Science.gov

Sample records for 4-oxalocrotonate tautomerase 4-ot

  1. Mutants of 4-oxalocrotonate tautomerase catalyze the decarboxylation of oxaloacetate through an imine mechanism.

    PubMed

    Brik, Ashraf; D'Souza, Lawrence J; Keinan, Ehud; Grynszpan, Flavio; Dawson, Philip E

    2002-09-01

    A designed single amino acid substitution can alter the catalytic activity and mechanism of 4-oxalocrotonate tautomerase (4-OT). While the wild-type enzyme catalyzes only the tautomerization of oxalocrotonate, the Pro1Ala mutant (P1A) catalyzes two reactions--the original tautomerization reaction and the decarboxylation of oxaloacetate. Although the N-terminal amine group of P1A is involved in both reactions, our results support a nucleophilic mechanism for the decarboxylase activity, in contrast to the general acid/base mechanism that has been previously established for the tautomerase activity. These findings demonstrate that a single catalytic group in a 4-OT mutant can catalyze two reactions by two different mechanisms.

  2. Kinetic and Structural Characterization of a Heterohexamer 4-Oxalocrotonate Tautomerase from Chloroflexus aurantiacus J-10-fl: Implications for Functional and Structural Diversity in the Tautomerase Superfamily†

    PubMed Central

    Burks, Elizabeth A.; Fleming, Chris D.; Mesecar, Andrew D.; Whitman, Christian P.; Pegan, Scott D.

    2010-01-01

    4-Oxalocrotonate tautomerase (4-OT) isozymes play prominent roles in the bacterial utilization of aromatic hydrocarbons as sole carbon sources. These enzymes catalyze the conversion of 2-hydroxy-2,4-hexadienedioate (or 2-hydroxymuconate) to 2-oxo-3-hexenedioate, where Pro-1 functions as a general base and shuttles a proton from the 2-hydroxyl group of substrate to the C-5 position of product. 4-OT, a homohexamer from Pseudomonas putida mt-2, is the most extensively studied 4-OT isozyme and the founding member of the tautomerase superfamily. A search of five thermophilic bacterial genomes identified a coded amino acid sequence in each that had been annotated as a tautomerase-like protein but lacked Pro-1. However, a nearby sequence has Pro-1, but the sequence is not annotated as a tautomerase-like protein. In order to characterize this group of proteins, two genes from Chloroflexus aurantiacus J-10-fl were cloned, and the corresponding proteins expressed. Kinetic, biochemical, and X-ray structural analysis show that the two expressed proteins form a functional heterohexamer 4-OT (hh4-OT), composed of three αβ dimers. Like the P. putida enzyme, the hh4-OT requires the amino-terminal proline and two arginines for the conversion of 2-hydroxymuconate to product, implicating an analogous mechanism. In contrast to 4-OT, the hh4-OT does not exhibit the low-level activity of another tautomerase superfamily member, the heterohexamer trans-3-chloroacrylic acid dehalogenase (CaaD). Characterization of the hh4-OT enables functional assignment of the related enzymes, highlights the diverse ways the β–α–β building block can be assembled into an active enzyme, and provides further insight into the molecular basis of the low level CaaD activity in 4-OT. PMID:20465238

  3. Kinetic and Structural Characterization of a Heterohexamer 4-Oxalocrotonate Tautomerase from Chloroflexus aurantiacus J-10-fl: Implications for Functional and Structural Diversity in the Tautomerase Superfamily

    SciTech Connect

    Burks, Elizabeth A.; Fleming, Christopher D.; Mesecar, Andrew D.; Whitman, Christian P.; Pegan, Scott D.

    2010-09-30

    4-Oxalocrotonate tautomerase (4-OT) isozymes play prominent roles in the bacterial utilization of aromatic hydrocarbons as sole carbon sources. These enzymes catalyze the conversion of 2-hydroxy-2,4-hexadienedioate (or 2-hydroxymuconate) to 2-oxo-3-hexenedioate, where Pro-1 functions as a general base and shuttles a proton from the 2-hydroxyl group of the substrate to the C-5 position of the product. 4-OT, a homohexamer from Pseudomonas putida mt-2, is the most extensively studied 4-OT isozyme and the founding member of the tautomerase superfamily. A search of five thermophilic bacterial genomes identified a coded amino acid sequence in each that had been annotated as a tautomerase-like protein but lacked Pro-1. However, a nearby sequence has Pro-1, but the sequence is not annotated as a tautomerase-like protein. To characterize this group of proteins, two genes from Chloroflexus aurantiacus J-10-fl were cloned, and the corresponding proteins were expressed. Kinetic, biochemical, and X-ray structural analyses show that the two expressed proteins form a functional heterohexamer 4-OT (hh4-OT), composed of three {alpha}{beta} dimers. Like the P. putida enzyme, hh4-OT requires the amino-terminal proline and two arginines for the conversion of 2-hydroxymuconate to the product, implicating an analogous mechanism. In contrast to 4-OT, hh4-OT does not exhibit the low-level activity of another tautomerase superfamily member, the heterohexamer trans-3-chloroacrylic acid dehalogenase (CaaD). Characterization of hh4-OT enables functional assignment of the related enzymes, highlights the diverse ways the {beta}-{alpha}-{beta} building block can be assembled into an active enzyme, and provides further insight into the molecular basis of the low-level CaaD activity in 4-OT.

  4. Mutations Closer to the Active Site Improve the Promiscuous Aldolase Activity of 4-Oxalocrotonate Tautomerase More Effectively than Distant Mutations.

    PubMed

    Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poddar, Harshwardhan; Baas, Bert-Jan; Poelarends, Gerrit J

    2016-07-01

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which catalyzes enol-keto tautomerization as part of a degradative pathway for aromatic hydrocarbons, promiscuously catalyzes various carbon-carbon bond-forming reactions. These include the aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde. Here, we demonstrate that 4-OT can be engineered into a more efficient aldolase for this condensation reaction, with a >5000-fold improvement in catalytic efficiency (kcat /Km ) and a >10(7) -fold change in reaction specificity, by exploring small libraries in which only "hotspots" are varied. The hotspots were identified by systematic mutagenesis (covering each residue), followed by a screen for single mutations that give a strong improvement in the desired aldolase activity. All beneficial mutations were near the active site of 4-OT, thus underpinning the notion that new catalytic activities of a promiscuous enzyme are more effectively enhanced by mutations close to the active site. PMID:27238293

  5. Kinetic and Stereochemical Analysis of YwhB, a 4-Oxalocrotonate Tautomerase Homologue in Bacillus subtilis: Mechanistic Implications for the YwhB- and 4-Oxalocrotonate Tautomerase-catalyzed Reactions†

    PubMed Central

    Wang, Susan C; Johnson, William H.; Czerwinski, Robert M.; Stamps, Stacy L.; Whitman, Christian P.

    2008-01-01

    YwhB, a 4-oxalocrotonate tautomerase (4-OT) homologue in Bacillus subtilis, has no known biological role and the gene has no apparent genomic context. The kinetic and stereochemical properties of YwhB have been examined using available enol and dienol compounds. The kinetic analysis shows that YwhB has a relatively non-specific 1,3- and 1,5-keto-enol tautomerase activity, with the former activity prevailing. Replacement of Pro-1 or Arg-11 with an alanine significantly reduces or abolishes these activities, implicating both residues as critical ones for the activities. In D2O, ketonization of two monoacid substrates (2-hydroxy-2,4-pentadienoate and phenylenolpyruvate) produces a mixture of stereoisomers {2-keto-3-[2H]-4-pentenoate and 3-[2H]-phenylpyruvate}, where the (3R)-isomers predominate. Ketonization of 2-hydroxy-2,4-hexadienedioate, a diacid, in D2O affords mostly the opposite enantiomer, (3S)-2-oxo-[3-2H]-4-hexenedioate. The mono- and diacids apparently bind in different orientations in the active site of YwhB, but the highly stereoselective nature of the YwhB reaction using a diacid suggests that the biological substrate for YwhB may be a diacid. Moreover, of the three dienols examined, 1,3- and 1,5-keto-enol tautomerization reactions are only observed for 2-hydroxy-2,4-hexadienedioate, indicating that the C-3 and C-5 positions are accessible for protonation in this compound. Incubation of 4-OT with 2-hydroxy-2,4-hexadienedioate in D2O results in a racemic mixture of 2-oxo-[3-2H]-4-hexenedioate, suggesting that 4-OT may not catalyze a 1,3-keto-enol tautomerization reaction using this dienol. It has previously been shown that 4-OT catalyzes the near stereospecific conversion of 2-hydroxy-2,4-hexadienedioate to (5S)-[5-2H]-2-oxo-3-hexenedioate in D2O. Taken together, these observations suggest that 4-OT might function as a 1,5-keto-enol tautomerase using 2-hydroxy-2,4-hexadienedioate. PMID:17902707

  6. Kinetic and Structural Characterization of DmpI from Helicobacter pylori and Archaeoglobus fulgidus, Two 4-Oxalocrotonate Tautomerase Family Members

    PubMed Central

    Almrud, Jeffrey J.; Dasgupta, Rakhi; Czerwinski, Robert M.; Kern, Andrew D.; Hackert, Marvin L.; Whitman, Christian P.

    2010-01-01

    The tautomerase superfamily consists of structurally homologous proteins that are characterized by a β–α–β fold and a catalytic amino-terminal proline. 4-Oxalocrotonate tautomerase (4-OT) family members have been identified and categorized into five subfamilies on the basis of multiple sequence alignments and the conservation of key catalytic and structural residues. Representative members from two subfamilies have been cloned, expressed, purified, and subjected to kinetic and structural characterization. The crystal structure of DmpI from Helicobacter pylori (HpDmpI), a 4-OT homologue in subfamily 3, has been determined to high resolution (1.8 Å and 2.1 Å) in two different space groups. HpDmpI is a homohexamer with an active site cavity that includes Pro-1, but lacks the equivalent of Arg-11 and Arg-39 found in 4-OT. Instead, the side chain of Lys-36 replaces that of Arg-11 in a manner similar to that observed in the trimeric macrophage migration inhibitory factor (MIF), which is the title protein of another family in the superfamily. The electrostatic surface of the active site is also quite different and suggests that HpDmpI might prefer small, monoacid substrates. A kinetic analysis of the enzyme is consistent with the structural analysis, but a biological role for the enzyme remains elusive. The crystal structure of DmpI from Archaeoglobus fulgidus (AfDmpI), a 4-OT homologue in subfamily-4, has been determined to 2.4 Å resolution. AfDmpI is also a homohexamer, with a proposed active site cavity that includes Pro-1, but lacks any other residues that are readily identified as catalytic ones related to 4-OT activity. Indeed, the electrostatic potential of the active site differs significantly in that it is mostly neutral, in contrast to the usual electropositive features found in other 4-OT family members, suggesting that AfDmpI might accommodate hydrophobic substrates. A kinetic analysis has been carried out, but does not provide any clues about the

  7. Evidence for the formation of an enamine species during aldol and Michael-type addition reactions promiscuously catalyzed by 4-oxalocrotonate tautomerase.

    PubMed

    Poddar, Harshwardhan; Rahimi, Mehran; Geertsema, Edzard M; Thunnissen, Andy-Mark W H; Poelarends, Gerrit J

    2015-03-23

    The enzyme 4-oxalocrotonate tautomerase (4-OT), which has a catalytic N-terminal proline residue (Pro1), can promiscuously catalyze various carbon-carbon bond-forming reactions, including aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde, and Michael-type addition of acetaldehyde to a wide variety of nitroalkenes to yield valuable γ-nitroaldehydes. To gain insight into how 4-OT catalyzes these unnatural reactions, we carried out exchange studies in D2 O, and X-ray crystallography studies. The former established that H-D exchange within acetaldehyde is catalyzed by 4-OT and that the Pro1 residue is crucial for this activity. The latter showed that Pro1 of 4-OT had reacted with acetaldehyde to give an enamine species. These results provide evidence of the mechanism of the 4-OT-catalyzed aldol and Michael-type addition reactions in which acetaldehyde is activated for nucleophilic addition by Pro1-dependent formation of an enamine intermediate.

  8. Kinetic, Crystallographic, and Mechanistic Characterization of TomN: Elucidation of a Function for a 4-Oxalocrotonate Tautomerase Homologue in the Tomaymycin Biosynthetic Pathway†

    PubMed Central

    Burks, Elizabeth A.; Yan, Wupeng; Johnson, William H.; Li, Wenzong; Schroeder, Gottfried K.; Min, Christopher; Gerratana, Barbara; Zhang, Yan; Whitman, Christian P.

    2011-01-01

    The biosynthesis of the C ring of the anti-tumor antibiotic agent, tomaymycin, is proposed to proceed through five enzyme-catalyzed steps from L-tyrosine. The genes encoding these enzymes have recently been cloned and their functions tentatively assigned, but there is limited biochemical evidence supporting the assignments of the last three steps. One enzyme, TomN, shows 58% pairwise sequence similarity with 4-oxalocrotonate tautomerase (4-OT), an enzyme found in a catabolic pathway for aromatic hydrocarbons. The TomN sequence includes three amino acids (Pro-1, Arg-11, and Arg-39) that have been identified as critical catalytic residues in 4-OT. However, the proposed substrate for TomN is very different from the one processed by 4-OT. In order to establish the function and mechanism of TomN and its relationship to 4-OT, kinetic, mutagenic, and structural studies have been carried out. The kinetic parameters for TomN, and four alanine mutants, P1A, R11A, R39A, and R61A, were determined using 2-hydroxymuconate, the substrate for 4-OT. The TomN-catalyzed reaction using this substrate compares favorably to that of 4-OT. In addition, the kinetic parameters for the P1A, R11A, and R39A mutant of TomN parallel the trends observed for the corresponding 4-OT mutants, implicating an analogous mechanism. A high resolution crystal structure (1.4 Å) of TomN shows that the overall structure and the active site region are highly similar to those of 4-OT with an RMS deviation of 0.81 Å. Moreover, key active site residues are positionally conserved. The combined results suggest that the tentative assignment for TomN and the proposed sequence of events in the biosynthetic pathway leading to the formation of the C ring of tomaymycin might not be correct. An alternative pathway that awaits biochemical confirmation is proposed. PMID:21809870

  9. Identification and characterization of new family members in the tautomerase superfamily: analysis and implications.

    PubMed

    Huddleston, Jamison P; Burks, Elizabeth A; Whitman, Christian P

    2014-12-15

    Tautomerase superfamily members are characterized by a β-α-β building block and a catalytic amino terminal proline. 4-Oxalocrotonate tautomerase (4-OT) and malonate semialdehyde decarboxylase (MSAD) are the title enzymes of two of the five known families in the superfamily. Two recent developments in these families indicate that there might be more metabolic diversity in the tautomerase superfamily than previously thought. 4-OT homologues have been identified in three biosynthetic pathways, whereas all previously characterized 4-OTs are found in catabolic pathways. In the MSAD family, homologues have been characterized that lack decarboxylase activity, but have a modest hydratase activity using 2-oxo-3-pentynoate. This observation stands in contrast to the first characterized MSAD, which is a proficient decarboxylase and a less efficient hydratase. The hydratase activity was thought to be a vestigial and promiscuous activity. However, this recent discovery suggests that the hydratase activity might reflect a new activity in the MSAD family for an unknown substrate. These discoveries open up new avenues of research in the tautomerase superfamily.

  10. Identification and Characterization of New Family Members in the Tautomerase Superfamily: Analysis and Implications

    PubMed Central

    Huddleston, Jamison P.; Burks, Elizabeth A.; Whitman, Christian P.

    2014-01-01

    Tautomerase superfamily members are characterized by a β–α–β building block and a catalytic amino terminal proline. 4-oxalocrotonate tautomerase (4-OT) and malonate semialdehyde decarboxylase (MSAD) are the title enzymes of two of the five known families in the superfamily. Two recent developments in these families indicate that there might be more metabolic diversity in the tautomerase superfamily than previously thought. 4-OT homologues have been identified in three biosynthetic pathways, whereas all previously characterized 4-OTs are found in catabolic pathways. In the MSAD family, homologues have been characterized that lack decarboxylase activity, but have a modest hydratase activity using 2-oxo-3-pentynoate. This observation stands in contrast to the first characterized MSAD, which is a proficient decarboxylase and a less efficient hydratase. The hydratase activity was thought to be a vestigial and promiscuous activity. However, this recent discovery suggests that the hydratase activity might reflect a new activity in the MSAD family for an unknown substrate. These discoveries open up new avenues of research in the tautomerase superfamily. PMID:25219626

  11. The chemical versatility of the beta-alpha-beta fold: catalytic promiscuity and divergent evolution in the tautomerase superfamily.

    PubMed

    Poelarends, G J; Veetil, V Puthan; Whitman, C P

    2008-11-01

    Tautomerase superfamily members have an amino-terminal proline and a beta-alpha-beta fold, and include 4-oxalocrotonate tautomerase (4-OT), 5-(carboxymethyl)-2-hydroxymuconate isomerase (CHMI), trans- and cis-3-chloroacrylic acid dehalogenase (CaaD and cis-CaaD, respectively), malonate semialdehyde decarboxylase (MSAD), and macrophage migration inhibitory factor (MIF), which exhibits a phenylpyruvate tautomerase (PPT) activity. Pro-1 is a base (4-OT, CHMI, the PPT activity of MIF) or an acid (CaaD, cis-CaaD, MSAD). Components of the catalytic machinery have been identified and mechanistic hypotheses formulated. Characterization of new homologues shows that these mechanisms are incomplete. 4-OT, CaaD, cis-CaaD, and MSAD also have promiscuous activities with a hydratase activity in CaaD, cis-CaaD, and MSAD, PPT activity in CaaD and cis-CaaD, and CaaD and cis-CaaD activities in 4-OT. The shared promiscuous activities provide evidence for divergent evolution from a common ancestor, give hints about mechanistic relationships, and implicate catalytic promiscuity in the emergence of new enzymes.

  12. Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases

    PubMed Central

    van der Meer, Jan-Ytzen; Poddar, Harshwardhan; Baas, Bert-Jan; Miao, Yufeng; Rahimi, Mehran; Kunzendorf, Andreas; van Merkerk, Ronald; Tepper, Pieter G.; Geertsema, Edzard M.; Thunnissen, Andy-Mark W. H.; Quax, Wim J.; Poelarends, Gerrit J.

