filomena; Nadjafi, Farsad; Statti, Giancarlo Antonio; Frega, Natale Giuseppe; Menichini, Francesco

    2009-01-01

    In this study the chemical composition, cholinesterase inhibitory property and anti-inflammatory activity of S. leriifolia Benth. essential oil was evaluated for the first time. GC and GC-MS analysis revealed the presence of camphor (10.5%), 1,8-cineole (8.6%), camphene (6.2%) and alpha-pinene (4.7%) as main constituents. S. leriifolia oil exhibited a promising antioxidant activity by DPPH assay with an IC(50) 2.26 microL/mL. Interesting cholinesterase inhibitory activity was also found with IC(50) values of 0.32 and 0.29 microL/mL for acetylcholinesterase (AChE) and butyrrylcholinesterase (BChE), respectively. Moreover, this oil inhibited LPS-induced NO production with an IC(50) value of 165 microg/mL. The absence of cytotoxicity at 1000 microg/mL was evaluated by MTT assay in 142BR cells.

  9. Chemical composition and antifungal activity of Salvia macrochlamys and Salvia recognita essential oils.

    PubMed

    Tabanca, Nurhayat; Demirci, Betul; Baser, Kemal Husnu Can; Aytac, Zeki; Ekici, Murat; Khan, Shabana I; Jacob, Melissa R; Wedge, David E

    2006-09-06

    Essential oils of Salvia macrochlamys and Salvia recognita were obtained by hydrodistillation of dried aerial parts and characterized by gas chromatography and gas chromatography-mass spectrometry. One hundred and twenty identified constituents representing 97.7% in S. macrochlamys and 96.4% in S. recognita were characterized, and 1,8-cineole, borneol, and camphor were identified as major components of the essential oils. The oils were evaluated for their antimalarial, antimicrobial, and antifungal activities. Antifungal activity of the essential oils from both Salvia species was nonselective at inhibiting growth and development of reproductive stroma of the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. S. macrochlamys oil had good antimycobacterial activity against Mycobacterium intracellulare; however, the oils showed no antimicrobial activity against human pathogenic bacteria or fungi up to a concentration of 200 microg/mL. S. recognita oil exhibited a weak antimalarial activity against Plasmodium falciparum.

  10. Composition of the essential oil of Salvia officinalis L. from various European countries.

    PubMed

    Raal, Ain; Orav, Anne; Arak, Elmar

    2007-05-01

    Variations in the essential oil composition of Salvia officinalis L. growing in Estonia and in other European countries were determined. The oils were obtained in yields of 2.2-24.8 mL kg(-1). In three samples, the content of essential oil did not conform to the EP standard (10 mL kg(-1)). Variations in the essential oil composition of sage were studied using capillary gas chromatographic methods. A total of 40 components were identified. The principal components in the sage oils were 1,8-cineole, camphor, alpha-thujone, beta-thujone, borneol, and viridiflorol. The chemotypes of sage were not determined in investigated samples. The concentration of the main compounds in the drugs cultivated in Estonia varied in about the same range as the concentrations of these compounds in the oils of drugs obtained from other countries. The comparatively high concentration of toxic thujones seem to be characteristic to sage leaves cultivated in Estonia.

  11. Homochiral metal-organic framework used as a stationary phase for high-performance liquid chromatography.

    PubMed

    Kong, Jiao; Zhang, Mei; Duan, Ai-Hong; Zhang, Jun-Hui; Yang, Rui; Yuan, Li-Ming

    2015-02-01

    Metal-organic frameworks are promising porous materials. Chiral metal-organic frameworks have attracted considerable attention in controlling enantioselectivity. In this study, a homochiral metal-organic framework [Co(2) (D-cam)(2) (TMDPy)] (D-cam = D-camphorates, TMDPy = 4,4'-trimethylenedipyridine) with a non-interpenetrating primitive cubic net has been used as a chiral stationary phase in high-performance liquid chromatography. It has allowed the successful separation of six positional isomers and six chiral compounds. The good selectivity and baseline separation, or at least 60% valley separation, confirmed its excellent molecular recognition characteristics. The relative standard deviations for the retention time of run-to-run and column-to-column were less than 1.8 and 3.1%, respectively. These results demonstrate that [Co(2) (D-cam)(2) (TMDPy)] may represent a promising chiral stationary phase for use in high-performance liquid chromatography.

  12. Analysis of Iranian rosemary essential oil: application of gas chromatography-mass spectrometry combined with chemometrics.

    PubMed

    Jalali-Heravi, Mehdi; Moazeni, Rudabeh Sadat; Sereshti, Hassan

    2011-05-06

    This paper focuses on characterization of the components of Iranian rosemary essential oil using gas chromatography-mass spectrometry (GC-MS). Multivariate curve resolution (MCR) approach was used to overcome the problem of background, baseline offset and overlapping/embedded peaks in GC-MS. The analysis of GC-MS data revealed that sixty eight components exist in the rosemary essential oil. However, with the help of MCR this number was extended to ninety nine components with concentrations higher than 0.01%, which accounts for 98.23% of the total relative content of the rosemary essential oil. The most important constituents of the Iranian rosemary are 1,8-cineole (23.47%), α-pinene (21.74%), berbonone (7.57%), camphor (7.21%) and eucalyptol (4.49%).

  13. Exploitation of a Multienzymatic Stereoselective Cascade Process in the Synthesis of 2-Methyl-3-Substituted Tetrahydrofuran Precursors.

    PubMed

    Brenna, Elisabetta; Crotti, Michele; Gatti, Francesco G; Marinoni, Ludovico; Monti, Daniela; Quaiato, Sara

    2017-02-17

    Enantiopure 2-methyl-3-substituted tetrahydrofurans are key precursors of several biologically active products (drugs, flavors, and agrochemicals). Thus, a stereocontrolled and efficient methodology for the obtainment of these synthons is highly desirable. We exploited a two-step multienzymatic stereoselective cascade reduction of α-bromo-α,β-unsaturated ketones to give the corresponding bromohydrins in good yields, with high ee and de values. The cascade process is catalyzed by an ene-reductase and an alcohol dehydrogenase. Further manipulations of these bromohydrins, by two diastereodivergent routes, allowed the preparation of the tetrahydrofuran synthons. One route is based on a lipase catalyzed cleavage of the protecting group. The second route is characterized by a camphor sulfonic acid mediated isomerization of a β-hydroxyepoxide to give the tetrahydrofuran-2-ol. Finally, the synthesis of the most odorous and pleasant stereoisomer of the roasted meat aroma, i.e., (2S,3R)-2-methyl-3-thioacetate tetrahydrofuran, is reported as well.

  14. Antibacterial and antioxidant activity of Portuguese Lavandula luisieri (Rozeira) Rivas-Martinez and its relation with their chemical composition.

    PubMed

    Pombal, Sofia; Rodrigues, Cleide F; Araújo, João P; Rocha, Pedro M; Rodilla, Jesus M; Diez, David; Granja, Ángela P; Gomes, Arlindo C; Silva, Lúcia A

    2016-01-01

    Lavandula luisieri (Rozeira) Rivas-Martinez is an endemic aromatic Labiatae the Iberian Peninsula, common in semi-arid regions of southern Portugal and southwestern Spain, that produces an active antibacterial essential oil from the leaves and flowers. This work presents the study of the chemical variation in various stages of growth of leaves and flowers of L. luisieri. It has been found that the essential oils are mainly constituted by 1,8-cineol, camphor, linalool and trans-α-necrodil acetate. It was also studied the total phenol content and the antioxidant activity on leaves and flowers. The ethanol extraction from de leaves contents the highest total phenol, important factor for the antioxidant activity of the plant, extract. It has been studied too, the antibacterial activity against Escherichia coli, Salmonella spp. and Staphylococcus aureus. In accordance with the obtained results, the antibacterial activities stand out against Staphylococcus, of the oil of L. luisieri (leaves and flowers).

  15. Composition of the essential oils from Rocky Mountain juniper (Juniperus scopulorum), Big sagebrush (Artemisia tridentata), and White Sage (Salvia apiana).

    SciTech Connect

    Hochrein, James Michael; Irwin, Adriane Nadine; Borek, Theodore Thaddeus III

    2003-09-01

    The essential oils of Juniperus scopulorum, Artemisia tridentata, and Salvia apiana obtained by steam extraction were analyzed by GC-MS and GC-FID. For J. scopulorum, twenty-five compounds were identified which accounts for 92.43% of the oil. The primary constituents were sabinene (49.91%), {alpha}-terpinene (9.95%), and 4-terpineol (6.79%). For A. tridentata, twenty compounds were identified which accounts for 84.32% of the oil. The primary constituents were camphor (28.63%), camphene (16.88%), and 1,8-cineole (13.23%). For S. apiana, fourteen compounds were identified which accounts for 96.76% of the oil. The primary component was 1,8-cineole (60.65%).

  16. Formulation and evaluation of Cetirizine dihydrochloride orodispersible tablet.

    PubMed

    Subramanian, S; Sankar, V; Manakadan, Asha Asokan; Ismail, Sareena; Andhuvan, G

    2010-04-01

    Cetirizine orodispersible tablets were prepared to achieve quick onset of action and for maximum bioavailability. Tablets were prepared using cetirizine along with camphor and mannitol in the proportion of 1:1:1, 1:1:3, and 1:1:6. The flow property of granules was found to be good for the formulation CZ2 (1:1:3). The hardness and friability of all the formulations were found to be within the standard limit for orodispersible tablets. Disintegration time was found to be rapid in formulation CZ2 (1:1:3).The in vitro dissolution time was found to be 100% in 11 minutes for the formulation CZ2 (1:1:3).

  17. chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L.

    PubMed

    Angioni, Alberto; Barra, Andrea; Cereti, Elisabetta; Barile, Daniela; Coïsson, Jean Daniel; Arlorio, Marco; Dessi, Sandro; Coroneo, Valentina; Cabras, Paolo

    2004-06-02

    The chemical composition of the essential oil of the Sardinian Rosmarinus officinalis L. obtained by hydro distillation and steam\\hydro distillation was studied using GC-FID and MS. Samples were collected at different latitude and longitude of Sardinia (Italy). The yields ranged between 1.75 and 0.48% (v/w, volume/dry-weight). A total of 30 components were identified. The major compounds in the essential oil were alpha-pinene, borneol, (-) camphene, camphor, verbenone, and bornyl-acetate. Multivariate analysis carried out on chemical molecular markers, with the appraisal of chemical, pedological, and random amplified polymorphic DNA data, allows four different clusters to be distinguished. The antimicrobial and antifungal tests showed a weak activity of Sardinian rosemary. On the other hand, an inductive effect on fungal growth, especially toward Fusarium graminearum was observed.

  18. Essential oil composition of Achillea clusiana from Bulgaria.

    PubMed

    Trendafilova, Antoaneta; Todorova, Milka; Vitkova, Antonina

    2010-01-01

    The essential oil compositon of Achillea clusiana Tausch from Bulgaria has been studied by GC and GC/MS. Fifty-four components were registered, representing 92.5% of the oil. The oil was characterized by the presence of oxygenated mono- and sesquiterpenoids. The main components were beta-thujone (17.2%), 1,8-cineole (11.2%), camphor (11.1%) and alpha-thujone (7.8%). Farnesol (3.1%), nerolidol (2.7%) and oxygenated nerolidol derivatives (cabreuva oxides A-D, isohumbertiols A-D, bejarol and 7-hydroxy-6,7-dihydro-5,6E-dehydronerolidol) were the main sesquiterpenoids in the oil.

  19. Pressurized fluid extraction of essential oil from Lavandula hybrida using a modified supercritical fluid extractor and a central composite design for optimization.

    PubMed

    Kamali, Hossein; Jalilvand, Mohammad Reza; Aminimoghadamfarouj, Noushin

    2012-06-01

    Essential oil components were extracted from lavandin (Lavandula hybrida) flowers using pressurized fluid extraction. A central composite design was used to optimize the effective extraction variables. The chemical composition of extracted samples was analyzed by a gas chromatograph-flame ionization detector column. For achieving 100% extraction yield, the temperature, pressure, extraction time, and the solvent flow rate were adjusted at 90.6°C, 63 bar, 30.4 min, and 0.2 mL/min, respectively. The results showed that pressurized fluid extraction is a practical technique for separation of constituents such as 1,8-cineole (8.1%), linalool (34.1%), linalyl acetate (30.5%), and camphor (7.3%) from lavandin to be applied in the food, fragrance, pharmaceutical, and natural biocides industries.

  20. Seasonal variations in the composition of the essential oils of Lavandula angustifolia (Lamiacae).

    PubMed

    Lakusić, Branislava; Lakusić, Dmitar; Ristić, Mihailo; Marcetić, Mirjana; Slavkovska, Violeta

    2014-06-01

    Seasonal variations in the composition of the essential oils obtained from the same individual (of the same genotype) of Lavandula angustifolia cultivated in Belgrade were determined by GC and GC/MS. The main constituents were 1,8-cineole (7.1-48.4%), linalool (0.1-38.7%), bomeol (10.9-27.7%), beta-phellandrene (0.5-21.2%) and camphor (1.5-15.8%). Cluster analysis showed that the 21 samples collected each month during the vegetation cycle were separable into three main clades with different compositions of essential oils. In the shoots with flowers, inflorescences and fruits of clade I, linalool is dominant, in the young leaves before flowering and old leaves of clade II, 1,8-cineole is dominant. In the young and incompletely developed leaves of clade III, beta-phellandrene is dominant. The composition of the essential oils of lavender depended on the plant part and the stage of development.

  1. Suppression of linalool acetate production in Lavandula x intermedia.

    PubMed

    Desautels, Amy; Biswas, Kamal; Lane, Alexander; Boeckelmann, Astrid; Mahmoud, Soheil S

    2009-11-01

    Linalool acetate, one of the major constituent of several essential oils, is heat-labile and decomposes upon exposure to the high injector temperature during gas chromatography. Here we report the development of an improved method for detection of this compound by gas chromatography mass spectrometry (GCMS) using cold on-column injection of the sample. By using this sensitive method, it has been demonstrated that a lavandin (L. x intermedia) mutant accumulates trace quantities of linalool acetate and camphor and higher amounts of cineole and borneol compared to its parent. This plant, which very likely carries a point mutation in one or more of the genes involved in essential oil production, provides a unique tool for investigating regulation of essential oil biogenesis in plants.

  2. Eco-Friendly Synthesis of Some Thiosemicarbazones and Their Applications as Intermediates for 5-Arylazothiazole Disperse Dyes.

    PubMed

    Gaffer, Hatem E; Khalifa, Mohamed E

    2015-12-09

    The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1-3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4-6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl)-thiazole dyes 7-9 was then prepared by diazo coupling of thiazole derivatives 4-6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness.

  3. Development of Mouth Dissolving Tablets of Clozapine Using Two Different Techniques

    PubMed Central

    Masareddy, R. S.; Kadia, R. V.; Manvi, F. V.

    2008-01-01

    Mouth dissolving tablets constitute an innovative dosage form that overcomes the problems of swallowing and provides a quick onset of action. In view of enhancing bioavailability an attempt has been made to study two different methods direct compression and sublimation in formulation of mouth dissolving tablets of clozapine. Total four formulations using various superdisintegrants and subliming agents were prepared. All prepared formulations were evaluated for physico-chemical parameters. The formulations exhibited good disintegration properties with total disintegration time in the range of 25 to 35 s. Comparative evaluation of two methods showed direct compression method is a better alternative to sublimation method as its formulations rapidly disintegrate in oral cavity. In vitro cumulative percentage drug release for formulations prepared by direct compression with explotab superdisintegrants shows 99.79 while sublimation method using camphor 93.58 release in 12 min. Kinetic studies indicated that all the formulations followed first order release with diffusion mechanism. PMID:20046788

  4. Development of mouth dissolving tablets of clozapine using two different techniques.

    PubMed

    Masareddy, R S; Kadia, R V; Manvi, F V

    2008-01-01

    Mouth dissolving tablets constitute an innovative dosage form that overcomes the problems of swallowing and provides a quick onset of action. In view of enhancing bioavailability an attempt has been made to study two different methods direct compression and sublimation in formulation of mouth dissolving tablets of clozapine. Total four formulations using various superdisintegrants and subliming agents were prepared. All prepared formulations were evaluated for physico-chemical parameters. The formulations exhibited good disintegration properties with total disintegration time in the range of 25 to 35 s. Comparative evaluation of two methods showed direct compression method is a better alternative to sublimation method as its formulations rapidly disintegrate in oral cavity. In vitro cumulative percentage drug release for formulations prepared by direct compression with explotab superdisintegrants shows 99.79 while sublimation method using camphor 93.58 release in 12 min. Kinetic studies indicated that all the formulations followed first order release with diffusion mechanism.

  5. DC Electrical Conductivity Retention, Optical Properties and Ammonia Sensing Analysis of Naturally Degraded CSA-Doped Graphene/polyaniline Composite Nanofibers Prepared with CTAB

    NASA Astrophysics Data System (ADS)

    Ghazali, Sayyed; Hossain, Muhammad M.; Khan, Abuzar; Khan, Mohd Y.; Hasan, Mudassir

    2017-01-01

    In this paper, we report surfactant-mediated synthesis of camphor sulfonic acid (CSA)-doped polyaniline/graphene (PANI/GN) composite nanofibers as an electrical conductor and excellent ammonia sensor. The synthesis was mediated by cetyltrimethylammonium bromide as surfactant. The as-synthesized composite nanofibers were characterized by Raman spectroscopy, scanning electron microscopy, tunneling electron microscopy, x-ray diffraction, diffused reflectance spectroscopy and differential scanning calorimetry. The electrical conductivity of the CSA-doped PANI/GN composite nanofibers was found to be remarkably enhanced as compared to the CSA-doped PANI. The boost in electronic conductivity could be attributed to an improved electronic interaction between CSA-doped PANI backbone and GN present in the composite system. The naturally degraded CSA-doped PANI/GN composite nanofibers showed a decrease in electrical conductivity but worked as a good ammonia sensor in open atmospheric conditions.

  6. Larvicidal and nematicidal activities of the leaf essential oil of Croton regelianus.

    PubMed

    Torres, Maria Conceição M; Assunção, João Carlos; Santiago, Gilvandete Maria P; Andrade-Neto, Manoel; Silveira, Edilberto R; Costa-Lotufo, Leticia V; Bezerra, Daniel P; Marinho Filho, José Delano B; Viana, Francisco Arnaldo; Pessoa, Otília Deusdênia L

    2008-12-01

    The chemical composition of the leaf essential oil of Croton regelianus collected from wild plants growing in two different sites at Ceará State (Brazil) was analyzed by GC/MS and GC-FID. Twenty monoterpenoids, representing more than 96% of the chemical composition of the oils, were identified and quantified. The oils showed similar chemical composition but considerable variation in the levels of each constituent. Ascaridole (33.9-17.0%), p-cymene (22.3-21.6%), and camphor (13.0-3.1%) were the predominant constituents. The monoterpene ascaridole was isolated and characterized by spectroscopic data. The essential oils and the isolated compounds were tested against Aedes aegypti and Artemia sp. larvae, and the root knot nematode Meloidogyne incognita. The bioassay results show that the essential oil of C. regelianus and ascaridole were moderately active against the M. incognita, but strongly effective against both A. aegypti and Artemia sp. larvae.

  7. Chemotypic Characterization and Biological Activity of Rosmarinus officinalis.

    PubMed

    Satyal, Prabodh; Jones, Tyler H; Lopez, Elizabeth M; McFeeters, Robert L; Ali, Nasser A Awadh; Mansi, Iman; Al-Kaf, Ali G; Setzer, William N

    2017-03-05

    Rosemary (Rosmarinus officinalis L.) is a popular herb in cooking, traditional healing, and aromatherapy. The essential oils of R. officinalis were obtained from plants growing in Victoria (Australia), Alabama (USA), Western Cape (South Africa), Kenya, Nepal, and Yemen. Chemical compositions of the rosemary oils were analyzed by gas chromatography-mass spectrometry as well as chiral gas chromatography. The oils were dominated by (+)-α-pinene (13.5%-37.7%), 1,8-cineole (16.1%-29.3%), (+)-verbenone (0.8%-16.9%), (-)-borneol (2.1%-6.9%), (-)-camphor (0.7%-7.0%), and racemic limonene (1.6%-4.4%). Hierarchical cluster analysis, based on the compositions of these essential oils in addition to 72 compositions reported in the literature, revealed at least five different chemotypes of rosemary oil. Antifungal, cytotoxicity, xanthine oxidase inhibitory, and tyrosinase inhibitory activity screenings were carried out, but showed only marginal activities.

  8. [The study of transpiration influence on plant infrared radiation character].

    PubMed

    Ling, Jun; Zhang, Shuan-Qin; Pan, Jia-Liang; Lian, Chang-Chun; Yang, Hui

    2012-07-01

    Studying vegetation infrared radiation character is the base of developing infrared camouflage and concealment technology of ground military target. Accurate fusion of target and background can be achieved by simulating formation mechanism of vegetation infrared radiation character. Leaf transpiration is characteristic physiological mechanism of vegetation and one of the main factors that influence its infrared radiation character. In the present paper, physical model of leaf energy balance is set up. Based on this model the influence of plant transpiration on leaf temperature is analyzed and calculated. The daily periodic variation of transpiration, leaf temperature and infrared radiation character of typical plants such as camphor tree and holly is actually measured with porometer and infrared thermal imaging system. By contrasting plant leaf with dryness leaf, experimental data indicates that plant transpiration can regulate leaf energy balance effectively and control leaf temperature in a reasonable range and suppress deep range variation of leaf infrared radiation character.

  9. Chemical and genetic relationships among sage ( Salvia officinalis L.) cultivars and Judean sage ( Salvia judaica Boiss.).

    PubMed

    Böszörményi, Andrea; Héthelyi, Eva; Farkas, Agnes; Horváth, Györgyi; Papp, Nóra; Lemberkovics, Eva; Szoke, Eva

    2009-06-10

    The essential oil composition and genetic variability of common sage ( Salvia officinalis L.) and its three ornamental cultivars ('Purpurascens', 'Tricolor', and 'Kew Gold') as well as Judean sage ( Salvia judaica Boiss.) were analyzed by GC-FID, GC-MS, and random amplified polymorphic DNA (RAPD). Common sage and its cultivars contained the same volatile compounds; only the ratio of compounds differed. The main compounds were the sesquiterpene alpha-humulene and the monoterpenes beta-pinene, eucalyptol, and camphor. Judean sage contained mainly the sesquiterpenes beta-cubebene and ledol. All of the samples exhibited characteristic RAPD patterns that allowed their identification. Cluster analyses based on oil composition and RAPD markers corresponded very well to each other, suggesting that there is a strong relationship between the chemical profile and the genetic variability.

  10. Comparison of different extraction methods for the determination of α- and β-thujone in sage (Salvia officinalis L.) herbal tea.

    PubMed

    Arceusz, Agnieszka; Occhipinti, Andrea; Capuzzo, Andrea; Maffei, Massimo E

    2013-09-01

    Salvia officinalis L. (sage) is an important industrial plant used both for food and pharmaceutical purposes. The terpene fraction of this plant is responsible for many of its therapeutic and culinary properties. We used different extraction methods Tenax TA® purge and trap, headspace (HS) solid-phase microextraction, HS sorptive extraction, and stir bar sorptive extraction to analyze the terpene fraction extracted from sage tea by GC-MS. Twenty compounds were identified, including α-, β-thujone, and several other oxygenated monoterpenes (1,8-cineole, linalool, camphor, boneol, and bornyl acetate) and oxygenated sesquiterpenes (caryophyllene oxide, viridiflorol, humulene epoxide I, II, and III). Tenax TA® and HS sorptive extraction extracted a lower number of identified compounds, whereas HS solid-phase microextraction allowed the complete extraction of volatiles with particular reference to α- and β-thujone. The importance of the determination of thujones content in sage herbal tea is also discussed.

  11. 1,2-diketones promoted degradation of poly(epsilon-caprolactone)

    NASA Astrophysics Data System (ADS)

    Danko, Martin; Borska, Katarina; Ragab, Sherif Shaban; Janigova, Ivica; Mosnacek, Jaroslav

    2012-07-01

    Photochemical reactions of Benzil and Camphorquinone were used for modification of poly(ɛ-caprolactone) polymer films. Photochemistry of dopants was followed by infrared spectroscopy, changes on polymer chains of matrix were followed by gel permeation chromatography. Benzoyl peroxide was efficiently photochemically generated from benzyl in solid polymer matrix in the presence of air. Following decomposition of benzoyl peroxide led to degradation of matrix. Photochemical transformation of benzil in vacuum led to hydrogen abstraction from the polymer chains in higher extent, which resulted to chains recombination and formation of gel. Photochemical transformation of camphorquinone to corresponding camphoric peroxide was not observed. Only decrease of molecular weight of polymer matrix doped with camphorquinone was observed during the irradiation.

  12. [Raspail, propagandist himself from the "warnings" of the manual of health, between 1845 and 1878].

    PubMed

    Albou, Philippe

    2015-01-01

    During the last thirty years of his life, between 1845 and 1878, François-Vincent Raspail (1794-1878) published each year a new edition of his Manuel de santé (Manual of Health), which was intended as a practical guide to prevent and treat, using in particular camphor, major human diseases. Each edition was accompanied by a preamble, as an annual forum where the "revered teacher" applied to give information on his family, his trial, his stays in prison, his resentment, his exile, his publications, schedules consultations, etc. As a libertarian protester against the powers wether medical, political or judicial, Raspail was a tireless defender of the poor and weak, and this attitude earned him his reputation and his popularity. This positive image of "secular saint" was built from an effective propaganda, where the Manuel de santé and its preambles played a central rol.

  13. Biotransformation of (-)-α-Pinene by Whole Cells of White Rot Fungi, Ceriporia sp. ZLY-2010 and Stereum hirsutum.

    PubMed

    Lee, Su-Yeon; Kim, Seon-Hong; Hong, Chang-Young; Kim, Ho-Young; Ryu, Sun-Hwa; Choi, In-Gyu

    2015-09-01

    Two white rot fungi, Ceriporia sp. ZLY-2010 (CER) and Stereum hirsutum (STH) were used as biocatalysts for the biotransformation of (-)-α-pinene. After 96 hr, CER converted the bicyclic monoterpene hydrocarbon (-)-α-pinene into α-terpineol (yield, 0.05 g/L), a monocyclic monoterpene alcohol, in addition to, other minor products. Using STH, verbenone was identified as the major biotransformed product, and minor products were myrtenol, camphor, and isopinocarveol. We did not observe any inhibitory effects of substrate or transformed products on mycelial growth of the fungi. The activities of fungal manganese-dependent peroxidase and laccase were monitored for 15 days to determine the enzymatic pathways related to the biotransformation of (-)-α-pinene. We concluded that a complex of enzymes, including intra- and extracellular enzymes, were involved in terpenoid biotransformation by white rot fungi.

  14. Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    NASA Astrophysics Data System (ADS)

    Lyngkilde, John; Christensen, Thomas H.

    1992-09-01

    Samples from 75 sample locations in a landfill leachate pollution plume reveal a significant disappearance of specific organic compounds (SOC's) within the first 100 m of the plume. Only the herbicide Mecoprop® (MCPP) migrates further. Since sorption and dilution cannot account for the decreasing concentrations, degradation is considered to be the governing process. Non-volatile organic carbon shows a corresponding fate probably acting as a substrate for the microbial processes. The first 20 m of the plume are methanogenic/sulfidogenic, judged on the chemistry of the groundwater, followed by a significant ferrogenic zone exhibiting a substantial capacity to degrade the SOC's. The presence of intermediary products (here an oxidized camphor compound) supports the concept of degradation within the ferrogenic zone. This investigation draws the attention to the significant natural attenuation of organic contaminants and to the so far neglected ferrogenic zone in controlling the fate of organic contaminants in leachate plumes.

  15. Volatiles of Chrysanthemum zawadskii var. latilobum K

    PubMed Central

    Chang, Kyung-Mi; Kim, Gun-Hee

    2012-01-01

    The volatile aroma constituents of Chrysanthemum zawadskii var. latilobum K. were separated by hydro distillation extraction (HDE) method using a Clevenger-type apparatus, and analyzed by gas chromatography-mass spectrometry (GC/MS). The yield of C. zawadskii var. latilobum K. flower essential oil (FEO) was 0.12% (w/w) and the color was light green. Fifty-five volatile chemical components, which make up 88.38% of the total aroma composition, were tentatively characterized. C. zawadskii var. latilobum K. FEOs contained 27 hydrocarbons, 12 alcohols, 7 ketones, 4 esters, 1 aldehyde, 1 amine, and 3 miscellaneous components. The major functional groups were terpene alcohol and ketone. Borneol (12.96), (±)-7-epi-amiteol (12.60), and camphor (10.54%) were the predominant volatiles. These compounds can be used in food and pharmaceutical industries due to their active bio-functional properties. PMID:24471090

  16. Responses to olfactory stimuli in spotted hyenas (Crocuta crocuta): I. Investigation of environmental odors and the function of rolling.

