Science.gov

Sample records for 4-node shell elements

  1. Direct formulation of a 4-node hybrid shell element with rotational degrees of freedom

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad A.

    1990-01-01

    A simple 4-node assumed-stress hybrid quadrilateral shell element with rotational or drilling degrees of freedom is formulated. The element formulation is based directly on a 4-node element. This direct formulation requires fewer computations than a similar element that is derived from an internal 8-node isoparametric element in which the midside degrees of freedom are eliminated in favor of rotational degree of freedom at the corner nodes. The formulation is based on the principle of minimum complementary energy. The membrane part of the element has 12 degrees of freedom including rotational degrees of freedom. The bending part of the element also has 12 degrees of freedom. The bending part of the quadratic variations for both in-plane and out-of-plane displacement fields and linear variations for both in-plane and out-of-plane rotation fields are assumed along the edges of the element. The element Cartesian-coordinate system is chosen such as to make the stress field invariant with respect to node numbering. The membrane part of the stress field is based on a 9-parameter equilibrating stress field, while the bending part is based on a 13-parameter equilibrating stress field. The element passes the patch test, is nearly insensitive to mesh distortion, does not lock, possesses the desirable invariance properties, has no spurious modes, and produces accurate and reliable results.

  2. A 4-node assumed-stress hybrid shell element with rotational degrees of freedom

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad A.

    1990-01-01

    An assumed-stress hybrid/mixed 4-node quadrilateral shell element is introduced that alleviates most of the deficiencies associated with such elements. The formulation of the element is based on the assumed-stress hybrid/mixed method using the Hellinger-Reissner variational principle. The membrane part of the element has 12 degrees of freedom including rotational or drilling degrees of freedom at the nodes. The bending part of the element also has 12 degrees of freedom. The bending part of the element uses the Reissner-Mindlin plate theory which takes into account the transverse shear contributions. The element formulation is derived from an 8-node isoparametric element. This process is accomplished by assuming quadratic variations for both in-plane and out-of-plane displacement fields and linear variations for both in-plane and out-of-plane rotation fields along the edges of the element. In addition, the degrees of freedom at midside nodes are approximated in terms of the degrees of freedom at corner nodes. During this process the rotational degrees of freedom at the corner nodes enter into the formulation of the element. The stress field are expressed in the element natural-coordinate system such that the element remains invariant with respect to node numbering.

  3. An assumed-stress hybrid 4-node shell element with drilling degrees of freedom

    NASA Technical Reports Server (NTRS)

    Aminpour, M. A.

    1992-01-01

    An assumed-stress hybrid/mixed 4-node quadrilateral shell element is introduced that alleviates most of the deficiencies associated with such elements. The formulation of the element is based on the assumed-stress hybrid/mixed method using the Hellinger-Reissner variational principle. The membrane part of the element has 12 degrees of freedom including rotational or 'drilling' degrees of freedom at the nodes. The bending part of the element also has 12 degrees of freedom. The bending part of the element uses the Reissner-Mindlin plate theory which takes into account the transverse shear contributions. The element formulation is derived from an 8-node isoparametric element by expressing the midside displacement degrees of freedom in terms of displacement and rotational degrees of freedom at corner nodes. The element passes the patch test, is nearly insensitive to mesh distortion, does not 'lock', possesses the desirable invariance properties, has no hidden spurious modes, and for the majority of test cases used in this paper produces more accurate results than the other elements employed herein for comparison.

  4. Finite element shell instability analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.

  5. Adaptive finite element strategies for shell structures

    NASA Technical Reports Server (NTRS)

    Stanley, G.; Levit, I.; Stehlin, B.; Hurlbut, B.

    1992-01-01

    The present paper extends existing finite element adaptive refinement (AR) techniques to shell structures, which have heretofore been neglected in the AR literature. Specific challenges in applying AR to shell structures include: (1) physical discontinuities (e.g., stiffener intersections); (2) boundary layers; (3) sensitivity to geometric imperfections; (4) the sensitivity of most shell elements to mesh distortion, constraint definition and/or thinness; and (5) intrinsic geometric nonlinearity. All of these challenges but (5) are addressed here.

  6. Effectiveness of Rotation-free Triangular and Quadrilateral Shell Elements in Sheet-metal Forming Simulations

    NASA Astrophysics Data System (ADS)

    Brunet, M.; Sabourin, F.

    2005-08-01

    This paper is concerned with the effectiveness of triangular 3-node shell element without rotational d.o.f. and the extension to a new 4-node quadrilateral shell element called S4 with only 3 translational degrees of freedom per node and one-point integration. The curvatures are computed resorting to the surrounding elements. Extension from rotation-free triangular element to a quadrilateral element requires internal curvatures in order to avoid singular bending stiffness. Two numerical examples with regular and irregular meshes are performed to show the convergence and accuracy. Deep-drawing of a box, spring-back analysis of a U-shape strip sheet and the crash simulation of a beam-box complete the demonstration of the bending capabilities of the proposed rotation-free triangular and quadrilateral elements.

  7. Effectiveness of Rotation-free Triangular and Quadrilateral Shell Elements in Sheet-metal Forming Simulations

    SciTech Connect

    Brunet, M.; Sabourin, F.

    2005-08-05

    This paper is concerned with the effectiveness of triangular 3-node shell element without rotational d.o.f. and the extension to a new 4-node quadrilateral shell element called S4 with only 3 translational degrees of freedom per node and one-point integration. The curvatures are computed resorting to the surrounding elements. Extension from rotation-free triangular element to a quadrilateral element requires internal curvatures in order to avoid singular bending stiffness. Two numerical examples with regular and irregular meshes are performed to show the convergence and accuracy. Deep-drawing of a box, spring-back analysis of a U-shape strip sheet and the crash simulation of a beam-box complete the demonstration of the bending capabilities of the proposed rotation-free triangular and quadrilateral elements.

  8. Transient analysis using conical shell elements

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Goeller, J. E.; Messick, W. T.

    1973-01-01

    The use of the NASTRAN conical shell element in static, eigenvalue, and direct transient analyses is demonstrated. The results of a NASTRAN static solution of an externally pressurized ring-stiffened cylinder agree well with a theoretical discontinuity analysis. Good agreement is also obtained between the NASTRAN direct transient response of a uniform cylinder to a dynamic end load and one-dimensional solutions obtained using a method of characteristics stress wave code and a standing wave solution. Finally, a NASTRAN eigenvalue analysis is performed on a hydroballistic model idealized with conical shell elements.

  9. Rotordynamic Analysis with Shell Elements for the Transfer Matrix Method

    DTIC Science & Technology

    1989-08-01

    jACCESSION NO. 11. TITLE (Include Security Classification) (UNCLASSIFIED) ROTORDYNAMIC ANALYSIS WITH SHELL ELEMENTS FOR THE TRANSFER MATRIX METHOD 12...SECURITY CLASSIFICATION OF THIS PAGE AFIT/CI "OVERPRINT" iii ABSTRACT Rotordynamic Analysis with Shell Elements for the Transfer Matrix Method. (August...analysts in indus- try . ’ . ," Accesiu:, For NTIS CR,4i Fi FilC TA,: [3 0. fi A-1 B I ., ,.................. ,., ROTORDYNAMIC ANALYSIS WITH SHELL ELEMENTS

  10. Dynamic quasistatic characterization of finite elements for shell structures.

    SciTech Connect

    Thomas, Jesse David

    2010-11-01

    Finite elements for shell structures have been investigated extensively, with numerous formulations offered in the literature. These elements are vital in modern computational solid mechanics due to their computational efficiency and accuracy for thin and moderately thick shell structures, allowing larger and more comprehensive (e.g. multi-scale and multi-physics) simulations. Problems now of interest in the research and development community are routinely pushing our computational capabilities, and thus shell finite elements are being used to deliver efficient yet high quality computations. Much work in the literature is devoted to the formulation of shell elements and their numerical accuracy, but there is little published work on the computational characterization and comparison of shell elements for modern solid mechanics problems. The present study is a comparison of three disparate shell element formulations in the Sandia National Laboratories massively parallel Sierra Solid Mechanics code. A constant membrane and bending stress shell element (Key and Hoff, 1995), a thick shell hex element (Key et al., 2004) and a 7-parameter shell element (Buechter et al., 1994) are available in Sierra Solid Mechanics for explicit transient dynamic, implicit transient dynamic and quasistatic calculations. Herein these three elements are applied to a set of canonical dynamic and quasistatic problems, and their numerical accuracy, computational efficiency and scalability are investigated. The results show the trade-off between the relative inefficiency and improved accuracy of the latter two high quality element types when compared with the highly optimized and more widely used constant membrane and bending stress shell element.

  11. A 20-DOF hybrid stress general shell element

    NASA Technical Reports Server (NTRS)

    Kang, David S.; Pian, Theodore H. H.

    1988-01-01

    A hybrid-stress general shell element is developed based on the Hellinger-Reissner principle modified for relaxed element compatibility conditions. The element is based on a thin-shell theory with Love-Kirchhoff hypothesis. It is of quadrilateral shape with only four corner nodes and five degrees of freedom per node. The geometry of the element is approximated through a cubic polynomial surface patch. Numerical examples consisting of torsion-loaded slit cylinder and pinched cylinders with open ends and rigid diaphragmed ends demonstrate excellent performance of the present element.

  12. Natural vibrations of preliminarily stressed shell elements of turbines

    SciTech Connect

    Bespalova, E.I.; Kitaigorodskii, A.B.; Shinkar, A.I.

    1986-11-01

    This article deals with a structural element that is frequently encountered in the practice of turbine construction: a thin-walled conical shell with a large taper angle. It was concluded that the static loads acting on a shell have a substantial effect on its minimal natural vibration frequency which plays a particular part in the investigation of the dynamics of structures. The application of the nonlinear theory of shells makes it possible to establish a dependence of the dynamic characteristic of the shell on factors of the static state, and the use of numerical methods makes it possible to attain an effective solution of problems belonging to the class under examination.

  13. Summary compilation of shell element performance versus formulation.

    SciTech Connect

    Heinstein, Martin Wilhelm; Hales, Jason Dean; Breivik, Nicole L.; Key, Samuel W.

    2011-07-01

    This document compares the finite element shell formulations in the Sierra Solid Mechanics code. These are finite elements either currently in the Sierra simulation codes Presto and Adagio, or expected to be added to them in time. The list of elements are divided into traditional two-dimensional, plane stress shell finite elements, and three-dimensional solid finite elements that contain either modifications or additional terms designed to represent the bending stiffness expected to be found in shell formulations. These particular finite elements are formulated for finite deformation and inelastic material response, and, as such, are not based on some of the elegant formulations that can be found in an elastic, infinitesimal finite element setting. Each shell element is subjected to a series of 12 verification and validation test problems. The underlying purpose of the tests here is to identify the quality of both the spatially discrete finite element gradient operator and the spatially discrete finite element divergence operator. If the derivation of the finite element is proper, the discrete divergence operator is the transpose of the discrete gradient operator. An overall summary is provided from which one can rank, at least in an average sense, how well the individual formulations can be expected to perform in applications encountered year in and year out. A letter grade has been assigned albeit sometimes subjectively for each shell element and each test problem result. The number of A's, B's, C's, et cetera assigned have been totaled, and a grade point average (GPA) has been computed, based on a 4.0-system. These grades, combined with a comparison between the test problems and the application problem, can be used to guide an analyst to select the element with the best shell formulation.

  14. Direct mapping of nuclear shell effects in the heaviest elements.

    PubMed

    Minaya Ramirez, E; Ackermann, D; Blaum, K; Block, M; Droese, C; Düllmann, Ch E; Dworschak, M; Eibach, M; Eliseev, S; Haettner, E; Herfurth, F; Heßberger, F P; Hofmann, S; Ketelaer, J; Marx, G; Mazzocco, M; Nesterenko, D; Novikov, Yu N; Plaß, W R; Rodríguez, D; Scheidenberger, C; Schweikhard, L; Thirolf, P G; Weber, C

    2012-09-07

    Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number Z = 114, 120, or 126 and neutron number N = 184 has been substantiated by the recent synthesis of new elements up to Z = 118. However, the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at N = 152.

  15. Application of shell elements in simulation of cans ironing

    NASA Astrophysics Data System (ADS)

    Andrianov, A. V.; Erisov, Y. A.; Aryshensky, E. V.; Aryshensky, V. Y.

    2017-01-01

    In the present study, the special shell finite elements are used to simulate the drawing with high ironing ratio of aluminum beverage cans. These elements are implemented in commercial software complex PAM-STAMP 2G by means of T.T.S. normal stress option, which is used for ironing to describe well normal stress. By comparison of simulation and experimental data, it is shown that shell elements with T.T.S. option are capable to provide accurate simulation of deep drawing and ironing. The error of can thickness and height computation agrees with the engineering computation accuracy.

  16. Diagenetic changes in the elemental composition of unrecrystallized mollusk shells

    USGS Publications Warehouse

    Ragland, P.C.; Pilkey, O.H.; Blackwelder, B. W.

    1979-01-01

    The Mg, Sr, Mn, Fe, Na and K contents were determined for 230 apparently unrecrystallized mollusk shells (gastropods and bivalves) ranging in age from late Cretaceous to Holocene. Consistent differences between the Holocene and fossil shells with respect to concentrations of all these elements are attributed to postburial diagenetic changes. Fossil-Holocene shell comparisons are made on the intergeneric level, a more severe test of compositional differences than was previous work involved with few species. The observed differences re-emphasize the need for extreme caution in the use of the many geochemical tools which assume that no compositional changes have taken place prior to recrystallization of calcareous materials. ?? 1979.

  17. Shell Element Verification & Regression Problems for DYNA3D

    SciTech Connect

    Zywicz, E

    2008-02-01

    A series of quasi-static regression/verification problems were developed for the triangular and quadrilateral shell element formulations contained in Lawrence Livermore National Laboratory's explicit finite element program DYNA3D. Each regression problem imposes both displacement- and force-type boundary conditions to probe the five independent nodal degrees of freedom employed in the targeted formulation. When applicable, the finite element results are compared with small-strain linear-elastic closed-form reference solutions to verify select aspects of the formulations implementation. Although all problems in the suite depict the same geometry, material behavior, and loading conditions, each problem represents a unique combination of shell formulation, stabilization method, and integration rule. Collectively, the thirty-six new regression problems in the test suite cover nine different shell formulations, three hourglass stabilization methods, and three families of through-thickness integration rules.

  18. Implementation of Free-Formulation-Based Flat Shell Elements into NASA Comet Code and Development of Nonlinear Shallow Shell Element

    NASA Technical Reports Server (NTRS)

    Barut, A.; Madenci, Erdogan; Tessler, A.

    1997-01-01

    This study presents a transient nonlinear finite element analysis within the realm of a multi-body dynamics formulation for determining the dynamic response of a moderately thick laminated shell undergoing a rapid and large rotational motion and nonlinear elastic deformations. Nonlinear strain measure and rotation, as well as 'the transverse shear deformation, are explicitly included in the formulation in order to capture the proper motion-induced stiffness of the laminate. The equations of motion are derived from the virtual work principle. The analysis utilizes a shear deformable shallow shell element along with the co-rotational form of the updated Lagrangian formulation. The shallow shell element formulation is based on the Reissner-Mindlin and Marguerre theory.

  19. Effective Finite Elements for Shell Analysis.

    DTIC Science & Technology

    1984-02-20

    important mode of deformation , and when an element is not capable of representing inextensional bending, parasitic membrane energy is generated in many modes...of deformation . In the same manner that parasitic shear causes shear locking, this spurious membrane energy causes membrane locking. Membrane locking...dominant mode of deformation . (cont.) 20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIEO/UNLIMITEO X SAME AS

  20. An Enriched Shell Element for Delamination Simulation in Composite Laminates

    NASA Technical Reports Server (NTRS)

    McElroy, Mark

    2015-01-01

    A formulation is presented for an enriched shell finite element capable of delamination simulation in composite laminates. The element uses an adaptive splitting approach for damage characterization that allows for straightforward low-fidelity model creation and a numerically efficient solution. The Floating Node Method is used in conjunction with the Virtual Crack Closure Technique to predict delamination growth and represent it discretely at an arbitrary ply interface. The enriched element is verified for Mode I delamination simulation using numerical benchmark data. After determining important mesh configuration guidelines for the vicinity of the delamination front in the model, a good correlation was found between the enriched shell element model results and the benchmark data set.

  1. Adaptive Through-Thickness Integration Strategy for Shell Elements

    NASA Astrophysics Data System (ADS)

    Burchitz, I. A.; Meinders, T.; Huétink, J.

    2007-05-01

    Reliable numerical prediction of springback in sheet metal forming is essential for the automotive industry. There are numerous factors that influence the accuracy of springback prediction by using the finite element method. One of the reasons is the through-thickness numerical integration of shell elements. It is known that even for simple problems the traditional integration schemes may require up to 50 integration points to achieve a high accuracy of springback analysis. An adaptive through-thickness integration strategy can be a good alternative. The strategy defines abscissas and weights depending on the integrand's properties and, thus, can adapt itself to improve the accuracy of integration. A concept of the adaptive through-thickness integration strategy for shell elements is presented. It is tested using a simple problem of bending of a beam under tension. Results show that for a similar set of material and process parameters the adaptive Simpson's rule with 7 integration points performs better than the traditional trapezoidal rule with 50 points. The adaptive through-thickness integration strategy for shell elements can improve the accuracy of springback prediction at minimal costs.

  2. Better Finite-Element Analysis of Composite Shell Structures

    NASA Technical Reports Server (NTRS)

    Clarke, Gregory

    2007-01-01

    A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.

  3. Nonlinear probabilistic finite element models of laminated composite shells

    NASA Technical Reports Server (NTRS)

    Engelstad, S. P.; Reddy, J. N.

    1993-01-01

    A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.

  4. Structural optimization of thin shells using finite element method

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.

    1992-01-01

    The objective of the present work was the structural optimization of thin shell structures that are subjected to stress and displacement constraints. In order to accomplish this, the structural optimization computer program DESAP1 was modified and improved. In the static analysis part of the DESAP1 computer program the torsional spring elements, which are used to analyze thin, shallow shell structures, were eliminated by modifying the membrane stiffness matrix of the triangular elements in the local coordinate system and adding a fictitious rotational stiffness matrix. This simplified the DESAP1 program input, improved the accuracy of the analysis, and saved computation time. In the optimization part of the DESAP1 program the stress ratio formula, which redesigns the thickness of each finite element of the structure, was solved by an analytical method. This scheme replaced the iterative solution that was previously used in the DESAP1 program, thus increasing the accuracy and speed of the design. The modified program was used to design a thin, cylindrical shell structure with optimum weight, and the results are reported in this paper.

  5. Accuracy of the QUAD4 thick shell element

    NASA Technical Reports Server (NTRS)

    Case, William R.; Bowles, Tiffany D.; Croft, Alicia K.; Mcginnis, Mark A.

    1990-01-01

    The accuracy of the relatively new QUAD4 thick shell element is assessed via comparison with a theoretical solution for thick homogeneous and honeycomb flat simply supported plates under the action of a uniform pressure load. The theoretical thick plate solution is based on the theory developed by Reissner and includes the effects of transverse shear flexibility which are not included in the thin plate solutions based on Kirchoff plate theory. In addition, the QUAD4 is assessed using a set of finite element test problems developed by the MacNeal-Schwendler Corp. (MSC). Comparison of the COSMIC QUAD4 element as well as those from MSC and Universal Analytics, Inc. (UAI) for these test problems is presented. The current COSMIC QUAD4 element is shown to have excellent comparison with both the theoretical solutions and also those from the two commercial versions of NASTRAN that it was compared to.

  6. Accuracy of the TRIA3 thick shell element

    NASA Technical Reports Server (NTRS)

    Case, William R.; Concha, Marco; Mcginnis, Mark

    1992-01-01

    The accuracy of the new TRIA3 thick shell element is assessed via comparison with a theoretical solution for thick homogeneous and honeycomb flat simply supported plates under the action of a uniform pressure load. The theoretical thick plate solution is based on the theory developed by Reissner and includes the effects of transverse shear flexibility which are not included in the thin plate solutions based on Kirchoff plate theory. In addition, the TRIA3 is assessed using a set of finite element test problems developed by the MacNeal-Schwendler Corp. (MSC). Comparison of the COSMIC TRIA3 element as well as those from MSC and Universal Analytics Inc. (UAI) for these problems is presented. The current COSMIC TRIA3 element is shown to have excellent comparison with both the theoretical solutions and also those from the two commercial versions of NASTRAN with which it is compared.

  7. Survey and development of finite elements for nonlinear structural analysis. Volume 2: Nonlinear shell finite elements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development of two new shell finite elements for applications to large deflection problems is considered. The elements in question are doubly curved and of triangular and quadrilateral planform. They are restricted to small strains of elastic materials, and can accommodate large rotations. The elements described, which are based on relatively simple linear elements, make use of a new displacement function approach specifically designed for strongly nonlinear problems. The displacement function development for nonlinear applications is based on certain beam element formulations, and the strain-displacement equations are of a shallow shell type. Additional terms were included in these equations in an attempt to avoid the large errors characteristic of shallow shell elements in certain types of problems. An incremental nonlinear solution procedure specifically adopted to the element formulation was developed. The solution procedure is of combined incremental and total Lagrangian type, and uses a new updating scheme. A computer program was written to evaluate the developed formulations. This program can accommodate small element groups in arbitrary arrangements. Two simple programs were successfully solved. The results indicate that this new type of element has definite promise and should be a fruitful area for further research.

  8. A triangular thin shell finite element: Nonlinear analysis. [structural analysis

    NASA Technical Reports Server (NTRS)

    Thomas, G. R.; Gallagher, R. H.

    1975-01-01

    Aspects of the formulation of a triangular thin shell finite element which pertain to geometrically nonlinear (small strain, finite displacement) behavior are described. The procedure for solution of the resulting nonlinear algebraic equations combines a one-step incremental (tangent stiffness) approach with one iteration in the Newton-Raphson mode. A method is presented which permits a rational estimation of step size in this procedure. Limit points are calculated by means of a superposition scheme coupled to the incremental side of the solution procedure while bifurcation points are calculated through a process of interpolation of the determinants of the tangent-stiffness matrix. Numerical results are obtained for a flat plate and two curved shell problems and are compared with alternative solutions.

  9. DEVELOPMENT OF ANSYS FINITE ELEMENT MODELS FOR SINGLE SHELL TANK (SST) & DOUBLE SHELL TANK (DST) TANKS

    SciTech Connect

    JULYK, L.J.; MACKEY, T.C.

    2003-06-19

    Summary report of ANSYS finite element models developed for dome load analysis of Hanford 100-series single-shell tanks and double-shell tanks. Document provides user interface for selecting proper tank model and changing of analysis parameters for tank specific analysis. Current dome load restrictions for the Hanford Site underground waste storage tanks are based on existing analyses of record (AOR) that evaluated the tanks for a specific set of design load conditions. However, greater flexibility is required in controlling dome loadings applied to the tanks due to day-to-day operations and waste retrieval activities. This requires the development of an analytical model with sufficient detail to evaluate various dome loading conditions not specifically addressed in the AOR.

  10. Finite element analysis of laminated plates and shells, volume 1

    NASA Technical Reports Server (NTRS)

    Seide, P.; Chang, P. N. H.

    1978-01-01

    The finite element method is used to investigate the static behavior of laminated composite flat plates and cylindrical shells. The analysis incorporates the effects of transverse shear deformation in each layer through the assumption that the normals to the undeformed layer midsurface remain straight but need not be normal to the mid-surface after deformation. A digital computer program was developed to perform the required computations. The program includes a very efficient equation solution code which permits the analysis of large size problems. The method is applied to the problem of stretching and bending of a perforated curved plate.

  11. A triangular thin shell finite element: Linear analysis

    NASA Technical Reports Server (NTRS)

    Thomas, G. R.; Gallagher, R. H.

    1975-01-01

    The formulation of the linear stiffness matrix for a doubly-curved triangular thin shell element, using a modified potential energy principle, is described. The strain energy component of the potential energy is expressed in terms of displacements and displacement gradients by use of consistent Koiter strain-displacement equations. The element inplane and normal displacement fields are approximated by complete cubic polynomials. The interelement displacement admissibility conditions are met in the global representation by imposition of constraint conditions on the interelement boundaries; the constraints represent the modification of the potential energy. Errors due to the nonzero strains under rigid body motion are shown to be of small importance for practical grid refinements through performance of extensive comparison analyses.

  12. Finite Element Analysis of Geodesically Stiffened Cylindrical Composite Shells Using a Layerwise Theory

    NASA Technical Reports Server (NTRS)

    Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.

    1996-01-01

    Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.

  13. Quantifying Square Membrane Wrinkle Behavior Using MITC Shell Elements

    NASA Technical Reports Server (NTRS)

    Jacobson, Mindy B.; Iwasa, Takashi; Natori, M. C.

    2004-01-01

    For future membrane based structures, quantified predictions of membrane wrinkling behavior in terms of amplitude, angle and wavelength are needed to optimize the efficiency and integrity of such structures, as well as their associated control systems. For numerical analyses performed in the past, limitations on the accuracy of membrane distortion simulations have often been related to the assumptions made while using finite elements. Specifically, this work demonstrates that critical assumptions include: effects of gravity. supposed initial or boundary conditions, and the type of element used to model the membrane. In this work, a 0.2 square meter membrane is treated as a structural material with non-negligible bending stiffness. Mixed Interpolation of Tensorial Components (MTTC) shell elements are used to simulate wrinkling behavior due to a constant applied in-plane shear load. Membrane thickness, gravity effects, and initial imperfections with respect to flatness were varied in numerous nonlinear analysis cases. Significant findings include notable variations in wrinkle modes for thickness in the range of 50 microns to 1000 microns, which also depend on the presence of an applied gravity field. However, it is revealed that relationships between overall strain energy density for cases with differing initial conditions are independent of assumed initial con&tions. In addition, analysis results indicate that the relationship between amplitude scale (W/t) and structural scale (L/t) is linear in the presence of a gravity field.

  14. An edge-based smoothed triangle element for non-linear explicit dynamic analysis of shells

    NASA Astrophysics Data System (ADS)

    Zheng, Gang; Cui, Xiangyang; Li, Guangyao; Wu, Suzhen

    2011-07-01

    The paper presents an edge-based smoothed triangular element (EST) for nonlinear analysis of shell structures using an explicit dynamic formulation. In order to improve the accuracy and the convergence of the shell element without additional parameters, the gradient smoothing operation is performed to the strain rates in the smoothing domains associated with the edges of triangular elements. An edge coordinate system is defined local on the edges of the triangular element for the strain smoothing operation. The material nonlinearities for the dynamic solution are treated by using the updated Lagrangian description and an elastic-plastic constitutive law. The shear strains in the element formulation are approximated using the discrete shear gap method to mitigate the shear locking, and this element can be applicable for both thin shells and thick shells. Numerical results for elastic and elastic-plastic problems show the effectiveness and efficiency of the proposed shell element.

  15. Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert

    2007-01-01

    A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.

  16. Addition of higher order plate and shell elements into NASTRAN computer program

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.; Goglia, G. L.

    1976-01-01

    Two higher order plate elements, the linear strain triangular membrane element and the quintic bending element, along with a shallow shell element, suitable for inclusion into the NASTRAN (NASA Structural Analysis) program are described. Additions to the NASTRAN Theoretical Manual, Users' Manual, Programmers' Manual and the NASTRAN Demonstration Problem Manual, for inclusion of these elements into the NASTRAN program are also presented.

  17. Finite-element modeling of layered, anisotropic composite plates and shells: A review of recent research

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1981-01-01

    Finite element papers published in the open literature on the static bending and free vibration of layered, anisotropic, and composite plates and shells are reviewed. A literature review of large-deflection bending and large-amplitude free oscillations of layered composite plates and shells is also presented. Non-finite element literature is cited for continuity of the discussion.

  18. Exact and Finite-Element Analysis of Laminated Shells.

    DTIC Science & Technology

    1983-11-01

    developed originally for thin shells, and are based on the Kirchhoff-Love kinematic hypothesis that plane sections normal to the unde- formed midsurface ...vector of a point in the shell Ri = principal radii of curvature; see Fig. I = position vector of a point on the shell midsurface 29 Sij = the mass...coefficients defined in Eqn. (30) Umn = amplitudes of displacement Ul; see Eqn. (25) ui = displacements of the midsurface u. = displacements of a point in

  19. A quadrilateral shell element with degree of freedom to represent thickness-stretch

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takeki; Yamada, Takahiro; Matsui, Kazumi

    2017-04-01

    This paper presents a quadrilateral shell element incorporating thickness-stretch, and demonstrates its performance in small and large deformation analyses for hyperelastic material and elastoplastic models. In terms of geometry, the proposed shell element is based on the formulation of the MITC4 shell element, with additional degrees of freedom to represent thickness-stretch. To consider the change in thickness, we introduce a displacement variation to the MITC4 shell element, in the thickness direction. After the thickness direction is expressed in terms of the director vectors that are defined at each midsurface node, additional nodes are placed along the thickness direction from the bottom surface to the top surface. The thickness-stretch is described by the movement of these additional nodes. The additional degrees of freedom are used to compute the transverse normal strain without assuming the plane stress condition. Hence, the three dimensional constitutive equation can be employed in the proposed formulation without any modification. By virtue of not imposing the plane stress condition, the surface traction is evaluated at the surface where the traction is applied, whereas it is assessed at the midsurface for conventional shell elements. Several numerical examples are presented to examine the fundamental performance of the proposed shell element. In particular, the proposed approach is capable of evaluating the change in thickness and the stress distribution when the effect of the surface traction is included. The behavior of the proposed shell element is compared with that of solid elements.

  20. A quadrilateral shell element with degree of freedom to represent thickness-stretch

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takeki; Yamada, Takahiro; Matsui, Kazumi

    2016-12-01

    This paper presents a quadrilateral shell element incorporating thickness-stretch, and demonstrates its performance in small and large deformation analyses for hyperelastic material and elastoplastic models. In terms of geometry, the proposed shell element is based on the formulation of the MITC4 shell element, with additional degrees of freedom to represent thickness-stretch. To consider the change in thickness, we introduce a displacement variation to the MITC4 shell element, in the thickness direction. After the thickness direction is expressed in terms of the director vectors that are defined at each midsurface node, additional nodes are placed along the thickness direction from the bottom surface to the top surface. The thickness-stretch is described by the movement of these additional nodes. The additional degrees of freedom are used to compute the transverse normal strain without assuming the plane stress condition. Hence, the three dimensional constitutive equation can be employed in the proposed formulation without any modification. By virtue of not imposing the plane stress condition, the surface traction is evaluated at the surface where the traction is applied, whereas it is assessed at the midsurface for conventional shell elements. Several numerical examples are presented to examine the fundamental performance of the proposed shell element. In particular, the proposed approach is capable of evaluating the change in thickness and the stress distribution when the effect of the surface traction is included. The behavior of the proposed shell element is compared with that of solid elements.

  1. Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method.

    PubMed

    Su, Zhu; Jin, Guoyong

    2016-11-01

    This paper presents a Fourier spectral element method (FSEM) to analyze the free vibration of conical-cylindrical-spherical shells with arbitrary boundary conditions. Cylindrical-conical and cylindrical-spherical shells as special cases are also considered. In this method, each fundamental shell component (i.e., cylindrical, conical, and spherical shells) is divided into appropriate elements. The variational principle in conjunction with first-order shear deformation shell theory is employed to model the shell elements. Since the displacement and rotation components of each element are expressed as a linear superposition of nodeless Fourier sine functions and nodal Lagrangian polynomials, the global equations of the coupled shell structure can be obtained by adopting the assembly procedure. The Fourier sine series in the displacement field is introduced to enhance the accuracy and convergence of the solution. Numerical results show that the FSEM can be effectively applied to vibration analysis of the coupled shell structures. Numerous results for coupled shell structures with general boundary conditions are presented. Furthermore, the effects of geometric parameters and boundary conditions on the frequencies are investigated.

  2. A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy

    NASA Astrophysics Data System (ADS)

    Viebahn, Nils; Pimenta, Paulo M.; Schröder, Jörg

    2016-11-01

    This work presents a simple finite element implementation of a geometrically exact and fully nonlinear Kirchhoff-Love shell model. Thus, the kinematics are based on a deformation gradient written in terms of the first- and second-order derivatives of the displacements. The resulting finite element formulation provides C^1 -continuity using a penalty approach, which penalizes the kinking at the edges of neighboring elements. This approach enables the application of well-known C^0 -continuous interpolations for the displacements, which leads to a simple finite element formulation, where the only unknowns are the nodal displacements. On the basis of polyconvex strain energy functions, the numerical framework for the simulation of isotropic and anisotropic thin shells is presented. A consistent plane stress condition is incorporated at the constitutive level of the model. A triangular finite element, with a quadratic interpolation for the displacements and a one-point integration for the enforcement of the C^1 -continuity at the element interfaces leads to a robust shell element. Due to the simple nature of the element, even complex geometries can be meshed easily, which include folded and branched shells. The reliability and flexibility of the element formulation is shown in a couple of numerical examples, including also time dependent boundary value problems. A plane reference configuration is assumed for the shell mid-surface, but initially curved shells can be accomplished if one regards the initial configuration as a stress-free deformed state from the plane position, as done in previous works.

  3. A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy

    NASA Astrophysics Data System (ADS)

    Viebahn, Nils; Pimenta, Paulo M.; Schröder, Jörg

    2017-02-01

    This work presents a simple finite element implementation of a geometrically exact and fully nonlinear Kirchhoff-Love shell model. Thus, the kinematics are based on a deformation gradient written in terms of the first- and second-order derivatives of the displacements. The resulting finite element formulation provides C^1-continuity using a penalty approach, which penalizes the kinking at the edges of neighboring elements. This approach enables the application of well-known C^0-continuous interpolations for the displacements, which leads to a simple finite element formulation, where the only unknowns are the nodal displacements. On the basis of polyconvex strain energy functions, the numerical framework for the simulation of isotropic and anisotropic thin shells is presented. A consistent plane stress condition is incorporated at the constitutive level of the model. A triangular finite element, with a quadratic interpolation for the displacements and a one-point integration for the enforcement of the C^1-continuity at the element interfaces leads to a robust shell element. Due to the simple nature of the element, even complex geometries can be meshed easily, which include folded and branched shells. The reliability and flexibility of the element formulation is shown in a couple of numerical examples, including also time dependent boundary value problems. A plane reference configuration is assumed for the shell mid-surface, but initially curved shells can be accomplished if one regards the initial configuration as a stress-free deformed state from the plane position, as done in previous works.

  4. NASTRAN implementation of an isoparametric doubly-curved quadrilateral shell element

    NASA Technical Reports Server (NTRS)

    Potvin, A. B.; Leick, R. D.

    1978-01-01

    A quadrilateral shell element, CQUAD4, was added to level 15.5 and subsequently to level 16.0 of NASTRAN. The element exhibited doubly curved surfaces and used biquadratic interpolation functions. Reduced integration techniques were used to improve the performance of the element in thin shell problems. The creation of several new bulk data items is discussed, along with a special module, GPNORM, to process SHLNORM bulk data cards. In addition to the theoretical basis for the element stiffness matrix, consistent mass and load matrices are presented. Several potential sources of degenerate behavior of the element were investigated. Guidelines for proper use of the element were suggested. Performance of the element on several widely published classical examples was demonstrated. The results showed a significant improvement over presently available NASTRAN shell elements for even the coarsest meshes. Potential applications to two classes of practical problems are discussed.

  5. Influences of organic matter and calcification rate on trace elements in aragonitic estuarine bivalve shells

    USGS Publications Warehouse

    Takesue, R.K.; Bacon, C.R.; Thompson, J.K.

    2008-01-01

    A suite of elements (B, Na, Mg, S, K, Ca, V, Mn, Cr, Sr, and Ba) was measured in aragonitic shells of the estuarine bivalve Corbula amurensis, the Asian clam, using the Sensitive High-Resolution Ion MicroProbe with Reverse Geometry (SHRIMP RG). Our initial intent was to explore potential geochemical proxy relationships between shell chemistry and salinity (freshwater inflow) in northern San Francisco Bay (SFB). In the course of this study we observed variations in shell trace element to calcium ([M]/Ca) ratios that could only be attributed to internal biological processes. This paper discusses the nature and sources of internal trace element variability in C. amurensis shells related to the shell organic fraction and shell calcification rates. The average organic content of whole C. amurensis shells is 19%. After treating whole powdered shells with an oxidative cleaning procedure to remove organic matter, shells contained on average 33% less total Mg and 78% less total Mn. Within our analytical uncertainty, Sr and Ba contents were unchanged by the removal of organic matter. These results show that aragonitic C. amurensis shells have a large component of non-lattice-bound Mg and Mn that probably contribute to the dissimilarity of [M]/Ca profiles among five same-sized shells. Non-lattice-bound trace elements could complicate the development and application of geochemical proxy relationships in bivalve shells. Because B, Ba and Sr occur exclusively in shell aragonite, they are good candidates for external proxy relationships. [M]/Ca ratios were significantly different in prismatic and nacreous aragonite and in two valves of the same shell that had different crystal growth rates. Some part of these differences can be attributed to non-lattice-bound trace elements associated with the organic fraction. The differences in [M]/Ca ratios were also consistent with the calcification rate-dependent ion transport model developed by Carr?? et al. [Carr?? M., Bentaleb I

  6. Comparison of symbolic and numerical integration methods for an assumed-stress hybrid shell element

    NASA Technical Reports Server (NTRS)

    Rengarajan, Govind; Knight, Norman F., Jr.; Aminpour, Mohammad A.

    1993-01-01

    Hybrid shell elements have long been regarded with reserve by the commercial finite element developers despite the high degree of reliability and accuracy associated with such formulations. The fundamental reason is the inherent higher computational cost of the hybrid approach as compared to the displacement-based formulations. However, a noteworthy factor in favor of hybrid elements is that numerical integration to generate element matrices can be entirely avoided by the use of symbolic integration. In this paper, the use of the symbolic computational approach is presented for an assumed-stress hybrid shell element with drilling degrees of freedom and the significant time savings achieved is demonstrated through an example.

  7. A high transmission broadband gradient index lens using elastic shell acoustic metamaterial elements

    NASA Astrophysics Data System (ADS)

    Titovich, Alexey S.; Norris, Andrew N.; Haberman, Michael R.

    2016-06-01

    The use of cylindrical elastic shells as elements in acoustic metamaterial devices is demonstrated through simulations and underwater measurements of a cylindrical-to-plane wave lens. Transformation acoustics (TA) of a circular region to a square dictates that the effective density in the lens remain constant and equal to that of water. Piecewise approximation to the desired effective compressibility is achieved using a square array with elements based on the elastic shell metamaterial concept developed in [30]. The size of the elements are chosen based on availability of shells, minimizing fabrication difficulties. The tested device is neutrally buoyant comprising 48 elements of nine different types of commercial shells made from aluminum, brass, copper, and polymers. Simulations indicate a broadband range in which the device acts as a cylindrical to plane wave lens. The experimental findings confirm the broadband quadropolar response from approximately 20 to 40 kHz, with positive gain of the radiation pattern in the four plane wave directions.

  8. Neutrinoless double beta nuclear matrix elements around mass 80 in the nuclear shell-model

    NASA Astrophysics Data System (ADS)

    Yoshinaga, N.; Higashiyama, K.; Taguchi, D.; Teruya, E.

    2015-05-01

    The observation of the neutrinoless double-beta decay can determine whether the neutrino is a Majorana particle or not. For theoretical nuclear physics it is particularly important to estimate three types of matrix elements, namely Fermi (F), Gamow-Teller (GT), and tensor (T) matrix elements. In this paper, we carry out shell-model calculations and also pair-truncated shell-model calculations to check the model dependence in the case of mass A=82 nuclei.

  9. Continuum Mechanics Based Bi-linear Shear Deformable Shell Element Using Absolute Nodal Coordinate Formulation

    DTIC Science & Technology

    2014-03-07

    the convergent solution in the case of the continuum mechanics based bi- linear shear deformable ANCF shell element. 5.3 Slit Annular Plate Subjected...UNCLASSIFIED: Distribution Statement A. Approved for public release. #24515 CONTINUUM MECHANICS BASED BI- LINEAR SHEAR DEFORMABLE SHELL ELEMENT...MAR 2014 2. REPORT TYPE Technical Report 3. DATES COVERED 07-01-2014 to 04-03-2014 4. TITLE AND SUBTITLE CONTINUUM MECHANICS BASED BI- LINEAR

  10. Tunable cylindrical shell as an element in acoustic metamaterial.

    PubMed

    Titovich, Alexey S; Norris, Andrew N

    2014-10-01

    Elastic cylindrical shells are fitted with an internal mechanism which is optimized so that, in the quasi-static regime, the combined system exhibits prescribed effective acoustic properties. The mechanism consists of a central mass supported by an axisymmetric distribution of elastic stiffeners. By appropriate selection of the mass and stiffness of the internal mechanism, the shell's effective acoustic properties (bulk modulus and density) can be tuned as desired. Subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. The effectiveness of the proposed metamaterial is demonstrated by matching the properties of a thin aluminum shell with a polymer insert to those of water. The scattering cross section in water is nearly zero over a broad range of frequencies at the lower end of the spectrum. By arranging the tuned shells in an array the resulting acoustic metamaterial is capable of steering waves. As an example, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square.

  11. A Sixteen Node Shell Element with a Matrix Stabilization Scheme.

    DTIC Science & Technology

    1987-04-22

    coordinates with components x, y and z are defined on the shell midsurface in addition to global coordinates with components X, Y and Z. The x, y and z axes... midsurface while a3 is normal to the surface. The al, A2 and a3 vectors are given at each node as an input. In addition, they are defined at each integra...drawn from the point on the midsurface to the generic material point, t is the shell thickness and the nondimenslonal coordinate C runs from -1 to 1

  12. Neutrinoless Double Beta Nuclear Matrix Elements Around Mass 80 in the Nuclear Shell Model

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Naotaka; Higashiyama, Koji; Taguchi, Daisuke; Teruya, Eri

    The observation of the neutrinoless double-beta decay can determine whether the neutrino is a Majorana particle or not. In its theoretical nuclear side it is particularly important to estimate three types of nuclear matrix elements, namely, Fermi (F), Gamow-Teller (GT), and tensor (T) types matrix elements. The shell model calculations and also the pair-truncated shell model calculations are carried out to check the model dependence on nuclear matrix elements. In this work the neutrinoless double-beta decay for mass A = 82 nuclei is studied. It is found that the matrix elements are quite sensitive to the ground state wavefunctions.

  13. ANS shell elements with improved transverse shear accuracy. [Assumed Natural Coordinate Strain

    NASA Technical Reports Server (NTRS)

    Jensen, Daniel D.; Park, K. C.

    1992-01-01

    A method of forming assumed natural coordinate strain (ANS) plate and shell elements is presented. The ANS method uses equilibrium based constraints and kinematic constraints to eliminate hierarchical degrees of freedom which results in lower order elements with improved stress recovery and displacement convergence. These techniques make it possible to easily implement the element into the standard finite element software structure, and a modified shape function matrix can be used to create consistent nodal loads.

  14. Calcification rate influence on trace element concentrations in aragonitic bivalve shells: Evidences and mechanisms

    NASA Astrophysics Data System (ADS)

    Carré, Matthieu; Bentaleb, Ilhem; Bruguier, Olivier; Ordinola, Elmer; Barrett, Nicholas T.; Fontugne, Michel

    2006-10-01

    Trace elements in calcareous organisms have been widely used for paleoclimatic studies. However, the factors controlling their incorporation into mollusc shells are still unclear. We studied here the Sr, Mg, Ba and Mn serial records in the shells of two aragonitic marine bivalve species: Mesodesma donacium and Chione subrugosa from the Peruvian Coast. The elemental concentrations were compared to local temperature and salinity records. The relationships with crystal growth rate G were investigated thanks to well defined periodic growth structures providing a precise shell chronology. Our results show that for both species, environmental parameters only have minor influence, whereas crystal growth rate strongly influences trace elements concentrations, especially for Sr (explaining up to 74% of the variance). The relationship between G and Sr/Ca exhibits variability among the shells as well as inside the shells. For a same growth rate value, Sr/Ca values are higher in more curved shell sections, and the growth rate influence is stronger as well. We show that intercellular and Ca 2+-pump pathways cannot support the calcification Ca 2+ flux, leading us to propose an alternative mechanism for ionic transport through the calcifying mantle, implying a major role for calcium channels on mantle epithelial cell membranes. In this new calcification model, Sr/Ca shell ratios is determined by Ca 2+-channel selectivity against Sr 2+, which depends (i) on the electrochemical potential imposed by the crystallisation process and (ii) on the Ca 2+-channel density per surface unit on mantle epithelia.

  15. Hybrid Semiloof elements for plates and shells based upon a modified Hu-Washizu principle

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.; Sumihara, K.

    1984-01-01

    Hybrid SemiLoof elements for plates and shells are developed based upon modified Hu-Washizu principle. In the new version of the assumed stress hybrid formulation the equilibrium equations are satisfied through the introduction of internal displacement parameters as Lagrange multipliers. The inversion of the resulting H-matrices is simplified particularly when the stresses are expressed in terms of natural coordinates. A 24-DOF triangular element and a 32-DOF quadrilateral element based on shallow shell theory are derived and evaluated.

  16. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  17. Application of the hybrid-Trefftz finite element model to thin shell analysis

    NASA Astrophysics Data System (ADS)

    Voros, Gabor

    The paper presents the results of a preliminary study on thin shallow shell element based on the hybrid-Trefftz (HT) model. This model adopts an assumed nonconforming displacement field which satisfies a priori the governing differential equations. The interelement continuity and the boundary conditions are enforced by frame fields defined in terms of the conventional nodal freedoms. In the p-extension, the frame functions involve an optional number of hierarchic displacement modes. Numerical results present the capability of the new shell element which can be implemented in existing finite element codes.

  18. Quadratic solid-shell elements for nonlinear structural analysis and sheet metal forming simulation

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chalal, Hocine; Abed-Meraim, Farid

    2017-01-01

    In this paper, two quadratic solid-shell (SHB) elements are proposed for the three-dimensional modeling of thin structures. These consist of a 20-node hexahedral solid-shell element, denoted SHB20, and its 15-node prismatic counterpart, denoted SHB15. The formulation of these elements is extended in this work to include geometric and material nonlinearities, for application to problems involving large displacements and rotations as well as plasticity. For this purpose, the SHB elements are coupled with large-strain anisotropic elasto-plastic constitutive equations for metallic materials. Although based on a purely three-dimensional approach, several modifications are introduced in the formulation of these elements to provide them with interesting shell features. In particular, a special direction is chosen to represent the thickness, along which a user-defined number of integration points are located. Furthermore, for efficiency requirements and for alleviating locking phenomena, an in-plane reduced-integration scheme is adopted. The resulting formulations are implemented into the finite element software ABAQUS/Standard and, to assess their performance, a variety of nonlinear benchmark problems are investigated. Attention is then focused on the simulation of various complex sheet metal forming processes, involving large strain, anisotropic plasticity, and double-sided contact. From all simulation results, it appears that the SHB elements represent an interesting alternative to traditional shell and solid elements, due to their versatility and capability of accurately modeling selective nonlinear benchmark problems as well as complex sheet metal forming processes.

  19. RELATIONSHIP OF AMEBOCYTES AND TERRESTRIAL ELEMENTS TO ADULT SHELL DEPOSITION IN EASTERN OYSTERS

    EPA Science Inventory

    Fisher, William S. Submitted. Relationship of Amebocytes and Terrestrial Elements to Adult Shell Deposition in Eastern Oysters. J. Shellfish Res. 30 p. (ERL,GB 1197).

    Freshwater runoff contains terrestrial elements from geological deposits that may be vital to eastern oys...

  20. Parameterized Finite Element Modeling and Buckling Analysis of Six Typical Composite Grid Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    Lai, Changliang; Wang, Junbiao; Liu, Chuang

    2014-10-01

    Six typical composite grid cylindrical shells are constructed by superimposing three basic types of ribs. Then buckling behavior and structural efficiency of these shells are analyzed under axial compression, pure bending, torsion and transverse bending by finite element (FE) models. The FE models are created by a parametrical FE modeling approach that defines FE models with original natural twisted geometry and orients cross-sections of beam elements exactly. And the approach is parameterized and coded by Patran Command Language (PCL). The demonstrations of FE modeling indicate the program enables efficient generation of FE models and facilitates parametric studies and design of grid shells. Using the program, the effects of helical angles on the buckling behavior of six typical grid cylindrical shells are determined. The results of these studies indicate that the triangle grid and rotated triangle grid cylindrical shell are more efficient than others under axial compression and pure bending, whereas under torsion and transverse bending, the hexagon grid cylindrical shell is most efficient. Additionally, buckling mode shapes are compared and provide an understanding of composite grid cylindrical shells that is useful in preliminary design of such structures.

  1. Propagation of flexural and membrane waves with fluid loaded NASTRAN plate and shell elements

    NASA Technical Reports Server (NTRS)

    Kalinowski, A. J.; Wagner, C. A.