    2016-01-01

    The Michael-type addition reaction is widely used in organic synthesis for carbon–carbon bond formation. However, biocatalytic methodologies for this type of reaction are scarce, which is related to the fact that enzymes naturally catalysing carbon–carbon bond-forming Michael-type additions are rare. A promising template to develop new biocatalysts for carbon–carbon bond formation is the enzyme 4-oxalocrotonate tautomerase, which exhibits promiscuous Michael-type addition activity. Here we present mutability landscapes for the expression, tautomerase and Michael-type addition activities, and enantioselectivity of 4-oxalocrotonate tautomerase. These maps of neutral, beneficial and detrimental amino acids for each residue position and enzyme property provide detailed insight into sequence–function relationships. This offers exciting opportunities for enzyme engineering, which is illustrated by the redesign of 4-oxalocrotonate tautomerase into two enantiocomplementary ‘Michaelases'. These ‘Michaelases' catalyse the asymmetric addition of acetaldehyde to various nitroolefins, providing access to both enantiomers of γ-nitroaldehydes, which are important precursors for pharmaceutically active γ-aminobutyric acid derivatives. PMID:26952338

  13. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid.

    PubMed

    Guimarães, Samuel L; Coitinho, Juliana B; Costa, Débora M A; Araújo, Simara S; Whitman, Christian P; Nagem, Ronaldo A P

    2016-05-10

    The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD. PMID:27082660

  14. Stereochemistry and function of oxaloacetate keto-enol tautomerase

    SciTech Connect

    Creighton, D.J.; Johnson, J.D.; Lambert, M.R.

    1986-05-01

    Oxaloacetate keto-enol tautomerase, partially purified from porcine kidney, catalyzes the conversions of enol- to keto-oxaloacetate by a mechanism in which solvent protons end up equally distributed between the two prochiral positions at C3 of keto-oxaloacetate. This conclusion is based upon the observation that when enzyme catalyzed ketonization is conducted in /sup 3/H/sub 2/O in the presence of excess malate dehydrogenase and NADH, only 50% of the /sup 3/H in the isolated (2S)-(3-/sup 3/H)malate is labilized to solvent upon treatment with fumarase. Either the tautomerase operates on the basis of a highly unusual stereomechanistic principle or tautomerase activity is not an evolved property of the enzyme protein. As a result of an attempt to clarify the physiological importance of oxaloacetate tautomerase activity, keto-oxaloacetate was demonstrated to be directly transported across the inner membrane of rat liver mitochrondria, on the basis of the results of kinetic and isotope-trapping experiments.

  15. Discovery of covalent inhibitors for MIF tautomerase via cocrystal structures with phantom hits from virtual screening

    SciTech Connect

    McLean, Larry R.; Zhang, Ying; Li, Hua; Li, Ziyu; Lukasczyk, Ulrike; Choi, Yong-Mi; Han, Zuoning; Prisco, Joy; Fordham, Jeremy; Tsay, Joseph T.; Reiling, Stephan; Vaz, Roy J.; Li, Yi

    2010-10-28

    Biochemical and X-ray crystallographic studies confirmed that hydroxyquinoline derivatives identified by virtual screening were actually covalent inhibitors of the MIF tautomerase. Adducts were formed by N-alkylation of the Pro-1 at the catalytic site with a loss of an amino group of the inhibitor.

  16. Isolation of a new tautomerase monitored by the conversion of D-dopachrome to 5,6-dihydroxyindole.

    PubMed

    Odh, G; Hindemith, A; Rosengren, A M; Rosengren, E; Rorsman, H

    1993-12-15

    Two membrane bound enzymes which tautomerize L-dopachrome and are specific for the L-isomer of dopachrome have been defined in melanin forming cells. Another enzyme that tautomerizes D-dopachrome with concomitant decarboxylation to give 5,6-dihydroxyindole (DHI) was found in the cytoplasm of human melanoma cells, human liver and in all of the organs studied in rat. The decolorization of D-dopachrome with the formation of DHI was used in monitoring the isolation of a tautomerase from liver of male rats and therefore the enzyme is provisionally called D-dopachrome tautomerase. The molecular weight of D-dopachrome tautomerase monomer was approximately 12 kD and its N-terminal amino acid sequence was P-F-V-E-L-E-T-N-L-P-A-. The Km for D-dopachrome was 1.5 mM and Vmax 0.5 mmol per min and mg protein.

  17. Virtual Screening and Optimization Yield Low-Nanomolar Inhibitors of the Tautomerase Activity of Plasmodium falciparum Macrophage Migration Inhibitory Factor

    PubMed Central

    Dahlgren, Markus K.; Garcia, Alvaro Baeza; Hare, Alissa A.; Tirado-Rives, Julian; Leng, Lin; Bucala, Richard; Jorgensen, William L.

    2012-01-01

    The Plasmodium falciparum ortholog of the human cytokine, macrophage migratory inhibitory factor (PfMIF), is produced by the parasite during malaria infection and modulates the host’s immune response. As for other MIF orthologs, PfMIF has tautomerase activity, whose inhibition may influence the cytokine activity. To identify small-molecule inhibitors of the tautomerase activity of PfMIF, virtual screening has been performed by docking 2.1 million compounds into the enzymatic site. Assaying of 17 compounds identified four as active. Substructure search for the most potent of these compounds, a 4-phenoxypyridine analogue, identified four additional compounds that were purchased and also shown to be active. Thirty-one additional analogues were then designed, synthesized, and assayed. Three were found to be potent PfMIF tautomerase inhibitors with Ki values of ca. 40 nM; they are also highly selective with Ki values of >100 μM for human MIF. PMID:23067344

  18. Design, Synthesis, and Protein Crystallography of Biaryltriazoles as Potent Tautomerase Inhibitors of Macrophage Migration Inhibitory Factor

    PubMed Central

    Dziedzic, Pawel; Cisneros, José A.; Robertson, Michael J.; Hare, Alissa A.; Danford, Nadia E.; Baxter, Richard H. G.; Jorgensen, William L.

    2015-01-01

    Optimization is reported for biaryltriazoles as inhibitors of the tautomerase activity of human macrophage migration inhibitory factor (MIF), a proinflammatory cytokine associated with numerous inflammatory diseases and cancer. A combined approach was taken featuring organic synthesis, enzymatic assaying, crystallography, and modeling including free-energy perturbation (FEP) calculations. X-ray crystal structures for 3a and 3b bound to MIF are reported and provided a basis for the modeling efforts. The accommodation of the inhibitors in the binding site is striking with multiple hydrogen bonds and aryl–aryl interactions. Additional modeling encouraged pursuit of 5-phenoxyquinolinyl analogues, which led to the very potent compound 3s. Activity was further enhanced by addition of a fluorine atom adjacent to the phenolic hydroxyl group as in 3w, 3z, 3aa, and 3bb to strengthen a key hydrogen bond. It is also shown that physical properties of the compounds can be modulated by variation of solvent-exposed substituents. Several of the compounds are likely the most potent known MIF tautomerase inhibitors; the most active ones are more than 1000-fold more active than the well-studied (R)-ISO-1 and more than 200-fold more active than the chromen-4-one Orita-13. PMID:25697265

  19. Initial description of primate-specific cystine-knot Prometheus genes and differential gene expansions of D-dopachrome tautomerase genes.

    PubMed

    Premzl, Marko

    2015-06-01

    Using eutherian comparative genomic analysis protocol and public genomic sequence data sets, the present work attempted to update and revise two gene data sets. The most comprehensive third party annotation gene data sets of eutherian adenohypophysis cystine-knot genes (128 complete coding sequences), and d-dopachrome tautomerases and macrophage migration inhibitory factor genes (30 complete coding sequences) were annotated. For example, the present study first described primate-specific cystine-knot Prometheus genes, as well as differential gene expansions of D-dopachrome tautomerase genes. Furthermore, new frameworks of future experiments of two eutherian gene data sets were proposed. PMID:25941635

  20. Evolution of enzymatic activity in the tautomerase superfamily: mechanistic and structural studies of the 1,3-dichloropropene catabolic enzymes.

    PubMed

    Poelarends, Gerrit J; Whitman, Christian P

    2004-10-01

    The use of the soil fumigant Telone II, which contains a mixture of cis- and trans-1,3-dichloropropene, to control plant-parasitic nematodes is a common agricultural practice for maximizing yields of various crops. The effectiveness of Telone II is limited by the rapid turnover of the dichloropropenes in the soil due to the presence of bacterial catabolic pathways, which may be of recent origin. The characterization of three enzymes in these pathways, trans-3-chloroacrylic acid dehalogenase (CaaD), cis-3-chloroacrylic acid dehalogenase (cis-CaaD), and malonate semialdehyde decarboxylase (MSAD), has uncovered intriguing catalytic mechanisms as well as a fascinating evolutionary lineage for these proteins. Sequence comparisons and mutagenesis studies revealed that all three enzymes belong to the tautomerase superfamily. Tautomerase superfamily members with known structures are characterized by a beta-alpha-beta structural fold. Moreover, they have a conserved N-terminal proline, which plays an important catalytic role. Mechanistic, NMR, and pH rate studies of the two dehalogenases, coupled with a crystal structure of CaaD inactivated by 3-bromopropiolate, indicate that they use a general acid/base mechanism to catalyze the conversion of their respective isomer of 3-chloroacrylate to malonate semialdehyde. The reaction is initiated by the conjugate addition of water to the C-2, C-3 double bond and is followed by the loss of HCl. MSAD processes malonate semialdehyde to acetaldehyde, and is the first identified decarboxylase in the tautomerase superfamily. The catalytic mechanism is not well defined but the N-terminal proline plays a prominent role and may function as a general acid catalyst, similar to its role in CaaD and cis-CaaD. These are the first structural and mechanistic details for tautomerase superfamily members that catalyze either a hydration or a decarboxylation reaction, rather than a tautomerization reaction, in which Pro-1 serves as a general acid

  1. Value of dopachrome tautomerase detection in the assessment of melanocytic tumors.

    PubMed

    Filimon, Anca; Zurac, Sabina A; Milac, Adina L; Sima, Livia E; Petrescu, Stefana M; Negroiu, Gabriela

    2014-06-01

    Dopachrome tautomerase (DCT) and tyrosinase (Tyr) are melanogenic enzymes and structurally related melanosomal proteins. The present study investigates DCT expression comparatively with Tyr, the most tested melanoma biomarker, aiming to evaluate DCT potential in the assessment of melanocytic tumors and gain insights into the molecular and pathological characterization of DCT-phenotype in tumor progression. DCT and Tyr are simultaneously analyzed in melanoma cell lines by semiquantitative RT-PCR, western blot, and N-glycan analysis, and in cell populations of melanocytic tumors by immunohistofluorescence using a novel anti-hDCT antibody against an extended sequence within DCT luminal domain. DCT, unlike Tyr, is fully processed along the secretory pathway in both pigmented and amelanotic melanoma cells. In 53 nevi and 116 primary malignant melanomas, 81% and 52%, respectively, are DCT+/Tyr+, showing that DCT is a stable antigen, retained by most tumors and partially expressed in Tyr-negative cell populations. The DCT/Tyr disjunction is a process correlated with melanocyte neoplastic transformation and malignant progression. A tumor architecture--DCT-phenotype-containing DCT+/Tyr- cell populations selected into the innermost dermis from double-positive cells is detected in 35% of DCT+/Tyr+ specimens. The DCT-phenotype is associated with enhanced neurotization in benign nevi and with ulceration in thin malignant melanomas. The intradermal DCT+/Tyr- clones in superficial melanomas acquire the expression and specific subcellular distribution of unfavorable prognostic markers. DCT assessment shows specific antigen patterns with potential significance in the outcome of melanocytic lesions, connecting DCT, a mediator of a melanoma stress-resistant pathway, and an antiapoptotic molecule to DCT- phenotypes that are possibly more stable and stress resistant.

  2. D-dopachrome tautomerase is over-expressed in pancreatic ductal adenocarcinoma and acts cooperatively with macrophage migration inhibitory factor to promote cancer growth.

    PubMed

    Guo, Dawei; Guo, Jinshuai; Yao, Junchao; Jiang, Kun; Hu, Jianhua; Wang, Bo; Liu, Haiyang; Lin, Lin; Sun, Wenyu; Jiang, Xiaofeng

    2016-11-01

    Previous studies have established the important role of MIF in the development of pancreatic ductal adenocarcinoma (PDAC) for both therapeutic and diagnostic perspectives, but little is known about the expression and function of D-dopachrome tautomerase (DDT), a functional homolog of MIF, in PDAC. In the present study, we demonstrated that DDT was over-expressed in PDAC tissues in a pattern correlated with MIF. In the pancreatic cancer cell lines, PANC-1, BXPC-3 and ASPC-1, both DDT and MIF were expressed and co-localized with each other in the endosomal compartments and plasma membrane. Knockdown of DDT and MIF in PANC-1 cells cooperatively inhibited ERK1/2 and AKT phosphorylation, increased p53 expression, and reduced cell proliferation, invasion and tumor formation. These effects were rescued by the re-expression of MIF or DDT, but not by the forced expression of the tautomerase-deficient mutants of DDT and MIF, P1G-DDT and P1G-MIF. Finally, we observed that 4-iodo-6-phenylpyrimidine (4-IPP), a covalent tautomerase inhibitor of both DDT and MIF, attenuated PANC-1 cell proliferation and colony formation in vitro and tumor growth in vivo. Thus, targeting the tautomerase sites of both MIF and DDT may offer more efficient therapeutic benefits to PDAC patients. PMID:27434219

  3. Mechanistic characterization of a bacterial malonate semialdehyde decarboxylase: identification of a new activity on the tautomerase superfamily.

    PubMed

    Poelarends, Gerrit J; Johnson, William H; Murzin, Alexey G; Whitman, Christian P

    2003-12-01

    Malonate semialdehyde decarboxylase (MSAD) has been identified as the protein encoded by the orf130 gene from Pseudomonas pavonaceae 170 on the basis of the genomic context of the gene as well as its ability to catalyze the decarboxylation of malonate semialdehyde to generate acetaldehyde. The enzyme is found in a degradative pathway for the xenobiotic nematocide trans-1,3-dichloropropene. MSAD has no sequence homology to previously characterized decarboxylases, but the presence of a conserved motif (Pro1-(X)8 -Gly-Arg11-X-Asp-X-Gln) in its N-terminal region suggested a relationship to the tautomerase superfamily. Sequence analysis identified Pro1 and Arg75 as potential active site residues that might be involved in the MSAD activity. The results of site-directed mutagenesis experiments confirmed the importance of these residues to activity and provided further evidence to implicate MSAD as a new member of the tautomerase superfamily. MSAD is the first identified decarboxylase in the superfamily and is possibly the first characterized member of a new and distinct family within this superfamily. Malonate semialdehyde is analogous to a beta-keto acid, and enzymes that catalyze the decarboxylation of these acids generally utilize metal ion catalysis, a Schiff base intermediate, or polarization of the carbonyl group by hydrogen bonding and/or electrostatic interactions. A mechanistic analysis shows that the rate of the reaction is not affected by the presence of a metal ion or EDTA while the incubation of MSAD with the substrate in the presence of sodium cyanoborohydride results in the irreversible inactivation of the enzyme. The site of modification is Pro1. These observations are consistent with the latter two mechanisms, but do not exclude the first mechanism. Based on the sequence analysis, the outcome of the mutagenesis and mechanistic experiments, and the roles determined for Pro1 and the conserved arginine in all tautomerase superfamily members characterized

  4. The action of glycosylases on dopachrome (2-carboxy-2,3-dihydroindole-5,6-quinone) tautomerase.

    PubMed Central

    Aroca, P; Martinez-Liarte, J H; Solano, F; García-Borrón, J C; Lozano, J A

    1992-01-01

    It is shown that dopachrome (2-carboxy-2,3-dihydroindole-5,6-quinone) tautomerase (DCT) is a glycoprotein containing N-linked oligosaccharides. The enzymic activity can be stimulated by partial deglycosylation with a number of glycosylases such as neuraminidase, beta-mannosidase and beta-galactosidase. However, the stability of the enzyme after the hydrolytic treatment becomes lower. Thus total deglycosylation with peptide N-glycosidase F directly provokes an inactivation of DCT. The native enzyme also shows a strong affinity for concanavalin A-Sepharose. This affinity decreases after treatment with neuraminidase and/or beta-mannosidase. The DCT associated with coated vesicles seems to be mostly glycosylated, since the action of glycosylases on the enzyme obtained from these vesicles produced a similar stimulation to that with the melanosomal enzyme. Treatment of cultured melanocytes with tunicamycin elicited a decrease in the amount of active DCT inside the cells. All data suggest that the structure of the carbohydrate moiety of DCT should be very similar to, if not identical with, the structure proposed for tyrosinase by Ohkura, Yamashita, Mishima & Kobata (1984) Arch. Biochem. Biophys. 235, 63-77. Images Fig. 1. PMID:1599391

  5. Characterization of a newly identified mycobacterial tautomerase with promiscuous dehalogenase and hydratase activities reveals a functional link to a recently diverged cis-3-chloroacrylic acid dehalogenase.

    PubMed

    Baas, Bert-Jan; Zandvoort, Ellen; Wasiel, Anna A; Quax, Wim J; Poelarends, Gerrit J

    2011-04-12

    The enzyme cis-3-chloroacrylic acid dehalogenase (cis-CaaD) is found in a bacterial pathway that degrades a synthetic nematocide, cis-1,3-dichloropropene, introduced in the 20th century. The previously determined crystal structure of cis-CaaD and its promiscuous phenylpyruvate tautomerase (PPT) activity link this dehalogenase to the tautomerase superfamily, a group of homologous proteins that are characterized by a catalytic amino-terminal proline and a β-α-β structural fold. The low-level PPT activity of cis-CaaD, which may be a vestige of the function of its progenitor, prompted us to search the databases for a homologue of cis-CaaD that was annotated as a putative tautomerase and test both its PPT and cis-CaaD activity. We identified a mycobacterial cis-CaaD homologue (designated MsCCH2) that shares key sequence and active site features with cis-CaaD. Kinetic and 1H NMR spectroscopic studies show that MsCCH2 functions as an efficient PPT and exhibits low-level promiscuous dehalogenase activity, processing both cis- and trans-3-chloroacrylic acid. To further probe the active site of MsCCH2, the enzyme was incubated with 2-oxo-3-pentynoate (2-OP). At pH 8.5, MsCCH2 is inactivated by 2-OP due to the covalent modification of Pro-1, suggesting that Pro-1 functions as a nucleophile at pH 8.5 and attacks 2-OP in a Michael-type reaction. At pH 6.5, however, MsCCH2 exhibits hydratase activity and converts 2-OP to acetopyruvate, which implies that Pro-1 is cationic at pH 6.5 and not functioning as a nucleophile. At pH 7.5, the hydratase and inactivation reactions occur simultaneously. From these results, it can be inferred that Pro-1 of MsCCH2 has a pKa value that lies in between that of a typical tautomerase (pKa of Pro-1∼6) and that of cis-CaaD (pKa of Pro-1∼9). The shared activities and structural features, coupled with the intermediate pKa of Pro-1, suggest that MsCCH2 could be characteristic of an evolutionary intermediate along the past route for the

  6. Macrophage migration inhibitory factor (MIF) family in arthropods: Cloning and expression analysis of two MIF and one D-dopachrome tautomerase (DDT) homologues in mud crabs, Scylla paramamosain.