    PubMed

    Drea, Christine M; Vignieri, Sacha N; Cunningham, Sarah B; Glickman, Stephen E

    2002-12-01

    Olfaction is crucial to spotted hyenas (Crocuta crocuta), yet there are no controlled studies of their reactions to odors. In Experiment 1, the authors examined responses of captive hyenas to various environmental (prey, nonprey animal, and plant) odors. Subjects approached and sniffed all odors equally but preferentially licked prey odors, scent marked next to odors, and rolled in animal-based odors. In Experiment 2, the authors examined the function of rolling by applying odors to the pelts of captive hyenas. When hyenas wore carrion, they gained positive social attention (increased investigation and allogrooming) from pen mates, but when they wore camphor, the normal social greeting ceremony was curtailed. Thus, olfactory stimuli elicit specific responses, influence where behavior is directed, and can be used to affect social interaction.

  17. Polypyrrole-Functionalized Single-Walled Carbon Nanotube Gas Sensor Arrays

    NASA Astrophysics Data System (ADS)

    Kakoullis, James, Jr.

    The overall objective of this work is to fabricate and evaluate polypyrrole-single-walled carbon nanotubes hybrid structures based chemiresistive sensor arrays for sensitive, selective and discriminative sensing at room temperature of emissions from automobiles and industrial manufacturing. To conceive the sensor arrays single-walled carbon nanotubes (SWNTs) networks were aligned to bridge a 3 mum gap between a pair of prefabricated microelectrodes followed by coating with polypyrrole (PPY) with different dopants by electrochemical polymerization. Initially, the sensor¡¦s synthesis conditions in terms of PPY thickness on SWNTs networks by varying the electropolymerization charge of the monomer pyrrole in presence of LiClO4 dopant for the sensing of NH3 was optimized. Using the optimized polymerization charge of 1 muC determined previously, arrays of SWNTs-PPY hybrid sensors were fabricated by replacing dopant LiClO4 by L-camphor sulfonic acid, D-camphor sulfonic acid, p-toluene sulfonic acid and sodium dodecyl sulfonate. Room temperature gas sensing performance of the PPY coated SWNTs network arrays to gases of environmental significance such as NH3, NO 2, H2S, SO2, CO and CO2 and volatile organic compounds such as benzene, toluene, ethyl benzene, p-xylene, methanol, n-hexane and acetone and humidity, was evaluated. Several folds enhancement in sensing performance was observed towards all the tested analytesfor hybrid devices when compared to bare SWNTs network devices. Differences in sensing performance were noticed for PPY coating with different dopants demonstrating the potential of using the array for discrimination of the tested analytes in a mixture by using chemometric techniques. The underlying sensing mechanism was also investigated by using the devices in chemFET mode configuration.

  18. Chemical Components of Four Essential Oils in Aromatherapy Recipe.

    PubMed

    Tadtong, Sarin; Kamkaen, Narisa; Watthanachaiyingcharoen, Rith; Ruangrungsi, Nijsiri

    2015-06-01

    This study focused on characterization of the chemical components of an aromatherapy recipe. The formulation consisted of four blended essential oils; rosemary oil, eucalyptus oil, pine oil and lime oil (volume ratio 6 : 2 : 1 : 1). The single and combination essential oils were identified by gas chromatography-mass spectrometry (GC-MS). The analysis of GC-MS data revealed that several components exist in the mixture. The five most important components of the blended essential oils were 1,8-cineole (35.6 %), α-pinene (11.1%), limonene (9.6%), camphor (8.4%), and camphene (6.6%). The main components of rosemary oil were 1,8-cineole (37.3%), α-pinene (19.3%), camphor (14.7%), camphene (8.8%), and β-pinene (5.5%); of eucalyptus oil 1,8-cineole (82.6%) followed by limonene (7.4%), o-cymene (4.3%), γ-terpinene (2.7%), and α-pinene (1.5%); of pine oil terpinolene (26.7%), α-terpineol (20.50%), 1-terpineol (10.8%), α-pinene (6.0%), and γ-terpineol (5.3%); and of lime oil limonene (62.9%), γ-terpinene (11.5%), α-terpineol (7.6%), terpinolene (6.0%), and α-terpinene (2.8%). The present study provided a theoretical basis for the potential application of blended essential oils to be used as an aromatherapy essential oil recipe. GC-MS serves as a suitable and reliable method for the quality control of the chemical markers.

  19. PM2.5-bound PAHs in three indoor and one outdoor air in Beijing: Concentration, source and health risk assessment.

    PubMed

    Chen, Ying; Li, Xinghua; Zhu, Tianle; Han, Yingjie; Lv, Dong

    2017-02-07

    Three indoor (residential home, dormitory, and office) and one outdoor concentrations of PM2.5-bound Polycyclic aromatic hydrocarbons (PAHs) were analyzed in Beijing across four seasons. The highest and lowest concentration of total PAHs for outdoor appeared in winter and in summer with averages of 200.1 and 9.1ng/m(3) respectively. The seasonal variations of total PAHs in three indoor sites were the same as outdoor. The correlation analysis between the indoor and outdoor samples showed that the annual mean I/O ratios of total PAHs in the three sites were lower than 1. Source apportionment showed vehicle exhaust, coal combustion, and biomass burning were the major contributors of indoor and outdoor PM2.5-bound PAHs. Indoor source, such as camphor pollution, was identified in the dormitory, while camphor pollution and cooking sources were identified in the residential home. The annual averages of Benzo[a]pyrene equivalent concentration (BaPeq) were 7.6, 7.8, 7.7 and 12.7ng/m(3) for the dormitory, office, residential home and outdoor samples respectively, far higher than the annual limit of 1ng/m(3) regulated by European Commission. Life lung cancer risk (LLCR) in four sites across four seasons were over the acceptable cancer risk level, showing the cancer risk were at a high level in both indoor and outdoor sites in Beijing, and its level in indoor sites was much lower than in the outdoor site. The health risk assessment indicated the level of PAHs cancer risk on human for three indoor sites were similar. The results call for the development of more stringent control measures to reduce PAHs emissions.

  20. Collagen Metabolism Biomarkers and Health Related Quality of Life in Pulmonary Arterial Hypertension

    PubMed Central

    Safdar, Zeenat; Tamez, Emilio; Frost, Adaani; Guffey, Danielle; Minard, Charles G; Entman, Mark L

    2015-01-01

    Objectives The goal of this study was to investigate the association between collagen metabolism biomarkers and health related quality of life (HRQoL) in PAH patients. Methods We prospectively enrolled 68 stable idiopathic, anorexigen-associated, and hereditary PAH subjects and 37 healthy controls. Serum samples were analyzed for N-terminal propeptide of type III procollagen (PIIINP), c-terminal telopeptide of collagen type I (CITP), matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of metalloproteinase 1 (TIMP-1). The Minnesota Living with Heart Failure (MLWHF), Euro QoL-5D (EQ-5D), Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR) and Short Form (SF-36) general health survey were administered at the time of blood draw. General linear models, as well as logistic regression models were used to assess associations between variables. Results CITP, PIIINP, MMP9, and TIMP1 levels, and all HRQoL domains were significantly different between controls and PAH patients (p<0.001 for each). Interestingly, PIIINP levels were significantly associated with MLWHF physical (coef=1.63, and p=0.02), SF-36 physical (coef=−2.93, p=0.004), and EQ-5D aggregate (coef=0.34, p=0.001) scores. Several of the CAMPHOR scores strongly linearly associated with PIIINP. The odds of obtaining a walk distance ≥330 meters decrease by 38% per unit increase in PIIINP (OR=0.62; 95% CI=0.43, 0.90) and a PIIINP cutoff of 5.53 μg/L provided 81% sensitivity and 82% specificity. Conclusions PIIINP is a good predictor of disease severity, and is strongly related to HRQoL scores in PAH patients. These relationships suggest PIIINP as a promising tool for PAH clinicians to determine or confirm the level of disease severity. PMID:26366423

  1. Solution NMR structure of putidaredoxin-cytochrome P450cam complex via a combined residual dipolar coupling-spin labeling approach suggests a role for Trp106 of putidaredoxin in complex formation

    PubMed Central

    Zhang, Wei; Pochapsky, Susan S.; Pochapsky, Thomas C.; Jain, Nitin U.

    2017-01-01

    The 58 kDa complex formed between the [2Fe-2S] ferredoxin, putidaredoxin (Pdx), and cytochrome P450cam (CYP101) from the bacterium Pseudomonas putida has been investigated by high-resolution solution NMR spectroscopy. Pdx serves as both the physiological reductant and effector for CYP101 in the enzymatic reaction involving conversion of substrate camphor to 5-exo-hydroxy-camphor. In order to obtain an experimental structure for the oxidized Pdx-CYP101 complex, a combined approach using orientational data on the two proteins derived from residual dipolar couplings and distance restraints from site-specific spin labeling of Pdx has been applied. Spectral changes for residues in and near the paramagnetic metal cluster region of Pdx in complex with CYP101 have also been mapped for the first time using 15N and 13C NMR spectroscopy, leading to direct identification of the residues strongly affected by CYP101 binding. The new NMR structure of the Pdx-CYP101 complex agrees well with results from previous mutagenesis and biophysical studies involving residues at the binding interface such as formation of salt bridge between Asp38 of Pdx and Arg112 of CYP101, while at the same time identifying key features different from earlier modeling studies. Analysis of the binding interface of the complex reveals that the side-chain of Trp106, the C-terminal residue of Pdx and critical for binding to CYP101, is located across from the heme-binding loop of CYP101 and forms non-polar contacts with several residues in the vicinity of heme group on CYP101, pointing to a potentially important role in complex formation. PMID:18835276

  2. NaCl stress-induced changes in the essential oil quality and abietane diterpene yield and composition in common sage

    PubMed Central

    Tounekti, Taieb; Khemira, Habib

    2015-01-01

    Aim: The purpose of this study was to evaluate how increasing NaCl salinity in the medium can affects the essential oils (EOs) composition and phenolic diterpene content and yield in leaves of Salvia officinalis L. The protective role of such compounds against NaCl stress was also argued with regard to some physiological characteristics of the plant (water and ionic relations as well as the leaf gas exchanges). Materials and Methods: Potted plants were exposed to increasing NaCl concentrations (0, 50, 75, and 100 mM) for 4 weeks during July 2012. Replicates from each treatment were harvested after 0, 2, 3, and 4 weeks of adding salt to perform physiological measurements and biochemical analysis. Results: Sage EOs were rich in manool, viridiflorol, camphor, and borneol. Irrigation with a solution containing 100 mM NaCl for 4 weeks increased considerably 1.8-cineole, camphor and β-thujone concentrations, whereas lower concentrations (50 and 75 mM) had no effects. On the contrary, borneol and viridiflorol concentrations decreased significantly under the former treatment while manool and total fatty acid concentrations were not affected. Leaf extracts also contained several diterpenes such as carnosic acid (CA), carnosol, and 12-O-methoxy carnosic acid (MCA). The concentrations and total contents of CA and MCA increased after 3 weeks of irrigation with 75 or 100 mM NaCl. The 50 mM NaCl had no effect on these diterpenes. Our results suggest a protective role for CA against salinity stress. Conclusion: This study may provide ways to manipulate the concentration and yield of some phenolic diterpenes and EOs in sage. In fact, soil salinity may favor a directional production of particular components of interest. PMID:26401409

  3. Monoterpenes as inhibitors of digestive enzymes and counter-adaptations in a specialist avian herbivore.

    PubMed

    Kohl, Kevin D; Pitman, Elizabeth; Robb, Brecken C; Connelly, John W; Dearing, M Denise; Forbey, Jennifer Sorensen

    2015-05-01

    Many plants produce plant secondary metabolites (PSM) that inhibit digestive enzymes of herbivores, thus limiting nutrient availability. In response, some specialist herbivores have evolved digestive enzymes that are resistant to inhibition. Monoterpenes, a class of PSMs, have not been investigated with respect to the interference of specific digestive enzymes, nor have such interactions been studied in avian herbivores. We investigated this interaction in the Greater Sage-Grouse (Phasianidae: Centrocercus urophasianus), which specializes on monoterpene-rich sagebrush species (Artemisia spp.). We first measured the monoterpene concentrations in gut contents of free-ranging sage-grouse. Next, we compared the ability of seven individual monoterpenes present in sagebrush to inhibit a protein-digesting enzyme, aminopeptidase-N. We also measured the inhibitory effects of PSM extracts from two sagebrush species. Inhibition of aminopeptidase-N in sage-grouse was compared to inhibition in chickens (Gallus gallus). We predicted that sage-grouse enzymes would retain higher activity when incubated with isolated monoterpenes or sagebrush extracts than chicken enzymes. We detected unchanged monoterpenes in the gut contents of free-ranging sage-grouse. We found that three isolated oxygenated monoterpenes (borneol, camphor, and 1,8-cineole) inhibited digestive enzymes of both bird species. Camphor and 1,8-cineole inhibited enzymes from chickens more than from sage-grouse. Extracts from both species of sagebrush had similar inhibition of chicken enzymes, but did not inhibit sage-grouse enzymes. These results suggest that specific monoterpenes may limit the protein digestibility of plant material by avian herbivores. Further, this work presents additional evidence that adaptations of digestive enzymes to plant defensive compounds may be a trait of specialist herbivores.

  4. Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures.

    PubMed

    Ohtsubo, Sena; Fujita, Tsugumi; Matsushita, Akitomo; Kumamoto, Eiichi

    2015-03-01

    Plant-derived chemicals including aroma oil compounds have an ability to inhibit nerve conduction and modulate transient receptor potential (TRP) channels. Although applying aroma oils to the skin produces a local anesthetic effect, this has not been yet examined throughly. The aim of the present study was to know how nerve conduction inhibitions by aroma oil compounds are related to their chemical structures and whether these activities are mediated by TRP activation. Compound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method. Citral (aldehyde), which activates various types of TRP channels, attenuated the peak amplitude of CAP with the half-maximal inhibitory concentration (IC50) value of 0.46 mmol/L. Another aldehyde (citronellal), alcohol (citronellol, geraniol, (±)-linalool, (-)-linalool, (+)-borneol, (-)-borneol, α-terpineol), ester (geranyl acetate, linalyl acetate, bornyl acetate), and oxide (rose oxide) compounds also reduced CAP peak amplitudes (IC50: 0.50, 0.35, 0.53, 1.7, 2.0, 1.5, 2.3, 2.7, 0.51, 0.71, 0.44, and 2.6 mmol/L, respectively). On the other hand, the amplitudes were reduced by a small extent by hydrocarbons (myrcene and p-cymene) and ketone (camphor) at high concentrations (2-5 mmol/L). The activities of citral and other TRP agonists ((+)-borneol and camphor) were resistant to TRP antagonist ruthenium red. An efficacy sequence for the CAP inhibitions was generally aldehydes ≥ esters ≥ alcohols > oxides > hydrocarbons. The CAP inhibition by the aroma oil compound was not related to its octanol-water partition coefficient. It is suggested that aroma oil compounds inhibit nerve conduction in a manner specific to their chemical structures without TRP activation.

  5. Antimutagenic effect of essential oil of sage (Salvia officinalis L.) and its monoterpenes against UV-induced mutations in Escherichia coli and Saccharomyces cerevisiae.

    PubMed

    Vuković-Gacić, B; Nikcević, S; Berić-Bjedov, T; Knezević-Vukcević, J; Simić, D

    2006-10-01

    Mutagenic and antimutagenic potential of essential oil (EO) of cultivated sage (S. officinalis L.) and its monoterpenes: thujone, 1,8-cineole, camphor and limonene against UVC-induced mutations was studied with Salmonella/microsome, E. coli WP2, E. coli K12 [Simić, D., Vuković-Gacić, B., Knezević-Vukcević, J., 1998. Detection of natural bioantimutagens and their mechanisms of action with bacterial assay-system. Mutat. Res. 402, 51-57] and S. cerevisiae D7 reversion assays. The toxicity of EO differed, depending on the strain used. The most sensitive were permeable strains TA100, TA102, E. coli K12 IB112 and non-permeable WP2. Mutagenic potential of EO and monoterpenes was not detected, with or without S9. EO reduced the number of UV-induced revertants in a concentration-dependent manner, reaching 50-70% of inhibition at the maximum non-toxic concentrations: 3 microl/plate (TA102), 5 microl/plate (WP2), 7.5 microl/plate (IB112), 30 microl/plate (E. coli K12 SY252) and 60 microl/plate (D7). The metabolic activation had no effect on antimutagenic potential of EO. Similar toxicity of monoterpenes was observed in TA100, E. coli SY252 and D7, with the exception of limonene (less toxic to D7). Reduction of UV-induced revertants by non-toxic concentrations of monoterpenes, tested with SY252 and D7, reached 40-50% at 15-20 microl/plate of thujone, 10 microl/plate of cineole and 1-10 microg/plate of camphor. Limonene showed antimutagenic effect only in D7. Our data recommend sage monoterpenes for further chemoprevention studies.

  6. Chirped Pulse Rotational Spectroscopy of a Single THUJONE+WATER Sample

    NASA Astrophysics Data System (ADS)

    Kisiel, Zbigniew; Perez, Cristobal; Schnell, Melanie

    2016-06-01

    Rotational spectroscopy of natural products dates over 35 years when six different species including thujone were investigated. Nevertheless, the technique of low-resolution microwave spectroscopy employed therein allowed determination of only a single conformational parameter. Advances in sensitivity and resolution possible with supersonic expansion techniques of rotational spectroscopy made possible much more detailed studies such that, for example, the structures of first camphor, and then of multiple clusters of camphor with water were determined. We revisited the rotational spectrum of the well known thujone molecule by using the chirped pulse spectrometer in Hamburg. The spectrum of a single thujone sample was recorded with an admixture of 18O enriched water and was successively analysed using an array of techniques, including the AUTOFIT program, the AABS package and the STRFIT program. We have, so far, been able to assign rotational transitions of α-thujone, β-thujone, another thujone isomer, fenchone, and several thujone-water clusters in the spectrum of this single sample. Natural abundance molecular populations were sufficient to determine precise heavy atom backbones of thujone and fenchone, and H_218O enrichment delivered water molecule orientations in the hydrated clusters. An overview of these results will be presented. Z.Kisiel, A.C.Legon, JACS 100, 8166 (1978) Z.Kisiel, O.Desyatnyk, E.Białkowska-Jaworska, L.Pszczółkowski, PCCP 5 820 (2003) C.Pérez, A.Krin, A.L.Steber, J.C.López, Z.Kisiel, M.Schnell, J.Phys.Chem.Lett. 7 154 (2016) N.A.Seifert, I.A.Finneran, C.Perez, et al. J.Mol.Spectrosc. 312, 12 (2015) Z.Kisiel, L.Pszczółkowski, B.J.Drouin, et al. J.Mol.Spectrosc. 280, 134 (2012). Z.Kisiel, J.Mol.Spectrosc. 218, 58 (2003)

  7. Hydrocarbon emissions from twelve urban shade trees of the Los Angeles, California, Air Basin

    NASA Astrophysics Data System (ADS)

    Corchnoy, Stephanie B.; Arey, Janet; Atkinson, Roger

    The large-scale planting of shade trees in urban areas to counteract heat-island effects and to minimize energy use is currently being discussed. Among the costs to be considered in a cost/benefit analysis of such a program is the potential for additional reactive organic compounds in the atmosphere due to emissions from these trees. In this program, 15 species of potential shade trees for the Los Angeles Air Basin were studied and emission rates were determined for 11 of these trees, with one further tree (Crape myrtle) exhibiting no detectable emissions. The emission rates normalized to dry leaf weight and corrected to 30°C were (in μg g -1 h -1), ranked from lowest to highest emission rate: Crape myrtle, none detected; Camphor, 0.03; Aleppo pine, 0.15; Deodar cedar, 0.29; Italian Stone pine, 0.42; Monterey pine, 0.90; Brazilian pepper, 1.3; Canary Island pine, 1.7; Ginkgo, 3.0; California pepper, 3.7; Liquidambar, 37; Carrotwood, 49. In addition to the emission rates per unit biomass, the biomass per tree must be factored into any assessment of the relative merits of the various trees, since some trees have higher biomass constants than others. The present data shows that there are large differences in emission rates among different tree species and this should be factored into decision-making as to which shade trees to plant. Based solely on the presently determined emission rates, the Crape myrtle and Camphor tree are good choices for large-scale planting, while the Carrotwood tree and Liquidambar are poor choices due to their high isoprene emission rates.

  8. Replacement of tyrosine residues by phenylalanine in cytochrome P450cam alters the formation of Cpd II-like species in reactions with artificial oxidants.

    PubMed

    Spolitak, Tatyana; Dawson, John H; Ballou, David P

    2008-05-01

    Our previous rapid-scanning stopped-flow studies of the reaction of substrate-free cytochrome P450cam with peracids [Spolitak et al. (2005) J Biol Chem 280:20300-20309; (2006) J Inorg Biochem 100:2034-2044] spectrally characterized compound I [ferryl iron plus a porphyrin pi-cation radical (Fe(IV) = O/Por(+))], as well as Cpd ES (Fe(IV) = O/Tyr.). In the present studies, we report how the substitutions in Y75F, Y96F, and Y96F/Y75F P450cam variants permit the formation of a species we attribute to Cpd II (Fe(IV) = O) in reactions with peracids and cumene hydroperoxide. These variants produce changes in hydrogen bonding patterns and increased hydrophobicity that affect the ratio of heterolytic to homolytic pathways in reactions with cumene hydroperoxide, resulting in a shift of this ratio from 84/16 for WT to 72/28 for the Y96F/Y75F double mutant. Various ways of generating the Cpd II-like species were explored, and it was possible, especially with the more hydrophobic variants, to generate large fractions of the P450cam variants as Cpd II. The Cpd II-like species is ineffective at hydroxylating camphor, but can be readily reduced by ascorbate (as well as other peroxidase substrates) to ferric P450cam, which could then bind camphor to form the high-spin heme. The difference in the spectral properties of Cpd ES and Cpd II was rationalized as possibly being due to different states of protonation.

  9. Leishmanicidal activities of Artemisia annua leaf essential oil against Visceral Leishmaniasis

    PubMed Central

    Islamuddin, Mohammad; Chouhan, Garima; Want, Muzamil Y.; Tyagi, Maujiram; Abdin, Malik Z.; Sahal, Dinkar; Afrin, Farhat

    2014-01-01

    Visceral leishmaniasis (VL), the second-most dreaded parasitic disease after malaria, is currently endemic in 88 countries. Dramatic increases in the rates of infection, drug resistance, and non-availability of safe vaccines have highlighted the need for identification of novel and inexpensive anti-leishmanial agents from natural sources. In this study, we showed the leishmanicidal effect of essential oil from Artemisia annua leaves (AALEO) against Leishmania donovani in vitro and in vivo. AALEO was extracted by hydrodistillation and characterized by GC-MS, the most abundant compounds were found to be camphor (52.06 %) followed by β-caryophyllene (10.95 %). AALEO exhibited significant leishmanicidal activity against L. donovani, with 50 % inhibitory concentration of 14.63 ± 1.49 μg ml-1 and 7.3 ± 1.85 μg ml-1, respectively, against the promastigotes and intracellular amastigotes. The effect was mediated through programmed cell death as confirmed by externalization of phosphatidylserine, DNA nicking by TdT-mediated dUTP nick-end labeling assay, dyskinetoplastidy, cell cycle arrest at sub-G0–G1 phase, loss of mitochondrial membrane potential and reactive oxygen species generation in promastigotes and nitric oxide generation in ex vivo model. AALEO presented no cytotoxic effects against mammalian macrophages even at 200 μg ml-1. Intra-peritoneal administration of AALEO (200 mg/ kg.b.w.) to infected BALB/c mice reduced the parasite burden by almost 90% in the liver and spleen with significant reduction in weight. There was no hepato- or nephro-toxicity as demonstrated by normal levels of serum enzymes. The promising antileishmanial activity shown by camphor-rich AALEO may provide a new lead in the treatment of VL. PMID:25505453

  10. Chemical composition, antioxidant and antimicrobial properties of the essential oils of three Salvia species from Turkish flora.

    PubMed

    Kelen, Mustafa; Tepe, Bektas

    2008-07-01

    Essential oils of three different Salvia species [Salvia aucheri var. aucheri (endemic), Salvia aramiensis and Salvia pilifera (endemic)] were screened for their possible antioxidant and antimicrobial properties as well as their chemical compositions. According to the gas chromatography (GC)/EIMS (gas chromatography/electron impact mass spectrum) analysis results; 41 (97.2%), 51 (98.5%) and 83 compounds (98.2%) were identified, respectively. While 1,8-cineole (30.5%), camphor (21.3%) and borneol (8.50%) are the major compounds for S. aucheri var. aucheri oil, beta-pinene (10.3%), was the main constituent for S. aramienesis together with 1,8-cineole (46.0%) and camphor (8.7%). In the case of S. pilifera oil, alpha-thujene (36.1%) and alpha-pinene (13.8%) determined as the major compounds. Antioxidant activity was employed by two complementary test systems namely 2,2'-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and beta-carotene/linoleic acid systems. Antioxidant activity of S. aramiensis was found to be higher than those of the others for the both systems (12.26+/-1.09 and 92.46%+/-1.64 microg mg(-1), respectively). Additionally, antioxidant activities of BHT, curcumin, ascorbic acid and alpha-tocopherol were determined in parallel experiments. In the case of antimicrobial activity, similar activity pattern was obtained (both in disc diffusion and MIC tests). Antimicrobial activity of S. aramiensis was followed by S. aucheri var. aucheri and S. pilifera, respectively. In these experiments, the most sensitive microorganism Acinetobacter lwoffii was followed by Candida albicans.

  11. Method for attaining rosemary essential oil with differential composition from dried or fresh material.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Zhalnov, Ivan; Georgieva, Tonya D

    2015-01-01

    Rosemary (Rosemarinus officinalis L.) is a well-known medicinal and essential oil plant, utilized by humankind since ancient times. The objective was to determine the effect of steam distillation time (DT) and material (dry or fresh biomass) on essential oil yield, composition, and bioactivity; and to develop regression models that can predict oil yield and composition at specific DT. The oil yield (content) from dry biomass was higher (0.43%) than that from fresh biomass (0.35%) and ranged from 0.18% in the 1.25 min DT to 0.51% in the 40 min DT. There was no yield advantage in extending the DT beyond 40 min, which is much shorter than the DT used by industry. In this study, the antioxidant capacity of the rosemary oil using the ORACoil method was 4,108 μmolVE/L. Rosemary oil did not exhibit significant antileishmanial, antimalarial, or antimicrobial activity. In general, the low-boiling constituents eluted earlier than the higher boiling constituents of the essential oil, resulting in a great variation of essential oil composition obtained at different DT. The most important constituents are α-pinene, eucalyptol, and camphor. The highest α-pinene concentration in the oil (30.4%) was obtained from dry biomass at 2.5 min DT; eucalyptol (23.3% of the total oil) from fresh biomass at 2.5 min DT; and camphor (15.9% of the total oil) from fresh biomass at 160 min DT. The DT could be used as an inexpensive tool to alter essential oil composition of the essential oil from fresh or dried rosemary biomass, and to produce rosemary oils with elevated or lowered concentration of specific targeted oil constituents to meet specific market demands.

  12. Toxicity of Myristica fagrans seed compounds against Blattella germanica (Dictyoptera: Blattellidae).

    PubMed

    Jung, Woo-Chul; Jang, Young-Su; Hieu, Tran Trung; Lee, Chong-Kyu; Ahn, Young-Joon

    2007-05-01

    The insecticidal constituents of hexane-soluble fraction from a methanolic extract of the seeds from Myristica fragrans (Myristicaceae) against adult females of Blattella germanica (L.) (Dictyoptera: Blattellidae) were analyzed by gas chromatography and gas chromatography-mass spectrometry. The insecticidal activity of 13 Myristica seed compounds against female B. germanica was examined by using the filter-paper contact toxicity and vapor phase toxicity bioassays. Results were compared with those of the other 23 known compounds of Myristica seed and currently used insecticides: dichlorvos, deltamethrin, permethrin, and propoxur. In contact toxicity tests using female B. germanica, (IS)-(-) -beta-pinene (0.06 mg/cm2) was the most toxic insecticide, based on 24-h LD50 values. The insecticidal activity of this compound was comparable with that of permethrin (0.05 mg/cm2). (1R)-(+) -Camphor, (1S)-(-) -camphor, dipentene, (1R)-(+) -3-pinene, and (+)-alpha-terpineol (0.10-0.14 mg/cm2) were more toxic than propoxur (0.19 mg/cm2). (E)-Sabinene hydrate and propoxur were almost equitoxic. Potent insecticidal activity also was observed with (R)-(+) -citronellal, (S)-(-) -citronellal, (R)-(-) -alpha-phellandrene, (1S)-(-) -alpha-pinene, (1R)-(+) -alpha-pinene, and safrole (0.27-0.48 mg/cm2). In vapor phase toxicity tests, the compounds tested were effective in closed but not in open containers. These results indicate that the effect of these compounds was largely a result of action in the vapor phase. Myristica seed compounds described merit further study as potential insecticides or as leads for the control of cockroaches.

  13. Benefits of Intensive Treadmill Exercise Training on Cardiorespiratory Function and Quality of Life in Patients With Pulmonary Hypertension

    PubMed Central

    Chin, Lisa M. K.; Kennedy, Michelle; Woolstenhulme, Joshua G.; Nathan, Steven D.; Weinstein, Ali A.; Connors, Gerilynn; Weir, Nargues A.; Drinkard, Bart; Lamberti, James; Keyser, Randall E.