    1983-01-01

    Modeling of flexural and membrane type waves existing in various submerged (or in vacuo) plate and/or shell finite element models that are excited with steady state type harmonic loadings proportioned to e(i omega t) is discussed. Only thin walled plates and shells are treated wherein rotary inertia and shear correction factors are not included. More specifically, the issue of determining the shell or plate mesh size needed to represent the spatial distribution of the plate or shell response is of prime importance towards successfully representing the solution to the problem at hand. To this end, a procedure is presented for establishing guide lines for determining the mesh size based on a simple test model that can be used for a variety of plate and shell configurations such as, cylindrical shells with water loading, cylindrical shells in vacuo, plates with water loading, and plates in vacuo. The procedure for doing these four cases is given, with specific numerical examples present only for the cylindrical shell case.

  2. Trace element ratios in bivalve shells as records of environmental conditions

    NASA Astrophysics Data System (ADS)

    Tynan, S.; Opdyke, B.; Welch, S.; Beavis, S.

    2007-12-01

    Stable isotope and trace element data from the carbonate of both marine and freshwater bivalves are proving to be useful tools in studies of palaeoclimate and environmental change. However, much of the work already done has shown that the trace element ratios in bivalve shells exhibit a complex relationship with the ambient environment and caution must be exercised when attempting to use them as environmental proxies. This work examines the feasibility of using the trace element ratios Mg/Ca, Sr/Ca, Ba/Ca and Mn/Ca of the shells of a number of different species of bivalves as records of the temperature and salinity of their ambient aquatic environment. The species analysed were the estuarine oysters Saccostrea glomerata, Ostrea angasi, and Crassostrea gigas, an estuarine mussel, Mytilus galloprovincialis, and the freshwater mussel Velesunio ambiguus. The estuarine shells were taken from monitoring experiments conducted over a period of 12 months at two different field sites. Freshwater shells were collected wild, from locations close to water monitoring stations. Preliminary results show distinct variations in the Mg/Ca of O. angasi shells with an apparent seasonal pattern. V. ambiguus shells show clear patterns in Mn/Ca, linked to environmental variations.

  3. Free vibration of composite skewed cylindrical shell panel by finite element method

    NASA Astrophysics Data System (ADS)

    Haldar, Salil

    2008-03-01

    In this paper a composite triangular shallow shell element has been used for free vibration analysis of laminated composite skewed cylindrical shell panels. In the present element first-order shear deformation theory has been incorporated by taking transverse displacement and bending rotations as independent field variables. The interpolation function used to approximate transverse displacement is one order higher than for bending rotations. This has made the element free from locking in shear. Two types of mass lumping schemes have been recommended. In one of the mass lumping scheme the effect of rotary inertia has been incorporated in the element formulations. Free vibration of skewed composite cylindrical shell panels having different thickness to radius ratios ( h/R=0.01-0.2), length to radius ratios ( L/R), number of layers and fiber orientation angles have been analyzed following the shallow shell method. The results for few examples obtained in the present analysis have compared with the published results. Some new results of composite skewed cylindrical shell panels have been presented which are expected to be useful to future research in this direction.

  4. Stochastic and hybrid-stress plate/shell finite elements for hot-section components

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.

    1987-01-01

    The research effort in the Center for the Advancement of Computational Mechanics at Georgia Tech has two main thrusts. The first of these is the development of special approaches for the numerical stress analysis of solids and structures whose material and geometric properties are uncertain. The second seeks to develop and implement high-efficiency plate and shell elements. The stochastic element method, currently being implemented, will be able to more accurately portray the probabilistic nature of stress, strain, and displacement in actual structures. Current research has provided a hybrid-stress shell element whose behavior is acceptable for aspect ratios as high as 30 to 1. Thus, substantially more complex analyses will be practicable as soon as this element is fully implemented. An additional advantage of the hybrid approach is that it permits more accurate stress-recovery at the upper and lower surfaces of the shell, an important consideration in high thickness-gradient applications. The software associated with the above research is being implemented in the form of extensions to the Nessus code. The hybrid shell element has been successfully tested in several small-deformation elastic analyses. The theoretical formulation of the stochastic elements is essentially complete; its implementation is just beginning.

  5. Efficient Finite Element Methods for Transient Analysis of Shells.

    DTIC Science & Technology

    1985-04-01

    classified as (1) implicit projection methods, such as reduced integration, and (2) explicit projection methods, such as -’. mixed methods and mode...PROJECTION METHODS In this Section a simple form of the element stiffness matrix for mixed methods will be developed and then compared to the explicit...decomposition V.’... projection methods and mixed methods appears straightforward, establishing the exact equivalence is not possible in some elements

  6. A finite element for thermal stress analysis of shells of revolution

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Lester, H. C.; Rogers, J. L., Jr.

    1973-01-01

    A new finite element is described for performing detailed thermal stress analysis of thin orthotropic shells of revolution. The element provides for temperature loadings which may vary over the surface of the shell as well as through the thickness. In a number of sample calculations, results from the present method are compared with analytical solutions as well as with independent numerical analyses. Such calculations are carried out for two cylinders, a conical frustum, a truncated hemisphere, and an annular plate. Generally, the agreement between the present solution and the other solutions is excellent.

  7. An Enriched Shell Finite Element for Progressive Damage Simulation in Composite Laminates

    NASA Technical Reports Server (NTRS)

    McElroy, Mark W.

    2016-01-01

    A formulation is presented for an enriched shell nite element capable of progressive damage simulation in composite laminates. The element uses a discrete adaptive splitting approach for damage representation that allows for a straightforward model creation procedure based on an initially low delity mesh. The enriched element is veri ed for Mode I, Mode II, and mixed Mode I/II delamination simulation using numerical benchmark data. Experimental validation is performed using test data from a delamination-migration experiment. Good correlation was found between the enriched shell element model results and the numerical and experimental data sets. The work presented in this paper is meant to serve as a rst milestone in the enriched element's development with an ultimate goal of simulating three-dimensional progressive damage processes in multidirectional laminates.

  8. Assessing the utility of elemental ratios as a paleotemperature proxy in shells of patelloid limpets

    NASA Astrophysics Data System (ADS)

    Graniero, Lauren; Surge, Donna; Gillikin, David

    2015-04-01

    Archaeological shell and fish middens are rich sources of paleoenvironmental proxy data. Carbonate hard part remains contained in such deposits have been used as archives of coastal marine climate and human-climate interactions. Oxygen isotope records from fast-growing limpet shells potentially capture summer and winter seasons, and thus, approach the full seasonal range of sea surface temperature (SST). Fast-growing shells are often short-lived, providing "snap-shots" of multi-year seasonal cycles. Patelloid limpet shells are common constituents in archaeological middens found along European, African, and South American coastlines. Oxygen isotope ratios of archaeological limpet shells from the genus, Patella, have been used to reconstruct seasonal SST and ocean circulation patterns during the Late Quaternary. Such studies depend on the ability to constrain the oxygen isotope ratio of seawater; therefore, alternative proxies are necessary for coastal localities where this is not possible. Elemental ratios (e.g., Sr/Ca, Mg/Ca) have been used as paleotemperature proxies in corals and foraminifera with varying degrees of success and appear problematic in bivalves. Here, we test whether such elemental ratios are useful as an alternative SST proxy in patelloid limpet shells.

  9. Coupled mixed-field laminate theory and finite element for smart piezoelectric composite shell structures

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1996-01-01

    Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.

  10. A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1999-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.

  11. A computer program for anisotropic shallow-shell finite elements using symbolic integration

    NASA Technical Reports Server (NTRS)

    Andersen, C. M.; Bowen, J. T.

    1976-01-01

    A FORTRAN computer program for anisotropic shallow-shell finite elements with variable curvature is described. A listing of the program is presented together with printed output for a sample case. Computation times and central memory requirements are given for several different elements. The program is based on a stiffness (displacement) finite-element model in which the fundamental unknowns consist of both the displacement and the rotation components of the reference surface of the shell. Two triangular and four quadrilateral elements are implemented in the program. The triangular elements have 6 or 10 nodes, and the quadrilateral elements have 4 or 8 nodes. Two of the quadrilateral elements have internal degrees of freedom associated with displacement modes which vanish along the edges of the elements (bubble modes). The triangular elements and the remaining two quadrilateral elements do not have bubble modes. The output from the program consists of arrays corresponding to the stiffness, the geometric stiffness, the consistent mass, and the consistent load matrices for individual elements. The integrals required for the generation of these arrays are evaluated by using symbolic (or analytic) integration in conjunction with certain group-theoretic techniques. The analytic expressions for the integrals are exact and were developed using the symbolic and algebraic manipulation language.

  12. An efficient finite element with layerwise mechanics for smart piezoelectric composite and sandwich shallow shells

    NASA Astrophysics Data System (ADS)

    Yasin, M. Yaqoob; Kapuria, S.

    2014-01-01

    In this work, we present a new efficient four-node finite element for shallow multilayered piezoelectric shells, considering layerwise mechanics and electromechanical coupling. The laminate mechanics is based on the zigzag theory that has only seven kinematic degrees of freedom per node. The normal deformation of the piezoelectric layers under the electric field is accounted for without introducing any additional deflection variables. A consistent quadratic variation of the electric potential across the piezoelectric layers with the provision of satisfying the equipotential condition of electroded surfaces is adopted. The performance of the new element is demonstrated for the static response under mechanical and electric potential loads, and for free vibration response of smart shells under different boundary conditions. The predictions are found to be very close to the three dimensional piezoelasticity solutions for hybrid shells made of not only single-material composite substrates, but also sandwich substrates with a soft core for which the equivalent single layer (ESL) theories perform very badly.

  13. Nonlinear Finite Element Analysis of a General Composite Shell

    DTIC Science & Technology

    1988-12-01

    strain I Poisson’s ratio ix I I iI I I 1 Total potential energy a Normal stress rShear stress Rotational terms Distance from midsurface e ,Y ,0 Rotations...respectively 0 0 Subscript "e" indicates element reference Subscript "g" indicates global reference Superscript "o" indicates midsurface values...surface strains and rotations are small, and displacements away from the midsurface are restricted by the Kirchhoff-Love hypotheses [3]. With these

  14. Reconstructing Paleoclimate from Oxygen Isotopes and Trace Element Ratios in Olivella biplicata shells

    NASA Astrophysics Data System (ADS)

    Nye, J. W.; Ferguson, J. E.; Johnson, K. R.; Kennett, D. J.

    2011-12-01

    High resolution records of past sea surface temperature (SST) are not as common in mid to high latitudes as they are in tropical areas. In higher latitude regions, proxy data preserved in marine mollusk shells, often found in archaeological shell middens, could potentially provide these critical records. One promising candidate is the Purple Olive Snail Olivella biplicata, a marine mollusk with an aragonite shell that occurs in subtidal to shallow intertidal zones along the eastern Pacific coast in large quantities. The ubiquity of the snail spatially (from Baja California to British Colombia) and temporally makes it an ideal candidate for study. Previous studies have shown seasonal changes in isotopic signatures from O. biplicata (Eerkens et al 2005, 2007, 2010), however high resolution trace elemental analysis has not been conducted. We measured stable isotope (δ18O and δ13C) and trace element (Sr/Ca, Mg/Ca) composition in two modern shells collected in La Jolla, California and two archaeological shells from ~AD1410 to AD1500 excavated on San Miguel Island (Channel Islands, California). The shells were micromilled along growth lines at 100-150 μm intervals. The resulting powder was analyzed for stable isotopes and trace elements by IRMS and HR-ICPMS respectively. The modern shell data was compared to instrumental SST records from the Scripps Pier. δ18O data from modern O. biplicata follows monthly trends in SST, though fractionation due to biological effects leads to an offset from isotopic equilibrium values. Mg/Ca and Sr/Ca measurements on modern shells allow us to test the viability of these as additional proxies that could help us deconvolve SST from salinity effects. Archaeological sample measurements are utilized to assess the possible effects of early diagenesis on shell geochemistry. Given that a single shell can record nearly a decade of SSTs at monthly resolution and that the species can be found in archaeological sites dating back 10,000 years B

  15. A high transmission broadband gradient index lens using elastic shell acoustic metamaterial elements.

    PubMed

    Titovich, Alexey S; Norris, Andrew N; Haberman, Michael R

    2016-06-01

    The use of cylindrical elastic shells as elements in acoustic metamaterial devices is demonstrated through simulations and underwater measurements of a cylindrical-to-plane wave lens. Transformation acoustics of a circular region to a square dictate that the effective density in the lens remain constant and equal to that of water. Piecewise approximation to the desired effective compressibility is achieved using a square array with elements based on the elastic shell metamaterial concept developed by Titovich and Norris [J. Acoust. Soc. Am. 136(4), 1601-1609 (2014)]. The sizes of the elements are chosen based on availability of shells, minimizing fabrication difficulties. The tested device is neutrally buoyant comprising 48 elements of nine different types of commercial shells made from aluminum, brass, copper, and polymers. Simulations indicate a broadband range in which the device acts as a cylindrical to plane wave lens. The experimental findings confirm the broadband quadropolar response from approximately 20 to 40 kHz, with positive gain of the radiation pattern in the four plane wave directions.

  16. Implementation of a Shell Element with Pressure and Void Effects Into DYSMAS

    DTIC Science & Technology

    1999-09-01

    hourglass control a user -defined option. The internal hourglass mode control can be disabled when the element is used in a general finite element...i7// $ 4x,’number of spc coordinate system definitions .... ,i7// $ 4x,’reduction factor for tsmin ..................... ,elO.2// $ 4x,’# of user ...specified beam integration rules ..... i7// $ 4x,’max number of integration points reqd (beams) .,i7// $ 4x,’# of user specified shell integration

  17. Rapid Parallel Calculation of shell Element Based On GPU

    NASA Astrophysics Data System (ADS)

    Wanga, Jian Hua; Lia, Guang Yao; Lib, Sheng; Li, Guang Yao

    2010-06-01

    Long computing time bottlenecked the application of finite element. In this paper, an effective method to speed up the FEM calculation by using the existing modern graphic processing unit and programmable colored rendering tool was put forward, which devised the representation of unit information in accordance with the features of GPU, converted all the unit calculation into film rendering process, solved the simulation work of all the unit calculation of the internal force, and overcame the shortcomings of lowly parallel level appeared ever before when it run in a single computer. Studies shown that this method could improve efficiency and shorten calculating hours greatly. The results of emulation calculation about the elasticity problem of large number cells in the sheet metal proved that using the GPU parallel simulation calculation was faster than using the CPU's. It is useful and efficient to solve the project problems in this way.

  18. Morphologic characterisation and elemental distribution of Octopus vulgaris Cuvier, 1797 vestigial shell

    NASA Astrophysics Data System (ADS)

    Napoleão, P.; Reis, C. Sousa; Alves, L. C.; Pinheiro, T.

    2005-04-01

    The elemental composition of mineral structures in marine organisms can provide useful information to reconstruct environmental histories of individuals and distinguish populations or stocks. In cephalopods, as Octopus vulgaris, morpho-physiological description of vestigial shells may contribute to a better understanding of the physiology, of the process involved in the increment growth and may eventually provide important and useful tools for the validation of age determination methods. Nuclear microprobe analysis was used to map chemical elements in O. vulgaris vestigial shell. The maps contain elemental and morphological information, and enabled especially through Cl and Ca distributions to classify bands of concentric rings. The levels of P, Ca and Sr decrease from central region to external rings, while those of S and Cl showed an inverse tendency. Enhanced concentrations of Fe, Cu and Zn were found in external rings, and no significant variations were detected in the K and Br contents. The results indicate that three regions can be established on the basis of the elemental contents distributions. Specially, the P and Ca variability can distinguish rings from central and external regions. The differential incorporation of elements in the vestigial shell observed may reflect environmental and physiological factors that are affecting the life cycle of this species.

  19. Effect of the concentration of inherent mineral elements on the adsorption capacity of coconut shell-based activated carbons.

    PubMed

    Afrane, G; Achaw, Osei-Wusu

    2008-09-01

    Coconut shells of West Africa Tall, a local variety of the coconut species Cocos nucifera L., were taken from five different geographical locations in Ghana and examined for the presence and concentration levels of some selected mineral elements using atomic absorption spectrometer. Activated carbons were subsequently made from the shells by the physical method. The iodine adsorption characteristics of the activated carbons measured showed a definite relationship to the concentration levels of potassium and other mineral elements in the precursor shell. Samples with lower total minerals content recorded higher iodine numbers. It was observed that the origin of the shells was related to the concentration levels of the analyzed mineral elements in the shells, which in turn affected the adsorption capacity of the activated carbons. The results of this study have important implications for the sourcing of coconuts whose shells are used in the manufacture of activated carbons.

  20. Fission-Fusion Adaptivity in Finite Elements for Nonlinear Dynamics of Shells

    DTIC Science & Technology

    1988-11-30

    where mesh refinement will prove useful. In fact, the deviation of a bilinear element from a smooth shell midsurface can be related to the angle between...comparisons with nonadaptive meshes. Conclusions and further discussions are given in Section 6. -5- 2. FINITE ELEMENT FORMULATION The shape of the midsurface ...8217 22 , and e3 is defined so that e, and e2 are tangent to the midsurface and rotate with the element; 2. for each node, a triad b i is defined so that

  1. Developments in variational methods for high performance plate and shell elements

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.; Militello, Carmelo

    1991-01-01

    High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational foundations of high-performance elements, with emphasis on plate and shell elements constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parameterized variational principles are studied that provide a common foundation for the FF and ANS methods, as well as for a combination of both. From this unified formulation a variant of the ANS formulation, called the assumed natural deviatoric strain (ANDES) formulation, emerges as an important special case. The first ANDES element, a high-performance 9 degrees of freedom triangular Kirchhoff plate bending element, is briefly described to illustrate the use of the new formulation.

  2. Average M shell fluorescence yields for elements with 70≤Z≤92

    SciTech Connect

    Kahoul, A.; Deghfel, B.; Aylikci, V.; Aylikci, N. K.; Nekkab, M.

    2015-03-30

    The theoretical, experimental and analytical methods for the calculation of average M-shell fluorescence yield (ω{sup ¯}{sub M}) of different elements are very important because of the large number of their applications in various areas of physical chemistry and medical research. In this paper, the bulk of the average M-shell fluorescence yield measurements reported in the literature, covering the period 1955 to 2005 are interpolated by using an analytical function to deduce the empirical average M-shell fluorescence yield in the atomic range of 70≤Z≤92. The results were compared with the theoretical and fitted values reported by other authors. Reasonable agreement was typically obtained between our result and other works.

  3. Elemental and Isotopic Incorporation into the Aragonitic Shells of Arctica Islandica: Insights from Temperature Controlled Experiments

    NASA Astrophysics Data System (ADS)

    Wanamaker, A. D.; Gillikin, D. P.

    2014-12-01

    The long-lived ocean quahog, Arctica islandica, is a fairly well developed and tested marine proxy archive, however, the utility of elemental ratios in A. islandica shell material as environmental proxies remains questionable. To further evaluate the influence of seawater temperature on elemental and isotopic incorporation during biomineralization, A. islandica shells were grown at constant temperatures under two regimes during a 16-week period from March 27 to July 21, 2011. Seawater from the Darling Marine Center in Walpole, Maine was pumped into temperature and flow controlled tanks that were exposed to ambient food and salinity conditions. A total of 20 individual juvenile clams with an average shell height of 36 mm were stained with calcein (a commonly used biomarker) and cultured at 10.3 ± 0.3 °C for six weeks. After this, shell heights were measured and the clams were again stained with calcein and cultured at 15.0 ± 0.4 °C for an additional 9.5 weeks. The average shell growth during the first phase of the experiment was 2.4 mm with a linear extension rate of 0.40 mm/week. The average shell growth during the second phase of the experiment was 3.2 mm with an extension rate of 0.34 mm/week. Average salinity values were 30.2 ± 0.7 and 30.7 ±0.7 in the first and second phases of the experiment, respectively. Oxygen isotopes from the cultured seawater were collected throughout the experiment and provide the basis for establishing if shells grew in oxygen isotopic equilibrium. Elemental ratios (primarily Ba/Ca, Mg/Ca, Sr/Ca) in the aragonitic shells were determined via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), while stable oxygen and carbon isotope ratios were measured using continuous flow isotope ratio mass spectrometry. Continuous sampling within and across the temperature conditions (from 10 °C to 15 °C) coupled with the calcein markings provides the ability to place each sample into a precise temporal framework. The

  4. Error estimations of mixed finite element methods for nonlinear problems of shallow shell theory

    NASA Astrophysics Data System (ADS)

    Karchevsky, M.

    2016-11-01

    The variational formulations of problems of equilibrium of a shallow shell in the framework of the geometrically and physically nonlinear theory by boundary conditions of different main types, including non-classical, are considered. Necessary and sufficient conditions for their solvability are derived. Mixed finite element methods for the approximate solutions to these problems based on the use of second derivatives of the bending as auxiliary variables are proposed. Estimations of accuracy of approximate solutions are established.

  5. Trace element fingerprinting of cockle (Cerastoderma edule) shells can reveal harvesting location in adjacent areas

    PubMed Central

    Ricardo, Fernando; Génio, Luciana; Costa Leal, Miguel; Albuquerque, Rui; Queiroga, Henrique; Rosa, Rui; Calado, Ricardo

    2015-01-01

    Determining seafood geographic origin is critical for controlling its quality and safeguarding the interest of consumers. Here, we use trace element fingerprinting (TEF) of bivalve shells to discriminate the geographic origin of specimens. Barium (Ba), manganese (Mn), magnesium (Mg), strontium (Sr) and lead (Pb) were quantified in cockle shells (Cerastoderma edule) captured with two fishing methods (by hand and by hand-raking) and from five adjacent fishing locations within an estuarine system (Ria de Aveiro, Portugal). Results suggest no differences in TEF of cockle shells captured by hand or by hand-raking, thus confirming that metal rakes do not act as a potential source of metal contamination that could somehow bias TEF results. In contrast, significant differences were recorded among locations for all trace elements analysed. A Canonical Analysis of Principal Coordinates (CAP) revealed that 92% of the samples could be successfully classified according to their fishing location using TEF. We show that TEF can be an accurate, fast and reliable method to determine the geographic origin of bivalves, even among locations separated less than 1 km apart within the same estuarine system. Nonetheless, follow up studies are needed to determine if TEF can reliably discriminate between bivalves originating from different ecosystems. PMID:26149418

  6. Trace element fingerprinting of cockle (Cerastoderma edule) shells can reveal harvesting location in adjacent areas.

    PubMed

    Ricardo, Fernando; Génio, Luciana; Costa Leal, Miguel; Albuquerque, Rui; Queiroga, Henrique; Rosa, Rui; Calado, Ricardo

    2015-07-07

    Determining seafood geographic origin is critical for controlling its quality and safeguarding the interest of consumers. Here, we use trace element fingerprinting (TEF) of bivalve shells to discriminate the geographic origin of specimens. Barium (Ba), manganese (Mn), magnesium (Mg), strontium (Sr) and lead (Pb) were quantified in cockle shells (Cerastoderma edule) captured with two fishing methods (by hand and by hand-raking) and from five adjacent fishing locations within an estuarine system (Ria de Aveiro, Portugal). Results suggest no differences in TEF of cockle shells captured by hand or by hand-raking, thus confirming that metal rakes do not act as a potential source of metal contamination that could somehow bias TEF results. In contrast, significant differences were recorded among locations for all trace elements analysed. A Canonical Analysis of Principal Coordinates (CAP) revealed that 92% of the samples could be successfully classified according to their fishing location using TEF. We show that TEF can be an accurate, fast and reliable method to determine the geographic origin of bivalves, even among locations separated less than 1 km apart within the same estuarine system. Nonetheless, follow up studies are needed to determine if TEF can reliably discriminate between bivalves originating from different ecosystems.

  7. Calculation of K-shell fluorescence yields for low-Z elements

    SciTech Connect

    Nekkab, M.; Kahoul, A.; Deghfel, B.; Aylikci, N. Küp; Aylikçi, V.

    2015-03-30

    The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (ω{sub K}) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (ω{sub K}) of elements in the range of 11≤Z≤30. The experimental data are interpolated by using the famous analytical function (ω{sub k}/(1−ω{sub k})){sup 1/q} (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the results of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.

  8. A Variational Formulation for the Finite Element Analysis of Sound Wave Propagation in a Spherical Shell

    NASA Technical Reports Server (NTRS)

    Lebiedzik, Catherine

    1995-01-01

    Development of design tools to furnish optimal acoustic environments for lightweight aircraft demands the ability to simulate the acoustic system on a workstation. In order to form an effective mathematical model of the phenomena at hand, we have begun by studying the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled fluid-structure interaction model based upon variational principles, we have written a finite element analysis program and are in the process of examining several test cases. Future investigations are planned to increase model accuracy by incorporating non-linear and viscous effects.

  9. Bi-Linear Shear Deformable ANCF Shell Element Using Continuum Mechanics Approach

    DTIC Science & Technology

    2014-08-01

    Information in Engineering Conference, Las Vegas, Nevada, USA. [4] Matikainen, M.K., Valkeapää, A. I., Mikkola, A. M ., and Schwab, A. L ., 2013...Engineering,The University of Iowa,101 Jessup Hall,Iowa City,IA,55242 8. PERFORMING ORGANIZATION REPORT NUMBER ; #24404 9. SPONSORING/MONITORING...position vector ir of a material point T[ ]i i i ix y zx in a shell element i is defined as ( , ) ( , ) i i i i i i i im m i x y z x y z     r r

  10. Laser ablation ICP-MS profiling and semiquantitative determination of trace element concentrations in desert tortoise shells: Documenting the uptake of elemental toxicants

    USGS Publications Warehouse

    Seltzer, M.D.; Berry, K.H.

    2005-01-01

    The outer keratin layer (scute) of desert tortoise shells consists of incrementally grown laminae in which various bioaccumulated trace elements are sequestered during scute deposition. Laser ablation ICP-MS examination of laminae in scutes of dead tortoises revealed patterns of trace elemental distribution from which the chronology of elemental uptake can be inferred. These patterns may be of pathologic significance in the case of elemental toxicants such as arsenic, which has been linked to both shell and respiratory diseases. Laser ablation transects, performed along the lateral surfaces of sectioned scutes, offered the most successful means of avoiding exogenous contamination that was present on the scute exterior. Semiquantitative determination of elemental concentrations was achieved using sulfur, a keratin matrix element, as an internal standard. The results presented here highlight the potential of laser ablation ICP-MS as a diagnostic tool for investigating toxic element uptake as it pertains to tortoise morbidity and mortality.

  11. An assessment of finite-element modeling techniques for thick-solid/thin-shell joints analysis

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Androlake, S. G.

    1993-01-01

    The subject of finite-element modeling has long been of critical importance to the practicing designer/analyst who is often faced with obtaining an accurate and cost-effective structural analysis of a particular design. Typically, these two goals are in conflict. The purpose is to discuss the topic of finite-element modeling for solid/shell connections (joints) which are significant for the practicing modeler. Several approaches are currently in use, but frequently various assumptions restrict their use. Such techniques currently used in practical applications were tested, especially to see which technique is the most ideally suited for the computer aided design (CAD) environment. Some basic thoughts regarding each technique are also discussed. As a consequence, some suggestions based on the results are given to lead reliable results in geometrically complex joints where the deformation and stress behavior are complicated.

  12. A stabilized finite element formulation for liquid shells and its application to lipid bilayers

    NASA Astrophysics Data System (ADS)

    Sauer, Roger A.; Duong, Thang X.; Mandadapu, Kranthi K.; Steigmann, David J.

    2017-02-01

    This paper presents a new finite element (FE) formulation for liquid shells that is based on an explicit, 3D surface discretization using C1-continuous finite elements constructed from NURBS interpolation. Both displacement-based and mixed displacement/pressure FE formulations are proposed. The latter is needed for area-incompressible material behavior, where penalty-type regularizations can lead to misleading results. In order to obtain quasi-static solutions for liquid shells devoid of shear stiffness, several numerical stabilization schemes are proposed based on adding stiffness, adding viscosity or using projection. Several numerical examples are considered in order to illustrate the accuracy and the capabilities of the proposed formulation, and to compare the different stabilization schemes. The presented formulation is capable of simulating non-trivial surface shapes associated with tube formation and protein-induced budding of lipid bilayers. In the latter case, the presented formulation yields non-axisymmetric solutions, which have not been observed in previous simulations. It is shown that those non-axisymmetric shapes are preferred over axisymmetric ones.

  13. Displacement and stress analysis of laminated composite plates using an eight-node quasi-conforming solid-shell element

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Shi, Guangyu; Wang, Xiaodan

    2017-01-01

    This paper presents the efficient modeling and analysis of laminated composite plates using an eightnode quasi-conforming solid-shell element, named as QCSS8. The present element QCSS8 is not only lockingfree, but highly computational efficiency as it possesses the explicit element stiffness matrix. All the six components of stresses can be evaluated directly by QCSS8 in terms of the 3-D constitutive equations and the appropriately assumed element strain field. Several typical numerical examples of laminated plates are solved to validate QCSS8, and the resulting values are compared with analytical solutions and the numerical results of solid/solidshell elements of commercial codes computed by the present authors in which fine meshes were used. The numerical results show that QCSS8 can give accurate displacements and stresses of laminated composite plates even with coarse meshes. Furthermore, QCSS8 yields also accurate transverse normal strain which is very important for the evaluation of interlaminar stresses in laminated plates. Since each lamina of laminated composite plates can be modeled naturally by one or a few layers of solidshell elements and a large aspect ratio of element edge to thickness is allowed in solid-shell elements, the present solid-shell element QCSS8 is extremely appropriate for the modeling of laminated composite plates.

  14. Explicit dynamic analysis of elasto-plastic laminated composite shells: implementation of non-iterative stress update schemes for the HOFFMAN yield criterion

    NASA Astrophysics Data System (ADS)

    Koh, C. G.; Owen, D. R. J.; Perić, D.

    1995-08-01

    The dynamic analysis of composite shell structures is carried out by an explicit finite element code employing 4-node one-point quadrature elements. The anisotropic Hoffman yield criterion is adopted to model the laminates. The formulation for stress update using a backward Euler scheme is presented in the plane stress subspace. Several numerical examples are presented. The issue of implementing single-iteration schemes for stress update is also investigated.

  15. Method for determining the elemental composition and distribution in semiconductor core-shell quantum dots.

    PubMed

    Zorn, Gilad; Dave, Shivang R; Gao, Xiaohu; Castner, David G

    2011-02-01

    In the biological sciences, the use of core-shell quantum dots (QDs) has gained wide usage but analytical challenges still exist for characterizing the QD structure. The application of energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy (XPS) to bulk materials is relatively straightforward; however, for meaningful applications of surface science techniques to multilayer nanoparticles requires novel modifications and analysis methods. To experimentally characterize the elemental composition and distribution in CdSe/CdS/ZnS QDs, we first develop a XPS signal subtraction technique capable of separating the overlapped selenium 3s (core) and sulfur 2s (shell) peaks (both peaks have binding energies near 230 eV) with higher precision than is typically reported in the nanoparticle literature. This method is valid for any nanoparticle containing selenium and sulfur. Then we apply a correction formula to the XPS data and determine that the 2 nm stoichiometric CdSe core is surrounded by 2 CdS layers and a stoichimetric ZnS monolayer. These findings and the multiapproach methodology represent a significant advancement in the detailed surface science study of multilayer nanoparticles. In agreement with recent surprising findings, the time-of-flight secondary mass spectrometry measurements suggest that the surface sites of the QDs used in this study are primarily covered with a mixture of octadecylphosphonic acid and trioctylphophine oxide.

  16. On the use of solid-shell elements for thin structures: Application to impact and sheet metal forming simulations

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chalal, Hocine; Abed-Meraim, Farid

    2016-10-01

    A family of linear and quadratic assumed-strain based solid-shell elements (SHB) is presented in this paper to simulate 3D thin structural problems including both quasi-static and dynamic analyses. The SHB solid-shell elements are based on a three-dimensional formulation, with only displacements as degrees of freedom, and a reduced integration technique with an arbitrary number of integration points along the thickness direction, which enables them to model 3D thin structures with only one layer of elements through the thickness. All SHB elements have been successfully implemented into ABAQUS dynamic/explicit and static/implicit codes. Several static and dynamic benchmark tests as well as sheet metal forming process simulations, involving large strain, material nonlinearity and contact, have been conducted to assess the performance of the SHB elements.

  17. Non-linear rotation-free shell finite-element models for aortic heart valves.

    PubMed

    Gilmanov, Anvar; Stolarski, Henryk; Sotiropoulos, Fotis

    2017-01-04

    Hyperelastic material models have been incorporated in the rotation-free, large deformation, shell finite element (FE) formulation of (Stolarski et al., 2013) and applied to dynamic simulations of aortic heart valve. Two models used in the past in analysis of such problem i.e. the Saint-Venant and May-Newmann-Yin (MNY) material models have been considered and compared. Uniaxial tests for those constitutive equations were performed to verify the formulation and implementation of the models. The issue of leaflets interactions during the closing of the heart valve at the end of systole is considered. The critical role of using non-linear anisotropic model for proper dynamic response of the heart valve especially during the closing phase is demonstrated quantitatively. This work contributes an efficient FE framework for simulating biological tissues and paves the way for high-fidelity flow structure interaction simulations of native and bioprosthetic aortic heart valves.

  18. Cross-sectional mapping for refined beam elements with applications to shell-like structures

    NASA Astrophysics Data System (ADS)

    Pagani, A.; de Miguel, A. G.; Carrera, E.

    2017-02-01

    This paper discusses the use of higher-order mapping functions for enhancing the physical representation of refined beam theories. Based on the Carrera unified formulation (CUF), advanced one-dimensional models are formulated by expressing the displacement field as a generic expansion of the generalized unknowns. According to CUF, a novel physically/geometrically consistent model is devised by employing Legendre-like polynomial sets to approximate the generalized unknowns at the cross-sectional level, whereas a local mapping technique based on the blending functions method is used to describe the exact physical boundaries of the cross-section domain. Classical and innovative finite element methods, including hierarchical p-elements and locking-free integration schemes, are utilized to solve the governing equations of the unified beam theory. Several numerical applications accounting for small displacements/rotations and strains are discussed, including beam structures with cross-sectional curved edges, cylindrical shells, and thin-walled aeronautical wing structures with reinforcements. The results from the proposed methodology are widely assessed by comparisons with solutions from the literature and commercial finite element software tools. The attention is focussed on the high computational efficiency and the marked capabilities of the present beam model, which can deal with a broad spectrum of structural problems with unveiled accuracy in terms of geometrical representation of the domain boundaries.

  19. Plasma-assisted synthesis and high-resolution characterization of anisotropic elemental and bimetallic core-shell magnetic nanoparticles.

    PubMed

    Hennes, M; Lotnyk, A; Mayr, S G

    2014-01-01

    Magnetically anisotropic as well as magnetic core-shell nanoparticles (CS-NPs) with controllable properties are highly desirable in a broad range of applications. With this background, a setup for the synthesis of heterostructured magnetic core-shell nanoparticles, which relies on (optionally pulsed) DC plasma gas condensation has been developed. We demonstrate the synthesis of elemental nickel nanoparticles with highly tunable sizes and shapes and Ni@Cu CS-NPs with an average shell thickness of 10 nm as determined with scanning electron microscopy, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. An analytical model that relies on classical kinetic gas theory is used to describe the deposition of Cu shell atoms on top of existing Ni cores. Its predictive power and possible implications for the growth of heterostructured NP in gas condensation processes are discussed.

  20. Effects of sample storage and shell orientation on LA-ICPMS trace element measurements on deep-sea mussels

    PubMed Central

    Génio, Luciana; Simon, Klaus; Kiel, Steffen; Cunha, Marina R.

    2015-01-01

    Geochemical markers are being increasingly applied to fundamental questions in population and community ecology in marine habitats because they allow inferences on individuals dispersal, but vital effects, small sample size and instrumental limitation are still challenging particularly in deep-sea studies. Here we use shells of the deep-sea bivalve Idas modiolaeformis to assess potential effects of sample storage, mineralogy, and valve orientation on LA-ICPMS measurements. Trace element concentrations of 24Mg, 43Ca, 88Sr, 137Ba, 208Pb, and 238U are not affected by the two most commonly used storage methods of biologic deep-sea samples (frozen at –20°C and fixed in 95% ethanol); thus combined analysis of differently preserved specimens is possible when the number of individuals is insufficient and distinct sample fixation is needed for multiple purposes. Valve orientation had a strong impact on quantification of trace elements in the calcitic but not in the aragonitic layer of adult shells. Hence, to enable comparisons between adult shells and entirely aragonitic embryonic shells, a reference map of site-specific signatures can potentially be generated using the aragonitic layer of the adult shells. Understanding ontogenetic changes and environmental effects in trace element incorporation is critical before geochemical fingerprinting can be used as a tool for larval dispersal studies in the deep-sea. PMID:26643064

  1. High-resolution elemental records of Glycymeris glycymeris (Bivalvia) shells from the Iberian upwelling system: Ontogeny and environmental control

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Richardson, Christopher; Chenery, Simon; Butler, Paul; Reynolds, David; Gaspar, Miguel; Scourse, James

    2015-04-01

    The great potential of bivalve shells as a high-resolution geochemical proxy archive of environmental conditions at the time of growth has been known for several decades. The elemental composition of bivalve shells has been studied with the purpose of reconstructing environmental conditions: e.g. seawater temperature (Sr and Mg), primary productivity (Li, Mn, Mo and Ba), redox conditions (Mn and Mo), terrigenous inputs (Li) and pollution (Cu, Zn, Cd and Pb). However, the interpretation of such records remains extremely challenging and complex, with processes affecting element incorporation in the shell (e.g. crystal fabrics, organic matrix, shell formation mechanisms and physiological processes) and the influence of more than one environmental parameter affecting elemental composition of bivalve shells. Nevertheless, bivalve shells remain an underused source of information on environmental conditions, with the potential to record high-resolution (sub-weekly to annually), multi-centennial time series of geochemical proxy data. The relatively long-lived bivalve (>100 years) Glycymeris glycymeris occurs in coastal shelf seas of Europe and North West Africa and is a valid annually resolved sclerochronological archive for palaeonvironmental reconstructions. The temporal framework provided by absolute annually dated shell material makes Glycymeris glycymeris a valuable, albeit unexplored, resource for investigating sub-annually resolved geochemical proxies. We present a first evaluation on the potential of Ba, P and U, the latter two elements rarely studied in bivalves, in Glycymeris glycymeris shells to record variations in the environmental conditions, respectively primary productivity, dissolved inorganic phosphorus and carbonate ion concentration/pH. High-resolution (31 to 77 samples per year) profiles of elemental/Ca ratios (E/Ca) over four years of growth (2001 to 2004) were obtained by LA-ICP-MS on two shells (13 and 16 years old) live-collected in 2010 at 30 m

  2. Distributions of 15 elements on 58 absorbers from simulated Hanford Double-Shell Slurry Feed (DSSF)

    SciTech Connect

    Marsh, S.F.; Svitra, Z.V.; Bowen, S.M.

    1994-11-01

    As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 58 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, pillared layered materials, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford double-shell slurry feed (DSSF) (pH 14.0). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Ce, Cs, Sr, Tc, and Y), actinides (U and Am), and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 870 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2610 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing DSSF solutions.

  3. Buckling analysis of imperfect I-section beam-columns with stochastic shell finite elements

    NASA Astrophysics Data System (ADS)

    Schillinger, Dominik; Papadopoulos, Vissarion; Bischoff, Manfred; Papadrakakis, Manolis

    2010-08-01

    Buckling loads of thin-walled I-section beam-columns exhibit a wide stochastic scattering due to the uncertainty of imperfections. The present paper proposes a finite element based methodology for the stochastic buckling simulation of I-sections, which uses random fields to accurately describe the fluctuating size and spatial correlation of imperfections. The stochastic buckling behaviour is evaluated by crude Monte-Carlo simulation, based on a large number of I-section samples, which are generated by spectral representation and subsequently analyzed by non-linear shell finite elements. The application to an example I-section beam-column demonstrates that the simulated buckling response is in good agreement with experiments and follows key concepts of imperfection triggered buckling. The derivation of the buckling load variability and the stochastic interaction curve for combined compression and major axis bending as well as stochastic sensitivity studies for thickness and geometric imperfections illustrate potential benefits of the proposed methodology in buckling related research and applications.

  4. A computerized symbolic integration technique for development of triangular and quadrilateral composite shallow-shell finite elements

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Noor, A. K.

    1975-01-01

    Computerized symbolic integration was used in conjunction with group-theoretic techniques to obtain analytic expressions for the stiffness, geometric stiffness, consistent mass, and consistent load matrices of composite shallow shell structural elements. The elements are shear flexible and have variable curvature. A stiffness (displacement) formulation was used with the fundamental unknowns consisting of both the displacement and rotation components of the reference surface of the shell. The triangular elements have six and ten nodes; the quadrilateral elements have four and eight nodes and can have internal degrees of freedom associated with displacement modes which vanish along the edges of the element (bubble modes). The stiffness, geometric stiffness, consistent mass, and consistent load coefficients are expressed as linear combinations of integrals (over the element domain) whose integrands are products of shape functions and their derivatives. The evaluation of the elemental matrices is divided into two separate problems - determination of the coefficients in the linear combination and evaluation of the integrals. The integrals are performed symbolically by using the symbolic-and-algebraic-manipulation language MACSYMA. The efficiency of using symbolic integration in the element development is demonstrated by comparing the number of floating-point arithmetic operations required in this approach with those required by a commonly used numerical quadrature technique.

  5. A geometrically nonlinear shell element for hygrothermorheologically simple linear viscoelastic composites

    SciTech Connect

    HAMMERAND,DANIEL C.; KAPANIA,RAKESH K.

    2000-05-01

    A triangular flat shell element for large deformation analysis of linear viscoelastic laminated composites is presented. Hygrothermorheologically simple materials are considered for which a change in the hygrothermal environment results in a horizontal shifting of the relaxation moduli curves on a log time scale, in addition to the usual hygrothermal loads. Recurrence relations are developed and implemented for the evaluation of the viscoelastic memory loads. The nonlinear deformation process is computed using an incremental/iterative approach with the Newton-Raphson Method used to find the incremental displacements in each step. The presented numerical examples consider the large deformation and stability of linear viscoelastic structures under deformation-independent mechanical loads, deformation-dependent pressure loads, and thermal loads. Unlike elastic structures that have a single critical load value associated with a given snapping of buckling instability phenomenon, viscoelastic structures will usually exhibit a particular instability for a range of applied loads over a range of critical times. Both creep buckling and snap-through examples are presented here. In some cases, viscoelastic results are also obtained using the quasielastic method in which load-history effects are ignored, and time-varying viscoelastic properties are simply used in a series of elastic problems. The presented numerical examples demonstrate the capability and accuracy of the formulation.

  6. Application of the flow-through time-resolved analysis technique to trace element determination in ostracod shells

    NASA Astrophysics Data System (ADS)

    Börner, Nicole; De Baere, Bart; Francois, Roger; Frenzel, Peter; Schwalb, Antje

    2014-05-01

    Trace element analyses of ostracod shells are a vital tool for paleoenvironmental reconstructions from lake sediments (Börner et al., 2013). Conventional batch dissolution ICP-MS is the most common way for analyzing trace elements in ostracod shells. However, due to dissolution or secondary overgrowth the primary signal may be masked. Resulting variations in trace element composition have been identified to be in the order of a magnitude range. Therefore, the application of the newly developed flow-through technique will be assessed. The flow-through time-resolved analysis technique allows to chemically separate mineral phases of different solubility such as, in particular, original shell calcite from overgrowth calcite, and thus to correct the measurements for the biogenic signal. During a flow-through experiment, eluent is continuously pumped through a sample column, typically a filter in which the ostracod valves are loaded. The gradual dissolution of the substrate is controlled by a combination of eluent type, eluent temperature and eluent flow rate. The dissolved sample then flows directly to a mass spectrometer. The resulting data is a chromatogram, featuring different mineral phases dissolving as time progresses. Hence, the flow-through technique provides a detailed geochemical fingerprint of the substrate and therefore additional data relative to conventional methods. To calibrate this technique for the application to ostracods we use ostracod shells from Southern Tibetan Plateau lakes, which feature an alkaline environment but show highly diverse hydrochemistry. Cleaned as well as uncleaned ostracod shells show similarity in their trace element signals, allowing measurements without prior cleaning of the shells, and thus more time-efficient sample throughput. Measurements of unclean shells are corrected for the biogenic signal using an equation from Klinkhammer et al. (2004). Another advantage is that the measurements can be carried out on single ostracod

  7. Modeling of a fluid-loaded smart shell structure for active noise and vibration control using a coupled finite element-boundary element approach

    NASA Astrophysics Data System (ADS)

    Ringwelski, S.; Gabbert, U.

    2010-10-01

    A recently developed approach for the simulation and design of a fluid-loaded lightweight structure with surface-mounted piezoelectric actuators and sensors capable of actively reducing the sound radiation and the vibration is presented. The objective of this paper is to describe the theoretical background of the approach in which the FEM is applied to model the actively controlled shell structure. The FEM is also employed to model finite fluid domains around the shell structure as well as fluid domains that are partially or totally bounded by the structure. Boundary elements are used to characterize the unbounded acoustic pressure fields. The approach presented is based on the coupling of piezoelectric and acoustic finite elements with boundary elements. A coupled finite element-boundary element model is derived by introducing coupling conditions at the fluid-fluid and fluid-structure interfaces. Because of the possibility of using piezoelectric patches as actuators and sensors, feedback control algorithms can be implemented directly into the multi-coupled structural-acoustic approach to provide a closed-loop model for the design of active noise and vibration control. In order to demonstrate the applicability of the approach developed, a number of test simulations are carried out and the results are compared with experimental data. As a test case, a box-shaped shell structure with surface-mounted piezoelectric actuators and four sensors and an open rearward end is considered. A comparison between the measured values and those predicted by the coupled finite element-boundary element model shows a good agreement.

  8. Phase field modeling of brittle fracture for enhanced assumed strain shells at large deformations: formulation and finite element implementation

    NASA Astrophysics Data System (ADS)

    Reinoso, J.; Paggi, M.; Linder, C.

    2017-02-01

    Fracture of technological thin-walled components can notably limit the performance of their corresponding engineering systems. With the aim of achieving reliable fracture predictions of thin structures, this work presents a new phase field model of brittle fracture for large deformation analysis of shells relying on a mixed enhanced assumed strain (EAS) formulation. The kinematic description of the shell body is constructed according to the solid shell concept. This enables the use of fully three-dimensional constitutive models for the material. The proposed phase field formulation integrates the use of the (EAS) method to alleviate locking pathologies, especially Poisson thickness and volumetric locking. This technique is further combined with the assumed natural strain method to efficiently derive a locking-free solid shell element. On the computational side, a fully coupled monolithic framework is consistently formulated. Specific details regarding the corresponding finite element formulation and the main aspects associated with its implementation in the general purpose packages FEAP and ABAQUS are addressed. Finally, the applicability of the current strategy is demonstrated through several numerical examples involving different loading conditions, and including linear and nonlinear hyperelastic constitutive models.

  9. Lichens as biomonitors of uranium and other trace elements in an area of Kosovo heavily shelled with depleted uranium rounds

    NASA Astrophysics Data System (ADS)

    Di Lella, Luigi A.; Frati, Luisa; Loppi, Stefano; Protano, Giuseppe; Riccobono, Francesco

    This paper reports the results of a study using lichens as biomonitors to investigate the small-scale environmental distribution of uranium and other trace elements in an area of Kosovo (Djakovica) heavily shelled with depleted uranium (DU) anti-tank ammunition. The results of total uranium concentrations showed great variability and species-specific differences, mainly due to differences in the exposed surface area of the lichens. The uranium concentrations in lichen samples were rather similar at a site heavily shelled with DU ammunition and at a control site. Unexpectedly, the highest uranium concentrations were found at the control site. The observed U distribution can be explained by contamination of lichen thalli by soil particles. The soil geochemistry was similar at the two sampling sites. The 235U/ 238U ratios in the soil samples suggested a modest DU contribution only at the heavily shelled site. Measurements of U isotopes in lichens did not reveal DU pollution at the control site. The U isotopic ratios in lichens at the shelled site showed variable figures; only two samples were clearly contaminated by DU. There were no signs of contamination by other trace elements.

  10. Strain changes on the cortical shell of vertebral bodies due to spine ageing: a parametric study using a finite element model evaluated by strain measurements.

    PubMed

    Lu, Yongtao; Rosenau, Eike; Paetzold, Helge; Klein, Anke; Püschel, Klaus; Morlock, Michael M; Huber, Gerd

    2013-12-01

    The probability of fractures of the cortical shell of vertebral bodies increases as ageing progresses. Ageing involves all the spinal component changes. However, the effect of the spinal component ageing on the fracture risk of the cortical shell remains poorly understood. In this study, the influence of the ageing of the spinal components on cortical shell strain was investigated. A lumbar spinal specimen (L3-L5) was mechanically tested under a quasi-static axial compressive load. Clinical computed tomography images of the same specimen were used to create a corresponding finite element model. The material properties were determined by calibrating the finite element model using the L4 cortical shell strains of the anterior centre measurement site. The remaining experiment data (axial displacement, the intra-discal pressures, L4 cortical shell strain on the lateral measurement site) were used to evaluate the model. The individual ageing process of the six spinal components (cortical shell, cancellous bone, bony endplate, posterior elements, nucleus pulposus and annulus matrix) was simulated by changing their Young's moduli and Poisson's ratios, and the effect on cortical shell strain was investigated. Results show that the cortical shell strain is more sensitive to the ageing of the cortical shell and the cancellous bone than to the ageing of the nucleus pulposus, the annulus matrix, and the bony endplates and of the posterior elements. The results can help the clinicians focus on the aspects that mainly influence the vertebral cortex fracture risk factor.