    PubMed

    Huang, Wen-Shu; Duan, Li-Peng; Huang, Bei; Wang, Ke-Jian; Zhang, Cai-Liang; Jia, Qin-Qin; Nie, Pin; Wang, Tiehui

    2016-03-01

    The macrophage migration inhibitory factor (MIF) family, consisting of MIF and D-dopachrome tautomerase (DDT) in vertebrates, is evolutionarily ancient and has been found across Kingdoms including vertebrates, invertebrates, plants and bacteria. The mammalian MIF family are chemokines at the top of the inflammatory cascade in combating infections. They also possess enzymatic activities, e.g. DDT catalysis results in the production of 5,6-dihydroxyindole (DHI), a precursor of eumelanin. MIF-like genes are widely distributed, but DDT-like genes have only been described in vertebrates and a nematode. In this report, we cloned a DDT-like gene, for the first time in arthropods, and a second MIF in mud crab. The mud crab MIF family have a three exon/two intron structure as seen in vertebrates. The identification of a DDT-like gene in mud crab and other arthropods suggests that the separation of MIF and DDT preceded the divergence of protostomes and deuterostomes. The MIF family is differentially expressed in tissues of adults and during embryonic development and early life. The high level expression of the MIF family in immune tissues, such as intestine and hepatopancreas, suggests an important role in mud crab innate immunity. Mud crab DDT is highly expressed in early embryos, in megalops and crablets and this coincides with the requirement for melanisation in egg chorion tanning and cuticular hardening in arthropods, suggesting a potential novel role of DDT in melanogenesis via its tautomerase activity to produce DHI in mud crab. The clarification of the presence of both MIF and DDT in this report paves the way for further investigation of their functional roles in immunity and in melanogenesis in mud crab and other arthropods. PMID:26826424

  7. Ellagic Acid, a Dietary Polyphenol, Inhibits Tautomerase Activity of Human Macrophage Migration Inhibitory Factor and Its Pro-inflammatory Responses in Human Peripheral Blood Mononuclear Cells.

    PubMed

    Sarkar, Souvik; Siddiqui, Asim A; Mazumder, Somnath; De, Rudranil; Saha, Shubhra J; Banerjee, Chinmoy; Iqbal, Mohd S; Adhikari, Susanta; Alam, Athar; Roy, Siddhartha; Bandyopadhyay, Uday

    2015-05-27

    Ellagic acid (EA), a phenolic lactone, inhibited tautomerase activity of human macrophage migration inhibitory factor (MIF) noncompetitively (Ki = 1.97 ± 0.7 μM). The binding of EA to MIF was determined by following the quenching of tryptophan fluorescence. We synthesized several EA derivatives, and their structure-activity relationship studies indicated that the planar conjugated lactone moiety of EA was essential for MIF inhibition. MIF induces nuclear translocation of NF-κB and chemotaxis of peripheral blood mononuclear cells (PBMCs) to promote inflammation. We were interested in evaluating the effect of EA on nuclear translocation of NF-κB and chemotactic activity in human PBMCs in the presence of MIF. The results showed that EA inhibited MIF-induced NF-κB nuclear translocation in PBMCs, as evident from confocal immunofluorescence microscopic data. EA also inhibited MIF-mediated chemotaxis of PBMCs. Thus, we report MIF-inhibitory activity of EA and inhibition of MIF-mediated proinflammatory responses in PBMCs by EA.

  8. Direct interaction of Sox10 with the promoter of murine Dopachrome Tautomerase (Dct) and synergistic activation of Dct expression with Mitf.

    PubMed

    Jiao, Zhongxian; Mollaaghababa, Ramin; Pavan, William J; Antonellis, Anthony; Green, Eric D; Hornyak, Thomas J

    2004-08-01

    The murine dopachrome tautomerase (Dct) gene is expressed early in melanocyte development during embryogenesis, prior to other members of the tyrosinase gene family important for regulating pigmentation. We have used deletion mutants of the Dct promoter, transfections with developmentally relevant transcription factors, and gel shift assays to define transcriptional determinants of Dct expression. Deletion mutagenesis studies show that sequences within the proximal 459 nucleotides are critical for high level expression in melanocytic cells. This region of the promoter contains candidate binding sites for the transcription factors Sox10 and Mitf. Transfections into 293T and NIH3T3 cells show that Sox10 and Mitf independently activate Dct expression, and, when co-transfected, synergistically activate Dct expression. To support the notion that Sox10 acts directly upon the Dct promoter to activate gene expression, direct interaction of Sox10 was demonstrated using gel shifts of oligonucleotide probes derived from promoter sequences within the region required for Sox10-dependent induction. These results suggest that a combinatorial transcription factor interaction is important for expression of Dct in neural crest-derived melanocytes, and support a model for sequential gene activation in melanocyte development whereby Mitf, a Sox10-dependent transcription factor, is expressed initially before an early melanocyte differentiation gene, Dct, is expressed.

  9. Activation of MITF by Argan Oil Leads to the Inhibition of the Tyrosinase and Dopachrome Tautomerase Expressions in B16 Murine Melanoma Cells.

    PubMed

    Villareal, Myra O; Kume, Sayuri; Bourhim, Thouria; Bakhtaoui, Fatima Zahra; Kashiwagi, Kenichi; Han, Junkyu; Gadhi, Chemseddoha; Isoda, Hiroko

    2013-01-01

    Argan (Argania spinosa L.) oil has been used for centuries in Morocco as cosmetic oil to maintain a fair complexion and to cure skin pimples and chicken pox pustules scars. Although it is popular, the scientific basis for its effect on the skin has not yet been established. Here, the melanogenesis regulatory effect of argan oil was evaluated using B16 murine melanoma cells. Results of melanin assay using B16 cells treated with different concentrations of argan oil showed a dose-dependent decrease in melanin content. Western blot results showed that the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) proteins were decreased. In addition, there was an increase in the activation of MITF and ERK1/2. Real-time PCR results revealed a downregulation of Tyr, Trp1, Dct, and Mitf mRNA expressions. Argan oil treatment causes MITF phosphorylation which subsequently inhibited the transcription of melanogenic enzymes, TYR and DCT. The inhibitory effect of argan oil on melanin biosynthesis may be attributed to tocopherols as well as the synergistic effect of its components. The results of this study provide the scientific basis for the traditionally established benefits of argan oil and present its therapeutic potential against hyperpigmentation disorders. PMID:23935660

  10. Activation of MITF by Argan Oil Leads to the Inhibition of the Tyrosinase and Dopachrome Tautomerase Expressions in B16 Murine Melanoma Cells.

    PubMed

    Villareal, Myra O; Kume, Sayuri; Bourhim, Thouria; Bakhtaoui, Fatima Zahra; Kashiwagi, Kenichi; Han, Junkyu; Gadhi, Chemseddoha; Isoda, Hiroko

    2013-01-01

    Argan (Argania spinosa L.) oil has been used for centuries in Morocco as cosmetic oil to maintain a fair complexion and to cure skin pimples and chicken pox pustules scars. Although it is popular, the scientific basis for its effect on the skin has not yet been established. Here, the melanogenesis regulatory effect of argan oil was evaluated using B16 murine melanoma cells. Results of melanin assay using B16 cells treated with different concentrations of argan oil showed a dose-dependent decrease in melanin content. Western blot results showed that the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) proteins were decreased. In addition, there was an increase in the activation of MITF and ERK1/2. Real-time PCR results revealed a downregulation of Tyr, Trp1, Dct, and Mitf mRNA expressions. Argan oil treatment causes MITF phosphorylation which subsequently inhibited the transcription of melanogenic enzymes, TYR and DCT. The inhibitory effect of argan oil on melanin biosynthesis may be attributed to tocopherols as well as the synergistic effect of its components. The results of this study provide the scientific basis for the traditionally established benefits of argan oil and present its therapeutic potential against hyperpigmentation disorders.

  11. Activation of MITF by Argan Oil Leads to the Inhibition of the Tyrosinase and Dopachrome Tautomerase Expressions in B16 Murine Melanoma Cells

    PubMed Central

    Villareal, Myra O.; Kume, Sayuri; Bourhim, Thouria; Bakhtaoui, Fatima Zahra; Han, Junkyu; Gadhi, Chemseddoha; Isoda, Hiroko

    2013-01-01

    Argan (Argania spinosa L.) oil has been used for centuries in Morocco as cosmetic oil to maintain a fair complexion and to cure skin pimples and chicken pox pustules scars. Although it is popular, the scientific basis for its effect on the skin has not yet been established. Here, the melanogenesis regulatory effect of argan oil was evaluated using B16 murine melanoma cells. Results of melanin assay using B16 cells treated with different concentrations of argan oil showed a dose-dependent decrease in melanin content. Western blot results showed that the expression levels of tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (DCT) proteins were decreased. In addition, there was an increase in the activation of MITF and ERK1/2. Real-time PCR results revealed a downregulation of Tyr, Trp1, Dct, and Mitf mRNA expressions. Argan oil treatment causes MITF phosphorylation which subsequently inhibited the transcription of melanogenic enzymes, TYR and DCT. The inhibitory effect of argan oil on melanin biosynthesis may be attributed to tocopherols as well as the synergistic effect of its components. The results of this study provide the scientific basis for the traditionally established benefits of argan oil and present its therapeutic potential against hyperpigmentation disorders. PMID:23935660

  12. A new transgenic mouse line for tetracycline inducible transgene expression in mature melanocytes and the melanocyte stem cells using the Dopachrome tautomerase promoter.

    PubMed

    Woods, Susan L; Bishop, J Michael

    2011-04-01

    We have generated a novel transgenic mouse to direct inducible and reversible transgene expression in the melanocytic compartment. The Dopachrome tautomerase (Dct) control sequences we used are active early in the development of melanocytes and so this system was designed to enable the manipulation of transgene expression during development in utero and in the melanocyte stem cells as well as mature melanocytes. We observed inducible lacZ and GFP reporter transgene activity specifically in melanocytes and melanocyte stem cells in mouse skin. This mouse model will be a useful tool for the pigment cell community to investigate the contribution of candidate genes to normal melanocyte and/or melanoma development in vivo. Deregulated expression of the proto-oncogene MYC has been observed in melanoma, however whether MYC is involved in tumorigenesis in pigment cells has yet to be directly investigated in vivo. We have used our system to over-express MYC in the melanocytic compartment and show for the first time that increased MYC expression can indeed promote melanocytic tumor formation.

  13. Cross-talk between Dopachrome Tautomerase and Caveolin-1 Is Melanoma Cell Phenotype-specific and Potentially Involved in Tumor Progression.

    PubMed

    Popa, Ioana L; Milac, Adina L; Sima, Livia E; Alexandru, Petruta R; Pastrama, Florin; Munteanu, Cristian V A; Negroiu, Gabriela

    2016-06-10

    l-Dopachrome tautomerase (l-DCT), also called tyrosinase-related protein-2 (TRP-2), is a melanoma antigen overexpressed in most chemo-/radiotherapeutic stress-resistant tumor clones, and caveolin-1 (CAV1) is a main regulator of numerous signaling processes. A structural and functional relationship between DCT and CAV1 is first presented here in two human amelanotic melanoma cell lines, derived from vertical growth phase (MelJuSo) and metastatic (SKMel28) melanomas. DCT co-localizes at the plasma membrane with CAV1 and Cavin-1, another molecular marker for caveolae in both cell phenotypes. Our novel structural model proposed for the DCT-CAV1 complex, in addition to co-immunoprecipitation and mass spectrometry data, indicates a possible direct interaction between DCT and CAV1. The CAV1 control on DCT gene expression, DCT post-translational processing, and subcellular distribution is cell phenotype-dependent. DCT is a modulator of CAV1 stability and supramolecular assembly in both cell phenotypes. During autocrine stimulation, the expressions of DCT and CAV1 are oppositely regulated; DCT increases while CAV1 decreases. Sub-confluent MelJuSo clones DCT(high)/CAV1(low) are proliferating and acquire fibroblast-like morphology, forming massive, confluent clusters as demonstrated by immunofluorescent staining and TissueFAXS quantitative image cytometry analysis. CAV1 down-regulation directly contributes to the expansion of MelJuSo DCT(high) subtype. CAV1 involved in the perpetuation of cell phenotype-overexpressing anti-stress DCT molecule supports the concept that CAV1 functions as a tumor suppressor in early stages of melanoma. DCT is a regulator of the CAV1-associated structures and is possibly a new molecular player in CAV1-mediated processes in melanoma.

  14. A kinetic and stereochemical investigation of the role of lysine-32 in the phenylpyruvate tautomerase activity catalyzed by macrophage migration inhibitory factor.

    PubMed

    Johnson, W H; Czerwinski, R M; Stamps, S L; Whitman, C P

    1999-11-30

    Macrophage migration inhibitory factor (MIF), an immunoregulatory protein, exhibits a phenylpyruvate tautomerase (PPT) activity. The catalytic mechanism of this activity has recently attracted attention in an effort to determine whether there is a relationship between the PPT activity and the role of MIF in various immune and inflammatory processes. One of the active site residues is lysine-32, which is postulated to play two roles: it assists in substrate binding through an interaction with a carboxylate oxygen at C-1 of phenylpyruvate, and it may be partially responsible for lowering the pK(a) of the catalytic base, Pro-1. The role of Lys-32 has been investigated by changing it to an alanine and an arginine and determining the kinetic parameters, the stereoselectivity, the competitive inhibition, and the pH dependence of the resulting K32A- and K32R-catalyzed reactions. For the K32R mutant, these properties are mostly comparable to those determined for the wild type with two exceptions. There is a modest decrease in the stereoselectivity of the reaction and in the binding affinity of the competitive inhibitor, (E)-2-fluoro-p-hydroxycinnamate. These differences are likely due to the increased steric bulk of arginine. For the K32A mutant, there are 11- and 12-fold decreases in k(cat) and k(cat)/K(m), respectively, using phenylenolpyruvate. Part of the decrease in activity can be attributed to the observed increase of 1. 3 units in the pK(a) of Pro-1. It was also found that the loss of the electrostatic interaction did not significantly affect the stereoselectivity of the K32A-catalyzed reaction, although it did result in a decrease in the binding affinity of the competitive inhibitor. The combination of these results indicates that the primary function of Lys-32 in the PPT activity of MIF is to lower the pK(a) of Pro-1. The interactions responsible for the stereoselectivity of the PPT activity were further delineated by examining the wild type- and K32A

  15. Gene expression profiling of cultured human NF1 heterozygous (NF1+/-) melanocytes reveals downregulation of a transcriptional cis-regulatory network mediating activation of the melanocyte-specific dopachrome tautomerase (DCT) gene.

    PubMed

    Boucneau, Joachim; De Schepper, Sofie; Vuylsteke, Marnik; Van Hummelen, Paul; Naeyaert, Jean-Marie; Lambert, Jo

    2005-08-01

    One of the major primary features of the neurocutaneous genetic disorder Neurofibromatosis type 1 are the hyperpigmentary café-au-lait macules where disregulation of melanocyte biology is supposed to play a key etiopathogenic role. To gain better insight into the possible role of the tumor suppressor gene NF1, a transcriptomic microarray analysis was performed on human NF1 heterozygous (NF1+/-) melanocytes of a Neurofibromatosis type 1 patient and NF1 wild type (NF1+/+) melanocytes of a healthy control patient, both cultured from normally pigmented skin and hyperpigmented lesional café-au-lait skin. From the magnitude of gene effects, we found that gene expression was affected most strongly by genotype and less so by lesional type. A total of 137 genes had a significant twofold or more up- (72) or downregulated (65) expression in NF1+/- melanocytes compared with NF1+/+ melanocytes. Melanocytes cultured from hyperpigmented café-au-lait skin showed 37 upregulated genes whereas only 14 were downregulated compared with normal skin melanocytes. In addition, significant genotype xlesional type interactions were observed for 465 genes. Differentially expressed genes were mainly involved in regulating cell proliferation and cell adhesion. A high number of transcription factor genes, among which a specific subset important in melanocyte lineage development, were downregulated in the cis-regulatory network governing the activation of the melanocyte-specific dopachrome tautomerase (DCT) gene. Although the results presented have been obtained with a restricted number of patients (one NF1 patient and one control) and using cDNA microarrays that may limit their interpretation, the data nevertheless addresses for the first time the effect of a heterozygous NF1 gene on the expression of the human melanocyte transcriptome and has generated several interesting candidate genes helpful in elucidating the etiopathology of café-au-lait macules in NF1 patients.

  16. Associations of common copy number variants in glutathione S-transferase mu 1 and D-dopachrome tautomerase-like protein genes with risk of schizophrenia in a Japanese population.

    PubMed

    Nakamura, Toru; Ohnuma, Tohru; Hanzawa, Ryo; Takebayashi, Yuto; Takeda, Mayu; Nishimon, Shohei; Sannohe, Takahiro; Katsuta, Narimasa; Higashiyama, Ryoko; Shibata, Nobuto; Arai, Heii

    2015-10-01

    Oxidative-stress, genetic regions of interest (1p13 and 22q11), and common copy number variations (CNVs) may play roles in the pathophysiology of schizophrenia. In the present study, we confirmed associations between schizophrenia and the common CNVs in the glutathione (GSH)-related genes GSTT1, DDTL, and GSTM1 using quantitative real-time polymerase chain reaction analyses of 620 patients with schizophrenia and in 622 controls. No significant differences in GSTT1 copy number distributions were found between patient groups. However, frequencies of characterized CNVs and assumed gain alleles of DDTL and GSTM1 were significantly higher in patients with schizophrenia. In agreement with a previous report, the present data indicate that gains in the CNV alleles DDTL and GSTM1 are genetic risk factors in Japanese patients with schizophrenia, and suggest involvement of micro-inflammation and oxidative stress in the pathophysiology of schizophrenia.

  17. Phenol degradation by Sulfobacillus acidophilus TPY via the meta-pathway.

    PubMed

    Zhou, Wengen; Guo, Wenbin; Zhou, Hongbo; Chen, Xinhua

    2016-09-01

    Due to its toxicity and volatility, phenol must be cleared from the environment. Sulfobacillus acidophilus TPY, which was isolated from a hydrothermal vent in the Pacific Ocean as a moderately thermoacidophilic Gram-positive bacterium, was capable of aerobically degrading phenol. This bacterium could tolerate up to 1300mg/L phenol and degrade 100mg/L phenol in 40h completely at 45°C and pH 1.8 with a maximal degradation rate of 2.32mg/L/h at 38h. Genome-wide search revealed that one gene (TPY_3176) and 14 genes clustered together in two regions with locus tags of TPY_0628-0634 and TPY_0640-0646 was proposed to be involved in phenol degradation via the meta-pathway with both the 4-oxalocrotonate branch and the hydrolytic branch. Real-time PCR analysis of S. acidophilus TPY under phenol cultivation condition confirmed the transcription of proposed genes involved in the phenol degradation meta-pathway. Degradation of 3-methylphenol and 2-methylphenol confirmed that the hydrolytic branch was utilised by S. acidophilus TPY. Phylogenetic analysis revealed that S. acidophilus TPY was closely related to sulphate-reducing bacteria and some Gram-positive phenol-degrading bacteria. This was the first report demonstrating the ability of S. acidophilus to degrade phenol and characterising the putative genes involved in phenol metabolism in S. acidophilus TPY.