    2013-01-01

    Background: Pulmonary hypertension (PH) restricts the ability to engage in physical activity and decreases longevity. We examined the impact of aerobic exercise training on function and quality of life in patients with World Health Organization group 1 PH. Methods: Patients were randomized to a 10-week education only (EDU) or education/exercise combined (EXE) group. The exercise program consisted of 24-30 sessions of treadmill walking for 30-45 min per session at 70% to 80% of heart rate reserve. Outcome variables included changes in 6-min walk test (6MWT) distance, time to exercise intolerance, peak work rate (WR) from a cardiopulmonary treadmill test, and quality-of-life measures, including the Short Form Health Survey, version 2 (SF-36v2) and Cambridge Pulmonary Hypertension Outcome Review (CAMPHOR). Results: Data are presented as mean ± SD. Twenty-three women (age, 54 ± 11 years; BMI, 31 ± 7 kg/m2) were randomized to the EDU (n = 13) or EXE (n = 10) groups. Following 10 weeks of intervention, patients in the EXE group demonstrated an improvement in 6MWT distance (56 ± 45 m; P = .002), increased time to exercise intolerance (1.9 ± 1.3 min; P = .001), and peak WR (26 ± 23 W; P = .004). Additionally, the EXE group scored significantly (P < .050) better on six of the eight scales on SF-36v2, and five of the six scales on CAMPHOR. In contrast, no significant improvement was observed for any of the outcome measures following EDU. No adverse events were noted in either group. Conclusion: Ten weeks of brisk treadmill walking improved 6MWT distance, cardiorespiratory function, and patient-reported quality of life in female patients with group 1 PH. Trial registry: ClinicalTrials.gov; No.: NCT00678821; URL: clinicaltrials.gov PMID:22922554

  14. Biosynthesis of monoterpenes: Stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to camphane and isocamphane monoterpenes

    SciTech Connect

    Croteau, R.; Gershenzon, J.; Wheeler, C.J.; Satterwhite, D.M. )

    1990-03-01

    The conversion of geranyl pyrophosphate to (+)-bornyl pyrophosphate and (+)-camphene is considered to proceed by the initial isomerization of the substrate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this bound intermediate. In the case of (-)-bornyl pyrophosphate and (-)-camphene, isomerization of the substrate to the (+)-(3S)-linalyl intermediate precedes cyclization. The geranyl and linalyl precursors were shown to be mutually competitive substrates (inhibitors) of the relevant cyclization enzymes isolated from Salvia officinalis (sage) and Tanacetum vulgare (tansy) by the mixed substrate analysis method, demonstrating that isomerization and cyclization take place at the same active site. Incubation of partially purified enzyme preparations with (3R)-(1Z-3H)linalyl pyrophosphate plus (1-14C)geranyl pyrophosphate gave rise to double-labeled (+)-bornyl pyrophosphate and (+)-camphene, whereas incubation of enzyme preparations catalyzing the antipodal cyclizations with (3S)-(1Z-3H)-linalyl pyrophosphate plus (1-14C)geranyl pyrophosphate yielded double-labeled (-)-bornyl pyrophosphate and (-)-camphene. Each product was then transformed to the corresponding (+)- or (-)-camphor without change in the 3H:14C isotope ratio, and the location of the tritium label was deduced in each case by stereoselective, base-catalyzed exchange of the exo-alpha-hydrogen of the derived ketone. The finding that the 1Z-3H of the linalyl precursor was positioned at the endo-alpha-hydrogen of the corresponding camphor in all cases, coupled to the previously demonstrated retention of configuration at C1 of the geranyl substrate in these transformations, confirmed the syn-isomerization of geranyl pyrophosphate to linalyl pyrophosphate and the cyclization of the latter via the anti,endo- conformer.

  15. Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes.

    PubMed

    Ali, Abbas; Tabanca, Nurhayat; Demirci, Betul; Blythe, Eugene K; Ali, Zulfiqar; Baser, K Husnu Can; Khan, Ikhlas A

    2015-01-21

    The chemical compositions of essential oils obtained from four species of genus Salvia were analyzed by gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The main compounds identified from Salvia species essential oils were as follows: 1,8-cineole (71.7%), α-pinene (5.1%), camphor (4.4%), and β-pinene (3.8%) in Salvia apiana; borneol (17.4%), β-eudesmol (10.4%), bornyl acetate (5%), and guaiol (4.8%) in Salvia elegans; bornyl acetate (11.4%), β-caryophyllene (6.5%), caryophyllene oxide (13.5%), and spathulenol (7.0%) in Salvia leucantha; α-thujene (25.8%), viridiflorol (20.4%), β-thujene (5.7%), and camphor (6.4%) in Salvia officinalis. In biting-deterrent bioassays, essential oils of S. leucantha and S. elegans at 10 μg/cm(2) showed activity similar to that of DEET (97%, N, N-diethyl-m-toluamide) in two species of mosquitoes, whereas the activities of S. officinalis and S. apiana essential oils were lower than those of the other oils or DEET. Pure compounds β-eudesmol and guaiol showed biting-deterrent activity similar to DEET at 25 nmol/cm(2), whereas the activity of 13-epi-manool, caryophyllene oxide, borneol, bornyl acetate, and β-caryophyllene was significantly lower than that of β-eudesmol, guaiol, or DEET. All essential oils showed larvicidal activity except that of S. apiana, which was inactive at the highest dose of 125 ppm against both mosquito species. On the basis of 95% CIs, all of the essential oils showed higher toxicity in Anopheles quadrimaculatus than in Aedes aegypti. The essential oil of S. leucantha with an LC50 value of 6.2 ppm showed highest toxicity in An. quadrimaculatus.

  16. Biosynthesis of monoterpenes. Stereochemistry of the enzymatic cyclizations of geranyl pyrophosphate to (+)-alpha-pinene and (-)-beta-pinene

    SciTech Connect

    Croteau, R.; Satterwhite, D.M.; Wheeler, C.J.; Felton, N.M.

    1989-02-05

    The conversion of geranyl pyrophosphate to (+)-alpha-pinene and to (-)-beta-pinene is considered to proceed by the initial isomerization of the substrate to (-)-(3R)- and to (+)-(3S)-linalyl pyrophosphate, respectively, and the subsequent cyclization of the anti, endo-conformer of these bound intermediates by mirror-image sequences which should result in the net retention of configuration at C1 of the geranyl precursor. Incubation of (1R)-(2-14C,1-3H)- and (1S)-(2-14C,1-3H)geranyl pyrophosphate with (+)-pinene cyclase and with (-)-pinene cyclase from common sage (Salvia officinalis) gave labeled (+)-alpha- and (-)-beta-pinene of unchanged 3H/14C ratio in all cases, and the (+)- and (-)-olefins were stereoselectively converted to (+)- and (-)-borneol, respectively, which were oxidized to the corresponding (+)- and (-)-isomers of camphor, again without change in isotope ratio. The location of the tritium was determined in each case by stereoselective, base-catalyzed exchange of the exo-alpha-hydrogens of these derived ketones. The results indicated that the configuration at C1 of the substrate was retained in the enzymatic transformations to the (+)- and (-)-pinenes, which is entirely consistent with the syn-isomerization of geranyl pyrophosphate to linalyl pyrophosphate, transoid to cisoid rotation, and anti, endo-cyclization of the latter. The absolute stereochemical elements of the antipodal reaction sequences were confirmed by the selective enzymatic conversions of (3R)- and (3S)-1Z-(1-3H)linalyl pyrophosphate to (+)-alpha-pinene and (-)-beta-pinene, respectively, and by the location of the tritium in the derived camphors as before. The summation of the results fully defines the overall stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to the antipodal pinenes.

  17. Essential oils and chemical diversity of southeast European populations of Salvia officinalis L.

    PubMed

    Cvetkovikj, Ivana; Stefkov, Gjoshe; Karapandzova, Marija; Kulevanova, Svetlana; Satović, Zlatko

    2015-07-01

    The essential oils of 25 populations of Dalmatian sage (Salvia officinalis L.) from nine Balkan countries, including 17 indigenous populations (representing almost the entire native distribution area) and eight non-indigenous (cultivated or naturalized) populations were analyzed. Their essential-oil yield ranged from 0.25 to 3.48%. Within the total of 80 detected compounds, ten (β-pinene, 1,8-cineole, cis-thujone, trans-thujone, camphor, borneol, trans-caryophyllene, α-humulene, viridiflorol, and manool) represented 42.60 to 85.70% of the components in the analyzed essential oils. Strong positive correlations were observed between the contents of trans-caryophyllene and α-humulene, α-humulene and viridiflorol, and viridiflorol and manool. Principal component analysis (PCA) on the basis of the contents of the ten main compounds showed that four principal components had an eigenvalue greater than 1 and explained 79.87% of the total variation. Performing cluster analysis (CA), the sage populations could be grouped into four distinct chemotypes (A-D). The essential oils of 14 out of the 25 populations of Dalmatian sage belonged to Chemotype A and were rich in cis-thujone and camphor, with low contents of trans-thujone. The correlation between the essential-oil composition and geographic variables of the indigenous populations was not significant; hence, the similarities in the essential-oil profile among populations could not be explained by the physical proximity of the populations. Additionally, the southeastern populations tended to have higher EO yields than the northwestern ones.

  18. Metabolism of Monoterpenes 1

    PubMed Central

    Croteau, Rodney; El-Bialy, Hamdy; Dehal, Shangara S.

    1987-01-01

    The bicyclic monoterpene ketone (+)-camphor undergoes lactonization to 1,2-campholide in mature sage (Salvia officinalis L.) leaves followed by conversion to the β-d-glucoside-6-O-glucose ester of the corresponding hydroxy acid (1-carboxymethyl-3-hydroxy-2,2,3-trimethyl cyclopentane). Analysis of the disposition of (+)-[G-3H]camphor applied to midstem leaves of intact flowering plants allowed the kinetics of synthesis of the bis-glucose derivative and its transport from leaf to root to be determined, and gave strong indication that the transport derivative was subsequently metabolized in the root. Root extracts were shown to possess β-glucosidase and acyl glucose esterase activities, and studies with (+)-1,2[U-14C]campholide as substrate, using excised root segments, revealed that the terpenoid was converted to lipid materials. Localization studies confirmed the radiolabeled lipids to reside in the membranous fractions of root extracts, and analysis of this material indicated the presence of labeled phytosterols and labeled fatty acids (C14 to C20) of acyl lipids. Although it was not possible to detail the metabolic steps between 1,2-campholide and the acyl lipids and phytosterols derived therefrom because of the lack of readily detectable intermediates, it seemed likely that the monoterpene lactone was degraded to acetyl CoA which was reincorporated into root membrane components via standard acyl lipid and isoprenoid biosynthetic pathways. Monoterpene catabolism thus appears to represent a salvage mechanism for recycling mobile carbon from senescing oil glands on the leaves to the roots. PMID:16665495

  19. [Discrimination of varieties of borneol using terahertz spectra based on principal component analysis and support vector machine].

    PubMed

    Li, Wu; Hu, Bing; Wang, Ming-wei

    2014-12-01

    In the present paper, the terahertz time-domain spectroscopy (THz-TDS) identification model of borneol based on principal component analysis (PCA) and support vector machine (SVM) was established. As one Chinese common agent, borneol needs a rapid, simple and accurate detection and identification method for its different source and being easily confused in the pharmaceutical and trade links. In order to assure the quality of borneol product and guard the consumer's right, quickly, efficiently and correctly identifying borneol has significant meaning to the production and transaction of borneol. Terahertz time-domain spectroscopy is a new spectroscopy approach to characterize material using terahertz pulse. The absorption terahertz spectra of blumea camphor, borneol camphor and synthetic borneol were measured in the range of 0.2 to 2 THz with the transmission THz-TDS. The PCA scores of 2D plots (PC1 X PC2) and 3D plots (PC1 X PC2 X PC3) of three kinds of borneol samples were obtained through PCA analysis, and both of them have good clustering effect on the 3 different kinds of borneol. The value matrix of the first 10 principal components (PCs) was used to replace the original spectrum data, and the 60 samples of the three kinds of borneol were trained and then the unknown 60 samples were identified. Four kinds of support vector machine model of different kernel functions were set up in this way. Results show that the accuracy of identification and classification of SVM RBF kernel function for three kinds of borneol is 100%, and we selected the SVM with the radial basis kernel function to establish the borneol identification model, in addition, in the noisy case, the classification accuracy rates of four SVM kernel function are above 85%, and this indicates that SVM has strong generalization ability. This study shows that PCA with SVM method of borneol terahertz spectroscopy has good classification and identification effects, and provides a new method for species

  20. Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Glasius, Marianne

    2011-09-01

    Organosulfates of monoterpenes and isoprene, as well as their oxidation products have been identified in biogenic secondary organic aerosols (BSOA) from both laboratory and field studies. Organosulfates provide an interesting coupling between air pollution and formation of low-volatility BSOA. HPLC quadrupole time-of-flight mass spectrometry was used to study polar acidic monoterpene and isoprene oxidation products including pinic acid, pinonic and terpenylic acid along with organosulfates and nitrooxy organosulfates in aerosols from ambient air. The method was first validated by analysis of spiked quartz filters, which showed acceptable recoveries >74% for pinic acid, pinonic acid, camphor sulphonic acid and adipic acid. Acetonitrile was identified as a better solvent than methanol for extraction and analysis of pinonic acid and adipic acid, due to improved analytical sensitivity and prevention of methyl ester formation during sample extraction. PM 1 (i.e, aerosols with an aerodynamic diameter ≤1 μm) were collected during spring 2008 in a forest in Denmark with mixed deciduous and coniferous trees. Average concentrations of the most abundant compounds were: pinic acid: 1.5 ng m -3, pinonic acid: 3.0 ng m -3, terpenylic acid: 0.8 ng m -3 and 3-methyl-1,2,3-butanetricarboxylic acid: 3.0 ng m -3. Organosulfates and nitrooxy organosulfates were identified in a majority of the daily samples and the highest levels were observed during a warm period in late spring. As a first approach, due to the lack of authentic standards, organosulfates and nitrooxy organosulfates were tentatively quantified based on the analytical response of camphor sulphonic acid. Generally the concentrations of organosulfates and nitrooxy organosulfates were lower than first generation oxidation products. The maximum concentration of a total of 10 organosulfates and nitrooxy organosulfates were found to be about three times lower than pinonic acid with a maximum concentration of 8 ng m -3. A

  1. Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens.

    PubMed

    Koliopoulos, George; Pitarokili, Danae; Kioulos, Elias; Michaelakis, Antonios; Tzakou, Olga

    2010-07-01

    The volatile metabolites of wild-growing Mentha spicata, M. longifolia, M. suaveolens, Melissa officinalis, Salvia fruticosa, S. pomifera subsp. calycina, and S. pomifera subsp. pomifera from Greece were determined by gas chromatography and gas chromatography-mass spectrometry. The insecticidal properties of the analyzed essential oils were screened on Culex pipiens larvae. Additionally two of the main components of the essential oils, piperitenone oxide and 1,8-cineole were assayed against C. pipiens in order to define the affiliation between them and the larvicidal properties of the oils. The most effective oils were M. suaveolens (major constituent piperitenone oxide, 62.4%), M. spicata (piperitenone oxide, 35.7% and 1,8-cineole, 14.5%) and M. longifolia--Central Greece (piperitenone oxide, 33.4%; 1,8-cineole, 24.5% and trans-piperitone epoxide, 17.4%), which exhibited LC(50) values ranging from 47.88 to 59.33 mg l(-1). Medium activity revealed the oils of M. officinalis (terpin-4-ol, 15.8%; caryophyllene oxide, 13.2%; sabinene, 12.9%; beta-pinene, 12.1%; and trans-caryophyllene, 10.2%), M. longifolia--Southern Greece (carvone, 54.7% and limonene 20.0%), S. pomifera subsp. pomifera (trans-caryophyllene, 22.5% and trans-thujone, 21.0%), S. pomifera subsp. calycina--West Southern Greece (trans-thujone, 56.1% and 1,8-cineole, 10.4%), and S. fruticosa--population 2 (camphor, 23.1%; alpha-pinene, 12.7%; and borneol, 12.6%), with LC(50) values ranging from 78.28 to 91.45 mg l(-1). S. pomifera subsp. calycina (Central Greece) essential oil (trans-thujone, 26.5% and cis-thujone, 12.0%) presented rather low activity (LC(50) values 140.42 mg l(-1)), while S. fruticosa--population 1 (1,8-cineole, 31.4% and camphor, 22.6%) was the only inactive oil. Additionally, the constituent piperitenone oxide was found to be highly active (LC(50) values 9.95 mg l(-1)), whereas 1,8-cineole revealed no toxicity.

  2. Stability assessment of gas mixtures containing terpenes at nominal 5 nmol/mol contained in treated aluminum gas cylinders.

    PubMed

    Rhoderick, George C

    2010-10-01

    Studies of climate change increasingly recognize the diverse influences exerted by terpenes in the atmosphere, including roles in particulates, ozone formation, and their oxidizing potential. Measurements of key terpenes suggest atmospheric concentrations ranging from low pmol/mol (parts per trillion) to nmol/mol (parts per billion), depending on location and compound. To accurately establish concentration trends, assess the role of terpenes in atmospheric chemistry, and relate measurement records from many laboratories and researchers, it is essential to have good calibration standards. The feasibility of preparing well-characterized, stable gas cylinder standards for terpenes at the nmol/mol level is not yet well established. Several of the world's National Metrology Institutes (NMIs) are researching the feasibility of developing primary and secondary reference gas standards at the nmol/mol level for terpenes. The US NMI, the National Institute of Standards and Technology, has prepared several nmol/mol mixtures, in treated aluminum gas cylinders, containing terpenes in dry nitrogen at nominal 5 nmol/mol for stability studies. Overall, 11 terpenes were studied for stability. An initial gas mixture containing nine terpenes, one oxygenate, and six aromatic compounds, including benzene as an internal standard, was prepared. Results for four of the nine terpenes in this initial mixture indicate stability in these treated aluminum gas cylinders for over 6 months and project long term (years) stability. Interesting results were seen for beta-pinene, which when using a linear equation rate decline predicts that it will reach a zero concentration level at day 416. At the same time, increases in alpha-pinene, D: -limonene (R-(+)-limonene), and p-cymene were observed, including camphene, a terpene not prepared in the gas mixture, indicating a chemical transformation of beta-pinene to these species. Additional mixtures containing combination of either alpha-pinene, camphor

  3. The Tracing of VOC Composition of Acacia Honey During Ripening Stages by Comprehensive Two-Dimensional Gas Chromatography.

    PubMed

    Vyviurska, Olga; Chlebo, Róbert; Pysarevska, Solomiya; Špánik, Ivan

    2016-10-01

    In this study, VOC profiles of acacia flowers and honey samples at different processing stages and related comb wax samples were studied using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. It was found that some monoterpene compounds like α-pinene, myrcene, cis-β-ocimene, and 4-terpineol were common for acacia flower and all acacia honey samples, and the presence of verbenone and ocimene was first established in acacia honey. The most enriched VOC profile was obtained for raw honey before cell capping, where the final composition of lactones was achieved. On the contrary, number of alcohols, esters, and variety of terpenes, as well as their concentration in the honey samples decrease through ripening processes. Strained honey was characterized by the absence of camphor, α-bisabolol, and 3-carene, while isophorone and hexanoic acid were identified only in this type of honey. The composition of final VOC profile of honey was also influenced by the age of comb wax. The additional aromatic and lactone compounds, e.g., phenol, 1-phenylethanol, δ-hexalactone, and γ-heptalactone were observed for honey maturated in old dark comb wax.

  4. Development of assays for the detection of photomutagenicity of chemicals during exposure to UV light. II. Results of testing three sunscreen ingredients.

    PubMed

    Dean, S W; Dunmore, R H; Ruddock, S P; Dean, J C; Martin, C N; Kirkland, D J

    1992-05-01

    Three sunscreen ingredients, derivatives of benzylidene camphor, were tested for photomutagenic potential. These were benzenesulfonic acid, 4-[(4,7,7,-trimethyl-3-oxo-bicyclo [2.2.1] hept-2-ylidene) methyl] (Mexoryl SL), 4-(2-oxo 3-bornylidenemethyl) phenyl trimethylammonium methyl sulphate (Mexoryl SO) and 3,3'-(1,4-phenylenedimethylidyne) bis [7,7-dimethyl-2-oxo-bicyclo [2.2.1] heptane-1-methanesulfonic acid] (Mexoryl SX). Two complementary assay systems were used, one involving the induction of reverse mutations in Escherichia coli strain WP2, the other measuring the induction of chromosome damage in Chinese hamster ovary (CHO) cells. Irradiation with UVA and/or UVB was provided by an Osram Ultra-Vitalux sunlamp. None of the three sunscreens, tested either to the limit of solubility or toxicity, gave any indication of photomutagenicity in either assay, under conditions in which the positive control compound, 8-methoxypsoralen, was extremely photomutagenic. It is concluded that Mexoryls SL, SO and SX can be exposed to UV light without producing photomutagenicity measurable using a bacterial reverse mutation or a mammalian chromosome aberration assay.

  5. An overview of UV-absorbing compounds (organic UV filters) in aquatic biota.

    PubMed

    Gago-Ferrero, Pablo; Díaz-Cruz, M Silvia; Barceló, Damià

    2012-11-01

    The purpose of this article is to summarize biological monitoring information on UV-absorbing compounds, commonly referred as organic UV filters or sunscreen agents, in aquatic ecosystems. To date a limited range of species (macroinvertebrates, fish, and birds), habitats (lakes, rivers, and sea), and compounds (benzophenones and camphors) have been investigated. As a consequence there is not enough data enabling reliable understanding of the global distribution and effect of UV filters on ecosystems. Both liquid chromatography and gas chromatography coupled with mass spectrometry-based methods have been developed and applied to the trace analysis of these pollutants in biota, enabling the required selectivity and sensitivity. As expected, the most lipophilic compounds occur most frequently with concentrations up to 7112 ng g(-1) lipids in mussels and 3100 ng g(-1) lipids (homosalate) in fish. High concentrations have also been reported for 4-methylbenzilidenecamphor (up to 1800 ng g(-1) lipids) and octocrylene (2400 ng g(-1) lipids). Many fewer studies have evaluated the potential bioaccumulation and biomagnification of these compounds in both fresh and marine water and terrestrial food webs. Estimated biomagnification factors suggest biomagnification in predator-prey pairs, for example bird-fish and fish-invertebrates. Ecotoxicological data and preliminary environmental assessment of the risk of UV filters are also included and discussed.

  6. Chemotypic Characterization and Biological Activity of Rosmarinus officinalis

    PubMed Central

    Satyal, Prabodh; Jones, Tyler H.; Lopez, Elizabeth M.; McFeeters, Robert L.; Ali, Nasser A. Awadh; Mansi, Iman; Al-kaf, Ali G.; Setzer, William N.

    2017-01-01

    Rosemary (Rosmarinus officinalis L.) is a popular herb in cooking, traditional healing, and aromatherapy. The essential oils of R. officinalis were obtained from plants growing in Victoria (Australia), Alabama (USA), Western Cape (South Africa), Kenya, Nepal, and Yemen. Chemical compositions of the rosemary oils were analyzed by gas chromatography-mass spectrometry as well as chiral gas chromatography. The oils were dominated by (+)-α-pinene (13.5%–37.7%), 1,8-cineole (16.1%–29.3%), (+)-verbenone (0.8%–16.9%), (−)-borneol (2.1%–6.9%), (−)-camphor (0.7%–7.0%), and racemic limonene (1.6%–4.4%). Hierarchical cluster analysis, based on the compositions of these essential oils in addition to 72 compositions reported in the literature, revealed at least five different chemotypes of rosemary oil. Antifungal, cytotoxicity, xanthine oxidase inhibitory, and tyrosinase inhibitory activity screenings were carried out, but showed only marginal activities. PMID:28273883

  7. Physical and Chemical Properties of Some Imported Woods and their Degradation by Termites

    PubMed Central

    Shanbhag, Rashmi R.; Sundararaj, R.

    2013-01-01

    The influence of physical and chemical properties of 20 species of imported wood on degradation of the wood by termites under field conditions was studied. The wood species studied were: Sycamore maple, Acer pseudoplatanus L. (Sapindales: Sapindaceae) (from two countries), Camphor, Dryobalanops aromatic C.F.Gaertner (Malvales: Dipterocarpaceae), Beech, Fagus grandifolia Ehrhart (Fagales: Fagaceae), F. sylvatica L. (from two countries), Oak, Quercus robur L., Ash, Fraxinus angustifolia Vahl (Lamiales: Oleaceae), F. excelsior L., Padauk, Pterocarpus soyauxii Taubert (Fabales: Fabaceae), (from two countries), Jamba, Xylia dolabrifiormis Roxburgh, Shorea laevis Ridley (Malvales: Dipterocarpaceae), S. macoptera Dyer, S. robusta Roth, Teak, Tectona grandis L.f. (Lamiales: Lamiaceae) (from five countries), and rubber tree, Hevea brasiliensis Müller Argoviensis (Malpighiales: Euphorbiaceae) from India. The termites present were: Odontotermes horni (Wasmann) (Isoptera: Termitidae), O. feae, O. wallonensis, and O. obeus (Rambur). A significant conelation was found between density, cellulose, lignin, and total phenolic contents of the wood and degradation by termites. The higher the density of the wood, the lower the degradation. Similarly, higher amount of lignin and total phenolic contents ensured higher resistance, whereas cellulose drives the termites towards the wood. PMID:23906349

  8. Investigation of the Effects of Atomic Number and Constitution on Chirally-Sensitive Electron-Induced Molecular Breakup

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan; Lewis, Frank; Gay, Timothy

    2015-05-01

    We present the results of our search for asymmetric interactions between longitudinally spin-polarized electrons and different chiral halocamphor molecules. We define the asymmetry as A = [(I↑ -I↓) /(I↑ +I↓) ]L- [(I↑ -I↓) /(I↑ +I↓) ]R, where I↑ (I↓) is the current measured for spin-up (spin-down) electrons and the `` L'' and `` R'' subscripts correspond to the left- and right-handed chirality of the molecules. Two electron-molecule interaction channels were studied: electron transmission (related to the total scattering cross section) and dissociative electron attachment (DEA). Three halocamphor molecules were investigated: 3-bromocamphor (C10H15BrO), 3-iodocamphor(C10H15IO), and 10-iodocamphor. While the transmission asymmetry data do not show a strong molecular dependence, the DEA asymmetries collected for bromocamphor and iodocamphor are qualitatively different, suggesting that the atomic number of the heaviest atom in the molecule plays a crucial role in the asymmetric interactions. The DEA asymmetry data for 3- and 10-iodocamphor have the same qualitative behavior, but the 10-iodocamphor asymmetry is about twice as large at the lowest energies investigated, so the location of the heavy atom in the camphor molecule also affects the asymmetries.

  9. Numerical investigation of solidification and CET of the transparent alloy NPG-37.5 wt.% DC in microgravity “TRACE” experiment

    NASA Astrophysics Data System (ADS)

    Ahmadein, M.; Wu, M.; Sturz, L.; Zimmermann, G.; Ludwig, A.

    2016-03-01

    A solidification experiment “TRACE” of the transparent alloy Neopentylglycol (NPG)-37.5wt.% D-Camphor (DC) was conducted on-board the sounding rocket TEXUS-47 in low-gravity environment to investigate the columnar growth and the columnar-to-equiaxed transition (CET). To improve the fundamental understanding of solidification and CET in microgravity, the current laboratory scale experiment was tried to be numerically reproduced by a recently developed 5-phase volume averaging model. The temperature gradient in the solidification cell is applied to the simulation. In absence of melt flow, the calculated cooling curves, columnar tip position, tip undercooling and velocity, and number density of equiaxed crystals were compared to the results of in-situ real-time observations of the experiment. The CET could be predicted at position close to that of experiment. Simulation reveals the competitive growth between the columnar and equiaxed crystals before CET. Modelling parameters of equiaxed nucleation and columnar tip growth are the key to regulate this competition and to locate the CET. Experimental verification of modelling parameters considering melt flow is intended in the future work.

  10. The Biological Activity and Composition of the Essential Oil of Sclerorhachis leptoclada (Asteraceae-Anthemideae) from Iran

    PubMed Central

    Sonboli, Ali; Mirjalili, Mohammad Hossein; Hadian, Javad; Yousefzadi, Morteza

    2014-01-01

    The biological activity and composition of the essential oil of Sclerorhachis leptoclada Rech. f. an endemic species from northeast of Iran was studied. The essential oil was isolated from the aerial flowering parts of the plant and analyzed by GC and GC-MS. Fifty-four compounds accounting for 95.9% of the total oil were characterized. The main constituents were (E)-nerolidol (14.5%), terpinen-4-ol (13.3%), camphor (6.1%), 1,8-cineole (4.8%) and p-cymene (4.5%). The antimicrobial activity of the essential oil of S. leptoclada was tested against eight microbial strains and a fungi. The results of the bioassays showed that the Gram-positive bacteria, Bacillus subtilis and Staphylococcus epidermidis, were the most sensitive to the oil than others with the MIC value of 1.8 mg/mL. The tested fungi, Saccharomyces cerevisiae was highly inhibited by the oil of S. leptoclada with MIC value of 10 mg/mL. In the case of cytotoxicity, IC50 values estimated to be 312, 1250, 625 and 1250 μg oil/mL respectively, for the Vero, SW480, MCF7, and JET 3 cancer cell lines. PMID:25276213

  11. Effects of transient receptor potential (TRP) channel agonists and antagonists on slowly adapting type II mechanoreceptors in the rat sinus hair follicle.