  11. Solution of elastic-plastic shallow shell problems by the boundary element method

    NASA Astrophysics Data System (ADS)

    Xiaolin, Peng

    1987-02-01

    The boundary integral equations for elasto-plastic problems of shallow shells are established by using the fundamental solutions of shallow shells derived previously. The strains and stress-resultants in the plastic region are used as unknown variables. The simultaneous nonlinear equations of these variables and unknown boundary values are established and solved by direct iteration method.

  12. Measurements of L to M shell vacancy transfer probabilities for the elements in the atomic region 70 <= Z <= 92

    NASA Astrophysics Data System (ADS)

    Puri, S.; Mehta, D.; Chand, B.; Singh, Nirmal; Trehan, P. N.

    1993-05-01

    The probabilities for vacancy transfer from L to M shell, ¯gh LM, are deduced for 15 elements in the atomic region 70 ≤ Z ≤ 92 by measuring the M X-ray yields from the targets excited by 5.96 and 22.6 keV incident photons, i.e. below and above the L-edge of the elements and using the theoretical L and M shell photoionisation cross-sections. These results are compared with the theoretical values based on the relativistic Dirac-Hartree-Slater (RDHS) and the nonrelativistic approximate Herman-Skillman (AHS) calculations. From the comparison, it is concluded that the onset of L 1-L 3M 5 Coster-Kronig transition occurs at Z = 75 as predicted by the RDHS model based Coster-Kronig transition energy calculations.

  13. Seasonality Records From Stable Isotopes and Trace Elements in Mussel and Limpet Shells From Archaeological Sites on Gibraltar

    NASA Astrophysics Data System (ADS)

    Fa, D.; Ferguson, J. E.; Atkinson, T. C.; Barton, R. N.; Ditchfield, P.; Finlayson, G.; Finlayson, J. C.; Henderson, G. M.

    2007-12-01

    Seasonal resolution climate records from mid and high latitudes would allow investigation of the role of seasonality in controlling mean climate on diverse timescales, and of the evolution of climate systems such as the North Atlantic Oscillation (NAO). But achieving such seasonal resolution is difficult for regions outside the growth range of surface corals. Marine mollusc shells provide a possible archive and contain growth increments varying in scale from tidal to annual. However, finding and dating sequences of marine mollusc shells spanning long periods of time is difficult due to sea-level change and the destructional nature of most coastal environments. In this study, we have made use of the habit of hominins on Gibraltar to collect molluscs for food over at least the last 120 kyr. In archaeological excavations of two caves (Gorham's and Vanguard Caves), mollusc shells were found, in habitation levels and in sediment blown into the caves. Existing 14C, OSL, and U-series chronologies provide a chronological framework for this suite of samples. The species found are predominantly Mytilus (mussels) or Patella (limpets). Gibraltar is an interesting location for paleoclimate reconstruction due to its proximity to the boundary of modern day climate belts but also due to its anthropological and archaeological importance. To gain a quantitative understanding of the local controls on stable isotopes and trace elements within Gibraltarian shells, we have initiated a water-sampling programme; emplaced a temperature and salinity logger near the sampling site; and marked live Patella and Mytilus with fluorescent dye to firmly establish growth rates and controls on chemical composition. We have also conducted stable-isotope and trace-element analysis of modern and fossil Patella and Mytilus shells by micromilling. Recent Patella and Mytilus shells show that the oxygen isotope composition of modern shells allow the accurate reconstruction of the full seasonal range in sea

  14. Elemental fingerprinting of mussel shells to predict population sources and redistribution potential in the Gulf of Maine.

    PubMed

    Sorte, Cascade J B; Etter, Ron J; Spackman, Robert; Boyle, Elizabeth E; Hannigan, Robyn E

    2013-01-01

    As the climate warms, species that cannot tolerate changing conditions will only persist if they undergo range shifts. Redistribution ability may be particularly variable for benthic marine species that disperse as pelagic larvae in ocean currents. The blue mussel, Mytilus edulis, has recently experienced a warming-related range contraction in the southeastern USA and may face limitations to northward range shifts within the Gulf of Maine where dominant coastal currents flow southward. Thus, blue mussels might be especially vulnerable to warming, and understanding dispersal patterns is crucial given the species' relatively long planktonic larval period (>1 month). To determine whether trace elemental "fingerprints" incorporated in mussel shells could be used to identify population sources (i.e. collection locations), we assessed the geographic variation in shell chemistry of blue mussels collected from seven populations between Cape Cod, Massachusetts and northern Maine. Across this ∼500 km of coastline, we were able to successfully predict population sources for over two-thirds of juvenile individuals, with almost 80% of juveniles classified within one site of their collection location and 97% correctly classified to region. These results indicate that significant differences in elemental signatures of mussel shells exist between open-coast sites separated by ∼50 km throughout the Gulf of Maine. Our findings suggest that elemental "fingerprinting" is a promising approach for predicting redistribution potential of the blue mussel, an ecologically and economically important species in the region.

  15. Establishing the Structural Integrity of Core-Shell Nanoparticles against Elemental Migration using Luminescent Lanthanide Probes.

    PubMed

    Chen, Bing; Peng, Dengfeng; Chen, Xian; Qiao, Xvsheng; Fan, Xianping; Wang, Feng

    2015-10-19

    Core-shell structured nanoparticles are increasingly used to host luminescent lanthanide ions but the structural integrity of these nanoparticles still lacks sufficient understanding. Herein, we present a new approach to detect the diffusion of dopant ions in core-shell nanostructures using luminescent lanthanide probes whose emission profile and luminescence lifetime are sensitive to the chemical environment. We show that dopant ions in solution-synthesized core-shell nanoparticles are firmly confined in the designed locations. However, annealing at certain temperatures (greater than circa 350 °C) promotes diffusion of the dopant ions and leads to degradation of the integrity of the nanoparticles. These insights into core-shell nanostructures should enhance our ability to understand and use lanthanide-doped luminescent nanoparticles.

  16. Improved assumed-stress hybrid shell element with drilling degrees of freedom for linear stress, buckling, and free vibration analyses

    NASA Technical Reports Server (NTRS)

    Rengarajan, Govind; Aminpour, Mohammad A.; Knight, Norman F., Jr.

    1992-01-01

    An improved four-node quadrilateral assumed-stress hybrid shell element with drilling degrees of freedom is presented. The formulation is based on Hellinger-Reissner variational principle and the shape functions are formulated directly for the four-node element. The element has 12 membrane degrees of freedom and 12 bending degrees of freedom. It has nine independent stress parameters to describe the membrane stress resultant field and 13 independent stress parameters to describe the moment and transverse shear stress resultant field. The formulation encompasses linear stress, linear buckling, and linear free vibration problems. The element is validated with standard tests cases and is shown to be robust. Numerical results are presented for linear stress, buckling, and free vibration analyses.

  17. Analysis of Composite Skin-Stiffener Debond Specimens Using Volume Elements and a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.

  18. The Shell of the Invasive Bivalve Species Dreissena polymorpha: Biochemical, Elemental and Textural Investigations.

    PubMed

    Immel, Françoise; Broussard, Cédric; Catherinet, Bastien; Plasseraud, Laurent; Alcaraz, Gérard; Bundeleva, Irina; Marin, Frédéric

    2016-01-01

    The zebra mussel Dreissena polymorpha is a well-established invasive model organism. Although extensively used in environmental sciences, virtually nothing is known of the molecular process of its shell calcification. By describing the microstructure, geochemistry and biochemistry/proteomics of the shell, the present study aims at promoting this species as a model organism in biomineralization studies, in order to establish a bridge with ecotoxicology, while sketching evolutionary conclusions. The shell of D. polymorpha exhibits the classical crossed-lamellar/complex crossed lamellar combination found in several heterodont bivalves, in addition to an external thin layer, the characteristics of which differ from what was described in earlier publication. We show that the shell selectively concentrates some heavy metals, in particular uranium, which predisposes D. polymorpha to local bioremediation of this pollutant. We establish the biochemical signature of the shell matrix, demonstrating that it interacts with the in vitro precipitation of calcium carbonate and inhibits calcium carbonate crystal formation, but these two properties are not strongly expressed. This matrix, although overall weakly glycosylated, contains a set of putatively calcium-binding proteins and a set of acidic sulphated proteins. 2D-gels reveal more than fifty proteins, twenty of which we identify by MS-MS analysis. We tentatively link the shell protein profile of D. polymorpha and the peculiar recent evolution of this invasive species of Ponto-Caspian origin, which has spread all across Europe in the last three centuries.

  19. The Shell of the Invasive Bivalve Species Dreissena polymorpha: Biochemical, Elemental and Textural Investigations

    PubMed Central

    Broussard, Cédric; Catherinet, Bastien; Plasseraud, Laurent; Alcaraz, Gérard; Bundeleva, Irina; Marin, Frédéric

    2016-01-01

    The zebra mussel Dreissena polymorpha is a well-established invasive model organism. Although extensively used in environmental sciences, virtually nothing is known of the molecular process of its shell calcification. By describing the microstructure, geochemistry and biochemistry/proteomics of the shell, the present study aims at promoting this species as a model organism in biomineralization studies, in order to establish a bridge with ecotoxicology, while sketching evolutionary conclusions. The shell of D. polymorpha exhibits the classical crossed-lamellar/complex crossed lamellar combination found in several heterodont bivalves, in addition to an external thin layer, the characteristics of which differ from what was described in earlier publication. We show that the shell selectively concentrates some heavy metals, in particular uranium, which predisposes D. polymorpha to local bioremediation of this pollutant. We establish the biochemical signature of the shell matrix, demonstrating that it interacts with the in vitro precipitation of calcium carbonate and inhibits calcium carbonate crystal formation, but these two properties are not strongly expressed. This matrix, although overall weakly glycosylated, contains a set of putatively calcium-binding proteins and a set of acidic sulphated proteins. 2D-gels reveal more than fifty proteins, twenty of which we identify by MS-MS analysis. We tentatively link the shell protein profile of D. polymorpha and the peculiar recent evolution of this invasive species of Ponto-Caspian origin, which has spread all across Europe in the last three centuries. PMID:27213644

  20. New plate and shell elements for NASTRAN. [development of higher order triangular plate-bending finite element

    NASA Technical Reports Server (NTRS)

    Narayanaswami, R.

    1973-01-01

    A new higher order triangular plate-bending finite element is presented which possesses high accuracy for practical mesh subdivisions and which uses only translations and rotations as grid point degrees of freedom. The element has 18 degrees of freedom, the transverse displacement and two rotations at the vertices and mid-side grid points of the triangle. The transverse displacement within the element is approximated by a quintic polynomial; the bending strains thus vary cubically within the element. Transverse shear flexibility is taken into account in the stiffness formulation. Two examples of static and dynamic analysis are included to show the behavior of the element.

  1. Element substitution by living organisms: the case of manganese in mollusc shell aragonite

    PubMed Central

    Soldati, Analia L.; Jacob, Dorrit E.; Glatzel, Pieter; Swarbrick, Janine C.; Geck, Jochen

    2016-01-01

    Determining the manganese concentration in shells of freshwater bivalves provides a unique way to obtain information about climate and environmental changes during time-intervals that pre-date instrumental data records. This approach, however, relies on a thorough understanding of how manganese is incorporated into the shell material –a point that remained controversial so far. Here we clarify this issue, using state-of-the-art X-ray absorption and X-ray emission spectroscopy in combination with band structure calculations. We verify that in the shells of all studied species manganese is incorporated as high-spin Mn2+, i.e. manganese always has the same valence as calcium. More importantly, the unique chemical sensitivity of valence-to-core X-ray emission enables us to show that manganese is always coordinated by a CO3-octahedron. This, firstly, provides firm experimental evidence for manganese being primarily located in the inorganic carbonate. Secondly, it indicates that the structure of the aragonitic host is locally altered such that manganese attains an octahedral, calcitic coordination. This modification at the atomic level enables the bivalve to accommodate many orders of magnitude more manganese in its aragonitic shell than found in any non-biogenic aragonite. This outstanding feature is most likely facilitated through the non-classical crystallization pathway of bivalve shells. PMID:26957325

  2. Element substitution by living organisms: the case of manganese in mollusc shell aragonite

    NASA Astrophysics Data System (ADS)

    Soldati, Analia L.; Jacob, Dorrit E.; Glatzel, Pieter; Swarbrick, Janine C.; Geck, Jochen

    2016-03-01

    Determining the manganese concentration in shells of freshwater bivalves provides a unique way to obtain information about climate and environmental changes during time-intervals that pre-date instrumental data records. This approach, however, relies on a thorough understanding of how manganese is incorporated into the shell material –a point that remained controversial so far. Here we clarify this issue, using state-of-the-art X-ray absorption and X-ray emission spectroscopy in combination with band structure calculations. We verify that in the shells of all studied species manganese is incorporated as high-spin Mn2+, i.e. manganese always has the same valence as calcium. More importantly, the unique chemical sensitivity of valence-to-core X-ray emission enables us to show that manganese is always coordinated by a CO3-octahedron. This, firstly, provides firm experimental evidence for manganese being primarily located in the inorganic carbonate. Secondly, it indicates that the structure of the aragonitic host is locally altered such that manganese attains an octahedral, calcitic coordination. This modification at the atomic level enables the bivalve to accommodate many orders of magnitude more manganese in its aragonitic shell than found in any non-biogenic aragonite. This outstanding feature is most likely facilitated through the non-classical crystallization pathway of bivalve shells.

  3. Element substitution by living organisms: the case of manganese in mollusc shell aragonite.

    PubMed

    Soldati, Analia L; Jacob, Dorrit E; Glatzel, Pieter; Swarbrick, Janine C; Geck, Jochen

    2016-03-09

    Determining the manganese concentration in shells of freshwater bivalves provides a unique way to obtain information about climate and environmental changes during time-intervals that pre-date instrumental data records. This approach, however, relies on a thorough understanding of how manganese is incorporated into the shell material -a point that remained controversial so far. Here we clarify this issue, using state-of-the-art X-ray absorption and X-ray emission spectroscopy in combination with band structure calculations. We verify that in the shells of all studied species manganese is incorporated as high-spin Mn(2+), i.e. manganese always has the same valence as calcium. More importantly, the unique chemical sensitivity of valence-to-core X-ray emission enables us to show that manganese is always coordinated by a CO3-octahedron. This, firstly, provides firm experimental evidence for manganese being primarily located in the inorganic carbonate. Secondly, it indicates that the structure of the aragonitic host is locally altered such that manganese attains an octahedral, calcitic coordination. This modification at the atomic level enables the bivalve to accommodate many orders of magnitude more manganese in its aragonitic shell than found in any non-biogenic aragonite. This outstanding feature is most likely facilitated through the non-classical crystallization pathway of bivalve shells.

  4. Finite Element Procedures Applicable to Nonlinear Analysis of Reinforced Concrete Shell Structures.

    DTIC Science & Technology

    1984-09-01

    details. 1- 4-9 Section 4: FINITE-ELEMENT IMPLEMENTATION 4-10 4.3.2 9-Node Elements The Heterosis element [10], which combines Lagrange (biquadratic...M., "The ’ Heterosis ’ Family of Plate Finite Elements," Proc. ASCE Electronic Computations Conference, St. Louis, MO, August 6-8, 1979. 1111 Kraus H

  5. An isogeometric Reissner-Mindlin shell element for dynamic analysis considering geometric and material nonlinearities

    NASA Astrophysics Data System (ADS)

    Sobota, Paul; Dornisch, Wolfgang; Klinkel, Sven

    2016-08-01

    The present approach deals with the dynamical analysis of thin structures using an isogeometric Reissner-Mindlin shell formulation. Here, a consistent and a lumped mass matrix are employed for the implicit time integration method. The formulation allows for large displacements and finite rotations. The Rodrigues formula, which incorporates the axial vector is used for the rotational description. It necessitates an interpolation of the director vector in the current configuration. Two concept for the interpolation of the director vector are presented. They are denoted as continuous interpolation method and discrete interpolation method. The shell formulation is based on the assumption of zero stress in thickness direction. In the present formulation an interface to 3D nonlinear material laws is used. It leads to an iterative procedure at each integration point. Here, a J2 plasticity material law is implemented. The suitability of the developed shell formulation for natural frequency analysis is demonstrated in numerical examples. Transient problems undergoing large deformations in combination with nonlinear material behavior are analyzed. The effectiveness, robustness and superior accuracy of the two interpolation methods of the shell director vector are investigated and are compared to numerical reference solutions.

  6. A Study on Embedding Genetic Algorithm to Three-Dimensional Finite Element Method by Using Shell Script

    NASA Astrophysics Data System (ADS)

    Kitagawa, Wataru; Kimura, Yoshihiro; Takeshita, Takaharu

    This paper presents one of the embedding methods for a genetic algorithm (GA) in the three-dimensional finite element method (3-D FEM). We use a shell script to automate the preprocesses of the 3-D FEM and to perform the genetic operation for the GA. In this paper, a surface permanent-magnet synchronous motor (SPMSM) was selected as a simple model for optimizing the shape. The capability of this method was confirmed by decreasing the cogging torque. Moreover, the evaluation of GA was performed by distributing the analytical model to several PCs for parallel processing, and the computing time was thus shortened.

  7. Variability in magnesium, carbon and oxygen isotope compositions, and trace element contents of brachiopod shells: implications for paleoceanographic studies

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, Claire; Saulnier, Ségolène; Vigier, Nathalie; Schumacher, Aimryc; Chaussidon, Marc; Lécuyer, Christophe

    2016-04-01

    Magnesium content in the ocean is ≈ 1290 ppm and is one of the most abundant elements. It is involved in the carbon cycle via the dissolution and precipitation of carbonates, especially Mg-rich carbonates as dolomites. The Mg/Ca ratio of the ocean is believed to have changed through time. The causes of these variations, i.e. hydrothermal activity change or enhanced precipitation of dolomite, could be constrained using the magnesium isotope composition (δ26Mg) of carbonates. Brachiopods, as marine environmental proxies, have the advantage to occur worldwide in a depth range from intertidal to abyssal, and have been found in the geological record since the Cambrian. Moreover, as their shell is in low-Mg calcite, they are quite resistant to diagenetic processes. Here we report δ26Mg, δ18O, δ13C values along with trace element contents of one modern brachiopod specimen (Terebratalia transversa) and one fossil specimen (Terebratula scillae, 2.3 Ma). We combined δ26Mg values with oxygen and carbon isotope compositions and trace element contents to look for possible shell geochemical heterogeneities in order to investigate the processes that control the Mg isotope composition of brachiopod shells. We also evaluate the potential of brachiopods as a proxy of past seawater δ26Mg values. The two investigated brachiopod shells present the same range of δ26Mg variation (up to 2 ‰)). This variation cannot be ascribed to changes in environmental parameters, i.e. temperature or pH. As previously observed, the primary layer of calcite shows the largest degree of oxygen and carbon isotope disequilibrium relative to seawater. In contrast, the δ26Mg value of this layer is comparable to that of the secondary calcite layer value. In both T. scillae and T. transversa, negative trends are observable between magnesium isotopic compositions and oxygen and carbon isotopic compositions. These trends, combined to linear relationships between δ26Mg values and REE contents, are best

  8. Spin-Orbit Effects in Closed-Shell Heavy and Superheavy Element Monohydrides and Monofluorides with Coupled-Cluster Theory.

    PubMed

    Gao, Dong-Dong; Cao, Zhanli; Wang, Fan

    2016-03-03

    Bond lengths and force constants of a set of closed-shell sixth-row and superheavy element monohydrides and monofluorides are calculated in this work. Kramers restricted coupled-cluster approaches (KR-CC) with spin-orbit coupling (SOC) included at the self-consistent field (SCF) level as well as CC approaches with SOC included in post-SCF treatment (SOC-CC) are employed in calculations. Recently published relativistic effective core potentials are employed, and highly accurate results for superheavy element molecules are achieved with KR-CCSD(T). SOC effects on bond lengths and force constants of these molecules are investigated. Effects of electron correlation are shown to be affected by SOC to a large extent for some superheavy element molecules. Bond lengths and force constants with SOC-CC agree very well with those of KR-CC for most of the sixth-row element molecules. As for superheavy element molecules, SOC-CCSD is able to afford results that are in good agreement with those of KR-CCSD except for 111F, while the error of SOC-CCSD(T) is more pronounced. Large error would be encountered with SOC-CC approaches for molecules when both SOC and electron correlation effects are sizable.

  9. L 1 and L 2 sub-shell fluorescence yields for elements with 64 ⩽ Z ⩽ 70

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Puri, Sanjiv

    2010-05-01

    The L 1 and L 2 sub-shell fluorescence yields have been deduced for elements with 64 ⩽ Z ⩽ 70 from the L k( k = l, α, β1,4, β3,6, β2,15,9,10,7, γ1,5 and γ2,3,4) X-ray production cross sections measured at 22.6 keV incident photon energy using a spectrometer involving a disc type radioisotope of Cd 109 as a photon source and a Peltier cooled X-ray detector. The incident photon intensity, detector efficiency and geometrical factor have been determined from the K X-ray yields emitted from elemental targets with 20 ⩽ Z ⩽ 42 in the same geometrical setup and from knowledge of the K shell cross sections. The present deduced ω1(exp) values, for elements with 64 ⩽ Z ⩽ 70, are found to be in good agreement with those tabulated by Campbell (J.L. Campbell, Atom. Data Nucl. Data Tables 95 (2009) 115), where as these are, on an average, higher by 19% and 24% than those based on the Dirac-Hartree-Slater model (S. Puri et al., X-ray Spectrometry 22 (1993) 358) and the semi-empirical values compiled by Krause (M.O. Krause, J. Phys. Chem. Ref. Data 8 (1979) 307), respectively. The present deduced ω2(exp) values are found to be in good agreement with those based on the Dirac-Hartree-Slater model and are higher by up to ˜13% than the semi-empirical values for the elements under investigation.

  10. A benchmark study of 2D and 3D finite element calculations simulating dynamic pulse buckling tests of cylindrical shells under axial impact

    SciTech Connect

    Hoffman, E.L.; Ammerman, D.J.

    1993-08-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several finite element simulations of the event. The purpose of the study is to compare the performance of the various analysis codes and element types with respect to a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry.

  11. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  12. Therapeutic Array Transducer Element Using Coresonance between Hemispherical Piezoceramic Shell and Water Sphere: Effect of Load Masses of Support and Electric Contact

    NASA Astrophysics Data System (ADS)

    Otsu, Kenji; Yoshizawa, Shin; Umemura, Shin-ichiro

    2012-07-01

    For therapeutic ultrasound array transducers, it is necessary to reduce the electrical impedance of their elements so that the transducer can produce high ultrasonic power at a relatively low drive voltage. For this purpose, a new concept of a breathing-mode piezoceramic transducer element has been proposed. Numerical simulation showed its low electric impedance as well as good acoustical coupling between the concave hemispherical piezoceramic shell, with a diameter on the order of a wavelength in water, and the volume of a water sphere half enclosed by the shell. In the preparation of a prototype transducer, the effect of additional load masses of the flange supporting the shell and the electric contact for driving the element was numerically analyzed in this paper.

  13. Ostracode Paleoecology and Trace Element Shell Chemistry: A case study from Laguna Salada, Baja California, Mexico.

    NASA Astrophysics Data System (ADS)

    Romero-Mayen, V.; Bernal, J.; Palacios-Fest, M.; Carreno, A.

    2007-05-01

    The Laguna Salada Basin in northeastern Baja California constitutes the southwestern limit of the Salton Trough and provides insights into the evolution of marine and non-marine sedimentary basins during the latest Neogene at the head of the Gulf of California. A 43 m long core (LS04-1) recovered from the Basin consisted of alternating clay, silt and sand beds with gypsum lenses. Three radiocarbon dates provided the age control: 41,520±790 cal years BP at 30.21 m, 25,590±320 cal years BP at 26.60 m and 15,150±70 cal years BP at 7.50 m. A total of 103 samples were analyzed for taxonomy, taphonomy and geochemistry. Eighteen marine and brackish- water ostracode species and nine benthic foraminifera species were identified. Faunal changes suggest variations in the water source with the opening of the basin to the Gulf of California. The Mg/Ca and Sr/Ca ratios of valves of two ostracode species (Limnocythere staplini and Cyprideis castus) were measured using ICPMS. Based on the Mg/Ca ratios, water paleotemperatures were estimated using a regression model. Shell chemistry shows mixed results. Some intervals fit an acceptable range, whereas other are unrealistic. Analysis of Sr/Ca ratios ostracode valves from the conflicting horizons show evidence of diagenetic effects. The fossil assemblages indicate two dry periods: prior to the 41,520 cal years BP and after the 15 ,150 cal years BP, with the maximum highstand of the basin between 25,590 and 15,150 cal years BP. Given the diagenetic effects at Laguna Salada, ostracode shell chemistry paleotemperature estimates may not be warranted in attempting to determine this parameter from the dry periods shown by faunal assemblages.

  14. Finite element modeling of mitral leaflet tissue using a layered shell approximation

    PubMed Central

    Ratcliffe, Mark B.; Guccione, Julius M.

    2012-01-01

    The current study presents a finite element model of mitral leaflet tissue, which incorporates the anisotropic material response and approximates the layered structure. First, continuum mechanics and the theory of layered composites are used to develop an analytical representation of membrane stress in the leaflet material. This is done with an existing anisotropic constitutive law from literature. Then, the concept is implemented in a finite element (FE) model by overlapping and merging two layers of transversely isotropic membrane elements in LS-DYNA, which homogenizes the response. The FE model is then used to simulate various biaxial extension tests and out-of-plane pressure loading. Both the analytical and FE model show good agreement with experimental biaxial extension data, and show good mutual agreement. This confirms that the layered composite approximation presented in the current study is able to capture the exponential stiffening seen in both the circumferential and radial directions of mitral leaflets. PMID:22971896

  15. A nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics - User`s Manual

    SciTech Connect

    Maker, B.N.

    1995-04-14

    This report provides a user`s manual for NIKE3D, a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Over twenty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a factorization method, for which case bandwidth minimization is optional. Data may be stored either in or out of core memory to allow for large analyses.

  16. Shells of Mytilus edulis as Bioarchives of the Rare Earth Element and Yttrium Distribution in Seawater and the Potential Impact of pH and Temperature Variations

    NASA Astrophysics Data System (ADS)

    Ponnurangam, A.; Bau, M.; Brenner, M.; Koschinsky, A.

    2015-12-01

    The importance of bivalve shells as proxy archives for changes in environmental conditions is increasingly recognized. However, data for trace metal concentrations, specifically rare earth elements and yttrium (REY) in bivalve shells, are quite scarce. The chemistry of these elements in terms of solution speciation and complexation (mostly by carbonate) makes them particularly useful in acting as geochemical proxies of oceanic change due to the impact of temperature and pH on the activity of CO32- in seawater. We approach this issue via an in situ culture experiment using Mytilus edulis from a site in the North Sea. The M.edulis used in our study were cultured offshore with no contact to the ocean floor. We compare the REY distribution in the shells and ambient seawater with the aim of investigating which REY species is incorporated into the shell. The shells show consistent shale-normalized ("SN") REY patterns and display distinct REY features of the North Sea. The REY concentrations obtained from the shells were used to calculate apparent bulk REY partition coefficients between shells and ambient seawater (appDREYshell/seawater) and acquired results were then used in the investigation of the potential effects of pH and temperature on REY partitioning. Further comparison of appDREYshell/seawater patterns to the REY speciation in seawater suggests that the free REY3+ may be the most likely REY species that are actually incorporated from seawater into the M. edulis shell. We then modeled the REYSN patterns of a hypothetical mussel shell at pH 8.2 and 7.6 and at temperatures of 25°C and 5°C assuming that only REY3+ are incorporated into the carbonate's crystal lattice. Our findings provide the basis to further understand how we can use shells of mussels like M. edulis as bioarchives that host geochemical proxies for paleoceanic environmental reconstructions. It appears that M. edulis shells are bioarchives of some REY features of seawater and results suggest that

  17. Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment

    NASA Technical Reports Server (NTRS)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.

  18. Dynamic pulse buckling of cylindrical shells under axial impact: A benchmark study of 2D and 3D finite element calculations

    SciTech Connect

    Hoffman, E.L.; Ammerman, D.J.

    1995-04-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. During the pulse buckling tests, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. Numerical simulations of the test were performed using PRONTO, a Sandia developed transient dynamics analysis code, and ABAQUS/Explicit with both shell and continuum elements. The calculations are compared to the tests with respect to deformed shape and impact load history.

  19. A geometric nonlinear degenerated shell element using a mixed formulation with independently assumed strain fields. Final Report; Ph.D. Thesis, 1989

    NASA Technical Reports Server (NTRS)

    Graf, Wiley E.

    1991-01-01

    A mixed formulation is chosen to overcome deficiencies of the standard displacement-based shell model. Element development is traced from the incremental variational principle on through to the final set of equilibrium equations. Particular attention is paid to developing specific guidelines for selecting the optimal set of strain parameters. A discussion of constraint index concepts and their predictive capability related to locking is included. Performance characteristics of the elements are assessed in a wide variety of linear and nonlinear plate/shell problems. Despite limiting the study to geometric nonlinear analysis, a substantial amount of additional insight concerning the finite element modeling of thin plate/shell structures is provided. For example, in nonlinear analysis, given the same mesh and load step size, mixed elements converge in fewer iterations than equivalent displacement-based models. It is also demonstrated that, in mixed formulations, lower order elements are preferred. Additionally, meshes used to obtain accurate linear solutions do not necessarily converge to the correct nonlinear solution. Finally, a new form of locking was identified associated with employing elements designed for biaxial bending in uniaxial bending applications.

  20. Neotectonics of Asia: Thin-shell finite-element models with faults

    NASA Technical Reports Server (NTRS)

    Kong, Xianghong; Bird, Peter

    1994-01-01

    As India pushed into and beneath the south margin of Asia in Cenozoic time, it added a great volume of crust, which may have been (1) emplaced locally beneath Tibet, (2) distributed as regional crustal thickening of Asia, (3) converted to mantle eclogite by high-pressure metamorphism, or (4) extruded eastward to increase the area of Asia. The amount of eastward extrusion is especially controversial: plane-stress computer models of finite strain in a continuum lithosphere show minimal escape, while laboratory and theoretical plane-strain models of finite strain in a faulted lithosphere show escape as the dominant mode. We suggest computing the present (or neo)tectonics by use of the known fault network and available data on fault activity, geodesy, and stress to select the best model. We apply a new thin-shell method which can represent a faulted lithosphere of realistic rheology on a sphere, and provided predictions of present velocities, fault slip rates, and stresses for various trial rheologies and boundary conditions. To minimize artificial boundaries, the models include all of Asia east of 40 deg E and span 100 deg on the globe. The primary unknowns are the friction coefficient of faults within Asia and the amounts of shear traction applied to Asia in the Himalayan and oceanic subduction zones at its margins. Data on Quaternary fault activity prove to be most useful in rating the models. Best results are obtained with a very low fault friction of 0.085. This major heterogeneity shows that unfaulted continum models cannot be expected to give accurate simulations of the orogeny. But, even with such weak faults, only a fraction of the internal deformation is expressed as fault slip; this means that rigid microplate models cannot represent the kinematics either. A universal feature of the better models is that eastern China and southeast Asia flow rapidly eastward with respect to Siberia. The rate of escape is very sensitive to the level of shear traction in the

  1. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    SciTech Connect

    Girardot, Crystal; Harlow, Don; Venetz, Theodore; Washenfelder, Dennis; Johnson, Jeremy

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  2. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    SciTech Connect

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  3. Investigation of the distribution of elements in snail shell with the use of synchrotron-based, micro-beam X-ray fluorescence spectrometry.

    PubMed

    Rao, D V; Swapna, M; Cesareo, R; Brunetti, A; Akatsuka, T; Yuasa, T; Takeda, T; Tromba, G; Gigante, G E

    2009-01-01

    In this study, synchrotron-based micro-beam was utilized for elemental mapping of a small animal shell. A thin X-ray spot of the order of approximately 10microm was focused on the sample. With this spatial resolution and high flux throughput, the X-ray fluorescent intensities for Ca, Mn, Fe, Ni, Zn, Cr and Cu were measured using a liquid-nitrogen-cooled 13-element energy-dispersive HpGe detector. The sample is scanned in a 'step-and-repeat' mode for fast elemental mapping and generated elemental maps at 8, 10 and 12keV. All images are of 10microm resolution and the measurement time was 1s per point. The accumulation of trace elements was investigated from the soft-tissue in small areas. Analysis of the small areas will be better suited to establish the physiology of metals in specific structures like small animal shell and the distribution of other trace elements.

  4. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water.

    PubMed

    Merschel, Gila; Bau, Michael

    2015-11-15

    High-technology metals - such as the rare earth elements (REE) - have become emerging contaminants in the hydrosphere, yet little is known about their bioavailability. The Rhine River and the Weser River in Germany are two prime examples of rivers that are subjected to anthropogenic REE input. While both rivers carry significant loads of anthropogenic Gd, originating from contrast agents used for magnetic resonance imaging, the Rhine River also carries large amounts of anthropogenic La and lately Sm which are discharged into the river from an industrial point source. Here, we assess the bioavailability of these anthropogenic microcontaminants in these rivers by analyzing the aragonitic shells of the freshwater bivalve Corbicula fluminea. Concentrations of purely geogenic REE in shells of comparable size cover a wide range of about one order of magnitude between different sampling sites. At a given sampling site, geogenic REE concentrations depend on shell size, i.e. mussel age. Although both rivers show large positive Gd anomalies in their dissolved loads, no anomalous enrichment of Gd relative to the geogenic REE can be observed in any of the analyzed shells. This indicates that the speciations of geogenic and anthropogenic Gd in the river water differ from each other and that the geogenic, but not the anthropogenic Gd is incorporated into the shells. In contrast, all shells sampled at sites downstream of the industrial point source of anthropogenic La and Sm in the Rhine River show positive La and Sm anomalies, revealing that these anthropogenic REE are bioavailable. Only little is known about the effects of long-term exposure to dissolved REE and their general ecotoxicity, but considering that anthropogenic Gd and even La have already been identified in German tap water and that anthropogenic La and Sm are bioavailable, this should be monitored and investigated further.

  5. Optimum rotationally symmetric shells for flywheel rotors

    DOEpatents

    Blake, Henry W.

    2000-01-01

    A flywheel rim support formed from two shell halves. Each of the shell halves has a disc connected to the central shaft. A first shell element connects to the disc at an interface. A second shell element connects to the first shell element. The second shell element has a plurality of meridional slits. A cylindrical shell element connects to the second shell element. The cylindrical shell element connects to the inner surface of the flywheel rim. A flywheel rim support having a disc connected an outer diameter of a shaft. Two optimally shaped shell elements connect to the optimally shaped disc at an interface. The interface defines a discontinuity in a meridional slope of said support. A cylindrical shell element connects to the two shell elements. The cylindrical shell element has an outer surface for connecting to the inner surface of the flywheel rim. A flywheel rim casing includes an annular shell connected to the central shaft. The annular shell connects to the flywheel rim. A composite shell surrounds the shaft, annular shell and flywheel rim.

  6. A Stacked-Shell Finite Element Approach for Modelling a Dynamically Loaded Composite Bolted Joint Under in-Plane Bearing Loads

    NASA Astrophysics Data System (ADS)

    Pearce, G. M. K.; Johnson, A. F.; Hellier, A. K.; Thomson, R. S.

    2013-12-01

    This paper presents the results of a study into a novel application of the "stacked-shell" laminate modelling approach to dynamically loaded bolted composite joints using the explicit finite element code PAM-CRASH. The stacked-shell approach provides medium-high fidelity resolution of the key joint failure modes, but is computationally much more efficient than full 3D modelling. For this work, a countersunk bolt in a composite laminate under in-plane bearing loading was considered. The models were able to predict the onset of damage, failure modes and the ultimate load of the joint. It was determined that improved debris models are required in order to accurately capture the progressive bearing damage after the onset of joint failure.

  7. Spontaneous core–shell elemental distribution in In-rich In(x)Ga1-xN nanowires grown by molecular beam epitaxy.

    PubMed

    Gómez-Gómez, M; Garro, N; Segura-Ruiz, J; Martinez-Criado, G; Cantarero, A; Mengistu, H T; García-Cristóbal, A; Murcia-Mascarós, S; Denker, C; Malindretos, J; Rizzi, A

    2014-02-21

    The elemental distribution of self-organized In-rich In(x)Ga1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core–shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality nonpolar heterostructures.

  8. Spontaneous core-shell elemental distribution in In-rich InxGa1-xN nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Gómez-Gómez, M.; Garro, N.; Segura-Ruiz, J.; Martinez-Criado, G.; Cantarero, A.; Mengistu, H. T.; García-Cristóbal, A.; Murcia-Mascarós, S.; Denker, C.; Malindretos, J.; Rizzi, A.

    2014-02-01

    The elemental distribution of self-organized In-rich InxGa1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core-shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality non-polar heterostructures.

  9. Dynamic pulse buckling of cylindrical shells under axial impact: A comparison of 2D and 3D finite element calculations with experimental data

    SciTech Connect

    Hoffman, E.L.; Ammerman, D.J.

    1995-04-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement.

  10. Nuclear matrix elements for 0νβ{sup −}β{sup −} decays: Comparative analysis of the QRPA, shell model and IBM predictions

    SciTech Connect

    Civitarese, Osvaldo; Suhonen, Jouni

    2013-12-30

    In this work we report on general properties of the nuclear matrix elements involved in the neutrinoless double β{sup −} decays (0νβ{sup −}β{sup −} decays) of several nuclei. A summary of the values of the NMEs calculated along the years by the Jyväskylä-La Plata collaboration is presented. These NMEs, calculated in the framework of the quasiparticle random phase approximation (QRPA), are compared with those of the other available calculations, like the Shell Model (ISM) and the interacting boson model (IBA-2)

  11. A unified derivation of Hamiltonian and optical transition matrix elements for open shell diatomic and polyatomic molecules using transformation tools of modern quantum mechanics

    SciTech Connect

    Schwenke, David W.

    2015-04-14

    In this work, we systematically derive the matrix elements of the nuclear rotation operators for open shell diatomic and polyatomic molecules in a parity adapted Hund’s case (a) basis. Our expressions are valid for an arbitrary number of electrons and arbitrary electronic configurations. The common ad hoc sign changes of angular momentum operators are shown to be equivalent to a change in phase of basis functions. We show how to relate this basis to that required for scattering calculations. We also give the expressions for Einstein A coefficients for electric dipole, electric quadrupole, and magnetic dipole transitions.

  12. L shell x ray production in high-Z elements using 4-6 MeV/u fluorine ions

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Singh, Udai; Oswal, M.; Singh, G.; Singh, N.; Mehta, D.; Nandi, T.; Lapicki, G.

    2017-03-01

    L shell line and total x ray production cross sections in 78Pt, 79Au, 82Pb, 83Bi, 90Th, and 92U targets ionized by 4-6 MeV/u fluorine ions were measured. These cross sections are compared with available theories for L shell ionization using single- and multiple-hole fluorescence and the Coster-Kronig yields. The ECPSSR and the ECUSAR theories exhibit good agreement with the measured data, whereas, the FBA theory overestimates them by a factor of two. Although for the F ion charge states q = 6-8 the multiple-hole atomic parameters do not significantly differ from the single-hole values, after an account for the multiple-holes, our data are better in agreement with the ECUSAR than the ECPSSR theory.

  13. Tracking responses to the 2010 Deepwater Horizon oil spill using trace elements in molluscan shells and tissues

    NASA Astrophysics Data System (ADS)

    Roopnarine, P. D.; Anderson, L.; Roopnarine, D.; Gillikin, D. P.; Goodwin, D.

    2010-12-01

    Documenting the effects of modern stressors on coastal benthic marine communities requires a combination of baseline historical data and modern dynamic data. E.g., landfall of hydrocarbons from the 2010 Deepwater Horizon rig and well explosion in the Gulf of Mexico is impacting coastal areas long affected by natural seepage, as well as petroleum exploration and development. In Louisiana, exploration in coastal areas that began in the 1920s expanded greatly with the development of the first mobile drilling barge in 1933. In total nearly 50,000 wells have been drilled in the Gulf of Mexico since the 1930s. Given this historical context, we are assessing pathways and rates at which crude oil components from the 2010 spill are incorporated into northern Gulf of Mexico coastal food webs. Sclerochronological techniques are being used to unlock the high-resolution physical and chemical records preserved within mollusc shells. We are analyzing historical specimens collected from the late 19th through late 20th centuries, baseline specimens collected in May 2010 in Louisiana and Alabama before visible hydrocarbons were present, and specimens collected in August 2010 after hydrocarbons made landfall. We are examining changes in life history traits (growth rate, recruitment, mortality, reproduction) of the commercial oyster Crassostrea virginica, and other common, co-occurring molluscs that are primary and secondary consumers in Gulf of Mexico coastal food webs. The taxa include the marsh-dwelling gastropod Littoraria irrorata and mussel Geukensia demissa, and open-water species including the bivalves Ischadium recurvum and Tellina alternata. These consumers range from epifaunal, sessile, filter feeders; to infaunal, mobile, deposit feeders; to epifaunal, mobile, omnivorous grazers. In this way, multiple potential pathways into coastal food webs are being monitored. Because environmental perturbations of many scales are recorded by the accretionary growth of mollusc shells

  14. Sentinel lymph node biopsy using indigo carmine blue dye and the validity of '10% rule' and '4 nodes rule'.

    PubMed

    Nagao, Tomoya; Kinoshita, Takayuki; Hojo, Takashi; Kurihara, Hiroaki; Tsuda, Hitoshi

    2012-08-01

    This is the study which assessed sentinel lymph node biopsy (SNB) using indigo carmine blue dye and the validity of the '10% rule' and '4 nodes rule'. Patients (302) were performed SNB using the combined radioisotope (RI)/indigo carmine dye method. Excised SLNs were confirmed whether they were stained and numbered in order of RI count and the percentage of radioactivity as compared to the hottest node was calculated. The relationship between histological diagnosis, dyeing and RI count was assessed. All the patients were detected SLN. Positive nodes were identified in 84 (27.8%) patients and were identified up to the third degree of hottest. All the hottest positive nodes were stained by indigo carmine. From the results, removing the three most radioactive SLNs identified all cases of nodal metastasis without complications. These stopping rules were valid and useful under indigo carmine use too.

  15. Donax do and don't tell: The relationship of isotopic and elemental variations to environmental conditions in the shell chemistry of a common intertidal bivalve

    NASA Astrophysics Data System (ADS)

    Hatch, M. B.; Schellenberg, S. A.

    2010-12-01

    The bean clam (Donax gouldii) is a common bivalve found in sandy southern Californian beaches and lives to a maximum age of three years(length <25 mm). The distinct growth bands and narrow intertidal distribution of this species could provide an ideal bio-recorder of high frequency environmental variability if their skeletal chemistry (i.e., δ13C,δ18O and minor element ratios) is strongly correlated with ambient environmental conditions. To test this hypothesis D. gouldii and seawater (δ13CDIC, δ18OSeawater, and salinity) were collected every two weeks and seawater temperature was measured daily. Collected D. gouldii were milled along the commissure, perpendicular to the maximum growth axis, with a valve penetration of ~150 micrometers producing ~300 micrograms of aragonite powder that was split for determination of its stable-isotopic (δ18O, δ13C) and elemental (Sr/Ca) ratios. Variations in shell δ13C Donax show little correspondence to measured seawater δ13CDIC through the study interval. Contrary to the results presented in Killingley and Berger (1979) for Mytilus from the same area, δ13CDonax does not appear related to the strength of upwelling.Observed D. gouldii δ13CDonax and δ18ODonaxare both lighter than expected positively correlated between, suggesting kinetic effects. Weekly equilibrium values for aragonite δ18O were calculated using the Grossman and Ku (1986) paleotemperature equation from daily seawater temperatures and biweekly seawater δ18O values for October 2007 to October 2008. This predicted δ18OPredictedAragonite record was compared to measured δ18ODonax values from the milled shell margins of biweekly-collected populations of D. gouldii.Observed δ18ODonax averaged -0.6‰ lighter than δ18OPredictedAragonite for the entire study interval. Notably, this offset is not consistent through time with greatest offset in the spring. Since past variations in seawater δ18O are difficult to constrain, splits of the milled shell margins

  16. Flutter: A finite element program for aerodynamic instability analysis of general shells of revolution with thermal prestress

    NASA Technical Reports Server (NTRS)

    Fallon, D. J.; Thornton, E. A.

    1983-01-01

    Documentation for the computer program FLUTTER is presented. The theory of aerodynamic instability with thermal prestress is discussed. Theoretical aspects of the finite element matrices required in the aerodynamic instability analysis are also discussed. General organization of the computer program is explained, and instructions are then presented for the execution of the program.

  17. Finite element analysis of depth effect on measuring elastic modulus of a core-shell structure for application of instrumented indentation in tooth enamel.

    PubMed

    Jia, Yunfei; Xuan, Fu-Zhen; Yang, Fuqian

    2014-04-01

    Tooth enamel is a complex structure, consisting of numerous enamel rods surrounded by a protein-rich sheath. Considering the possible effect of the protein-rich sheath on the indentation deformation of an enamel rod and the limitation of the Oliver-Pharr method in measuring the elastic modulus of the enamel rod, we used a finite element method to analyze the indentation deformation of an elastic-perfectly plastic cylinder surrounded by an elastic-perfectly plastic film. A concept of the threshold indentation depth was proposed, at which the percentage error of the measured modulus of the cylinder is ±10%. For the indentation depth less than the threshold indentation depth, the elastic modulus measured from the indentation test can be approximated as the intrinsic elastic modulus of the cylinder. The normalized threshold indentation depth strongly depends on the modulus ratio of the film to the cylinder and the ratio of the film thickness to the cylinder radius. The results can be used to guide the use of the Oliver-Pharr method in characterizing the mechanical properties of tooth enamel and bio-composites with core-shell structures.

  18. Imperfection Insensitive Thin Shells

    NASA Astrophysics Data System (ADS)

    Ning, Xin

    with superior mass efficiency. An efficient computational method for the buckling analysis of corrugated and stiffened cylindrical shells subject to axial compression has been developed in this thesis. This method modifies the traditional Bloch wave method based on the stiffness matrix method of rotationally periodic structures. A highly efficient algorithm has been developed to implement the modified Bloch wave method. This method is applied in buckling analyses of a series of corrugated composite cylindrical shells and a large-scale orthogonally stiffened aluminum cylindrical shell. Numerical examples show that the modified Bloch wave method can achieve very high accuracy and require much less computational time than linear and nonlinear analyses of detailed full finite element models. This thesis presents parametric studies on a series of externally pressurized pseudo-spherical shells, i.e., polyhedral shells, including icosahedron, geodesic shells, and triambic icosahedra. Several optimization methods have been developed to further improve the performance of pseudo-spherical shells under external pressure. It has been shown that the buckling pressures of the shell designs obtained from the optimizations are much higher than the spherical shells and not sensitive to imperfections.

  19. Multi-shell effective interactions

    NASA Astrophysics Data System (ADS)

    Tsunoda, Naofumi; Takayanagi, Kazuo; Hjorth-Jensen, Morten; Otsuka, Takaharu

    2014-02-01

    Background: Effective interactions, either derived from microscopic theories or based on fitting selected properties of nuclei in specific mass regions, are widely used inputs to shell-model studies of nuclei. The commonly used unperturbed basis functions are given by the harmonic oscillator. Until recently, most shell-model calculations have been confined to a single oscillator shell like the sd shell or the pf shell. Recent interest in nuclei away from the stability line requires, however, larger shell-model spaces. Because the derivation of microscopic effective interactions has been limited to degenerate models spaces, there are both conceptual and practical limits to present shell-model calculations that utilize such interactions. Purpose: The aim of this work is to present a novel microscopic method to calculate effective nucleon-nucleon interactions for the nuclear shell model. Its main difference from existing theories is that it can be applied not only to degenerate model spaces but also to nondegenerate model spaces. This has important consequences, in particular for intershell matrix elements of effective interactions. Methods: The formalism is presented in the form of a many-body perturbation theory based on the recently developed extended Kuo-Krenciglowa method. Our method enables us to microscopically construct effective interactions not only in one oscillator shell but also for several oscillator shells. Results: We present numerical results using effective interactions within (i) a single oscillator shell (a so-called degenerate model space) like the sd shell or the pf shell and (ii) two major shells (nondegenerate model space) like the sdf7p3 shell or the pfg9 shell. We also present energy levels of several nuclei that have two valence nucleons on top of a given closed-shell core. Conclusions: Our results show that the present method works excellently in shell-model spaces that comprise several oscillator shells, as well as in a single oscillator

  20. Geometrically nonlinear analysis of layered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Chao, W. C.; Reddy, J. N.