  18. Identification of a Hydratase and a Class II Aldolase Involved in Biodegradation of the Organic Solvent Tetralin

    PubMed Central

    Hernáez, M. J.; Floriano, B.; Ríos, J. J.; Santero, E.

    2002-01-01

    Two new genes whose products are involved in biodegradation of the organic solvent tetralin were identified. These genes, designated thnE and thnF, are located downstream of the previously identified thnD gene and code for a hydratase and an aldolase, respectively. A sequence comparison of enzymes similar to ThnE showed the significant similarity of hydratases involved in biodegradation pathways to 4-oxalocrotonate decarboxylases and established four separate groups of related enzymes. Consistent with the sequence information, characterization of the reaction catalyzed by ThnE showed that it hydrated a 10-carbon dicarboxylic acid. The only reaction product detected was the enol tautomer, 2,4-dihydroxydec-2-ene-1,10-dioic acid. The aldolase ThnF showed significant similarity to aldolases involved in different catabolic pathways whose substrates are dihydroxylated dicarboxylic acids and which yield pyruvate and a semialdehyde. The reaction products of the aldol cleavage reaction catalyzed by ThnF were identified as pyruvate and the seven-carbon acid pimelic semialdehyde. ThnF and similar aldolases showed conservation of the active site residues identified by the crystal structure of 2-dehydro-3-deoxy-galactarate aldolase, a class II aldolase with a novel reaction mechanism, suggesting that these similar enzymes are class II aldolases. In contrast, ThnF did not show similarity to 4-hydroxy-2-oxovalerate aldolases of other biodegradation pathways, which are significantly larger and apparently are class I aldolases. PMID:12324329

  19. 42 CFR 414.408 - Payment rules.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... initially furnished, and enteral nutrition equipment are calculated based on the bids submitted and accepted for these items. (2) Payment for used purchased durable medical equipment and enteral nutrition... nutrients. (3) Enteral nutrition supplies. (4) OTS orthotics. (h) Rented equipment—(1) Capped rental...

  20. 42 CFR 414.408 - Payment rules.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... initially furnished and enteral nutrition equipment are calculated based on the bids submitted and accepted... wheelchairs. (2) Payment for used purchased durable medical equipment and enteral nutrition equipment is made...) Enteral nutrition supplies. (4) OTS orthotics. (h) Rented equipment—(1) Capped rental DME. Subject to...

  1. 42 CFR 414.408 - Payment rules.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... initially furnished and enteral nutrition equipment are calculated based on the bids submitted and accepted... wheelchairs. (2) Payment for used purchased durable medical equipment and enteral nutrition equipment is made...) Enteral nutrition supplies. (4) OTS orthotics. (h) Rented equipment—(1) Capped rental DME. Subject to...

  2. 42 CFR 414.408 - Payment rules.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... initially furnished and enteral nutrition equipment are calculated based on the bids submitted and accepted... wheelchairs. (2) Payment for used purchased durable medical equipment and enteral nutrition equipment is made...) Enteral nutrition supplies. (4) OTS orthotics. (h) Rented equipment—(1) Capped rental DME. Subject to...

  3. 42 CFR 414.408 - Payment rules.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... initially furnished and enteral nutrition equipment are calculated based on the bids submitted and accepted... wheelchairs. (2) Payment for used purchased durable medical equipment and enteral nutrition equipment is made...) Enteral nutrition supplies. (4) OTS orthotics. (h) Rented equipment—(1) Capped rental DME. Subject to...

  4. 10 CFR Appendix Q to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Fluorescent Lamp Ballasts

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of Fluorescent Lamp Ballasts Q Appendix Q to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... fluorescent lamp ballast. 1.4DC control signal means a direct current (DC) signal that is supplied to the... standby mode. 1.5F4OT12 lamp means a nominal 40 watt tubular fluorescent lamp which is 48 inches in...

  5. 10 CFR Appendix Q to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Fluorescent Lamp Ballasts

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of Fluorescent Lamp Ballasts Q Appendix Q to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... fluorescent lamp ballast. 1.4DC control signal means a direct current (DC) signal that is supplied to the... standby mode. 1.5F4OT12 lamp means a nominal 40 watt tubular fluorescent lamp which is 48 inches in...

  6. 10 CFR Appendix Q to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Fluorescent Lamp Ballasts

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Fluorescent Lamp Ballasts Q Appendix Q to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... fluorescent lamp ballast. 1.4DC control signal means a direct current (DC) signal that is supplied to the... standby mode. 1.5F4OT12 lamp means a nominal 40 watt tubular fluorescent lamp which is 48 inches in...

  7. Biochemical and Immunological Characterization of Toxoplasma gondii Macrophage Migration Inhibitory Factor*

    PubMed Central

    Sommerville, Caroline; Richardson, Julia M.; Williams, Roderick A. M.; Mottram, Jeremy C.; Roberts, Craig W.; Alexander, James; Henriquez, Fiona L.

    2013-01-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory molecule in mammals that, unusually for a cytokine, exhibits tautomerase and oxidoreductase enzymatic activities. Homologues of this well conserved protein are found within diverse phyla including a number of parasitic organisms. Herein, we produced recombinant histidine-tagged Toxoplasma gondii MIF (TgMIF), a 12-kDa protein that lacks oxidoreductase activity but exhibits tautomerase activity with a specific activity of 19.3 μmol/min/mg that cannot be inhibited by the human MIF inhibitor ISO-1. The crystal structure of the TgMIF homotrimer has been determined to 1.82 Å, and although it has close structural homology with mammalian MIFs, it has critical differences in the tautomerase active site that account for the different inhibitor sensitivity. We also demonstrate that TgMIF can elicit IL-8 production from human peripheral blood mononuclear cells while also activating ERK MAPK pathways in murine bone marrow-derived macrophages. TgMIF may therefore play an immunomodulatory role during T. gondii infection in mammals. PMID:23443656

  8. Biochemical and immunological characterization of Toxoplasma gondii macrophage migration inhibitory factor.

    PubMed

    Sommerville, Caroline; Richardson, Julia M; Williams, Roderick A M; Mottram, Jeremy C; Roberts, Craig W; Alexander, James; Henriquez, Fiona L

    2013-05-01

    Macrophage migration inhibitory factor (MIF) is a proinflammatory molecule in mammals that, unusually for a cytokine, exhibits tautomerase and oxidoreductase enzymatic activities. Homologues of this well conserved protein are found within diverse phyla including a number of parasitic organisms. Herein, we produced recombinant histidine-tagged Toxoplasma gondii MIF (TgMIF), a 12-kDa protein that lacks oxidoreductase activity but exhibits tautomerase activity with a specific activity of 19.3 μmol/min/mg that cannot be inhibited by the human MIF inhibitor ISO-1. The crystal structure of the TgMIF homotrimer has been determined to 1.82 Å, and although it has close structural homology with mammalian MIFs, it has critical differences in the tautomerase active site that account for the different inhibitor sensitivity. We also demonstrate that TgMIF can elicit IL-8 production from human peripheral blood mononuclear cells while also activating ERK MAPK pathways in murine bone marrow-derived macrophages. TgMIF may therefore play an immunomodulatory role during T. gondii infection in mammals.

  9. Structural and Kinetic Analyses of Macrophage Migration Inhibitory Factor Active Site Interactions

    SciTech Connect

    Crichlow, G.; Lubetsky, J; Leng, L; Bucala, R; Lolis, E

    2009-01-01

    Macrophage migration inhibitory factor (MIF) is a secreted protein expressed in numerous cell types that counters the antiinflammatory effects of glucocorticoids and has been implicated in sepsis, cancer, and certain autoimmune diseases. Interestingly, the structure of MIF contains a catalytic site resembling the tautomerase/isomerase sites of microbial enzymes. While bona fide physiological substrates remain unknown, model substrates have been identified. Selected compounds that bind in the tautomerase active site also inhibit biological functions of MIF. It had previously been shown that the acetaminophen metabolite, N-acetyl-p-benzoquinone imine (NAPQI), covalently binds to the active site of MIF. In this study, kinetic data indicate that NAPQI inhibits MIF both covalently and noncovalently. The structure of MIF cocrystallized with NAPQI reveals that the NAPQI has undergone a chemical alteration forming an acetaminophen dimer (bi-APAP) and binds noncovalently to MIF at the mouth of the active site. We also find that the commonly used protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), forms a covalent complex with MIF and inhibits the tautomerase activity. Crystallographic analysis reveals the formation of a stable, novel covalent bond for PMSF between the catalytic nitrogen of the N-terminal proline and the sulfur of PMSF with complete, well-defined electron density in all three active sites of the MIF homotrimer. Conclusions are drawn from the structures of these two MIF-inhibitor complexes regarding the design of novel compounds that may provide more potent reversible and irreversible inhibition of MIF.

  10. Stereochemical Consequences of Vinylpyruvate Hydratase-Catalyzed Reactions.

    PubMed

    Johnson, William H; Stack, Tyler M M; Taylor, Stephanie M; Burks, Elizabeth A; Whitman, Christian P

    2016-07-26

    A stereochemical analysis has been carried out on two vinylpyruvate hydratases (VPH), which convert 2-hydroxy-2,4-pentadienoate to 2-keto-4S-hydroxypentanoate in meta-fission pathways. Bacterial strains with this pathway can use aromatic compounds as sole sources of energy and carbon. The analysis was carried out using the 5-methyl and 5-chloro derivatives of 2-hydroxy-2,4-pentadienoate with the enzymes from Pseudomonas putida mt-2 (Pp) and Leptothrix cholodnii SP-6 (Lc). In both organisms, VPH is in a complex with the preceding enzyme in the pathway, 4-oxalocrotonate decarboxylase (4-OD). In D2O, a deuteron is incorporated stereospecifically at the C-3 and C-5 positions of product by both Pp and Lc enzymes. Accordingly, the complexes generate (3S,5S)-3,5-[di-D]-2-keto-4S-hydroxyhexanoate and (3S,5R)-3,5-[di-D]-2-keto-4R-hydroxy-5-chloropentanoate (4R and 5R due to a priority numbering change). The substitution at C-5 (CH3 or Cl) or the source of the enzyme (Pp or Lc) does not change the stereochemical outcome. One mechanism that can account for the results is the ketonization of the 5-substituted dienol to the α,β-unsaturated ketone (placing a deuteron at C-5 in D2O), followed by the conjugate addition of water (placing a deuteron at C-3). The stereochemical outcome for VPH (from Pp and Lc) is the same as that reported for a related enzyme, 2-oxo-hept-4-ene-1,7-dioate hydratase, from Escherichia coli C. The combined observations suggest similar mechanisms for these three enzymes that could possibly be common to this group of enzymes. PMID:27362840

  11. Structural and Functional Characterization of a Secreted Hookworm Macrophage Migration Inhibitory Factor (MIF) that Interacts with the Human MIF Receptor CD74

    SciTech Connect

    Cho,Y.; Jones, B.; Vermeire, J.; Leng, L.; DiFedele, L.; Harrison, L.; Xiong, H.; Kwong, Y.; Chen, Y.; et al

    2007-01-01

    Hookworms, parasitic nematodes that infect nearly one billion people worldwide, are a major cause of anemia and malnutrition. We hypothesize that hookworms actively manipulate the host immune response through the production of specific molecules designed to facilitate infection by larval stages and adult worm survival within the intestine. A full-length cDNA encoding a secreted orthologue of the human cytokine, Macrophage Migration Inhibitory Factor (MIF) has been cloned from the hookworm Ancylostoma ceylanicum. Elucidation of the three-dimensional crystal structure of recombinant AceMIF (rAceMIF) revealed an overall structural homology with significant differences in the tautomerase sites of the human and hookworm proteins. The relative bioactivities of human and hookworm MIF proteins were compared using in vitro assays of tautomerase activity, macrophage migration, and binding to MIF receptor CD74. The activity of rAceMIF was not inhibited by the ligand ISO-1, which was previously determined to be an inhibitor of the catalytic site of human MIF. These data define unique immunological, structural, and functional characteristics of AceMIF, thereby establishing the potential for selectively inhibiting the hookworm cytokine as a means of reducing parasite survival and disease pathogenesis.

  12. Inhibitory effects of melanin monomers, dihydroxyindole-2-carboxylic acid (DHICA) and dihydroxyindole (DHI) on mammalian tyrosinase, with a special reference to the role of DHICA/DHI ratio in melanogenesis.

    PubMed

    Wilczek, A; Mishima, Y

    1995-04-01

    DOPAchrome tautomerase (DCT) is known to control the ratio of DHICA/DHI formed within the melanocyte, but physiologic significance of this activity is not yet fully elucidated. In this study the two melanin monomers are shown to inhibit with different efficacy the initial, tyrosinase-controlled, melanogenic reaction, namely conversion of L-tyrosine to DOPAchrome (2-carboxy-2,3-dihydroindole-5,6-quinone). This is demonstrated in the test tube assay system whereby formation of DOPAchrome is catalyzed by i) isolated premelanosomes (PMS), ii) tyrosinase-rich PMS glycoproteins, or iii) tyrosinase purified from fibroblasts transfected with human tyrosinase gene. Both DHI and DHICA suppress the conversion of L-tyrosine to DOPAchrome when added to reaction mixture but the inhibitory effect is far more strongly pronounced by DHI. DHI inhibits both activities of tyrosinase--tyrosine-hydroxylation and DOPA-oxidation--more strongly than DHICA. The different extent of inhibition is shown to reflect i) the ability of the two monomers to compete with tyrosinase substrates for the enzyme's active center and ii) the rate of interaction between melanin monomers and DOPAquinone. Consequently, we demonstrate that the tyrosinase-catalyzed DOPAchrome formation can be modulated by the ratio of DHICA/DHI among melanin monomers with the increased proportion of DHICA resulting in more efficient DOPAchrome formation. These results raise the possibility that DOPAchrome tautomerase plays a role in positive control of the tyrosinase-catalyzed early phase of melanogenesis.

  13. A Fluorescence Polarization Assay for Binding to Macrophage Migration Inhibitory Factor and Crystal Structures for Complexes of Two Potent Inhibitors

    PubMed Central

    2016-01-01

    Human macrophage migration inhibitory factor (MIF) is both a keto–enol tautomerase and a cytokine associated with numerous inflammatory diseases and cancer. Consistent with observed correlations between inhibition of the enzymatic and biological activities, discovery of MIF inhibitors has focused on monitoring the tautomerase activity using l-dopachrome methyl ester or 4-hydroxyphenyl pyruvic acid as substrates. The accuracy of these assays is compromised by several issues including substrate instability, spectral interference, and short linear periods for product formation. In this work, we report the syntheses of fluorescently labeled MIF inhibitors and their use in the first fluorescence polarization-based assay to measure the direct binding of inhibitors to the active site. The assay allows the accurate and efficient identification of competitive, noncompetitive, and covalent inhibitors of MIF in a manner that can be scaled for high-throughput screening. The results for 22 compounds show that the most potent MIF inhibitors bind with Kd values of ca. 50 nM; two are from our laboratory, and the other is a compound from the patent literature. X-ray crystal structures for two of the most potent compounds bound to MIF are also reported here. Striking combinations of protein–ligand hydrogen bonding, aryl–aryl, and cation−π interactions are responsible for the high affinities. A new chemical series was then designed using this knowledge to yield two more strong MIF inhibitors/binders. PMID:27299179

  14. The hydratase activity of malonate semialdehyde decarboxylase: mechanistic and evolutionary implications.

    PubMed

    Poelarends, Gerrit J; Serrano, Hector; Johnson, William H; Hoffman, David W; Whitman, Christian P

    2004-12-01

    Malonate semialdehyde decarboxylase (MSAD) is a member of the tautomerase superfamily, a group of structurally homologous proteins that have a characteristic beta-alpha-beta-fold and a catalytic amino-terminal proline. In addition to its physiological decarboxylase activity, the conversion of malonate semialdehyde to acetaldehyde and carbon dioxide, the enzyme has now been found to display a promiscuous hydratase activity, converting 2-oxo-3-pentynoate to acetopyruvate, with a kcat/Km value of 6.0 x 102 M-1 s-1. Pro-1 and Arg-75 are critical for both activities, and the pKa of Pro-1 was determined to be approximately 9.2 by a direct 15N NMR titration. These observations implicate a decarboxylation mechanism in which Pro-1 polarizes the carbonyl oxygen of substrate by hydrogen bonding and/or an electrostatic interaction. Arg-75 may position the carboxylate group into a favorable orientation for decarboxylation. Both the hydratase activity and the pKa value of Pro-1 are shared with trans-3-chloroacrylic acid dehalogenase, another tautomerase superfamily member that precedes MSAD in a bacterial degradation pathway for trans-1,3-dichloropropene. Hence, MSAD and CaaD could have evolved by divergent evolution from a common ancestral protein, retaining the necessary catalytic components for the conjugate addition of water.

  15. Structural and Functional Characterization of a Secreted Hookworm Macrophage Migration Inhibitory Factor (MIF) That Interacts with the Human MIF Receptor CD74*

    PubMed Central

    Cho, Yoonsang; Jones, Brian F.; Vermeire, Jon J.; Leng, Lin; DiFedele, Lisa; Harrison, Lisa M.; Xiong, Huabao; Kwong, Yuen-Kwan Amy; Chen, Yibang; Bucala, Richard; Lolis, Elias; Cappello, Michael

    2013-01-01

    Hookworms, parasitic nematodes that infect nearly one billion people worldwide, are a major cause of anemia and malnutrition. We hypothesize that hookworms actively manipulate the host immune response through the production of specific molecules designed to facilitate infection by larval stages and adult worm survival within the intestine. A full-length cDNA encoding a secreted orthologue of the human cytokine, Macro-phage Migration Inhibitory Factor (MIF) has been cloned from the hookworm Ancylostoma ceylanicum. Elucidation of the three-dimensional crystal structure of recombinant AceMIF (rAceMIF) revealed an overall structural homology with significant differences in the tautomerase sites of the human and hookworm proteins. The relative bioactivities of human and hookworm MIF proteins were compared using in vitro assays of tautomerase activity, macrophage migration, and binding to MIF receptor CD74. The activity of rAceMIF was not inhibited by the ligand ISO-1, which was previously determined to be an inhibitor of the catalytic site of human MIF. These data define unique immunological, structural, and functional characteristics of AceMIF, thereby establishing the potential for selectively inhibiting the hookworm cytokine as a means of reducing parasite survival and disease pathogenesis. PMID:17567581

  16. Macrophage migration inhibitory factor (MIF) deficiency enhances immune response to Nippostrongylus brasiliensis

    PubMed Central

    Cross, Janet V.; Conrad, Daniel H.