    PubMed

    Cahusac, Peter M B

    2009-12-01

    The possible functional role of transient receptor potential (TRP) channels was investigated by testing various TRP agonists and antagonists in an isolated rat sinus hair follicle preparation. Extracellular recordings from slowly adapting type II mechanoreceptor units were made. The antagonist capsazepine depressed spontaneous and mechanically evoked activity, with an IC(50) of 82 microM. In one-third of units, capsazepine caused a selective depression of mechanically evoked firing, such that the existing spontaneous firing was interrupted by an absence of activity during the mechanical stimulus. The broad spectrum TRP blocker ruthenium red (30 microM) had inconsistent effects, although in some units a delayed onset (following wash) bursting and paroxysmal firing ensued. The agonist icilin (50-100 microM) had an excitatory effect on spontaneous firing, and (-)-menthol (200 microM) had inconsistent effects. Cinnamaldehyde (1-2 mM) depressed all types of activity equally, mechanically evoked and spontaneous. Camphor (0.5-2 mM) also depressed all types of activity, although it had a preferential effect on spontaneous activity. Capsaicin (1-10 microM) and allyl isothiocyanate (50-100 microM) had no clear effects. These results rule out any role for TRPA1 and TRPV1 channels in mechanotransduction processes of slowly adapting type II mechanoreceptors.

  12. Predicted 3D structures of olfactory receptors with details of odorant binding to OR1G1

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Kyung; Goddard, William A.

    2014-12-01

    Olfactory receptors (ORs) are responsible for mediating the sense of smell; they allow humans to recognize an enormous number of odors but the connection between binding and perception is not known. We predict the ensemble of low energy structures for the human OR1G1 (hOR1G1) and also for six other diverse ORs, using the G protein-coupled receptor Ensemble of Structures in Membrane BiLayer Environment complete sampling method that samples 13 trillion different rotations and tilts using four different templates to predict the 24 structures likely to be important in binding and activation. Our predicted most stable structures of hOR1G1 have a salt-bridge between the conserved D3.49 and K6.30 in the D(E)RY region, that we expect to be associated with an inactive form. The hOR1G1 structure also has specific interaction in transmembrane domains (TMD) 3-6 (E3.39 and H6.40), which is likely an important conformational feature for all hORs because of the 94 to 98 % conservation among all hOR sequences. Of the five ligands studied (nonanal, 9-decen-1-ol, 1-nonanol, camphor, and n-butanal), we find that the 4 expected to bind lead to similar binding energies with nonanol the strongest.

  13. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni.

    PubMed

    Tak, Jun-Hyung; Isman, Murray B

    2017-02-09

    Many plant essential oils and their terpenoid constituents possess bioactivities including insecticidal activity, and they sometimes act synergistically when mixed. Although several hypotheses for this have been proposed, the underlying mechanism has not been fully elucidated thus far. In the present study, we report that in larvae of the cabbage looper, Trichoplusia ni, most synergistic or antagonistic insecticidal activities among mixtures of plant essential oil constituents are pharmacokinetic effects, owing to changes in solubility as well as spreadability on a wax layer. Among the major constituents of rosemary (Rosmarinus officinalis) oil, in vitro analysis revealed up to a 19-fold increase in penetration of camphor in a binary mixture with 1,8-cineole through the larval integument, suggesting increased penetration as the major mechanism for synergy. A total of 138 synergistic or antagonistic interactions among 39 compounds were identified in binary mixtures via topical application, and these were highly correlated to changes in surface tension as measured by contact angle of the mixtures on a beeswax layer. Among compounds tested, trans-anethole alone showed evidence of internal synergy, whereas most of remaining synergistic or antagonistic combinations among the three most active compounds were identified as penetration-related interactions, confirmed via a divided-application bioassay.

  14. Mixed forest plantations can efficiently filter rainfall deposits of sulfur and chlorine in Western China

    NASA Astrophysics Data System (ADS)

    Zhao, Hairong; Yang, Wanqin; Wu, Fuzhong; Tan, Bo

    2017-01-01

    Forest filtering is a well-known and efficient method for diminishing atmospheric pollutant (such as SO42‑ and Cl‑) inputs to soil and water; however, the filtering efficiencies of forests vary depending on the regional vegetation and climate. The rainy area of West China has suffered from heavy rainfall and human activity, which has potentially resulted in large amounts of sulfur and chlorine deposition, but little information is available regarding the filtering effects of typical plantations. Therefore, the migration of SO42‑ and Cl‑ from rainfall to throughfall, stemflow and runoff were investigated in a camphor (Cinnamomum camphora) plantation, a cryptomeria (Cryptomeria fortunei) plantation and a mixed plantation in a 9-month forest hydrology experiment. The results indicated the following: (i) The total SO42‑ and Cl‑ deposition was 43.05 kg ha‑1 and 5.25 kg ha‑1, respectively. (ii) The cover layer had the highest interception rate (60.08%), followed by the soil layer (16.02%) and canopy layer (12.85%). (iii) The mixed plantation resulted in the highest SO42‑ (37.23%) and Cl‑ (51.91%) interception rates at the forest ecosystem scale, and the interception rate increased with increasing rainfall. These results indicate that mixed plantations can effectively filter SO42‑ and Cl‑ in this area and in similar areas.

  15. Biodegradation of 1-allyloxy-4-propoxybenzene by selected strains of Pseudomonas putida.

    PubMed

    Ebrahimi, Parisa; Plettner, Erika

    2014-02-01

    Dialkoxybenzenes constitute a class of organic compounds with anti feeding and oviposition effects on the cabbage looper, Trichoplusia ni. Among them, 1-allyloxy-4-propoxybenzene has the highest feeding deterrence activity and potential for development as commercial insect control agent. To develop this compound, its fate in the environment needs to be studied. The fate of organic compounds in the environment depends on their biodegradability in the soil. We present results of laboratory biodegradation experiments of 1-allyloxy-4-propoxybenzene with three strains of Pseudomonas putida. Two of the three strains of P. putida tested were able to metabolize 1-allyloxy-4-propoxybenzene. Both strains required induction of the catabolic pathway. Specifically, strain ATCC 17453 (which contains the CAM plasmid) metabolized 1-allyloxy-4-propoxybenzene by first dealkylating. This gave both possible monoalkoxy phenols after five days, followed by dihydroquinone after 8 days. In vitro tests with CYP101A1 (cytochrome P450cam, a camphor hydroxylase), revealed that the dealkylation is catalyzed by this enzyme.

  16. Preparation and evaluation of sublingual tablets of zolmitriptan

    PubMed Central

    Prajapati, Shailesh T; Patel, Manoj V; Patel, Chhaganbhai N

    2014-01-01

    Aim: Zolmitriptan is a 5-HT receptor agonist (1B/1D). It is used in the acute treatment of migraine having low bioavailability about 40% orally due to hepatic first pass metabolism. The purpose of the present research was to formulate fast acting sublingual tablets of zolmitriptan. Materials and Methods: Sublingual tablets were prepared using ispaghula husk powder, gellan gum, sodium alginate as super disintegrating polymers and citric acid, tartaric acid and camphor as permeation enhancers by direct compressible technique and evaluated for weight variation, thickness, friability, content uniformity, hardness, disintegration time, wetting time, in-vitro drug release, in-vitro and ex-vivo permeation study. Stability study of optimized formulation was performed as per ICH (International Conference on Harmonisation) guideline. Results: The in-vitro disintegration time of the optimized formulation (D5) was 9 ± 2 s and all formulations showed 100% of dissolution within 6 ± 2 min. Formulation containing 4% of gellan gum (D5) showed highest disintegration and 2% of citric acid formulation (P3) showed highest permeation 88% within 30 min and ex-vivo permeation was 52% within 30 min. Optimized formulation was stable for 1 month during stability study as per ICH guideline. Conclusion: The sublingual tablet formulation gives better results using natural super disintegrant for fast onset of action. PMID:24678459

  17. Antrodia camphorata extract induces replicative senescence in superficial TCC, and inhibits the absolute migration capability in invasive bladder carcinoma cells.

    PubMed

    Peng, Chiung-Chi; Chen, Kuan-Chou; Peng, Robert Y; Chyau, Charng-Cherng; Su, Ching-Hua; Hsieh-Li, Hsiu Mei

    2007-01-03

    The Antrodia camphorata crude extract (ACCE), an extract obtained from a precious traditional Chinese folkloric herbal medicine Zhan-Ku (a camphor tree mushroom) since the 18th century, has showed rather significant inhibitory effects on the growth and proliferation of the transitional cell carcinomas (TCC) cell lines RT4, TSGH-8301, and T24. On treatment with ACCE at 100 microg/mL, the p53-independent overexpression of p21 with simultaneous down alteration of pRb was observed in RT4, which was thus speculative of proceeding through a mechanism of replicative senescence. On the contrary treatment with ACCE, at 50 microg/mL, resulting in simultaneous down-regulations of Cdc2 and Cyclin B1, with suppression of the absolute migrating capability of the two cell lines TSGH-8301 and T24, and eventually the cell deaths. We conclude that ACCE can be rather effective and beneficial in suppression of both the superficial cancer cell line RT4 and the metastatic cell lines (TSGH-8301 and T24) through different mechanisms.

  18. Review of Scientific Evidence of Medicinal Convoy Plants in Traditional Persian Medicine.

    PubMed

    Sadati, Seyede Nargess; Ardekani, Mohammad Reza Shams; Ebadi, Nastaran; Yakhchali, Maryam; Dana, Azadeh Raees; Masoomi, Fatemeh; Khanavi, Mahnaz; Ramezany, Farid

    2016-01-01

    One concept used in traditional Persian medicine (TPM) for multidrug therapy is that of the convoy drug (Mobadregh). According to TPM texts, convoy drugs are substances (or drugs), which facilitate the access of drugs or foods to the whole body or to specific organs. This study reviewed some convoy drugs presented in TPM, their biological effects, and their probable interactions with main drugs, considering the increased absorption through inhibition of P-glycoprotein (P-gp) efflux function, bioavailability-enhancing effects, and decreased metabolism of the main drug using electronic databases including PubMed, Scopus, ScienceDirect, and Google Scholar in November and December, 2013. Recent studies have proven the beneficial effects of Crocus sativus L. (saffron) and camphor on the heart and brain, the cerebral therapeutic effects of Asarum europaeum (hazelwort), the hepatoprotective effects of Cichorium intybus (chicory), and Apium graveolens (celery) seeds, and the diuretic effects of Cinnamomum zeylanicum (cinnamon), and Cucumis melo (melon) seeds. The effects of vinegar in targeting the liver and brain have also been demonstrated. An evaluation of the results demonstrated that the suggested convoy drugs, including Piper nigrum (black pepper), Piper longum (long pepper), red wine, Camellia sinensis (tea), hazelwort, Mentha longifolia (pennyroyal), Anethum graveolens (dill), Foeniculum vulgare (fennel), cinnamon, and Sassafras albidum (sassafras) can increase the bioavailability of coadministered drugs by inhibition of P-gp or cytochrome P450s (CYP450s) or both of them. This evidence could be a good basis for the use of these agents as convoys in TPM.

  19. Terpene degradation and extraction from basil and oregano leaves using subcritical water.

    PubMed

    Yang, Yu; Kayan, Berkant; Bozer, Neval; Pate, Bryan; Baker, Christopher; Gizir, Ahmet M

    2007-06-08

    In the first part of this study, the stability of five terpenes (alpha-pinene, limonene, camphor, citronellol, and carvacrol) under subcritical water conditions was investigated. The stability studies were carried out at four different temperatures (100, 150, 200, and 250 degrees C) with two different heating times (30 and 300 min). When water temperature was increased, the degradation of terpenes became more serious. Prolonged exposure time to each heating temperature also caused decreased terpene stability. The terpene recoveries were determined by conducting subcritical water extraction of sand spiked with terpenes. The recoveries are typically around 70 to 80% for extractions at 100 degrees C. Terpene recoveries were decreased with increasing water temperature due to poorer stability of terpenes. After the degradation and recovery studies, basil and oregano leaves were extracted using water at both 100 and 150 degrees C. The concentrations of each individual terpene in the water extract generally ranged from trace quantity to 65 microg terpene/g herb. However, the concentration of carvacrol in the oregano-water extract at 150 degrees C was found to be as high as 4270 microg carvacrol/g oregano.

  20. Effect of drying temperature on essential oil content and composition of sweet wormwood (Artemisia annua) growing wild in Iran.

    PubMed

    Khangholil, Shahpour; Rezaeinodehi, Ayatollah

    2008-03-15

    Studies were conducted to show the effect of different temperatures in the drying process on the amount and quality of essential oils of sweet wormwood (Artemisia annua L.). The sweet wormwood aerial parts were harvested in full blooming time from an area around the Siahkal city in north of Iran in September 2005. In order to complete drying, the aerial parts were placed at shade (room temperature) and in oven at 35, 45, 55 and 65 degrees C temperatures. The aerial parts essential oil was extracted by hydrodistillation in a Clevenger apparatus and analyzed by GC/MS. Results showed that higher drying temperatures decreased the essential oil content, from 1.12% (room temperature) 0.88% (35 degrees C), 0.55% (45 degrees C) to 0.50% (55 degrees C) and 0.37% (65 degrees C). Thirty-five components were determined in essential oils, which were mostly monoterpenes. The drying temperatures had a significant effect on the essential oils composition and proportion of the various components, as when the temperature increased, the monoterpenes content gradually decreased and vice versa for sesquiterpenes. The major components were artemisia ketone and 1, 8 cineol for room and 45 degrees C; artemisia ketone, 1, 8 cineol and camphor for 35 and 55 degrees C and beta-caryophyllene and germacrene D for 65 degrees C temperatures.

  1. Enhanced production of nitric oxide in A549 cells through activation of TRPA1 ion channel by cold stress.

    PubMed

    Sun, Wenwu; Wang, Zhonghua; Cao, Jianping; Wang, Xu; Han, Yaling; Ma, Zhuang

    2014-08-31

    The respiratory epithelium is exposed to the external environment, and inhalation of cold air is common during the season of winter. In addition, the lung is a major source of nitric oxide (NO). However, the effect of cold stress on the production of NO is still unclear. In the present work, We measured the change of NO in single cell with DACF-DA and the change in cytosolic Ca(2+) concentration ([Ca(2+)]c) in A549 cell. We observed that cold stress (from 20 °C to 5 °C) induced an increase of NO in A549 cell, which was completely abolished by applying an extracellular Ca(2+) free medium. Further experiments showed that cold-sensing transient receptor potential subfamily member 1 (TRPA1) channel agonist (allyl isothiocyanate, AITC) increased the production of NO and the level of [Ca(2+)]c in A549 cell. Additionally, TRPA1 inhibitor, Ruthenium red (RR) and camphor, significantly blocked the enhanced production of NO and the rise of [Ca(2+)]c induced by AITC or cold stimulation, respectively. Taken together, these data indicated that cold-induced TRPA1 activation was responsible for the enhanced production of NO in A549 cell.

  2. Smart textiles: a new drug delivery system for symptomatic treatment of a common cold.

    PubMed

    Wienforth, F; Landrock, A; Schindler, C; Siegert, J; Kirch, W

    2007-05-01

    Smart textiles provide the possibility of being coated with cineole, menthol, and camphor. Due to over-the-counter availability, ethereal oils are frequently used to treat a common cold. The existing pharmaceutical forms entail the risk of oral ingestion by children, which can cause severe intoxications. This risk could be limited by a smart textile application. Prior to applicability tests in children, the principal traceability of smart textile-applied ethereal oils at their site of action in the alveoli has to be demonstrated. Therefore, a crossover trial (ointment vs smart textiles) with 6 healthy volunteers was carried out as a proof-of-concept study. As a result, the principle proof is given that smart textile-applied ethereal oils are available at their site of action. Because of the volatility of the active ingredients, a close-fitting textile form has to be developed for further clinical development of smart textiles to achieve higher concentrations in the alveoli. Slower liberation properties and a more convenient skin sensation in comparison to available pharmaceutical forms may provide advantages for the applicability in both children and adults.

  3. Volatile and lipid analyses by gas chromatography/mass spectrometry and nutraceutical potential of edible wild Malva aegyptiaca L. (Malvaceae).

    PubMed

    Zouari, Nacim; Fakhfakh, Nahed; Zouari, Sami; Sellami, Mohamed; Abid, Mouna; Ayadi, M A; Zaidi, Slah; Neffati, Mohamed

    2011-09-01

    Volatile and lipid chemical compositions, and nutritional and antioxidant properties of Malva aegyptiaca, an edible wild plant largely distributed in North Africa, were investigated. Forty-nine compounds of volatiles were identified showing large qualitative and quantitative differences during three phenological stages. The flowering stage was characterized by the presence of a high number of terpenic compounds, among them dillapiole was found to be the major one (55.15%). The nutrient composition of leaves and fruits was investigated in the present work. Fruits' lipidic fraction was characterized by its high level of linoleic acid (n-6) (36.17%). Interestingly, leaves' lipidic fraction was characterized by its very high content of camphor (43.69%) and by its relatively high content of linoleinic acid (n-3) (14.69%). Furthermore, our results showed that the phenolic contents varied from 352 to 404 mg gallic acid equivalent/g ethanolic and acetonic extracts, respectively. These extracts revealed interesting antioxidant activities including free radical scavenging activity (EC(50) = 0.38-0.57 mg/ml) and reducing power (EC(50) = 0.12-0.18 mg/ml).

  4. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni

    NASA Astrophysics Data System (ADS)

    Tak, Jun-Hyung; Isman, Murray B.

    2017-02-01

    Many plant essential oils and their terpenoid constituents possess bioactivities including insecticidal activity, and they sometimes act synergistically when mixed. Although several hypotheses for this have been proposed, the underlying mechanism has not been fully elucidated thus far. In the present study, we report that in larvae of the cabbage looper, Trichoplusia ni, most synergistic or antagonistic insecticidal activities among mixtures of plant essential oil constituents are pharmacokinetic effects, owing to changes in solubility as well as spreadability on a wax layer. Among the major constituents of rosemary (Rosmarinus officinalis) oil, in vitro analysis revealed up to a 19-fold increase in penetration of camphor in a binary mixture with 1,8-cineole through the larval integument, suggesting increased penetration as the major mechanism for synergy. A total of 138 synergistic or antagonistic interactions among 39 compounds were identified in binary mixtures via topical application, and these were highly correlated to changes in surface tension as measured by contact angle of the mixtures on a beeswax layer. Among compounds tested, trans-anethole alone showed evidence of internal synergy, whereas most of remaining synergistic or antagonistic combinations among the three most active compounds were identified as penetration-related interactions, confirmed via a divided-application bioassay.

  5. Chemical Composition, In Vitro Antimicrobial, Free-Radical-Scavenging and Antioxidant Activities of the Essential Oil of Leucas inflata Benth.

    PubMed

    Mothana, Ramzi A; Noman, Omar M; Al-Sheddi, Ebtesam S; Khaled, Jamal M; Al-Said, Mansour S; Al-Rehaily, Adnan J

    2017-02-27

    The essential oil of Leucas inflata Balf.f. (Lamiaceae), collected in Yemen, was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. Forty-three components were recognized, representing 89.2% of the total oil. The L. inflata volatile oil was found to contain a high percentage of aliphatic acids (51.1%). Hexadecanoic acid (32.8%) and n-dodecanoic acid (7.8%) were identified as the major compounds. Oxygenated monoterpenes were distinguished as the second significant group of constituents (16.0%). Camphor (6.1%) and linalool (3.2%) were found to be the main components among the oxygenated monoterpenes. In addition, the volatile oil was assessed for its antimicrobial activity against four bacterial strains and one yeast species using broth micro-dilution assay for minimum inhibitory concentrations (MIC). In addition, antioxidant activity was measured utilizing the anti-radical activity of the sable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-Carotene-linoleic acid assays. The oil of L. inflata showed an excellent antibacterial activity against only the tested Gram-positive bacteria with a MIC-value of 0.81 mg/mL. Furthermore, the oil demonstrated, at a concentration of 1 mg/mL, a weak to moderate antiradical and antioxidant activity of 38% and 32%, respectively.

  6. EFFICIENCY OF PREPARED BAITS OF LONE OR/AND ADMIXED FOUR BOTANICAL OILS ON THE VIABILITY OF SUCCESSIVE RAISED GENERATIONS OF AGROTIS IPSILON (HUFNAGEL) (INSECTA: LEPIDOPTERA: NOCTUIDAE) AFTER TREATING THE PARENT ONES.

    PubMed

    Mesbah, H A; El-Sayed, Nagda A; El-Kady, Magda B; Tayeb, E H; Mourad, A K; Kordy, A M; Henaidy, Zeinab M

    2014-01-01

    The present study is initiated to determine the toxic and delayed effects of four botanical oils on the greasy cutworm A. ipsilon, aiming to attain an alternative environmentally safe and effective phytochemicals against the insect-pest. Four botanical oils (camphor, red basil, menthol and rose oil) were added at rates of 0.5 and 1.0% (v/w). The tested oils were added alone, and/or admixed at proportional rate of 1:1 in the prepared baits against the exposed 4th instar till the 6th instar larvae of the insect. The study was run under the laboratory higrothermic conditions of 25±2°C and 65±5% R.H. The results showed that the tested baits of camphor, red basil and menthol oils at concentration rates of 0.5 and 1.0% (v/w) adversely affected the inspected parameters of fitness components of the treated individuals of parent (p) generation. They gave more or less fewer numbers of weak unviable adult-moths, which were either sterile or they laid few numbers of infertile eggs and died before the induction of (F1) progeny. That failure could be elucidated by the rapid occurrence of drastic effects on the biological performance of both the influenced sexes of adult-moths along the period of parent's development. Finally it ended by the inhibited induction of (F1) progeny. A delayed effect of the prepared baits of rose oil at 0.5 and 1.0% (v/w), was assessed on the following raised F1, F2, F3 and F4 generations after parent's treatment. The delayed effect was detected as less efficient latent effect on each of these consequently raised generations; characterized by the gradual decrease of the number of alive immatures and adult-moths. The effect was recorded as gradual increase of dead and malformed individuals and adult-moths. In addition to the gradual decrease of deposited and/or hatched eggs up to the 4th generation, which ended by the complete failure of the development. That failure could be also attributed to the cumulated effects of the induced recessive lethal

  7. Synthesis and some reactions of dibutyltin (S)- and (R)-camphorsulfonyl hydrides.

    PubMed

    Kinart, Wojciech J; Kinart, Cezary M; Kozak, Monika; Kinart, Andrzej; Sendecki, Marcin; Matczak, Piotr

    2009-08-01

    The synthesis and physical properties of dibutyltin (S)-camphorsulfonyl hydride (1) and dibutyltin (R)-camphorsulfonyl hydride (2), and diphenyltin (S)-camphorsulfonyl hydride (3) as well as that of their organotin precursors are described. Their reactivity with different amines as triethylamine, morpholine and pyridine has been compared with other mixed hydrides as dibutyltin chloride hydride, dibutyltin acetate hydride and dibutyltin dihydride. It has been studied also the possibility of using of dibutyltin (R)- or (S)-camphorsulfonyl hydrides for the stereoselective reduction of different ketones as acetophenone, menthon, camphor and cyclopropyl-(4-metoxyphenyl)-methanone. The reduction of acetophenone with studied camphorsulfonyl hydrides carried out in benzene at room temperature afforded 1-phenylethanol with relatively low enantioselectivity. Addition of 10 equiv. of MnCl(2)*4H(2)O or ZnCl(2) to the reduction mixture involving dibutyltin (S)-camphorsulfonyl hydride (1) and acetophenone and carried out in methanol and tetrahydrofuran, respectively, resulted in remarkable increase in enantioselectivity. The comparative kinetic studies of reduction of acetophenone by different hydrides proved that dibutyltin camphorsulfonyl hydride is significantly more reactive in comparison with dibutyltin chloro hydride and dibutyltin acetate hydride. Analogous results have been obtained from kinetic studies for different tin hydrides with chosen amines. The outcome of these studies supported by theoretical calculations led to the conclusion that the order of reactivity of the studied hydrides correlates with the rate of their homolytic decomposition at room temperature.

  8. In vivo immunomodulatory effects of Antrodia camphorata polysaccharides in a T1/T2 doubly transgenic mouse model for inhibiting infection of Schistosoma mansoni

    SciTech Connect

    Cheng, P.-C.; Hsu, C.-Y.; Chen, C.-C.; Lee, K.-M.

    2008-03-01

    Antrodia camphorata (A. camphorata) is a fungus commonly used for treatment of viral hepatitis and cancer in Chinese folk medicine. Extract of A. camphorate is reported to possess anti-inflammatory, antihepatitis B virus and anticancer activities. In this study, we tested the in vivo effects of polysaccharides derived from A. camphorata (AC-PS) on immune function by detection of cytokine expression and evaluation of the immune phenotype in a T1/T2 doubly transgenic mouse model. The protective effect of AC-PS in mice was tested by infection with Schistosoma mansoni. The induction of large amounts of IFN-{gamma}, IL-2 and TNF-a mRNA were detected after 2 and 4 weeks of oral AC-PS administration in BALB/c and C57BL/6 mice. In transgenic mice, 3 to 6 weeks of oral AC-PS administration increased the proportion of CD4{sup +} T cells and B cells within the spleen. More specifically, there was an increase of Th1 CD4{sup +} T cells and Be1 cells among spleen cells as observed by detection the of Type1/Type2 marker molecules. By using a disease model of parasitic infection, we found that AC-PS treatment inhibited infection with S. mansoni in BALB/C and C57BL/6 mice. AC-PS appears to influence the immune system of mice into developing Th1 responses and have potential for preventing infection with S. mansoni.

  9. Mapping protein electron transfer pathways with QM/MM methods

    PubMed Central

    Guallar, Victor; Wallrapp, Frank

    2008-01-01

    Mixed quantum mechanics/molecular mechanics (QM/MM) methods offer a valuable computational tool for understanding the electron transfer pathway in protein–substrate interactions and protein–protein complexes. These hybrid methods are capable of solving the Schrödinger equation on a small subset of the protein, the quantum region, describing its electronic structure under the polarization effects of the remainder of the protein. By selectively turning on and off different residues in the quantum region, we are able to obtain the electron pathway for short- and large-range interactions. Here, we summarize recent studies involving the protein–substrate interaction in cytochrome P450 camphor, ascorbate peroxidase and cytochrome c peroxidase, and propose a novel approach for the long-range protein–protein electron transfer. The results on ascorbate peroxidase and cytochrome c peroxidase reveal the importance of the propionate groups in the electron transfer pathway. The long-range protein–protein electron transfer has been studied on the cytochrome c peroxidase–cytochrome c complex. The results indicate the importance of Phe82 and Cys81 on cytochrome c, and of Asn196, Ala194, Ala176 and His175 on cytochrome c peroxidase. PMID:18445553

  10. Viscosity-Reducing Bulky-Salt Excipients Prevent Gelation of Protein, but Not Carbohydrate, Solutions.

    PubMed

    Kumar, Awanish; Klibanov, Alexander M

    2017-01-23

    The problem of gelation of concentrated protein solutions, which poses challenges for both downstream protein processing and liquid formulations of pharmaceutical proteins, is addressed herein by employing previously discovered viscosity-lowering bulky salts. Procainamide-HCl and the salt of camphor-10-sulfonic acid with L-arginine (CSA-Arg) greatly retard gelation upon heating and subsequent cooling of the model proteins gelatin and casein in water: Whereas in the absence of additives the proteins form aqueous gels within several hours at room temperature, procainamide-HCl for both proteins and also CSA-Arg for casein prevent gel formation for months under the same conditions. The inhibition of gelation by CSA-Arg stems exclusively from the CSA moiety: CSA-Na was as effective as CSA-Arg, while Arg-HCl was marginally or not effective. The tested bulky salts did not inhibit (and indeed accelerated) temperature-induced gel formation in aqueous solutions of all examined carbohydrates-starch, agarose, alginate, gellan gum, and carrageenan.

  11. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities

    PubMed Central

    Hussain, Abdullah Ijaz; Anwar, Farooq; Chatha, Shahzad Ali Shahid; Jabbar, Abdul; Mahboob, Shahid; Nigam, Poonam Singh

    2010-01-01

    The aim of this work was to investigate and compare the antiproliferative, antioxidant and antibacterial activities of Rosmarinus officinalis essential oil, native to Pakistan. The essential oil content from the leaves of R. officinalis was 0.93 g 100g-1. The GC and GC-MS analysis revealed that the major components determined in R. officinalis essential oil were 1,8-cineol (38.5%), camphor (17.1%), α-pinene (12.3%), limonene (6.23%), camphene (6.00%) and linalool (5.70%). The antiproliferative activity was tested against two cancer (MCF-7 and LNCaP) and one fibroblast cell line (NIH-3T3) using the MTT assay, while, the antioxidant activity was evaluated by the reduction of 2, 2-diphenyl-1-picryl hydrazyl (DPPH) and measuring percent inhibition of peroxidation in linoleic acid system. The disc diffusion and modified resazurin microtitre-plate assays were used to evaluate the inhibition zones (IZ) and minimum inhibitory concentration (MIC) of R. officinalis essential oil, respectively. It is concluded from the results that Rosmarinus officinalis essential oil exhibited antiproliferative, antioxidant and antibacterial activities. PMID:24031588

  12. Intestinal absorptive transport of Genkwanin from Flos genkwa using a single-pass intestinal perfusion rat model.

    PubMed

    Jiang, Cui-Ping; He, Xin; Yang, Xiao-Lin; Zhang, Su-Li; Li, Hui; Song, Zi-Jing; Zhang, Chun-Feng; Yang, Zhong-Lin; Li, Ping

    2014-01-01

    To investigate the absorptive transport behavior of genkwanin and the beneficial effects of monoterpene enhancers with different functional groups, the single-pass intestinal perfusion (SPIP) of rats was used. The results showed that genkwanin was segmentally-dependent and the best absorptive site was the duodenum. The effective permeability coefficient (P eff ) was 1.97 × 10(-4) cm/s and the absorption rate constant (Ka) was 0.62 × 10(-2) s(-1). Transepithelial transportation descended with increasing concentrations of genkwanin. This was a 1.4-fold increase in P eff by probenecid, whereas a 1.4-fold or 1.6-fold decrease was observed by verapamil and pantoprazole, respectively. Furthermore, among the absorption enhancers, the enhancement with carbonyl (camphor and menthone) was higher than that with hydroxyl (borneol and menthol). The concentration-independent permeability and enhancement by coperfusion of probenecid indicated that genkwanin was transported by both passive diffusion and multidrug resistance protein (MDR)-mediated efflux mechanisms.