    1983-01-01

    A degenerated three dimensional finite element, based on the incremental total Lagrangian formulation of a three dimensional layered anisotropic medium was developed. Its use in the geometrically nonlinear, static and dynamic, analysis of layered composite plates and shells is demonstrated. A two dimenisonal finite element based on the Sanders shell theory with the von Karman (nonlinear) strains was developed. It is shown that the deflections obtained by the 2D shell element deviate from those obtained by the more accurate 3D element for deep shells. The 3D degenerated element can be used to model general shells that are not necessarily doubly curved. The 3D degenerated element is computationally more demanding than the 2D shell theory element for a given problem. It is found that the 3D element is an efficient element for the analysis of layered composite plates and shells undergoing large displacements and transient motion.

  1. Vibrations of cantilevered circular cylindrical shells Shallow versus deep shell theory

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Leissa, A. W.; Wang, A. J.

    1983-01-01

    Free vibrations of cantilevered circular cylindrical shells having rectangular planforms are studied in this paper by means of the Ritz method. The deep shell theory of Novozhilov and Goldenveizer is used and compared with the usual shallow shell theory for a wide range of shell parameters. A thorough convergence study is presented along with comparisons to previously published finite element solutions and experimental results. Accurately computed frequency parameters and mode shapes for various shell configurations are presented. The present paper appears to be the first comprehensive study presenting rigorous comparisons between the two shell theories in dealing with free vibrations of cantilevered cylindrical shells.

  2. Shell architecture, element composition, and stable isotope signature of the giant deep-sea oyster Neopycnodonte zibrowii sp. n. from the NE Atlantic

    NASA Astrophysics Data System (ADS)

    Wisshak, Max; López Correa, Matthias; Gofas, Serge; Salas, Carmen; Taviani, Marco; Jakobsen, Joachim; Freiwald, André

    2009-03-01

    A conspicuous new deep-sea oyster, Neopycnodonte zibrowii sp. n., is described from the Azores Archipelago, where it thrives in 420 to >500 m water depth in high densities concealed underneath overhangs. The new species reaches a relatively large size, which may exceed 20 cm, and is characterised by a very unusual hinge line morphology, straight without a bulge of the resilium. It is compared to the extant Indo-Pacific Empressostrea kostini Huber and Lorenz, 2007 and to the cosmopolitan Neopycnodonte cochlear (Poli, 1791), which has a broadly sympatric distribution at shallower depths in the Azores and Bay of Biscay. Radiocarbon dating reveals that individuals reach an impressive lifespan of one to more than five centuries, placing them among the longest-lived molluscs known to date. They often grow on top of each other, forming stacks that resemble dish piles—an effective measure to optimise shell stability with minimal biomineralisation effort, but with the drawback of increased bioerosion ultimately leading to detachment. Three microstructure types are developed in N. zibrowii: (1) the cross-foliated, calcitic, dorsal to central endostracum and aragonitic ligostracum, (2) the porous vesicular structure of the calcitic ventral endostracum, and (3) the simple prismatic aragonitic myostracum. Foliated and vesicular shell portions show sub-millimetre-scale first-order increments delineated by conchiolin-rich growth breaks (interpreted as reproductive cyclicity), and less distinct second-order increments (interpreted as annual in nature). This pattern is clearly reflected by the elemental composition with the primary growth breaks lacking Ca and Sr but including Mg and S as organic matrix constituents. The second-order increments within the calcite are mirrored by moderately co-varying Mg/Ca and S/Ca fluctuations at stable Sr concentrations, reflecting varying proportions of organic matrix. Dorsal and central endostracum transects reveal a low inter-valve, but

  3. NIKE3D a nonlinear, implicit, three-dimensional finite element code for solid and structural mechanics user's manual update summary

    SciTech Connect

    Puso, M; Maker, B N; Ferencz, R M; Hallquist, J O

    2000-03-24

    This report provides the NIKE3D user's manual update summary for changes made from version 3.0.0 April 24, 1995 to version 3.3.6 March 24,2000. The updates are excerpted directly from the code printed output file (hence the Courier font and formatting), are presented in chronological order and delineated by NIKE3D version number. NIKE3D is a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Thirty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a direct factorization method.

  4. Microscopic Shell Model Calculations for sd-Shell Nuclei

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Shirokov, Andrey M.; Smirnova, Nadya A.; Vary, James P.

    Several techniques now exist for performing detailed and accurate calculations of the structure of light nuclei, i.e., A ≤ 16. Going to heavier nuclei requires new techniques or extensions of old ones. One of these is the so-called No Core Shell Model (NCSM) with a Core approach, which involves an Okubo-Lee-Suzuki (OLS) transformation of a converged NCSM result into a single major shell, such as the sd-shell. The obtained effective two-body matrix elements can be separated into core and single-particle (s.p.) energies plus residual two-body interactions, which can be used for performing standard shell-model (SSM) calculations. As an example, an application of this procedure will be given for nuclei at the beginning ofthe sd-shell.

  5. A new N-hydroxyethyliminodiacetic acid modified core-shell silica phase for chelation ion chromatography of alkaline earth, transition and rare earth elements.

    PubMed

    McGillicuddy, Nicola; Nesterenko, Ekaterina P; Nesterenko, Pavel N; Stack, Elaine M; Omamogho, Jesse O; Glennon, Jeremy D; Paull, Brett

    2013-12-20

    Bare core-shell silica (1.7μm) has been modified with iminodiacetic acid functional groups via standard silane chemistry, forming a new N-hydroxyethyliminodiacetic acid (HEIDA) functionalised core-shell stationary phase. The column was applied in high-performance chelation ion chromatography and evaluated for the retention of alkaline earth, transition and heavy metal cations. The influence of nitric acid eluent concentration, addition of complexing agent dipicolinic acid, eluent pH and column temperature on the column performance was investigated. The efficiencies obtained for transition and heavy metal cations (and resultant separations) were comparable or better than those previously obtained for alternative fully porous silica based chelation stationary phases, and a similarly modified monolithic silica column, ranging from ∼15 to 56μm HETP. Increasing the ionic strength of the eluent with the addition of KNO3 (0.75M) and increasing the column temperature (70°C) facilitated the isocratic separation of a mixture of 14 lanthanides and yttrium in under 12min, with HETP averaging 18μm (7μm for Ce(III)).

  6. Shell Games.

    ERIC Educational Resources Information Center

    Atkinson, Bill

    1982-01-01

    The author critiques the program design and educational aspects of the Shell Games, a program developed by Apple Computer, Inc., which can be used by the teacher to design objective tests for adaptation to specific assessment needs. (For related articles, see EC 142 959-962.) (Author)

  7. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  8. Building Atoms Shell by Shell.

    ERIC Educational Resources Information Center

    Sussman, Beverly

    1993-01-01

    Describes an atom-building activity where students construct three-dimensional models of atoms using a styrofoam ball as the nucleus and pom-poms, gum drops, minimarshmallows, or other small items of two different colors to represent protons and neutrons attached. Rings of various sizes with pom-poms attached represent electron shells and…

  9. Generic element processor (application to nonlinear analysis)

    NASA Technical Reports Server (NTRS)

    Stanley, Gary

    1989-01-01

    The focus here is on one aspect of the Computational Structural Mechanics (CSM) Testbed: finite element technology. The approach involves a Generic Element Processor: a command-driven, database-oriented software shell that facilitates introduction of new elements into the testbed. This shell features an element-independent corotational capability that upgrades linear elements to geometrically nonlinear analysis, and corrects the rigid-body errors that plague many contemporary plate and shell elements. Specific elements that have been implemented in the Testbed via this mechanism include the Assumed Natural-Coordinate Strain (ANS) shell elements, developed with Professor K. C. Park (University of Colorado, Boulder), a new class of curved hybrid shell elements, developed by Dr. David Kang of LPARL (formerly a student of Professor T. Pian), other shell and solid hybrid elements developed by NASA personnel, and recently a repackaged version of the workhorse shell element used in the traditional STAGS nonlinear shell analysis code. The presentation covers: (1) user and developer interfaces to the generic element processor, (2) an explanation of the built-in corotational option, (3) a description of some of the shell-elements currently implemented, and (4) application to sample nonlinear shell postbuckling problems.

  10. Shell worlds

    NASA Astrophysics Data System (ADS)

    Roy, Kenneth I.; Kennedy, Robert G., III; Fields, David E.

    2013-02-01

    The traditional concept of terraforming assumes ready availability of candidate planets with acceptable qualities: orbiting a star in its "Goldilocks zone", liquid water, enough mass, years longer than days, magnetic field, etc. But even stipulating affordable interstellar travel, we still might never find a good candidate elsewhere. Whatever we found likely would require centuries of heavy terraforming, just as Mars or Venus would here. Our increasing appreciation of the ubiquity of life suggests that any terra nova would already possess it. We would then face the dilemma of introducing alien life forms (us, our microbes) into another living world. Instead, we propose a novel method to create habitable environments for humanity by enclosing airless, sterile, otherwise useless planets, moons, and even large asteroids within engineered shells, which avoids the conundrum. These shells are subject to two opposing internal stresses: compression due to the primary's gravity, and tension from atmospheric pressure contained inside. By careful design, these two cancel each other resulting in zero net shell stress. Beneath the shell an Earth-like environment could be created similar in almost all respects to that of Home, except for gravity, regardless of the distance to the sun or other star. Englobing a small planet, moon, or even a dwarf planet like Ceres, would require astronomical amounts of material (quadrillions of tons) and energy, plus a great deal of time. It would be a quantum leap in difficulty over building Dyson Dots or industrializing our solar system, perhaps comparable to a mission across interstellar space with a living crew within their lifetime. But when accomplished, these constructs would be complete (albeit small) worlds, not merely large habitats. They could be stable across historic timescales, possibly geologic. Each would contain a full, self-sustaining ecology, which might evolve in curious directions over time. This has interesting implications

  11. Thermal buckling of laminated composite shells

    SciTech Connect

    Thangaratnam, R.K.; Palaninathan, R.; Ramachandran, J. )

    1990-05-01

    The linear buckling analysis of laminated composite cylindrical and conical shells under thermal load using the finite element method is reported here. Critical temperatures are presented for various cases of cross-ply and angly-ply laminated shells. The effects of radius/thickness ratio, number of layers, ratio of coefficients of thermal expansion, and the angle of fiber orientation have been studied. The results indicate that the buckling behavior of laminated shell under thermal load is different from that of mechanically loaded shell with respect to the angle of fiber orientation. 6 refs.

  12. FUEL ELEMENT

    DOEpatents

    Fortescue, P.; Zumwalt, L.R.

    1961-11-28

    A fuel element was developed for a gas cooled nuclear reactor. The element is constructed in the form of a compacted fuel slug including carbides of fissionable material in some cases with a breeder material carbide and a moderator which slug is disposed in a canning jacket of relatively impermeable moderator material. Such canned fuel slugs are disposed in an elongated shell of moderator having greater gas permeability than the canning material wherefore application of reduced pressure to the space therebetween causes gas diffusing through the exterior shell to sweep fission products from the system. Integral fission product traps and/or exterior traps as well as a fission product monitoring system may be employed therewith. (AEC)

  13. On the vibration of axisymmetric shells

    NASA Astrophysics Data System (ADS)

    Heppler, G. R.; Wahl, L.

    1989-05-01

    The application of nonconventional basis functions to the linear vibration problem is explored. By employing shell coordinates the elements allow the exact geometrical modelling of shells of revolution with arbitrary meridians and the elements are able to reproduce strain free states under an arbitrary rigid body motion due to the use of these special basis functions. A generalization of the Reissner Mindlin plate theories is used because they have a broader range of applicability than the usual thin/shallow shell theories and also the trial functions need only be of class C(sup 0). The geometry treated is a hyperbola of revolution, in two configurations.

  14. K-shell photoabsorption and photoionisation of trace elements. I. Isoelectronic sequences with electron number 3 ≤N ≤ 11

    NASA Astrophysics Data System (ADS)

    Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Witthoeft, M. C.; Kallman, T. R.

    2016-05-01

    Context. With the recent launching of the Hitomi X-ray space observatory, K lines and edges of chemical elements with low cosmic abundances, namely F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn, can be resolved and used to determine important properties of supernova remnants, galaxy clusters and accreting black holes and neutron stars. Aims: The second stage of the present ongoing project involves the computation of the accurate photoabsorption and photoionisation cross sections required to interpret the X-ray spectra of such trace elements. Methods: Depending on target complexity and computer tractability, ground-state cross sections are computed either with the close-coupling Breit-Pauli R-matrix method or with the autostructure atomic structure code in the isolated-resonance approximation. The intermediate-coupling scheme is used whenever possible. In order to determine a realistic K-edge behaviour for each species, both radiative and Auger dampings are taken into account, the latter being included in the R-matrix formalism by means of an optical potential. Results: Photoabsorption and total and partial photoionisation cross sections are reported for isoelectronic sequences with electron numbers 3 ≤ N ≤ 11. The Na sequence (N = 11) is used to estimate the contributions from configurations with a 2s hole (i.e. [2s]μ) and those containing 3d orbitals, which will be crucial when considering sequences with N > 11. Conclusions: It is found that the [2s]μ configurations must be included in the target representations of species with N ≥ 11 as they contribute significantly to the monotonic background of the cross section between the L and K edges. Configurations with 3d orbitals are important in rendering an accurate L edge, but they can be practically neglected in the K-edge region.

  15. NIF Double Shell outer-shell experiments

    NASA Astrophysics Data System (ADS)

    Merritt, E. C.; Montgomery, D. S.; Kline, J. L.; Daughton, W. S.; Wilson, D. C.; Dodd, E. S.; Renner, D. B.; Cardenas, T.; Batha, S. H.

    2016-10-01

    At the core of the Double Shell concept is the kinetic energy transfer from the outer shell to the inner shell via collision. This collision sets both the implosion shape of the inner shell, from imprinting of the shape of the outer shell, as well as the maximum energy available to compress the DT fuel. Therefore, it is crucial to be able to control the time-dependent shape of the outer shell, such that the outer shell is nominally round at the collision time. We present the experiment results from our sub-scale ( 1 MJ) NIF outer-shell only shape tuning campaign, where we vary shape by changing a turn-on time delay between the same pulse shape on the inner and outer cone beams. This type of shape tuning is unique to this platform and only possible since the Double Shell design uses a single-shock drive (4.5 ns reverse ramp pulse). The outer-shell only targets used a 5.75 mm diameter standard near-vacuum NIF hohlraum with 0.032 mg/cc He gas fill, and a Be capsule with 0.4% uniform Cu dopant, with 242 um thick ablator. We also present results from a third outer-shell only shot used to measure shell trajectory, which is critical in determining the shell impact time. This work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  16. Structural Assessment of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  17. SHELLS: A thin-shell program for modeling neotectonics of regional or global lithosphere with faults

    SciTech Connect

    Kong, X.; Bird, P.

    1995-11-10

    This report discusses a geophysical computer program called SHELLS, which model neotectonics of regional or global lithosphere with faults. This model is based on spherical shell elements which uses isostacy and vertical integration of lithospheric strength to reduce this to a two-dimensional problem.

  18. Higher-Order Thickness Expansions for Cylindrical Shells

    DTIC Science & Technology

    1991-09-01

    4-5 iv Page 4.4 Element Independent Stiffness Formulation ............. 4-9 4.5 Symbolic Generation of...Arbitrary Shell . . . . A-I v Page A.2 Midsurface Strain Components for the Arbitrary Shell with a General Quartic Displacement Field Assumption...MACSYMA Routine for Elemental Codes Generation .... G-1 Bibliography ........................................... BIB-1 Vita

  19. The transuranium elements: From neptunium and plutonium to element 112

    SciTech Connect

    Hoffman, D.C. |

    1996-07-26

    Beginning in the 1930`s, both chemists and physicists became interested in synthesizing new artificial elements. The first transuranium element, Np, was synthesized in 1940. Over the past six decades, 20 transuranium elements have been produced. A review of the synthesis is given. The procedure of naming the heavy elements is also discussed. It appears feasible to produce elements 113 and 114. With the Berkeley Gas-filled Separator, it should be possible to reach the superheavy elements in the region of the spherical Z=114 shell, but with fewer neutrons than the N=184 spherical shell. 57 refs, 6 figs.

  20. Ecology and shell chemistry of Loxoconcha matagordensis

    USGS Publications Warehouse

    Cronin, T. M.; Kamiya, T.; Dwyer, G.S.; Belkin, H.; Vann, C.D.; Schwede, S.; Wagner, R.

    2005-01-01

    Studies of the seasonal ecology and shell chemistry of the ostracode Loxoconcha matagordensis and related species of Loxoconcha from regions off eastern North America reveal that shell size and trace elemental (Mg/Ca ratio) composition are useful in paleothermometry using fossil populations. Seasonal sampling of populations from Chesapeake Bay, augmented by samples from Florida Bay, indicate that shell size is inversely proportional to water temperature and that Mg/Ca ratios are positively correlated with the water temperature in which the adult carapace was secreted. Microprobe analyses of sectioned valves reveal intra-shell variability in Mg/Ca ratios but this does not strongly influence the utility of whole shell Mg/Ca analyses for paleoclimate application.

  1. Discovery of element 112

    SciTech Connect

    Hofmann, S.

    1996-12-31

    The new elements 110, 111, and 112 were synthesized and unambiguously identified in experiments at SHIP. Due to strong shell effects the dominant decay mode is not fission, but emission of alpha particles. Theoretical investigations predict that maximum shell effects should exist in nuclei near proton number 114 and neutron number 184. Measurements give hope that isotopes of element 114 close to the island of spherical Superheavy Elements could be produced by fusion reactions using {sup 118}Pb as target. systematic studies of the reaction cross-sections indicate that transfer of nucleons is the important process to initiate the fusion.

  2. Accurate stress resultants equations for laminated composite deep thick shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    This paper derives accurate equations for the normal and shear force as well as bending and twisting moment resultants for laminated composite deep, thick shells. The stress resultant equations for laminated composite thick shells are shown to be different from those of plates. This is due to the fact the stresses over the thickness of the shell have to be integrated on a trapezoidal-like shell element to obtain the stress resultants. Numerical results are obtained and showed that accurate stress resultants are needed for laminated composite deep thick shells, especially if the curvature is not spherical.

  3. Vibration of fluid loaded conical shells.

    PubMed

    Caresta, Mauro; Kessissoglou, Nicole J

    2008-10-01

    An analytical model is presented to describe the vibration of a truncated conical shell with fluid loading in the low frequency range. The solution for the dynamic response of the shell is presented in the form of a power series. Fluid loading is taken into account by dividing the shell into narrow strips which are considered to be locally cylindrical. Analytical results are presented for different boundary conditions and have been compared with the computational results from a boundary element model. Limitations of the model to the low frequency range are discussed.

  4. Multiple shells in IRC+10216: shell properties

    NASA Astrophysics Data System (ADS)

    Mauron, N.; Huggins, P. J.

    2000-07-01

    We report on the properties of the multiple shells in the circumstellar envelope of IRC+10216, using deep optical imaging, including data from the Hubble Space Telescope. The intensity profiles confirm the presence of thin ( ~ 0farcs5 -3'' ec), limb-brightened shells in the envelope, seen in stellar and ambient Galactic light scattered by dust. The shells are spaced at irregular intervals of ~ 5'' ec-20'' ec, corresponding to time scales of 200-800 yr, although intervals as short as ~ 1'' ec (40 yr) are seen close to the star. The location of the main shells shows a good correlation with high-resolution, molecular line maps of the inner envelope, indicating that the dust and gas are well coupled. The shell/intershell density contrast is typically ~ 3, and we find that the shells form the dominant mass component of the circumstellar envelope. The shells exhibit important evolutionary effects: the thickness increases with increasing radius, with an effective dispersion velocity of 0.7 km s-1 and there is evidence for shell interactions. Despite the presence of bipolar structure close to the star, the global shell pattern favors a roughly isotropic, episodic mass loss mechanism, with a range of time scales. Based on observations made with the Canada-France-Hawaii telescope, operated by CNRS, NRCC and UH, and on dearchived observations made with the NASA/ESA Hubble Space Telescope, operated by AURA Inc., under NASA contract NAS5-26555

  5. Computer program analyzes Buckling Of Shells Of Revolution with various wall construction, BOSOR

    NASA Technical Reports Server (NTRS)

    Almroth, B. O.; Bushnell, D.; Sobel, L. H.

    1968-01-01

    Computer program performs stability analyses for a wide class of shells without unduly restrictive approximations. The program uses numerical integration, finite difference of finite element techniques to solve with reasonable accuracy almost any buckling problem for shells exhibiting orthotropic behavior.

  6. Mussel shells of Mytilus edulis as bioarchives of the rare earth elements and yttrium distribution in seawater and the potential impact of pH and temperature on the partitioning behaviour

    NASA Astrophysics Data System (ADS)

    Ponnurangam, A.; Bau, M.; Brenner, M.; Koschinsky, A.

    2015-09-01

    Mussel shells are potential bioarchives of proxies for changes of the physico-chemical conditions in the bivalve's habitat. One such proxy is the distribution of the Rare Earths and Yttrium (REY) in seawater, as REY speciation in seawater is sensitive to pH and temperature variations, due to the impact of these parameters on the activity of CO32- in seawater. We present a new protocol for sample preparation and determination of REY concentrations in bivalve shells, that includes sample treatment with NaOCl followed by REY separation and preconcentration. The data obtained was further used to calculate REY partition coefficients between shells of M. edulis and ambient seawater, and acquired results were then used in the investigation of the potential effects of pH and temperature on REY partitioning. Shells of M. edulis mussels from the North Sea show consistent shale-normalized ("SN") REY patterns that increase from the light REY to the middle REY and decrease from the middle REY to the heavy REY. Despite being different to the general seawater REYSN pattern, the shells still display distinct REY features of seawater such as a negative CeSN anomaly and small positive YSN and GdSN anomalies. Apparent partition coefficients for the REY between the shell and seawater (appDREYshell/seawater) are low and decrease strongly from the light REY (4.04 for La) to the heavy REY (0.34 for Lu). However, assuming that only the free REY3+ are incorporated into the shell, appDREY3+shell/seawater values are higher and rather similar for all REY (102.46 for La; 113.44 for Lu), but show a slight maximum at Tb (199.18). Although the impact of vital effects i.e. REY speciation in a mussel's extrapallial fluid from which the carbonate minerals precipitate, cannot be quantified yet, it appears that M. edulis shells are bioarchives of some REY features of seawater. We modelled the REYSN patterns of a hypothetical mussel shell at pH 8.2 and 7.6 and at temperatures of 25 and 5

  7. Classification Shell Game.

    ERIC Educational Resources Information Center

    Etzold, Carol

    1983-01-01

    Discusses shell classification exercises. Through keying students advanced from the "I know what a shell looks like" stage to become involved in the classification process: observing, labeling, making decisions about categories, and identifying marine animals. (Author/JN)

  8. Identification of material constants for a composite shell structure

    SciTech Connect

    Carne, T.G.; Martinez, D.R.

    1987-01-01

    A finite element model of a composite shell was created. The model includes uncertain orthotropic elastic constants. To identify these constants, a modal survey was performed on an actual shell. The resulting modal data along with the finite element model of the shell were used in a Bayes estimation algorithm. Values of the elastic constants were estimated which minimized the differences between the test results and the finite element predictions. The estimation procedure employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.

  9. Trends in Ionization Energy of Transition-Metal Elements

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2005-01-01

    A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…

  10. NUCLEAR REACTOR FUEL ELEMENT

    DOEpatents

    Wheelock, C.W.; Baumeister, E.B.

    1961-09-01

    A reactor fuel element utilizing fissionable fuel materials in plate form is described. This fuel element consists of bundles of fuel-bearing plates. The bundles are stacked inside of a tube which forms the shell of the fuel element. The plates each have longitudinal fins running parallel to the direction of coolant flow, and interspersed among and parallel to the fins are ribs which position the plates relative to each other and to the fuel element shell. The plate bundles are held together by thin bands or wires. The ex tended surface increases the heat transfer capabilities of a fuel element by a factor of 3 or more over those of a simple flat plate.

  11. Mussel shells of Mytilus edulis as bioarchives of the distribution of rare earth elements and yttrium in seawater and the potential impact of pH and temperature on their partitioning behavior

    NASA Astrophysics Data System (ADS)

    Ponnurangam, A.; Bau, M.; Brenner, M.; Koschinsky, A.

    2016-02-01

    Mussel shells are potential bioarchives of proxies for changes in the physicochemical conditions in the bivalve's habitat. One such proxy is the distribution of rare earths and yttrium (REY) in seawater, as REY speciation in seawater is sensitive to pH and temperature variations, due to the impact of these parameters on the activity of CO32- in seawater. We present a new protocol for sample preparation and determination of ultratrace concentrations of REY in bulk bivalve shells (comprised of calcite and aragonite) that includes sample treatment with NaOCl followed by REY separation and preconcentration. The data obtained were used to calculate REY partition coefficients between bulk bimineralic shells of Mytilus edulis (calcite aragonite mix) and ambient seawater, and the results acquired were then used to investigate the potential effects of pH and temperature on REY partitioning.Shells of Mytilus edulis mussels from the North Sea show consistent shale-normalized (SN) REY patterns that increase from the light REY to the middle REY and decrease from the middle REY to the heavy REY. Despite being different from the general seawater REYSN pattern, the shells still display distinct REY features of seawater, such as a negative CeSN anomaly and small positive YSN and GdSN anomalies. Apparent REY partition coefficients between shells and seawater (appDTot.REYshell/seawater) are low and decrease strongly from the light REY (4.04 for La) to the heavy REY (0.34 for Lu). However, assuming that only the free REY3+ are incorporated into the shell, modDFreeREY3+shell/seawater values are higher and comparatively similar for all REY (102.46 for La; 113.44 for Lu) but show a slight maximum at Tb (199.18). Although the impact of vital effects, such as REY speciation in a mussel's extrapallial fluid from which the carbonate minerals precipitate, cannot be quantified yet, it appears that M. edulis shells are bioarchives of some REY features of seawater.We modeled the REYSN patterns

  12. Shell Worlds: The Question of Shell Stability

    NASA Astrophysics Data System (ADS)

    Roy, K. L.; Kennedy, R. G., III; Fields, D. E.

    The initial idea of shell worlds was first proposed in the January 2009 edition of JBIS. In that paper the stability of the shell around a central world was not discussed at any length except to say that it was stable due to forces induced by gravity. This paper demonstrates in a qualitative and quantitative manner that a material shell supported by atmospheric pressure around a moon or small planet is indeed stable and does not require active measures to remain centered, provided that the central body is large enough. The minimal size of the central body to provide this stability is discussed.

  13. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2007-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right next to the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  14. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10 percent at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  15. Shell model description of band structure in 48Cr

    SciTech Connect

    Vargas, Carlos E.; Velazquez, Victor M.

    2007-02-12

    The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements.

  16. Records of River Variation in the Shells of Freshwater Bivalves

    NASA Astrophysics Data System (ADS)

    Carroll, M.; Romanek, C.

    2005-12-01

    The skeletons of hard-shelled invertebrates such as corals and bivalves are commonly used in marine settings as archives of environmental information. They are less commonly used in freshwater settings where variability in water chemistry makes it more difficult to calibrate chemical proxies such as the Sr:Ca in a shell. Our objective is to evaluate whether trace element concentrations in freshwater bivalve shells contain information on environmental conditions. Multiple elements (Ba, Cu, Mn and Sr) were analyzed within the shells of modern bivalves from four streams on DOE's Savannah River Site in S.C. Laser Ablation ICP-MS was used to measure elemental concentrations across five aragonitic shells from each site. These elements were chosen because they are present in detectable concentrations (ppm) in the shell and they have been suggested as useful proxies for temperature, rainfall, productivity and pollution. Results were compared to historical monthly site records of water chemistry and chemical analyses of water samples collected from the streams where the clams were found. The average shell concentrations of Sr and Mn were significantly different between sites and increased proportionally to water concentration. This was not observed for Ba and Cu. For example, the Ba concentrations of shells collected at a site downstream of a lake were higher than those for shells from stream sites with significantly higher dissolved Ba concentrations. Copper was only detected at dark growth lines with the number of lines and shell material between them varying between shells within the same stream. Intrashell profiles of Ba, Sr and Mn concentrations exhibited cyclical variation. The magnitude of cyclical variation for Mn and Sr within a shell corresponds with the annual variation in monthly water sample concentrations. Again, this pattern was not observed for Ba, especially in shells from the site downstream of a lake. This supports suggestions that particulate organic

  17. Comparative study of the shell development of hard- and soft-shelled turtles.

    PubMed

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-07-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin.

  18. Fluctuating shells under pressure

    PubMed Central

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  19. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  20. Microstructural characacterization of shell components in the mollusc Physa sp.

    PubMed

    de Paula, Silvia M; Silveira, Marina

    2005-01-01

    Shells of the freshwater, pulmonate snail Physa (Mollusca, Gasteropoda), ranging from 0.5 to 10 mm in length, were studied using scanning microscopy, x-ray analysis, and infrared spectroscopy. Results obtained suggest that the shell is composed of aragonite, which occurs in several distinct crystalline forms. A selective distribution of crystalline forms (hexagonal plates, prisms, rhombohedra, and spherulites) occurred along specific sites of the shell. A variable distribution of the forms was also detected in adult shells and in protoconchs of developing embryos. Qualitative elemental analysis, using an energy-dispersive spectrometer, corroborates the presence of calcium, phosphorus and sulphur ions.

  1. Vibration analysis of a large underwater shell of revolution

    SciTech Connect

    Yasuzawa, Y.; Kagawa, K.; Takahashi, H.

    1995-12-31

    This is the 2nd report on structural feasibility study of an underwater half drop shaped shell , the 1st one was reported in ISOPE`93. Dynamic characteristics of a large underwater shell of revolution are studied in the paper. Large rotational shell having optimum shape with respect to the hydrostatic pressure can be used for a storage of LNG or vessel of super conducting coil for power storage in the future. In this study, which is one of many structural feasibility studies for the shell, vibration characteristics of the shell are examined using numerical analysis, in which finite elements for the structure and boundary elements for surrounding water are used. Natural frequencies and modes of an underwater drop shaped shell are examined using a developed numerical code DASOR. The code was justified by comparison with other results of vibration analysis of a submerged cylindrical shell for various water levels. The added mass effect of the underwater drop shaped shell in each vibration mode is discussed and the ratio of modal mass of structure in water and in air in the lowest mode proved to be very large specially for axisymmetrical mode and horizontal lowest mode. A seismic response analysis of the underwater shell of revolution with the excitation coming from a horizontally moving seabed is performed numerically and statistically. The analysis using power spectrum density function provide with the responses of distribution of displacements, membrane stresses, and bending moments.

  2. Distributed neural signals on parabolic cylindrical shells

    NASA Astrophysics Data System (ADS)

    Hu, S. D.; Li, H.; Tzou, H. S.

    2013-06-01

    Parabolic cylindrical shells are commonly used as key components in communication antennas, space telescopes, solar collectors, etc. This study focuses on distributed modal neural sensing signals on a flexible simply-supported parabolic cylindrical shell panel. The parabolic cylindrical shell is fully laminated with a piezoelectric layer on its outer surface and the piezoelectric layer is segmented into infinitesimal elements (neurons) to investigate the microscopic distributed neural sensing signals. Since the dominant vibration component of the shell is usually the transverse oscillation, a new transverse mode shape function is defined. Two shell cases, i.e., the ratio of the meridian height to the half span distance of a parabola at 1:4 (shallow) and 1:1 (deep), are studied to reveal the curvature effect to the neural sensing signals. Studies suggest that the membrane signal component dominates for lower natural modes and the bending signal component dominates for higher natural modes. The meridional membrane and bending signal components are mostly concentrated on the high-curvature areas, while the longitudinal bending component is mostly concentrated on the relatively flat areas. The concentration behavior becomes more prominent as the parabolic cylindrical shell deepens, primarily resulting from the enhanced membrane effect due to the increased curvature.

  3. Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2004-01-01

    An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.

  4. Acoustic radiation from a shell with internal structures

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1989-01-01

    A method is developed to compute frequency response and acoustic radiation of a complex shell. The axisymmetric geometry of the shell includes cylindrical, conical, and spherical segments stiffened by discrete rings and bulkheads. The shell is coupled to internal masses and elastic frames. Shell segments are treated by transfer matrices. Rings, bulkheads, frames, and concentrated masses are treated by impedances at junctions of segments. The shell is coupled to an external acoustic fluid treated by Green's function and curved surface elements. A major issue facing the method's treatment of the fluid would be lack of existence or uniqueness encountered in the uncoupled, external acoustic problem at characteristic wavenumbers. By using a simple spherical shell, without internal structures, this potential hindrance is shown not to arise. A fuller application of the method awaits subsequent results.

  5. Environmental effects on shell microstructures of Cerastoderma edule

    NASA Astrophysics Data System (ADS)

    Milano, Stefania; Schöne, Bernd R.; Witbaard, Rob

    2015-04-01

    Bivalve shells serve as sensitive recorders of environmental conditions. However, reconstruction of a specific environmental parameter is still challenging. For example, variable shell growth rates simultaneously provide information on water temperature, food availability and food quality. Likewise, shell oxygen isotope values function as a dual proxy of water temperature and salinity (=oxygen isotope signature of the ambient water). Reconstruction of water temperature from δ18Oshell requires knowledge of δ18Oshell and vice versa. Unfortunately, the incorporation of trace elements in the shell is strongly controlled by biological effects and, hence, the element-to-calcium ratios of the shell are difficult to interpret in terms of environmental variables. Here, we studied if the structural properties (shell architecture, shell microstructures, fabrics) of the shell of the common cockle can function as an alternative proxy of environmental variables. Specimens of C. edule were collected alive from the intertidal zone of the North Sea. Temperature and salinity were monitored at the site where the shells lived on hourly basis for almost one year. Each portion of the shell was temporally contextualized with the tidally-deposited growth increments. Shell microstructures (composite prismatic structures) were analyzed under with a scanning electron microscope (SEM). The change of the size and shape of the mesocrystals was strongly correlated to water temperature during the growing season (May - Sep.). With rising temperatures, the size of mesocrystals increased and their morphology changed from rounded to elongated shape. Our findings suggest that shell microstructures of C. edule may serve a new, independent proxy for water temperature.

  6. Mussel Shell Evaluation as Bioindicator For Heavy Metals

    NASA Astrophysics Data System (ADS)

    Andrello, Avacir Casanova; Lopes, Fábio; Galvão, Tiago Dutra

    2010-05-01

    Recently, in Brazil, it has appeared a new and unusual "plague" in lazer and commercial fishing. It is caused by the parasitic larval phase of certain native bivalve mollusks of fresh water known as "Naiades" and its involves the presence of big bivalve of fresh water, mainly Anodontites trapesialis, in the tanks and dams of the fish creation. These bivalve mollusks belong to the Unionoida Order, Mycetopodidae Family. The objective of the present work was to analyze the shells of these mollusks to verify the possibility of use as bioindicators for heavy metals in freshwater. The mollusks shells were collected in a commercial fishing at Londrina-PR. A qualitative analysis was made to determine the chemical composition of the shells and verify a possible correlation with existent heavy metals in the aquatic environment. In the inner part of the shells were identified the elements Ca, P, Fe, Mn and Sr and in the outer part were identified Ca, P, Fe, Mn, Sr and Cu. The Ca ratio of the outer part by inner part of the analyzed shells is around of 1, as expected, because Ca is the main compound of mollusks shells. The ratio of P, Fe, Mn, and Sr to the Ca were constant in all analyzed shells, being close to 0.015. The ratio Cu/Ca varied among the shells, showing that this mollusk is sensitive to concentration of this element in the aquatic environment.

  7. Thin Shell Manufacturing for large Wavefront correctors

    NASA Astrophysics Data System (ADS)

    Ruch, Eric; Poutriquet, Florence

    2011-09-01

    One of the major key elements in large adaptive optical systems is the thin shell, used as a deformable mirror. Although the optical prescriptions are relaxed with respect to a passive mirror, especially in the low spatial frequency domain, other requirements, such as the cosmetic defects (scratch & dig), the tight control of the thickness uniformity and of course the fragility of the piece having an aspect ratio up to 1000:1, generate new problems during the manufacturing, testing and handling of such optics. Moreover, the optical surface has to be tested in two different ways: a classical optical test bench allows us to create a surface map of the mirror. This map is then computed to determine the force required by the actuators to flatten the mirror and this becomes also a specification for polishing and implies a good interaction with the voice coil manufacturer. More than twenty years ago Sagem - Reosc developed the first meter class thin shell for early adaptive optics experiments. Since then, large thin shell have been used as the optical part in composite mirrors and more recently the aspheric shell for the VLT Deformable Secondary Mirror has been polished and prototypes, up to scale 1, of the E-ELT M4 Adaptive Mirror have been delivered to ESO in 2010. This paper will present some recent results in the manufacturing and testing technologies of large this shell, especially focusing on the development of the 1,1 meter convex aspherical shell for the VLT M2 mirror and on the results obtained on the largest thin shell produced so far (2,5 meter in diameter) developed as a demonstrator for the future E-ELT M4.

  8. Bearing capacity of shell strip footing on reinforced sand

    PubMed Central

    Azzam, W.R.; Nasr, A.M.

    2014-01-01

    In this paper, the ultimate load capacities of shell foundations on unreinforced and reinforced sand were determined by laboratory model tests. A series of loading tests were carried out on model shell footing with and without single layer of reinforcement. The tests were done for shell foundation at different shell embedment depth and subgrade density. The results were compared with those for flat foundations without reinforcement. The model test results were verified using finite element analysis using program PLAXIS. The experimental studies indicated that, the ultimate load capacity of shell footing on reinforced subgrade is higher than those on unreinforced cases and the load settlement curves were significantly modified. The shell foundation over reinforced subgrade can be considered a good method to increase the effective depth of the foundation and decrease the resulting settlement. Also the rupture surface of shell reinforced system was significantly deeper than both normal footing and shell footing without reinforcement. The numerical analysis helps in understanding the deformation behavior of the studied systems and identifies the failure surface of reinforced shell footing. PMID:26425361

  9. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, Thomas P.

    1991-01-01

    A process for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry.

  10. Hollow spherical shell manufacture

    DOEpatents

    O'Holleran, T.P.

    1991-11-26

    A process is disclosed for making a hollow spherical shell of silicate glass composition in which an aqueous suspension of silicate glass particles and an immiscible liquid blowing agent is placed within the hollow spherical cavity of a porous mold. The mold is spun to reduce effective gravity to zero and to center the blowing agent, while being heated so as to vaporize the immiscible liquid and urge the water carrier of the aqueous suspension to migrate into the body of the mold, leaving a green shell compact deposited around the mold cavity. The green shell compact is then removed from the cavity, and is sintered for a time and a temperature sufficient to form a silicate glass shell of substantially homogeneous composition and uniform geometry. 3 figures.

  11. Strontium and barium incorporation into freshwater bivalve shells

    NASA Astrophysics Data System (ADS)

    Zhao, Liqiang; Schöne, Bernd R.

    2015-04-01

    Despite strong vital control, trace elements of bivalve shells can potentially serve as proxies of environmental change. However, to reconstruct past environments with the geochemical properties of the shells and determine the degree to which the element levels are biologically influenced, it is essential to experimentally determine the relationship between environmental variables and the element composition of the shells. In particular, the trace element geochemistry of freshwater bivalve shells has so far received little attention. Here, we present a controlled laboratory experiment that aimed at providing a better understanding of the influence of changing environmental variables on the incorporation of trace elements into freshwater bivalve shells. Under controlled conditions, Asian clams Corbicula fluminea were reared for 5 weeks in three sets of experiments: (1) different water temperature (10, 16, and 22° C) and different food levels (an equally mixed Scenedesmu quadricanda and Chlorella vulgaris at rations of 0.4, 2, 4, and 8 × 104 cells ml-1 d-1); (2) different water temperature (10, 16, and 22° C) and different element levels (Sr, Ba); (3) five sediment types (sand, slightly muddy sand, muddy sand, slightly sandy mud and mud). In the first set of experiments, shell Sr/Ca showed a significantly negative correlation with temperature, where Sr/Ca decreased linearly by about 1.6 to 2.1% per 1° C, but responded far more weakly to food availability. On the other hand, temperature and food availability affected shell Ba/Ca ratios, which potentially confounds the interpretation of Ba/Ca variations. Moreover, shell Sr/Ca and Ba/Ca exhibited a clearly negative dependence on shells growth rate that varied significantly among combinations of temperature and food availability. In the second set of experiments, shell Sr/Ca and Ba/Ca were positively and linearly related to water Sr/Ca and Ba/Ca for all temperatures. However, significantly negative effects of

  12. Shell forming system

    NASA Technical Reports Server (NTRS)

    Kendall, Jr., James M. (Inventor); Wang, Taylor G. (Inventor); Elleman, Daniel D. (Inventor)

    1990-01-01

    Hollow shells of high uniformity are formed by emitting liquid through an outer nozzle and gas through an inner nozzle, to form a hollow extrusion, by flowing the gas at a velocity between about 1.3 and 10 times the liquid velocity. The natural breakup rate of the extrusion can be increased to decrease shell size by applying periodic perturbations to one of the materials prior to exiting the nozzles, to a nozzle, or to the extrusion.

  13. Shells and Patterns

    ERIC Educational Resources Information Center

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  14. Off-shell CHY amplitudes

    NASA Astrophysics Data System (ADS)

    Lam, C. S.; Yao, York-Peng

    2016-06-01

    The Cachazo-He-Yuan (CHY) formula for on-shell scattering amplitudes is extended off-shell. The off-shell amplitudes (amputated Green's functions) are Möbius invariant, and have the same momentum poles as the on-shell amplitudes. The working principles which drive the modifications to the scattering equations are mainly Möbius covariance and energy momentum conservation in off-shell kinematics. The same technique is also used to obtain off-shell massive scalars. A simple off-shell extension of the CHY gauge formula which is Möbius invariant is proposed, but its true nature awaits further study.

  15. Optimal design of geodesically stiffened composite cylindrical shells

    NASA Technical Reports Server (NTRS)

    Gendron, G.; Gurdal, Z.

    1992-01-01

    An optimization system based on general-purpose finite element code CSM Testbed and optimization program ADS is described. The system can be used to obtain minimum-mass designs of composite shell structures with complex stiffening arrangements. Ply thicknesses, ply orientations, and stiffener heights can be used as design variables. Buckling, displacement, and material failure constraints can be imposed on the design. The system is used to conduct a preliminary design study of geodesically stiffened shells. For comparison purposes, optimal designs of unstiffened shells, and ring and longitudinal stringer stiffened shells are also studied. Trends in the design of geodesically stiffened shells are identified. Features that enhance the capabilities and efficiency of the design system are described.

  16. Hanford double shell tank corrosion monitoring instrument tree prototype

    SciTech Connect

    Nelson, J.L.; Edgemon, G.L.; Ohl, P.C.

    1995-11-01

    High-level nuclear wastes at the Hanford site are stored underground in carbon steel double-shell and single-shell tanks (DSTs and SSTs). The installation of a prototype corrosion monitoring instrument tree into DST 241-A-101 was completed in December 1995. The instrument tree has the ability to detect and discriminate between uniform corrosion, pitting, and stress corrosion cracking (SCC) through the use of electrochemical noise measurements and a unique stressed element, three-electrode probe. The tree itself is constructed of AISI 304L stainless steel (UNS S30403), with probes in the vapor space, vapor/liquid interface and liquid. Successful development of these trees will allow their application to single shell tanks and the transfer of technology to other US Department of Energy (DOE) sites. Keywords: Hanford, radioactive waste, high-level waste tanks, electrochemical noise, probes, double-shell tanks, single-shell tanks, corrosion.

  17. Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout

    NASA Astrophysics Data System (ADS)

    Sahoo, Sarmila

    2016-08-01

    Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances.

  18. Multi-Shell Hollow Nanogels with Responsive Shell Permeability

    PubMed Central

    Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter

    2016-01-01

    We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478

  19. The adsorption of rare earth ions using carbonized polydopamine nano shells

    SciTech Connect

    Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; Dai, Sheng; Liu, Rui; Hou, Xisen; Dai, Sheng

    2016-01-07

    Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group and carbonyl group of dopamine.

  20. The adsorption of rare earth ions using carbonized polydopamine nano shells

    DOE PAGES

    Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; ...

    2016-01-07

    Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group andmore » carbonyl group of dopamine.« less

  1. Effective gA in the pf shell

    NASA Astrophysics Data System (ADS)

    Martínez-Pinedo, G.; Poves, A.; Caurier, E.; Zuker, A. P.

    1996-06-01

    We have calculated the Gamow-Teller matrix elements of 64 decays of nuclei in the mass range A=41-50. In all the cases the valence space of the full pf shell is used. Agreement with the experimental results demands the introduction of an average quenching factor q=0.744+/-0.015 slightly smaller but statistically compatible with the sd-shell value, thus indicating that the present number is close to the limit for large A.

  2. Trace elements in marine ostracodes

    NASA Astrophysics Data System (ADS)

    Dwyer, Gary S.; Cronin, Thomas M.; Baker, Paul A.

    Extending the work of Cadot, Kaesler, De Deckker, Chivas, and Corrège, we have measured the elemental chemistry of shells of marine ostracodes to evaluate the usefulness of ostracode shell chemistry as a paleoenvironmental proxy. Our work has focused primarily on Mg/Ca, Sr/Ca, and Na/Ca ratios of two common genera: deep-sea genus Krithe and shallow marine/estuarine genus Loxoconcha. We evaluated in vivo effects including genus, species, gender, ontogeny, shell size, intra-shell heterogeneity (Mg), water temperature, and salinity, and postmortem diagenetic effects including partial dissolution, recrystallization, and shell surface contamination. Analysis of modern (core-top), fossil, and laboratory-raised specimens across a wide range of temperature and salinity conditions confirms earlier work indicating that Krithe and Loxoconcha Mg/Ca ratios are dominantly controlled by water temperature. Sr/Ca and Na/Ca ratios co-vary with temperature in core-top Krithe, but not in cultured Loxoconcha suggesting that the Krithe Sr/Ca and Na/Ca correlation with temperature may be related to another variable that broadly co-varies with temperature. Phylogenetic and ontogenetic effects are also indicated, including different Mg-thermodependence and intra-shell Mg distribution between Krithe and Loxoconcha. Inter-specific effects are suggested for two species of Krithe. Magnesium uptake in eldest juvenile shells seems to be identical to that of adult shells, thus greatly increasing the amount of shell material available for paleoenvironmental studies. No salinity effects were observed. Shell Na/Ca ratios showed a dramatic decrease with increasing dissolution (natural and artificial) in waters that are undersaturated with respect to calcite, whereas Mg/Ca ratios displayed a minor decrease and Sr/Ca ratios showed no change. Of the ratios studied, Mg/Ca offers the most promise for Quaternary marine studies as a paleothermometer. Further calibration studies are needed to better

  3. Active Constrained Layer Damping of Thin Cylindrical Shells

    NASA Astrophysics Data System (ADS)

    RAY, M. C.; OH, J.; BAZ, A.

    2001-03-01

    The effectiveness of the active constrained layer damping (ACLD) treatments in enhancing the damping characteristics of thin cylindrical shells is presented. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. Experiments are performed to verify the numerical predictions. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  4. A collection of edge-based elements

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Edge-based elements have proved useful in solving electromagnetic problems since they are nondivergent. Previous authors have presented several two and three dimensional elements. Herein, we present four types of elements which are suitable for modeling several types of three dimensional geometries. Distorted brick and triangular prism elements are given in cartesian coordinates as well as the specialized cylindrical shell and pie-shaped prism elements which are suitable for problems best described in polar cylindrical coordinates.

  5. Nonlinear Finite Element Analysis of Sandwich Composites.

    DTIC Science & Technology

    1981-03-01

    to the element midsurface z - z(x,y) at all points. An additional coordinate r is used to describe the distance away from the midsurface at any point...It is assumed that on the element level, the shell is shallow, so that z2 2 (56) ,y everywhere. The unit vector normal to the shell midsurface at a...relations above do not involve the orientation of the displaced midsurface normal, and, therefore, apply to arbitrarily large displacements and rotations

  6. Triggered Snap-Through of Bistable Shells

    NASA Astrophysics Data System (ADS)

    Cai, Yijie; Huang, Shicheng; Trase, Ian; Hu, Nan; Chen, Zi

    Elastic bistable shells are common structures in nature and engineering, such as the lobes of the Venus flytrap or the surface of a toy jumping poppers. Despite their ubiquity, the parameters that control the bistability of such structures are not well understood. In this study, we explore how the geometrical features of radially symmetric elastic shells affect the shape and potential energy of a shell's stable states, and how to tune certain parameters in order to generate a snap-through transition from a convex semi-stable state to concave stable state. We fabricated a series of elastic shells with varying geometric parameters out of silicone rubber and measured the resulting potential energy in the semi-stable state. Finite element simulations were also conducted in order to determine the deformation and stress in the shells during snap-through. It was found that the energy of the semi-stable state is controlled by only two geometric parameters and a dimensionless ratio. We also noted two distinct transitions during snap-through, one between monostability and semi-bistability (the state a popper toy is in before it snaps-through and jumps), and a second transition between semi-bistability and true bistability. This work shows that it is possible to use a set of simple parameters to tailor the energy landscape of an elastic shell in order to generate complex trigger motions for their potential use in smart applications. Z.C. acknowledge support from Society in Science-Branco Weiss Fellowship, administered by ETH Zurich.