    2016-01-01

    Infections with helminth parasites are endemic in the developing world and are a target for intervention with new therapies. Macrophage migration inhibitory factor (MIF) is a cytokine with pleiotropic effects in inflammation and immune responses. We investigated the role of MIF in a naturally cleared model of helminth infection in rodents, Nippostrongylus brasiliensis. At day 7 post infection MIF-deficient (MIF−/−) mice had reduced parasite burden and mounted an enhanced type 2 immune response (Th2), including increased Gata3 expression and IL-13 production in the mesenteric lymph nodes (MLNs). Bone marrow reconstitution demonstrated that MIF produced from hematopoietic cells was crucial and Rag1−/− reconstitution provided direct evidence that MIF−/− CD4+ T cells were responsible for the augmented parasite clearance. MIF−/− CD4+ T cells produced less IL-6 post infection, which correlated with enhanced Th2 responses. MIF−/− CD4+ T cells exhibited lower NF-kB activation, potentially explaining the reduction in IL-6. Finally, we demonstrated enhanced clearance of the parasite and Th2 response in WT mice treated with the MIF tautomerase inhibitor, sulforaphane, a compound found naturally found in cruciferous vegetables, These results are the first to describe the importance of the tautomerase enzyme activity in MIF function in N. brasiliensis infection. PMID:27049059

  17. A Fluorescence Polarization Assay for Binding to Macrophage Migration Inhibitory Factor and Crystal Structures for Complexes of Two Potent Inhibitors.

    PubMed

    Cisneros, José A; Robertson, Michael J; Valhondo, Margarita; Jorgensen, William L

    2016-07-13

    Human macrophage migration inhibitory factor (MIF) is both a keto-enol tautomerase and a cytokine associated with numerous inflammatory diseases and cancer. Consistent with observed correlations between inhibition of the enzymatic and biological activities, discovery of MIF inhibitors has focused on monitoring the tautomerase activity using l-dopachrome methyl ester or 4-hydroxyphenyl pyruvic acid as substrates. The accuracy of these assays is compromised by several issues including substrate instability, spectral interference, and short linear periods for product formation. In this work, we report the syntheses of fluorescently labeled MIF inhibitors and their use in the first fluorescence polarization-based assay to measure the direct binding of inhibitors to the active site. The assay allows the accurate and efficient identification of competitive, noncompetitive, and covalent inhibitors of MIF in a manner that can be scaled for high-throughput screening. The results for 22 compounds show that the most potent MIF inhibitors bind with Kd values of ca. 50 nM; two are from our laboratory, and the other is a compound from the patent literature. X-ray crystal structures for two of the most potent compounds bound to MIF are also reported here. Striking combinations of protein-ligand hydrogen bonding, aryl-aryl, and cation-π interactions are responsible for the high affinities. A new chemical series was then designed using this knowledge to yield two more strong MIF inhibitors/binders. PMID:27299179

  18. Crystal structures of the wild-type, P1A mutant, and inactivated malonate semialdehyde decarboxylase: a structural basis for the decarboxylase and hydratase activities.

    PubMed

    Almrud, Jeffrey J; Poelarends, Gerrit J; Johnson, William H; Serrano, Hector; Hackert, Marvin L; Whitman, Christian P

    2005-11-15

    Malonate semialdehyde decarboxylase (MSAD) from Pseudomonas pavonaceae 170 is a tautomerase superfamily member that converts malonate semialdehyde to acetaldehyde by a mechanism utilizing Pro-1 and Arg-75. Pro-1 and Arg-75 have also been implicated in the hydratase activity of MSAD in which 2-oxo-3-pentynoate is processed to acetopyruvate. Crystal structures of MSAD (1.8 A resolution), the P1A mutant of MSAD (2.7 A resolution), and MSAD inactivated by 3-chloropropiolate (1.6 A resolution), a mechanism-based inhibitor activated by the hydratase activity of MSAD, have been determined. A comparison of the P1A-MSAD and MSAD structures reveals little geometric alteration, indicating that Pro-1 plays an important catalytic role but not a critical structural role. The structures of wild-type MSAD and MSAD covalently modified at Pro-1 by 3-oxopropanoate, the adduct resulting from the incubation of MSAD and 3-chloropropiolate, implicate Asp-37 as the residue that activates a water molecule for attack at C-3 of 3-chloropropiolate to initiate a Michael addition of water. The interactions of Arg-73 and Arg-75 with the C-1 carboxylate group of the adduct suggest these residues polarize the alpha,beta-unsaturated acid and facilitate the addition of water. On the basis of these structures, a mechanism for the inactivation of MSAD by 3-chloropropiolate can be formulated along with mechanisms for the decarboxylase and hydratase activities. The results also provide additional evidence supporting the hypothesis that MSAD and trans-3-chloroacrylic acid dehalogenase, a tautomerase superfamily member preceding MSAD in the trans-1,3-dichloropropene degradation pathway, diverged from a common ancestor but retained the key elements for the conjugate addition of water.

  19. Fabrication of Mn_12-acetate Molecular Magnet Thin Films by the Dip-and-Dry Method

    NASA Astrophysics Data System (ADS)

    Seo, D. M.; Viswanathan, M.; Teizer, W.; Zhao, H.; Dunbar, K. R.

    2004-03-01

    We have succeeded in fabricating Mn_12-acetate ([Mn_12O_12(CH_3COO)_16(H_2O)_4]ot2CH_3COOHot4H_2O) thin films on a Si/SiO_2-substrate by the Dip-and-Dry method, an unconventional thin film deposition method, which uses a drying effect of a Mn_12-acetate solution. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterizations show that homogeneous, thin films with smoothness at the molecular level are deposited. The solution concentration and the number of DAD cycles were varied to change the film thickness and the surface roughness. The films were stable against exposure to ambient conditions for several months, as verified by AFM and XPS. This work was supported by the National Science Foundation, the Texas Higher Education Coordinating Board and Texas A University.

  20. [Experimental research on the effect of the components in household chemical preparations on the body].

    PubMed

    Sidorin, G I; Frolova, A D; Lukovnikova, L V; D'iakova, L I; Skhodkina, N I; Shaposhnikova, E S

    1998-01-01

    Experiments on animals were conducted to study influence of following household chemical components included into synthetic washing and cleaning mixtures: anion-active surface active substances, protease Blap 200 G, Savinase 4.OT, Purafect 200 G, alkaline proteinase made in Russia, an aromatic "Magic blue". Surface active substances included into synthetic washing and cleaning mixtures were proved to increase biologic activity of chemical components of the mixtures. Powdered anion-active surface active substances, unlike liquid and paste-like ones, require hygienic regulation in air. All new components of synthetic washing and cleaning mixtures should undergo toxicologic and hygienic examination, and require studies on hygienic regulation, if found in concentrations hazardous for health.

  1. Comparative analysis of macrophage migration inhibitory factors (MIFs) from the parasitic nematode Onchocerca volvulus and the free-living nematode Caenorhabditis elegans.

    PubMed

    Ajonina-Ekoti, Irene; Kurosinski, Marc Andre; Younis, Abuelhassan Elshazly; Ndjonka, Dieudonne; Tanyi, Manchang Kingsley; Achukwi, Mbunkah; Eisenbarth, Albert; Ajonina, Caroline; Lüersen, Kai; Breloer, Minka; Brattig, Norbert W; Liebau, Eva

    2013-09-01

    The macrophage migration inhibitory factors (MIFs) from the filarial parasite Onchocerca volvulus (OvMIF) were compared to the MIFs from the free-living nematode Caenorhabditis elegans (CeMIF) with respect to molecular, biochemical and immunological properties. Except for CeMIF-4, all other MIFs demonstrated tautomerase activity. Surprisingly, OvMIF-1 displayed oxidoreductase activity. The strongest immunostaining for OvMIF-1 was observed in the outer cellular covering of the adult worm body, the syncytial hypodermis; moderate immunostaining was observed in the uterine wall. The generation of a strong humoral immune response towards OvMIF-1 and reduced reactivity to OvMIF-2 was indicated by high IgG levels in patients infected with O. volvulus and cows infected with the closely related Onchocerca ochengi, both MIFs revealing identical amino acid sequences. Using Litomosoides sigmodontis-infected mice, a laboratory model for filarial infection, MIFs derived from the tissue-dwelling O. volvulus, the rodent gut-dwelling Strongyloides ratti and from free-living C. elegans were recognized, suggesting that L. sigmodontis MIF-specific IgM and IgG1 were produced during L. sigmodontis infection of mice and cross-reacted with all MIF proteins tested. Thus, MIF apparently functions as a target of B cell response during nematode infection, but in the natural Onchocerca-specific human and bovine infection, the induced antibodies can discriminate between MIFs derived from parasitic or free-living nematodes. PMID:23820606

  2. Role of epidermal γδ T-cell-derived interleukin 13 in the skin-whitening effect of Ginsenoside F1.

    PubMed

    Han, Jiyeon; Lee, Eunkyung; Kim, EunJoo; Yeom, Myung Hun; Kwon, Ohsang; Yoon, Tae Hong; Lee, Tae Ryong; Kim, Kwangmi

    2014-11-01

    Ginsenoside F1 (GF1) is a metabolite of ginsenoside Rg1. Although GF1 has several benefits for skin physiology, the effect of GF1 on skin pigmentation has not been reported. We found that a cream containing 0.1% GF1 showed a significant whitening effect on artificially tanned human skin after 8 weeks of application. However, GF1 did not inhibit mRNA expression of tyrosinase or dopachrome tautomerase (DCT) in normal human epidermal melanocytes (NHEMs) or cocultured NHEMs/normal human epidermal keratinocytes. Interestingly, GF1 enhanced production of interleukin 13 (IL-13) from human epidermal γδ T cells. IL-13 significantly reduced the mRNA expression and protein amount of both tyrosinase and DCT and reduced melanin synthesis activities in NHEMs, resulting in visible brightening of NHEM pellet. These results suggest that enhancement of IL-13 production by GF1 from epidermal γδ T cells might play a role in the skin-whitening effect of GF1 via the suppression of tyrosinase and DCT.

  3. Thrombosis preventive potential of chicory coffee consumption: a clinical study.

    PubMed

    Schumacher, Edit; Vigh, Eva; Molnár, Valéria; Kenyeres, Péter; Fehér, Gergely; Késmárky, Gábor; Tóth, Kálmán; Garai, János

    2011-05-01

    The protective effects of plant polyphenol intake on cardiovascular morbidity and mortality are widely acknowledged. Caffeine-free chicory coffee is a rich source of plant phenolics, including caffeic acid, which inhibits in vitro platelet aggregation, and also phenylpyruvate tautomerase enzymatic activity of the proinflammatory cytokine, macrophage migration inhibitory factor (MIF). To assess whether chicory coffee consumption might confer cardiovascular benefits a clinical intervention study was performed with 27 healthy volunteers, who consumed 300 mL chicory coffee every day for 1 week. The dietary intervention produced variable effects on platelet aggregation, depending on the inducer used for the aggregation test. Whole blood and plasma viscosity were both significantly decreased, along with serum MIF levels, after 1 week of chicory coffee consumption. Moreover, significant improvements were seen in red blood cell deformability. No changes in hematocrit, fibrinogen level or red blood cell counts were detected. The full spectrum of these effects is unlikely to be attributable to a single compound present in chicory coffee, nevertheless, the phenolics, including caffeic acid, are expected to play a substantial role. In conclusion, our study offers an encouraging starting-point to delineate the antithrombotic and antiinflammatory effects of phenolic compounds found in chicory coffee.

  4. Drug repositioning and pharmacophore identification in the discovery of hookworm MIF inhibitors.

    PubMed

    Cho, Yoonsang; Vermeire, Jon J; Merkel, Jane S; Leng, Lin; Du, Xin; Bucala, Richard; Cappello, Michael; Lolis, Elias

    2011-09-23

    The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new pharmacophores. Hookworms are blood-feeding, intestinal nematode parasites that infect up to 600 million people worldwide. Vaccination with recombinant Ancylostoma ceylanicum macrophage migration inhibitory factor (rAceMIF) provided partial protection from disease, thus establishing a "proof-of-concept" for targeting AceMIF to prevent or treat infection. A high-throughput screen (HTS) against rAceMIF identified six AceMIF-specific inhibitors. A nonsteroidal anti-inflammatory drug (NSAID), sodium meclofenamate, could be tested in an animal model to assess the therapeutic efficacy in treating hookworm disease. Furosemide, an FDA-approved diuretic, exhibited submicromolar inhibition of rAceMIF tautomerase activity. Structure-activity relationships of a pharmacophore based on furosemide included one analog that binds similarly to the active site, yet does not inhibit the Na-K-Cl symporter (NKCC1) responsible for diuretic activity.

  5. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    SciTech Connect

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  6. I-SceI-mediated double-strand break does not increase the frequency of homologous recombination at the Dct locus in mouse embryonic stem cells.

    PubMed

    Fenina, Myriam; Simon-Chazottes, Dominique; Vandormael-Pournin, Sandrine; Soueid, Jihane; Langa, Francina; Cohen-Tannoudji, Michel; Bernard, Bruno A; Panthier, Jean-Jacques

    2012-01-01

    Targeted induction of double-strand breaks (DSBs) at natural endogenous loci was shown to increase the rate of gene replacement by homologous recombination in mouse embryonic stem cells. The gene encoding dopachrome tautomerase (Dct) is specifically expressed in melanocytes and their precursors. To construct a genetic tool allowing the replacement of Dct gene by any gene of interest, we generated an embryonic stem cell line carrying the recognition site for the yeast I-SceI meganuclease embedded in the Dct genomic segment. The embryonic stem cell line was electroporated with an I-SceI expression plasmid, and a template for the DSB-repair process that carried sequence homologies to the Dct target. The I-SceI meganuclease was indeed able to introduce a DSB at the Dct locus in live embryonic stem cells. However, the level of gene targeting was not improved by the DSB induction, indicating a limited capacity of I-SceI to mediate homologous recombination at the Dct locus. These data suggest that homologous recombination by meganuclease-induced DSB may be locus dependent in mammalian cells.

  7. Drug Repositioning and Pharmacophore Identification in the Discovery of Hookworm MIF Inhibitors

    SciTech Connect

    Y Cho; J Vermeire; J Merkel; L Leng; X Du; R Bucala; M Cappello; E Lolis

    2011-12-31

    The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new pharmacophores. Hookworms are blood-feeding, intestinal nematode parasites that infect up to 600 million people worldwide. Vaccination with recombinant Ancylostoma ceylanicum macrophage migration inhibitory factor (rAceMIF) provided partial protection from disease, thus establishing a 'proof-of-concept' for targeting AceMIF to prevent or treat infection. A high-throughput screen (HTS) against rAceMIF identified six AceMIF-specific inhibitors. A nonsteroidal anti-inflammatory drug (NSAID), sodium meclofenamate, could be tested in an animal model to assess the therapeutic efficacy in treating hookworm disease. Furosemide, an FDA-approved diuretic, exhibited submicromolar inhibition of rAceMIF tautomerase activity. Structure-activity relationships of a pharmacophore based on furosemide included one analog that binds similarly to the active site, yet does not inhibit the Na-K-Cl symporter (NKCC1) responsible for diuretic activity.

  8. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence.

    PubMed

    Ananth, Abhirami A; Tai, Lee-Hwa; Lansdell, Casey; Alkayyal, Almohanad A; Baxter, Katherine E; Angka, Leonard; Zhang, Jiqing; Tanese de Souza, Christiano; Stephenson, Kyle B; Parato, Kelley; Bramson, Jonathan L; Bell, John C; Lichty, Brian D; Auer, Rebecca C

    2016-01-01

    Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA)-dopachrome tautomerase (AdDCT) and resection resulting in major surgical stress (abdominal nephrectomy), we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B) in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC) population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients. PMID:27196057

  9. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid.

    PubMed

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Choi, Yun-Hyeok; Hong, Seong Su; Suh, Hwa-Jin; Park, Woncheol; Boo, Yong Chool

    2016-07-01

    Resveratrol is known to inhibit cellular melanin synthesis by multiple mechanisms. Glycolic acid (GA) is used in skin care products for its excellent skin penetration. The purpose of this study was to examine the anti-melanogenic effects of resveratryl triglycolate (RTG), a novel hybrid compound of resveratrol and GA, in comparison with resveratrol, GA, resveratryl triacetate (RTA) and arbutin. Resveratrol, RTG, and RTA inhibited the catalytic activity human tyrosinase (TYR) more potently than arbutin or GA did. Their cytotoxic and anti-melanogenic effects were examined using murine melanoma B16/F10 cells and human epidermal melanocytes (HEMs). The cytotoxicity of RTG was similar to that of resveratrol and RTA. RTG at 3-10 μM decreased melanin levels and cellular TYR activities in α-melanocyte-stimulating hormone-stimulated B16/F10 cells, and L-tyrosine-stimulated HEMs. RTG also suppressed mRNA and protein expression of TYR, tyrosinase-related protein 1, L-3,4-dihydroxyphenylalanine chrome tautomerase, and microphthalmia-associated transcription factor (MITF) in HEMs stimulated with L-tyrosine. This study suggests that, like resveratrol and RTA, RTG can attenuate cellular melanin synthesis effectively through the suppression of MITF-dependent expression of melanogenic enzymes and the inhibition of catalytic activity of TYR enzyme. RTG therefore has potential for use as a cosmeceutical ingredient for skin whitening.

  10. Induction of ambicoloration by exogenous cortisol during metamorphosis of spotted halibut Verasper variegatus.

    PubMed

    Yamada, Toshiyuki; Donai, Hayato; Okauchi, Masanori; Tagawa, Masatomo; Araki, Kazuo

    2011-12-01

    Cortisol, the main glucocorticoid in fish, increases during flatfish metamorphosis and peaks before the surge of thyroxine. A large body of evidence indicates the essential role of thyroxine in flatfish metamorphosis, whereas information on cortisol is limited. We administered cortisol to spotted halibut Verasper variegatus larvae in order to examine the effect on pigmentation during metamorphosis. Administration of 10 μg cortisol per mL of water from before the onset of metamorphosis (stage E) to metamorphic climax (stage G) induced the development of adult type pigment cells on the blind side of the metamorphosed juveniles and increased the occurrence of ambicolored juveniles. When 10 μg/mL cortisol was administered during stage D, stages E-F, stage G or stage H, only the administration during stages E-F induced the development of adult type pigment cells on the blind side. In addition, the expression of the gene dopachrome tautomerase (dct), a marker of melanoblasts, was enhanced at Stage E by cortisol administration. These results clearly indicated, for the first time, the enhancement of pigmentation by exogenous high-dose cortisol. Since endogenous cortisol is secreted in response to various kinds of stress in rearing conditions, these results indicate a possible influence of stress conditions in the occurrence of ambicoloration in flatfish.