  13. Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers.

    PubMed

    Angioni, Alberto; Barra, Andrea; Coroneo, Valentina; Dessi, Sandro; Cabras, Paolo

    2006-06-14

    Essential oils from the stems/leaves (L) and flowers (F) of Lavandula stoechas L. ssp. stoechas growing wild in southern Sardinia (Italy) were extracted by hydrodistillation and analyzed by gas chromatography coupled with flame ionization detector and ion trap mass spectrometry. The major compound was fenchone, accounting for, on average, 52.60% in L and 66.20% in F, followed by camphor (13.13% versus 27.08%, in L and F, respectively). F essential oil yields (volume per dry weight) decreased from the beginning to the end of the flowering stage, whereas L yields remained constant during the year. The nine main compounds derived from two different subpathways, A and B. The compounds that belong to the same subpathway showed a similar behavior during the year. The essential oils were tested for their antifungal activity using the paper disk diffusion method. The essential oils tested were effective on the inactivation of Rhizoctonia solani and Fusarium oxysporum and less effective against Aspergillus flavus. Among the single compounds tested, fenchone, limonene, and myrtenal appeared to be the more effective on the inhibition of R. solani growth.

  14. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum.

    PubMed

    Jayaprakasha, G K; Rao, L Jagan Mohan

    2011-07-01

    The genus Cinnamomum comprises of several hundreds of species, which are distributed in Asia and Australia. Cinnamomum zeylanicum, the source of cinnamon bark and leaf oils, is an indigenous tree of Sri Lanka, although most oil now comes from cultivated areas. C. zeylanicum is an important spice and aromatic crop having wide applications in flavoring, perfumery, beverages, and medicines. Volatile oils from different parts of cinnamon such as leaves, bark, fruits, root bark, flowers, and buds have been isolated by hydro distillation/steam distillation and supercritical fluid extraction. The chemical compositions of the volatile oils have been identified by GC and GC-MS. More than 80 compounds were identified from different parts of cinnamon. The leaf oil has a major component called eugenol. Cinnamaldehyde and camphor have been reported to be the major components of volatile oils from stem bark and root bark, respectively. Trans-cinnamyl acetate was found to be the major compound in fruits, flowers, and fruit stalks. These volatile oils were found to exhibit antioxidant, antimicrobial, and antidiabetic activities. C. zeylanicum bark and fruits were found to contain proanthocyandins with doubly linked bis-flavan-3-ol units in the molecule. The present review provides a coherent presentation of scattered literature on the chemistry, biogenesis, and biological activities of cinnamon.

  15. Olfactory discrimination ability of South African fur seals (Arctocephalus pusillus) for enantiomers.

    PubMed

    Kim, Sunghee; Amundin, Mats; Laska, Matthias

    2013-06-01

    Using a food-rewarded two-choice instrumental conditioning paradigm we assessed the ability of South African fur seals, Arctocephalus pusillus, to discriminate between 12 enantiomeric odor pairs. The results demonstrate that the fur seals as a group were able to discriminate between the optical isomers of carvone, dihydrocarvone, dihydrocarveol, menthol, limonene oxide, α-pinene, fenchone (all p < 0.01), and β-citronellol (p < 0.05), whereas they failed to distinguish between the (+)- and (-)-forms of limonene, isopulegol, rose oxide, and camphor (all p > 0.05). An analysis of odor structure-activity relationships suggests that a combination of molecular structural properties rather than a single molecular feature may be responsible for the discriminability of enantiomeric odor pairs. A comparison between the discrimination performance of the fur seals and that of other species tested previously on the same set of enantiomers (or subsets thereof) suggests that the olfactory discrimination capabilities of this marine mammal are surprisingly well developed and not generally inferior to that of terrestrial mammals such as human subjects and non-human primates. Further, comparisons suggest that neither the relative nor the absolute size of the olfactory bulbs appear to be reliable predictors of between-species differences in olfactory discrimination capabilities. Taken together, the results of the present study support the notion that the sense of smell may play an important and hitherto underestimated role in regulating the behavior of fur seals.

  16. Role of dopant counter-anion functionality in polyaniline salts/blends and implications to morphology

    SciTech Connect

    Hopkins, A.R.; Rasmussen, P.G.; Basheer, R.A.; Annis, B.K.; Wignall, G.D.

    1997-04-01

    Polyanilines are of particular current interest primarily due to their relative ease of synthesis, low cost and stable conductivity in air. The insulating, polyaniline emeraldine base (PANI-EB) form becomes electrically conducting by preferential protonation or doping the imine nitrogen sites to yield an electrically conducting polyaniline emeraldine salt (PANI-ES). In this paper, wide and small angle X-ray scattering techniques (i.e., WAXS and SAXS) and light microscopy are used to characterize the influence of the dopant`s structure on the morphology of both polyaniline salt and blend. In an attempt to modify the morphology of the PANI-ES, the authors have evaluated a number of doping acids (i.e., methane sulfonic acid (HMSA), butane sulfonic acid (HBSA), dodecyl benzene sulfonic acid (HDBSA) and camphor sulfonic acid (HCSA)) that vary in size and polarity to better understanding the role of the acid in PANI-ES`s morphology and the resulting electrical conductivity. The other goal was to investigate the effect of the counter-anion structure on the nature of the phase separated PANI-ES network. The shape of the PANI-ES network in the host polycaprolactam has important implications on the nature of conduction behavior and the final electrical conductivity of the blend.

  17. The Biosynthetic Origin of Irregular Monoterpenes in Lavandula

    PubMed Central

    Demissie, Zerihun A.; Erland, Lauren A. E.; Rheault, Mark R.; Mahmoud, Soheil S.

    2013-01-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s−1, respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering. PMID:23306202

  18. Host Deception: Predaceous Fungus, Esteya vermicola, Entices Pine Wood Nematode by Mimicking the Scent of Pine Tree for Nutrient

    PubMed Central

    Lin, Feng; Ye, Jianling; Wang, Huaguang; Zhang, Aijun; Zhao, Boguang

    2013-01-01

    Background A nematophagous fungus, Esteya vermicola, is recorded as the first endoparasitic fungus of pine wood nematode (PWN), Bursaphelenchus xylophilus, in last century. E. vermicola exhibited high infectivity toward PWN in the laboratory conditions and conidia spraying of this fungus on Japanese red pine, Pinus densiflora, seedlings in the field protected the pine trees from pine wilt disease to some extent, indicating that it is a potential bio-control agent against PWN. Previous research had demonstrated that the living fungal mycelia of E. vermicola continuously produced certain volatile organic compounds (VOCs), which were responsible for the PWN attraction. However, identity of these VOCs remains unknown. Methodology/Principal Findings In this study, we report the identification of α-pinene, β-pinene, and camphor produced by living mycelia of E. vermicola, the same volatile compounds emitted from PWN host pine tree, as the major VOCs for PWN attraction using gas chromatography-mass spectrometry (GC-MS). In addition, we also confirmed the host deception behavior of E. vermicola to PWN by using synthetic VOCs in a straightforward laboratory bioassay. Conclusions/Significance This research result has demonstrated that the endoparasitic nematophagous fungus, E. vermicola, mimics the scent of PWN host pine tree to entice PWN for the nutrient. The identification of the attractive VOCs emitted from the fungus E. vermicola is of significance in better understanding parasitic mechanism of the fungus and the co-evolution in the two organisms and will aid management of the pine wilt disease. PMID:23990972

  19. Crystal structure of cis-bis­{4-phenyl-1-[(3R)-1,7,7-tri­methyl-2-oxobi­cyclo­[2.2.1]heptan-3-ylidene]thio­semicarbazidato-κ3 O,N 1,S}cadmium(II) with an unknown solvent mol­ecule

    PubMed Central

    Nogueira, Vanessa Senna; Bresolin, Leandro; Näther, Christian; Jess, Inke; de Oliveira, Adriano Bof

    2015-01-01

    The reaction between the racemic mixture of the camphor-4-phenyl­thio­semicarbazone derivative and cadmium acetate dihydrate yielded the title compound, [Cd(C17H20N3OS)2]. The CdII ion is six-coordinated in a distorted octa­hedral environment by two deprotonated thio­semicarbazone ligands acting as an O,N,S-donor in a tridentate chelating mode, forming five-membered chelate rings. In the crystal, the mol­ecules are connected via pairs of N—H⋯S and C—H⋯S inter­actions, building centrosymmetric dimers. One of the ligands is disordered in the campher unit over two sets of sites with site-occupancy factors of 0.7 and 0.3. The structure contains additional solvent mol­ecules, which are disordered and for which no reasonable split model was found. Therefore, the data were corrected for disordered solvent using the SQUEEZE routine [Spek (2015 ▸). Acta Cryst. C71, 9–18] in PLATON. Since the disordered solvents were removed by data processing, and the number of solvent entities was a suggestion only, they were not considered in the chemical formula and subsequent chemical or crystal information. PMID:26870441

  20. Elimination of chromatographic and mass spectrometric problems in GC-MS analysis of Lavender essential oil by multivariate curve resolution techniques: Improving the peak purity assessment by variable size moving window-evolving factor analysis.

    PubMed

    Jalali-Heravi, Mehdi; Moazeni-Pourasil, Roudabeh Sadat; Sereshti, Hassan

    2015-03-01

    In analysis of complex natural matrices by gas chromatography-mass spectrometry (GC-MS), many disturbing factors such as baseline drift, spectral background, homoscedastic and heteroscedastic noise, peak shape deformation (non-Gaussian peaks), low S/N ratio and co-elution (overlapped and/or embedded peaks) lead the researchers to handle them to serve time, money and experimental efforts. This study aimed to improve the GC-MS analysis of complex natural matrices utilizing multivariate curve resolution (MCR) methods. In addition, to assess the peak purity of the two-dimensional data, a method called variable size moving window-evolving factor analysis (VSMW-EFA) is introduced and examined. The proposed methodology was applied to the GC-MS analysis of Iranian Lavender essential oil, which resulted in extending the number of identified constituents from 56 to 143 components. It was found that the most abundant constituents of the Iranian Lavender essential oil are α-pinene (16.51%), camphor (10.20%), 1,8-cineole (9.50%), bornyl acetate (8.11%) and camphene (6.50%). This indicates that the Iranian type Lavender contains a relatively high percentage of α-pinene. Comparison of different types of Lavender essential oils showed the composition similarity between Iranian and Italian (Sardinia Island) Lavenders.

  1. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli.

    PubMed

    Howard, Thomas P; Middelhaufe, Sabine; Moore, Karen; Edner, Christoph; Kolak, Dagmara M; Taylor, George N; Parker, David A; Lee, Rob; Smirnoff, Nicholas; Aves, Stephen J; Love, John

    2013-05-07

    Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules.

  2. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic.

  3. A case for chiral contributions to nondipole effects in photoionization using linearly polarized soft x-rays

    NASA Astrophysics Data System (ADS)

    Bowen, Kyle Patrick

    Modelling angular distributions of photoelectrons requires making accurate approximations of both the incoming light and the behavior of bound electrons. The experimental determination of photoelectron angular distributions is crucial to the development of accurate theoretical models governing the light-matter interaction. To date, many models have relied upon the dipole approximation, which assumes a constant electric field as the source of ionization. Despite knowing that the dipole approximation would break down as photon energy increased, the precise limit was unclear. Over the past two decades, a strong case has been made that corrections to the dipole approximation are necessary for accurately describing photoionization using soft x-rays (100 - 1000 eV). This energy region is widely studied, as it has become more readily accessible thanks to third-generation synchrotron radiation facilities. This work provides experimental evidence for first-order corrections to the dipole approximation, known as nondipole effects, for atoms and molecules, focusing on Xe 3d photoionization, which showcases the role of interchannel coupling in nondipole angular distributions, N 1s photoionization from molecular nitrogen in an attempt to settle a dispute over molecular nondipole effects, and C 1s photoionization from the chiral molecule camphor, which provides the first-ever experimental determination of a theoretically predicted chiral-specific nondipole effect. All of the experiments were performed using electron time-of-flight spectroscopy at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL).

  4. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds

    PubMed Central

    Hong, Ming; Tan, Hor Yue; Li, Sha; Cheung, Fan; Wang, Ning; Nagamatsu, Tadashi; Feng, Yibin

    2016-01-01

    The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field. PMID:27338343

  5. An in-depth review on the medicinal flora Rosmarinus officinalis (Lamiaceae).

    PubMed

    Begum, Asia; Sandhya, Subarda; Shaffath Ali, Syed; Vinod, Kombath Ravindran; Reddy, Swapna; Banji, David

    2013-01-01

    Rosmarinus officinalis (Rosemary) is a common household plant which belongs to the family Lamiaceae and is grown in many parts of the world. It is a woody, perennial herb with fragrant, evergreen, needle-like leaves and white, pink, purple or blue flowers. The two most commonly grown hardy Rosemaries are Rosmarinus officinalis 'Arp' and R. officinalis 'Madelene Hill' (syn. 'Hill Hardy'). The other cultivars of the plant are R. officinalis 'Albus', R. officinalis 'Bendenen Blue', R. officinalis 'Goodwin Creek', R. officinalis 'Herb Cottage', R. officinalis 'Logee's Light Blue', R. officinalis 'Miss Jessup's Upright', R. officinalis 'Russian River', R. officinalis 'Salem'. The chemical constituents include bitter principle, resin, tannic acid, volatile oils and fl avonoids. The volatile oil consists of borneol, bornyl acetate, camphene, cineol, pinene and camphor. It is used for problems involved in central nervous system, cardio vascular system, genito urinary conditions, liver treatments, reproductive system and respiratory system. The volatile oil of the plant is used in oils and lotions for the treatment of various ailments like arthritis, gout, muscular pain, neuralgia, wound and rubbed into hair for stimulating the hair bulbs to renewed activity, to prevent premature baldness.

  6. Effect of bioclimatic area on the composition and bioactivity of Tunisian Rosmarinus officinalis essential oils.

    PubMed

    Ben Jemia, Mariem; Tundis, Rosa; Pugliese, Alessandro; Menichini, Francesco; Senatore, Felice; Bruno, Maurizio; Kchouk, Mohamed Elyes; Loizzo, Monica Rosa

    2015-02-01

    The chemical composition of eight Tunisian Rosmarinus officinalis L. populations (A-H) from different bioclimatic areas has been examined by gas chromatography (GC) and GC-mass spectrometry. The essential oils are characterised by high amounts of oxygenated monoterpenes (58.2-71.7%) followed by monoterpene hydrocabons (15.1-26.7%). 1,8-Cineole, camphor, α-pinene and borneol are the main representative components. The antioxidant activity was investigated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing ability power assay and β-carotene bleaching test. Samples showed antiradical activity by inhibiting DPPH radical with IC50 values ranging from 375.3 to 592.8 μg mL(- 1) for samples F and A, respectively. Sample A also showed the most promising activity in β-carotene bleaching test (IC50 of 31.9 μg mL(- 1)). The essential oils were also screened for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity. Sample G showed the highest activity against AChE (IC50 of 64.7 μg mL(- 1)) while sample D (IC50 of 29.5 μg mL(- 1)) exhibited the most potent activity against BChE.

  7. Antifungal activity and inhibition of fumonisin production by Rosmarinus officinalis L. essential oil in Fusarium verticillioides (Sacc.) Nirenberg.

    PubMed

    da Silva Bomfim, Natalia; Nakassugi, Lydiana Polis; Faggion Pinheiro Oliveira, Jessica; Kohiyama, Cassia Yumie; Mossini, Simone Aparecida Galerani; Grespan, Renata; Nerilo, Samuel Botião; Mallmann, Carlos Augusto; Alves Abreu Filho, Benicio; Machinski, Miguel

    2015-01-01

    The chemical composition of Rosmarinus officinalis L. essential oil (REO) was analysed by gas chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. The main compounds of the REO were 1.8 cineole (52.2%), camphor (15.2%) and α-pinene (12.4%). The mycelial growth of Fusarium verticillioides (Sacc.) Nirenberg was reduced significantly by 150 μg/mL of REO. Significant microscopic morphological changes were visualised, such as the rupture of the cell wall and the leakage of cytoplasm at 300 μg/mL of REO. At lower concentrations of REO, the effects on the production of ergosterol and the biomass of mycelium varied, as did the effects on the production of fumonisins, but at ≥300 μg/mL of REO, these processes were significantly inhibited, showing the effectiveness of the REO as an antifungal agent. The results suggested that the REO acts against F. verticillioides by disrupting the cell wall and causing the loss of cellular components, subsequently inhibiting the production of fumonisins and ergosterol.

  8. Larvicidal activity of essential extract of Rosmarinus officinalis against Culex quinquefasciatus.

    PubMed

    Yu, Jing; Liu, Xiang-Yi; Yang, Bin; Wang, Jie; Zhang, Fu-Qiang; Feng, Zi-Liang; Wang, Chen-Zhu; Fan, Quan-Shui

    2013-03-01

    Constituents in rosemary (Rosmarinus officinalis) have been shown to have larvicidal activity against invertebrates. In order to explore the properties of crude extract of rosemary further, we studied the chemical composition and its activity against dichlorodiphenyltrichloroethane (DDT)-susceptible, DDT-resistant, and field strains of Culex quinquefasciatus larvae. The major components of R. officinalis were found to be eucalyptol and camphor, with relative percentages of 10.93% and 5.51%, respectively. Minor constituents included limonene, (+)-4-carene, isoborneol, 1-methyl-4-(1-methylethylidene)-cyclohexene, and pinene. The median lethal concentration (LC50) values of the essential oil of R. officinalis against DDT-susceptible, DDT-resistant, and field strains of larvae of Cx. quinquefasciatus were 30.6, 26.4, and 38.3 mg/liter, respectively. The single median lethal dose (LD50) in Kunming mice was 4752 mg/kg. Essential oils from R. officinalis may, therefore, provide an effective natural plant product for use in mosquito prevention and control.

  9. Enantiomer-specific analysis of multi-component mixtures by correlated electron imaging–ion mass spectrometry

    PubMed Central

    Fanood, Mohammad M Rafiee; Ram, N. Bhargava; Lehmann, C. Stefan; Powis, Ivan; Janssen, Maurice H. M.

    2015-01-01

    Simultaneous, enantiomer-specific identification of chiral molecules in multi-component mixtures is extremely challenging. Many established techniques for single-component analysis fail to provide selectivity in multi-component mixtures and lack sensitivity for dilute samples. Here we show how enantiomers may be differentiated by mass-selected photoelectron circular dichroism using an electron–ion coincidence imaging spectrometer. As proof of concept, vapours containing ∼1% of two chiral monoterpene molecules, limonene and camphor, are irradiated by a circularly polarized femtosecond laser, resulting in multiphoton near-threshold ionization with little molecular fragmentation. Large chiral asymmetries (2–4%) are observed in the mass-tagged photoelectron angular distributions. These asymmetries switch sign according to the handedness (R- or S-) of the enantiomer in the mixture and scale with enantiomeric excess of a component. The results demonstrate that mass spectrometric identification of mixtures of chiral molecules and quantitative determination of enantiomeric excess can be achieved in a table-top instrument. PMID:26104140

  10. New Chiral Ebselen Analogues with Antioxidant and Cytotoxic Potential.

    PubMed

    Pacuła, Agata J; Kaczor, Katarzyna B; Antosiewicz, Jędrzej; Janecka, Anna; Długosz, Angelika; Janecki, Tomasz; Wojtczak, Andrzej; Ścianowski, Jacek

    2017-03-20

    New chiral camphane-derived benzisoselenazol-3(2H)-ones and corresponding diselenides have been synthetized using a convenient one-pot procedure. Se-N bond was efficiently converted to an Se-Se bond, which could also be easily re-oxidized to the initial benzisoselenazolone moiety. The antioxidant activity of camphor derivatives was evaluated and compared to the reactivity of a series of N-amino acid benzisoselenazol-3(2H)-ones obtained by a modified procedure involving the improved synthesis and isolation of the diseleno bis(dibenzoic) acid. The most efficient peroxide scavengers, N-bornyl and N-leucine methyl ester benzisoselenazol-3(2H)-ones, were further evaluated as cytotoxic agents on four cancer cell lines (MCF-7, HEP G2, HL 6, and DU 145) and normal cell line PNT1A. The highest antiproliferative potential was evaluated for two compounds bearing a 3-methylbutyl carbon chain, N-leucine methyl ester and N-3-methylbutyl benzisoselenazol-3(2H)-ones.

  11. Chemical composition and antibacterial activity of Iranian Lavandula x hybrida.

    PubMed

    Bajalan, Iman; Rouzbahani, Razieh; Ghasemi Pirbalouti, Abdollah; Maggi, Filippo

    2017-03-17

    Lavandin (Lavandula x hybrida) is an evergreen shrub and cultivated worldwide for its essential oil which possesses various biological activities. In this study, the essential oils were isolated from the leaves of ten lavandin populations in western Iran. The hydrodistilled essential oils were analyzed by GC-FID/MS. Results indicated significant differences (p ≤0.05) among the various populations for the main essential oil constituents. The major components from different populations were 1,8-cineole (31.64 to 47.94%), borneol (17.11 to 26.14%), and camphor (8.41 to 12.68%). In vitro antibacterial activity was evaluated against S. agalactiae, S. aureus, E. coli and K. pneumoniae. The inhibition zones were in the range of 09.36 mm for S. aureus to 23.30 mm for E. coli. Results indicated that there was a significant correlation between essential oil composition and level of antibacterial efficacy expressed as inhibition zones. This article is protected by copyright. All rights reserved.

  12. Variation in essential oil and bioactive compounds of Curcuma kwangsiensis collected from natural habitats.

    PubMed

    Zhang, Lanyue; Yang, Zhiwen; Huang, Zebin; Zhao, Mincong; Li, Penghui; Zhou, Wei; Zhang, Kun; Zheng, Xi; Lin, Li; Tang, Jian; Fang, Yanxiong; Du, Zhiyun

    2017-04-11

    The chemical compositions of essential oils (EOs) extracted from Curcuma kwangsiensis rhizomes collected from six natural habitats in China were evaluated using gas chromatography-mass spectrometry (GC-MS). Fifty-seven components were identified from the six Eos; their main constituents were 8,9-dehydro-9-formyl-cycloisolongifolene (2.37-42.59%), germacrone (6.53-22.20%), and L-camphor (0.19-6.12%). The six EOs exhibited different DPPH radical-scavenging activities (IC50 , 2.24-31.03 μg/mL), with the activity of most of the EOs being much higher than that of Trolox C (IC50 , 10.49 μg/mL) and BHT (IC50 , 54.13 μg/mL). Most EOs had potent antimicrobial effects against the tested bacteria and fungus. They also exhibited cytotoxicity in B16 (IC50 , 4.44-147.4 μg/mL) and LNCaP cells (IC50 , 73.94-429.25 μg/mL). The EOs showed excellent anti-inflammatory action by significantly downregulating the expression of pro-inflammatory cytokines, cyclooxygenase-2 and tumor necrosis factor-α. This study provides insight into relationship among growth location, phytoconstituents, and bioactivities; the results indicate the potential of C. kwangsiensis as natural nutrients, medicines, and others additives. This article is protected by copyright. All rights reserved.

  13. Enhanced Cardiac Differentiation of Human Cardiovascular Disease Patient-Specific Induced Pluripotent Stem Cells by Applying Unidirectional Electrical Pulses Using Aligned Electroactive Nanofibrous Scaffolds.

    PubMed

    Mohammadi Amirabad, Leila; Massumi, Mohammad; Shamsara, Mehdi; Shabani, Iman; Amari, Afshin; Mossahebi Mohammadi, Majid; Hosseinzadeh, Simzar; Vakilian, Saeid; Steinbach, Sarah K; Khorramizadeh, Mohammad R; Soleimani, Masoud; Barzin, Jalal

    2017-03-01

    In the embryonic heart, electrical impulses propagate in a unidirectional manner from the sinus venosus and appear to be involved in cardiogenesis. In this work, aligned and random polyaniline/polyetersulfone (PANI/PES) nanofibrous scaffolds doped by Camphor-10-sulfonic acid (β) (CPSA) were fabricated via electrospinning and used to conduct electrical impulses in a unidirectional and multidirectional fashion, respectively. A bioreactor was subsequently engineered to apply electrical impulses to cells cultured on PANI/PES scaffolds. We established cardiovascular disease-specific induced pluripotent stem cells (CVD-iPSCs) from the fibroblasts of patients undergoing cardiothoracic surgeries. The CVD-iPSCs were seeded onto the scaffolds, cultured in cardiomyocyte-inducing factors, and exposed to electrical impulses for 1 h/day, over a 15-day time period in the bioreactor. The application of the unidirectional electrical stimulation to the cells significantly increased the number of cardiac Troponin T (cTnT+) cells in comparison to multidirectional electrical stimulation using random fibrous scaffolds. This was confirmed by real-time polymerase chain reaction for cardiac-related transcription factors (NKX2.5, GATA4, and NPPA) and a cardiac-specific structural gene (TNNT2). Here we report for the first time that applying electrical pulses in a unidirectional manner mimicking the unidirectional wave of electrical stimulation in the heart, could increase the derivation of cardiomyocytes from CVD-iPSCs.

  14. Characterization of Volatile Compounds of Eleven Achillea Species from Turkey and Biological Activities of Essential Oil and Methanol Extract of A. hamzaoglui Arabacı & Budak.

    PubMed

    Turkmenoglu, Fatma Pinar; Agar, Osman Tuncay; Akaydin, Galip; Hayran, Mutlu; Demirci, Betul

    2015-06-22

    According to distribution of genus Achillea, two main centers of diversity occur in S.E. Europe and S.W. Asia. Diversified essential oil compositions from Balkan Peninsula have been numerously reported. However, report on essential oils of Achillea species growing in Turkey, which is one of the main centers of diversity, is very limited. This paper represents the chemical compositions of the essential oils obtained by hydrodistillation from the aerial parts of eleven Achillea species, identified simultaneously by gas chromatography and gas chromatography-mass spectrometry. The main components were found to be 1,8-cineole, p-cymene, viridiflorol, nonacosane, α-bisabolol, caryophyllene oxide, α-bisabolon oxide A, β-eudesmol, 15-hexadecanolide and camphor. The chemical principal component analysis based on thirty compounds identified three species groups and a subgroup, where each group constituted a chemotype. This is the first report on the chemical composition of A. hamzaoglui essential oil; as well as the antioxidant and antimicrobial evaluation of its essential oil and methanolic extract.

  15. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus.

    PubMed

    Fraňková, Adéla; Marounek, Milan; Mozrová, Věra; Weber, Jaroslav; Klouček, Pavel; Lukešová, Daniela

    2014-10-01

    Cronobacter sakazakii and C. malonaticus are opportunistic pathogens that cause infections in children and immunocompromised adults. In the present study, the antibacterial activity of 19 plant-derived compounds, 5 essential oils, and an extract of propolis were assessed against C. sakazakii and C. malonaticus. The effects of most of these antimicrobials have not been reported previously. Both strains were susceptible to thymol, carvacrol, thymoquinone, p-cymene, linalool, camphor, citral, eugenol, and trans-cinnamaldehyde as well as cinnamon, lemongrass, oregano, clove, and laurel essential oils; their minimum inhibitory concentrations varied between 0.1 and 2.0 mg/mL. As an alternative treatment method, vapors of the volatiles were tested as an indirect treatment. Vapors of trans-cinnamaldehyde, eugenol, oregano, and cinnamon essential oils inhibited both tested strains, while vapors of linalool were only active against C. sakazakii. To our knowledge, this study is the first time that the inhibitory activity of the vapors of these compounds and essential oils has been reported against Cronobacter spp.

  16. Differences in shoot and root terpenoid profiles and plant responses to fertilisation in Tanacetum vulgare.

    PubMed

    Kleine, Sandra; Müller, Caroline

    2013-12-01

    Intraspecific chemical diversity is a common phenomenon especially found in shoots of essential oil-accumulating plant species. Abiotic factors can influence the concentration of essential oils, but the effects are inconsistent and little is known in how far these may vary within an individual and within species between chemotypes. Tanacetum vulgare L. occurs in various chemotypes that differ in the composition of mono- and sesquiterpenoids in their shoot tissues. We investigated how far shoot chemotype grouping is mirrored in root terpenoid profiles. Furthermore, we studied whether different fertilisation amounts influence the plant growth and morphological traits as well as the constitutive terpenoid concentration of leaves and roots of three chemotypes, trans-carvyl acetate, β-thujone, and camphor, to different degrees. Shoot terpenoids were dominated by monoterpenoids, while the roots contained mainly sesquiterpenoids. The clear grouping in three chemotypes based on leaf chemistry was weakly mirrored in the root terpenoid composition. Furthermore, the leaf C/N ratio and the stem height differed between chemotypes. All plants responded to increased nutrient availability with increased total biomass and specific leaf area but decreased C/N and root/shoot ratios. Leaf terpenoid concentrations decreased with increasing fertiliser supply, independent of chemotype. In contrast to the leaves, the terpenoid concentrations of the roots were unaffected by fertilisation. Our results demonstrate that aboveground and belowground organs within a species can be under different selection pressures.