  7. Shell Biorefinery: Dream or Reality?

    PubMed

    Chen, Xi; Yang, Huiying; Yan, Ning

    2016-09-12

    Shell biorefinery, referring to the fractionation of crustacean shells into their major components and the transformation of each component into value-added chemicals and materials, has attracted growing attention in recent years. Since the large quantities of waste shells remain underexploited, their valorization can potentially bring both ecological and economic benefits. This Review provides an overview of the current status of shell biorefinery. It first describes the structural features of crustacean shells, including their composition and their interactions. Then, various fractionation methods for the shells are introduced. The last section is dedicated to the valorization of chitin and its derivatives for chemicals, porous carbon materials and functional polymers.

  8. Sensational spherical shells

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.

    1986-01-01

    Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.

  9. Fabrication of diamond shells

    SciTech Connect

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  10. Oyster shell conveyor used to lift shells from the dock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oyster shell conveyor used to lift shells from the dock into the receiving room housed in the 1965 concrete block addition. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  11. Effects of Shell-Buckling Knockdown Factors in Large Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2012-01-01

    Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.

  12. BOWOOSS: bionic optimized wood shells with sustainability

    NASA Astrophysics Data System (ADS)

    Pohl, Göran

    2011-04-01

    In architecture, shell construction is used for the most efficient, large spatial structures. Until now the use of wood rather played a marginal role, implementing those examples of architecture, although this material offers manifold advantages, especially against the background of accelerating shortage of resources and increasing requirements concerning the energy balance. Regarding the implementation of shells, nature offers a wide range of suggestions. The focus of the examinations is on the shells of marine plankton, especially of diatoms, whose richness in species promises the discovery of entirely new construction principles. The project is targeting at transferring advantageous features of these organisms on industrial produced, modular wood shell structures. Currently a transfer of these structures in CAD - models is taking place, helping to perform stress analysis by computational methods. Micro as well as macro structures are the subject of diverse consideration, allowing to draw the necessary conclusions for an architectural design. The insights of these tests are the basis for the development of physical models on different scales, which are used to verify the different approaches. Another important aim which is promoted in the project is to enhance the competitiveness of timber construction. Downsizing of the prefabricated structural elements leads to considerable lower transportation costs as abnormal loads can be avoided as far as possible and means of transportation can be loaded with higher efficiency so that an important contribution to the sustainability in the field of architecture can also be made.

  13. Shell Higher Olefins Process.

    ERIC Educational Resources Information Center

    Lutz, E. F.

    1986-01-01

    Shows how olefin isomerization and the exotic olefin metathesis reaction can be harnessed in industrial processes. Indicates that the Shell Higher Olefins Process makes use of organometallic catalysts to manufacture alpha-olefins and internal carbon-11 through carbon-14 alkenes in a flexible fashion that can be adjusted to market needs. (JN)

  14. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  15. Snail Shell Science.

    ERIC Educational Resources Information Center

    Matthews, Catherine

    1992-01-01

    Presents three inquiry-based lessons to develop the science process skills of observation, identification, and classification. Activities use whelk eggs and snail shells as the focus of the students' inquiries. Provides a list of 19 facts about whelks and snails. (MDH)

  16. Hierarchic plate and shell models based on p-extension

    NASA Technical Reports Server (NTRS)

    Szabo, Barna A.; Sahrmann, Glenn J.

    1988-01-01

    Formulations of finite element models for beams, arches, plates and shells based on the principle of virtual work was studied. The focus is on computer implementation of hierarchic sequences of finite element models suitable for numerical solution of a large variety of practical problems which may concurrently contain thin and thick plates and shells, stiffeners, and regions where three dimensional representation is required. The approximate solutions corresponding to the hierarchic sequence of models converge to the exact solution of the fully three dimensional model. The stopping criterion is based on: (1) estimation of the relative error in energy norm; (2) equilibrium tests, and (3) observation of the convergence of quantities of interest.

  17. Chemistry of the superheavy elements.

    PubMed

    Schädel, Matthias

    2015-03-13

    The quest for superheavy elements (SHEs) is driven by the desire to find and explore one of the extreme limits of existence of matter. These elements exist solely due to their nuclear shell stabilization. All 15 presently 'known' SHEs (11 are officially 'discovered' and named) up to element 118 are short-lived and are man-made atom-at-a-time in heavy ion induced nuclear reactions. They are identical to the transactinide elements located in the seventh period of the periodic table beginning with rutherfordium (element 104), dubnium (element 105) and seaborgium (element 106) in groups 4, 5 and 6, respectively. Their chemical properties are often surprising and unexpected from simple extrapolations. After hassium (element 108), chemistry has now reached copernicium (element 112) and flerovium (element 114). For the later ones, the focus is on questions of their metallic or possibly noble gas-like character originating from interplay of most pronounced relativistic effects and electron-shell effects. SHEs provide unique opportunities to get insights into the influence of strong relativistic effects on the atomic electrons and to probe 'relativistically' influenced chemical properties and the architecture of the periodic table at its farthest reach. In addition, they establish a test bench to challenge the validity and predictive power of modern fully relativistic quantum chemical models.

  18. Three-Dimensional Finite Element Analysis of Sheet-Pile Cellular Cofferdams

    DTIC Science & Technology

    1992-04-01

    requirements were in selecting the shell element for this study: * Nodes only at the midsurface of the element. * Higher-order shape functions to...on orthogonal curvilinear coordinate (shell coordinates) system with the ref- erence surface of the element midsurface (Figure 4.13). The formulation...element was selected which allows for: * Nodes at the midsurface of the element only. 150 CHAPTER 4. ADDITIONS TO THE ELEMENT LIBRARY " Higher-order

  19. A Circumstellar Shell Model for the Cassiopeia A Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz; Szymkowiak, Andrew E.; Blondin, John M.; Sarazin, Craig L.

    1996-08-01

    We model the Cassiopeia A supernova remnant in the framework of the circumstellar medium (C SM) interaction picture. In this model, the slow red supergiant wind of the supernova (SN) progenitor was swept into a dense shell by a fast stellar wind in the subsequent blue supergiant stage of the progenitor star. The supernova blast wave propagated quickly (≤ 100 yr) through the tenuous wind-blown bubble located within this shell and then slowed down in the dense (nH ˜15 cm-3) CSM shell. The shell was impulsively accelerated during this interaction stage; during the subsequent interaction with SN ejecta, the shell has been further accelerated to ˜2000 km s-1, the currently observed expansion rate. The comparison of our X-ray emission calculations with the ASCA spectrum suggests that about 8 Msun of X- material is present in Cas A. Most of this mass is located in the CSM shell and in the outlying red supergiant wind. The X-ray continuum and the Fe Kα line are dominated by the shell emission, but prominent Kα complexes of Mg, Si, and S must be produced by SN ejecta with strongly enhanced abundances of these elements. Our hydrodynamical models indicate that about 2 Msun of ejecta have been shocked. An explosion of a stellar He core is consistent with these findings.

  20. Finite element analysis of flexible, rotating blades

    NASA Technical Reports Server (NTRS)

    Mcgee, Oliver G.

    1987-01-01

    A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.

  1. X-ray fluorescence microtomography of SiC shells

    SciTech Connect

    Ice, G.E.; Chung, J.S.; Nagedolfeizi, M.

    1997-04-01

    TRISCO coated fuel particles contain a small kernel of nuclear fuel encapsulated by alternating layers of C and SiC. The TRISCO coated fuel particle is used in an advanced fuel designed for passive containment of the radioactive isotopes. The SiC layer provides the primary barrier for radioactive elements in the kernel. The effectiveness of this barrier layer under adverse conditions is critical to containment. The authors have begun the study of SiC shells from TRISCO fuel. They are using the fluorescent microprobe beamline 10.3.1. The shells under evaluation include some which have been cycled through a simulated core melt-down. The C buffer layers and nuclear kernels of the coated fuel have been removed by laser drilling through the SiC and then exposing the particle to acid. Elements of interest include Ru, Sb, Cs, Ce and Eu. The radial distribution of these elements in the SiC shells can be attributed to diffusion of elements in the kernel during the melt-down. Other elements in the shells originate during the fabrication of the TRISCO particles.

  2. Nonlinear shell analyses of the space shuttle solid rocket boosters

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Gillian, Ronnie E.; Nemeth, Michael P.

    1989-01-01

    A variety of structural analyses have been performed on the Solid Rocket Boosters (SRB's) to provide information that would contribute to the understanding of the failure which destroyed the Space Shuttle Challenger. This paper describes nonlinear shell analyses that were performed to characterize the behavior of an overall SRB structure and a segment of the SRB in the vicinity of the External Tank Attachment (ETA) ring. Shell finite element models were used that would accurately reflect the global load transfer in an SRB in a manner such that nonlinear shell collapse and ovalization could be assessed. The purpose of these analyses was to calculate the overall deflection and stress distributions for these SRB models when subjected to mechanical loads corresponding to critical times during the launch sequence. Static analyses of these SRB models were performed using a snapshot picture of the loads. Analytical results obtained using these models show no evidence of nonlinear shell collapse for the pre-liftoff loading cases considered.

  3. Computer analysis of shells of revolution using asymptotic results

    NASA Technical Reports Server (NTRS)

    Steele, C. R.; Ranjan, G. V.; Goto, C.; Pulliam, T. H.

    1979-01-01

    It is suggested that asymptotic results for the behavior of thin shells can be incorporated in a general computer code for the analysis of a complex shell structure. The advantage when compared to existing finite difference or finite element codes is a substantial reduction in computational labor with the capability of working to a specified level of accuracy. A reduction in user preparation time and dependance on user judgment is also gained, since mesh spacing can be internally generated. The general theory is described in this paper, as well as the implementation in the computer code FAST 1 (Functional Algorithm for Shell Theory) for the analysis of the general axisymmetric shell structure with axisymmetric loading.

  4. Biomechanics of turtle shells: how whole shells fail in compression.

    PubMed

    Magwene, Paul M; Socha, John J

    2013-02-01

    Turtle shells are a form of armor that provides varying degrees of protection against predation. Although this function of the shell as armor is widely appreciated, the mechanical limits of protection and the modes of failure when subjected to breaking stresses have not been well explored. We studied the mechanical properties of whole shells and of isolated bony tissues and sutures in four species of turtles (Trachemys scripta, Malaclemys terrapin, Chrysemys picta, and Terrapene carolina) using a combination of structural and mechanical tests. Structural properties were evaluated by subjecting whole shells to compressive and point loads in order to quantify maximum load, work to failure, and relative shell deformations. The mechanical properties of bone and sutures from the plastral region of the shell were evaluated using three-point bending experiments. Analysis of whole shell structural properties suggests that small shells undergo relatively greater deformations before failure than do large shells and similar amounts of energy are required to induce failure under both point and compressive loads. Location of failures occurred far more often at sulci than at sutures (representing the margins of the epidermal scutes and the underlying bones, respectively), suggesting that the small grooves in the bone created by the sulci introduce zones of weakness in the shell. Values for bending strength, ultimate bending strain, Young's modulus, and energy absorption, calculated from the three-point bending data, indicate that sutures are relatively weaker than the surrounding bone, but are able to absorb similar amounts of energy due to higher ultimate strain values.

  5. Shell funds chair

    NASA Astrophysics Data System (ADS)

    The Shell Companies Foundation, Inc., of Houston, Tex., has given $750,000 to the University of Texas at Austin to establish the Shell Distinguished Chair in Geophysics. The 5-year, $150,000-per-year grant will support the studies of John G. Sclater. Sclater, currently a professor at the Massachusetts Institute of Technology, has accepted a joint position that begins July 1 in the geological sciences department and in the Institute for Geophysics at UT Austin.Sclater's research into the formation of ocean basins has applications for understanding the way petroleum deposits mature. He has studied the reconstruction of movements of the continents and the subsidence of ocean basins. He is considered an expert in the interpretation of geothermal and seismic data.

  6. Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry.

    PubMed

    Chou, Ju; Clement, Garret; Bursavich, Bradley; Elbers, Don; Cao, Baobao; Zhou, Weilie

    2010-06-01

    The aim of this study was the multi-elemental detection of toxic metals such as lead (Pb) in non-crushed oyster shells by using a portable X-ray fluorescence (XRF) spectrometer. A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using a portable XRF which provides a quick, quantitative, non-destructive, and cost-effective mean for assessment of oyster shell contamination from Pb. Pb contamination in oyster shells was further confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results indicated that Pb is distributed in-homogeneously in contaminated shells. Oyster shells have a lamellar structure that could contribute to the high accumulation of Pb on oyster shells.

  7. Effects of alga polysaccharide capsule shells on in-vivo bioavailability and disintegration

    NASA Astrophysics Data System (ADS)

    Li, Ting; Guo, Shuju; Ma, Lin; Yuan, Yi; Han, Lijun

    2012-01-01

    Gelatin has been used in hard capsule shells for more than a century, and some shortcomings have appeared, such as high moisture content and risk of transmitting diseases of animal origin to people. Based on available studies regarding gelatin and vegetable shells, we developed a new type of algal polysaccharide capsule (APPC) shells. To test whether our products can replace commercial gelatin shells, we measured in-vivo plasma concentration of 12 selected volunteers with a model drug, ibuprofen, using high performance liquid chromatography (HPLC), by calculating the relative bioavailability of APPC and Qualicaps® referenced to gelatin capsules and assessing bioequivalence of the three types of shells, and calculated pharmacokinetic parameters with the software DAS 2.0 (China). The results show that APPC shells possess bioequivalence with Qualicaps® and gelatin shells. Moreover, the disintegration behavior of four types of shells (APPC, Vegcaps®, Qualicaps® and gelatin shells) with the content of lactose and radioactive element (99mTc) was observed via gamma-scintigraphic images. The bioavailability and gamma-scintigraphic studies showed that APPC was not statistically different from other vegetable and gelatin capsule shells with respect to in-vivo behavior. Hence, it can be concluded that APPCs are exchangeable with other vegetable and gelatin shells.

  8. Flow-induced instabilities of shells of revolution with non-zero Gaussian curvatures conveying fluid

    NASA Astrophysics Data System (ADS)

    Chang, Gary Han; Modarres-Sadeghi, Yahya

    2016-02-01

    We study flow-induced instabilities of axis-symmetric shells of revolution with an arbitrary meridian and non-zero Gaussian curvatures. We consider a fluid-structure interaction (FSI) model based on an inviscid flow model and a thin shell theory. This FSI model is solved using a method that combines the Galerkin technique with the boundary element method (BEM). The present method is capable of investigating the dynamic behavior of doubly-curved shells in contact with flow without the need for an analytical solution of the perturbed flow potential. Shells of revolution with different values of non-zero Gaussian curvatures are investigated and their behavior is compared to shells with zero Gaussian curvature. It is found that the added mass natural frequencies of shells of revolution are larger than those of conical shells with the same inlet, outlet and length. Shells of revolution, with both positive and negative Gaussian curvatures, lose their instability by buckling, however, shells with negative Gaussian curvatures buckle at modes similar to those observed in uniform and conical shells, while shells with positive Gaussian curvatures buckle with localized deformations close to the area with higher local flow velocities.

  9. Effects of Imperfections on the Buckling Response of Compression-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2000-01-01

    The results of an experimental and numerical study of the effects of imperfections on the buckling response of unstiffened thin-walled composite cylindrical shells are presented. Results that identify the individual and combined effects of traditional initial geometric shell-wall imperfections and non-traditional shell-wall thickness variations, shell-end geometric imperfections and variations in loads applied to the ends of the shells on the shell buckling response are included. In addition, results illustrating the effects of manufacturing flaws in the form of gaps between adjacent pieces of graphite-epoxy tape in some of the laminate plies are presented in detail. The shells have been analyzed with a nonlinear finite-element analysis code that accurately accounts for these effects on the buckling and nonlinear responses of the shells. The numerical results indicate that traditional and nontraditional initial imperfections can cause a significant reduction in the buckling load of a compression-loaded composite shell. Furthermore, the results indicate that the imperfections couple in a nonlinear manner. The numerical results correlate well with the experimental results. The nonlinear analysis results are also compared to the results from a traditional linear bifurcation buckling analysis. The results suggest that the nonlinear analysis procedure can be used for determining accurate, high-fidelity design knockdown factors for shell buckling and collapse. The results can also be used to determine the effects of manufacturing tolerances on the buckling response of composite shells.

  10. MAGNA (Materially and Geometrically Nonlinear Analysis). Part I. Finite Element Analysis Manual.

    DTIC Science & Technology

    1982-12-01

    6.11.5 Midsurface Circumferential Stress Profiles in Clamped Circular Plate. 6.11.7 6.12.1 Simply-Supported Sandwich Plate Under Compression Load...that the element has nodes at the upper and lower surfaces, not at the shell midsurface . Each node point is permitted three translational degrees of...shell element can be of variable thickness, and the lateral boundaries of the element need not lie along the normal to the shell midsurface . The

  11. Vibrations of cantilevered shallow cylindrical shells of rectangular planform

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.

  12. Stress Recovery and Error Estimation for Shell Structures

    NASA Technical Reports Server (NTRS)

    Yazdani, A. A.; Riggs, H. R.; Tessler, A.

    2000-01-01

    The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.

  13. Vibrations of cantilevered shallow cylindrical shells of rectangular planform

    NASA Astrophysics Data System (ADS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-10-01

    A cantilevered, shallow shell of circular cylindrical curvature and rectangular planform exhibits free vibration behavior which differs considerably from that of a cantilevered beam or of a flat plate. Some numerical results can be found for the problem in the previously published literature, mainly obtained by using various finite element methods. The present paper is the first definitive study of the problem, presenting accurate non-dimensional frequency parameters for wide ranges of aspect ratio, shallowness ratio and thickness ratio. The analysis is based upon shallow shell theory. Numerical results are obtained by using the Ritz method, with algebraic polynomial trial functions for the displacements. Convergence is investigated, with attention being given both to the number of terms taken for each co-ordinate direction and for each of the three components of displacement. Accuracy of the results is also established by comparison with finite element results for shallow shells and with other accurate flat plate solutions.

  14. Vibration characteristics of a piezoelectric open-shell transducer

    NASA Astrophysics Data System (ADS)

    Kim, Daeseung; Kim, Jin O.; Il Jung, Soon

    2012-04-01

    This paper deals with the vibration characteristics of a piezoelectric open-shell transducer which was made by dividing a cylindrical piezoelectric transducer longitudinally into two segments. Two-dimensional governing equations were derived by using the cylindrical membrane theory. Applying mechanical and electrical boundary conditions yielded a characteristic equation for the resonance frequencies of the piezoelectric open-shell transducer. The fundamental frequency and the electromechanical coupling factor were calculated and compared with the results of the finite element analysis and experiment. The fundamental mode shape obtained theoretically was compared with the result of the finite element analysis. The theoretical analysis was verified to provide the vibration characteristics of an open-shell transducer.

  15. Onset and Cessation of Thermal Convection within Titan's Ice Shell

    NASA Astrophysics Data System (ADS)

    Mitri, G.; Tobie, G.; Choblet, G.

    2015-12-01

    The onset of thermal convection within the outer ice shell of Titan is believed to be at the origin of methane outgassing on Titan (Tobie et al., 2006), a possible factor in Titan's resurfacing processes (Mitri et al., 2008), and to have a major role in the evolution and tectonic activity of this Saturnian icy satellite (Tobie et al., 2005; Mitri and Showman, 2008; Mitri et al., 2010). Recent measurements of the gravity field (Iess et al., 2010, 2012) and the modeling of the shape and topography (Zebker et al., 2009; Mitri et al., 2014) have recently improved our knowledge of the thermal state and structure of Titan's outer ice shell. Mitri et al. (2014) found that Titan's surface topography is consistent with an isostatically compensated ice shell of variable thickness, likely at the present in a thermally conductive state (see also Nimmo and Bills, 2010; Hemingway et al., 2013), overlying a relatively dense (~1200-1350 kg m-3) subsurface ocean. As Titan's ice shell is not currently experiencing thermal convection it is likely that the ice shell could have experienced during its history both the onset and the cessation of thermal convection; thermal convection could be present within the ice shell for limited times or in fact be episodic. We investigate the evolution of Titan's outer ice shell from the crystallization of the underlying ocean with a focus on the onset and cessation of thermal convection. To simulate convection in a growing ice shell, we numerically solve the thermal convection equations for a Newtonian rheology in a two dimensional Cartesian domain using finite element method, with a moving bottom boundary to ocean crystallization. We discuss how the crystallization process affects the onset of convection and in which conditions the cessation of thermal convection may occur. The geological consequences of the changes of the thermal state and structure of the outer ice shell will also be discussed.

  16. Shell model calculations of 109Sb in the sdgh shell

    NASA Astrophysics Data System (ADS)

    Dikmen, E.; Novoselsky, A.; Vallieres, M.

    2001-12-01

    The energy spectra of the antimony isotope 109Sb in the sdgh shell are calculated in the nuclear shell model approach by using the CD-Bonn nucleon-nucleon interaction. The modified Drexel University parallel shell model code (DUPSM) was used for the calculations with maximum Hamiltonian dimension of 762 253 of 5.14% sparsity. The energy levels are compared to the recent experimental results. The calculations were done on the Cyborg Parallel Cluster System at Drexel University.

  17. 3-D Finite Element Code Postprocessor

    SciTech Connect

    1996-07-15

    TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.

  18. Sensitivity analysis of random shell-model interactions

    NASA Astrophysics Data System (ADS)

    Krastev, Plamen; Johnson, Calvin

    2010-02-01

    The input to the configuration-interaction shell model includes many dozens or even hundreds of independent two-body matrix elements. Previous studies have shown that when fitting to experimental low-lying spectra, the greatest sensitivity is to only a few linear combinations of matrix elements. Following Brown and Richter [1], here we consider general two-body interactions in the 1s-0d shell and find that the low-lying spectra are also only sensitive to a few linear combinations of two-body matrix elements. We find out in particular the ground state energies for both the random and non-random (here given by the USDB) interaction are dominated by similar matrix elements, which we try to interpret in terms of monopole and contact interactions, while the excitation energies have completely different character. [4pt] [1] B. Alex Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006) )

  19. A variational justification of the assumed natural strain formulation of finite elements

    NASA Technical Reports Server (NTRS)

    Militello, Carmelo; Felippa, Carlos A.

    1991-01-01

    The objective is to study the assumed natural strain (ANS) formulation of finite elements from a variational standpoint. The study is based on two hybrid extensions of the Reissner-type functional that uses strains and displacements as independent fields. One of the forms is a genuine variational principle that contains an independent boundary traction field, whereas the other one represents a restricted variational principle. Two procedures for element level elimination of the strain field are discussed, and one of them is shown to be equivalent to the inclusion of incompatible displacement modes. Also, the 4-node C(exp 0) plate bending quadrilateral element is used to illustrate applications of this theory.

  20. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  1. Filament-wound spar shell graphite/epoxy fan blades

    NASA Technical Reports Server (NTRS)

    Yao, S.

    1976-01-01

    The methodology for fabrication of wet filament wound spar shell fan blades is presented. All principal structural elements were filament wound, assembled, formed, bonded and co-cured in a female mold. A pair of blades were fabricated as one integral unit and parted into two after curing.

  2. Shear correction factors for layered plates and shells

    NASA Astrophysics Data System (ADS)

    Gruttmann, F.; Wagner, W.

    2017-01-01

    In this paper layered composite shells subjected to static loading are considered. The theory is based on a multi-field functional, where the associated Euler-Lagrange equations include besides the global shell equations formulated in stress resultants, the local in-plane equilibrium in terms of stresses and a constraint which enforces the correct shape of warping through the thickness. Within representative volume elements warping displacements are interpolated with layerwise cubic functions in thickness direction and constant shape throughout the reference surface. Elimination of warping and Lagrange parameters by static condensation leads to a material matrix for the stress resultants and to shear correction factors for layered plates and shells. For linear elasticity the computation can be done once in advance. The condensed material matrix is used in displacement based elements along with the enhanced strain method or in mixed hybrid elements with the usual 5 or 6 nodal degrees of freedom. This allows standard geometrical boundary conditions and the elements are applicable also to shell intersection problems. The interlaminar shear stresses are evaluated via the constitutive law by back substitution of the eliminated parameters. The computed transverse shear stresses are automatically continuous at the layer boundaries and zero at the outer surfaces. Furthermore, the integrals of the shear stresses coincide exactly with the shear forces without introduction of further constraints.

  3. Synthesis of stiffened conical shells.

    NASA Technical Reports Server (NTRS)

    Thornton, W. A.

    1972-01-01

    The development of a method to effect the automated minimum weight design of ring and stringer stiffened shells is presented. Membrane theory is used for the shell prebuckling analysis. The buckling analysis is based upon an arbitrary shell of revolution computer program. The structural analysis includes both buckling and yielding modes of failure. The synthesis involves the coupling of an exterior penalty function with a method for the unconstrained minimization of a function comprised of a sum of squares. Results of the application of the method to the design of the Viking Aeroshell cone are presented. The least weight Viking Aeroshell appears to be an all magnesium shell with ring stiffeners of hollow circular cross section. Because the method incorporates a general shell of revolution buckling analysis, it can be readily modified and applied to the design of any axisymmetrically loaded uniformly stiffened shell of revolution for which a membrane prebuckling solution exists.

  4. Rotating blade vibration analysis using shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.; Lee, J. K.; Wang, A. J.

    1981-01-01

    Shallow shell theory and the Ritz method are employed to determine the frequencies and mode shapes of turbomachinery blades having both camber and twist, rotating with non-zero angles of attack. Frequencies obtained for different degrees of shallowness and thickness are compared with results available in the literature, obtained from finite element analyses of nonrotating blades. Frequencies are also determined for a rotating blade, showing the effects of changing the (1) angular velocity of rotation, (2) disk radius and (3) angle of attack, as well as the significance of the most important body force terms.

  5. Ultrasonic scattering from anisotropic shells

    NASA Astrophysics Data System (ADS)

    Mittleman, John; Thompson, R. B.; Roberts, R.

    The exact differential equations for elastic wave scattering from spherical shells with spherically orthotropic properties are presently shown to be separable; the angular equations are satisfied by Legendre polynomials that are independent of material properties. The results thus obtained have been validated by exact solutions for the case with vanishing shell thickness, and that of isotropic elastic constants. Excellent agreement is thus obtained over a wide range of shell thicknesses and wave numbers.

  6. Fiber optic well monitoring for Shell`s North Sea field

    SciTech Connect

    1995-12-01

    After eight years of development work, Alcatel Kabel Norge has reached an agreement with Shell U.K. Exploration and Production to install Alcatel`s first commercial Sub-Sea Fiber Optic Well Monitoring (FOWM) system in Shell`s Guillemot A-OP2 well on its completion in August 1996. The FOWM project was started in 1988 by Norske Shell and Alcatel. BP Norway joined the project in 1991, and additional support has been contributed by Norsk Hydro and the Norwegian Research Council. The first Alcatel FOWM system was installed in onshore gas Well 7 in NAM`s Sleen field in the Netherlands in October 1993. The final offshore test took place in late 1994, in BP Norway`s Well 2/1 A-32 in Gyda field, in the Norwegian North Sea. FOWM is a new type of permanently installed downhole monitoring system based on an optical sensor system integrating simple passive silicon resonator sensors with optical communication. The system tolerates high pressure and high temperatures (HPHT). Main elements that contribute to its high reliability are discussed.

  7. Implementation of mixed formulation elements in PC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Schaeffer, Harry G.

    1993-01-01

    The purpose of this paper is to describe the implementation and use of a consistent family of two and three dimensional elements in NASTRAN. The elements which are based on a mixed formulation include a replacement of the original NASTRAN shear element and the addition of triangular quadrilateral shell elements and tetrahedral, pentahedral and hexahedral solid elements. These elements support all static loads including temperature gradient and pressure load. The mass matrix is also generated to support all dynamic rigid formats.

  8. The structure of circumstellar shells

    NASA Technical Reports Server (NTRS)

    Fix, John D.

    1993-01-01

    This document provides a report on research activities carried out with the support of NASA grant NAG 5-1174, the Structure of Circumstellar Shells, funded under the Astrophysics Data Program. The research carried out with the support of this grant is a study of the properties of circumstellar dust shells for which spectra are available through IRAS low resolution spectrometry (LRS). This research consisted of the development and application of models of axisymmetric circumstellar shells and a preliminary survey of the applicability of neural nets for analysis of the IRAS LRS spectra of circumstellar dust shells.

  9. Shell Analysis Manual

    DTIC Science & Technology

    1968-04-01

    plane strains o 0 0 el, e 2 , el2 Components of nonlinear in-plane middle surface strains; also, strains corresponding to equilibrium configuration el...plates) in the treatment of shell problems. This theory, often referred to as Love’s first approximation, has since occupied a position of prominence...Materials such as wood and synthetic fiberboard possess this property. For this case, the generalized Hooke’s Law reduces to oII = El Fl + E 2 p 2 1

  10. Gas distribution and starbursts in shell galaxies

    NASA Technical Reports Server (NTRS)

    Weil, Melinda L.; Hernquist, Lars

    1993-01-01

    Detailed maps of most elliptical galaxies reveal that, whereas the greatest part of their luminous mass originates from a smooth distribution with a surface brightness approximated by a de Vaucouleurs law, a small percentage of their light is contributed by low surface brightness distortions termed 'fine structures'. The sharp-edged features called 'shells' are successfully reproduced by merger and infall models involving accretion from less massive companions. In this context, dwarf spheroidal and compact disk galaxies are likely progenitors of these stellar phenomena. However, it is probable that the sources of shell-forming material also contain significant amounts of gas. This component may play an important role in constraining the formation and evolution of shell galaxies. To investigate the effects of the gaseous component, numerical simulations were performed to study the tidal disruption of dwarf galaxies containing both gas and stars by more massive primaries, and the evolution of the ensuing debris. The calculations were performed with a hybrid N-body/hydrodynamics code. Collisionless matter is evolved using a conventional N-body technique and gas is treated using smoothed particle hydrodynamics in which self-gravitating fluid elements are represented as particles evolving according to Lagrangian hydrodynamic equations. An isothermal equation of state is employed so the gas remains at a temperature 104 K. Owing to the large mass ratio between the primary and companion, the primary is modeled as a rigid potential and the self-gravity of both galaxies is neglected.

  11. Automated shell theory for rotating structures (ASTROS)

    NASA Technical Reports Server (NTRS)

    Foster, B. J.; Thomas, J. M.

    1971-01-01

    A computer program for analyzing axisymmetric shells with inertial forces caused by rotation about the shell axis is developed by revising the STARS II shell program. The basic capabilities of the STARS II shell program, such as the treatment of the branched shells, stiffened wall construction, and thermal gradients, are retained.

  12. Fracture mechanics analyses of partial crack closure in shell structures

    NASA Astrophysics Data System (ADS)

    Zhao, Jun

    2007-12-01

    This thesis presents the theoretical and finite element analyses of crack-face closure behavior in shells and its effect on the stress intensity factor under a bending load condition. Various shell geometries, such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with double curvatures, are all studied. In addition, the influence of material orthotropy on the crack closure effect in shells is also considered. The theoretical formulation is developed based on the shallow shell theory of Delale and Erdogan, incorporating the effect of crack-face closure at the compressive edges. The line-contact assumption, simulating the crack-face closure at the compressive edges, is employed so that the contact force at the closure edges is introduced, which can be translated to the mid-plane of the shell, accompanied by an additional distributed bending moment. The unknown contact force is computed by solving a mixed-boundary value problem iteratively, that is, along the crack length, either the normal displacement of the crack face at the compressive edges is equal to zero or the contact pressure is equal to zero. It is found that due to the curvature effects crack closure may not always occur on the entire length of the crack, depending on the direction of the bending load and the geometry of the shell. The crack-face closure influences significantly the magnitude of the stress intensity factors; it increases the membrane component but decreases the bending component. The maximum stress intensity factor is reduced by the crack-face closure. The significant influence of geometry and material orthotropy on rack closure behavior in shells is also predicted based on the analytical solutions. Three-dimensional FEA is performed to validate the theoretical solutions. It demonstrates that the crack face closure occurs actually over an area, not on a line, but the theoretical solutions of the stress intensity

  13. Deployment of Large-Size Shell Constructions by Internal Pressure

    NASA Astrophysics Data System (ADS)

    Pestrenin, V. M.; Pestrenina, I. V.; Rusakov, S. V.; Kondyurin, A. V.

    2015-11-01

    A numerical study on the deployment pressure (the minimum internal pressure bringing a construction from the packed state to the operational one) of large laminated CFRP shell structures is performed using the ANSYS engineering package. The shell resists both membrane and bending deformations. Structures composed of shell elements whose median surface has an involute are considered. In the packed (natural) states of constituent elements, the median surfaces coincide with their involutes. Criteria for the termination of stepwise solution of the geometrically nonlinear problem on determination of the deployment pressure are formulated, and the deployment of cylindrical, conical (full and truncated cones), and large-size composite shells is studied. The results obtained are shown by graphs illustrating the deployment pressure in relation to the geometric and material parameters of the structure. These studies show that large pneumatic composite shells can be used as space and building structures, because the deployment pressure in them only slightly differs from the excess pressure in pneumatic articles made from films and soft materials.

  14. Stress and vibraton analyses of anisotropic shells of revolution

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1988-01-01

    An efficient computational strategy is presented for reducing the cost of the stress and free vibration analyses of laminated anisotropic shells of revolution. The analytical formulation is based on a form of the Sanders-Budiansky shell theory including the effects of both the transverse shear deformation and the laminated anisotropic material response. The fundamental unknowns consist of the eight strain components, the eight stress resultants and the five generalized displacements of the shell. Each of the shell variables is expressed in terms of trigonometric functions (Fourier series) in the circumferential co-ordinate, and a three-field mixed finite element model is used for the discretization in the meridional direction. The shell response associated with a range of Fourier harmonics is approximated by a linear combination of a few global approximation vectors, which are generated at a particular value of the Fourier harmonic, within that range. The full equations of the finite element model are solved for only a single Fourier harmonic, and the response corresponding to the other Fourier harmonics is generated using a reduced system of equations with considerably fewer degrees of freedom.

  15. Free Vibrations Of Delaminated Composite Cylindrical Shell Roofs

    NASA Astrophysics Data System (ADS)

    Acharyya, A. Kumar; Chakraborty, Dipankar; Karmakar, Amit

    Recently laminated composites are widely used in civil engineering, which may suffer from delamination damage resulting from improper fabrication and overloading at service. A review of literature that exists on composite shells reveals that the research reports on delaminated shells are very few in number. Hence the present endeavor is to work on delaminated simply supported cylindrical shell with different extents of delaminations. An eight noded isoparametric element with five degrees of freedom per node is used together with Sander's strain displacement relationships and multipoint constraint equations to satisfy the compatibility of displacements and rotations along the cracked edges. The study reveals that there is a consistent decrease in the fundamental frequency value as the area of the delamination damage increases. Further the fundamental frequency of angle ply shells undergo relatively more prominent decrease compared to that of cross ply shells. It seems that delamination damage brings about greater reduction in frequency values as the number of layers increases for angle ply shells, especially for symmetric ones.

  16. Imperfection Insensitivity Analyses of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Farrokh, Babak; Stanford, Bret K.; Weaver, Paul M.

    2016-01-01

    Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.

  17. Nonlinear Local Bending Response and Bulging Factors for Longitudinal Cracks in Pressurized Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Young, Richard D.; Starnes, James H., Jr.

    1999-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or "bulging factors" that account for increased stresses due to curvature for longitudinal cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in graphs of the bulging factor as a function of the applied load and as a function of geometric parameters that include the shell radius, the shell thickness and the crack length. The computed bulging factors are compared with solutions based on linear shallow shell theory, and with semi-empirical solutions that approximately account for the nonlinear deformation in the vicinity of the crack. The effect of biaxial loads on the computed bulging factors is also discussed.

  18. Hi shells, supershells, shell-like objects, and ''worms''

    SciTech Connect

    Heiles, C.

    1984-08-01

    We present photographic representations of the combination of two Hi surveys, so as to eliminate the survey boundaries at Vertical BarbVertical Bar = 10/sup 0/. We also present high-contrast photographs for particular velocities to exhibit weak Hi features. All of these photographs were used to prepare a new list of Hi shells, supershells, and shell-like objects. We discuss the structure of three shell-like objects that are associated with high-velocity gas, and with gas at all velocities that is associated with radio continuum loops I, II, and III. We use spatial filtering to find wiggly gas filaments: ''worms'': crawling away from the galactic plane in the inner Galaxy. The ''worms'' are probably parts of shells that are open at the top; such shells should be good sources of hot gas for the galactic halo.

  19. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.

    PubMed

    Ma, Yanan; Zhou, Jun; Zou, Weibo; Jia, Zhenhong; Petti, Lucia; Mormile, Pasquale

    2014-06-01

    The properties of the localized surface plasmon resonance (LSPR) and the surface enhanced Raman scattering (SERS) of the core-shell bimetallic nanostructures, that is the monodisperse Au@Ag core-shell nanorods with different thickness of Ag shell, are theoretically and experimental researched. The UV-vis-NIR absorption spectra of the Au@Ag core-shell nanorods are measured and displayed their blue-shifts of the longitudinal plasmon resonance peaks with increasing of Ag concentrations in the colloidal solution. And the absorption spectra of the Au@Ag core-shell nanorods are simulated by the Finite Element Method (FEM), which are in agreement with the experimental measurements and reveal their LSPR mechanism as the varying structures. In addition, Rhodamine 6G, as a Raman reporter molecule, is used to investigate SERS of gold nanorods and Au@Ag core-shell nanorods. It is found that Au@Ag core-shell nanorods have better SERS responses, comparing with those of Au nanorods, and their SERS intensities are increased with the increases of the Ag shell thickness, which demonstrate that the chemisorptive bond effect and the morphology of the nanoparticle play key roles to the SERS signals. It is significant to design the biosensor based on the properties of Au@Ag core-shell nanorods.

  20. Design and Analysis of Tow-Steered Composite Shells Using Fiber Placement

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey

    2008-01-01

    In this study, a sub-scale advanced composite shell design is evaluated to determine its potential for use on a future aircraft fuselage. Two composite shells with the same nominal 8-ply [+/-45/+/-Theta](sub s) layup are evaluated, where Theta indicates a tow-steered ply. To build this shell, a fiber placement machine would be used to steer unidirectional prepreg tows as they are placed around the circumference of a 17-inch diameter right circular cylinder. The fiber orientation angle varies continuously from 10 degrees (with respect to the shell axis of revolution) at the crown, to 45 degrees on the side, and back to 10 degrees on the keel. All 24 tows are placed at each point on every fiber path in one structure designated as the shell with overlaps. The resulting pattern of tow overlaps causes the laminate thickness to vary between 8 and 16 plies. The second shell without tow overlaps uses the capability of the fiber placement machine to cut and add tows at any point along the fiber paths to fabricate a shell with a nearly uniform 8-ply laminate thickness. Issues encountered during the design and analysis of these shells are presented and discussed. Static stiffness and buckling loads of shells with tow-steered layups are compared with the performance of a baseline quasi-isotropic shell using both finite element analyses and classical strength of materials theory.

  1. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  2. Design and analysis of an x-ray mirror assembly using the meta-shell approach

    NASA Astrophysics Data System (ADS)

    McClelland, Ryan S.; Bonafede, Joseph A.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2016-07-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in highenergy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low sensitivity to thermal gradients.

  3. Design and Analysis of an X-Ray Mirror Assembly Using the Meta-Shell Approach

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Bonafede, Joseph; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low sensitivity to thermal gradients.

  4. Foam shell cryogenic ICF target

    DOEpatents

    Darling, Dale H.

    1987-01-01

    A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.

  5. Biomineralisation in Mollusc shells

    NASA Astrophysics Data System (ADS)

    Dauphin, Y.; Cuif, J. P.; Salomé, M.; Williams, C. T.

    2009-04-01

    The main components of Mollusc shells are carbonate minerals: calcite and aragonite. ACC is present in larval stages. Calcite and aragonite can be secreted simultaneously by the mantle. Despite the small number of varieties, the arrangement of the mineral components is diverse, and dependant upon the taxonomy. They are also associated with organic components much more diverse, the diversity of which reflects the large taxonomic diversity. From TGA analyses, the organic content (water included) is high (>5% in some layers). The biomineralisation process is not a passive precipitation process, but is strongly controlled by the organism. The biological-genetic control is shown by the constancy of the arrangement of the layers, the mineralogy and the microstructure in a given species. Microstructural units (i.e. tablets, prisms etc.) have shapes that do not occur in non-biogenic counterparts. Nacreous tablets, for example, are flattened on their crystallographic c axis, which is normally the axis of maximum growth rate for non-biogenic aragonite. Morever, their inner structure is species-specific: the arrangements of nacreous tablets in Gastropoda - Cephalopoda, and in Bivalvia differ, and the inner arrangement of the nacreous tablets is different in ectocochlear and endocochlear Cephalopoda. The organic-mineral ratios also differ in the various layers of a shell. Differences in chemical composition also demonstrates the biological-genetic control: for example, aragonite has a low Sr content unknown in non-biogenic samples; two aragonitic layers in a shell have different Sr and Mg contents, S is higher in calcitic layers. Decalcification releases soluble (SOM) and insoluble (IOM) organic components. Insoluble components form the main part of the intercrystalline membranes, and contain proteins, polysaccharides and lipids. Soluble phases are present within the crystals and the intercrystalline membranes. These phases are composed of more or less glycosylated proteins

  6. An Energy Decaying Scheme for Nonlinear Dynamics of Shells

    NASA Technical Reports Server (NTRS)

    Bottasso, Carlo L.; Bauchau, Olivier A.; Choi, Jou-Young; Bushnell, Dennis M. (Technical Monitor)

    2000-01-01

    A novel integration scheme for nonlinear dynamics of geometrically exact shells is developed based on the inextensible director assumption. The new algorithm is designed so as to imply the strict decay of the system total mechanical energy at each time step, and consequently unconditional stability is achieved in the nonlinear regime. Furthermore, the scheme features tunable high frequency numerical damping and it is therefore stiffly accurate. The method is tested for a finite element spatial formulation of shells based on mixed interpolations of strain tensorial components and on a two-parameter representation of director rotations. The robustness of the, scheme is illustrated with the help of numerical examples.

  7. Single-shell tank retrieval program mission analysis report

    SciTech Connect

    Stokes, W.J.

    1998-08-11

    This Mission Analysis Report was prepared to provide the foundation for the Single-Shell Tank (SST) Retrieval Program, a new program responsible for waste removal for the SSTS. The SST Retrieval Program is integrated with other Tank Waste Remediation System activities that provide the management, technical, and operations elements associated with planning and execution of SST and SST Farm retrieval and closure. This Mission Analysis Report provides the basis and strategy for developing a program plan for SST retrieval. This Mission Analysis Report responds to a US Department of Energy request for an alternative single-shell tank retrieval approach (Taylor 1997).

  8. Buckling characteristic of multi-laminated composite elliptical cylindrical shells

    NASA Astrophysics Data System (ADS)

    Kassegne, Samuel Kinde; Chun, Kyoung-Sik

    2015-03-01

    Fiber-reinforced composite materials continue to experience increased adoption in aerospace, marine, automobile, and civil structures due to their high specific strength, high stiffness, and light weight. This increased use has been accompanied by applications involving non-traditional configurations such as compression members with elliptical cross-sections. To model such shapes, we develop and report an improved generalized shell element called 4EAS-FS through a combination of enhanced assumed strain and the substitute shear strain fields. A flat shell element has been developed by combining a membrane element with drilling degree-of-freedom and a plate bending element. We use the element developed to determine specifically buckling loads and mode shapes of composite laminates with elliptical cross-section including transverse shear deformations. The combined influence of shell geometry and elliptical cross-sectional parameters, fiber angle, and lay-up on the buckling loads of an elliptical cylinder is examined. It is hoped that the critical buckling loads and mode shapes presented here will serve as a benchmark for future investigations.

  9. Buckling and Damage Resistance of Transversely-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Wardle, Brian L.

    1998-01-01

    Experimental and numerical work was conducted to better understand composite shell response to transverse loadings which simulate damage-causing impact events. The quasi-static, centered, transverse loading response of laminated graphite/epoxy shells in a [+/-45(sub n)/O(sub n)](sub s) layup having geometric characteristics of a commercial fuselage are studied. The singly-curved composite shell structures are hinged along the straight circumferential edges and are either free or simply supported along the curved axial edges. Key components of the shell response are response instabilities due to limit-point and/or bifurcation buckling. Experimentally, deflection-controlled shell response is characterized via load-deflection data, deformation-shape evolutions, and the resulting damage state. Finite element models are used to study the kinematically nonlinear shell response, including bifurcation, limit-points, and postbuckling. A novel technique is developed for evaluating bifurcation from nonlinear prebuckling states utilizing asymmetric spatial discretization to introduce numerical perturbations. Advantages of the asymmetric meshing technique (AMT) over traditional techniques include efficiency, robustness, ease of application, and solution of the actual (not modified) problems. The AMT is validated by comparison to traditional numerical analysis of a benchmark problem and verified by comparison to experimental data. Applying the technique, bifurcation in a benchmark shell-buckling problem is correctly identified. Excellent agreement between the numerical and experimental results are obtained for a number of composite shells although predictive capability decreases for stiffer (thicker) specimens which is attributed to compliance of the test fixture. Restraining the axial edge (simple support) has the effect of creating a more complex response which involves unstable bifurcation, limit-point buckling, and dynamic collapse. Such shells were noted to bifurcate into

  10. Shell forming apparatus

    NASA Technical Reports Server (NTRS)

    Wang, Taylor G. (Inventor); Granett, Dan (Inventor); Akutagawa, Wesley M. (Inventor)

    1987-01-01

    A nozzle assembly is described for use in a system that forms small gas-filled shells, which avoids the need for holding a miniature inner nozzle precisely concentric with a miniature outer nozzle. The outer nozzle has a diameter which is less than about 0.7 millimeter, which results in fluid passing through the nozzle having a progressively greater velocity at locations progressively further from the walls of the outer nozzle across most of the nozzle. This highly variable velocity profile automatically forces gas to the center of the outer nozzle. The end of the inner nozzle, which emits gas, is spaced upstream from the tip of the outer nozzle, to provide a distance along which to center the gas. This self-centering characteristic permits the inner nozzle to be positioned so its axis is not concentric with the axis of the outer nozzle.

  11. Composite shell spacecraft seat

    NASA Technical Reports Server (NTRS)

    Barackman, Victor J. (Inventor); Pulley, John K. (Inventor); Simon, Xavier D. (Inventor); McKee, Sandra D. (Inventor)

    2008-01-01

    A two-part seat (10) providing full body support that is specific for each crew member (30) on an individual basis. The two-part construction for the seat (10) can accommodate many sizes and shapes for crewmembers (30) because it is reconfigurable and therefore reusable for subsequent flights. The first component of the two-part seat construction is a composite shell (12) that surrounds the crewmember's entire body and is generically fitted to their general size in height and weight. The second component of the two-part seat (10) is a cushion (20) that conforms exactly to the specific crewmember's entire body and gives total body support in more complex environment.

  12. Crack problems in cylindrical and spherical shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.

  13. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Downs, R. L.; Ebner, M. A.; Nolen, R. L., Jr.

    1981-01-01

    Highly-uniform, hollow glass spheres (shells), which are used for inertial confinement fusion targets, were formed from metal-organic gel powder feedstock in a vertical furnace. As a result of the rapid pyrolysis caused by the furnace, the gel is transformed to a shell in five distinct stages: (a) surface closure of the porous gel; (b) generation of a closed-cell foam structure in the gel; (c) spheridization of the gel and further expansion of the foam; (d) coalescence of the closed-cell foam to a single-void shell; and (e) fining of the glass shell. The heat transfer from the furnace to the falling gel particle was modeled to determine the effective heating rate of the gel. The model predicts the temperature history for a particle as a function of mass, dimensions, specific heat, and absorptance as well as furnace temperature profile and thermal conductivity of the furnace gas. A model was developed that predicts the gravity-induced degradation of shell concentricity in falling molten shells as a function of shell characteristics and time.

  14. Linear versus nonlinear theories for laminated composite plates and shells

    SciTech Connect

    Qatu, M.S.

    1995-11-01

    Linear and nonlinear shear-deformation theories for laminated composite plates and shells are discussed in this paper. The emphasis here is on the range of validity for each class of theories. The finite element method is used to determine the maximum stresses for a wide range of statically loaded plate and shell panels with various thickness ratios. This paper concludes that for the vast majority of composite materials and for moderately thick plates and shells, stresses normally reach the maximum allowable stress before nonlinear terms can become important. This has been demonstrated by showing that for the limiting case of shear deformation theories (in which the minimum span length (or radius) to thickness ratio is 20), the material usually fails before the maximum deflection reaches the magnitude of the thickness (where nonlinear terms start to become significant).

  15. Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1999-01-01

    Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.

  16. Arbitrarily laminated, anisotropic cylindrical shell under internal pressure

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Reaz Z.; Balaraman, K.; Kunukkasseril, Vincent X.

    1986-01-01

    An arbitrarily laminated, anisotropic cylindrical shell of finite length, under uniform internal pressure, is analyzed using Love-Timoshenko's kinematic relations and under the framework of classical lamination theory. The previously obtained solutions for asymmetrically laminated orthotropic (cross-ply) as well as unbalanced-symmetric and balanced-unsymmetric (angle-ply) cylindrical shells under the same loading conditions have been shown to be special cases of the present closed-form solution. Numerical results have been presented for a two-layer cylindrical shell and compared with those obtained using finite element solutions based on the layerwise constant shear-angle theory. These are expected to serve as benchmark solutions for future comparisons and to facilitate the use of unsymmetric lamination in design.