  11. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle.

    PubMed

    Savkovic, Vuk; Flämig, Franziska; Schneider, Marie; Sülflow, Katharina; Loth, Tina; Lohrenz, Andrea; Hacker, Michael Christian; Schulz-Siegmund, Michaela; Simon, Jan-Christoph

    2016-01-01

    Melanocytes differentiated from the stem cells of human hair follicle outer root sheath (ORS) have the potential for developing non-invasive treatments for skin disorders out of a minimal sample: of hair root. With a robust procedure for melanocyte cultivation from the ORS of human hair follicle at hand, this study focused on the identification of a suitable biocompatible, biodegradable carrier as the next step toward their clinical implementation. Polycaprolactone (PCL) is a known biocompatible material used for a number of medical devices. In this study, we have populated electrospun PCL fiber meshes with normal human epidermal melanocytes (NHEM) as well as with hair-follicle-derived human melanocytes from the outer root sheath (HUMORS) and tested their functionality in vitro. PCL fiber meshes evidently provided a niche for melanocytes and supported their melanotic properties. The cells were tested for gene expression of PAX3, PMEL, TYR and MITF, as well as for proliferation, expression of melanocyte marker proteins tyrosinase and glycoprotein 100 (gp100), L-DOPA-tautomerase enzymatic activity and melanin content. Reduced mitochondrial activity and PAX-3 gene expression indicated that the three-dimensional PCL scaffold supported differentiation rather than proliferation of melanocytes. The monitored melanotic features of both the NHEM and HUMORS cultivated on PCL scaffolds significantly exceeded those of two-dimensional adherent cultures. PMID:26126647

  12. Novel inhibitors of macrophage migration inhibitory factor prevent cytokine-induced beta cell death.

    PubMed

    Vujicic, Milica; Nikolic, Ivana; Krajnovic, Tamara; Cheng, Kai-Fan; VanPatten, Sonya; He, Mingzhu; Stosic-Grujicic, Stanislava; Stojanovic, Ivana; Al-Abed, Yousef; Saksida, Tamara

    2014-10-01

    Macrophage migration inhibitory factor is a multifunctional cytokine involved in the regulation of immune processes and also in apoptosis induction. Elevated MIF expression is detrimental for insulin-producing beta cells and MIF inhibition protected beta cells from several cytotoxic insults such as inflammatory cytokines, high fatty acids or high glucose concentrations. Therefore, the aim of this study was to investigate two newly synthesized small molecule MIF inhibitors (K664-1 and K647-1) and to compare them with previously established effects of the prototypical MIF inhibitor, ISO-1. Our results indicate that K664-1 and K647-1 are 160- and 40-fold more effective in inhibition of MIF׳s tautomerase activity than ISO-1. Also, new inhibitors confer beta cell protection from cytokine-triggered apoptosis at significantly lower concentrations than ISO-1. Although all three MIF inhibitors inhibit caspase 3 activity, K664-1 and K647-1 suppress pro-apoptotic BAX protein expression and up-regulate anti-apoptotic Bcl-2 mRNA. Finally, all three MIF inhibitors operate through blockade of nitric oxide production stimulated by cytokines. In conclusion, two novel MIF inhibitors are more potent than ISO-1 and operate through inhibition of the mitochondria-related apoptotic pathway. We propose that these compounds represent a unique class of anti-MIF antagonists that should be further tested for therapeutic use.

  13. Role of cysteine-58 and cysteine-95 residues in the thiol di-sulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti.

    PubMed

    Chauhan, Nikhil; Hoti, S L

    2016-01-01

    Macrophage Migration Inhibitory Factor (MIF) is the first human cytokine reported and was thought to have a central role in the regulation of inflammatory responses. Homologs of this molecule have been reported in bacteria, invertebrates and plants. Apart from cytokine activity, it also has two catalytic activities viz., tautomerase and di-sulfide oxidoreductase, which appear to be involved in immunological functions. The CXXC catalytic site is responsible for di-sulfide oxidoreductase activity of MIF. We have recently reported thiol-disulfide oxidoreductase activity of Macrophage Migration Inhibitory Factor-2 of Wuchereria bancrofti (Wba-MIF-2), although it lacks the CXXC motif. We hypothesized that three conserved cysteine residues might be involved in the formation of di-sulfide oxidoreductase catalytic site. Homology modeling of Wba-MIF-2 showed that among the three cysteine residues, Cys58 and Cys95 residues came in close proximity (3.23Å) in the tertiary structure with pKa value 9, indicating that these residues might play a role in the di-sulfide oxidoreductase catalytic activity. We carried out site directed mutagenesis of these residues (Cys58Ser & Cys95Ser) and expressed mutant proteins in Escherichia coli. The mutant proteins did not show any oxidoreductase activity in the insulin reduction assay, thus indicating that these two cysteine residues are vital for the catalytic activity of Wba-MIF-2. PMID:26432350

  14. Anti-melanogenic effects of resveratryl triglycolate, a novel hybrid compound derived by esterification of resveratrol with glycolic acid.

    PubMed

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Choi, Yun-Hyeok; Hong, Seong Su; Suh, Hwa-Jin; Park, Woncheol; Boo, Yong Chool

    2016-07-01

    Resveratrol is known to inhibit cellular melanin synthesis by multiple mechanisms. Glycolic acid (GA) is used in skin care products for its excellent skin penetration. The purpose of this study was to examine the anti-melanogenic effects of resveratryl triglycolate (RTG), a novel hybrid compound of resveratrol and GA, in comparison with resveratrol, GA, resveratryl triacetate (RTA) and arbutin. Resveratrol, RTG, and RTA inhibited the catalytic activity human tyrosinase (TYR) more potently than arbutin or GA did. Their cytotoxic and anti-melanogenic effects were examined using murine melanoma B16/F10 cells and human epidermal melanocytes (HEMs). The cytotoxicity of RTG was similar to that of resveratrol and RTA. RTG at 3-10 μM decreased melanin levels and cellular TYR activities in α-melanocyte-stimulating hormone-stimulated B16/F10 cells, and L-tyrosine-stimulated HEMs. RTG also suppressed mRNA and protein expression of TYR, tyrosinase-related protein 1, L-3,4-dihydroxyphenylalanine chrome tautomerase, and microphthalmia-associated transcription factor (MITF) in HEMs stimulated with L-tyrosine. This study suggests that, like resveratrol and RTA, RTG can attenuate cellular melanin synthesis effectively through the suppression of MITF-dependent expression of melanogenic enzymes and the inhibition of catalytic activity of TYR enzyme. RTG therefore has potential for use as a cosmeceutical ingredient for skin whitening. PMID:27059716

  15. Restoration of contact inhibition in human glioblastoma cell lines after MIF knockdown

    PubMed Central

    2009-01-01

    Background Studies of the role of the cytokine macrophage-migration-inhibitory-factor (MIF) in malignant tumors have revealed its stimulating influence on cell-cycle progression, angiogenesis and anti-apoptosis. Results Here we show that in vitro targeting MIF in cultures of human malignant glioblastoma cells by either antisense plasmid introduction or anti-MIF antibody treatment reduced the growth rates of tumor cells. Of note is the marked decrease of proliferation under confluent and over-confluent conditions, implying a role of MIF in overcoming contact inhibition. Several proteins involved in contact inhibition including p27, p21, p53 and CEBPalpha are upregulated in the MIF antisense clones indicating a restoration of contact inhibition in the tumor cells. Correspondingly, we observed a marked increase in MIF mRNA and protein content under higher cell densities in LN18 cells. Furthermore, we showed the relevance of the enzymatic active site of MIF for the proliferation of glioblastoma cells by using the MIF-tautomerase inhibitor ISO-1. Conclusion Our study adds another puzzle stone to the role of MIF in tumor growth and progression by showing the importance of MIF for overcoming contact inhibition. PMID:20038293

  16. Pax3 functions at a nodal point in melanocyte stem cell differentiation.

    PubMed

    Lang, Deborah; Lu, Min Min; Huang, Li; Engleka, Kurt A; Zhang, Maozhen; Chu, Emily Y; Lipner, Shari; Skoultchi, Arthur; Millar, Sarah E; Epstein, Jonathan A

    2005-02-24

    Most stem cells are not totipotent. Instead, they are partially committed but remain undifferentiated. Upon appropriate stimulation they are capable of regenerating mature cell types. Little is known about the genetic programmes that maintain the undifferentiated phenotype of lineage-restricted stem cells. Here we describe the molecular details of a nodal point in adult melanocyte stem cell differentiation in which Pax3 simultaneously functions to initiate a melanogenic cascade while acting downstream to prevent terminal differentiation. Pax3 activates expression of Mitf, a transcription factor critical for melanogenesis, while at the same time it competes with Mitf for occupancy of an enhancer required for expression of dopachrome tautomerase, an enzyme that functions in melanin synthesis. Pax3-expressing melanoblasts are thus committed but undifferentiated until Pax3-mediated repression is relieved by activated beta-catenin. Thus, a stem cell transcription factor can both determine cell fate and simultaneously maintain an undifferentiated state, leaving a cell poised to differentiate in response to external stimuli. PMID:15729346

  17. Drug Repositioning and Pharmacophore Identification in the Discovery of Hookworm MIF Inhibitors

    PubMed Central

    Cho, Yoonsang; Vermeire, Jon J.; Merkel, Jane S.; Leng, Lin; Du, Xin; Bucala, Richard; Cappello, Michael; Lolis, Elias

    2011-01-01

    SUMMARY The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new pharmacophores. Hookworms are blood-feeding, intestinal nematode parasites that infect up to 600 million people worldwide. Vaccination with recombinant Ancylostoma ceylanicum macrophage migration inhibitory factor (rAceMIF) provided partial protection from disease, thus establishing a “proof-of-concept” for targeting AceMIF to prevent or treat infection. A high-throughput screen (HTS) against rAceMIF identified six AceMIF-specific inhibitors. A nonsteroidal anti-inflammatory drug (NSAID), sodium meclofenamate, could be tested in an animal model to assess the therapeutic efficacy in treating hookworm disease. Furosemide, an FDA-approved diuretic, exhibited submicromolar inhibition of rAceMIF tautomerase activity. Structure-activity relationships of a pharmacophore based on furosemide included one analog that binds similarly to the active site, yet does not inhibit the Na-K-Cl symporter (NKCC1) responsible for diuretic activity. PMID:21944748

  18. Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast

    PubMed Central

    Cho, Yoonsang; Crichlow, Gregg V.; Vermeire, Jon J.; Leng, Lin; Du, Xin; Hodsdon, Michael E.; Bucala, Richard; Cappello, Michael; Gross, Matt; Gaeta, Federico; Johnson, Kirk; Lolis, Elias J.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells. PMID:20534506

  19. CD74 in Kidney Disease

    PubMed Central

    Valiño-Rivas, Lara; Baeza-Bermejillo, Ciro; Gonzalez-Lafuente, Laura; Sanz, Ana Belen; Ortiz, Alberto; Sanchez-Niño, Maria Dolores

    2015-01-01

    CD74 (invariant MHC class II) regulates protein trafficking and is a receptor for macrophage migration inhibitory factor (MIF) and d-dopachrome tautomerase (d-DT/MIF-2). CD74 expression is increased in tubular cells and/or glomerular podocytes and parietal cells in human metabolic nephropathies, polycystic kidney disease, graft rejection and kidney cancer and in experimental diabetic nephropathy and glomerulonephritis. Stressors like abnormal metabolite (glucose, lyso-Gb3) levels and inflammatory cytokines increase kidney cell CD74. MIF activates CD74 to increase inflammatory cytokines in podocytes and tubular cells and proliferation in glomerular parietal epithelial cells and cyst cells. MIF overexpression promotes while MIF targeting protects from experimental glomerular injury and kidney cysts, and interference with MIF/CD74 signaling or CD74 deficiency protected from crescentic glomerulonephritis. However, CD74 may protect from interstitial kidney fibrosis. Furthermore, CD74 expression by stressed kidney cells raises questions about the kidney safety of cancer therapy strategies delivering lethal immunoconjugates to CD74-expressing cells. Thus, understanding CD74 biology in kidney cells is relevant for kidney therapeutics. PMID:26441987

  20. In vitro modeling of hyperpigmentation associated to neurofibromatosis type 1 using melanocytes derived from human embryonic stem cells

    PubMed Central

    Allouche, Jennifer; Bellon, Nathalia; Saidani, Manoubia; Stanchina-Chatrousse, Laure; Masson, Yolande; Patwardhan, Anand; Gilles-Marsens, Floriane; Delevoye, Cédric; Domingues, Sophie; Nissan, Xavier; Martinat, Cécile; Lemaitre, Gilles; Peschanski, Marc; Baldeschi, Christine

    2015-01-01

    “Café-au-lait” macules (CALMs) and overall skin hyperpigmentation are early hallmarks of neurofibromatosis type 1 (NF1). One of the most frequent monogenic diseases, NF1 has subsequently been characterized with numerous benign Schwann cell-derived tumors. It is well established that neurofibromin, the NF1 gene product, is an antioncogene that down-regulates the RAS oncogene. In contrast, the molecular mechanisms associated with alteration of skin pigmentation have remained elusive. We have reassessed this issue by differentiating human embryonic stem cells into melanocytes. In the present study, we demonstrate that NF1 melanocytes reproduce the hyperpigmentation phenotype in vitro, and further characterize the link between loss of heterozygosity and the typical CALMs that appear over the general hyperpigmentation. Molecular mechanisms associated with these pathological phenotypes correlate with an increased activity of cAMP-mediated PKA and ERK1/2 signaling pathways, leading to overexpression of the transcription factor MITF and of the melanogenic enzymes tyrosinase and dopachrome tautomerase, all major players in melanogenesis. Finally, the hyperpigmentation phenotype can be rescued using specific inhibitors of these signaling pathways. These results open avenues for deciphering the pathological mechanisms involved in pigmentation diseases, and provide a robust assay for the development of new strategies for treating these diseases. PMID:26150484

  1. 4-(Phenylsulfanyl)butan-2-One Suppresses Melanin Synthesis and Melanosome Maturation In Vitro and In Vivo

    PubMed Central

    Wu, Shing-Yi Sean; Wang, Hui-Min David; Wen, Yi-Shan; Liu, Wangta; Li, Pin-Hui; Chiu, Chien-Chih; Chen, Pei-Chin; Huang, Chiung-Yao; Sheu, Jyh-Horng; Wen, Zhi-Hong

    2015-01-01

    In this study, we screened compounds with skin whitening properties and favorable safety profiles from a series of marine related natural products, which were isolated from Formosan soft coral Cladiella australis. Our results indicated that 4-(phenylsulfanyl)butan-2-one could successfully inhibit pigment generation processes in mushroom tyrosinase platform assay, probably through the suppression of tyrosinase activity to be a non-competitive inhibitor of tyrosinase. In cell-based viability examinations, it demonstrated low cytotoxicity on melanoma cells and other normal human cells. It exhibited stronger inhibitions of melanin production and tyrosinase activity than arbutin or 1-phenyl-2-thiourea (PTU). Also, we discovered that 4-(phenylsulfanyl)butan-2-one reduces the protein expressions of melanin synthesis-related proteins, including the microphthalmia-associated transcription factor (MITF), tyrosinase-related protein-1 (Trp-1), dopachrome tautomerase (DCT, Trp-2), and glycoprotein 100 (GP100). In an in vivo zebrafish model, it presented a remarkable suppression in melanogenesis after 48 h. In summary, our in vitro and in vivo biological assays showed that 4-(phenylsulfanyl)butan-2-one possesses anti-melanogenic properties that are significant in medical cosmetology.

  2. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle.

    PubMed

    Savkovic, Vuk; Flämig, Franziska; Schneider, Marie; Sülflow, Katharina; Loth, Tina; Lohrenz, Andrea; Hacker, Michael Christian; Schulz-Siegmund, Michaela; Simon, Jan-Christoph

    2016-01-01

    Melanocytes differentiated from the stem cells of human hair follicle outer root sheath (ORS) have the potential for developing non-invasive treatments for skin disorders out of a minimal sample: of hair root. With a robust procedure for melanocyte cultivation from the ORS of human hair follicle at hand, this study focused on the identification of a suitable biocompatible, biodegradable carrier as the next step toward their clinical implementation. Polycaprolactone (PCL) is a known biocompatible material used for a number of medical devices. In this study, we have populated electrospun PCL fiber meshes with normal human epidermal melanocytes (NHEM) as well as with hair-follicle-derived human melanocytes from the outer root sheath (HUMORS) and tested their functionality in vitro. PCL fiber meshes evidently provided a niche for melanocytes and supported their melanotic properties. The cells were tested for gene expression of PAX3, PMEL, TYR and MITF, as well as for proliferation, expression of melanocyte marker proteins tyrosinase and glycoprotein 100 (gp100), L-DOPA-tautomerase enzymatic activity and melanin content. Reduced mitochondrial activity and PAX-3 gene expression indicated that the three-dimensional PCL scaffold supported differentiation rather than proliferation of melanocytes. The monitored melanotic features of both the NHEM and HUMORS cultivated on PCL scaffolds significantly exceeded those of two-dimensional adherent cultures.

  3. Endothelial Cells Promote Pigmentation through Endothelin Receptor B Activation.

    PubMed

    Regazzetti, Claire; De Donatis, Gian Marco; Ghorbel, Houda Hammami; Cardot-Leccia, Nathalie; Ambrosetti, Damien; Bahadoran, Philippe; Chignon-Sicard, Bérengère; Lacour, Jean-Philippe; Ballotti, Robert; Mahns, Andre; Passeron, Thierry

    2015-12-01

    Findings of increased vascularization in melasma lesions and hyperpigmentation in acquired bilateral telangiectatic macules suggested a link between pigmentation and vascularization. Using high-magnification digital epiluminescence dermatoscopy, laser confocal microscopy, and histological examination, we showed that benign vascular lesions of the skin have restricted but significant hyperpigmentation compared with the surrounding skin. We then studied the role of microvascular endothelial cells in regulating skin pigmentation using an in vitro co-culture model using endothelial cells and melanocytes. These experiments showed that endothelin 1 released by microvascular endothelial cells induces increased melanogenesis signaling, characterized by microphthalmia-associated transcription factor phosphorylation, and increased tyrosinase and dopachrome tautomerase levels. Immunostaining for endothelin 1 in vascular lesions confirmed the increased expression on the basal layer of the epidermis above small vessels compared with perilesional skin. Endothelin acts through the activation of endothelin receptor B and the mitogen-activated protein kinase, extracellular signal-regulated kinase (ERK)1/2, and p38, to induce melanogenesis. Finally, culturing of reconstructed skin with microvascular endothelial cells led to increased skin pigmentation that could be prevented by inhibiting EDNRB. Taken together these results demonstrated the role of underlying microvascularization in skin pigmentation, a finding that could open new fields of research for regulating physiological pigmentation and for treating pigmentation disorders such as melasma.