  17. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages.

    PubMed

    Ocaña, A; Reglero, G

    2012-01-01

    Properties of thyme extracts from three different species (Thymus vulgaris, Thymus zygis, and Thymus hyemalis) were examined. Two oil fractions from each species were obtained by CO(2) supercritical fluid extraction. Main compounds presented in the supercritical extracts of the three thyme varieties were 1,8 cineole, thymol, camphor, borneol, and carvacrol. As a cellular model of inflammation/atherogenesis, we use human macrophages derived from THP-1 monocytes and activated by oxidized LDLs. These cells were incubated with the thyme fraction oils, and the productions and gene expressions of the inflammatory mediators TNF-α, IL-1B, IL-6, and IL-10 were determined. Thyme extracts significantly reduced production and gene expression of the proinflammatory mediators TNF-α, IL-1B, and IL-6 and highly increased these parameters on the anti-inflammatory IL-10 cytokine. Changes on production and gene expressions were dose dependent and according to the thyme content of each species. Taken together, these results may suggest that thyme extracts could have anti-inflammatory effects.

  18. Dynamical microstructure formation in 3D directional solidification of transparent model alloys: in situ characterization in DECLIC Directional Solidification Insert under diffusion transport in microgravity

    NASA Astrophysics Data System (ADS)

    Bergeon, N.; Mota, F. L.; Chen, L.; Tourret, D.; Debierre, J. M.; Guérin, R.; Karma, A.; Billia, B.; Trivedi, R.

    2015-06-01

    To clarify and characterize the fundamental physical mechanisms active in the dynamical formation of three-dimensional (3D) arrays of cells and dendrites under diffusive growth conditions, in situ monitoring of series of experiments on transparent model alloy succinonitrile - 0.24 wt% camphor was carried out under low gravity in the DECLIC Directional Solidification Insert on-board the International Space Station. These experiments offered the very unique opportunity to in situ observe and characterize the whole development of the microstructure in extended 3D patterns. The experimental methods will be first briefly described, including in particular the observation modes and the image analysis procedures developed to quantitatively characterize the patterns. Microgravity environment provided the conditions to get quantitative benchmark data: homogeneous patterns corresponding to homogeneous values of control parameters along the whole interface were obtained. The sequence of microstructure formation will be presented as well as the evolution of the primary spacing which is one of the most important pattern characteristic. Time evolution of this primary spacing during the microstructure development will be analysed to identify the mechanisms of spacing selection and adjustment; the importance of the macroscopic interfacial curvature will be pointed out.

  19. Novel 3D bismuth-based coordination polymers: Synthesis, structure, and second harmonic generation properties

    NASA Astrophysics Data System (ADS)

    Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; zur Loye, Hans-Conrad

    2012-11-01

    Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi2O2(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P21 (a=9.6479(9) Å, b=4.2349(4) Å, c=11.9615(11) Å, β=109.587(1)°), which contains Bi2O2 chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi4Na4(1R3S-cam)8(EtOH)3.1(H2O)3.4 (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P21 (a=19.0855(7) Å, b=13.7706(5) Å, c=19.2429(7) Å, β=90.701(1)°) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi3+, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer.

  20. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and In-Situ FTIR Measurements

    SciTech Connect

    Bodenhofer, K,; Gopel, W.; Hierlemann, A.; Ricco, A.J.

    1998-12-09

    To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination, "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.

  1. Borneol inhibits TRPA1, a proinflammatory and noxious pain-sensing cation channel.

    PubMed

    Sherkheli, Muhammad Azhar; Schreiner, Benjamin; Haq, Rizwanul; Werner, Markus; Hatt, Hanns

    2015-07-01

    Borneol, a natural product isolated from several species of Artemisia, Blumea and Kaempferia, has a widespread use in traditional medicine. TRP ion channels are a class of nonselective cation channel proteins involved in a variety of physiological and pathological processes in mammals. TRPA1, a member of TRP family of cation channels, is involved in plethora of processes including noxious-cold, noxious-pain sensations, inflammation and the detection of irritant chemicals. Borneol is chemically related to camphor (a known inhibitor of TRPA1 ion channels); therefore, it is beneficial to investigate the effects of borneol on TRPA1. In the present investigation it was found that borneol inhibits TRPA1 mediated cationic currents in low millimolar range (IC50 0.3mM) in heterologous expression systems like Xenopus oocytes and in neurons cultured from trigeminal ganglia. Effects of nicotine, a known chemical irritant and agonist of TRPA1 are also inhibited by borneol in both systems. It is concluded that borneol, being an inhibitor of TRPA1, could be a safer therapeutic-combination in clinical situations where TRPA1 channelopathies like neuropathic-pain, trigeminal neuralgia or nicotine withdrawal treatments are involved.

  2. Optimization of DNA extraction from seeds and leaf tissues of Chrysanthemum (Chrysanthemum indicum) for polymerase chain reaction.

    PubMed

    Hasan, Saba; Prakash, Jyoti; Vashishtha, Abhinav; Sharma, Agnivesh; Srivastava, Kuldeep; Sagar, Faizuddin; Khan, Nausheen; Dwivedi, Keshav; Jain, Payal; Shukla, Saransh; Gupta, Swati Prakash; Mishra, Saumya

    2012-01-01

    Chrysanthemums constitute approximately 30 species of perennial flowering plants, belonging to the family Asteraceae, native to Asia and Northeastern Europe. Chrysanthemum is a natural cosmetic additive extracted from Chinese herb by modern biochemical technology. It has the properties of anti-bacterial, anti-viral, reducing (detoxification) and anti-inflammation. It possesses antioxidant characteristics, which could assist in minimizing free-radical induced damage. Therefore, it is widely used in skin and hair care products. Chemical composition of this herbal remedy includes kikkanols, sesquiterpenes, flavonoids, various essential oils containing camphor, cineole, sabinol, borneole and other elements that interfere with DNA, causing erroneous or no PCR products. In the present study, testing and modification of various standard protocols for isolation of high-quality DNA from leaf tissues and seeds of C. indicum was done. It was observed that the DNA obtained from seeds and leaf tissues with a modified cetyltrimethylammonium bromide buffer protocol was of good quality, with no colored pigments and contaminants. Also, DNA could be extracted from leaf tissues without using liquid nitrogen. Quality of DNA extracted from seeds was much better as compared to that extracted from leaf tissues. The extracted DNA was successfully amplified by PCR using arbitrary RAPD primers. The same protocol will probably be useful for extraction of high-molecular weight DNA from other plant materials containing large amounts of secondary metabolites and essential oils.

  3. Airborne Compositae dermatitis: monoterpenes and no parthenolide are released from flowering Tanacetum parthenium (feverfew) plants.

    PubMed

    Christensen, L P; Jakobsen, H B; Paulsen, E; Hodal, L; Andersen, K E

    1999-01-01

    The air around intact feverfew (Tanacetum parthenium) plants was examined for the presence of airborne parthenolide and other potential allergens using a high-volume air sampler and a dynamic headspace technique. No particle-bound parthenolide was detected in the former. Among volatiles emitted from the aerial parts of feverfew plants and collected by the dynamic headspace technique a total of 41 compounds, mainly monoterpenes, were identified and quantified by GC and GC-MS. Alpha-Pinene, camphene, limonene, gamma-terpinene, (E)-beta-ocimene, linalool, p-cymene, (E)-chrysanthenol, camphor and (E)-chrysanthenyl acetate were the predominant monoterpenes accounting for nearly 88% of the total volatiles emitted. The average total yield of volatiles emitted over 24 h was 18,160 ng/g fresh weight of leaves and flowers, corresponding to the emission of approximately 8 mg volatiles per day from one full-grown feverfew plant. No parthenolide or other sesquiterpene lactones were detected. The present investigation does not support the theory of airborne sesquiterpene lactone-containing plant parts or of direct release of sesquiterpene lactones from living plants as the only explanations for airborne Compositae dermatitis. Potential allergens were found among the emitted monoterpenes and their importance in airborne Compositae dermatitis is discussed.

  4. Process using two-stage boiler injection for reduction of nitrogen

    SciTech Connect

    Jones, D.J.

    1993-08-31

    A method is described for reducing NO[sub x] in combustion effluent gases consisting essentially of two injection steps, the injection steps comprising: (a) injecting one or more NHi precursor materials selected from the group consisting of ammonia, urea, cyanuric acid, biuret, triuret, ammelide, or mixtures thereof, in the absence of peroxyl initiator materials, into a flue gas in a first injection zone, wherein the flue gas has a temperature of from about 1,450 F to about 1,900 F, to thereby reduce a portion of the NO to N[sub 2]; and (b) injecting one or more hydrocarbon peroxyl initiator materials selected from the group consisting of propane, benzene, ethane, ethylene, n-butane, n-octane, methane, methanol, isobutane, pentane, acetylene, methyl alcohol, ethyl alcohol, acetone, glacial acetic acid, ethyl ether, propyl alcohol, nitrobenzyl alcohol, methylethylketone, propylene, toluene, formaldehyde, camphor, ether and glycol, or mixtures thereof, in the absence of NHi precursor materials, into the flue gas in a second injection zone, wherein the flue gas contains NO and NH[sub 3] from the first injection zone and is at a temperature of less than about 1,400 F, to thereby reduce ammonia slippage and oxidize residual NO to NO[sub 2].

  5. Chemical composition and anticandidal properties of the essential oil isolated from aerial parts of Cotula cinerea: a rare and threatened medicinal plant in Morocco.

    PubMed

    El Bouzidi, Leila; Abbad, Abdelaziz; Fattarsi, Karine; Hassani, Lahcen; Leach, David; Markouk, Mohammed; Legendre, Laurent; Bekkouche, Khalid

    2011-10-01

    The chemical composition and anticandidal properties of the essential oil of Moroccan Cotula cinerea aerial parts have been examined. GC-MS data were used to identify 24 constituents. Oxygenated monoterpenes constituted the main fraction with trans-thujone (41.4%), cis-verbenyl acetate (24.7%), 1,8-cineole (8.2%) and camphor (5.5%) as the major components. The anticandidal activity of the essential oil was evaluated using a panel of human pathogenic fungi (Candida albicans CCMM L4 and CCMM L5, C. krusei CCMM L10, C. glabrata CCMM L7 and C. parapsilosis CCMM L18). The oil showed high anticandidal activity against all investigated strains with minimal inhibitory concentrations of 3.2 to 4.7 mg/mL depending on the tested yeast and 5.9 mg/mL as a minimal candidicidal concentration value. These findings add significant information to the pharmacological activity of Cotula cinerea essential oil, which may present a good alternative to antibiotics for the treatment of resistant strains of Candida.

  6. Chemical Compositions and Insecticidal Activities of Alpinia kwangsiensis Essential Oil against Lasioderma serricorne.

    PubMed

    Wu, Yan; Zhang, Wen-Juan; Huang, Dong-Ye; Wang, Ying; Wei, Jian-Yu; Li, Zhi-Hua; Sun, Jian-Sheng; Bai, Jia-Feng; Tian, Zhao-Fu; Wang, Ping-Juan; Du, Shu-Shan

    2015-12-08

    The essential oil obtained by hydrodistillation from Alpinia kwangsiensis rhizomes was investigated by GC-MS. A total of 31 components representing 92.45% of the oil were identified and the main compounds in the oil were found to be camphor (17.59%), eucalyptol (15.16%), β-pinene (11.15%) and α-pinene (10.50%). These four compounds were subsequently isolated and the essential oil and four isolated compounds exhibited potent insecticidal activity against Lasioderma serricorne adults. During the assay, it was shown that the essential oil exhibited both potential contact (LD50 = of 24.59 μg/adult) and fumigant (LC50 = of 9.91 mg/L air) toxicity against Lasioderma serricorne. The study revealed that the insecticidal activity of the essential oil can be attributed to the synergistic effects of its diverse major components, which indicates that oil of Alpinia kwangsiensis and its isolated compounds have potential to be developed into natural insecticides to control insects in stored grains and traditional Chinese medicinal materials.

  7. Chemical Composition and Antipathogenic Activity of Artemisia annua Essential Oil from Romania.

    PubMed

    Marinas, Ioana C; Oprea, Eliza; Chifiriuc, Mariana Carmen; Badea, Irinel Adriana; Buleandra, Mihaela; Lazar, Veronica

    2015-10-01

    The essential oil extracted by hydrodistillation from Romanian Artemisia annua aerial parts was characterized by GC/MS analysis, which allowed the identification of 94.64% of the total oil composition. The main components were camphor (17.74%), α-pinene (9.66%), germacrene D (7.55%), 1,8-cineole (7.24%), trans-β-caryophyllene (7.02%), and artemisia ketone (6.26%). The antimicrobial activity of this essential oil was evaluated by determining the following parameters: minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimal fungicidal concentration (MFC), and minimal biofilm eradication concentration (MBEC). Moreover, the soluble virulence factors were quantified with different biochemical substrates incorporated in the culture media. The reference and resistant, clinical strains proved to be susceptible to the A. annua oil, with MICs ranging from 0.51 to 16.33 mg/ml. The tested essential oil also showed good antibiofilm activity, inhibiting both the initial stage of the microbial cell adhesion to the inert substratum and the preformed mature biofilm. When used at subinhibitory concentrations, the essential oil proved to inhibit the phenotypic expression of five soluble virulence factors (hemolysins, gelatinase, DNase, lipases, and lecithinases). Briefly, the present results showed that the A. annua essential oil contained antimicrobial compounds with selective activity on Gram-positive and Gram-negative bacterial strains as well as on yeast strains and which also interfere with the expression of cell-associated and soluble virulence factors.

  8. Active extracts of wild fruiting bodies of Antrodia camphorata (EEAC) induce leukemia HL 60 cells apoptosis partially through histone hypoacetylation and synergistically promote anticancer effect of trichostatin A.

    PubMed

    Lu, Mei-Chin; Du, Ying-Chi; Chuu, Jiunn-Jye; Hwang, Shiuh-Lin; Hsieh, Pao-Chuan; Hung, Chih-Sheng; Chang, Fang-Rong; Wu, Yang-Chang

    2009-02-01

    The endemic species of Antrodia camphorate (AC) is a promising chemotherapeutic drug for cancer. We found that the ethanol extract from wild fruiting bodies of Antrodia camphorata (EEAC) could induce HL 60 cells apoptosis via histone hypoacetylation, up-regulation of histone deacetyltransferase 1 (HDAC 1), and down-regulation of histone acetyltransferase activities including GCN 5, CBP and PCAF in dose-dependent manner. In combination with histone deacetylase inhibitor, trichostatin A (TSA), did not block EEAC-induced apoptosis. Interestingly, combined treatment (100 nM of TSA and 100 microg/ml EEAC) caused synergistic inhibition of cell growth and increase of apoptotic induction. EEAC could effectively increase the cytotoxic sensitivity of TSA through the up-regulation of DR5 and NFkappaB activation. In this present study, bioassay-guided fractionation of EEAC led to a major active compound, zhankuic acid A, as the bioactive marker. Moreover, our findings may represent an experimental basis for developing EEAC as a potential chemotherapeutic adjuvant.

  9. Volatile compounds of healthy and insect-damaged Hippophae rhamnoides sinensis in natural and planted forests.

    PubMed

    Zong, Shixiang; Luo, Youqing; Zhou, Jiao; Liu, Shujing

    2012-01-01

    Volatile compounds of healthy and insect-damaged stems of Hippophae rhamnoides sinensis were analysed using dynamic headspace and thermal-desorption cold-trap injector gas chromatography/mass spectroscopy (TCT-GC/MS). Sixteen compounds, belonging to alkanes, alcohols, aldehydes, esters, ketones, and ethers, were identified in the stems of healthy H. rhamnoides sinensis; the compounds in H. rhamnoides sinensis occurring naturally or cultivated in plantations were similar, but the relative contents were significantly different. In plants damaged by Holcocerus hippophaecolus, the nature and content of the volatile compounds were greatly changed. Butanedione and butyl glyoxylate were newly generated after damage by the pest, and the relative levels of pentanal, heptanal, eucalyptol, terpineol, and camphor were sharply increased in both naturally occurring and plantation-grown plants. n-Decane, trans-2-nonen-1-ol, and n-hexadecane levels increased in plants cultivated in the plantation and decreased in natural forests, whereas the levels of other types were reduced. Thus, both the nature and the content of volatile compounds of H. rhamnoides sinensis are affected by H. hippophaecolus damage, providing a theoretical basis to identify the mechanism of pest destruction.

  10. In vitro antibacterial activity of some plant essential oils

    PubMed Central

    Prabuseenivasan, Seenivasan; Jayakumar, Manickkam; Ignacimuthu, Savarimuthu

    2006-01-01

    Background: To evaluate the antibacterial activity of 21 plant essential oils against six bacterial species. Methods: The selected essential oils were screened against four gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris) and two gram-positive bacteria Bacillus subtilis and Staphylococcus aureus at four different concentrations (1:1, 1:5, 1:10 and 1:20) using disc diffusion method. The MIC of the active essential oils were tested using two fold agar dilution method at concentrations ranging from 0.2 to 25.6 mg/ml. Results: Out of 21 essential oils tested, 19 oils showed antibacterial activity against one or more strains. Cinnamon, clove, geranium, lemon, lime, orange and rosemary oils exhibited significant inhibitory effect. Cinnamon oil showed promising inhibitory activity even at low concentration, whereas aniseed, eucalyptus and camphor oils were least active against the tested bacteria. In general, B. subtilis was the most susceptible. On the other hand, K. pneumoniae exhibited low degree of sensitivity. Conclusion: Majority of the oils showed antibacterial activity against the tested strains. However Cinnamon, clove and lime oils were found to be inhibiting both gram-positive and gram-negative bacteria. Cinnamon oil can be a good source of antibacterial agents. PMID:17134518

  11. Chemical Constituents, Antimicrobial, Cytotoxicity, Mutagenic and Antimutagenic Effects of Artemisia ciniformis

    PubMed Central

    Taherkhani, Mahboubeh

    2016-01-01

    The aim of this study was to determine the chemical constituents, antimicrobial, cytotoxicity, mutagenic and anti-mutagenic activities of the essential oil of Artemisia ciniformis Krasch. & Popov ex Poljakov, against important bacterial pathogens and human cells which were unknown before. In-vitro cytotoxicity was measured using a modified MTT assay on normal human lymphocytes and tumor HeLa cells. The mutagenic and antimutagenic activities of the oil were evaluated using the Salmonella typhimurium tester strains TA98 and TA100, together with nitrofluorene for TA98 and sodium azide for TA100 without (-S9) metabolic activation, and 2-aminoantracene for TA98 and TA100 with metabolic (+S9) activation. Oxygenated monoterpenes especially camphor (30.21%), 1,8-cineole (23.7%) and trans-Pinocarveol (12.28%) were the major components of the oil of A. ciniformis. Bactericidal kinetics of this oil indicated that Acinetobacter baumannii is the most vulnerable one (MIC = 0.02 mg/mL, MBC = 0.04 mg/mL, Dvalue = 3.57 min). The oil displayed an excellent cytotoxic action toward the human tumor cell line (IC50 = 19.64 µg/mL). The oil of A. ciniformis showed excellent antimutagenicity effect on the 2-nitrofluorene, in the strain of S. typhimurium TA98, without the presence of metabolic activation. PMID:27980582

  12. Physical and chemical properties of some imported woods and their degradation by termites.

    PubMed

    Shanbhag, Rashmi R; Sundararaj, R

    2013-01-01

    The influence of physical and chemical properties of 20 species of imported wood on degradation of the wood by termites under field conditions was studied. The wood species studied were: Sycamore maple, Acer pseudoplatanus L. (Sapindales: Sapindaceae) (from two countries), Camphor, Dryobalanops aromatic C.F.Gaertner (Malvales: Dipterocarpaceae), Beech, Fagus grandifolia Ehrhart (Fagales: Fagaceae), F. sylvatica L. (from two countries), Oak, Quercus robur L., Ash, Fraxinus angustifolia Vahl (Lamiales: Oleaceae), F. excelsior L., Padauk, Pterocarpus soyauxii Taubert (Fabales: Fabaceae), (from two countries), Jamba, Xylia dolabrifiormis Roxburgh, Shorea laevis Ridley (Malvales: Dipterocarpaceae), S. macoptera Dyer, S. robusta Roth, Teak, Tectona grandis L.f. (Lamiales: Lamiaceae) (from five countries), and rubber tree, Hevea brasiliensis Müller Argoviensis (Malpighiales: Euphorbiaceae) from India. The termites present were: Odontotermes horni (Wasmann) (Isoptera: Termitidae), O. feae, O. wallonensis, and O. obeus (Rambur). A significant conelation was found between density, cellulose, lignin, and total phenolic contents of the wood and degradation by termites. The higher the density of the wood, the lower the degradation. Similarly, higher amount of lignin and total phenolic contents ensured higher resistance, whereas cellulose drives the termites towards the wood.

  13. Allelopathic Monoterpenes Interfere with Arabidopsis thaliana Cuticular Waxes and Enhance Transpiration

    PubMed Central

    Kussmann, Petra; Knop, Mona; Kriegs, Bettina; Gresens, Frank; Eichert, Thomas; Ulbrich, Andreas; Marx, Friedhelm; Fabricius, Heinz; Goldbach, Heiner; Noga, Georg

    2007-01-01

    Exposure to the allelopathic monoterpenes camphor (100 mg/10 L) and menthol (50 mg/10 L) for 24 h enhanced transpiration of Arabidopsis thaliana fully developed rosette leaves similar to de-waxing. As ascertained by ESEM analyses the leaf surfaces were spotted with platelet like structures which seem to be partly mixed with the lipophilic epicuticular layers. The structures are supposed to contain the condensed monoterpenes, which could be identified by GC. Long term exposure (more than 48 h) to 100 mg/50 mg killed the plants by desiccation, a 24 h exposure caused necrotic spots that became visible one to two days after the treatment. Examinations of the stomatal apertures indicated that monoterpenes induced stomatal opening followed by extreme swelling and a final break down of the protoplasts. Exposure of Arabidopsis thaliana to volatiles of Mentha piperita, Lavandula latifolia and Artemisia camphorata resulted in a dramatic increase of the stomata aperture but swelling of the protoplasts was less exhibited. In contrast to de-waxing, expression of the fatty acid condensing enzyme encoding CER6 gene and de novo synthesis of CER6 protein was not induced after 24 h of exposure to the monoterpenes. The aim of the study was to demonstrate that the lipophilic layers of the leaf surface and the stomata are primary targets of monoterpene allelopathic attack. Enhanced transpiration results from a combination of affected lipophilic wax layers and a disturbed stomata function. PMID:19516993

  14. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages

    PubMed Central

    Ocaña, A.; Reglero, G.

    2012-01-01

    Properties of thyme extracts from three different species (Thymus vulgaris, Thymus zygis, and Thymus hyemalis) were examined. Two oil fractions from each species were obtained by CO2 supercritical fluid extraction. Main compounds presented in the supercritical extracts of the three thyme varieties were 1,8 cineole, thymol, camphor, borneol, and carvacrol. As a cellular model of inflammation/atherogenesis, we use human macrophages derived from THP-1 monocytes and activated by oxidized LDLs. These cells were incubated with the thyme fraction oils, and the productions and gene expressions of the inflammatory mediators TNF-α, IL-1B, IL-6, and IL-10 were determined. Thyme extracts significantly reduced production and gene expression of the proinflammatory mediators TNF-α, IL-1B, and IL-6 and highly increased these parameters on the anti-inflammatory IL-10 cytokine. Changes on production and gene expressions were dose dependent and according to the thyme content of each species. Taken together, these results may suggest that thyme extracts could have anti-inflammatory effects. PMID:22577523

  15. The herbal preparation Padma® 28 protects against neurotoxicity in PC12 cells.

    PubMed

    Ginsburg, Isaac; Rozenstein-Tsalkovich, Lea; Koren, Erez; Rosenmann, Hanna

    2011-05-01

    Padma® 28 is a multicompound herbal preparation based on the camphor formulas from traditional Tibetan medicine (TTM). It contains a variety of different secondary plant substances, which include terpenes and polyphenols such as flavonoids and tannins. As a rich source of antioxidant polyphenols, this herbal Padma 28 preparation seems to be a promising candidate for the treatment of degenerative diseases such as Alzheimer's disease (AD), a condition involving oxidative stress. Moreover, polyphenols have also been shown to mitigate AD neuropathology. The study investigated the protective effect of Padma 28 and of certain polyphenols on the neurotoxicity of PC12 cells induced by the neurotoxins: amyloid-beta (Aβ), glutamate, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 3-nitropropionate (3-NP), known to be involved in AD, Parkinson's disease (PD), amyotrophic-lateral-sclerosis (ALS) and Huntington's disease (HD), respectively. The decrease in cell viability induced by each of the toxins was significantly attenuated by Padma 28 treatment. Also, a decrease in the oxidative capacity of PC12 cells treated with Padma 28 was noted, indicating that the decrease in cell viability induced by the toxins might have been the result of an oxidative stress which could be attenuated by Padma 28 acting as a potent antioxidant. Padma 28, which is available in Europe and USA, seems to be a promising candidate for the treatment of CNS diseases.

  16. Antimicrobial Impacts of Essential Oils on Food Borne-Pathogens.

    PubMed

    Ozogul, Yesim; Kuley, Esmeray; Ucar, Yilmaz; Ozogul, Fatih

    2015-01-01

    The antimicrobial activity of twelve essential oil (pine oil, eucalyptus, thyme, sage tea, lavender, orange, laurel, lemon, myrtle, lemon, rosemary and juniper) was tested by a disc diffusion method against food borne pathogens (Escherichia coli, Salmonella paratyphi A, Klebsiella pneumoniae, Yersinia enterocolitica, Pseudomonas aeruginosa, Aeromonas hydrophila, Campylobacter jejuni, Enterococcus faecalis, Staphylococcus aureus). The major components in essential oils were monoterpenes hydrocarbons, α-pinene, limonene; monoterpene phenol, carvacrol and oxygenated monoterpenes, camphor, 1,8-cineole, eucalyptol, linalool and linalyl acetate. Although the antimicrobial effect of essential oils varied depending on the chemical composition of the essential oils and specific microorganism tested, majority of the oils exhibited antibacterial activity against one or more strains. The essential oil with the lowest inhibition zones was juniper with the values varied from 1.5 to 6 mm. However, the components of essential oil of thyme and pine oil are highly active against food borne pathogen, generating the largest inhibition zones for both gram negative and positive bacteria (5.25-28.25 mm vs. 12.5-30 mm inhibition zones). These results indicate the possible use of the essential oils on food system as antimicrobial agents against food-borne pathogen. The article also offers some promising patents on applications of essential oils on food industry as antimicrobial agent.

  17. Evaluation of antileishmanial, cytotoxic and antioxidant activities of essential oils extracted from plants issued from the leishmaniasis-endemic region of Sned (Tunisia).

    PubMed

    Ahmed, S Ben Hadj; Sghaier, R M; Guesmi, F; Kaabi, B; Mejri, M; Attia, H; Laouini, D; Smaali, I

    2011-07-01

    In this study, we tested 10 essential oils (EOs) extracted from 10 plants issued from Sned region (Tunisia) to evaluate both their leishmanicidal effects against Leishmania major and L. infantum, and their cytotoxicity against murine macrophage cell line RAW 264.7 (ATCC, TIB-71). The antioxidant activity was also monitored by the DDPH method, while the chemical composition of active EO was assessed by GC-MS analysis. The results showed that the EOs obtained from Thymus hirtus sp. algeriensis (rich on monoterpenoids, especially linalool at 17.62% and camphor at 13.82%) is significantly active against both L. major and L. infantum, whereas Ruta chalepensis EO (rich on 2-undecanone at 84.28%) is only active against L. infantum. Both oil extracts showed low cytotoxicity towards murine macrophages. The characteristic ratios (IC₈₀ Raw264.7 cells/IC₅₀ L. infantum and IC₈₀ Raw264.7 cells/IC₅₀ L. major) were, respectively, 2.7 and 1.57 for T. hirtus sp. algeriensis, and 1.34 and 0.19 for R. chalepensis. However, when measuring the antioxidant effects (DDPH method), the two latter EOs presented a moderate 2,2-diphenyl-2-picrylhydrazyl hydrate scavenging effects compared to EOs from Eucaliptus globulus, Pinus halepensis, Pituranthos tortuosus, Rosmarinus officinalis, Tetraclinis articulata or to BHT.

  18. Studies on the antioxidant activity of the essential oil and extract of Tunisian Tetraclinis articulata (Vahl) Mast. (Cupressaceae).