  17. Chemical effect on the K shell absorption parameters of some selected cerium compounds

    NASA Astrophysics Data System (ADS)

    Akman, F.; Kaçal, M. R.; Durak, R.

    2016-08-01

    In this study, the photoelectric cross section values of Ce, CeCl3.7H2O, Ce2(SO4)3, Ce(OH)4 and Ce2O3 samples were measured in the energy range from 31.82 keV up to 51.70 keV by adopting in narrow beam geometry. Using these photoelectric cross sections, the K shell photoelectric cross sections at the K-edge, the K shell absorption jump ratios and jump factors, the Davisson-Kirchner ratios and K shell oscillator strength values were estimated experimentally. The measured parameters were compared with the theoretical calculated values. It is observed that the K shell photoelectric cross section at the K-edge and K shell oscillator strength values of an element are affected by the chemical environment of material while the K shell absorption jump ratio, K shell absorption jump factor and Davisson-Kirchner ratio are not affected by the chemical environment of material for the present samples. To the best of our knowledge, the chemical effects on the Davisson-Kirchner ratio and K shell oscillator strength have not been discussed for any element by now.

  18. Layerwise Finite Elements for Smart Piezoceramic Composite Plates in Thermal Environments

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.; Lee, Ho-Jun

    1996-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite laminates and plate structures. A layerwise theory is formulated with the inherent capability to explicitly model the active and sensory response of piezoelectric composite plates having arbitrary laminate configurations in thermal environments. Finite element equations are derived and implemented for a bilinear 4-noded plate element. Application cases demonstrate the capability to manage thermally induced bending and twisting deformations in symmetric and antisymmetric composite plates with piezoelectric actuators, and show the corresponding electrical response of distributed piezoelectric sensors. Finally, the resultant stresses in the thermal piezoelectric composite laminates are investigated.

  19. MicroShell Minimalist Shell for Xilinx Microprocessors

    NASA Technical Reports Server (NTRS)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  20. Comparative study of shell swab and shell crush methods for the recovery of Salmonella from shell eggs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swabbing (SW) is the standard methodology for the recovery of resident microorganisms from shell eggs in Japan. A comparative study of shell swab (SW) and a shell crush (CR) technique was performed to recover the laboratory-inoculated Salmonella from shell eggs. It was found that the recovery of ...

  1. Efficient Finite Element Methods for Transient Nonlinear Analysis of Shells.

    DTIC Science & Technology

    1983-08-01

    stiffness matrix defined in Eq. (10). In Eq. (21) the function f utilizes local x and y components of rotations In both the bending mode and equivalent...formulation presented in the previous section, utilizing x and y components of nodal rotation, is one of the frame-indifferent formulations...implemented here utilizes prgjections of the nodal rotations onto sides of the triangle. We will refer to it as LSP (least square, projections

  2. A combined analytical and experimental approach to the determination of residual stresses in very thin cylindrical shells

    NASA Astrophysics Data System (ADS)

    Franco, Jamal Eli

    The residual stress in a high alloy ultra thin cylindrical shell is studied. The objective of this research is to quantify and develop an understanding of the residual stress produced during the fabrication process. It is shown, with the application of finite element analysis and experimental measurements, that the residual stress can be predicted and quantified. This dissertation investigates the experimental and numerical methods to determine the residual stress in high alloy ultra thin cylindrical shells. Experimental measurements of the shell profiles are used to obtain stresses during manufacturing. Finite element analysis is used to verify the experimental results. These results compare favorably with theoretical values. This dissertation shows that the thermal process applied to the shell for separation does not contribute to the residual stress. A residual stress due to the bending moment caused by the conical geometry of the shell is evident in the finite element results.

  3. Oxygen Reduction on Well-Defined Core-Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects

    SciTech Connect

    Wang, J.X.; Inada, H.; Wu, L.; Zhu, Y.; Choi, Y.; Liu, P.; Zhou, W.-P.; Adzic, R.R.

    2009-11-09

    We examined the effects of the thickness of the Pt shell, lattice mismatch, and particle size on specific and mass activities from the changes in effective surface area and activity for oxygen reduction induced by stepwise Pt-monolayer depositions on Pd and Pd{sub 3}Co nanoparticles. The core?shell structure was characterized at the atomic level using Z-contrast scanning transmission electron microscopy coupled with element-sensitive electron energy loss spectroscopy. The enhancements in specific activity are largely attributed to the compressive strain effect based on the density functional theory calculations using a nanoparticle model, revealing the effect of nanosize-induced surface contraction on facet-dependent oxygen binding energy. The results suggest that moderately compressed (111) facets are most conducive to oxygen reduction reaction on small nanoparticles and indicate the importance of concerted structure and component optimization for enhancing core?shell nanocatalysts activity and durability.

  4. Structural Performance of Advanced Composite Tow-Steered Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Turpin, Jason D.; Stanford, Bret K.; Martin, Robert A.

    2014-01-01

    The structural performance of two advanced composite tow-steered shells with cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The shells' fiber orientation angles vary continuously around their circumference from +/-10 degrees on the crown and keel, to +/-45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the system's tow drop/add capability to achieve a more uniform wall thickness. These unstiffened shells were previously tested in axial compression and buckled elastically. A single cutout, scaled to represent a passenger door on a commercial aircraft, is then machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of the shells with cutouts are also computed using linear finite element structural analyses for initial comparisons with test data. When retested, large deflections were observed around the cutouts, but the shells carried an average of 92 percent of the axial stiffness, and 86 percent of the buckling loads, of the shells without cutouts. These relatively small reductions in performance demonstrate the potential for using tow steering to mitigate the adverse effects of typical design features on the overall structural performance.

  5. Structural Characterization of Advanced Composite Tow-Steered Shells with Large Cutouts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Turpin, Jason D.; Gardner, Nathaniel W.; Stanford, Bret K.; Martin, Robert A.

    2015-01-01

    The structural performance of two advanced composite tow-steered shells with large cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles of the shells vary continuously around their circumference from +/- 10 degrees on the crown and keel, to +/- 45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the tow drop/add capability of the system to achieve a more uniform wall thickness. These unstiffened shells, both without and with small cutouts, were previously tested in axial compression and buckled elastically. In this study, a single unreinforced cutout, scaled to represent a cargo door on a commercial aircraft, is machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of these shells with large cutouts are also computed using linear finite element structural analyses for preliminary comparisons with test data. During testing, large displacements are observed around the large cutouts, but the shells maintain an average of 91 percent of the axial stiffness, and also carry 85 percent of the buckling loads, when compared to the pristine shells without cutouts. These relatively small reductions indicate that there is great potential for using tow steering to mitigate the adverse effects of large cutouts on the overall structural performance.

  6. Marine bivalve geochemistry and shell ultrastructure from modern low pH environments

    NASA Astrophysics Data System (ADS)

    Hahn, S.; Rodolfo-Metalpa, R.; Griesshaber, E.; Schmahl, W. W.; Buhl, D.; Hall-Spencer, J. M.; Baggini, C.; Fehr, K. T.; Immenhauser, A.

    2011-10-01

    Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis (from the Mediterranean) and M. edulis (from the Wadden Sea) combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island of Ischia. The shells of transplanted mussels were compared with M. edulis collected at pH ~8.2 from Sylt (German Wadden Sea). Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.

  7. Recovery of Salmonella from commercial shell eggs by shell rinse and shell crush methodologies.

    PubMed

    Musgrove, M T; Jones, D R; Northcutt, J K; Harrison, M A; Cox, N A; Ingram, K D; Hinton, A J

    2005-12-01

    Salmonella is the most important human pathogen associated with shell eggs. Salmonella Enteritidis is the serotype most often implicated in outbreaks, although other serotypes have been recovered from eggs and from the commercial shell egg washing environment. Many sample methods are used to recover microorganisms from eggshells and membranes. A shell rinse and modified shell-and-membrane crush method for recovery of Salmonella were compared. Eggs were collected from 3 commercial shell-washing facilities (X, Y, and Z) during 3 visits. Twelve eggs were collected from each of 10 to 12 locations along the egg processing chain. After being transported back to the laboratory, each egg was sampled first by a shell rinse method and then by a shell crush method. For each technique (rinse or crush), 2 pools of 5 eggs per location sampled were selectively enriched for the recovery of Salmonella. Presumptive samples positive for Salmonella were confirmed serologically. Overall, there were 10.1% (40/396) Salmonella-positive pooled samples. Salmonella were recovered by the shell rinse and shell crush techniques (4.8 vs. 5.3%, respectively). Plant X yielded 21.5% Salmonella positives, whereas less than 5% of samples from plants Y and Z were found to be contaminated with the organism (4.2 and 4.5%, respectively). Salmonella was recovered more often from unwashed eggs (15.8%) than from washed eggs (8.3%). For some eggs, Salmonella was only recovered by one of the methods. Use of both approaches in the same experiment increased sampling sensitivity, although in most cases, crushing provided more sensitive Salmonella recovery.

  8. Mesoscale modeling of functional properties in core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Mangeri, John; Heinonen, Olle; Karpeev, Dmitry; Nakhmanson, Serge

    2015-03-01

    Core-shell nanoparticle systems of Zn-ZnO and ZnO-TiO2 are studied computationally using the highly scalable MOOSE finite-element framework, developed at Idaho National Lab. The elastic anisotropic mismatch of the core and shell create an imprinting effect within the shell that produces a wide variation of strains. Due to this diversity of strains, the sharp band gap edges of the bulk semiconductor are observed to be ``thinned-out'' much like amorphous silicon. We show that a variety of factors, such as particle size, core-to-shell volume ratio, applied hydrostatic pressure, shell microstructure, as well as the effect of surface elasticity, can influence the distribution of optical band-gap values within the particle, which may prove useful within the field of photovoltaics. Part of the work by O.H. was supported by Award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Material Design.

  9. Vibration control of cylindrical shells using active constrained layer damping

    NASA Astrophysics Data System (ADS)

    Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.

    1997-05-01

    The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.

  10. A violin shell model: vibrational modes and acoustics.

    PubMed

    Gough, Colin E

    2015-03-01

    A generic physical model for the vibro-acoustic modes of the violin is described treating the body shell as a shallow, thin-walled, guitar-shaped, box structure with doubly arched top and back plates. comsol finite element, shell structure, software is used to identify and understand the vibrational modes of a simply modeled violin. This identifies the relationship between the freely supported plate modes when coupled together by the ribs and the modes of the assembled body shell. Such coupling results in a relatively small number of eigenmodes or component shell modes, of which a single volume-changing breathing mode is shown to be responsible for almost all the sound radiated in the monopole signature mode regime below ∼1 kHz for the violin, whether directly or by excitation of the Helmholtz f-hole resonance. The computations describe the influence on such modes of material properties, arching, plate thickness, elastic anisotropy, f-holes cut into the top plate, the bass-bar, coupling to internal air modes, the rigid neck-fingerboard assembly, and, most importantly, the soundpost. Because the shell modes are largely determined by the symmetry of the guitar-shaped body, the model is applicable to all instruments of the violin family.

  11. A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; OBrien, T. Kevin

    2000-01-01

    A shell/3D modeling technique was developed for which a local solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a shell finite element model. Multi-point constraints provided a kinematically compatible interface between the local 3D model and the global structural model which has been meshed with shell finite elements. Double Cantilever Beam, End Notched Flexure, and Single Leg Bending specimens were analyzed first using full 3D finite element models to obtain reference solutions. Mixed mode strain energy release rate distributions were computed using the virtual crack closure technique. The analyses were repeated using the shell/3D technique to study the feasibility for pure mode I, mode II and mixed mode I/II cases. Specimens with a unidirectional layup and with a multidirectional layup were simulated. For a local 3D model, extending to a minimum of about three specimen thicknesses on either side of the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures the shell/3D modeling technique offers a great potential for reducing the model size, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.

  12. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  13. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  14. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  15. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  16. 7 CFR 996.19 - Shelled peanuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Shelled peanuts. 996.19 Section 996.19 Agriculture... STANDARDS FOR DOMESTIC AND IMPORTED PEANUTS MARKETED IN THE UNITED STATES Definitions § 996.19 Shelled peanuts. Shelled peanuts means the kernels or portions of kernels of peanuts after the shells are removed....

  17. Insulative laser shell coupler

    DOEpatents

    Arnold, Phillip A.; Anderson, Andrew T.; Alger, Terry W.

    1994-01-01

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dialectric break ring, and a pair of threaded ring sections. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections.

  18. Insulative laser shell coupler

    DOEpatents

    Arnold, P.A.; Anderson, A.T.; Alger, T.W.

    1994-09-20

    A segmented coaxial laser shell assembly having at least two water jacket sections, two pairs of interconnection half rings, a dielectric break ring, and a pair of threaded ring sections is disclosed. Each water jacket section with an inner tubular section that defines an inner laser cavity with water paths adjacent to at least a portion of the exterior of the inner tubular section, and mating faces at the end of the water jacket section through which the inner laser cavity opens and which defines at least one water port therethrough in communication with the water jackets. The water paths also define in their external surface a circumferential notch set back from and in close proximity to the mating face. The dielectric break ring has selected thickness and is placed between, and in coaxial alignment with, the mating faces of two of the adjacent water jacket sections. The break ring also defines an inner laser cavity of the same size and shape as the inner laser cavity of the water jacket sections and at least one water passage through the break ring to communicate with at least one water port through the mating faces of the water jacket sections. 4 figs.

  19. Computerized Buckling Analysis of Shells

    DTIC Science & Technology

    1981-06-01

    bl block nurmber) Shells Composites Buckl ing Stiffened Numerical Methods Elastic-Plastic Nonlinear Survey 20 AES’RACT (Con’inue on re, ense Ride If...Contract F33615-76-C-3105. The work was completed under Task 2307NI, "Basic Research in Behavior of Metallic and Composite Components of Airframe Struc...and Internal Pressure ....... ................. ... 134 Stiffened Cylindrical Shells Under Combined Loading .... ........ 136 - Buckling of Composite

  20. Rotating thin-shell wormhole

    NASA Astrophysics Data System (ADS)

    Ovgun, A.

    2016-11-01

    We construct a rotating thin-shell wormhole using a Myers-Perry black hole in five dimensions, using the Darmois-Israel junction conditions. The stability of the wormhole is analyzed under perturbations. We find that exotic matter is required at the throat of the wormhole to keep it stable. Our analysis shows that stability of the rotating thin-shell wormhole is possible if suitable parameter values are chosen.

  1. Nematic textures in spherical shells

    NASA Astrophysics Data System (ADS)

    Vitelli, V.; Nelson, D. R.

    2006-08-01

    The equilibrium texture of nematic shells is studied as a function of their thickness. For ultrathin shells the ground state has four short (1)/(2) disclination lines but, as the thickness of the film increases, a three-dimensional escaped configuration composed of two pairs of half-hedgehogs becomes energetically favorable. We derive an exact solution for the nematic ground state in the one Frank constant approximation and study the stability of the corresponding texture against thermal fluctuations.

  2. Parameter identification of material constants in a composite shell structure

    SciTech Connect

    Martinez, D.R.; Carne, T.G.

    1988-01-01

    One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently, comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test-verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. In this work a parameter identification procedure was used to determine the elastic constants of a cylindrical, graphite epoxy composite shell. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem. 17 refs., 7 figs.

  3. Elemental ZOO

    NASA Astrophysics Data System (ADS)

    Helser, Terry L.

    2003-04-01

    This puzzle uses the symbols of 39 elements to spell the names of 25 animals found in zoos. Underlined spaces and the names of the elements serve as clues. To solve the puzzle, students must find the symbols that correspond to the elemental names and rearrange them into the animals' names.

  4. Triton shells of intact erythrocytes.

    PubMed

    Sheetz, M P; Sawyer, D

    1978-01-01

    About 40% of human erythrocyte membrane protein is resistant to solubilization in 0.5% Triton X-114. These components comprise a structure called a Triton shell roughly similar in size and shape to the original erythrocyte and thus constitute a cytoskeleton. With increasing concentrations of Triton the lipid content of the Triton shell decreases dramatically, whereas the majority of the protein components remain constant. Exceptions to this rule include proteins contained in band 3, the presumed anion channel, and in band 4 which decrease with increasing Triton concentration. The Triton-insoluble complex includes spectrin (bands 1 and 2), actin (band 5), and bands 3' and 7. Component 3' has an apparent molecular weight of 88,000 daltons as does 3; but unlike 3, it is insensitive to protease treatment of the intact cell, has a low extinction coefficient at 280 nm, and is solubilized from the shells in alkaline water solutions. Component 7 also has a low extinction coefficient at 280 nm. Spectrin alone is solubilized from the Triton shells in isotonic media. The solubilized spectrin contains no bound Triton and coelectrophoreses with spectrin eluted in hypotonic solutions from ghosts. Electron micrographs of fixed Triton shells stained with uranyl acetate show the presence of numerous filaments which appear beaded and are 80--120 A in diameter. The filaments cannot be composed mainly af actin, but enough spectrin is present to form the filaments. Triton shells may provide an excellent source of material useful in the investigation of the erythrocyte cytoskeleton.

  5. Chemical characterization of element 112.

    PubMed

    Eichler, R; Aksenov, N V; Belozerov, A V; Bozhikov, G A; Chepigin, V I; Dmitriev, S N; Dressler, R; Gäggeler, H W; Gorshkov, V A; Haenssler, F; Itkis, M G; Laube, A; Lebedev, V Ya; Malyshev, O N; Oganessian, Yu Ts; Petrushkin, O V; Piguet, D; Rasmussen, P; Shishkin, S V; Shutov, A V; Svirikhin, A I; Tereshatov, E E; Vostokin, G K; Wegrzecki, M; Yeremin, A V

    2007-05-03

    The heaviest elements to have been chemically characterized are seaborgium (element 106), bohrium (element 107) and hassium (element 108). All three behave according to their respective positions in groups 6, 7 and 8 of the periodic table, which arranges elements according to their outermost electrons and hence their chemical properties. However, the chemical characterization results are not trivial: relativistic effects on the electronic structure of the heaviest elements can strongly influence chemical properties. The next heavy element targeted for chemical characterization is element 112; its closed-shell electronic structure with a filled outer s orbital suggests that it may be particularly susceptible to strong deviations from the chemical property trends expected within group 12. Indeed, first experiments concluded that element 112 does not behave like its lighter homologue mercury. However, the production and identification methods used cast doubt on the validity of this result. Here we report a more reliable chemical characterization of element 112, involving the production of two atoms of (283)112 through the alpha decay of the short-lived (287)114 (which itself forms in the nuclear fusion reaction of 48Ca with 242Pu) and the adsorption of the two atoms on a gold surface. By directly comparing the adsorption characteristics of (283)112 to that of mercury and the noble gas radon, we find that element 112 is very volatile and, unlike radon, reveals a metallic interaction with the gold surface. These adsorption characteristics establish element 112 as a typical element of group 12, and its successful production unambiguously establishes the approach to the island of stability of superheavy elements through 48Ca-induced nuclear fusion reactions with actinides.

  6. Survey and development of finite elements for nonlinear structural analysis. Volume 1: Handbook for nonlinear finite elements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A survey of research efforts in the area of geometrically nonlinear finite elements is presented. The survey is intended to serve as a guide in the choice of nonlinear elements for specific problems, and as background to provide directions for new element developments. The elements are presented in a handbook format and are separated by type as beams, plates (or shallow shells), shells, and other elements. Within a given type, the elements are identified by the assumed displacement shapes and the forms of the nonlinear strain equations. Solution procedures are not discussed except when a particular element formulation poses special problems or capabilities in this regard. The main goal of the format is to provide quick access to a wide variety of element types, in a consistent presentation format, and to facilitate comparison and evaluation of different elements with regard to features, probable accuracy, and complexity.

  7. Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment

    ERIC Educational Resources Information Center

    Nayak, S. V.; Badiger, N. M.

    2007-01-01

    We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…

  8. Mass measurements demonstrate a strong N=28 shell gap in argon.

    PubMed

    Meisel, Z; George, S; Ahn, S; Browne, J; Bazin, D; Brown, B A; Carpino, J F; Chung, H; Cyburt, R H; Estradé, A; Famiano, M; Gade, A; Langer, C; Matoš, M; Mittig, W; Montes, F; Morrissey, D J; Pereira, J; Schatz, H; Schatz, J; Scott, M; Shapira, D; Smith, K; Stevens, J; Tan, W; Tarasov, O; Towers, S; Wimmer, K; Winkelbauer, J R; Yurkon, J; Zegers, R G T

    2015-01-16

    We present results from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. We report the first mass measurements of ^{48}Ar and ^{49}Ar and find atomic mass excesses of -22.28(31)  MeV and -17.8(1.1)  MeV, respectively. These masses provide strong evidence for the closed shell nature of neutron number N=28 in argon, which is therefore the lowest even-Z element exhibiting the N=28 closed shell. The resulting trend in binding-energy differences, which probes the strength of the N=28 shell, compares favorably with shell-model calculations in the sd-pf shell using SDPF-U and SDPF-MU Hamiltonians.

  9. Shell-model phenomenology of low-momentum interactions

    NASA Astrophysics Data System (ADS)

    Schwenk, Achim; Zuker, Andrés P.

    2006-12-01

    The first detailed comparison of the low-momentum interaction Vlowk with G matrices is presented. We use overlaps to measure quantitatively the similarity of shell-model matrix elements for different cutoffs and oscillator frequencies. Over a wide range, all sets of Vlowk matrix elements can be approximately obtained from a universal set by a simple scaling. In an oscillator mean-field approach, Vlowk reproduces satisfactorily many features of the single-particle and single-hole spectra on closed-shell nuclei, in particular through remarkably good splittings between spin-orbit partners on top of harmonic oscillator closures. The main deficiencies of pure two-nucleon interactions are associated with binding energies and with the failure to ensure magicity for the extruder-intruder closures. Here, calculations including three-nucleon interactions are most needed. Vlowk makes it possible to define directly a meaningful unperturbed monopole Hamiltonian, for which the inclusion of three-nucleon forces is tractable.

  10. Evolutionary origin of the turtle shell.

    PubMed

    Lyson, Tyler R; Bever, Gabe S; Scheyer, Torsten M; Hsiang, Allison Y; Gauthier, Jacques A

    2013-06-17

    The origin of the turtle shell has perplexed biologists for more than two centuries. It was not until Odontochelys semitestacea was discovered, however, that the fossil and developmental data could be synthesized into a model of shell assembly that makes predictions for the as-yet unestablished history of the turtle stem group. We build on this model by integrating novel data for Eunotosaurus africanus-a Late Guadalupian (∼260 mya) Permian reptile inferred to be an early stem turtle. Eunotosaurus expresses a number of relevant characters, including a reduced number of elongate trunk vertebrae (nine), nine pairs of T-shaped ribs, inferred loss of intercostal muscles, reorganization of respiratory muscles to the ventral side of the ribs, (sub)dermal outgrowth of bone from the developing perichondral collar of the ribs, and paired gastralia that lack both lateral and median elements. These features conform to the predicted sequence of character acquisition and provide further support that E. africanus, O. semitestacea, and Proganochelys quenstedti represent successive divergences from the turtle stem lineage. The initial transformations of the model thus occurred by the Middle Permian, which is congruent with molecular-based divergence estimates for the lineage, and remain viable whether turtles originated inside or outside crown Diapsida.

  11. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    SciTech Connect

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  12. Assessing open-system behavior of 14C in terrestrial gastropod shells

    USGS Publications Warehouse

    Rech, J.A.; Pigati, J.S.; Lehmann, S.B.; McGimpsey, C.N.; Grimley, D.A.; Nekola, J.C.

    2011-01-01

    In order to assess open-system behavior of radiocarbon in fossil gastropod shells, we measured the 14C activity on 10 aliquots of shell material recovered from Illinoian (~190-130 ka) and pre-Illinoian (~800 ka) loess and lacustrine deposits in the Midwestern USA. Eight of the 10 aliquots yielded measurable 14C activities that ranged from 0.25 to 0.53 percent modern carbon (pMC), corresponding to apparent 14C ages between 48.2 and 42.1 ka. This small level of open-system behavior is common in many materials that are used for 14C dating (e.g. charcoal), and typically sets the upper practical limit of the technique. Two aliquots of gastropod shells from the Illinoian-aged Petersburg Silt (Petersburg Section) in central Illinois, USA, however, yielded elevated 14C activities of 1.26 and 1.71 pMC, which correspond to apparent 14C ages of 35.1 and 32.7 ka. Together, these results suggest that while many fossil gastropods shells may not suffer from major (>1%) open-system problems, this is not always the case. We then examined the mineralogy, trace element chemistry, and physical characteristics of a suite of fossil and modern gastropod shells to identify the source of contamination in the Petersburg shells and assess the effectiveness of these screening techniques at identifying samples suitable for 14C dating. Mineralogical (XRD) and trace element analyses were inconclusive, which suggests that these techniques are not suitable for assessing open-system behavior in terrestrial gastropod shells. Analysis with scanning electron microscopy (SEM), however, identified secondary mineralization (calcium carbonate) primarily within the inner whorls of the Petersburg shells. This indicates that SEM examination, or possibly standard microscope examination, of the interior of gastropod shells should be used when selecting fossil gastropod shells for 14C dating. ?? 2011 by the Arizona Board of Regents on behalf of the University of Arizona.

  13. Assessing open-system behavior of 14C in terrestrial gastropod shells

    USGS Publications Warehouse

    Rech, Jason A.; Pigati, Jeffrey S.; Lehmann, Sophie B.; McGimpsey, Chelsea N.; Grimley, David A.; Nekola, Jeffrey C.

    2011-01-01

    In order to assess open-system behavior of radiocarbon in fossil gastropod shells, we measured the 14C activity on 10 aliquots of shell material recovered from Illinoian (~190-130 ka) and pre-Illinoian (~800 ka) loess and lacustrine deposits in the Midwestern USA. Eight of the 10 aliquots yielded measurable 14C activities that ranged from 0.25 to 0.53 percent modern carbon (pMC), corresponding to apparent 14C ages between 48.2 and 42.1 ka. This small level of open-system behavior is common in many materials that are used for 14C dating (e.g. charcoal), and typically sets the upper practical limit of the technique. Two aliquots of gastropod shells from the Illinoian-aged Petersburg Silt (Petersburg Section) in central Illinois, USA, however, yielded elevated 14C activities of 1.26 and 1.71 pMC, which correspond to apparent 14C ages of 35.1 and 32.7 ka. Together, these results suggest that while many fossil gastropods shells may not suffer from major (>1%) open-system problems, this is not always the case. We then examined the mineralogy, trace element chemistry, and physical characteristics of a suite of fossil and modern gastropod shells to identify the source of contamination in the Petersburg shells and assess the effectiveness of these screening techniques at identifying samples suitable for 14C dating. Mineralogical (XRD) and trace element analyses were inconclusive, which suggests that these techniques are not suitable for assessing open-system behavior in terrestrial gastropod shells. Analysis with scanning electron microscopy (SEM), however, identified secondary mineralization (calcium carbonate) primarily within the inner whorls of the Petersburg shells. This indicates that SEM examination, or possibly standard microscope examination, of the interior of gastropod shells should be used when selecting fossil gastropod shells for 14C dating.

  14. Computational procedures for postbuckling of composite shells

    NASA Technical Reports Server (NTRS)

    Stanley, G. M.; Felippa, Carlos A.

    1989-01-01

    A recently developed finite-element capability for general nonlinear shell analysis, featuring the use of three-dimensional constitutive equations within an efficient resultant-oriented framework, is employed to simulate the postbuckling response of an axially compressed composite cylindrical panel with a circular cutout. The problem is a generic example of modern composite aircraft components for which postbuckling strength (i.e., fail-safety) is desired in the presence of local discontinuities such as holes and cracked stiffeners. While the computational software does a reasonable job of predicting both the buckling load and the qualitative aspects of postbuckling (compared both with experiment and another code) there are some discrepancies due to: (1) uncertainties in the nominal layer material properties, (2) structural sensitivity to initial imperfections, and (3) the neglect of dynamic and local material delamination effects in the numerical model. Corresponding refinements are suggested for the realistic continuation of this type of analysis.

  15. Advanced solid elements for sheet metal forming simulation

    NASA Astrophysics Data System (ADS)

    Mataix, Vicente; Rossi, Riccardo; Oñate, Eugenio; Flores, Fernando G.

    2016-08-01

    The solid-shells are an attractive kind of element for the simulation of forming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any additional hypothesis. The present work consists in the improvement of a triangular prism solid-shell originally developed by Flores[2, 3]. The solid-shell can be used in the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation a modified right Cauchy-Green deformation tensor (C) is obtained; in the present work a modified deformation gradient (F) is obtained, which allows to generalise the methodology and allows to employ the Pull-Back and Push-Forwards operations. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressible materials or materials with isochoric plastic flow.

  16. Blended Isogeometric Shells

    DTIC Science & Technology

    2012-08-01

    here. The equations of motion for the center of mass for a rigid body are mẍCM = F and Jω̇ = M − ω × Jω (A.1) where m is the mass of the body, J is...the mass moment of inertia tensor, xCM are the coordinates of the center of mass, ω is the angular velocity, and F and M are the sums of the externally...element with through-thickness stretch. Computer Methods in Applied Mechanics and Engineering, 194(911):1161 – 1199, 2005. [11] F . Cirak, M . Ortiz

  17. [Providing the Optimal Insolation of a Photobiological Architectural Shell for Microalgae Cultivation].

    PubMed

    Ermachenko, P A; Buzalo, N S; Perevjazka, D S

    2016-01-01

    Translucent architectural shells with microalgae are considered as an element of local photobiological treatment facilities integrated in the urban environment. A mathematical microalgae growth model for the prediction of insolation and temperature behaviour in the medium during microalgae cultivation under dynamically fluctuating natural lighting is presented. The task of optimizing the parameters of photobiological architectural shell with respect to temperature and insolation is set. The results of numerical experiments for the model problem are shown.

  18. Identification of material constants for a composite shell structure

    SciTech Connect

    Carne, T.G.; Martinez, D.R.

    1987-03-01

    One of the basic requirements of an engineering analysis is the development of an adequate mathematical model describing the system. Frequently, comparisons with test data are used as a measure of the model's adequacy, or the test data are directly used to update or modify the model. For nonmetallic structures, the modeling task is often more difficult due to uncertainties in the elastic constants. System identification provides a methodology for systematically updating the mathematical model for improved correlation with test data. In this work a finite element model of a composite shell was created. The model includes uncertain orthotropic elastic constants. To identify these constants, a modal survey was performed on an actual shell. The resulting modal data along with the finite element model of the shell were used in a Bayes estimation algorithm. Values of the elastic constants were estimated which minimized the differences between the test results and the finite element predictions. The estimation procedure employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.

  19. Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptill, James D.

    1994-01-01

    Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.

  20. The shell of Mytilus as an indicator of zonal variations of water quality within an estuary

    NASA Astrophysics Data System (ADS)

    Al-Dabbas, M. A. M.; Hubbard, F. H.; McManus, J.

    1984-03-01

    Variations in the mineralogy and chemistry of the shells of the filter-feeding organism Mytilus edulis have allowed discrimination of subenvironments of growth within the Tay estuary. Aragonite proportions higher than those predictable for the temperate, tidal, growth conditions are associated with stretches of the estuary affected by organic pollution. Accumulation and concentration of copper (Cu) in the organic periostracum suggest that Mytilus shell may also prove useful as a monitor of metallic element pollution. The relatively fragile nature of the polylayer shell of Mytilus and the layer specific distribution of components require the use of either complete, undamaged specimens or population groups to discriminate significant variations.

  1. Semiclassical environment of collapsing shells

    SciTech Connect

    Banerjee, Kinjal; Paranjape, Aseem

    2009-12-15

    We explore in detail the semiclassical environment of collapsing shells of matter, and determine the semiclassical flux measured by a variety of observers. This study is a preliminary step in a broader investigation of thermodynamic properties of the geometry of collapsing objects. Specifically, in this paper we consider spherically symmetric null and timelike collapsing shells which form an event horizon, and calculate the flux measured by observers both inside and outside the shell, and both inside and outside the event horizon, and find nontrivial results in most of the cases. Additionally, we also investigate the environment of a shell which collapses but does not form a horizon, halting at some radius larger than the Schwarzschild radius, and find that such an object generically gives rise to a pulse of radiation which is sharply peaked as it travels inwards and is reflected at the origin, and eventually emerges from the shell in a thermalized form. Our results have potential consequences in addressing questions pertaining, e.g. to black hole entropy and backreaction.

  2. Shell models of magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Plunian, Franck; Stepanov, Rodion; Frick, Peter

    2013-02-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfvén waves and the Hall effect.

  3. Foam shell project: Progress report

    SciTech Connect

    Overturf, G.; Reibold, B.; Cook, B.; Schroen-Carey, D.

    1994-03-25

    The authors report on their work to produce a foam shell target for two possible applications: (1) as liquid-layered cryogenic target on Omega Upgrade, and (2) as a back-up design for the NIF. This target consists of a roughly 1 mm diameter and 100 {mu}m thick spherical low-density foam shell surrounding a central void. The foam will be slightly overfilled with liquid D{sub 2} or DT, the overfilled excess being symmetrically distributed on the inside of the shell and supported by thermal gradient techniques. The outside of the foam is overcoated with full density polymer which must be topologically smooth. The technology for manufacturing this style of foam shell involves microencapsulation techniques and has been developed by the Japanese at ILE. Their goal is to determine whether this technology can be successfully adapted to meet US ICF objectives. To this end a program of foam shell development has been initiated at LLNL in collaboration with both the General Atomics DOE Target Fabrication Contract Corporation and the Target Fabrication Group at LLE.

  4. Closed-shell and open-shell 2D nanographenes.

    PubMed

    Sun, Zhe; Wu, Jishan

    2014-01-01

    This chapter describes a series of two-dimensional (2D) expanded arene networks, also known as nanographenes, with either closed-shell or open-shell electronic structure in the ground state. These systems are further categorized into three classes on a basis of different edge structures: those with zigzag edges only, those with armchair edges only, and those possessing both. Distinctive physical properties of these 2D aromatic systems are closely related to their structural characteristics and provide great potential for them as materials for different applications.

  5. Buckling analysis of laminated thin shells in a hot environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptil, James D.

    1993-01-01

    Results are presented of parametric studies to assess the effects of various parameters on the buckling behavior of angle-ply, laminated thin shells in a hot environment. These results were obtained by using a three-dimensional finite element analysis. An angle-ply, laminated thin shell with fiber orientation of (theta/-theta)(sub 2) was subjected to compressive mechanical loads. The laminated thin shell had a cylindrical geometry. The laminate contained T300 graphite fibers embedded in an intermediate-modulus, high-strength (IMHS) matrix. The fiber volume fraction was 55 percent and the moisture content was 2 percent. The residual stresses induced into the laminate structure during the curing were taken into account. Parametric studies were performed to examine the effect on the critical buckling load of the following parameters: cylinder length and thickness, internal hydrostatic pressure, different ply thicknesses, different temperature profiles through the thickness of the structure, and different lay up configurations and fiber volume fractions. In conjunction with these parameters the ply orientation was varied from 0 deg to 90 deg. Seven ply angles were examined: 0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg, and 90 deg. The results show that the ply angle theta and the laminate thickness had significant effects on the critical buckling load. The fiber volume fraction, the fiber orientations, and the internal hydrostatic pressure had important effects on the critical buckling load. The cylinder length had a moderate influence on the buckling load. The thin shell with (theta/-theta)(sub 2) or (theta/-theta)(sub s) angle-ply laminate had better buckling-load performance than the thin shell with (theta)(sub 4) angle-ply laminate. The temperature profiles through the laminate thickness and various laminates with the different ply thicknesses has insignificant effects on the buckling behavior of the thin shells.

  6. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  7. Plastic buckling of cylindrical shells

    SciTech Connect

    Bandyopadhyay, K.; Xu, J.; Shteyngart, S.; Eckert, H.

    1994-05-01

    Cylindrical shells exhibit buckling under axial loads at stresses much less than the respective theoretical critical stresses. This is due primarily to the presence of geometrical imperfections even through such imperfections could be very small (e.g., comparable to thickness). Under internal pressure, the shell regains some of its buckling strength. For a relatively large radius-to-tickness ratio and low internal pressure, the effect can be reasonably estimated by an elastic analysis. However, for low radius-to-thickness ratios and greater pressures, the elastic-plastic collapse controls the failure load. In order to quantify the elastic-plastic buckling capacity of cylindrical shells, an analysis program was carried out by use of the computer code BOSOR5 developed by Bushnell of Lockheed Missiles and Space company. The analysis was performed for various radius-to- thickness ratios and imperfection amplitudes. The analysis results are presented in this paper.

  8. Asymptotic safety goes on shell

    NASA Astrophysics Data System (ADS)

    Benedetti, Dario

    2012-01-01

    It is well known in quantum field theory that the off-shell effective action depends on the gauge choice and field parametrization used in calculating it. Nevertheless, the typical scheme in which the scenario of asymptotically safe gravity is investigated is an off-shell version of the functional renormalization group equation. Working with the Einstein-Hilbert truncation as a test bed, we develop a new scheme for the analysis of asymptotically safe gravity in which the on-shell part of the effective action is singled out and we show that the beta function for the essential coupling has no explicit gauge dependence. In order to reach our goal, we introduce several technical novelties, including a different decomposition of the metric fluctuations, a new implementation of the ghost sector and a new cut-off scheme. We find a nontrivial fixed point, with a value of the cosmological constant that is independent of the gauge-fixing parameters.

  9. Spectroscopy of the Heaviest Elements

    NASA Astrophysics Data System (ADS)

    Clark, Roderick

    2009-10-01

    The specific ``magic'' proton and neutron numbers, representing major spherical shell gaps, beyond 208Pb are a matter of considerable debate. It is well established that nuclei near Z=100, N=152 (252Fm) have well-deformed prolate shapes. By performing prompt and delayed gamma-ray spectroscopy on deformed transfermium nuclei we can learn about the single-particle structure, shell gaps, pairing correlations, and excitation modes in the heaviest nuclei. After a brief overview of state-of-the-art measurements, I will describe recent results from experiments at the 88-Inch Cyclotron of the Lawrence Berkeley National Laboratory which use the Berkeley Gas-filled Separator (BGS). I will then discuss the prospects of a new generation of spectroscopy measurements on the heaviest elements when the BGS is used in conjunction with the GRETINA gamma--ray tracking array.

  10. Analysis of Thick Sandwich Shells with Embedded Ceramic Tiles

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Smith, C.; Lumban-Tobing, F.

    1996-01-01

    The Composite Armored Vehicle (CAV) is an advanced technology demonstrator of an all-composite ground combat vehicle. The CAV upper hull is made of a tough light-weight S2-glass/epoxy laminate with embedded ceramic tiles that serve as armor. The tiles are bonded to a rubber mat with a carefully selected, highly viscoelastic adhesive. The integration of armor and structure offers an efficient combination of ballistic protection and structural performance. The analysis of this anisotropic construction, with its inherent discontinuous and periodic nature, however, poses several challenges. The present paper describes a shell-based 'element-layering' technique that properly accounts for these effects and for the concentrated transverse shear flexibility in the rubber mat. One of the most important advantages of the element-layering technique over advanced higher-order elements is that it is based on conventional elements. This advantage allows the models to be portable to other structural analysis codes, a prerequisite in a program that involves the computational facilities of several manufacturers and government laboratories. The element-layering technique was implemented into an auto-layering program that automatically transforms a conventional shell model into a multi-layered model. The effects of tile layer homogenization, tile placement patterns, and tile gap size on the analysis results are described.

  11. Elemental health

    SciTech Connect

    Tonneson, L.C.

    1997-01-01

    Trace elements used in nutritional supplements and vitamins are discussed in the article. Relevant studies are briefly cited regarding the health effects of selenium, chromium, germanium, silicon, zinc, magnesium, silver, manganese, ruthenium, lithium, and vanadium. The toxicity and food sources are listed for some of the elements. A brief summary is also provided of the nutritional supplements market.

  12. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Nolen, R. L., Jr.; Ebner, M. A.; Downs, R. L.

    1980-01-01

    A heat transfer model was developed that mathematically describes the heating and calculates the thermal history of a gel particle in free-fall through the furnace. The model parameters that greatly affect the calculations were found to be gel particle mass, geometry, specific heat, and furnace gas. Empirical testing of the model has commenced. The code calculations and the initial empirical testing results both indicate that the gel-to-shell transformation occurs early and rapidly in the thermal history of the gel particle, and that for current work the heat transfer rate is not a limitation in shell production.

  13. On Closed Shells in Nuclei

    DOE R&D Accomplishments Database

    Mayer, M. G.

    1948-02-01

    It has been suggested in the past that special numbers of neutrons or protons in the nucleus form a particularly stable configuration.{sup1} The complete evidence for this has never been summarized, nor is it generally recognized how convincing this evidence is. That 20 neutrons or protons (Ca{sup40}) form a closed shell is predicted by the Hartree model. A number of calculations support this fact.{sup2} These considerations will not be repeated here. In this paper, the experimental facts indicating a particular stability of shells of 50 and 82 protons and of 50, 82, and 126 neutrons will be listed.

  14. Shell may expand detergent alcohols

    SciTech Connect

    1996-10-23

    Shell Chemical is studying plans to expand detergent alcohols capacity in the US, CW has learned. The company is considering adding capacity for about 80 million lbs/year. If the project is approved, it would be implemented at the company`s Geismar, LA site. Shell will make a final decision on whether to proceed with the project within six months. It has been rumored to be considering a capacity addition as a result of tightening supply of natural and synthetic detergent alcohols.

  15. Use of the Bethe equation for inner-shell ionization by electron impact

    NASA Astrophysics Data System (ADS)

    Powell, Cedric J.; Llovet, Xavier; Salvat, Francesc

    2016-05-01

    We analyzed calculated cross sections for K-, L-, and M-shell ionization by electron impact to determine the energy ranges over which these cross sections are consistent with the Bethe equation for inner-shell ionization. Our analysis was performed with K-shell ionization cross sections for 26 elements, with L-shell ionization cross sections for seven elements, L3-subshell ionization cross sections for Xe, and M-shell ionization cross sections for three elements. The validity (or otherwise) of the Bethe equation could be checked with Fano plots based on a linearized form of the Bethe equation. Our Fano plots, which display theoretical cross sections and available measured cross sections, reveal two linear regions as predicted by de Heer and Inokuti [in Electron Impact Ionization, edited by T. D. Märk and G. H. Dunn, (Springer-Verlag, Vienna, 1985), Chap. 7, pp. 232-276]. For each region, we made linear fits and determined values of the two element-specific Bethe parameters. We found systematic variations of these parameters with atomic number for both the low- and the high-energy linear regions of the Fano plots. We also determined the energy ranges over which the Bethe equation can be used.

  16. Optimal design of geodesically stiffened composite cylindrical shells

    NASA Technical Reports Server (NTRS)

    Gendron, G.; Guerdal, Z.

    1992-01-01

    An optimization system based on the finite element code Computations Structural Mechanics (CSM) Testbed and the optimization program, Automated Design Synthesis (ADS), is described. The optimization system can be used to obtain minimum-weight designs of composite stiffened structures. Ply thickness, ply orientations, and stiffener heights can be used as design variables. Buckling, displacement, and material failure constraints can be imposed on the design. The system is used to conduct a design study of geodesically stiffened shells. For comparison purposes, optimal designs of unstiffened shells and shells stiffened by rings and stingers are also obtained. Trends in the design of geodesically stiffened shells are identified. An approach to include local stress concentrations during the design optimization process is then presented. The method is based on a global/local analysis technique. It employs spline interpolation functions to determine displacements and rotations from a global model which are used as 'boundary conditions' for the local model. The organization of the strategy in the context of an optimization process is described. The method is validated with an example.

  17. Free vibration analysis of skewed open circular cylindrical shells

    NASA Astrophysics Data System (ADS)

    Kandasamy, Selvakumar; Singh, Anand V.

    2006-03-01

    In this paper, a numerical study is presented for the free vibration of skewed open circular cylindrical deep shells. The formulation considers first-order shear deformation theory of shells and includes rotary inertia and shear deformation so that thin-to-moderately thick shells can be analyzed. A set of grid points, the number of which depends upon the orders of the polynomials chosen for the displacement and rotation components, on the middle surface of the shell is defined first. For a particular displacement component, the field functions are derived corresponding to each node from the above-mentioned set of points and are used in the Rayleigh-Ritz method to calculate frequencies and mode shapes. Convergence study with reference to the order of the polynomials used for the displacement fields was performed first. Numerical results obtained from the present method are compared with those from the finite element method and very good agreement is observed. Additional results are presented and discussed in this paper for skewed panels clamped at the curved edges and free at the straight parallel edges.

  18. TAURUS96. 3-D Finite Element Code Postprocessor

    SciTech Connect

    Brown, B.; Hallquist, J.O.; Spelce, T.E.

    1993-11-30

    TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.

  19. Shell Games: Uncovering Periodic Properties.

    ERIC Educational Resources Information Center

    Lamb, William G.

    1983-01-01

    Describes activities (demonstrations/experiments) used to introduce history of periodic properties--without electrons, orbitals, filling shells, or any conception of atoms beyond Dalton's model. Activities supplement first chapter in a currently available chemistry text. Indicates potential danger of experiments if proper safety precautions are…

  20. Recent advances in shell theory. [application of asymptotic approach to thin walled shells

    NASA Technical Reports Server (NTRS)

    Simmonds, J. G.

    1976-01-01

    The results reviewed are divided into two categories: those that relate two-dimensional shell theory to three-dimensional elasticity theory and those concerned with shell theory per se. In the second category results for general elastic systems that carry over, by specialization or analogy, to shells and results that are unique to shell theory itself are considered.

  1. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  2. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  3. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  4. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  5. 7 CFR 981.6 - Shelled almonds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled almonds. 981.6 Section 981.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ALMONDS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 981.6 Shelled almonds. Shelled almonds mean raw or roasted almonds...

  6. Protein profiles of hatchery egg shell membrane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...

  7. 7 CFR 983.29 - Shelled pistachios.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means...

  8. 7 CFR 983.29 - Shelled pistachios.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means...

  9. 7 CFR 983.29 - Shelled pistachios.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Shelled pistachios. 983.29 Section 983.29 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions § 983.29 Shelled pistachios. Shelled pistachios means...

  10. Thin-shell wormholes in dilaton gravity

    SciTech Connect

    Eiroa, Ernesto F.; Simeone, Claudio

    2005-06-15

    In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed.

  11. Developments in Cylindrical Shell Stability Analysis

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Starnes, James H., Jr.

    1998-01-01

    Today high-performance computing systems and new analytical and numerical techniques enable engineers to explore the use of advanced materials for shell design. This paper reviews some of the historical developments of shell buckling analysis and design. The paper concludes by identifying key research directions for reliable and robust methods development in shell stability analysis and design.

  12. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  13. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  14. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  15. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  16. 7 CFR 984.10 - Shelled walnuts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Shelled walnuts. 984.10 Section 984.10 Agriculture... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.10 Shelled walnuts. Shelled walnuts means walnut kernels after...

  17. Cacao bean shell poisoning in a dog.

    PubMed

    Drolet, R; Arendt, T D; Stowe, C M

    1984-10-15

    Cacao bean shells contain potentially toxic quantities of theobromine, a xanthine compound similar in effects to caffeine and theophylline. A dog, which ingested a lethal quantity of garden mulch made from cacao bean shells, developed severe convulsions and died 17 hours later. Analysis of the stomach contents and the ingested cacao bean shells revealed the presence of lethal amounts of theobromine.

  18. Elemental Education.

    ERIC Educational Resources Information Center

    Daniel, Esther Gnanamalar Sarojini; Saat, Rohaida Mohd.

    2001-01-01

    Introduces a learning module integrating three disciplines--physics, chemistry, and biology--and based on four elements: carbon, oxygen, hydrogen, and silicon. Includes atomic model and silicon-based life activities. (YDS)

  19. Superheavy Elements

    ERIC Educational Resources Information Center

    Tsang, Chin Fu

    1975-01-01

    Discusses the possibility of creating elements with an atomic number of around 114. Describes the underlying physics responsible for the limited extent of the periodic table and enumerates problems that must be overcome in creating a superheavy nucleus. (GS)

  20. Element 117

    ScienceCinema

    None

    2016-09-30

    An international team of scientists from Russia and the United States, including two Department of Energy national laboratories and two universities, has discovered the newest superheavy element, element 117. The team included scientists from the Joint Institute of Nuclear Research (Dubna, Russia), the Research Institute for Advanced Reactors (Dimitrovgrad), Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Vanderbilt University, and the University of Nevada, Las Vegas.

  1. Element 117

    SciTech Connect

    2010-04-08

    An international team of scientists from Russia and the United States, including two Department of Energy national laboratories and two universities, has discovered the newest superheavy element, element 117. The team included scientists from the Joint Institute of Nuclear Research (Dubna, Russia), the Research Institute for Advanced Reactors (Dimitrovgrad), Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, Vanderbilt University, and the University of Nevada, Las Vegas.