  4. The polymorphisms of a MIF gene and their association with Vibrio resistance in the clam Meretrix meretrix.

    PubMed

    Zou, Linhu; Liu, Baozhong

    2016-09-01

    Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine that mediates both innate and adaptive immune responses. In this study, a homolog of MIF was identified in the clam Meretrix meretrix. Ten SNPs in the DNA partial sequence of MmMIF were found to be significantly associated with Vibrio resistance (P < 0.05). Distinct expression patterns of MmMIF among different haplotypes were observed after Vibrio challenge. The results showed that haplotypes did not affect MmMIF expression in the negative control group, while the expression of MmMIF in clams with Hap1 and Hap1/Hap2 was significantly lower than that with Hap2 at 24 h in the PBS-injected group but significantly higher than that with Hap2 in the Vibrio-injected group. The results also indicate that Hap1 and Hap1/Hap2 can specifically respond to mechanical stimulation while Hap2 can specifically respond to Vibrio infection. The effect of a missense mutation was detected by site-directed mutagenesis using fusion expression of the protein, which showed that the SNP g.737 (I > V) has no effect on redox activity and tautomerase activity. These studies identified a potential marker that is enriched in Vibrio-resistant clams that can be used for the genetic breeding of Meretrix meretrix. PMID:27103597

  5. Selective down-regulation of tyrosinase family gene TYRP1 by inhibition of the activity of melanocyte transcription factor, MITF

    PubMed Central

    Fang, Dong; Tsuji, Yoshiaki; Setaluri, Vijayasaradhi

    2002-01-01

    Tyrosinase (TYR), tyrosinase-related protein-1 (TYRP1/gp75) and dopachrome tautomerase (DCT/TYRP2) belong to a family of melanocyte-specific gene products involved in melanin pigmentation. During melanocyte development expression of tyrosinase family genes is thought to be orchestrated in part by the binding of a shared basic helix–loop–helix transcription factor MITF to the M box, a regulatory element conserved among these genes. In transformed melanocytes, expression of tyrosinase and TYRPs is highly variable. Whereas TYR expression in melanoma cells is regulated by both transcriptional and post-translational mechanisms, TYRP1/gp75 transcription is often completely extinguished during melanoma tumor progression. In this study, we investigated the mechanisms of selective repression of TYRP1 transcription. Interestingly, in early stage melanoma cells TYRP1 mRNA could be induced by inhibition of protein synthesis. Transient transfection experiments with a minimal TYRP1 promoter showed that the promoter activity correlates with expression of the endogenous TYRP1 gene. Nucleotide deletion analysis revealed novel regulatory sequences that attenuate the M box-dependent MITF activity, but which are not involved in the repression of TYRP1. Gel mobility shift analysis showed that binding of the transcription factor MITF to the TYRP1 M box is selectively inhibited in TYRP1– cells. These data suggest that protein factors that modulate the activity of MITF in melanoma cells repress TYRP1 and presumably other MITF target genes. PMID:12136092

  6. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence

    PubMed Central

    Lansdell, Casey; Alkayyal, Almohanad A.; Baxter, Katherine E.; Angka, Leonard; Zhang, Jiqing; Tanese de Souza, Christiano; Stephenson, Kyle B.; Parato, Kelley; Bramson, Jonathan L.; Bell, John C.; Lichty, Brian D.; Auer, Rebecca C.

    2016-01-01

    Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA)—dopachrome tautomerase (AdDCT) and resection resulting in major surgical stress (abdominal nephrectomy), we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B) in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC) population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients. PMID:27196057

  7. Cosmic Ray Acceleration in Force Free Fields

    NASA Astrophysics Data System (ADS)

    Colgate, Stirling; Li, Hui; Kronberg, Philipp

    2002-11-01

    Galactic, extragalactic, and cluster magnetic fields are in apparent pressure equilibrium with the in-fall pressure of matter from the external medium, IGM, onto the Galaxies and clusters, and from the voids onto the galaxy sheets, (walls), implying fields of 5 , 0.5, & 20 μG respectively. Equipartition or minimum energy, implies β_CR=n_CRm_pc^2/(B^2/8π)˜= 1. The total energy in field and CRs is then ˜= 10^55 ergs Galactic and ˜= 4 ot 10^60 ergs per galaxy in the IGM and less within clusters, e.g., radio lobes, synchrotron "glow" in the IGM (Kronberg), and the UHECRs spectrum, Γ =-2.6. CRs escape from the Galaxy to the IGM, τ˜=10^7y, and similarly from the walls to the voids, ˜=10^8y, less than the GZK cut-off time provided B_galaxy>B_IGM>B_voids. The free energy of black hole formation, The Los Alamos model, is just sufficient. The lack of shocks at the boundaries of over pressured radio lobes and the need for high acceleration efficiency suggests eE_allel˜= eη_reconJ_allel, acceleration by reconnection of these force-free fields.

  8. RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes.

    PubMed

    Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko

    2016-01-15

    Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes. PMID:26620560

  9. DCT protects human melanocytic cells from UVR and ROS damage and increases cell viability.

    PubMed

    Ainger, Stephen A; Yong, Xuan L; Wong, Shu S; Skalamera, Dubravka; Gabrielli, Brian; Leonard, J Helen; Sturm, Richard A

    2014-12-01

    Dopachrome tautomerase (DCT) is involved in the formation of the photoprotective skin pigment eumelanin and has also been shown to have a role in response to apoptotic stimuli and oxidative stress. The effect of DCT on UVR DNA damage responses and survival pathways in human melanocytic cells was examined by knockdown experiments using melanoma cells, neonatal foreskin melanoblasts (MB) in monoculture and in co-culture with human keratinocytes. MB cell strains genotyped as either MC1R WT or MC1R RHC homozygotes, which are known to be deficient in DCT, were transduced with lentivirus vectors for either DCT knockdown or overexpression. We found melanoma cell survival was reduced by DCT depletion and by UVR over time. UVR-induced p53 and pp53-Ser15 levels were reduced with DCT depletion. Knockdown of DCT in MC1R WT and MC1R RHC MB cells reduced their survival after UVR exposure, whereas increased DCT protein levels enhanced survival. DCT depletion reduced p53 and pp53-Ser15 levels in WM266-4 melanoma and MC1R WT MB cells, while MC1R RHC MB cells displayed variable levels. Both MC1R WT and RHC genotypes of MB cells were responsive to UVR at 3 h with increases in both p53 and pp53-Ser15 proteins. MC1R WT MB cell strains in coculture with keratinocytes have an increased cell survival after UVR exposure when compared to those in monoculture, a protective effect which appears to be conferred by the keratinocytes.

  10. Kinetic, mutational, and structural analysis of malonate semialdehyde decarboxylase from Coryneform bacterium strain FG41: mechanistic implications for the decarboxylase and hydratase activities.

    PubMed

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J; Johnson, William H; Hackert, Marvin L; Whitman, Christian P

    2013-07-16

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal ion-independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide and a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. In terms of pairwise sequence, MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) is 38% identical with the Pseudomonas enzyme, including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. To determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of the enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for Pp MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily.

  11. A Pre-Steady State Kinetic Analysis of the αY60W mutant of trans-3-Chloroacrylic Acid Dehalogenase: Implications for the Mechanism of the Wild-type Enzyme†

    PubMed Central

    Huddleston, Jamison P.; Schroeder, Gottfried K.; Johnson, Kenneth A.; Whitman, Christian P.

    2012-01-01

    The bacterial degradation of the nematicide 1,3-dichloropropene, an isomeric mixture, requires the action of trans- and cis-3-chloracrylic acid dehalogenase (CaaD and cis-CaaD, respectively). Both enzymes are tautomerase superfamily members and share a core catalytic mechanism for the hydrolytic dehalogenation of the respective isomer of 3-haloacrylate. The observation that cis-CaaD requires two additional residues raises the question of how CaaD carries out a comparable reaction with fewer catalytic residues. As part of an effort to determine the basis for the apparently simpler CaaD-catalyzed reaction, the kinetic mechanism was determined by stopped-flow and chemical quench techniques using a fluorescent mutant form of the enzyme, αY60W-CaaD, and trans-3-bromoacrylate as the substrate. The data from these experiments as well as bromide inhibition studies are best accommodated by a six-step model that provides individual rate constants for substrate binding, chemistry, and a proposed conformational change occurring after chemistry followed by release of malonate semialdehyde and bromide. The conformational change and product release rates are comparable and together they limit the rate of turnover. The kinetic analysis and modeling studies validate the αY60W-CaaD mutant as an accurate reporter of active site events during the course of the enzyme-catalyzed reaction. The kinetic mechanism for the αY60W-CaaD-catalyzed reaction is comparable to that obtained for the cis-CaaD-catalyzed reaction. The kinetic model and the validated αY60W-CaaD mutant set the stage for an analysis of active site mutants to explore the contributions of individual catalytic residues and the basis for the simplicity of the reaction. PMID:23110338

  12. Inactivation of malonate semialdehyde decarboxylase by 3-halopropiolates: evidence for hydratase activity.

    PubMed

    Poelarends, Gerrit J; Serrano, Hector; Johnson, William H; Whitman, Christian P

    2005-07-01

    Malonate semialdehyde decarboxylase (MSAD) from Pseudomonas pavonaceae 170 catalyzes the metal ion-independent decarboxylation of malonate semialdehyde and represents one of three known enzymatic activities in the tautomerase superfamily. The characterized members of this superfamily are structurally homologous proteins that share a beta-alpha-beta fold and a catalytic amino-terminal proline. Sequence analysis, chemical labeling studies, site-directed mutagenesis, and NMR studies of MSAD identified Pro-1 as a key active site residue in which the amino group has a pKa value of 9.2. The available evidence suggests a mechanism involving polarization of the C-3 carbonyl group of malonate semialdehyde by the cationic Pro-1. A second critical active site residue, Arg-75, could assist in the reaction by placing the substrate's carboxylate group in a favorable conformation for decarboxylation. In addition to the decarboxylase activity, MSAD has a hydratase activity as demonstrated by the MSAD-catalyzed conversion of 2-oxo-3-pentynoate to acetopyruvate. In view of this activity, MSAD was incubated with 3-bromo- and 3-chloropropiolate, and the subsequent reactions were characterized. Both compounds result in the irreversible inactivation of MSAD, making them the first identified inhibitors of MSAD. Inactivation by 3-chloropropiolate occurs in a time- and concentration-dependent manner and is due to the covalent modification of Pro-1. The proposed mechanism for inactivation involves the initial hydration of the 3-halopropiolate followed by a rearrangement to an alkylating agent, either an acyl halide or a ketene. The results provide additional evidence for the hydratase activity of MSAD and further support for the hypothesis that MSAD and trans-3-chloroacrylic acid dehalogenase, the preceding enzyme in the trans-1,3-dichloropropene catabolic pathway, diverged from a common ancestor but conserved the necessary catalytic machinery for the conjugate addition of water.

  13. Kinetic, Mutational, and Structural Analysis of Malonate Semialdehyde Decarboxylase from Coryneform bacterium strain FG41: Mechanistic Implications for the Decarboxylase and Hydratase Activities

    PubMed Central

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J.; Johnson, William H.; Hackert, Marvin L.; Whitman, Christian P.

    2013-01-01

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal-ion independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide, as well as a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) shares 38% pairwise sequence identity with the Pseudomonas enzyme including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. In order to determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity, but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily. PMID:23781927

  14. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    PubMed

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-01

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  15. Coffee enhances the expression of chaperones and antioxidant proteins in rats with nonalcoholic fatty liver disease.

    PubMed

    Salomone, Federico; Li Volti, Giovanni; Vitaglione, Paola; Morisco, Filomena; Fogliano, Vincenzo; Zappalà, Agata; Palmigiano, Angelo; Garozzo, Domenico; Caporaso, Nicola; D'Argenio, Giuseppe; Galvano, Fabio

    2014-06-01

    Coffee consumption is inversely related to the degree of liver injury in patients with nonalcoholic fatty liver disease (NAFLD). Molecular mediators contributing to coffee's beneficial effects in NAFLD remain to be elucidated. In this study, we administrated decaffeinated espresso coffee or vehicle to rats fed an high-fat diet (HFD) for 12 weeks and examined the effects of coffee on liver injury by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis combined with mass spectrometry. Rats fed an HFD and water developed panacinar steatosis, lobular inflammation, and mild fibrosis, whereas rats fed an HFD and coffee exhibited only mild steatosis. Coffee consumption increased liver expression of the endoplasmic reticulum chaperones glucose-related protein 78 and protein disulfide-isomerase A3; similarly, coffee drinking enhanced the expression of the mitochondrial chaperones heat stress protein 70 and DJ-1. Furthermore, in agreement with reduced hepatic levels of 8-isoprostanes and 8-hydroxy-2'-deoxyguanosine, proteomic analysis showed that coffee consumption induces the expression of master regulators of redox status (i.e., peroxiredoxin 1, glutathione S-transferase α2, and D-dopachrome tautomerase). Last, proteomics revealed an association of coffee intake with decreased expression of electron transfer flavoprotein subunit α, a component of the mitochondrial respiratory chain, involved in de novo lipogenesis. In this study, we were able to identify by proteomic analysis the stress proteins mediating the antioxidant effects of coffee; moreover, we establish for the first time the contribution of specific coffee-induced endoplasmic reticulum and mitochondrial chaperones ensuring correct protein folding and degradation in the liver. PMID:24365744

  16. Transcriptome analysis and molecular signature of human retinal pigment epithelium

    PubMed Central

    Strunnikova, N.V.; Maminishkis, A.; Barb, J.J.; Wang, F.; Zhi, C.; Sergeev, Y.; Chen, W.; Edwards, A.O.; Stambolian, D.; Abecasis, G.; Swaroop, A.; Munson, P.J.; Miller, S.S.

    2010-01-01

    Retinal pigment epithelium (RPE) is a polarized cell layer critical for photoreceptor function and survival. The unique physiology and relationship to the photoreceptors make the RPE a critical determinant of human vision. Therefore, we performed a global expression profiling of native and cultured human fetal and adult RPE and determined a set of highly expressed ‘signature’ genes by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues. Using stringent selection criteria of at least 10-fold higher expression in three distinct preparations, we identified 154 RPE signature genes, which were validated by qRT-PCR analysis in RPE and in an independent set of 11 tissues. Several of the highly expressed signature genes encode proteins involved in visual cycle, melanogenesis and cell adhesion and Gene ontology analysis enabled the assignment of RPE signature genes to epithelial channels and transporters (ClCN4, BEST1, SLCA20) or matrix remodeling (TIMP3, COL8A2). Fifteen RPE signature genes were associated with known ophthalmic diseases, and 25 others were mapped to regions of disease loci. An evaluation of the RPE signature genes in a recently completed AMD genomewide association (GWA) data set revealed that TIMP3, GRAMD3, PITPNA and CHRNA3 signature genes may have potential roles in AMD pathogenesis and deserve further examination. We propose that RPE signature genes are excellent candidates for retinal diseases and for physiological investigations (e.g. dopachrome tautomerase in melanogenesis). The RPE signature gene set should allow the validation of RPE-like cells derived from human embryonic or induced pluripotent stem cells for cell-based therapies of degenerative retinal diseases. PMID:20360305

  17. A Novel Allosteric Inhibitor of Macrophage Migration Inhibitory Factor (MIF)*

    PubMed Central

    Bai, Fengwei; Asojo, Oluwatoyin A.; Cirillo, Pier; Ciustea, Mihai; Ledizet, Michel; Aristoff, Paul A.; Leng, Lin; Koski, Raymond A.; Powell, Thomas J.; Bucala, Richard; Anthony, Karen G.

    2012-01-01

    Macrophage migration inhibitory factor (MIF) is a catalytic cytokine and an upstream mediator of the inflammatory pathway. MIF has broad regulatory properties, dysregulation of which has been implicated in the pathology of multiple immunological diseases. Inhibition of MIF activity with small molecules has proven beneficial in a number of disease models. Known small molecule MIF inhibitors typically bind in the tautomerase site of the MIF trimer, often covalently modifying the catalytic proline. Allosteric MIF inhibitors, particularly those that associate with the protein by noncovalent interactions, could reveal novel ways to block MIF activity for therapeutic benefit and serve as chemical probes to elucidate the structural basis for the diverse regulatory properties of MIF. In this study, we report the identification and functional characterization of a novel allosteric MIF inhibitor. Identified from a high throughput screening effort, this sulfonated azo compound termed p425 strongly inhibited the ability of MIF to tautomerize 4-hydroxyphenyl pyruvate. Furthermore, p425 blocked the interaction of MIF with its receptor, CD74, and interfered with the pro-inflammatory activities of the cytokine. Structural studies revealed a unique mode of binding for p425, with a single molecule of the inhibitor occupying the interface of two MIF trimers. The inhibitor binds MIF mainly on the protein surface through hydrophobic interactions that are stabilized by hydrogen bonding with four highly specific residues from three different monomers. The mode of p425 binding reveals a unique way to block the activity of the cytokine for potential therapeutic benefit in MIF-associated diseases. PMID:22782901

  18. Molecular characterization, tissue distribution and functional analysis of macrophage migration inhibitory factor protein (MIF) in Chinese giant salamanders Andrias davidianus.