    PubMed

    Jemia, Mariem Ben; Chaabane, Sana; Senatore, Felice; Bruno, Maurizio; Kchouk, Mohamed Elyes

    2013-01-01

    This study analyses the chemical composition and in vitro antioxidant activity of both the essential oil and the 80% aqueous acetone extract of Tetraclinis articulata leaves. The GC-MS analysis of the essential oil identified 66 components that comprise 93.5% of the oil. The major constituents of the oil are: bornyl acetate (31.4%), α-pinène (24.5%) and camphor (20.3%). Antioxidant activities of the samples were determined using four different test systems, namely DPPH, β-carotene/linoleic acid, reducing power and metal chelating activity assay. Test results from the DPPH system showed the strongest radical scavenging activity was exhibited by the 80% aqueous acetone extract (IC₅₀ = 5.5 µg mL⁻¹), which was two times higher than the positive control (BHT). The amount of the total phenolics, flavonoids and condensed tannins was very high in the 80% aqueous acetone extracts. The correlation between the antioxidant activity potential and total phenolic level of the extract was noted.

  19. Evaluation of the photostability of different UV filter combinations in a sunscreen.

    PubMed

    Gaspar, L R; Maia Campos, P M B G

    2006-01-13

    Development of photostable sunscreens is extremely important to preserve the UV protective capacity and to prevent the reactive intermediates of photounstable filter substances behaving as photo-oxidants when coming into direct contact with the skin. Thus, the objective of this study was to evaluate the photostability of four different UV filter combinations in a sunscreen by using HPLC analysis and spectrophotometry. The formulations that were investigated included four different UV filter combinations often used in SPF 15 sunscreens. The UV filter combinations were: octyl methoxycinnamate (OMC), benzophenone-3 (BP-3) and octyl salicylate (OS) (formulation 1); OMC, avobenzone (AVB) and 4-methylbenzilidene camphor (MBC) (formulation 2); OMC, BP-3 and octocrylene (OC) (formulation 3); OMC, AVB and OC (formulation 4). In the photostability studies, 40 mg of each formulation were spread onto a glass plate and left to dry before exposure to different UVA/UVB irradiation. Exposed samples were then immersed in isopropanol and the dried film dissolved ultrasonically. The filter components in the resulting solution were quantified by HPLC analysis with detection at 325 nm and by spectrophotometry. In this study, the four UV filter combinations showed different photostability profiles and the best one was formulation 3 (OMC, BP-3 and OC), followed by formulations 4, 1 and 2. In addition, OC improved the photostability of OMC, AVB and BP-3.

  20. Essential Oil Composition and Antimicrobial Activities of Two Closely Related Species, Alpinia mutica Roxb. and Alpinia latilabris Ridl., from Peninsular Malaysia

    PubMed Central

    Sivasothy, Yasodha; Nagoor, Noor Hasima; Jamil, Natasha; Awang, Khalijah

    2014-01-01

    The essential oils obtained by hydrodistillation of the unripe and ripe fruits of Alpinia mutica Roxb. and Alpinia latilabris Ridl. were analysed by capillary GC and GC-MS. The oils were principally monoterpenic in nature. The unripe and ripe fruit oils of A. mutica were characterized by camphor (21.0% and 15.8%), camphene (16.6% and 10.2%), β-pinene (8.6% and 13.5%), and trans,trans-farnesol (8.0% and 11.2%), respectively. The oils of the unripe and ripe fruits were moderately active against Staphylococcus aureus, Bacillus subtilis, Trichophyton mentagrophytes, and Trichophyton rubrum. 1,8-Cineole (34.2% and 35.9%) and β-pinene (20.2% and 19.0%) were the two most abundant components in the unripe and ripe fruit oils of A. latilabris. The oil of the unripe fruits elicits moderate activity against Staphylococcus aureus and Trichophyton mentagrophytes while Candida glabrata was moderately sensitive to the oil of the ripe fruits. PMID:24987733

  1. Fingerprint of selected Salvia species by HS-GC-MS analysis of their volatile fraction.

    PubMed

    Rzepa, Józef; Wojtal, Lukasz; Staszek, Dorota; Grygierczyk, Gabriela; Labe, Karina; Hajnos, Michał; Kowalska, Teresa; Waksmundzka-Hajnos, Monika

    2009-08-01

    Twenty species of Salvia, naturally grown or cultivated in Poland, are investigated by headspace gas chromatography-mass spectrometry analysis. The main components of the volatile fraction of Salvia species are identified as alpha-pinene, camphene, beta-pinene, thujol, camphor, beta-chamigrene, and cadina-3,9-diene. There are also the compounds that can be considered as chemotaxonomic markers, namely beta-myrcene for Salvia lavadulifolia, beta-phelandrene for Salvia verticillata, tau-terpinene for Salvia stepposa, and isocaryophyllene and caryophyllene for Salvia officinalis. Certain compounds (such as o-cymene present in Salvia canariensis and Salvia stepposa; beta-trans-ocymene present in Salvia lavadulifolia, Salvia sclarea, and Salvia amplexicaulis; thujenone present in Salvia staminea, Salvia atropatana, Salvia jurisicii, and Salvia officinalis; and thujone present in Salvia azurea, Salvia lavandulifolia, Salvia hians, and Salvia triloba) can constitute chemotaxonomic advice for the aforementioned species. Also, the lack of certain compounds otherwise common in the individual sage species can be considered as chemotaxonomic advice (e.g., Salvia sclarea has no alpha-pinene and beta-pinene; Salvia lavadulifolia lacks camphene; Salvia triloba lacks beta-pinene and camphene; and Salvia officinalis lacks beta-chamigrene, thujol, and cadina-3,9-diene).

  2. Essential oils produced by in vitro shoots of sage (Salvia officinalis L.).

    PubMed

    Santos-Gomes, Paula C; Fernandes-Ferreira, Manuel

    2003-04-09

    In vitro shoots of sage (Salvia officinalis L.) were established under eight different hormonal supplementations and proliferated by subculture of nodal shoot segments. The respective essential oils, obtained by hydrodistillation, were composed of more than 75 compounds, 65 of which were identified. The 10 major compounds were, by order of retention time, alpha-pinene (4.1-5.4%), camphene (6-7.1%), beta-pinene (9.3-14.5%), limonene (2-2.3%), 1,8-cineole (3.6-5.6%), (-)-thujone (13.2-16.1%), (+)-isothujone (6.6-7.4%), camphor (19.8-24%), alpha-humulene (5.1-6.8%), and manool (4.2-7.7%). Notwithstanding the eight different hormonal supplementations tested, the percentage composition of the shoot essential oils were kept in a narrow range of variation. However, the type and concentration of growth regulators apparently influenced the accumulation of essential oils. The highest accumulation of essential oils and the highest shoot biomass growth were obtained with 2.0 mg/L kinetin and 0.05 mg/L 2,4-dichlorophenoxyacetic acid.

  3. Organ- and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites.

    PubMed

    Santos-Gomes, P C; Fernandes-Ferreira, M

    2001-06-01

    More than 50 compounds were identified in essential oils from stems and leaves of Salvia officinalis L. plants harvested in July, in Arouca, in northern Portugal. About 40 of those compounds were also present in flower essential oils, collected from the same plants. alpha-Thujone was the major compound, representing about 55, 30, and 18% of the essential oils from stems, leaves, and flowers, respectively. Significant percentage variations in the main compound classes of the essential oils from shoots sampled over the year were recorded at two different sites in northern Portugal. From December to April, oxygenated monoterpenes (MO) decreased from approximately 67-72% to values of 42-43% of the essential oils. During the same time interval, the percentage of monoterpene hydrocarbons (MH) rose from 8-11% to 17-22%. At both sites, sesquiterpene hydrocarbons (SH) rose from approximately 7% in February to 19-22% in April, decreasing thereafter to approximately 9% in July. Oxygenated sesquiterpenes (SO) increased from a minimum of approximately 5% in July to a maximum of 8-11% in February, decreasing thereafter. The compounds that mostly accounted for the essential oil composition variation were alpha-pinene, beta-pinene, and camphene, as MH; alpha-thujone and camphor, as MO; alpha-humulene and beta-caryophyllene, as SH; and viridiflorol, as SO.

  4. Dynamics of yield components and essential oil production in a commercial hybrid sage (Salvia officinalis x Salvia fruticosa cv. Newe Ya'ar no. 4).

    PubMed

    Dudai, N; Lewinsohn, E; Larkov, O; Katzir, I; Ravid, U; Chaimovitsh, D; Sa'adi, D; Putievsky, E

    1999-10-01

    The fresh yields, the essential oil content, and the quality of a sage hybrid (Salvia officinalis x Salvia fruticosa, cv. Newe Ya'ar No. 4, Lamiaceae) as affected by development and harvest time were determined. Marked increases in plant height and in the number of nodes developed per plant together with a modest increase in leaf size were accompanied by dramatic increases (more than 20-fold) in the fresh yields throughout a 50-day growth period. No major changes in the essential oil content per fresh weight and its composition were detected throughout the growth period. In contrast, the compositions of the essential oils obtained from stems, as compared to leaves and leaf-primordia, had marked differences. Developmentally controlled changes in the extractives from individual leaf pairs from the same plant were also noted. In upper young leaves, the oxygenated diterpene manool and the sesquiterpene hydrocarbons alpha-humulene and beta-caryophyllene constituted up to 20%, 8%, and 4% of the total extractives, respectively. In older leaves, the abundance of these components steadily dropped to roughly half their levels in young leaves. Conversely, the proportions of the monoterpenes, particularly the ketones camphor and alpha-thujone, steadily increased with leaf position. Minor changes in the levels of other extractives were also recorded. These studies imply independent regulatory patterns for di-, sesqui-, and monoterpenes in this sage hybrid, and suggest possible agrotechnical means to obtain preferred chemical compositions of its essential oil.

  5. Formulation Development and Characterization of Meclizine Hydrochloride Sublimated Fast Dissolving Tablets.

    PubMed

    Vemula, Sateesh Kumar; Vangala, Mohan

    2014-01-01

    The intention of present research is to formulate and develop the meclizine hydrochloride fast dissolving tablets using sublimation method to enhance the dissolution rate. In this study an attempt was made to fasten the drug release from the oral tablets by incorporating the superdisintegrants and camphor as sublimating agent. The prepared fast dissolving tablets were subjected to precompression properties and characterized for hardness, weight variation, friability, wetting time, water absorption ratio, and disintegration time. From in vitro release studies, the formulation F9 exhibited fast release profile of about 98.61% in 30 min, and disintegration time 47 sec when compared with other formulations. The percent drug release in 30 min (Q 30) and initial dissolution rate for formulation F9 was 98.61 ± 0.25%, 3.29%/min. These were very much higher compared to marketed tablets (65.43 ± 0.57%, 2.18%/min). The dissolution efficiency was found to be 63.37 and it is increased by 1.4-fold with F9 FDT tablets compared to marketed tablets. Differential scanning calorimetry and Fourier transform infrared spectroscopy studies revealed that there was no possibility of interactions. Thus the development of meclizine hydrochloride fast dissolving tablets by sublimation method is a suitable approach to improve the dissolution rate.

  6. Functional characterization of terpene synthases and chemotypic variation in three lavender species of section Stoechas.

    PubMed

    Benabdelkader, Tarek; Guitton, Yann; Pasquier, Bernard; Magnard, Jean Louis; Jullien, Frédéric; Kameli, Abdelkrim; Legendre, Laurent

    2015-01-01

    Lavandula pedunculata (Mill.) Cav. subsp. lusitanica, Lavandula stoechas L. subsp. stoechas and Lavandula viridis l'Hér. are three lavender taxa that belong to the botanical section Stoechas and are widely used as aromatherapy, culinary herb or folk medicine in many Mediterranean regions. The analysis of their bioactive volatile constituents revealed the presence of 124 substances, the most abundant being the bicyclic monoterpenes fenchone, camphor and 1,8-cineole that give these three species their respective chemotypes. Most noteworthy was fenchone which, with its reduced form fenchol, made 48% of the total volatile constituents of L. pedunculata while present at 2.9% in L. stoechas and undetectable in L. viridis. In order to provide a molecular explanation to the differences in volatile compounds of these three species, two monoterpene synthases (monoTPS) and one sesquiterpene synthase (sesquiTPS) were cloned in L. pedunculata and functionally characterized as fenchol synthase (LpFENS), α-pinene synthase (LpPINS) and germacrene A synthase (LpGEAS). The two other lavender species contained a single orthologous gene for each of these three classes of TPS with similar enzyme product specificities. Expression profiles of FENS and PINS genes matched the accumulation profile of the enzyme products unlike GEAS. This study provides one of the rare documented cases of chemotype modification during plant speciation via changes in the level of plant TPS gene expression, and not functionality.

  7. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli

    PubMed Central

    Howard, Thomas P.; Middelhaufe, Sabine; Moore, Karen; Edner, Christoph; Kolak, Dagmara M.; Taylor, George N.; Parker, David A.; Lee, Rob; Smirnoff, Nicholas; Aves, Stephen J.; Love, John

    2013-01-01

    Biofuels are the most immediate, practical solution for mitigating dependence on fossil hydrocarbons, but current biofuels (alcohols and biodiesels) require significant downstream processing and are not fully compatible with modern, mass-market internal combustion engines. Rather, the ideal biofuels are structurally and chemically identical to the fossil fuels they seek to replace (i.e., aliphatic n- and iso-alkanes and -alkenes of various chain lengths). Here we report on production of such petroleum-replica hydrocarbons in Escherichia coli. The activity of the fatty acid (FA) reductase complex from Photorhabdus luminescens was coupled with aldehyde decarbonylase from Nostoc punctiforme to use free FAs as substrates for alkane biosynthesis. This combination of genes enabled rational alterations to hydrocarbon chain length (Cn) and the production of branched alkanes through upstream genetic and exogenous manipulations of the FA pool. Genetic components for targeted manipulation of the FA pool included expression of a thioesterase from Cinnamomum camphora (camphor) to alter alkane Cn and expression of the branched-chain α-keto acid dehydrogenase complex and β-keto acyl-acyl carrier protein synthase III from Bacillus subtilis to synthesize branched (iso-) alkanes. Rather than simply reconstituting existing metabolic routes to alkane production found in nature, these results demonstrate the ability to design and implement artificial molecular pathways for the production of renewable, industrially relevant fuel molecules. PMID:23610415

  8. Mixed forest plantations can efficiently filter rainfall deposits of sulfur and chlorine in Western China

    PubMed Central

    Zhao, Hairong; Yang, Wanqin; Wu, Fuzhong; Tan, Bo

    2017-01-01

    Forest filtering is a well-known and efficient method for diminishing atmospheric pollutant (such as SO42− and Cl−) inputs to soil and water; however, the filtering efficiencies of forests vary depending on the regional vegetation and climate. The rainy area of West China has suffered from heavy rainfall and human activity, which has potentially resulted in large amounts of sulfur and chlorine deposition, but little information is available regarding the filtering effects of typical plantations. Therefore, the migration of SO42− and Cl− from rainfall to throughfall, stemflow and runoff were investigated in a camphor (Cinnamomum camphora) plantation, a cryptomeria (Cryptomeria fortunei) plantation and a mixed plantation in a 9-month forest hydrology experiment. The results indicated the following: (i) The total SO42− and Cl− deposition was 43.05 kg ha−1 and 5.25 kg ha−1, respectively. (ii) The cover layer had the highest interception rate (60.08%), followed by the soil layer (16.02%) and canopy layer (12.85%). (iii) The mixed plantation resulted in the highest SO42− (37.23%) and Cl− (51.91%) interception rates at the forest ecosystem scale, and the interception rate increased with increasing rainfall. These results indicate that mixed plantations can effectively filter SO42− and Cl− in this area and in similar areas. PMID:28134356

  9. Crystal structure of cis-bis-{4-phenyl-1-[(3R)-1,7,7-tri-methyl-2-oxobi-cyclo-[2.2.1]heptan-3-ylidene]thio-semicarbazidato-κ(3) O,N (1),S}cadmium(II) with an unknown solvent mol-ecule.

    PubMed

    Nogueira, Vanessa Senna; Bresolin, Leandro; Näther, Christian; Jess, Inke; de Oliveira, Adriano Bof

    2015-12-01

    The reaction between the racemic mixture of the camphor-4-phenyl-thio-semicarbazone derivative and cadmium acetate dihydrate yielded the title compound, [Cd(C17H20N3OS)2]. The Cd(II) ion is six-coordinated in a distorted octa-hedral environment by two deprotonated thio-semicarbazone ligands acting as an O,N,S-donor in a tridentate chelating mode, forming five-membered chelate rings. In the crystal, the mol-ecules are connected via pairs of N-H⋯S and C-H⋯S inter-actions, building centrosymmetric dimers. One of the ligands is disordered in the campher unit over two sets of sites with site-occupancy factors of 0.7 and 0.3. The structure contains additional solvent mol-ecules, which are disordered and for which no reasonable split model was found. Therefore, the data were corrected for disordered solvent using the SQUEEZE routine [Spek (2015 ▸). Acta Cryst. C71, 9-18] in PLATON. Since the disordered solvents were removed by data processing, and the number of solvent entities was a suggestion only, they were not considered in the chemical formula and subsequent chemical or crystal information.

  10. Chemical composition and antioxidant activity of essential oil from leaves and rhizomes of Curcuma angustifolia Roxb.

    PubMed

    Jena, Sudipta; Ray, Asit; Banerjee, Anwesha; Sahoo, Ambika; Nasim, Noohi; Sahoo, Suprava; Kar, Basudeba; Patnaik, Jeetendranath; Panda, Pratap Chandra; Nayak, Sanghamitra

    2017-01-09

    The essential oil extracted from rhizome and leaf of Curcuma angustifolia Roxb. (Zingiberaceae) was characterised by gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis revealed the presence of 32 and 35 identified constituents, comprising 92.6% and 92% of total leaf and rhizome oil, respectively. Curzerenone (33.2%), 14-hydroxy-δ-cadinene (18.6%) and γ-eudesmol acetate (7.3%) were the main components in leaf oil. In rhizome oil, curzerenone (72.6%), camphor (3.3%) and germacrone (3.3%) were found to be the major constituents. Antioxidant capacities of oil were assessed by various methods, 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and reducing power ability (RPA). Based on the results, the leaf oil showed more antioxidant potential as compared to rhizome oil and reference standards (ascorbic acid and butylated hydroxytoluene (BHT)). Thus, the leaf essential oil of C. angustifolia can be used as an alternative source of natural antioxidant.

  11. Ozonized oils: a qualitative and quantitative analysis.

    PubMed

    Guinesi, Adriana Simionatto; Andolfatto, Carolina; Bonetti Filho, Idomeo; Cardoso, Arnaldo Alves; Passaretti Filho, Juliano; Farac, Roberta Vieira

    2011-01-01

    Most of the problems of endodontic origin have a bacterial etiological agent. Thus, there is a continued interest in seeking more effective chemical substances that can replace the camphorated paramonochiorophenol or antibiotics as intracanal medicaments. Among the possible substances, ozone has some interesting biological characteristics: bactericidal action, debriding effect, angiogenesis stimulation capacity and high oxidizing power. The purpose of this study was to chemically evaluate the presence of ozone in sunflower, castor, olive and almond oil, as well as in propylene glycol and byproducts of ozonation, such as formaldehyde. These compounds were ozonized, inserted into empty and sterile vials, and analyzed by testing the reaction between ozone and indigo, for determining the presence of ozone, and subjected to the chromotropic acid test for determining the presence of formaldehyde. It was observed complete absence of ozone in all samples tested and presence of formaldehyde. The bactericidal and healing action of ozonized oils could be attributed to products formed by the ozonation of mineral oils, such as formaldehyde, not to the ozone itself.

  12. Periradicular repair after two-visit endodontic treatment using two different intracanal medications compared to single-visit endodontic treatment.

    PubMed

    Silveira, Adriana M Vieira; Lopes, Hélio P; Siqueira, José F; Macedo, Sérgio B; Consolaro, Alberto

    2007-01-01

    The number of appointments necessary to treat infected root canals is one of the most controversial issues in endodontics. This study evaluated, in dogs, the response of the periradicular tissues to the endodontic treatment of infected root canals performed in a single visit or in two visits, using different interappointment dressings. Periradicular lesions were induced by inoculating Enterococcus faecalis in the root canals. After confirming that a periradicular lesion developed, the root canals were treated within one or two visits, using either ozonized oil or calcium hydroxide in camphorated paramonochlorophenol (CMCP) as an intracanal medication. After 6 months, the animals were sacrificed and the specimens were processed for histological and histobacteriological analysis. The root canals treated in a single visit showed a success rate of 46%. When a calcium hydroxide/CMCP-based interappointment intracanal medication was used, 74% of the cases were categorized as success. In cases where ozonized oil was used as the intracanal medication, a success rate of 77% was observed. These results of the present study demonstrated that the two-visit treatment offered a higher success rate compared to one-visit therapy. In addition, ozonized oil may potentially be used as an intracanal medication.

  13. Electrochemical polymerization of aniline on carbon-aluminum electrodes for energy storage

    NASA Astrophysics Data System (ADS)

    Chandrasoma, Asela; Grant, Robert; Bruce, Alice E.; Bruce, Mitchell R. M.

    2012-12-01

    We report a simple and reliable method to electrochemically synthesize PANi on aluminum carbon (Al/C).Aluminum electrodes were coated with hard black graphite. Polyaniline was then deposited in steps from +0.75 V to +0.825 V (V vs. Ag/AgCl) in low pH growth solutions containing aniline and camphor sulphonic acid. The polyaniline films were rinsed in hydrazine solution and dried in an infrared oven under a nitrogen atmosphere. The films were transferred and are stable in a 50:50 (v/v) propylene carbonate (PC)/acetonitrile (ACN) solvent mixture containing 0.5 M LiClO4 electrolyte. Cyclic voltammetry and charge-discharge capacities are reported. Microscope (SEM) images of Al/C/PANi and Pt/PANi films show similar structural details and morphology. The specific capacity for Al/C/PANi in nonaqueous solutions was ca. 133 mAh g-1, in good agreement with the reported data for other PANi-based electrodes. The performance studies and SEM images demonstrate similar results for Pt/PANi and Al/C/PANi electrodes.

  14. Exceptionally crystalline and conducting acid doped polyaniline films by level surface assisted solution casting approach

    NASA Astrophysics Data System (ADS)

    Puthirath, Anand B.; Methattel Raman, Shijeesh; Varma, Sreekanth J.; Jayalekshmi, S.

    2016-04-01

    Emeraldine salt form of polyaniline (PANI) was synthesized by chemical oxidative polymerisation method using ammonium persulfate as oxidant. Resultant emeraldine salt form of PANI was dedoped using ammonia solution and then re-doped with camphor sulphonic acid (CSA), naphthaline sulphonic acid (NSA), hydrochloric acid (HCl), and m-cresol. Thin films of these doped PANI samples were deposited on glass substrates using solution casting method with m-cresol as solvent. A level surface was employed to get homogeneous thin films of uniform thickness. Detailed X-ray diffraction studies have shown that the films are exceptionally crystalline. The crystalline peaks observed in the XRD spectra can be indexed to simple monoclinic structure. FTIR and Raman spectroscopy studies provide convincing explanation for the exceptional crystallinity observed in these polymer films. FESEM and AFM images give better details of surface morphology of doped PANI films. The DC electrical conductivity of the samples was measured using four point probe technique. It is seen that the samples also exhibit quite high DC electrical conductivity, about 287 S/cm for CSA doped PANI, 67 S/cm for NSA doped PANI 65 S/cm for HCl doped PANI, and just below 1 S/cm for m-cresol doped PANI. Effect of using the level surface for solution casting is studied and correlated with the observed crystallinity.

  15. Anti-inflammatory and blood stasis activities of essential oil extracted from Artemisia argyi leaf in animals.

    PubMed

    Ge, Yue-Bin; Wang, Zhi-Gang; Xiong, Ying; Huang, Xian-Ju; Mei, Zhi-Nan; Hong, Zong-Guo

    2016-07-01

    Artemisia argyi leaf is a well-known species in traditional Chinese medicine. However, the anti-inflammatory and activating blood stasis activities of its essential oil (AAEO) have not been explored in vivo. The present study measured the contents of three chemical components by gas chromatography (GC). The anti-acute inflammatory effects of AAEO were investigated in dimethyl benzene, glacial acetic acid and carrageenan-induced animals through skin administration or by oral gavage, respectively. The effects of AAEO on haemorheology were studied in a rat acute blood stasis model. The contents of eucalyptol, camphor and borneol in AAEO were 254.4, 51.6 and 58.7 mg/g, respectively. All dosages of AAEO by skin administration significantly decreased the swelling in dimethyl benzene-induced ear oedema and carrageenan-induced paw oedema, and reduced the permeability in glacial acetic acid-induced abdominal blood capillary (p < 0.01). Meanwhile, haemorheology indexes such as whole blood viscosity and the erythrocyte aggregation index significantly decreased only in the high dosage group. In addition, the effects of AAEO by oral gavage were weaker than skin administration at the medium dose in the experiments. It suggests that AAEO has better absorption bioavailability and pharmacological effects through skin administration due to the better skin permeability of essential oil than gastrointestinal absorption.

  16. Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L.

    PubMed

    Yadav, Ritesh K; Sangwan, Rajender S; Sabir, Farzana; Srivastava, Awadesh K; Sangwan, Neelam S

    2014-01-01

    Artemisia annua L. accumulates substantial quantities of unique sesquiternoid artemisinin and related phytomolecules and characteristic essential oil in glandular trichomes, present on its leaves and inflorescence. Water stress is a major concern in controlling plant growth and productivity. In this study, our aim was to find out the modulation of artemisinin and essential oil constituents in plants grown under prolonged water stress conditions. A. annua CIM-Arogya plants grown in pots were subjected to mild (60% ± 5) and moderate (40% ± 5) water stress treatment and continued during entire developmental period. Results revealed that artemisinin, arteannuin-B, artemisinic acid, dihydroartemisinic acid and essential oil content were positively controlled by the growth and development however negatively modulated by water deficit stress. Interestingly, some of minor monoterpenes, all sesquiterpenes and other low molecular weight volatiles of essential oil components were induced by water deficit treatment. Camphor which is the major essential oil constituents did not alter much while 1, 8 cineole was modulated during development of plant as well as under water stress conditions. Water deficit stress induces a decrease in glandular trichome density and size as well. The dynamics of various secondary metabolites is discussed in the light of growth responses, trichomes and pathway gene expression in plants grown under two levels of prolonged water stress conditions.

  17. Definition of chemical and electrochemical properties of a fuel cell electrolyte. Final technical report 25 Mar 77-24 Jun 80

    SciTech Connect

    Foley, R.T.

    1980-06-01

    The research was oriented toward the task of developing an improved electrolyte for the hydrocarbon-air fuel cell. A literature study of the properties of organic acids indicated that the following types of compounds warranted investigation: armoatic polycarboxylic acids, perfluoroaliphatic carboxylic acids, mono, di and poly sulfonic acids, and substituted sulfonic acids. This was followed by an experimental program wherein the vapor pressure, wetting characteristics, electrical conductivity, chemical stability, and electrochemical stability of specific compounds were measured. The following compounds (acids) were among those evaluated: dichloroacetic, d1-10-camphor sulfonic, heptafluorobutyric, ethanedisulfonic, sulfosalicyclic, benzenesulfonic, 1,3,6 - napthalene trisulfonic, sulfosuccinic, sulfopropionic, methanedisulfonic, propanesulfonic, methanesulfonic, ethanesulfonic, and sulfoacetic. Most attention was given to the last three acids. The electrochemical behavior of methanesulfonic acid, ethanesulfonic acid, and sulfoacetic acid as fuel cell electrolytes was studied in half cells at various temperatures. The rate of the electro-oxidation of hydrogen at 115 C was very high in methanesulfonic acid and sulfoacetic acids. The rate of the electro-oxidation of propane in methanesulfonic acid and ethanesulfonic acid at 80 C and 115 C was low.

  18. Biodegradation of PAHs by Burkholderia sp. VITRSB1 Isolated from Marine Sediments

    PubMed Central

    Revathy, T.; Jayasri, M. A.; Suthindhiran, K.

    2015-01-01

    The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2–5 μm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs. PMID:26605106

  19. Contact and fumigant toxicity of Cyperus rotundus steam distillate constituents and related compounds to insecticide-susceptible and -resistant Blattella germanica.

    PubMed

    Chang, Kyu-Sik; Shin, E-Hyun; Park, Chan; Ahn, Young-Joon

    2012-05-01

    We assessed the toxicity of 17 steam distillate constituents of Cyperus rotundus (L.) rhizome, another seven known compounds of C. rotundus rhizome, and 14 structurally related compounds to females from an insecticide-susceptible KSS strain and two field-collected SEL and DJN colonies of Blattella germanica (L.). High contact + fumigant toxicity to KSS females was produced by p-cymene, nerol, linalool, o-cymene, (S)-(-)-citronellal, (1S)-(-)-camphor, terpinolene, and m-cymene (LD50, 0.29-0.47 mg/cm2). The toxicity of these compounds was virtually identical against females from any of the three strains, even though SEL and DJN females were resistant to six acetylcholinesterase inhibitors and three pyrethroids (resistance ratio, 9-154 and 12-195). These results indicate that the compounds and insecticides do not share a common mode of action or elicit cross-resistance. The test compounds were effective in closed but not in open containers against SEL females, indicating that their route of insecticidal action was largely a result of vapor action. Structure-activity relationship indicates that structural characteristics, such as types of functional groups, appear to play a role in determining the terpenoid toxicities to B. germanica. C. rotundus rhizome steam distillate constituents and related compounds described merit further study as potential fumigants for the control of resistant cockroach populations in light of global efforts to reduce the level of highly toxic synthetic insecticides in indoor environments.