  2. The Magellania venosa Biomineralizing Proteome: A Window into Brachiopod Shell Evolution

    PubMed Central

    Jackson, Daniel J.; Mann, Karlheinz; Häussermann, Vreni; Schilhabel, Markus B.; Lüter, Carsten; Griesshaber, Erika; Schmahl, Wolfgang; Wörheide, Gert

    2015-01-01

    Brachiopods are a lineage of invertebrates well known for the breadth and depth of their fossil record. Although the quality of this fossil record attracts the attention of paleontologists, geochemists, and paleoclimatologists, modern day brachiopods are also of interest to evolutionary biologists due to their potential to address a variety of questions ranging from developmental biology to biomineralization. The brachiopod shell is a composite material primarily composed of either calcite or calcium phosphate in close association with proteins and polysaccharides which give these composite structures their material properties. The information content of these biomolecules, sequestered within the shell during its construction, has the potential to inform hypotheses focused on describing how brachiopod shell formation evolved. Here, using high throughput proteomic approaches and next generation sequencing, we have surveyed and characterized the first shell-proteome and shell-forming transcriptome of any brachiopod, the South American Magellania venosa (Rhynchonelliformea: Terebratulida). We find that the seven most abundant proteins present in the shell are unique to M. venosa, but that these proteins display biochemical features found in other metazoan biomineralization proteins. We can also detect some M. venosa proteins that display significant sequence similarity to other metazoan biomineralization proteins, suggesting that some elements of the brachiopod shell-forming proteome are deeply evolutionarily conserved. We also employed a variety of preparation methods to isolate shell proteins and find that in comparison to the shells of other spiralian invertebrates (such as mollusks) the shell ultrastructure of M. venosa may explain the effects these preparation strategies have on our results. PMID:25912046

  3. The Magellania venosa Biomineralizing Proteome: A Window into Brachiopod Shell Evolution.

    PubMed

    Jackson, Daniel J; Mann, Karlheinz; Häussermann, Vreni; Schilhabel, Markus B; Lüter, Carsten; Griesshaber, Erika; Schmahl, Wolfgang; Wörheide, Gert

    2015-04-24

    Brachiopods are a lineage of invertebrates well known for the breadth and depth of their fossil record. Although the quality of this fossil record attracts the attention of paleontologists, geochemists, and paleoclimatologists, modern day brachiopods are also of interest to evolutionary biologists due to their potential to address a variety of questions ranging from developmental biology to biomineralization. The brachiopod shell is a composite material primarily composed of either calcite or calcium phosphate in close association with proteins and polysaccharides which give these composite structures their material properties. The information content of these biomolecules, sequestered within the shell during its construction, has the potential to inform hypotheses focused on describing how brachiopod shell formation evolved. Here, using high throughput proteomic approaches and next generation sequencing, we have surveyed and characterized the first shell-proteome and shell-forming transcriptome of any brachiopod, the South American Magellania venosa (Rhynchonelliformea: Terebratulida). We find that the seven most abundant proteins present in the shell are unique to M. venosa, but that these proteins display biochemical features found in other metazoan biomineralization proteins. We can also detect some M. venosa proteins that display significant sequence similarity to other metazoan biomineralization proteins, suggesting that some elements of the brachiopod shell-forming proteome are deeply evolutionarily conserved. We also employed a variety of preparation methods to isolate shell proteins and find that in comparison to the shells of other spiralian invertebrates (such as mollusks) the shell ultrastructure of M. venosa may explain the effects these preparation strategies have on our results.

  4. Parameter identification of material constants in a composite shell structure

    NASA Technical Reports Server (NTRS)

    Martinez, David R.; Carne, Thomas G.

    1988-01-01

    One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.

  5. Evaluation of the triangular plate element of Zienkiewcz and Lefebvre

    NASA Astrophysics Data System (ADS)

    Bettes, P.; Peseux, B.; Quevat, J. P.

    1989-05-01

    A new triangular finite element characterized by interpolation which is independent of normal displacements, of rotation, and of strong forces is proposed. This element allows the treatment of bending problems with the Kirchhoff hypothesis as well as with the Reissner-Mindlin hypothesis. In addition, it satisfies the patch test for the three fields. To evaluate the performance of this element, it was used to treat problems in statics and of vibration of plates in water and in air. Triangular element results are compared with those obtained on the same problem using the Mindlin 8 node quadrilateral, the 9 node heterosis quadrilateral, the Ahmad-type 9 node quadrilateral, and Bogner 4 node rectangular elements. In addition, it was evaluated against experimental results for coupled fluid structure problems. For static comparisons, displacements and constraints were calculated for a perforated circular plate. For dynamic calculations, vibration modes of a rectangular free-free plate were derived. The mixed triangular element was found to be effective and sufficiently precise in all cases.

  6. On Hybrid and mixed finite element methods

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1981-01-01

    Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.

  7. Waveguide finite elements for curved structures

    NASA Astrophysics Data System (ADS)

    Finnveden, Svante; Fraggstedt, Martin

    2008-05-01

    A waveguide finite element formulation for the analysis of curved structures is introduced. The formulation is valid for structures that along one axis have constant properties. It is based on a modified Hamilton's principle valid for general linear viscoelastic motion, which is derived here. Using this principle, material properties such as losses may be distributed in the system and may vary with frequency. Element formulations for isoparametric solid elements and deep shell elements are presented for curved waveguides as well as for straight waveguides. In earlier works, the curved elements have successfully been used to model a passenger car tyre. Here a simple validation example and convergence study is presented, which considers a finite length circular cylinder and all four elements presented are used, in turn, to model this structure. Calculated results compare favourably to those in the literature.

  8. Shell growth and environmental control of methanophyllic Thyasirid bivalves from Svalbard cold seeps

    NASA Astrophysics Data System (ADS)

    Carroll, Michael; Åström, Emmelie; Ambrose, William; Locke, William; Oliver, Graham; Hong, Wei-Li; Carroll, JoLynn

    2016-04-01

    The analysis of molluscan shell material (sclerochronology) can provide information about an organism's age, growth history, and environmental conditions during its lifetime. Bivalve molluscs are common members of hydrothermal vents and methane cold seeps communities where, supported by chemosynthetic symbionts, they can reach high density and biomass. But little is known about methane-associated bivalve populations inhabiting high-Arctic cold seeps, and sclerochronological analysis of methane-influenced bivalves is rare. We measured growth rates and elemental and isotopic shell signatures in a newly discovered species of bivalve (Thyasiridae) from cold seeps at 350-390m depth southwest of Svalbard. First discovered in 2014, recently described shells of Thyasira capitanea sp.nov. were found at 2 independent seep systems in Storfjordrenna. Mean shell carbon isotopic ratios from inorganic δ13C (mean = -4.8‰) and organic δ13C (mean = -26.9‰) fractions clearly indicate a methane influenced habitat and food source for these organisms. Shell mineral ratios (Li/Ca, Mg/Ca, Mn/Ca, Fe/Ca, Sr/Ca, Ba/Ca, Pb/Ca) sampled along the axis of growth with laser-ablated ICP-MS exhibit variability through time and between sites, suggesting that concentrations of these elements that may be affected by methane emissions. The mineralogical data also elucidates the internal pattern of shell deposition and growth checks, and combined with the isotopic and growth rate data, enables us to interpret the temporal history of methane release from these locations.

  9. Vibration and damping characteristics of cylindrical shells with active constrained layer damping treatments

    NASA Astrophysics Data System (ADS)

    Zheng, Ling; Zhang, Dongdong; Wang, Yi

    2011-02-01

    In this paper, the application of active constrained layer damping (ACLD) treatments is extended to the vibration control of cylindrical shells. The governing equation of motion of cylindrical shells partially treated with ACLD treatments is derived on the basis of the constitutive equations of elastic, piezoelectric and visco-elastic materials and an energy approach. The damping of a visco-elastic layer is modeled by the complex modulus formula. A finite element model is developed to describe and predict the vibration characteristics of cylindrical shells partially treated with ACLD treatments. A closed-loop control system based on proportional and derivative feedback of the sensor voltage generated by the piezo-sensor of the ACLD patches is established. The dynamic behaviors of cylindrical shells with ACLD treatments such as natural frequencies, loss factors and responses in the frequency domain are further investigated. The effects of several key parameters such as control gains, location and coverage of ACLD treatments on vibration suppression of cylindrical shells are also discussed. The numerical results indicate the validity of the finite element model and the control strategy approach. The potential of ACLD treatments in controlling vibration and sound radiation of cylindrical shells used as major critical structures such as cabins of aircraft, hulls of submarines and bodies of rockets and missiles is thus demonstrated.

  10. Multi-proxies Approach of Climatic Records In Terrestrial Mollusks Shells

    NASA Astrophysics Data System (ADS)

    Labonne, M.; Rousseau, D. D.; Ben Othman, D.; Luck, J. M.; Metref, S.

    Fossil land snails shells constitute a valuable source of information for the study of Quaternary deposits as they are commonly preserved in many regions and notably in loess sequences. The use of stable isotope composition of the carbonate in the shells was previously applied to reconstruct past climate or environnements but the technic was not widely exploited and compared with other proxies from the same sequence. In this study, we have analysed stables isotopes, trace elements and Sr isotopes from both shells of land snails Vertigo modesta and the sediment from the Eustis upper Pleistocene loess sequence (Nebraska, USA). This serie developed during the last glaciation and records the last deglaciation between 18,000 and 12,000 B.P. years. We compare the paleoclimatic information obtained by different proxies, such as mag- netic susceptibility, temperature and moisture estimated by land snails assemblage with geochemical data measured on land snails shells in order to validate the climatic information obtained with this proxy. Our study demonstrates that shell carbonate reflects environmental conditions estimated by other proxies. Carbon and oxygen iso- topes show cyclic variations (millenial cycles) along the profile which correlate with stratigraphic units and could be link with the retreat of the Laurentide ice sheet. Trace element and Sr isotopes in the shells indicate various origins for the eolian dusts in the two main loess units along the sequence.

  11. Shell Model Depiction of Isospin Mixing in sd Shell

    SciTech Connect

    Lam, Yi Hua; Smirnova, Nadya A.; Caurier, Etienne

    2011-11-30

    We constructed a new empirical isospin-symmetry breaking (ISB) Hamiltonian in the sd(1s{sub 1/2}, 0d{sub 5/2} and 0d{sub 3/2}) shell-model space. In this contribution, we present its application to two important case studies: (i){beta}-delayed proton emission from {sup 22}Al and (ii) isospin-mixing correction to superallowed 0{sup +}{yields}0{sup +}{beta}-decay ft-values.

  12. K-shell transitions in L-shell ions with the EBIT calorimeter spectrometer

    NASA Astrophysics Data System (ADS)

    Hell, Natalie; Brown, Greg V.; Wilms, Jörn; Beiersdorfer, Peter; Kelley, Richard L.; Kilbourne, Caroline A.; Porter, F. Scott

    2016-10-01

    With the large improvement in effective area of Astro-H's micro-calorimeter soft X-ray spectrometer (SXS) over grating spectrometers, high-resolution X-ray spectroscopy with good signal to noise will become more commonly available, also for faint and extended sources. This will result in a range of spectral lines being resolved for the first time in celestial sources, especially in the Fe region. However, a large number of X-ray line energies in the atomic databases are known to a lesser accuracy than that expected for Astro-H/SXS, or have no known uncertainty at all. To benchmark the available calculations, we have therefore started to measure reference energies of K-shell transition in L-shell ions for astrophysically relevant elements in the range 11<= Z <= 28 (Na to Ni), using the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with the NASA/GSFC EBIT calorimeter spectrometer (ECS). The ECS has a resolution of ~5 e V, i.e., similar to Astro-H/SXS and Chandra/HETG. A comparison to crystal spectra of lower charge states of sulfur with ~0.6 e V resolution shows that the analysis of spectra taken at ECS resolution allows to determine the transition energies of the strongest components.

  13. Combined experimental/analytical modeling of shell/payload structures

    SciTech Connect

    Martinez, D.R.; Miller, A.K.; Carne, T.G.

    1985-12-01

    This study evaluates the accuracy of computed modal frequencies obtained from a combined experimental/analytical model of a shell/payload structure. A component mode synthesis technique was used which incorporated free modes and residual effects. The total structure is physically divided into the two subsystems which are connected through stiff joints. The payload was tested to obtain its free-free modes, while a finite element model of the shell was analyzed to obtain its modal description. Both the translational and rotational components of the experimental mode shapes at the payload interface were used in the coupling. Sensitivity studies were also performed to determine the effect of neglecting the residual terms of the payload. Results from a previous study of a combined experimental/analytical model for a beam structure are also given. The beam structure was used to examine the basic procedures and difficulties in experimentally measuring, and analytically accounting for the rotational and residual quantities.

  14. Active full-shell grazing-incidence optics

    NASA Astrophysics Data System (ADS)

    Roche, Jacqueline M.; Elsner, Ronald F.; Ramsey, Brian D.; O'Dell, Stephen L.; Kolodziejczak, Jeffrey J.; Weisskopf, Martin C.; Gubarev, Mikhail V.

    2016-09-01

    MSFC has a long history of developing full-shell grazing-incidence x-ray optics for both narrow (pointed) and wide field (surveying) applications. The concept presented in this paper shows the potential to use active optics to switch between narrow and wide-field geometries, while maintaining large effective area and high angular resolution. In addition, active optics has the potential to reduce errors due to mounting and manufacturing lightweight optics. The design presented corrects low spatial frequency error and has significantly fewer actuators than other concepts presented thus far in the field of active x-ray optics. Using a finite element model, influence functions are calculated using active components on a full-shell grazing-incidence optic. Next, the ability of the active optic to effect a change of optical prescription and to correct for errors due to manufacturing and mounting is modeled.

  15. Numerical treatment of a geometrically nonlinear planar Cosserat shell model

    NASA Astrophysics Data System (ADS)

    Sander, Oliver; Neff, Patrizio; Bîrsan, Mircea

    2016-05-01

    We present a new way to discretize a geometrically nonlinear elastic planar Cosserat shell. The kinematical model is similar to the general six-parameter resultant shell model with drilling rotations. The discretization uses geodesic finite elements (GFEs), which leads to an objective discrete model which naturally allows arbitrarily large rotations. GFEs of any approximation order can be constructed. The resulting algebraic problem is a minimization problem posed on a nonlinear finite-dimensional Riemannian manifold. We solve this problem using a Riemannian trust-region method, which is a generalization of Newton's method that converges globally without intermediate loading steps. We present the continuous model and the discretization, discuss the properties of the discrete model, and show several numerical examples, including wrinkling of thin elastic sheets in shear.

  16. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.

    PubMed

    Sun, Jing Ya; Wang, Zhi Kui; Lim, Hock Siah; Ng, Ser Choon; Kuok, Meng Hau; Tran, Toan Trong; Lu, Xianmao

    2010-12-28

    The intriguing optical and catalytic properties of metal-silica core-shell nanoparticles, inherited from their plasmonic metallic cores together with the rich surface chemistry and increased stability offered by their silica shells, have enabled a wide variety of applications. In this work, we investigate the confined vibrational modes of a series of monodisperse Ag@SiO(2) (cubic core)-shell nanospheres synthesized using a modified Stöber sol-gel method. The particle-size dependence of their mode frequencies has been mapped by Brillouin light scattering, a powerful tool for probing hypersonic vibrations. Unlike the larger particles, the observed spheroidal-like mode frequencies of the smaller ones do not scale with inverse diameter. Interestingly, the onset of the deviation from this linearity occurs at a smaller particle size for higher-energy modes than for lower-energy ones. Finite element simulations show that the mode displacement profiles of the Ag@SiO(2) core-shells closely resemble those of a homogeneous SiO(2) sphere. Simulations have also been performed to ascertain the effects that the core shape and the relative hardness of the core and shell materials have on the vibrations of the core-shell as a whole. As the vibrational modes of a particle have a bearing on its thermal and mechanical properties, the findings would be of value in designing core-shell nanostructures with customized thermal and mechanical characteristics.

  17. Nonlinear Bulging Factors for Longitudinal and Circumferential Cracks in Cylindrical Shells Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased crack-tip stresses due to curvature for longitudinal and circumferential cracks in unstiffened cylindrical shells subjected to combined loads are presented. Nondimensional parameters varied in the study include the shell curvature parameter, l , which is a function of the shell radius, the shell wall thickness, and the crack length; a pressure loading parameter, h , which is a function of the shell geometry, material properties and the applied internal pressure; and a biaxial loading parameter, c , which is the ratio of the farfield axial stress to the farfield circumferential stress. The major results are presented in the form of contour plots of the bulging factor as a function of these three nondimensional parameters. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant, and show the effect of the biaxial loads on the value of the bulging factor. Simple empirical expressions for the bulging factor are then derived from the numerical results and are shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks.

  18. Investigation of buckling behavior of carbon nanotube/shape memory polymer composite shell

    NASA Astrophysics Data System (ADS)

    Shi, Guanghui; Yang, Qingsheng; Zhang, Qiang

    2012-04-01

    Shape memory polymer(SMP) is a class of smart materials used in intelligent biomedical devices and industrial application as sensors or actuators for their ability to change shape under a predetermined stimulus. Carbon nanotube (CNT)/shape memory polymer (SMP) composites demonstrate good mechanical properties and shape memory effect. In this work, a model of CNT/SMP composite shell with a vaulted cross-section was established. This composite shell structure could further elevate the recovery stress of CNT/SMP composites. The folding properties of CNT/SMP composite shell structure were analyzed by finite element method and the influence of structural parameters on the buckling behavior of the shell was studied using the energy conservation principle. The results indicate that vaulted cross-section shell had unique mechanical properties. The structural parameters, such as the vaulted radius and the total length have a great impact on buckling moment of the shell. This shell structure is expected to achieve effective control of buckling and deploying process, relying on the special shape memory property of SMP and high elastic modulus CNTs. Moreover, it could also largely avoid the vibration problem during the deploying process.

  19. Investigation of buckling behavior of carbon nanotube/shape memory polymer composite shell

    NASA Astrophysics Data System (ADS)

    Shi, Guanghui; Yang, Qingsheng; Zhang, Qiang

    2011-11-01

    Shape memory polymer(SMP) is a class of smart materials used in intelligent biomedical devices and industrial application as sensors or actuators for their ability to change shape under a predetermined stimulus. Carbon nanotube (CNT)/shape memory polymer (SMP) composites demonstrate good mechanical properties and shape memory effect. In this work, a model of CNT/SMP composite shell with a vaulted cross-section was established. This composite shell structure could further elevate the recovery stress of CNT/SMP composites. The folding properties of CNT/SMP composite shell structure were analyzed by finite element method and the influence of structural parameters on the buckling behavior of the shell was studied using the energy conservation principle. The results indicate that vaulted cross-section shell had unique mechanical properties. The structural parameters, such as the vaulted radius and the total length have a great impact on buckling moment of the shell. This shell structure is expected to achieve effective control of buckling and deploying process, relying on the special shape memory property of SMP and high elastic modulus CNTs. Moreover, it could also largely avoid the vibration problem during the deploying process.

  20. Buckling and Stable Tearing Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable tearing and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geo- metrically nonlinear elastic-plastic finite element analyses. The results of these analyses and of the experiments indicate that the pressure required to initiate stable tearing and unstable tearing in a shell subjected to internal pressure loads decreases as the crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression are also described. For this loading condition, the crack length is held constant. The results of the analyses illustrate the influence of crack length on shell buckling instabilities. The experimental and analytical results correlate well.

  1. Experimental analysis and numerical modeling of mollusk shells as a three dimensional integrated volume.

    PubMed

    Faghih Shojaei, M; Mohammadi, V; Rajabi, H; Darvizeh, A

    2012-12-01

    In this paper, a new numerical technique is presented to accurately model the geometrical and mechanical features of mollusk shells as a three dimensional (3D) integrated volume. For this purpose, the Newton method is used to solve the nonlinear equations of shell surfaces. The points of intersection on the shell surface are identified and the extra interior parts are removed. Meshing process is accomplished with respect to the coordinate of each point of intersection. The final 3D generated mesh models perfectly describe the spatial configuration of the mollusk shells. Moreover, the computational model perfectly matches with the actual interior geometry of the shells as well as their exterior architecture. The direct generation technique is employed to generate a 3D finite element (FE) model in ANSYS 11. X-ray images are taken to show the close similarity of the interior geometry of the models and the actual samples. A scanning electron microscope (SEM) is used to provide information on the microstructure of the shells. In addition, a set of compression tests were performed on gastropod shell specimens to obtain their ultimate compressive strength. A close agreement between experimental data and the relevant numerical results is demonstrated.

  2. Pressure Shell Approach to Integrated Environmental Protection

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2011-01-01

    The next generation of exploration mission human systems will require environmental protection such as radiation protection that is effective and efficient. In order to continue human exploration, habitat systems will require special shells to protect astronauts from hostile environments. The Pressure Shell Approach to integrated environmental (radiation) protection is a multi-layer shell that can be used for multifunctional environmental protection. Self-healing, self-repairing nano technologies and sensors are incorporated into the shell. This shell consists of multiple layers that can be tailored for specific environmental protection needs. Mainly, this innovation focuses on protecting crew from exposure to micrometeorites, thermal, solar flares, and galactic cosmic ray (GCR) radiation. The Pressure Shell Approach consists of a micrometeoroid and secondary ejecta protection layer; a thin, composite shell placed in between two layers that is non-structural; an open cavity layer that can be filled with water, regolith, or polyethylene foam; a thicker composite shell that is a structural load bearing that is placed between two layers; and a bladder coating on the interior composite shell. This multi-layer shell creates an effective radiation protection system. Most of its layers can be designed with the materials necessary for specific environments. In situ materials such as water or regolith can be added to the shell design for supplemental radiation protection.

  3. Shell Model Approach to Nuclear Level Density

    NASA Astrophysics Data System (ADS)

    Horoi, Mihai

    2000-04-01

    Nuclear level densities (NLD) are traditionally estimated using variations of Fermi Gas Formula (FGF) or combinatoric techniques. Recent investigations using Monte Carlo Shell Model (MCSM) techniques indicate that a shell model description of NLD may be an accurate and stable approach. Full shell model calculations of NLD are very difficult. We calculated the NLD for all nuclei in the sd shell and show that the results can be described by a single particle combinatoric model, which depends on two parameters similar to FGF. We further investigated other models and find that a sum of gaussians with means and variances given by French and Ratcliff averages (Phys. Rev. C 3, 94(1971)) is able to accurately describe shell model NLD, even when shell effects are present. The contribution of the spurious center-of-mass motion to the shell model NLD is also discussed.

  4. Turbine blade with spar and shell

    SciTech Connect

    Davies, Daniel O; Peterson, Ross H

    2012-04-24

    A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.

  5. Benchmarking the QUAD4/TRIA3 element

    NASA Technical Reports Server (NTRS)

    Pitrof, Stephen M.; Venkayya, Vipperla B.

    1993-01-01

    The QUAD4 and TRIA3 elements are the primary plate/shell elements in NASTRAN. These elements enable the user to analyze thin plate/shell structures for membrane, bending and shear phenomena. They are also very new elements in the NASTRAN library. These elements are extremely versatile and constitute a substantially enhanced analysis capability in NASTRAN. However, with the versatility comes the burden of understanding a myriad of modeling implications and their effect on accuracy and analysis quality. The validity of many aspects of these elements were established through a series of benchmark problem results and comparison with those available in the literature and obtained from other programs like MSC/NASTRAN and CSAR/NASTRAN. Never-the-less such a comparison is never complete because of the new and creative use of these elements in complex modeling situations. One of the important features of QUAD4 and TRIA3 elements is the offset capability which allows the midsurface of the plate to be noncoincident with the surface of the grid points. None of the previous elements, with the exception of bar (beam), has this capability. The offset capability played a crucial role in the design of QUAD4 and TRIA3 elements. It allowed modeling layered composites, laminated plates and sandwich plates with the metal and composite face sheets. Even though the basic implementation of the offset capability is found to be sound in the previous applications, there is some uncertainty in relatively simple applications. The main purpose of this paper is to test the integrity of the offset capability and provide guidelines for its effective use. For the purpose of simplicity, references in this paper to the QUAD4 element will also include the TRIA3 element.

  6. A Shell/3D Modeling Technique for Delaminations in Composite Laminates

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    1999-01-01

    A shell/3D modeling technique was developed for which a local solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a plate or shell finite element model. Multi-point constraints provide a kinematically compatible interface between the local 3D model and the global structural model which has been meshed with plate or shell finite elements. For simple double cantilever beam (DCB), end notched flexure (ENF), and single leg bending (SLB) specimens, mixed mode energy release rate distributions were computed across the width from nonlinear finite element analyses using the virtual crack closure technique. The analyses served to test the accuracy of the shell/3D technique for the pure mode I case (DCB), mode II case (ENF) and a mixed mode I/II case (SLB). Specimens with a unidirectional layup where the delamination is located between two 0 plies, as well as a multidirectional layup where the delamination is located between two non-zero degree plies, were simulated. For a local 3D model extending to a minimum of about three specimen thicknesses in front of and behind the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures modeled with plate elements, the shell/3D modeling technique offers a great potential, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.

  7. Use of extracts from oyster shell and soil for cultivation of Spirulina maxima.

    PubMed

    Jung, Joo-Young; Kim, Sunmin; Lee, Hansol; Kim, Kyochan; Kim, Woong; Park, Min S; Kwon, Jong-Hee; Yang, Ji-Won

    2014-12-01

    Calcium ion and trace metals play important roles in various metabolisms of photosynthetic organisms. In this study, simple methods were developed to extract calcium ion and micronutrients from oyster shell and common soil, and the prepared extracts were tested as a replacement of the corresponding chemicals that are essential for growth of microalgae. The oyster shell and soil were treated with 0.1 M sodium hydroxide or with 10 % hydrogen peroxide, respectively. The potential application of these natural sources to cultivation was investigated with Spirulina maxima. When compared to standard Zarrouk medium, the Spirulina maxima cultivated in a modified Zarrouk media with elements from oyster shell and soil extract exhibited increases in biomass, chlorophyll, and phycocyanin by 17, 16, and 64 %, respectively. These results indicate that the extracts of oyster shell and soil provide sufficient amounts of calcium and trace metals for successful cultivation of Spirulina maxima.

  8. Enhancing the sensitivity of magnetic sensors by 3D metamaterial shells

    PubMed Central

    Navau, Carles; Mach-Batlle, Rosa; Parra, Albert; Prat-Camps, Jordi; Laut, Sergi; Del-Valle, Nuria; Sanchez, Alvaro

    2017-01-01

    Magnetic sensors are key elements in our interconnected smart society. Their sensitivity becomes essential for many applications in fields such as biomedicine, computer memories, geophysics, or space exploration. Here we present a universal way of increasing the sensitivity of magnetic sensors by surrounding them with a spherical metamaterial shell with specially designed anisotropic magnetic properties. We analytically demonstrate that the magnetic field in the sensing area is enhanced by our metamaterial shell by a known factor that depends on the shell radii ratio. When the applied field is non-uniform, as for dipolar magnetic field sources, field gradient is increased as well. A proof-of-concept experimental realization confirms the theoretical predictions. The metamaterial shell is also shown to concentrate time-dependent magnetic fields upto frequencies of 100 kHz. PMID:28303951

  9. Reduction of the Radiating Sound of a Submerged Finite Cylindrical Shell Structure by Active Vibration Control

    PubMed Central

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-01-01

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water. PMID:23389344

  10. Enhancing the sensitivity of magnetic sensors by 3D metamaterial shells.

    PubMed

    Navau, Carles; Mach-Batlle, Rosa; Parra, Albert; Prat-Camps, Jordi; Laut, Sergi; Del-Valle, Nuria; Sanchez, Alvaro

    2017-03-17

    Magnetic sensors are key elements in our interconnected smart society. Their sensitivity becomes essential for many applications in fields such as biomedicine, computer memories, geophysics, or space exploration. Here we present a universal way of increasing the sensitivity of magnetic sensors by surrounding them with a spherical metamaterial shell with specially designed anisotropic magnetic properties. We analytically demonstrate that the magnetic field in the sensing area is enhanced by our metamaterial shell by a known factor that depends on the shell radii ratio. When the applied field is non-uniform, as for dipolar magnetic field sources, field gradient is increased as well. A proof-of-concept experimental realization confirms the theoretical predictions. The metamaterial shell is also shown to concentrate time-dependent magnetic fields upto frequencies of 100 kHz.

  11. Reduction of the radiating sound of a submerged finite cylindrical shell structure by active vibration control.

    PubMed

    Kim, Heung Soo; Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2013-02-06

    In this work, active vibration control of an underwater cylindrical shell structure was investigated, to suppress structural vibration and structure-borne noise in water. Finite element modeling of the submerged cylindrical shell structure was developed, and experimentally evaluated. Modal reduction was conducted to obtain the reduced system equation for the active feedback control algorithm. Three Macro Fiber Composites (MFCs) were used as actuators and sensors. One MFC was used as an exciter. The optimum control algorithm was designed based on the reduced system equations. The active control performance was then evaluated using the lab scale underwater cylindrical shell structure. Structural vibration and structure-borne noise of the underwater cylindrical shell structure were reduced significantly by activating the optimal controller associated with the MFC actuators. The results provide that active vibration control of the underwater structure is a useful means to reduce structure-borne noise in water.

  12. Effect of Ice-Shell Thickness Variations on the Tidal Deformation of Enceladus

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Cadek, O.; Behounkova, M.; Tobie, G.; Kozubek, T.

    2015-12-01

    Recent analysis of Enceladus's gravity and topography has suggested that the thickness of the ice shell significantly varies laterally - from 30-40 km in the south polar region to 60 km elsewhere. These variations may influence the activity of the geysers and increase the tidal heat production in regions where the ice shell is thinned. Using a model including a regional or global subsurface ocean and Maxwell viscoelasticity, we investigate the impact of these variations on the tidal deformation of the moon and its heat production. For that purpose, we use different numerical approaches - finite elements, local application of 1d spectral method, and a generalized spectral method. Results obtained with these three approaches for various models of ice-shell thickness variations are presented and compared. Implications of a reduced ice shell thickness for the south polar terrain activity are discussed.

  13. Enhancing the sensitivity of magnetic sensors by 3D metamaterial shells

    NASA Astrophysics Data System (ADS)

    Navau, Carles; Mach-Batlle, Rosa; Parra, Albert; Prat-Camps, Jordi; Laut, Sergi; Del-Valle, Nuria; Sanchez, Alvaro

    2017-03-01

    Magnetic sensors are key elements in our interconnected smart society. Their sensitivity becomes essential for many applications in fields such as biomedicine, computer memories, geophysics, or space exploration. Here we present a universal way of increasing the sensitivity of magnetic sensors by surrounding them with a spherical metamaterial shell with specially designed anisotropic magnetic properties. We analytically demonstrate that the magnetic field in the sensing area is enhanced by our metamaterial shell by a known factor that depends on the shell radii ratio. When the applied field is non-uniform, as for dipolar magnetic field sources, field gradient is increased as well. A proof-of-concept experimental realization confirms the theoretical predictions. The metamaterial shell is also shown to concentrate time-dependent magnetic fields upto frequencies of 100 kHz.

  14. Synthesis and characterization of Zn 3P 2/ZnS core/shell nanowires

    NASA Astrophysics Data System (ADS)

    Sun, T.; Wu, P. C.; Guo, Z. D.; Dai, Y.; Meng, H.; Fang, X. L.; Shi, Z. J.; Dai, L.; Qin, G. G.

    2011-05-01

    Fully-surrounded Zn3P2/ZnS core/shell nanowires (NWs) were synthesized for the first time via a two-step method: a catalyst free chemical vapor deposition followed by a low-pressure vulcanization process. Field emission scanning electron microscopy, high-resolution transmission electron microscopy, and high-angle angular dark field scanning transmission electron microscopy were used to characterize the morphologies, crystal structure, and element composition of the core/shell NWs. The band structure analysis demonstrates that the Zn3P2/ZnS core-shell NW type-II heterostructures have bright potential in photovoltaic nanodevice applications. The core/shell NW growth method used here can be extended to other material system.

  15. Communication: comparing ab initio methods of obtaining effective U parameters for closed-shell materials.

    PubMed

    Yu, Kuang; Carter, Emily A

    2014-03-28

    The density functional theory (DFT)+U method is an efficient and effective way to calculate the ground-state properties of strongly correlated transition metal compounds, with the effective U parameters typically determined empirically. Two ab initio methods have been developed to compute the U parameter based on either constrained DFT (CDFT) or unrestricted Hartree-Fock (UHF) theory. Previous studies have demonstrated the success of both methods in typical open-shell materials such as FeO and NiO. In this Communication we report numerical instability issues that arise for the CDFT method when applied to closed-shell transition metals, by using ZnO and Cu2O as examples. By contrast, the UHF method behaves much more robustly for both closed- and open-shell materials, making it more suitable for treating closed-shell transition metals, as well as main group elements.

  16. Cross Sections for Inner-Shell Ionization by Electron Impact

    SciTech Connect

    Llovet, Xavier; Powell, Cedric J.; Salvat, Francesc; Jablonski, Aleksander

    2014-03-15

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  17. The shell coal gasification process

    SciTech Connect

    Koenders, L.O.M.; Zuideveld, P.O.

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  18. Glass shell manufacturing in space

    NASA Technical Reports Server (NTRS)

    Nolen, R. L.; Downs, R. L.; Ebner, M. A.

    1982-01-01

    Highly-uniform, hollow glass spheres, which are used for inertial-confinement fusion targets, are formed from metal-organic gel powder feedstock in a drop-tower furnace. The modelling of this gel-to-sphere transformation has consisted of three phases: gel thermochemistry, furnance-to-gel heat transfer, and gravity-driven degradation of the concentricity of the molten shell. The heat transfer from the furnace to the free-falling gel particle was modelled with forced convection. The gel mass, dimensions, and specific heat as well as furnace temperature profile and furnace gas conductivity, were controlled variables. This model has been experimentally verified. In the third phase, a mathematical model was developed to describe the gravity-driven degradation of concentricity in molten glass shells.

  19. Density Measurements of Be Shells

    SciTech Connect

    Cook, R C

    2005-02-15

    The purpose of this memo is to lay out the uncertainties associated with the measurement of density of Be ablators by the weigh and volume method. I am counting on the readers to point out any faulty assumptions about the techniques or uncertainties associated with them. Based on the analysis presented below we should expect that 30 {micro}m thick shells will have an uncertainty in the measured density of about 2% of the value, coming more or less equally from the mass and volume measurement. The uncertainty is roughly inversely proportional to the coating thickness, thus a 60 {micro}m walled shell would result in a 1% uncertainty in the density.

  20. Shell Evolutions and Nuclear Forces

    NASA Astrophysics Data System (ADS)

    Sorlin, O.

    2014-03-01

    During the last 30 years, and more specifically during the last 10 years, many experiments have been carried out worldwide using different techniques to study the shell evolution of nuclei far from stability. What seemed not conceivable some decades ago became rather common: all known magic numbers that are present in the valley of stability disappear far from stability and are replaced by new ones at the drip line. By gathering selected experimental results, beautifully consistent pictures emerge, that very likely take root in the properties of the nuclear forces.The present manuscript describes some of these discoveries and proposes an intuitive understanding of these shell evolutions derived from observations. Extrapolations to yet unstudied regions, as where the explosive r-process nucleosynthesis occurs, are proposed. Some remaining challenges and puzzling questions are also addressed.

  1. Buckling of spherical shells revisited

    NASA Astrophysics Data System (ADS)

    Hutchinson, John W.

    2016-11-01

    A study is presented of the post-buckling behaviour and imperfection sensitivity of complete spherical shells subject to uniform external pressure. The study builds on and extends the major contribution to spherical shell buckling by Koiter in the 1960s. Numerical results are presented for the axisymmetric large deflection behaviour of perfect spheres followed by an extensive analysis of the role axisymmetric imperfections play in reducing the buckling pressure. Several types of middle surface imperfections are considered including dimple-shaped undulations and sinusoidal-shaped equatorial undulations. Buckling occurs either as the attainment of a maximum pressure in the axisymmetric state or as a non-axisymmetric bifurcation from the axisymmetric state. Several new findings emerge: the abrupt mode localization that occurs immediately after the onset of buckling, the existence of an apparent lower limit to the buckling pressure for realistically large imperfections, and comparable reductions of the buckling pressure for dimple and sinusoidal equatorial imperfections.

  2. Shell's Middle Distillate Synthesis process

    SciTech Connect

    Voetter, H.; VanDerBurgt, M.J. B.V., The Hague )

    1988-01-01

    The basis of the Shell Middle Distillate Synthesis (SMDS) process is the classic Fischer-Tropsch synthesis. For the case of middle distillate production from natural gas the procedure has been developed to commercial maturity, making use of tailored line-up for synthesis gas production and of proprietary modern catalysts in synthesis. Development work over the last years has in particular lead to improvement of the economy of the process altogether via catalyst performance, reactor sizing and syngas manufacturing line-up.

  3. Vibration Control of Shallow Shell Structures Using a Shell-Type Dynamic Vibration Absorber

    NASA Astrophysics Data System (ADS)

    Aida, T.; Aso, T.; Nakamoto, K.; Kawazoe, K.

    1998-11-01

    In this study, a new shell-type dynamic vibration absorber is presented for suppressing several modes of vibration of the shallow shell (main shell) under harmonic load. It consists of a shallow shell (the dynamic absorbing shell), under the same boundary condition and with the same shape as those of the main shell, with connecting springs and dampers in the vertical direction between the main and dynamic absorbing shells. Formulae for an approximate tuning method for the shell-type dynamic absorber are also presented using the optimum tuning method for a dynamic absorber in the two-degree-of-freedom system, obtained by the Den Hartog method. Subsequently, numerical calculations are presented which demonstrate the usefulness of the shell-type dynamic vibration absorbers.

  4. Atomic inner-shell transitions

    NASA Technical Reports Server (NTRS)

    Crasemann, B.; Chen, M. H.; Mark, H.

    1984-01-01

    Atomic inner-shell processes have quite different characteristics, in several important aspects, from processes in the optical regime. Energies are large, e.g., the 1s binding energy reaches 100 keV at Z = 87; relativistic and quantum-electrodynamic effects therefore are strong. Radiationless transitions vastly dominate over photon emission in most cases. Isolated inner-shell vacancies have pronounced single-particle character, with correlations generally contributing only approximately 1 eV to the 1s and 2p binding energies; the structure of such systems is thus well tractable by independent-particle self-consistent-field atomic models. For systems containing multiple deep inner-shell vacancies, or for highly stripped ions, the importance of relativistic intermediate coupling and configuration interaction becomes pronounced. Cancellation of the Coulomb interaction can lead to strong manifestations of the Breit interaction in such phenomena as multiplet splitting and hypersatellite X-ray shifts. Unique opportunities arise for the test of theory.

  5. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    NASA Astrophysics Data System (ADS)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  6. Improved finite-element methods for rotorcraft structures

    NASA Technical Reports Server (NTRS)

    Hinnant, Howard E.

    1991-01-01

    An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.

  7. Methode des elements finis hybride appliquee aux vibrations des coques spheriques

    NASA Astrophysics Data System (ADS)

    Menaa, Mohamed

    The analysis of spherical shells filled with fluid and subjected to supersonic flow has been the subject of few research. Most of these studies treat the dynamic behaviour of empty shells. Few works have investigated spherical shells filled with fluid or subjected to supersonic flutter. In this thesis, we propose to develop a model to analyse the vibratory behaviour of both empty spherical shells and partially filled with fluid. This model is also applicable to study of the dynamic stability of spherical shells subjected to supersonic flow. The model developed is a combination of finite element method, thin shell theory, potential fluid theory and aerodynamic fluid theory. Different parameters are considered here in this study. In the first part of this study, free vibration analysis of spherical shell is carried out. The structural model is based on a combination of thin shell theory and the classical finite element method. Free vibration equations using the hybrid finite element formulation are derived and solved numerically. The results are validated using numerical and theoretical data available in the literature. The analysis is accomplished for spherical shells of different geometries, boundary conditions and radius to thickness ratios. This proposed hybrid finite element method can be used efficiently for design and analysis of spherical shells employed in high speed aircraft structures. In the second part of the present study, a hybrid finite element method is applied to investigate the free vibration of spherical shell filled with fluid. The structural model is based on a combination of thin shell theory and the classical finite element method. It is assumed that the fluid is incompressible and has no free-surface effect. Fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacement at the fluid-structure interface. Numerical simulation is done and vibration

  8. Mercury, elemental

    Integrated Risk Information System (IRIS)

    Mercury , elemental ; CASRN 7439 - 97 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  9. Element Research.

    ERIC Educational Resources Information Center

    Herald, Christine

    2001-01-01

    Describes a research assignment for 8th grade students on the elements of the periodic table. Students use web-based resources and a chemistry handbook to gather information, construct concept maps, and present the findings to the full class using the mode of their choice: a humorous story, a slideshow or gameboard, a brochure, a song, or skit.…

  10. Array Processing and Forward Modeling Methods for the Analysis of Stiffened, Fluid-Loaded Cylindrical Shells.

    NASA Astrophysics Data System (ADS)

    Bondaryk, Joseph E.

    This thesis investigates array processing and forward modeling methods for the analysis of experimental, structural acoustic data to understand wave propagation on fluid-loaded, elastic, cylindrical shells in the mid -frequency range, 2 < ka < 12. The transient, acoustic, in-plane, bistatic scattering response to wideband, plane waves at various angles of incidence was collected by a synthetic array for three shells, a finite, air-filled, empty thin shell, a duplicate shell stiffened with four unequally spaced ring-stiffeners and a duplicate ribbed shell augmented by resiliently-mounted, wave-bearing, internal structural elements. Array and signal processing techniques, including source deconvolution, array weighting, conventional focusing and the removal of the geometrically scattered contribution, are used to transform the collected data to a more easily interpreted representation. The resulting waveforms show that part of the transient, dynamic, structural response of the shell surface which is capable of radiating to the far field. Compressional membrane waves are directly observable in this representation and evidence of flexural membrane waves is present. Comparisons between the shells show energy compartmentalized by the ring stiffeners and coupled into the wave-bearing internals. Energy calculations show a decay rate of 30dB/msec due to radiation for the Empty shell but only 10dB/msec for the other shells at bow incidence. The Radon Transform is used to estimate the reflection coefficient of compressional waves at the shell endcap as 0.2. The measurement array does not provide enough resolution to allow use of this technique to determine the reflection, transmission and coupling coefficients at the ring stiffeners. Therefore, a forward modeling technique is used to further analyze the 0^ circ incidence case. This modeling couples a Transmission Line model of the shell with a Simulated Annealing approach to multi-dimensional, parameter estimation. This

  11. Rigid shells enhance survival of gekkotan eggs.

    PubMed

    Andrews, Robin M

    2015-11-01

    The majority of lizards and snakes produce permeable parchment-shelled eggs that require high moisture conditions for successful embryonic development. One clade of gekkotan lizards is an exception; females produce relatively impermeable rigid-shelled eggs that normally incubate successfully under low moisture conditions. I tested the hypothesis that the rigid-shell increases egg survival during incubation, but only under low moisture conditions. To test this hypothesis, I incubated rigid-shelled eggs of Chondrodactylus turneri under low and under high moisture conditions. Eggs were incubated with parchment-shelled eggs of Eublepharis macularius to insure that incubation conditions were suitable for parchment-shelled eggs. Chondrodactylus turneri eggs had very high survival (>90%) when they were incubated under low moisture conditions. In contrast, eggs incubated under high moisture conditions had low survival overall, and lower survival than those of the parchment-shelled eggs of E. macularius. Mortality of C. turneri and E. macularius eggs incubated under high moisture conditions was the result of fungal infection, a common source of egg mortality for squamates under laboratory and field conditions. These observations document high survival of rigid-shelled eggs under low moisture conditions because eggs escape from fungal infection. Highly mineralized rigid shells also make egg survival independent of moisture availability and may also provide protection from small invertebrates in nature. Enhanced egg survival could thus compensate for the low reproductive output of gekkotans that produce rigid-shelled eggs.

  12. On axisymmetric/diamond-like mode transitions in axially compressed core-shell cylinders

    NASA Astrophysics Data System (ADS)

    Xu, Fan; Potier-Ferry, Michel

    2016-09-01

    Recent interests in curvature- and stress-induced pattern formation and pattern selection motivate the present study. Surface morphological wrinkling of a cylindrical shell supported by a soft core subjected to axial compression is investigated based on a nonlinear 3D finite element model. The post-buckling behavior of core-shell cylinders beyond the first bifurcation often leads to complicated responses with surface mode transitions. The proposed finite element framework allows predicting and tracing these bifurcation portraits from a quantitative standpoint. The occurrence and evolution of 3D instability modes including sinusoidally deformed axisymmetric patterns and non-axisymmetric diamond-like modes will be highlighted according to critical dimensionless parameters. Besides, the phase diagram obtained from dimensional analyses and numerical results could be used to guide the design of core-shell cylindrical systems to achieve the desired instability patterns.

  13. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1999-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  14. Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Rose, Cheryl A.

    1998-01-01

    The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.

  15. The Role of the Icy Shell in the Thermal Evolution of Ceres

    NASA Astrophysics Data System (ADS)

    King, S. D.

    2015-12-01

    Ceres shape and crater morphology are consistent with a layer of low-density material that appears to be more dense and viscous than pure water ice, over an even more dense and viscous core. In order to understand the evolution of Ceres, we conduct a series of numerical experiments designed to understand the evolution of temperature and flow within a spherical body with a soft outer shell over a nearly rigid core using 3D spherical code CitcomS. In these experiments the sphere is heated from within using chondritic abundances of radiogenic elements. We study the impact of surface temperature, outer shell thickness, as well as the density and rheology of the softer outer shell and stiffer core on the thermal and dynamical evolution of the interior of the body, including both the soft shell and stiff core. For the outer shells with a thickness less than 10% of the radius of the body and a surface temperature at or below 90 K, the entire body remains in a conductive state and the temperature of the soft outer shell never exceeds the melting temperature of pure water ice throughout the history of the solar system. However for a range of outer shell thickness and surface temperatures, we find that within the first Gyr of evolution a degree-1 (i.e. single hemisphere) mode of convection encompassing both the stiff core and soft outer shell overtakes shorter-wavelength convective flow occurring in the softer outer shell. When this happens the body dramatically cools over a time interval of less than 100 Myrs and the internal temperature remains asymmetric throughout the subsequent evolution of the body.

  16. Error estimation and adaptive mesh refinement for parallel analysis of shell structures

    NASA Technical Reports Server (NTRS)

    Keating, Scott C.; Felippa, Carlos A.; Park, K. C.

    1994-01-01

    The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated.

  17. A Shell/3D Modeling Technique for the Analyses of Delaminated Composite Laminates

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; OBrien, T. Kevin

    2001-01-01

    A shell/3D modeling technique was developed for which a local three-dimensional solid finite element model is used only in the immediate vicinity of the delamination front. The goal was to combine the accuracy of the full three-dimensional solution with the computational efficiency of a plate or shell finite element model. Multi-point constraints provided a kinematically compatible interface between the local three-dimensional model and the global structural model which has been meshed with plate or shell finite elements. Double Cantilever Beam (DCB), End Notched Flexure (ENF), and Single Leg Bending (SLB) specimens were modeled using the shell/3D technique to study the feasibility for pure mode I (DCB), mode II (ENF) and mixed mode I/II (SLB) cases. Mixed mode strain energy release rate distributions were computed across the width of the specimens using the virtual crack closure technique. Specimens with a unidirectional layup and with a multidirectional layup where the delamination is located between two non-zero degree plies were simulated. For a local three-dimensional model, extending to a minimum of about three specimen thicknesses on either side of the delamination front, the results were in good agreement with mixed mode strain energy release rates obtained from computations where the entire specimen had been modeled with solid elements. For large built-up composite structures modeled with plate elements, the shell/3D modeling technique offers a great potential for reducing the model size, since only a relatively small section in the vicinity of the delamination front needs to be modeled with solid elements.

  18. A comparison of NASTRAN (Cosmic) and experimental results for the vibration of thick open cylindrical cantilevered shells

    NASA Technical Reports Server (NTRS)

    Mindle, W. L.; Torvik, P. J.

    1986-01-01

    The natural frequencies and associated mode shapes for three thick open cantilevered cylindrical shells were determined both numerically and experimentally. The shells ranged in size from moderately to very thick with length to thickness ratios of 16, 8 and 5.6, the independent dimension being the shell thickness. The shell geometry is characterized by a circumferential angle of the 142 degrees and a ratio of length to inner radii arc length near 1.0. The finite element analysis was performed using NASTRAN's (COSMIC) triangular plate bending element CTRIA2, which includes membrane effects. The experimental results were obtained through holographic interferometry which enables one to determine the resonant frequencies as well as mode shapes from photographs of time-averaged holograms.

  19. Utilization of porous carbons derived from coconut shell and wood in natural rubber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The porous carbons derived from cellulose are renewable and environmentally friendly. Coconut shell and wood derived porous carbons were characterized with elemental analysis, ash content, x-ray diffraction, infrared absorbance, particle size, surface area, and pore volume. The results were compared...

  20. Morphological and mechanical changes in juvenile red-eared slider turtle (Trachemys scripta elegans) shells during ontogeny.

    PubMed

    Fish, Jennifer F; Stayton, Charles T

    2014-04-01

    Turtles experience numerous modifications in the morphological, physiological, and mechanical characteristics of their shells through ontogeny. Although a general picture is available of the nature of these modifications, few quantitative studies have been conducted on changes in turtle shell shape through ontogeny, and none on changes in strength or rigidity. This study investigates the morphological and mechanical changes that juvenile Trachemys scripta elegans undergo as they increase in size. Morphology and shell rigidity were quantified in a sample of 36 alcohol-preserved juvenile Trachemys scripta elegans. Morphometric information was used to create finite element models of all specimens. These models were used to assess the mechanical behavior of the shells under various loading conditions. Overall, we find that turtles experience complementary changes in size, shape, deformability, and relative strength as they grow. As turtles age their shells become larger, more elongate, relatively flatter, and more rigid. These changes are associated with decreases in relative (size independent) strength, even though the shells of larger turtles are stronger in an absolute sense. Decreased deformability is primarily due to changes in the size of the animals. Residual variation in deformability cannot be explained by changes in shell shape. This variation is more likely due to changes in the degree of connectedness of the skeletal elements in the turtle's shells, along with changes in the thickness and degree of mineralization of shell bone. We suggest that the mechanical implications of shell size, shape, and deformability may have a large impact on survivorship and development in members of this species as they mature.

  1. Cracked shells under skew-symmetric loading

    NASA Technical Reports Server (NTRS)

    Lelale, F.

    1982-01-01

    A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.

  2. SPSM and its application in cylindrical shells

    NASA Astrophysics Data System (ADS)

    Nie, Wu; Zhou, Su-Lian; Peng, Hui

    2008-03-01

    In naval architectures, the structure of prismatic shell is used widely. But there is no suitable method to analyze this kind of structure. Stiffened prismatic shell method (SPSM) presented in this paper, is one of the harmonic semi-analytic methods. Theoretically, strong stiffened structure can be analyzed economically and accurately. SPSM is based on the analytical solution of the governing differential equations for orthotropic cylindrical shells. In these differential equations, the torsional stiffness, bending stiffness and the exact position of each stiffener are taken into account with the Heaviside singular function. An algorithm is introduced, in which the actions of stiffeners on shells are replaced by external loads at each stiffener position. Stiffened shells can be computed as non-stiffened shells. Eventually, the displacement solution of the equations is acquired by the introduction of Green function. The stresses in a corrugated transverse bulkhead without pier base of an oil tanker are computed by using SPSM.

  3. Flow past a porous approximate spherical shell

    NASA Astrophysics Data System (ADS)

    Srinivasacharya, D.

    2007-07-01

    In this paper, the creeping flow of an incompressible viscous liquid past a porous approximate spherical shell is considered. The flow in the free fluid region outside the shell and in the cavity region of the shell is governed by the Navier Stokes equation. The flow within the porous annulus region of the shell is governed by Darcy’s Law. The boundary conditions used at the interface are continuity of the normal velocity, continuity of the pressure and Beavers and Joseph slip condition. An exact solution for the problem is obtained. An expression for the drag on the porous approximate spherical shell is obtained. The drag experienced by the shell is evaluated numerically for several values of the parameters governing the flow.

  4. Scattering of low-energy neutrinos on atomic shells

    SciTech Connect

    Babič, Andrej; Šimkovic, Fedor

    2015-10-28

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  5. Partial conservation law in a schematic single j shell model

    NASA Astrophysics Data System (ADS)

    Pereira, Wesley; Garcia, Ricardo; Zamick, Larry; Escuderos, Alberto; Neergård, Kai

    We report the discovery of a partial conservation law obeyed by a schematic Hamiltonian of two protons and two neutrons in a j shell. In our Hamiltonian, the interaction matrix element of two nucleons with combined angular momentum J is linear in J for even J and constant for odd J. It turns out that in some stationary states, the sum of the angular momenta Jp and Jn of the proton and neutron pairs is conserved. The energies of these states are given by a linear function of Jp + Jn. The systematics of their occurrence is described and explained.

  6. Scattering of low-energy neutrinos on atomic shells

    NASA Astrophysics Data System (ADS)

    Babič, Andrej; Šimkovic, Fedor

    2015-10-01

    We present a derivation of the total cross section for inelastic scattering of low-energy solar neutrinos and reactor antineutrinos on bound electrons, resulting in a transition of the electron to an excited state. The atomic-shell structure of various chemical elements is treated in terms of a nonrelativistic approximation. We estimate the interaction rates for modern neutrino detectors, in particular the Borexino and GEMMA experiments. We establish that in these experiments the effect can be safely neglected, but it could be accessible to future large-volume neutrino detectors with low energy threshold.

  7. Structural design criteria for filament-wound composite shells

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Jensen, D. W.; Claus, S. J.; Pai, S. P.; Hipp, P. A.

    1994-01-01

    Advanced composite cylinders, manufactured by filament winding, provide a cost effective solution to many present structural applications; however, the compressive performance of filament-wound cylinders is lower than comparable shells fabricated from unidirectional tape. The objective of this study was to determine the cause of this reduction in thin filament-wound cylinders by relating the manufacturing procedures to the quality of the cylinder and to its compressive performance. The experiments on cylinder buckling were complemented by eigenvalue buckling analysis using a detailed geometric model in a finite element analysis. The applicability of classical buckling analyses was also investigated as a design tool.

  8. Cross-surface interface element for coupling built-up structural subdomains

    NASA Technical Reports Server (NTRS)

    Davila, C. G.; Ransom, J. B.; Aminpour, M. A.

    1994-01-01

    A new finite element for coupling built-up shell substructures is presented. The present work extends the hybrid variational formulation of the interface element developed by Aminpour and Ransom to permit coupling between two intersecting substructures. Designed for the assembly of independently built-up finite element models, this technique provides a level of modeling flexibility previously unavailable.

  9. Development of Nanolaminate Thin Shell Mirrors

    SciTech Connect

    Hickey, G S; Lih, S S; Barbee, T

    2002-08-09

    The space science community has identified a need for ultra-light weight, large aperture optical systems that are capable of producing high-resolution images of low contrast. Current mirror technologies are limited due either to not being scalable to larger sizes at reasonable masses, or to lack of surface finish, dimensional stability in a space environment or long fabrication times. This paper will discuss the development of thin-shell, nano-laminate mirror substrates that are capable of being electro-actively figured. This technology has the potential to substantially reduce the cost of space based optics by allowing replication of ultra-lightweight primary mirrors from a master precision tool. Precision master tools have been shown to be used multiple times with repeatable surface quality results with less than one week fabrication times for the primary optical mirror substrate. Current development has developed a series of 0.25 and 0.5 meter spherical nanolaminate mirrors that are less than 0.5 kg/m{sup 2} areal density before electroactive components are mounted, and a target of less than 2.0 kg/m with control elements. This paper will provide an overview of nanolaminate materials for optical mirrors, modeling of their behavior under figure control and experiments conducted to validate precision control.

  10. Advances in shell side condensation for refrigerants

    NASA Astrophysics Data System (ADS)

    Webb, Ralph L.

    The design of shell and tube condensers used in air conditioning and refrigeration applications is discussed. The geometry of interest involves condensation on the shell side of a horizontal tube bundle. Enhanced heat transfer geometries are typically used for condensation on the shell side. The heat transfer is removed by water on the tube side, which typically have tube side enhancement. Single tube and row effect condensation data are presented. Thermal design methods for sizing of the condenser are outlined.

  11. Integrable structure in discrete shell membrane theory

    PubMed Central

    Schief, W. K.

    2014-01-01

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory. PMID:24808755

  12. Boson shells harboring charged black holes

    SciTech Connect

    Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike

    2010-11-15

    We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.

  13. Single Shell Tank (SST) Retrieval Sequence & Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    HOHL, T.M.

    2001-09-20

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  14. Single Shell Tank (SST) Retrieval Sequence & Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    STRODE, J.N.

    2002-09-23

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  15. Single Shell Tank (SST) Retrieval Sequence and Double Shell Tank (DST) Space Evaluation

    SciTech Connect

    KIRCH, N.W.

    2003-09-23

    This document describes the baseline single-shell tank (SST) waste retrieval sequence for the River Protection Project updated for Fiscal Year 2002. The double-shell tank (DST) space evaluation presents projected DST needs for Hanford for additional DSTs.

  16. A triangular element based on generalized potential energy concepts

    NASA Technical Reports Server (NTRS)

    Thomas, G. R.; Gallagher, R. H.

    1976-01-01

    Stiffness equations are formulated for a doubly-curved triangular thin shell finite element. The strain energy component of the potential energy is first expressed in terms of displacements and displacement gradients with the aid of consistent deep shell strain-displacement equations. The element in-plane and normal displacement fields are approximated by complete cubic polynomials. These functions do not satisfy the interelement displacement admissibility conditions. Satisfaction is forced by the imposition of constraint conditions on the interelement boundaries; the constraints represent the modification of the potential energy. Some numerical results for a pinched cylinder, a cylindrical sphere, and a pinched sphere are examined.

  17. Shell boosts recovery at Kernridge

    SciTech Connect

    Moore, S.

    1984-01-01

    Since acquiring the Kernridge property in December 1979, Shell Oil Co. has drilled more than 1,800 wells and steadily increased production from 42,000 to 89,000 b/d of oil. Currently, the Kernridge Production Division of Shell California Production Inc. (SCPI), a newly formed subsidiary of Shell Oil Co., is operator for the property. The property covers approximately 35,000 mostly contiguous net acres, with production concentrated mainly on about 5,500 net acres. SCPI's four major fields in the area are the North and South Belridge, Lost Hills, and Antelope Hills. Most of the production comes from the North and South Belridge fields, which were previously held by the Belridge Oil Co. Productive horizons in the fields are the Tulare, Diatomite, Brown Shale, Antelope Shale, 64 Zone, and Agua sand. The Tulare and Diatomite are the two major reservoirs SCPI is developing. The Tulare, encountered between 400 and 1,300 ft, is made up of fine- to coarse-grained, unconsolidated sands with interbedded shales and silt stones and contains 13 /sup 0/ API oil. Using steam drive as the main recovery method, SCPI estimates an ultimate recovery from the Tulare formation of about 60% of the original 1 billion barrels in place. The Diatomite horizon, found between 800 and 3,500 ft and containing light, 28 /sup 0/ API oil, has high porosity (more than 60%), low permeability (less than 1 md), and natural fractures. Because of the Diatomite's low permeability, fracture stimulation is being used to increase well productivity. SCPI anticipates that approximately 5% of the almost 2 billion barrels of oil originally in place will be recovered by primary production.

  18. Material with core-shell structure

    DOEpatents

    Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  19. Fracture Mitigation Strategies in Gastropod Shells

    NASA Astrophysics Data System (ADS)

    Salinas, Christopher; Kisailus, David

    2013-04-01

    For hundreds of millions of years, gastropods have been evolving, modifying their external calcified shells for defense against shell-breaking and drilling predators. They have evolved primarily to use two different aragonitic microstructures: the evolutionary older Nacre (mother of pearl) structure and the more recently developed crossed-lamellar structure. By using both of these structures, gastropods are able to produce shells that are significantly tougher then geologic aragonite. However, the crossed-lamellar structure allows for a wider variety of shell morphologies, ensuring its increasing presence since the Mesozoic Marine Revolution more than 200 million years ago.

  20. Hydrate Shell Growth Measured Using NMR.

    PubMed

    Haber, Agnes; Akhfash, Masoumeh; Loh, Charles K; Aman, Zachary M; Fridjonsson, Einar O; May, Eric F; Johns, Michael L

    2015-08-18

    Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shell's morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous.

  1. Core/shell colloidal semiconductor nanoplatelets.

    PubMed

    Mahler, Benoit; Nadal, Brice; Bouet, Cecile; Patriarche, Gilles; Dubertret, Benoit

    2012-11-14

    We have recently synthesized atomically flat semiconductor colloidal nanoplatelets with quasi 2D geometry. Here, we show that core/shell nanoplatelets can be obtained with a 2D geometry that is conserved. The epitaxial growth of the shell semiconductor is performed at room temperature. We report the detailed synthesis of CdSe/CdS and CdSe/CdZnS structures with different shell thicknesses. The shell growth is characterized both spectroscopically and structurally. In particular, the core/shell structure appears very clearly on high-resolution, high-angle annular dark-field transmission electron microscope images, thanks to the difference of atomic density between the core and the shell. When the nanoplatelets stand on their edge, we can precisely count the number of atomic planes forming the core and the shell. This provides a direct measurement, with atomic precision, of the core nanoplatelets thickness. The constraints exerted by the shell growth on the core is analyzed using global phase analysis. The core/shell nanoplatelets we obtained have narrow emission spectra with full-width at half-maximum close to 20 nm, and quantum yield that can reach 60%.

  2. Carbon isotopes in mollusk shell carbonates

    NASA Astrophysics Data System (ADS)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  3. Electron Shell as a Resonator

    NASA Astrophysics Data System (ADS)

    Karpeshin, F. F.

    2002-11-01

    Main principles of the resonance effect arising in the electron shells in interaction of the nuclei with electromagnetic radiation are analyzed and presented in the historical aspect. Principles of NEET are considered from a more general position, as compared to how this is usually presented. Characteristic features of NEET and its reverse, TEEN, as internal conversion processes are analyzed, and ways are offered of inducing them by laser radiation. The ambivalent role of the Pauli exclusion principles in NEET and TEEN processes is investigated.

  4. Microscopic Shell Model Calculations for the Fluorine Isotopes

    NASA Astrophysics Data System (ADS)

    Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.

    2015-10-01

    Using a formalism based on the No Core Shell Model (NCSM), we have determined miscroscopically the core and single-particle energies and the effective two-body interactions that are the input to standard shell model (SSM) calculations. The basic idea is to perform a succession of a Okubo-Lee-Suzuki (OLS) transformation, a NCSM calculation, and a second OLS transformation to a further reduced space, such as the sd-shell, which allows the separation of the many-body matrix elements into an ``inert'' core part plus a few valence-nucleons calculation. In the present investigation we use this technique to calculate the properties of the nuclides in the Fluorine isotopic chain, using the JISP16 nucleon-nucleon interaction. The obtained SSM input, along with the results of the SSM calculations for the Fluorine isotopes, will be presented. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.

  5. Buckling-induced encapsulation of structured elastic shells under pressure

    PubMed Central

    Shim, Jongmin; Perdigou, Claude; Chen, Elizabeth R.; Bertoldi, Katia; Reis, Pedro M.

    2012-01-01

    We introduce a class of continuum shell structures, the Buckliball, which undergoes a structural transformation induced by buckling under pressure loading. The geometry of the Buckliball comprises a spherical shell patterned with a regular array of circular voids. In order for the pattern transformation to be induced by buckling, the possible number and arrangement of these voids are found to be restricted to five specific configurations. Below a critical internal pressure, the narrow ligaments between the voids buckle, leading to a cooperative buckling cascade of the skeleton of the ball. This ligament buckling leads to closure of the voids and a reduction of the total volume of the shell by up to 54%, while remaining spherical, thereby opening the possibility of encapsulation. We use a combination of precision desktop-scale experiments, finite element simulations, and scaling analyses to explore the underlying mechanics of these foldable structures, finding excellent qualitative and quantitative agreement. Given that this folding mechanism is induced by a mechanical instability, our Buckliball opens the possibility for reversible encapsulation, over a wide range of length scales. PMID:22451901

  6. Shell bone histology indicates terrestrial palaeoecology of basal turtles.

    PubMed

    Scheyer, Torsten M; Sander, P Martin

    2007-08-07

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys quenstedti. Comparison of their shell bone histology with that of extant turtles preferring either aquatic habitats or terrestrial habitats clearly reveals congruence with terrestrial turtle taxa. Similarities in the shell bones of these turtles are a diploe structure with well-developed external and internal cortices, weak vascularization of the compact bone layers and a dense nature of the interior cancellous bone with overall short trabeculae. On the other hand, 'aquatic' turtles tend to reduce cortical bone layers, while increasing overall vascularization of the bone tissue. In contrast to the study of limb bone proportions, the present study is independent from the uncommon preservation of appendicular skeletal elements in fossil turtles, enabling the palaeoecological study of a much broader range of incompletely known turtle taxa in the fossil record.

  7. Stress concentration factors for circular, reinforced penetrations in pressurized cylindrical shells. Ph.D. Thesis - Virginia Univ.

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W., Jr.

    1975-01-01

    The effect on stresses in a cylindrical shell with a circular penetration subject to internal pressure was investigated in thin, shallow linearly, elastic cylindrical shells. Results provide numerical predictions of peak stress concentration factors around nonreinforced and reinforced penetrations in pressurized cylindrical shells. Analytical results were correlated with published formulas, as well as theoretical and experimental results. An accuracy study was made of the finite element program for each of the configurations considered important in pressure vessel technology. A formula is developed to predict the peak stress concentration factor for analysis and/or design in conjunction with the ASME Boiler and Pressure Vessel Code.

  8. Composted oyster shell as lime fertilizer is more effective than fresh oyster shell.

    PubMed

    Lee, Young Han; Islam, Shah Md Asraful; Hong, Sun Joo; Cho, Kye Man; Math, Renukaradhya K; Heo, Jae Young; Kim, Hoon; Yun, Han Dae

    2010-01-01

    Physio-chemical changes in oyster shell were examined, and fresh and composted oyster shell meals were compared as lime fertilizers in soybean cultivation. Structural changes in oyster shell were observed by AFM and FE-SEM. We found that grains of the oyster shell surface became smoother and smaller over time. FT-IR analysis indicated the degradation of a chitin-like compound of oyster shell. In chemical analysis, pH (12.3+/-0.24), electrical conductivity (4.1+/-0.24 dS m(-1)), and alkaline powder (53.3+/-1.12%) were highest in commercial lime. Besides, pH was higher in composted oyster shell meal (9.9+/-0.53) than in fresh oyster shell meal (8.4+/-0.32). The highest organic matter (1.1+/-0.08%), NaCl (0.54+/-0.03%), and moisture (15.1+/-1.95%) contents were found in fresh oyster shell meal. A significant higher yield of soybean (1.33 t ha(-1)) was obtained by applying composted oyster shell meal (a 21% higher yield than with fresh oyster shell meal). Thus composting of oyster shell increases the utility of oyster shell as a liming material for crop cultivation.

  9. Semi-analytical approach for the study of linear static behaviour and buckling of shells with single constant curvature

    NASA Astrophysics Data System (ADS)

    de Leo, Andrea Matteo; Contento, Alessandro; Di Egidio, Angelo

    2015-09-01

    A model of linear, internally constrained shell with single, constant curvature is used to describe the behaviour of existing structures, such as barrel shells. A linear, elastic, isotropic material is considered. Observing that in the shell two families of mono-dimensional interacting beams can be recognized: straight longitudinal beams and transversal arches, a non-conventional semi-analytical approximate solution, which uses the method of separation of variables, is proposed. By using an integral procedure, reduced differential, ordinary equations, capable of describing the behaviour of the shell, are obtained. Both linear static behaviour and longitudinal buckling of the shell are investigated. The approximate solution proposed leads to results that match those of a finite element model and permits to give a description of shells similar to that of beams on elastic soil. With regard to the linear static behaviour of the shell, a "short" and a "long" characterization is proposed and original graphical abaci are obtained with the purpose of facilitating the classification. An extensive study is then performed in order to analyse the buckling of the shells.

  10. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    NASA Astrophysics Data System (ADS)

    Devi, Jutika; Saikia, Rashmi; Datta, Pranayee

    2016-10-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.

  11. Marine bivalve shell geochemistry and ultrastructure from modern low pH environments: environmental effect versus experimental bias

    NASA Astrophysics Data System (ADS)

    Hahn, S.; Rodolfo-Metalpa, R.; Griesshaber, E.; Schmahl, W. W.; Buhl, D.; Hall-Spencer, J. M.; Baggini, C.; Fehr, K. T.; Immenhauser, A.

    2012-05-01

    Bivalve shells can provide excellent archives of past environmental change but have not been used to interpret ocean acidification events. We investigated carbon, oxygen and trace element records from different shell layers in the mussels Mytilus galloprovincialis combined with detailed investigations of the shell ultrastructure. Mussels from the harbour of Ischia (Mediterranean, Italy) were transplanted and grown in water with mean pHT 7.3 and mean pHT 8.1 near CO2 vents on the east coast of the island. Most prominently, the shells recorded the shock of transplantation, both in their shell ultrastructure, textural and geochemical record. Shell calcite, precipitated subsequently under acidified seawater responded to the pH gradient by an in part disturbed ultrastructure. Geochemical data from all test sites show a strong metabolic effect that exceeds the influence of the low-pH environment. These field experiments showed that care is needed when interpreting potential ocean acidification signals because various parameters affect shell chemistry and ultrastructure. Besides metabolic processes, seawater pH, factors such as salinity, water temperature, food availability and population density all affect the biogenic carbonate shell archive.

  12. FUEL ELEMENT

    DOEpatents

    Howard, R.C.; Bokros, J.C.

    1962-03-01

    A fueled matrlx eontnwinlng uncomblned carbon is deslgned for use in graphlte-moderated gas-cooled reactors designed for operatlon at temperatures (about 1500 deg F) at which conventional metallic cladding would ordlnarily undergo undesired carburization or physical degeneratlon. - The invention comprlses, broadly a fuel body containlng uncombined earbon, clad with a nickel alloy contalning over about 28 percent by' weight copper in the preferred embodlment. Thls element ls supporirted in the passageways in close tolerance with the walls of unclad graphite moderator materlal. (AEC)

  13. An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts

    NASA Astrophysics Data System (ADS)

    Sadamoto, S.; Ozdemir, M.; Tanaka, S.; Taniguchi, K.; Yu, T. T.; Bui, T. Q.

    2017-02-01

    The paper is concerned with eigen buckling analysis of curvilinear shells with and without cutouts by an effective meshfree method. In particular, shallow shell, cylinder and perforated cylinder buckling problems are considered. A Galerkin meshfree reproducing kernel (RK) approach is then developed. The present meshfree curvilinear shell model is based on Reissner-Mindlin plate formulation, which allows the transverse shear deformation of the curved shells. There are five degrees of freedom per node (i.e., three displacements and two rotations). In this setting, the meshfree interpolation functions are derived from the RK. A singular kernel is introduced to impose the essential boundary conditions because of the RK shape functions, which do not automatically possess the Kronecker delta property. The stiffness matrix is derived using the stabilized conforming nodal integration technique. A convected coordinate system is introduced into the formulation to deal with the curvilinear surface. More importantly, the RKs taken here are used not only for the interpolation of the curved geometry, but also for the approximation of field variables. Several numerical examples with shallow shells and full cylinder models are considered, and the critical buckling loads and their buckling mode shapes are calculated by the meshfree eigenvalue analysis and examined. To show the accuracy and performance of the developed meshfree method, the computed critical buckling loads and mode shapes are compared with reference solutions based on boundary domain element, finite element and analytical methods.

  14. Synthesis of zirconium tungstate-zirconia core-shell composite particles

    SciTech Connect

    Khazeni, Nasser; Mavis, Bora; Guenduez, Guengoer; Colak, Uner

    2011-11-15

    Highlights: {yields} ZrW{sub 2}O{sub 8}-ZrO{sub 2} core-shell particles to offer solutions for sintering problems. {yields} Core synthesis by a precursor based on tungstic acid and zirconium acetate. {yields} Shell phase by urea hydrolysis in the presence of zirconium ions. {yields} [Urea]/[ZrOCl{sub 2}] ratio controls the rate of shell precursor precipitation. -- Abstract: In this work, ZrW{sub 2}O{sub 8}-ZrO{sub 2} core-shell composite particles were synthesized. ZrW{sub 2}O{sub 8} that was used in the core is a material with negative coefficient of thermal expansion, and it was synthesized from a high-pH precursor based on use of tungstic acid and zirconium acetate. Shell layer was composed of ZrO{sub 2} nanocrystallites and precipitated from an aqueous solution by urea hydrolysis. While volume of the shell was effectively controlled by the initial zirconium ion concentration in the solutions, the rate of precipitation was a function of the ratio of initial concentrations of urea to zirconium ions. It is hypothesized that isolation of the ZrW{sub 2}O{sub 8} within a layer of ZrO{sub 2}, will be a key element in solving problems associated with reactivity of ZrW{sub 2}O{sub 8} towards other components in sintering of ceramic-ceramic composites with tuned or zero thermal expansion coefficient.

  15. Computational Simulation of Damage Progression of Composite Thin Shells Subjected to Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Gotsis, P. K.; Chamis, C. C.; Minnetyan, L.

    1996-01-01

    Defect-free and defected composite thin shells with ply orientation (90/0/+/-75) made of graphite/epoxy are simulated for damage progression and fracture due to internal pressure and axial loading. The thin shells have a cylindrical geometry with one end fixed and the other free. The applied load consists of an internal pressure in conjunction with an axial load at the free end, the cure temperature was 177 C (350 F) and the operational temperature was 21 C (70 F). The residual stresses due to the processing are taken into account. Shells with defect and without defects were examined by using CODSTRAN an integrated computer code that couples composite mechanics, finite element and account for all possible failure modes inherent in composites. CODSTRAN traces damage initiation, growth, accumulation, damage propagation and the final fracture of the structure. The results show that damage initiation started with matrix failure while damage/fracture progression occurred due to additional matrix failure and fiber fracture. The burst pressure of the (90/0/+/- 75) defected shell was 0.092% of that of the free defect. Finally the results of the damage progression of the (90/0/+/- 75), defective composite shell was compared with the (90/0/+/- theta, where theta = 45 and 60, layup configurations. It was shown that the examined laminate (90/0/+/- 75) has the least damage tolerant of the two compared defective shells with the (90/0/+/- theta), theta = 45 and 60 laminates.

  16. Design and Fabrication of a Ring-Stiffened Graphite-Epoxy Corrugated Cylindrical Shell

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.

    1978-01-01

    Design and fabrication of supplement test panels that represent key portions of the cylinder are described, as are supporting tests of coupons, sample joints, and stiffening ring elements. The cylindrical shell is a ring-stiffened, open corrugation design that uses T300/5208 graphite-epoxy tape as the basic material for the shell wall and stiffening rings. The test cylinder is designed to withstand bending loads producing the relatively low maximum load intensity in the shell wall of 1,576 N/cm. The resulting shell wall weight, including stiffening rings and fasteners, is 0.0156 kg/m. The shell weight achieved in the graphite-epoxy cylinder represents a weight saving of approximately 23 percent, compared to a comparable aluminum shell. A unique fabrication approach was used in which the cylinder wall was built in three flat segments, which were then wrapped to the cylindrical shape. Such an approach, made possible by the flexibility of the thin corrugated wall in a radial direction, proved to be a simple approach to building the test cylinder. Based on tooling and fabrication methods in this program, the projected costs of a production run of 100 units are reported.

  17. Smart damping of laminated fuzzy fiber reinforced composite shells using 1-3 piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Kundalwal, S. I.; Kumar, R. Suresh; Ray, M. C.

    2013-10-01

    This paper deals with the investigation of active constrained layer damping (ACLD) of smart laminated continuous fuzzy fiber reinforced composite (FFRC) shells. The distinct constructional feature of a novel FFRC is that the uniformly spaced short carbon nanotubes (CNTs) are radially grown on the circumferential surfaces of the continuous carbon fiber reinforcements. The constraining layer of the ACLD treatment is considered to be made of vertically/obliquely reinforced 1-3 piezoelectric composite materials. A finite element (FE) model is developed for the laminated FFRC shells integrated with the two patches of the ACLD treatment to investigate the damping characteristics of the laminated FFRC shells. The effect of variation of the orientation angle of the piezoelectric fibers on the damping characteristics of the laminated FFRC shells has been studied when the piezoelectric fibers are coplanar with either of the two mutually orthogonal vertical planes of the piezoelectric composite layer. It is revealed that radial growth of CNTs on the circumferential surfaces of the carbon fibers enhances the attenuation of the amplitude of vibrations and the natural frequencies of the laminated FFRC shells over those of laminated base composite shells without CNTs.

  18. Enhanced functionalization of Mn2O3@SiO2 core-shell nanostructures

    PubMed Central

    2011-01-01

    Core-shell nanostructures of Mn2O3@SiO2, Mn2O3@amino-functionalized silica, Mn2O3@vinyl-functionalized silica, and Mn2O3@allyl-functionalized silica were synthesized using the hydrolysis of the respective organosilane precursor over Mn2O3 nanoparticles dispersed using colloidal solutions of Tergitol and cyclohexane. The synthetic methodology used is an improvement over the commonly used post-grafting or co-condensation method as it ensures a high density of functional groups over the core-shell nanostructures. The high density of functional groups can be useful in immobilization of biomolecules and drugs and thus can be used in targeted drug delivery. The high density of functional groups can be used for extraction of elements present in trace amounts. These functionalized core-shell nanostructures were characterized using TEM, IR, and zeta potential studies. The zeta potential study shows that the hydrolysis of organosilane to form the shell results in more number of functional groups on it as compared to the shell formed using post-grafting method. The amino-functionalized core-shell nanostructures were used for the immobilization of glucose and L-methionine and were characterized by zeta potential studies. PMID:21711685

  19. Coherently Strained Si-SixGe1-x Core-Shell Nanowire Heterostructures.

    PubMed

    Dillen, David C; Wen, Feng; Kim, Kyounghwan; Tutuc, Emanuel

    2016-01-13

    Coherently strained Si-SixGe1-x core-shell nanowire heterostructures are expected to possess a positive shell-to-core conduction band offset, allowing for quantum confinement of electrons in the Si core. We report the growth of epitaxial, coherently strained Si-SixGe1-x core-shell heterostructures through the vapor-liquid-solid mechanism for the Si core, followed in situ by the epitaxial SixGe1-x shell growth using ultrahigh vacuum chemical vapor deposition. The Raman spectra of individual nanowires reveal peaks associated with the Si-Si optical phonon mode in the Si core and the Si-Si, Si-Ge, and Ge-Ge vibrational modes of the SixGe1-x shell. The core Si-Si mode displays a clear red-shift compared to unstrained, bare Si nanowires thanks to the lattice mismatch-induced tensile strain, in agreement with calculated values using a finite-element continuum elasticity model combined with lattice dynamic theory. N-type field-effect transistors using Si-SixGe1-x core-shell nanowires as channel are demonstrated.

  20. Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells

    NASA Astrophysics Data System (ADS)

    Bhangale, Rajesh K.; Ganesan, N.; Padmanabhan, Chandramouli

    2006-04-01

    In recent years, structures made up of functionally graded materials (FGMs) have received considerable attention for use in high-temperature applications. In this article, a finite element formulation based on First-Order Shear Deformation Theory (FSDT) is used to study the thermal buckling and vibration behavior of truncated FGM conical shells in a high-temperature environment. A Fourier series expansion for the displacement variable in the circumferential direction is used to model the FGM conical shell. The material properties of the truncated FGM conical shells are functionally graded in the thickness direction according to a volume fraction power law distribution. Temperature-dependent material properties are considered to carry out a linear thermal buckling and free vibration analysis. The conical shell is assumed to be clamped-clamped and has a high temperature specified on the inner surface while the outer surface is at ambient temperature. The one-dimensional heat conduction equation is used across the thickness of the conical shell to determine the temperature distribution and thereby the material properties. In addition, the influence of initial stresses on the frequency behavior of FGM shells has also been investigated. Numerical studies involving the understanding of the role of power law index, r/h ratios, and semi-vertex angle on the thermal buckling temperature as well as on vibration have been carried out.

  1. Free Vibration of Fiber Composite Thin Shells in a Hot Environment

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Guptill, James D.

    1995-01-01

    Results are presented of parametric studies to assess the effects of various parameters on the free vibration behavior (natural frequencies) of (plus or minus theta)2, angle-ply fiber composite thin shells in a hot environment. These results were obtained by using a three-dimensional finite element structural analysis computer code. The fiber composite shell is assumed to be cylindrical and made from T-300 graphite fibers embedded in an intermediate-modulus high-strength matrix (IMHS). The residual stresses induced into the laminated structure during curing are taken into account. The following parameters are investigated: the length and the thickness of the shell, the fiber orientations, the fiber volume fraction, the temperature profile through the thickness of the laminate and the different ply thicknesses. Results obtained indicate that: the fiber orientations and the length of the laminated shell had significant effect on the natural frequencies. The fiber volume fraction, the laminate thickness and the temperature profile through the shell thickness had a weak effect on the natural frequencies. Finally, the laminates with different ply thicknesses had insignificant influence on the behavior of the vibrated laminated shell.

  2. The origin and loss of periodic patterning in the turtle shell.

    PubMed

    Moustakas-Verho, Jacqueline E; Zimm, Roland; Cebra-Thomas, Judith; Lempiäinen, Netta K; Kallonen, Aki; Mitchell, Katherine L; Hämäläinen, Keijo; Salazar-Ciudad, Isaac; Jernvall, Jukka; Gilbert, Scott F

    2014-08-01

    The origin of the turtle shell over 200 million years ago greatly modified the amniote body plan, and the morphological plasticity of the shell has promoted the adaptive radiation of turtles. The shell, comprising a dorsal carapace and a ventral plastron, is a layered structure formed by basal endochondral axial skeletal elements (ribs, vertebrae) and plates of bone, which are overlain by keratinous ectodermal scutes. Studies of turtle development have mostly focused on the bones of the shell; however, the genetic regulation of the epidermal scutes has not been investigated. Here, we show that scutes develop from an array of patterned placodes and that these placodes are absent from a soft-shelled turtle in which scutes were lost secondarily. Experimentally inhibiting Shh, Bmp or Fgf signaling results in the disruption of the placodal pattern. Finally, a computational model is used to show how two coupled reaction-diffusion systems reproduce both natural and abnormal variation in turtle scutes. Taken together, these placodal signaling centers are likely to represent developmental modules that are responsible for the evolution of scutes in turtles, and the regulation of these centers has allowed for the diversification of the turtle shell.

  3. Apparatus and methods for installing, removing and adjusting an inner turbine shell section relative to an outer turbine shell section

    DOEpatents

    Leach, David; Bergendahl, Peter Allen; Waldo, Stuart Forrest; Smith, Robert Leroy; Phelps, Robert Kim

    2001-01-01

    A turbine includes upper and lower inner shell sections mounting the nozzles and shrouds and which inner shell is supported by pins secured to a surrounding outer shell. To disassemble the turbine for access to the inner shell sections and rotor, an alignment fixture is secured to the lower outer shell section and has pins engaging the inner shell section. To disassemble the turbine, the inner shell weight is transferred to the lower outer shell section via the alignment fixture and cradle pins. Roller assemblies are inserted through access openings vacated by support pins to permit rotation of the lower inner shell section out of and into the lower outer shell section during disassembly and assembly. The alignment fixture includes adjusting rods for adjusting the inner shell axially, vertically, laterally and about a lateral axis. A roller over-cage is provided to rotate the inner shell and a dummy shell to facilitate assembly and disassembly in the field.

  4. A viscoplastic model of expanding cylindrical shells subjected to internal explosive detonations

    SciTech Connect

    Martineau, Rick L.

    1998-04-01

    Magnetic flux compression generators rely on the expansion of thin ductile shells to generate magnetic fields. These thin shells are filled with high explosives, which when detonated, cause the shell to expand to over 200% strain at strain-rates on the order of 104 s-1. Experimental data indicate the development and growth of multiple plastic instabilities which appear in a quasi-periodic pattern on the surfaces of the shells. These quasi-periodic instabilities are connected by localized zones of intense shear that are oriented approximately 45° from the outward radial direction. The quasi-periodic instabilities continue to develop and eventually become through-cracks, causing the shell to fragment. A viscoplastic constitutive model is formulated to model the high strain-rate expansion and provide insight into the development of plastic instabilities. The formulation of the viscoplastic constitutive model includes the effects of shock heating and damage in the form of microvoid nucleation, growth, and coalescence in the expanding shell. This model uses the Johnson-Cook strength model with the Mie-Grueneisen equation of state and a modified Gurson yield surface. The constitutive model includes the modifications proposed by Tvergaard and the plastic strain controlled nucleation introduced by Neeleman. The constitutive model is implemented as a user material subroutine into ABAQUS/Explicit, which is a commercially available nonlinear explicit dynamic finite element program. A cylindrical shell is modeled using both axisymmetric and plane strain elements. Two experiments were conducted involving plane wave detonated, explosively filled, copper cylinders. Instability, displacement, and velocity data were recorded using a fast framing camera and a Fabry-Perot interferometer. Good agreement is shown between the numerical results and experimental data. An additional explosively bulged cylinder experiment was also performed and a photomicrograph of an

  5. Material Distribution Optimization for the Shell Aircraft Composite Structure

    NASA Astrophysics Data System (ADS)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2016-09-01

    One of the main goal in aircraft structures designing isweight decreasing and stiffness increasing. Composite structures recently became popular in aircraft because of their mechanical properties and wide range of optimization possibilities.Weight distribution and lay-up are keys to creating lightweight stiff strictures. In this paperwe discuss optimization of specific structure that undergoes the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflowinduced vibrations at the constrained weight of the part. Initial model was created with CAD tool Siemens NX, finite element analysis and post processing were performed with COMSOL Multiphysicsr and MATLABr. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. Wall thickness has been changed using parametric approach by an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. To avoid a local stress concentration, wall thickness increment was defined as smooth function on the shell surface dependent of auxiliary sphere position and size. Our study consists of multiple steps: CAD/CAE transformation of the model, determining wind pressure for different flow angles, optimizing wall thickness distribution for specific flow angles, designing a lay-up for optimal material distribution. The studied structure was improved in terms of maximum and average strain energy at the constrained expense ofweight growth. Developed methods and tools can be applied to wide range of shell-like structures made of multilayered quasi-isotropic laminates.

  6. Core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses: Preparation and their effects on photoluminescence of lanthanide complexes

    SciTech Connect

    Kang, Jie; Li, Yuan; Chen, Yingnan; Wang, Ailing; Yue, Bin; Qu, Yanrong; Zhao, Yongliang; Chu, Haibin

    2015-11-15

    Highlights: • Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses were prepared via the Stöber process. • Sm and Dy complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. • The complex-doped Ag@SiO{sub 2} composites show stronger luminescent intensities than pure complexes. • The luminescent intensities of the composites strongly depend on the SiO{sub 2} shell thickness. - Abstract: Three kinds of almost spherical core–shell Ag@SiO{sub 2} nanoparticles of different silica shell thicknesses (10, 25 and 80 nm) were prepared via the Stöber process. The Ag core nanoparticles were prepared by reducing silver nitrate with sodium citrate. The size, morphology and structure of core–shell Ag@SiO{sub 2} nanoparticles were characterized by transmission electron microscopy. Subsequently, eight kinds of lanthanide complexes with benzoate, 1,10-phenanthroline and 2,2′-bipyridine were synthesized. The composition of the lanthanide complexes was characterized by elemental analysis, IR and UV spectra. Finally, lanthanide complexes were attached to the surface of Ag@SiO{sub 2} nanoparticles to form lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites. The results show that the complex-doped Ag@SiO{sub 2} nanocomposites display much stronger luminescence intensities than the lanthanide complexes. Furthermore, the luminescence intensities of the lanthanide-complex-doped Ag@SiO{sub 2} nanocomposites with SiO{sub 2} shell thickness of 25 nm are stronger than those of the nanocomposites with SiO{sub 2} shell thickness of 10 and 80 nm.

  7. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles.

    PubMed

    Llamosa, D; Ruano, M; Martínez, L; Mayoral, A; Roman, E; García-Hernández, M; Huttel, Y

    2014-11-21

    Complex core@shell and core@shell@shell nanoparticles are systems that combine the functionalities of the inner core and outer shell materials together with new physico-chemical properties originated by their low (nano) dimensionality. Such nanoparticles are of prime importance in the fast growing field of nanotechnology as building blocks for more sophisticated systems and a plethora of applications. Here, it is shown that although conceptually simple a modified gas aggregation approach allows the one-step generation of well-controlled complex nanoparticles. In particular, it is demonstrated that the atoms of the core and the shell of the nanoparticles can be easily inverted, avoiding intrinsic constraints of chemical methods.

  8. Megranate-like nanoreactor with multiple cores and an acidic mesoporous shell for a cascade reaction

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Guan, Buyuan; He, Yapeng; An, Dong; Zhang, Ye; Cao, Yu; Li, Xiang; Liu, Yunling; Huo, Qisheng

    2015-02-01

    Megranate-like nanoparticles possess a unique structure that is composed of multiple cores and shells, which is different from simple yolk-shell nanoparticles. Megranate-like nanoparticles can combine the properties of each component and be used as nanoreactors. This study describes the preparation of bifunctional megranate-like nanoreactors, consisting of multiple metal cores and thiol modified mesoporous SiO2 shells. Different metal nanoparticles (Pd, Pt, Au) can be incorporated into the structure as cores, and the thiol group in the shells can be oxidized to acidic -SO3H. The megranate-like nanoparticles show good bifunctional catalytic properties and recyclability in a cascade catalytic reaction for the desired benzimidazole derivative. Moreover, the individual components of the megranate-like nanoparticles also show good catalytic activities in the hydrogenation reduction of nitro-aromatics and the deprotection reaction of benzaldehyde dimethyl acetal.Megranate-like nanoparticles possess a unique structure that is composed of multiple cores and shells, which is different from simple yolk-shell nanoparticles. Megranate-like nanoparticles can combine the properties of each component and be used as nanoreactors. This study describes the preparation of bifunctional megranate-like nanoreactors, consisting of multiple metal cores and thiol modified mesoporous SiO2 shells. Different metal nanoparticles (Pd, Pt, Au) can be incorporated into the structure as cores, and the thiol group in the shells can be oxidized to acidic -SO3H. The megranate-like nanoparticles show good bifunctional catalytic properties and recyclability in a cascade catalytic reaction for the desired benzimidazole derivative. Moreover, the individual components of the megranate-like nanoparticles also show good catalytic activities in the hydrogenation reduction of nitro-aromatics and the deprotection reaction of benzaldehyde dimethyl acetal. Electronic supplementary information (ESI) available

  9. Layzer type models for pressure driven shells

    SciTech Connect

    Hurricane, O A

    2004-09-16

    Models for the nonlinear instability of finite thickness shells driven by pressure are constructed in the style of Layzer. Equations for both Cartesian and cylindrically convergent/divergent geometries are derived. The resulting equations are appropriate for incompressible shells with unity Atwood number. Predictions from the equations compare well with two-dimensional simulations.

  10. A Geometric Theory of Nonlinear Morphoelastic Shells

    NASA Astrophysics Data System (ADS)

    Sadik, Souhayl; Angoshtari, Arzhang; Goriely, Alain; Yavari, Arash

    2016-08-01

    Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of nonlinear morphoelastic shells that describes both the evolution of the body shape, viewed as an orientable surface, as well as its intrinsic material properties such as its reference curvatures. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell, the so-called material manifold. Geometric quantities attached to the surface, such as the first and second fundamental forms, are obtained from the metric of the three-dimensional body and its evolution. The governing dynamical equations for the body are obtained from variational consideration by assuming that both fundamental forms on the material manifold are dynamical variables in a Lagrangian field theory. In the case where growth can be modeled by a Rayleigh potential, we also obtain the governing equations for growth in the form of kinetic equations coupling the evolution of the first and the second fundamental forms with the state of stress of the shell. We apply these ideas to obtain stress-free growth fields of a planar sheet, the time evolution of a morphoelastic circular cylindrical shell subject to time-dependent internal pressure, and the residual stress of a morphoelastic planar circular shell.

  11. Isothermal Circumstellar Dust Shell Model for Teaching

    ERIC Educational Resources Information Center

    Robinson, G.; Towers, I. N.; Jovanoski, Z.

    2009-01-01

    We introduce a model of radiative transfer in circumstellar dust shells. By assuming that the shell is both isothermal and its thickness is small compared to its radius, the model is simple enough for students to grasp and yet still provides a quantitative description of the relevant physical features. The isothermal model can be used in a…

  12. Statistical Mechanics of Thin Spherical Shells

    NASA Astrophysics Data System (ADS)

    Košmrlj, Andrej; Nelson, David R.

    2017-01-01

    We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes, and the local out-of-plane undulations leads to novel phenomena. In spherical shells, thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated "pressure." Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows nonlinearly with increasing outward pressure, with the same universal power-law exponent that characterizes the response of fluctuating flat membranes to a uniform tension.

  13. Thick-shell nanocrystal quantum dots

    DOEpatents

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  14. A Well-Defined Bipolar Outflow Shell

    NASA Astrophysics Data System (ADS)

    Xie, Taoling; Goldsmith, Paul F.; Patel, Nimesh

    1992-12-01

    A well-defined "eggplant-shaped" thin shell is revealed in the Mon R2 central core region by CO and (13) CO J=1-0 maps obtained with QUARRY. This thin shell outlines the extended blue lobe of the massive bipolar outflow. The projected length and width of the shell are about 5.7 pc and 2.5 pc respectively, and the averaged projected thickness of the shell is ~ 0.3 pc. The shape of this shell can be satisfactorily accounted for quantitatively in terms of limb-brightening within the framework of the Shu et al shell model with radially directed wind, although the model seems to be oversimplified with respect to the complexity that our data reveal. The outflow shell's symmetry axis is estimated to be inclined by ~ 70(deg) with respect to the line of sight. We suggest that the coincident blue- and red-shifted emission and the bending of the red-shifted lobe are the result of the red-shifted shell being compressed, rather than having a second bipolar outflow aligned roughly perpendicular to the axis of the first bipolar outflow.

  15. Layzer type models for pressure driven shells

    SciTech Connect

    Hurricane, O.A.

    2005-05-01

    Models for the nonlinear instability of finite thickness shells driven by pressure are constructed in the style of Layzer. Equations for both Cartesian and cylindrically convergent/divergent geometries are derived. The resulting equations are appropriate for incompressible shells with unity Atwood number. Predictions from the equations compare well with two-dimensional simulations.

  16. Comparison of the pn quasiparticle RPA and shell model for Gamow-Teller beta and double-beta decays

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Brown, B. Alex

    1993-06-01

    We examine the validity of the pn quasiparticle RPA (pnQRPA) as a model for calculating β+ and 2νββ Gamow-Teller decays by making a comparison of the pnQRPA with a large-basis shell-model calculation within the 0f1p shell. We employ A=46 nuclei (those with six valence nucleons) for this comparison. Our comparison includes the decay matrix elements summed over final states, the strength distributions, and, for the first time, the coherent transition matrix elements (CTME). The pnQRPA overestimates the total β+ and 2νββ matrix elements. There are large differences in the shape of the spectra as well as in the CTME between the pnQRPA and shell-model results. Empirical improvements for the pnQRPA are discussed.

  17. Comparison of the [ital pn] quasiparticle RPA and shell model for Gamow-Teller beta and double-beta decays

    SciTech Connect

    Zhao, L.; Brown, B.A. )

    1993-06-01

    We examine the validity of the [ital pn] quasiparticle RPA ([ital pn]QRPA) as a model for calculating [beta][sup +] and 2[nu][beta][beta] Gamow-Teller decays by making a comparison of the [ital pn]QRPA with a large-basis shell-model calculation within the 0[ital f]1[ital p] shell. We employ [ital A]=46 nuclei (those with six valence nucleons) for this comparison. Our comparison includes the decay matrix elements summed over final states, the strength distributions, and, for the first time, the coherent transition matrix elements (CTME). The [ital pn]QRPA overestimates the total [beta][sup +] and 2[nu][beta][beta] matrix elements. There are large differences in the shape of the spectra as well as in the CTME between the [ital pn]QRPA and shell-model results. Empirical improvements for the [ital pn]QRPA are discussed.

  18. Semiclassical shell structure in rotating Fermi systems

    SciTech Connect

    Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.

    2010-06-15

    The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.

  19. Engineered Magnetic Core-Shell Structures.

    PubMed

    Alavi Nikje, Mir Mohammad; Vakili, Maryam

    2015-01-01

    In recent years, engineered magnetic core-shell structures are playing an important role in the wide range of various applications. These magnetic core-shell structures have attracted considerable attention because of their unique properties and various applications. Also, the synthesis of engineered magnetic core-shell structures has attracted practical interest because of potential applications in areas such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, separations, and catalysis. So far a large number of engineered magnetic core-shell structures have been successfully synthesized. This review article focuses on the recent progress in synthesis and characterization of engineered magnetic core-shell structures. Also, this review gives a brief description of the various application of these structures. It is hoped that this review will play some small part in helping future developments in important field.

  20. Buckling of axially compressed conical shells

    NASA Technical Reports Server (NTRS)

    Chang, C.-H.; Katz, L.

    1980-01-01

    The buckling of a truncated elastic conical shell subjected to an axial compression is a classical problem in shell structures. The paper reinvestigates the buckling of an axially compressed truncated conical shell with rigid bulkheads. Two improvements are achieved. First, the condition that the total horizontal displacement must vanish due to rigid bulkhead and axisymmetry is treated as a constraint. This constraint is incorporated into the system through the use of the Lagrange multiplier; then the variational method is used to derive a complete set of boundary conditions for conical shells. Second, the stability is evaluated in the deformed state using the asymptotic solutions of the pair of Donnell-type equations for axisymmetric configuration. The results indicate that the buckling strength of conical shells depends mainly on the condition of the smaller end. In addition to the vertex angle, the distance ratio plays, at least, an equally important role.