  20. Reducing exciton binding energy by increasing thin film permittivity: an effective approach to enhance exciton separation efficiency in organic solar cells.

    PubMed

    Leblebici, Sibel Y; Chen, Teresa L; Olalde-Velasco, Paul; Yang, Wanli; Ma, Biwu

    2013-10-23

    Photocurrent generation in organic solar cells requires that excitons, which are formed upon light absorption, dissociate into free carriers at the interface of electron acceptor and donor materials. The high exciton binding energy, arising from the low permittivity of organic semiconductor films, generally causes low exciton separation efficiency and subsequently low power conversion efficiency. We demonstrate here, for the first time, that the exciton binding energy in B,O-chelated azadipyrromethene (BO-ADPM) donor films is reduced by increasing the film permittivity by blending the BO-ADPM donor with a high dielectric constant small molecule, camphoric anhydride (CA). Various spectroscopic techniques, including impedance spectroscopy, photon absorption and emission spectroscopies, as well as X-ray spectroscopies, are applied to characterize the thin film electronic and photophysical properties. Planar heterojunction solar cells are fabricated with a BO-ADPM:CA film as the electron donor and C60 as the acceptor. With an increase in the dielectric constant of the donor film from ∼4.5 to ∼11, the exciton binding energy is reduced and the internal quantum efficiency of the photovoltaic cells improves across the entire spectrum, with an ∼30% improvement in the BO-ADPM photoactive region.

  1. The biosynthetic origin of irregular monoterpenes in Lavandula: isolation and biochemical characterization of a novel cis-prenyl diphosphate synthase gene, lavandulyl diphosphate synthase.

    PubMed

    Demissie, Zerihun A; Erland, Lauren A E; Rheault, Mark R; Mahmoud, Soheil S

    2013-03-01

    Lavender essential oils are constituted predominantly of regular monoterpenes, for example linalool, 1,8-cineole, and camphor. However, they also contain irregular monoterpenes including lavandulol and lavandulyl acetate. Although the majority of genes responsible for the production of regular monoterpenes in lavenders are now known, enzymes (including lavandulyl diphosphate synthase (LPPS)) catalyzing the biosynthesis of irregular monoterpenes in these plants have not been described. Here, we report the isolation and functional characterization of a novel cis-prenyl diphosphate synthase cDNA, termed Lavandula x intermedia lavandulyl diphosphate synthase (LiLPPS), through a homology-based cloning strategy. The LiLPPS ORF, encoding for a 305-amino acid long protein, was expressed in Escherichia coli, and the recombinant protein was purified by nickel-nitrilotriacetic acid affinity chromatography. The approximately 34.5-kDa bacterially produced protein specifically catalyzed the head-to-middle condensation of two dimethylallyl diphosphate units to LPP in vitro with apparent Km and kcat values of 208 ± 12 μm and 0.1 s(-1), respectively. LiLPPS is a homodimeric enzyme with a sigmoidal saturation curve and Hill coefficient of 2.7, suggesting a positive co-operative interaction among its catalytic sites. LiLPPS could be used to modulate the production of lavandulol and its derivatives in plants through metabolic engineering.

  2. Metabolic profile and biological activities of Lavandula pedunculata subsp. lusitanica (Chaytor) Franco: studies on the essential oil and polar extracts.

    PubMed

    Costa, Patrícia; Gonçalves, Sandra; Valentão, Patrícia; Andrade, Paula B; Almeida, Carlos; Nogueira, José M F; Romano, Anabela

    2013-12-01

    We investigated the metabolic profile and biological activities of the essential oil and polar extracts of Lavandula pedunculata subsp. lusitanica (Chaytor) Franco collected in south Portugal. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that oxygen-containing monoterpenes was the principal group of compounds identified in the essential oil. Camphor (40.6%) and fenchone (38.0%) were found as the major constituents. High-performance liquid chromatography with diode array detection (HPLC-DAD) analysis allowed the identification of hydroxycinnamic acids (3-O-caffeoylquinic, 4-O-caffeoylquinic, 5-O-caffeoylquinic and rosmarinic acids) and flavones (luteolin and apigenin) in the polar extracts, with rosmarinic acid being the main compound in most of them. The bioactive compounds from L. pedunculata polar extracts were the most efficient free-radical scavengers, Fe(2+) chelators and inhibitors of malondialdehyde production, while the essential oil was the most active against acetylcholinesterase. Our results reveal that the subspecies of L. pedunculata studied is a potential source of active metabolites with a positive effect on human health.

  3. Analysis of enantiomeric and non-enantiomeric monoterpenes in plant emissions using portable dynamic air sampling/solid-phase microextraction (PDAS-SPME) and chiral gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yassaa, Noureddine; Williams, Jonathan

    A portable dynamic air sampler (PDAS) using a porous polymer solid-phase microextraction (SPME) fibre has been validated for the determination of biogenic enantiomeric and non-enantiomeric monoterpenes in air. These compounds were adsorbed in the field, and then thermally desorbed at 250 °C in a gas chromatograph injector port connected via a β-cyclodextrin capillary separating column to a mass spectrometer. The optimized method has been applied for investigating the emissions of enantiomeric monoterpenes from Pseudotsuga menziesii (Douglas-fir), Rosmarinus officinalis (Rosemary) and Lavandula lanata (Lavender) which were selected as representative of coniferous trees and aromatic plants, respectively. The enantiomers of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, β-phellandrene, 4-carene and camphor were successfully determined in the emissions from the three plants. While Douglas-fir showed a strong predominance toward (-)-enantiomers, Rosemary and Lavender demonstrated a large variation in enantiomeric distribution of monoterpenes. The simplicity, rapidity and sensitivity of dynamic sampling with porous polymer coated SPME fibres coupled to chiral capillary gas chromatography/mass spectrometry (GC/MS) makes this method potentially useful for in-field investigations of atmosphere-biosphere interactions and studies of optically explicit atmospheric chemistry.

  4. Antimicrobial Activity of Tulsi (Ocimum tenuiflorum) Essential Oil and Their Major Constituents against Three Species of Bacteria

    PubMed Central

    Yamani, Hanaa A.; Pang, Edwin C.; Mantri, Nitin; Deighton, Margaret A.

    2016-01-01

    In recent years scientists worldwide have realized that the effective life span of any antimicrobial agent is limited, due to increasing development of resistance by microorganisms. Consequently, numerous studies have been conducted to find new alternative sources of antimicrobial agents, especially from plants. The aims of this project were to examine the antimicrobial properties of essential oils distilled from Australian-grown Ocimum tenuiflorum (Tulsi), to quantify the volatile components present in flower spikes, leaves and the essential oil, and to investigate the compounds responsible for any activity. Broth micro-dilution was used to determine the minimum inhibitory concentration (MIC) of Tulsi essential oil against selected microbial pathogens. The oils, at concentrations of 4.5 and 2.25% completely inhibited the growth of Staphylococcus aureus (including MRSA) and Escherichia coli, while the same concentrations only partly inhibited the growth of Pseudomonas aeruginosa. Of 54 compounds identified in Tulsi leaves, flower spikes, or essential oil, three are proposed to be responsible for this activity; camphor, eucalyptol and eugenol. Since S. aureus (including MRSA), P. aeruginosa and E. coli are major pathogens causing skin and soft tissue infections, Tulsi essential oil could be a valuable topical antimicrobial agent for management of skin infections caused by these organisms. PMID:27242708

  5. Essential oils from wild populations of Algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties.

    PubMed

    Benabdelkader, Tarek; Zitouni, Abdelghani; Guitton, Yann; Jullien, Frédéric; Maitre, Dany; Casabianca, Hervé; Legendre, Laurent; Kameli, Abdelkrim

    2011-05-01

    In an effort to develop local productions of aromatic and medicinal plants, a comprehensive assessment of the composition and biological activities of the essential oils (EOs) extracted from the aerial flowering parts of wild growing Lavandula stoechas L. collected from eleven different locations in northern Algeria was performed. The oils were characterized by GC-FID and GC/MS analyses, and 121 compounds were identified, accounting for 69.88-91.2% of the total oil compositions. The eleven oils greatly differed in their compositions, since only 66 compounds were common to all oils. Major EO components were fenchone (2; 11.27-37.48%), camphor (3, 1.94-21.8%), 1,8-cineole (1; 0.16-8.71%), and viridiflorol (10; 2.89-7.38%). The assessed in vitro biological properties demonstrated that the DPPH-based radical-scavenging activities and the inhibition of the β-carotene/linoleic acid-based lipid oxidation differed by an eight-fold factor between the most and the least active oils and were linked to different sets of molecules in the different EOs. The eleven EOs exhibited good antimicrobial activities against most of the 16 tested strains of bacteria, filamentous fungi, and yeasts, with minimum inhibitory concentrations (MICs) ranging from 0.16 to 11.90 mg/ml.

  6. Phytotoxic and Nematicidal Components of Lavandula luisieri.

    PubMed

    Julio, Luis F; Barrero, Alejandro F; Herrador del Pino, M Mar; Arteaga, Jesús F; Burillo, Jesús; Andres, Maria Fe; Díaz, Carmen E; González-Coloma, Azucena

    2016-02-26

    Several preparations were obtained from the aerial parts of predomesticated Lavandula luisieri, including the essential oil and ethanolic, hexane, and ethyl acetate extractives. Additionally, pilot plant vapor pressure extraction was carried out at a pressure range of 0.5-1.0 bar to give a vapor pressure oil and an aqueous residue. A chemical study of the hexane extract led to the isolation of six necrodane derivatives (1, 2, and 4-7), with four of these (1, 2, 5, and 7) being new, as well as camphor, a cadinane sesquiterpene (9), tormentic acid, and ursolic acid. The EtOAc and EtOH extracts contained a mixture of phenolic compounds with rosmarinic acid being the major component. Workup of the aqueous residue resulted in the isolation of the necrodane 3 and (1R*,2S*,4R*)-p-menth-5-ene-1,2,8-triol (8), both new natural compounds. The structures of the new compounds were established based on their spectroscopic data. The phytotoxic and nematicidal activities of these compounds were evaluated.

  7. Development and Efficacy Assessment of an Enteric Coated Porous Tablet Loaded With F4 Fimbriae for Oral Vaccination of Piglets against F4+ Escherichia coli Infections.

    PubMed

    Srivastava, Atul; Gowda, D V; Madhunapantula, SubbaRao V; Siddaramaiah

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) infection is one of the major causes contributing to the development of diarrhoea and mortality in new born, suckling and newly weaned piglets. To date, no preventive/treatment strategy showed promising results, which could be due to the lack of potent vaccines, and/or due to the development of resistance of ETEC to antibiotics. Therefore, in the present investigation, a novel porous sodium alginate (SA) tablet formulation loaded with F4 fimbriae antigen was developed and tested for efficacy against ETEC infections in piglet models. Precompression parameters of the powder mixes and post compression parameters of tablets have been evaluated and results were found to be satisfactory. Loading of F4 fimbrial antigens into the tablets was achieved by inducing pores in the tablets via the sublimation of camphor followed by incubation with purified F4 fimbriae. The loaded tablets have been coated with Eudragit L100 to protect the F4 fimbriae from (a) highly acidic gastric environment; (b) proteolytic cleavage by pepsin; and (c) to promote subsequent release in the intestine. Evaluation of developed F4 fimbrial tablets in a Pig model demonstrated induction of mucosal immunity, and a significant reduction of F4+ E. coli in faeces. Therefore, F4 fimbriae loaded porous tablets could be a novel oral vaccination candidate to induce mucosal and systemic immunity against ETEC infections.

  8. Formulation Development and Characterization of Meclizine Hydrochloride Sublimated Fast Dissolving Tablets

    PubMed Central

    Vangala, Mohan

    2014-01-01

    The intention of present research is to formulate and develop the meclizine hydrochloride fast dissolving tablets using sublimation method to enhance the dissolution rate. In this study an attempt was made to fasten the drug release from the oral tablets by incorporating the superdisintegrants and camphor as sublimating agent. The prepared fast dissolving tablets were subjected to precompression properties and characterized for hardness, weight variation, friability, wetting time, water absorption ratio, and disintegration time. From in vitro release studies, the formulation F9 exhibited fast release profile of about 98.61% in 30 min, and disintegration time 47 sec when compared with other formulations. The percent drug release in 30 min (Q30) and initial dissolution rate for formulation F9 was 98.61 ± 0.25%, 3.29%/min. These were very much higher compared to marketed tablets (65.43 ± 0.57%, 2.18%/min). The dissolution efficiency was found to be 63.37 and it is increased by 1.4-fold with F9 FDT tablets compared to marketed tablets. Differential scanning calorimetry and Fourier transform infrared spectroscopy studies revealed that there was no possibility of interactions. Thus the development of meclizine hydrochloride fast dissolving tablets by sublimation method is a suitable approach to improve the dissolution rate. PMID:27355021

  9. Thermogravimetric evaluation of the suitability of precursors for MOCVD

    NASA Astrophysics Data System (ADS)

    Kunte, G. V.; Shivashankar, S. A.; Umarji, A. M.

    2008-02-01

    A method based on the Langmuir equation for the estimation of vapour pressure and enthalpy of sublimation of subliming compounds is described. The variable temperature thermogravimetric/differential thermogravimetric (TG/DTG) curve of benzoic acid is used to arrive at the instrument parameters. Employing these parameters, the vapour pressure-temperature curves are derived for salicylic acid and camphor from their TG/DTG curves. The values match well with vapour pressure data in the literature, obtained by effusion methods. By employing the Clausius-Clapeyron equation, the enthalpy of sublimation could be calculated. Extending the method further, two precursors for metal-organic chemical vapour deposition (MOCVD) of titanium oxide bis-isopropyl bis tert-butyl 2-oxobutanoato titanium, Ti(OiPr)2(tbob)2, and bis-oxo-bis-tertbutyl 2-oxobutanoato titanium, [TiO(tbob)2]2, have been evaluated. The complex Ti(OiPr)2(tbob)2 is found to be a more suitable precursor. This approach can be helpful in quickly screening for the suitability of a compound as a CVD precursor.

  10. Preparation and optimization of glyceryl behenate-based highly porous pellets containing cilostazol.

    PubMed

    Hwang, Kyu-Mok; Byun, Woojin; Cho, Cheol-Hee; Park, Eun-Seok

    2016-11-03

    The aim of this study was to prepare a highly porous multiparticulate dosage form containing cilostazol for gastroretentive drug delivery. The floating pellets were prepared with glyceryl behenate as a matrix former and camphor as a sublimating agent by extrusion/spheronization and sublimation under vacuum. Granules prepared with sublimation at 60 °C displayed a slower dissolution rate and smoother surface morphology than those prepared at lower temperatures. This was unexpected as the reported melting point of glyceryl behenate is higher than 69 °C. The DSC study revealed that melting began at a lower temperature owing to the multicomponent property of glyceryl behenate, which led to a sintering effect. The prepared pellets were spherical with unimodal size distribution. They also had porous structures with increased porosity, which led to immediate buoyancy. As cilostazol is a hydrophobic drug that has an erosion-based release mechanism, drug release profile was highly correlated with the percentage of disintegrated pellets. Various excipients were added to the glyceryl behenate-based formulation to increase the floating duration. When hydroxyethyl cellulose was added to the glyceryl behenate-based pellets, acceptable dissolution rate and buoyancy were acquired. This system could potentially be used for gastroretentive delivery of various hydrophobic drugs, which was generally considered difficult.

  11. Essential Oil of Artemisia annua L.: An Extraordinary Component with Numerous Antimicrobial Properties

    PubMed Central

    Bilia, Anna Rita; Sacco, Cristiana; Bergonzi, Maria Camilla; Donato, Rosa

    2014-01-01

    Artemisia annua L. (Asteraceae) is native to China, now naturalised in many other countries, well known as the source of the unique sesquiterpene endoperoxide lactone artemisinin, and used in the treatment of the chloroquine-resistant and cerebral malaria. The essential oil is rich in mono- and sesquiterpenes and represents a by-product with medicinal properties. Besides significant variations in its percentage and composition have been reported (major constituents can be camphor (up to 48%), germacrene D (up to 18.9%), artemisia ketone (up to 68%), and 1,8 cineole (up to 51.5%)), the oil has been subjected to numerous studies supporting exciting antibacterial and antifungal activities. Both gram-positive bacteria (Enterococcus, Streptococcus, Staphylococcus, Bacillus, and Listeria spp.), and gram-negative bacteria (Escherichia, Shigella, Salmonella, Haemophilus, Klebsiella, and Pseudomonas spp.) and other microorganisms (Candida, Saccharomyces, and Aspergillus spp.) have been investigated. However, the experimental studies performed to date used different methods and diverse microorganisms; as a consequence, a comparative analysis on a quantitative basis is very difficult. The aim of this review is to sum up data on antimicrobial activity of A. annua essential oil and its major components to facilitate future approach of microbiological studies in this field. PMID:24799936

  12. Migration of odorous compounds from adhesives used in market samples of food packaging materials by chromatography olfactometry and mass spectrometry (GC-O-MS).

    PubMed

    Vera, Paula; Canellas, Elena; Nerín, Cristina

    2014-02-15

    Adhesives are commonly used in the manufacture of multilayer food packaging materials. Although they are not in direct contact with the packed food, their compounds may migrate from the adhesive through the substrates to the food. The aim of this work is to determine the migrant concentration in order to evaluate the possible human risk and also to determine if this migration could affect the organoleptic properties of packed food. For this purpose, a total of 12 market samples of multilayer materials (laminates) for packaging dry food (tomatoes, cakes, cookies, breadcrumbs, flour or salt) or fresh food (pizza and pastry) produced with 5 different adhesives were analysed by GC-O-MS. A total of 25 different compounds from adhesives were detected in these laminates. Seventy-six percentage of these compounds migrated into a dry food simulant (Tenax®). Furthermore, compounds with concentrations below the MS detection limit were detected by sniffers with a high modified frequency (MF%). Acetic acid, butyric acid and cyclohexanol with vinegar, cheese and camphor odours were the most abundant compounds. All migration data were below the specific migration limits (SML) and threshold toxicological concern (TTC) recommended values according to the Cramer classification.

  13. Comparative analysis of essential oils from eight herbal medicines with pungent flavor and cool nature by GC-MS and chemometric resolution methods.

    PubMed

    Zhao, Chenxi; Zeng, Yingxu; Wan, Mingzhu; Li, Rongxi; Liang, Yizeng; Li, Chengyong; Zeng, Zhongda; Chau, Foo-Tim

    2009-02-01

    Systematic comparative research was conducted on essential oils from eight traditional Chinese medicines (TCM) of pungent flavor and cool nature because the essential oils are the main active ingredients of herbs of this kind. The work was based on their component analysis by gas chromatography-mass spectrometry (GC-MS), on their retention indices, as well as on chemometric resolution methods. A total of 144 compounds were tentatively identified, accounting for 69.0% to 91.8% of the total essential oils. It is worth noting that there are 67 compounds in at least three of these eight essential oils. Moreover, many biologically active compounds, such as hexanal, alpha-pinene, camphene, beta-pinene, p-cymene, limonene, eucalyptol, (Z)-ocimene, gamma-terpinene, camphor, p-menthone, 4-terpineol, alpha-terpineol, carvone, eugenol, caryophyllene, beta-farnesene, alpha-curcumene, beta-selinene, delta-cadinene, caryophyllene oxide, cedrol, n-hexadecanoic acid, benzaldehyde, benzeneacetaldehyde, phthalic acid diisobutyl ester, linoleic acid, tetradecanoic acid, (Z,Z,Z)-9,12,15-octadecatrienoic acid, eucalyptol, pentadecanoic acid, hexadecanoic acid methyl ester, linoleic acid methyl ester, exist in at least four of the eight essential oils. These results might help us to understand why the eight herbs are all of pungent flavor and cool nature according to the theory of TCM, and may provide a useful chemical basis for future research on herbs of this kind.

  14. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper, Trichoplusia ni

    PubMed Central

    Tak, Jun-Hyung; Isman, Murray B.

    2017-01-01

    Many plant essential oils and their terpenoid constituents possess bioactivities including insecticidal activity, and they sometimes act synergistically when mixed. Although several hypotheses for this have been proposed, the underlying mechanism has not been fully elucidated thus far. In the present study, we report that in larvae of the cabbage looper, Trichoplusia ni, most synergistic or antagonistic insecticidal activities among mixtures of plant essential oil constituents are pharmacokinetic effects, owing to changes in solubility as well as spreadability on a wax layer. Among the major constituents of rosemary (Rosmarinus officinalis) oil, in vitro analysis revealed up to a 19-fold increase in penetration of camphor in a binary mixture with 1,8-cineole through the larval integument, suggesting increased penetration as the major mechanism for synergy. A total of 138 synergistic or antagonistic interactions among 39 compounds were identified in binary mixtures via topical application, and these were highly correlated to changes in surface tension as measured by contact angle of the mixtures on a beeswax layer. Among compounds tested, trans-anethole alone showed evidence of internal synergy, whereas most of remaining synergistic or antagonistic combinations among the three most active compounds were identified as penetration-related interactions, confirmed via a divided-application bioassay. PMID:28181580

  15. Biocompatibility of various formula root filling materials for primary teeth.

    PubMed

    Huang, Tsui-Hsien; Ding, Shinn-Jyh; Kao, Chia-Tze

    2007-02-01

    The aim of this study was to compare the effects of different materials used in primary root canal fillings on the cell viability of human osteosarcoma cell lines. The experimental group contained six different types of root canal filling materials, including zinc oxide (ZnO) + eugenol + formocresol (FC), Ca(OH)(2) + FC, Ca(OH)(2) + Iodoform, Ca(OH)(2) + Iodoform + camphorated parachlorophenol (CPC), Ca(OH)(2) + CPC, and Vitapex. Cell viability tests were performed using tetrazolium bromide colorimetric (MTT) assay on human osteosacorma cell lines (U2OS). The results were analyzed using one-way analysis of variance (ANOVA) and Student-Newman-Keul's test with p < 0.05 showed statistical differences. The ZnO + eugenol + FC group and Ca(OH)(2) + FC group showed the lowest survival rates (p < 0.05). The Ca(OH)(2) + Iodoform + CPC group and Ca(OH)(2) + CPC group showed significantly lower survival rates at concentrations above 6 microL/mL (p < 0.05). The Ca(OH)(2) + Iodoform group and Vitapex group showed the highest survival rates (p < 0.05). We concluded that the use of calcium hydroxide with iodoform as a root filling base material is a better option than other medications.

  16. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil.

    PubMed

    Fernandes, Regiane Victória de Barros; Borges, Soraia Vilela; Botrel, Diego Alvarenga

    2014-01-30

    The effects of the partial or total replacement of gum arabic by modified starch, maltodextrin and inulin on the characteristics of rosemary essential oil microencapsulated by spray drying were evaluated in this study. The lowest level of water absorption under conditions of high relative humidity was observed in treatments containing inulin. The wettability property of the powders was improved by the addition of inulin. The total replacement of gum arabic by modified starch or a mixture of modified starch and maltodextrin (1:1, m/m) did not significantly affect the efficiency of encapsulation, although higher Tg values were exhibited by microcapsules prepared using pure gum arabic or gum arabic and inulin. 1,8-cineol, camphor and α-pinene were the main components identified by gas chromatography in the oils extracted from the microcapsules. The particles had smoother surfaces and more folds when gum arabic or inulin was present. Larger particles were observed in the powders prepared with pure gum arabic or modified starch.

  17. Volatile components and key odorants of fennel (Foeniculum vulgare Mill.) and thyme (Thymus vulgaris L.) oil extracts obtained by simultaneous distillation-extraction and supercritical fluid extraction.

    PubMed

    Díaz-Maroto, M Consuelo; Díaz-Maroto Hidalgo, Ignacio Javier; Sánchez-Palomo, Eva; Pérez-Coello, M Soledad

    2005-06-29

    Volatile oil extracts of fennel seeds (Foeniculum vulgare Mill.) and thyme leaves (Thymus vulgaris L.) were obtained by simultaneous distillation-extraction (SDE) and supercritical fluid extraction (SFE) and analyzed by gas chromatography-mass spectrometry (GC-MS). In general, fennel oil extracted by SDE and SFE showed similar compositions, with trans-anethole, estragole, and fenchone as the main components. In contrast, thymol and p-cymene, the most abundant compounds in thyme leaves, showed big differences, with generally higher amounts of monoterpenes obtained by SDE. However, in this case, the differences between the extracts were higher. Key odorants of fennel seeds determined by gas chromatography-olfactometry (GC-O) showed similar patterns when applying SDE and SFE. trans-Anethole (anise, licorice), estragole (anise, licorice, sweet), fenchone (mint, camphor, warm), and 1-octen-3-ol (mushroom) were the most intense odor compounds detected in fennel extracts. Thymol and carvacrol, with oregano, thyme, and spicy notes, were identified as key compounds contributing to the aroma of thyme leaves.

  18. Antioxidant activity and haemolysis prevention efficiency of polyaniline nanofibers

    NASA Astrophysics Data System (ADS)

    Banerjee, Somik; Saikia, Jyoti P.; Kumar, A.; Konwar, B. K.

    2010-01-01

    Polyaniline (PAni) nanofibers have been synthesized by interfacial polymerization using hydrochloric acid (HCl) and camphor sulfonic acid (CSA) as dopants. The powder x-ray diffraction pattern of bulk polyaniline reveals ES I structure and has been indexed in a pseudo-orthorhombic lattice. The broadening of (110) reflection in the nanofiber samples has been analysed in terms of domain length and strain using a convolution method employing a Voigt function. The increase in d spacing for the (110) reflection in HCl-doped PAni nanofibers have been assigned to the change in structural conformation due to the increase in the tilt angle of the polymer chain, which is also evident from microRaman spectra. UV-vis spectra of the PAni nanofibers exhibit a remarkable blueshift in the absorption bands attributed to π-π* and π-polaron band transitions indicating a reduction in particle size, which is also observed in TEM micrographs. The antioxidant activity of the polyaniline nanofiber samples has been investigated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging assay by employing UV-visible spectroscopy. It has also been observed that polyaniline nanofibers are able to protect the haemolysis of red blood cells (RBCs) from cytotoxic agents, namely H2O2. The observed enhancement in the antioxidant and haemolysis prevention activity of the PAni nanofibers as compared to bulk has been attributed to the reduction in particle size and changes in structural conformation, as evident from TEM, XRD and microRaman spectroscopy.

  19. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances.

    PubMed

    Cheng, Sen-Sung; Liu, Ju-Yun; Tsai, Kun-Hsien; Chen, Wei-June; Chang, Shang-Tzen

    2004-07-14

    Chemical compositions of leaf essential oils from eight provenances of indigenous cinnamon (Cinnamomum osmophloeum Kaneh.) were compared. According to GC-MS and cluster analyses, the leaf essential oils of the eight provenances and their relative contents were classified into five chemotypes-cinnamaldehyde type, linalool type, camphor type, cinnamaldehyde/cinnamyl acetate type, and mixed type. The larvicidal activities of leaf essential oils and their constituents from the five chemotypes of indigenous cinnamon trees were evaluated by mosquito larvicidal assay. Results of larvicidal tests demonstrated that the leaf essential oils of cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type had an excellent inhibitory effect against the fourth-instar larvae of Aedes aegypti. The LC(50) values for cinnamaldehyde type and cinnamaldehyde/cinnamyl acetate type against A. aegypti larvae in 24 h were 36 ppm (LC(90) = 79 ppm) and 44 ppm (LC(90) = 85 ppm), respectively. Results of the 24-h mosquito larvicidal assays also showed that the effective constituents in leaf essential oils were cinnamaldehyde, eugenol, anethole, and cinnamyl acetate and that the LC(50) values of these constituents against A. aegypti larvae were <50 ppm. Cinnamaldehyde had the best mosquito larvicidal activity, with an LC(50) of 29 ppm (LC(90) = 48 ppm) against A. aegypti. Comparisons of mosquito larvicidal activity of cinnamaldehyde congeners revealed that cinnamaldehyde exhibited the strongest mosquito larvicidal activity.

  20. Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco.

    PubMed

    Bouajaj, S; Benyamna, A; Bouamama, H; Romane, A; Falconieri, D; Piras, A; Marongiu, B

    2013-01-01

    Salvia officinalis (Common sage, Culinary sage) is an aromatic plant that is frequently used as a spice in Mediterranean cookery and in the food industry and as a traditional medicine for the treatment of several infectious diseases. The essential oils were obtained by two different methods [hydrodistillation (HD) and microwave (Mw)] from the aerial part of S. officinalis L. growing wild in Ourika-Marrakech in Morocco. Ourika is a large zone of the Atlas Mountains which is considered as a large reserve of Flora, especially medicinal and aromatic plants. The obtained oils were analysed by gas chromatography and gas chromatography-mass spectrometry and compared with that of Tunisia. Thirty-six compounds were identified from the Mw-extracted oil which accounted for 97.32% of the total oil composition. However, 33 compounds obtained by HD representing 98.67%. The major components were trans-thujone (14.10% and 29.84%), 1,8-cineole (5.10% and 16.82%), camphor (4.99% and 9.14%), viridiflorol (16.42% and 9.92%), β-caryophyllene (19.83% and 5.20%) and α-humulene (13.54% and 4.02%). Antibacterial, allelopathic (% germination in lettuce seeds and inhibited root growth obtained after treatment with S. officinalis oils) and antioxidant (IC₅₀ values 22 mg/mL) activities were studied.