    PubMed

    Wang, Lixin; Yang, Hui; Li, Fenggang; Zhang, Yingying; Yang, Zhaoxia; Li, Yang; Liu, Xiaolin

    2013-03-01

    The macrophage migration inhibitory factor (MIF) produced in numerous cell types is a multi-functional cytokine mediating both innate and adaptive immune responses. To obtain a better understanding of the innate immune ability of Andrias davidianus and their defensive mechanisms, we identify the A. davidianus MIF (AdMIF) cDNA sequence from a skin cDNA library. The full-length cDNA of AdMIF was of 661bp, consisting of 134bp 5'-terminal UTR, 348bp open reading frame and 179bp 3'-terminal UTR. The deduced protein was composed of 115 amino acids, with an estimated molecular mass of 12.53kDa and a predicted pI of 6.07. AdMIF primary structure is as conserved as the other known sequences. Real time quantitative PCR (qRT-PCR) analysis indicated that AdMIF gene was ubiquitously expressed in selected tissues, with the highest level in liver, moderate level in spleen, intestine, stomach, and the lowest level in heart and skin. The cDNA fragment encoding mature peptide of AdMIF was recombined and expressed in Escherichia coli BL21 (DE3). By means of Ni(2+)-chelating chromatography, the recombinant protein of AdMIF (rAdMIF) was purified successfully. The rAdMIF protein was proved to have enzymatic redox and tautomerase activity in vitro. This study represents the first report for characterization of A. davidianus MIF, demonstrating the successful isolation of MIF from Chinese giant salamanders, and the purified rAdMIF protein is important to produce the monoclonal antibodies and provides a foundation for further investigation of the physiological function of AdMIF. PMID:23178403

  19. Melanocyte-specific proteins are aberrantly trafficked in melanocytes of Hermansky-Pudlak syndrome-type 3.

    PubMed

    Boissy, Raymond E; Richmond, Bonnie; Huizing, Marjan; Helip-Wooley, Amanda; Zhao, Yang; Koshoffer, Amy; Gahl, William A

    2005-01-01

    Hermansky-Pudlak Syndrome-type 3 (HPS-3) is a relatively mild subtype of HPS with minimal cutaneous and ocular depigmentation. The HPS-3 gene encodes a novel protein of unknown function with a predicted molecular weight of 114 kd. To assess the role of the HPS3 protein in melanization, cultured melanocytes developed from HPS-3 patients were evaluated biochemically and histologically for activity and localization of melanocyte-specific proteins. Endogenous tyrosinase activity of HPS-3 melanocytes was substantial, but tyrosinase activity and melanin synthesis was suppressed in intact melanocytes. However, the level of suppression, as well as extent to which up-regulation by isobutylmethylxanthine and cholera toxin was muted, was less that in HPS-1 melanocytes. Ultrastructurally, HPS-3 melanocytes contained morphologically normal melanosomes, predominantly of stage I and II with minimal stage III and few stage IV melanosomes. Dihydroxyphenylalanine (DOPA) histochemistry demonstrated an increase in melanization of melanosomes. Unique to HPS-3 melanocytes were numerous DOPA-positive 50-nm vesicles and tubular elements present throughout the cell body and dendrites. Tyrosinase, tyrosinase-related protein-1 (Tyrp1), dopachrome tautomerase (Dct), and LAMP1 and 3 localization in HPS-3 melanocytes, as evaluated by immunocytochemistry and confocal microscopy, demonstrated a fine, floccular distribution in contrast to the coarse, granular distribution characteristic of control melanocytes. The localization profile of other proteins expressed by melanocytes (ie, Silver/Pmel17, Melan-A/MART-1, LAMP2, Rab 27, transferrin, c-kit, adaptin-3, and the HPS1 protein) appeared normal. These results suggest that a specific subset of melanocyte proteins are aberrantly trafficked throughout the HPS-3 melanocyte and may be responsible for the reduction in melanin synthesis.

  20. RUTBC1 Functions as a GTPase-activating Protein for Rab32/38 and Regulates Melanogenic Enzyme Trafficking in Melanocytes.

    PubMed

    Marubashi, Soujiro; Shimada, Hikaru; Fukuda, Mitsunori; Ohbayashi, Norihiko

    2016-01-15

    Two cell type-specific Rab proteins, Rab32 and Rab38 (Rab32/38), have been proposed as regulating the trafficking of melanogenic enzymes, including tyrosinase and tyrosinase-related protein 1 (Tyrp1), to melanosomes in melanocytes. Like other GTPases, Rab32/38 function as switch molecules that cycle between a GDP-bound inactive form and a GTP-bound active form; the cycle is thought to be regulated by an activating enzyme, guanine nucleotide exchange factor (GEF), and an inactivating enzyme, GTPase-activating protein (GAP), which stimulates the GTPase activity of Rab32/38. Although BLOC-3 has already been identified as a Rab32/38-specific GEF that regulates the trafficking of tyrosinase and Tyrp1, no physiological GAP for Rab32/38 in melanocytes has ever been identified, and it has remained unclear whether Rab32/38 is involved in the trafficking of dopachrome tautomerase, another melanogenic enzyme, in mouse melanocytes. In this study we investigated RUTBC1, which was originally characterized as a Rab9-binding protein and GAP for Rab32 and Rab33B in vitro, and the results demonstrated that RUTBC1 functions as a physiological GAP for Rab32/38 in the trafficking of all three melanogenic enzymes in mouse melanocytes. The results of this study also demonstrated the involvement of Rab9A in the regulation of the RUTBC1 localization and in the trafficking of all three melanogenic enzymes. We discovered that either excess activation or inactivation of Rab32/38 achieved by manipulating RUTBC1 inhibits the trafficking of all three melanogenic enzymes. These results collectively indicate that proper spatiotemporal regulation of Rab32/38 is essential for the trafficking of all three melanogenic enzymes in mouse melanocytes.

  1. Maintenance of immune hyporesponsiveness to melanosomal proteins by DHICA-mediated antioxidation: Possible implications for autoimmune vitiligo.

    PubMed

    Liu, Xiao-Ming; Zhou, Qiong; Xu, Shi-Zheng; Wakamatsu, Kazumasa; Lei, Tie-Chi

    2011-05-01

    Melanocyte destruction in the skin of vitiligo patients has been considered to be a consequence of an autoimmune response against melanosomal proteins. However, little is known about the molecular mechanisms by which the immune system recognizes these sequestered intracellular self-proteins, which are confined in specialized organelles termed melanosomes, and is provoked into an autoimmune response to melanocytes. Here, we utilize a sucrose density-gradient ultracentrifugation protocol to enrich melanosomal components from dopachrome tautomerase (Dct)-mutant or wild-type melanocytes exposed to a pulse of hydrogen peroxide at a noncytotoxic concentration to evaluate their immunogenicity in mice challenged with the corresponding melanosomal proteins. The results demonstrate that enhanced humoral and cellular immune responses to a challenge with late-stage melanosomal proteins, especially with those derived from Dct-mutant melanocytes, are found in the immunized mice. To elucidate whether a reduced 5,6-dihydroxyindole-2-carboxylic acid (DHICA) content in melanin might cause a loss in antioxidative protection to the proteins, we incubated these melanosomal proteins in vitro with synthetic 5,6-dihydroindole (DHI)-melanin or DHI/DHICA (1:1)-melanin and then used them to immunize mice. T cell proliferation and IgG antibody responsiveness to the challenges were significantly induced by melanosomal proteins treated with DHI-melanin, but not by those treated with DHI/DHICA (1:1)-melanin. Moreover, we observed that melanosomal proteins derived from Dct-mutant melanocytes are subject to oxidative modifications that alter their antigenic configurations to attain an enhanced immunogenicity compared with those derived from wild-type melanocytes. From these results, we conclude that DHICA-mediated antioxidation plays a critical role in the maintenance of immune hyporesponsiveness to melanosomal proteins.

  2. Local and systemic effects of embryos on uterine tissues during early pregnancy in pigs.

    PubMed

    Franczak, Anita; Bogacki, Marek

    2009-06-01

    In the pig, the periimplantation period is critical for successful establishment of pregnancy. We studied the influence of embryos on oxytocin (OT) and progesterone (P(4)) regulated endometrial and myometrial secretion of 1) luteotrophic prostaglandin E(2) (PGE(2)) and 2) luteolytic prostaglandin F(2alpha) and its metabolite (PGFM) on days 12-14 of pregnancy in pigs. We used unilaterally pregnant pigs created by a surgical procedure in which one uterine horn remained intact and the second horn was cut transversely so that part of the horn was detached from the uterine body. The animals were divided into two groups, inseminated gilts (days 12-14 of pregnancy, n=6) and uninseminated cyclic gilts, which were used as controls (days 12-14 of estrous cycle, n=5). Embryos developed only in the patent part of the uterus and not in the occluded horn. The abundance of OTR mRNA was increased in the endometrium and decreased in the myometrium of the gravid uterine horn in the pregnant pigs compared with the non-gravid uterine horn or either uterine horn in the cyclic pigs, indicative of a local effect of the conceptus. The presence of embryos in the uterine horn during the periimplantation period determines endometrial metabolism of PGF(2alpha) and the local response of the endometrium to OT and P(4). OT stimulates PGF(2alpha) secretion and PGFM accumulation in endometrial cultures only from the non-gravid uterine horn and controls PGE(2) secretion from the endometrium and myometrium in the pregnant gilts. The results indicate a more systemic affect of pregnancy on the uterine response to OT and a possibly the local effect of the conceptus in promoting progesterone's inhibition of OT-stimulated PGE(2) secretion and uterine metabolism of PGF(2alpha).

  3. Conditioned same-sex partner preference in male rats is facilitated by oxytocin and dopamine: effect on sexually dimorphic brain nuclei.

    PubMed

    Triana-Del Rio, Rodrigo; Tecamachaltzi-Silvarán, Miriam B; Díaz-Estrada, Victor X; Herrera-Covarrubias, Deissy; Corona-Morales, Aleph A; Pfaus, James G; Coria-Avila, Genaro A

    2015-04-15

    Conditioned same-sex partner preference can develop in male rats that undergo cohabitation under the effects of quinpirole (QNP, D2 agonist). Herein, we assessed the development of conditioned same-sex social/sexual preference in males that received either nothing, saline, QNP, oxytocin (OT), or QNP+OT during cohabitation with another male (+) or single-caged (-). This resulted in the following groups: (1) Intact-, (2) Saline+, (3) QNP-, (4) OT-, (5) QNP+, (6) OT+ and (7) QNP/OT+. Cohabitation occurred during 24h in a clean cage with a male partner that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days for a total of three trials. Social and sexual preference were assessed four days after the last conditioning trial in a drug-free test in which experimental males chose between the scented familiar male and a novel sexually receptive female. Results showed that males from groups Intact-, Saline+, QNP- and OT- displayed a clear preference for the female (opposite-sex), whereas groups QNP+, OT+ and QNP/OT+ displayed socio/sexual preference for the male partner (same-sex). In Experiment 2, the brains were processed for Nissl dye and the area size of two sexually dimorphic nuclei (SDN-POA and SON) was compared between groups. Males from groups OT-, OT+ and QNP/OT+ expressed a smaller SDN-POA and groups QNP+ and QNP/OT+ expressed a larger SON. Accordingly, conditioned same-sex social/sexual partner preference can develop during cohabitation under enhanced D2 or OT activity but such preference does not depend on the area size of those sexually dimorphic nuclei.

  4. Is the Volume of the Caudate Nuclei Associated With Area of Secondary Hyperalgesia? – Protocol for a 3-Tesla MRI Study of Healthy Volunteers

    PubMed Central

    Asghar, Mohammad Sohail; Wetterslev, Jørn; Pipper, Christian Bressen; Johan Mårtensson, Johan; Becerra, Lino; Christensen, Anders; Nybing, Janus Damm; Havsteen, Inger; Boesen, Mikael; Dahl, Jørgen Berg

    2016-01-01

    (Archived by WebCite at http://www.webcitation.org/6i4OtP0Oi) PMID:27317630

  5. Ratio dependence in small number discrimination is affected by the experimental procedure

    PubMed Central

    Agrillo, Christian; Piffer, Laura; Bisazza, Angelo; Butterworth, Brian

    2015-01-01

    Adults, infants and some non-human animals share an approximate number system (ANS) to estimate numerical quantities, and are supposed to share a second, ‘object-tracking,’ system (OTS) that supports the precise representation of a small number of items (up to 3 or 4). In relative numerosity judgments, accuracy depends on the ratio of the two numerosities (Weber’s Law) for numerosities >4 (the typical ANS range), while for numerosities ≤4 (OTS range) there is usually no ratio effect. However, recent studies have found evidence for ratio effects for small numerosities, challenging the idea that the OTS might be involved for small number discrimination. Here we tested the hypothesis that the lack of ratio effect in the numbers 1–4 is largely dependent on the type of stimulus presentation. We investigated relative numerosity judgments in college students using three different procedures: a simultaneous presentation of intermingled and separate groups of dots in separate experiments, and a further experiment with sequential presentation. As predicted, in the large number range, ratio dependence was observed in all tasks. By contrast, in the small number range, ratio insensitivity was found in one task (sequential presentation). In a fourth experiment, we showed that the presence of intermingled distractors elicited a ratio effect, while easily distinguishable distractors did not. As the different ratio sensitivity for small and large numbers has been often interpreted in terms of the activation of the OTS and ANS, our results suggest that numbers 1–4 may be represented by both numerical systems and that the experimental context, such as the presence/absence of task-irrelevant items in the visual field, would determine which system is activated. PMID:26579032

  6. Bacterial Utilization of L-sugars and D-amino Acids

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena; Hoover, Richard B.; Klyce, Brig; Davies, Paul C. W.; Davies, Pauline

    2006-01-01

    The fact that organotrophic organisms on Earth use L-amino acids and D-sugars as an energy source is recognized as one of the universal features of life. The chirality of organic molecules with asymmetric location of group- radicals was described a relatively long time ago. In 1848, Louis Pasteur discovered chiral molecules when he investigated the way that crystals of sodium ammonium paratartrate rotated the plane of polarization of light. He found that the crystal structures represented the underlying asymmetry of molecules that existed in either lea-handed or right-handed forms (enantiomers). Pasteur observed that abiotic (chemical) processes produced mixtures with equal numbers (racemic) of the two forms but that living organisms possessed a molecular asymmetry that included only one of the enantiomers (homochirality). He speculated that the origin of the asymmetry of chiral biomolecules might hold the key to the nature of life. All of the amino acids in proteins (except for Glycine which is symmetrical) exhibit the same absolute steric configuration as L-glyceraldehyde. D-amino acids are never found in proteins, although they do exist in nature and are often found in polypeptide antibiotics. Constitutional sugars of cells, opposite to the amino acids, are the D-enantiomers, and the appearance of L-sugars in Nature is extremely rare. Notwithstanding this fact, the metabolism of some bacteria does have capability to use amino acids and sugars with alternative chirality. This property may be caused by the function of specific enzymes belonging to the class of isomerases (racemases, epimerases, isomerases, tautomerases). In our laboratory, we have investigated several anaerobic bacterial strains, and have found that some of these bacteria are capable of using D-amino acids and L-sugars. Strain BK1 is capable of growth on D-arginine, but its growth characteristics on L-arginine are approximately twice higher. Another alkaliphilic strain SCAT(sup T) (= ATCC BAA-1084

  7. Cardiac melanocytes influence atrial reactive oxygen species involved with electrical and structural remodeling in mice.

    PubMed

    Hwang, Hayoung; Liu, Fang; Petrenko, Nataliya B; Huang, Jianhe; Schillinger, Kurt J; Patel, Vickas V

    2015-09-01

    Cardiac melanocyte-like cells (CMLCs) contribute to atrial arrhythmias when missing the melanin synthesis enzyme dopachrome tautomerase (Dct). While scavenging reactive oxygen species (ROS) in Dct-null mice partially suppressed atrial arrhythmias, it remains unclear if CMLCs influence atrial ROS and structure or if the electrical response of CMLCs to ROS differs from that of atrial myocytes. This study is designed to determine if CMLCs contribute to overall atrial oxidative stress or structural remodeling, and if ROS affects the electrophysiology of CMLCs differently than atrial myocytes. Immunohistochemical analysis showed higher expression of the oxidative marker 8-hydroxy-2'-deoxyguanosine in Dct-null atria versus Dct-heterozygous (Dct-het) atria. Exposing isolated CMLCs from Dct-het and Dct-null mice to hydrogen peroxide increased superoxide anion more in Dct-null CMLCs. Trichrome staining showed increased fibrosis in Dct-null atria, and treating Dct-null mice with the ROS scavenger Tempol reduced atrial fibrosis. Action potential recordings from atrial myocytes and isolated Dct-het and Dct-null CMLCs in response to hydrogen peroxide showed that the EC50 for action potential duration (APD) prolongation of Dct-null CMLCs was 8.2 ± 1.7 μmol/L versus 16.8 ± 2.0 μmol/L for Dct-het CMLCs, 19.9 ± 2.1 μmol/L for Dct-null atrial myocytes, and 20.5 ± 1.9 μmol/L for Dct-het atrial myocytes. However, APD90 was longer in CMLCs versus atrial myocytes in response to hydrogen peroxide. Hydrogen peroxide also induced more afterdepolarizations in CMLCs compared to atrial myocytes. These studies suggest that Dct within CMLCs contributes to atrial ROS balance and remodeling. ROS prolongs APD to a greater extent and induces afterdepolarizations more frequently in CMLCs than in atrial myocytes.

  8. Bacterial utilization of L-sugars and D-amino acids

    NASA Astrophysics Data System (ADS)

    Pikuta, Elena V.; Hoover, Richard B.; Klyce, Brig; Davies, Paul C. W.; Davies, Pauline

    2006-08-01

    The fact that organotrophic organisms on Earth use L-amino acids and D-sugars as an energy source is recognized as one of the universal features of life. The chirality of organic molecules with asymmetric location of group-radicals was described a relatively long time ago. Louis Pasteur observed that abiotic (chemical) processes produced mixtures with equal numbers (racemic) of the two forms but that living organisms possessed a molecular asymmetry that included only one of the enantiomers (homochirality). He speculated that the origin of the asymmetry of chiral biomolecules might hold the key to the nature of life. All of the amino acids in proteins (except for Glycine which is symmetrical) exhibit the same absolute steric configuration as L-glyceraldehyde. D-amino acids are never found in proteins, although they do exist in nature and are often found in polypeptide antibiotics. Constitutional sugars of cells, opposite to the amino acids, are the D-enantiomers, and the appearance of L-sugars in Nature is extremely rare. Notwithstanding this fact, the metabolism of some bacteria does have the capability to use amino acids and sugars with alternative chirality. This property may be caused by the function of specific enzymes belonging to the class of isomerases (racemases, epimerases, isomerases, tautomerases). In our laboratory, we have investigated several anaerobic bacterial strains, and have found that some of these bacteria are capable of using D-amino acids and L-sugars. Strain BK1 is capable of growth on D-arginine, but its growth characteristics on L-arginine are approximately twice as high. Another alkaliphilic strain SCA T (= ATCC BAA-1084 T = JCM 12857 T = DSM 17722 T = CIP 107910 T) was found to be capable of growth on L-ribose and L-arabinose. It is interesting that this strain was incapable of growth on D-arabinose, which suggests the involvement of some alternative mechanism of enzyme activity. In this paper, we describe the preliminary results of

  9. Interaction of MIF Family Proteins in Myocardial Ischemia/Reperfusion Damage and Their Influence on Clinical Outcome of Cardiac Surgery Patients

    PubMed Central

    Rex, Steffen; Goetzenich, Andreas; Kraemer, Sandra; Emontzpohl, Christoph; Soppert, Josefin; Averdunk, Luisa; Sun, Yu; Rossaint, Rolf; Lue, Hongqi; Huang, Caleb; Song, Yan; Pantouris, Georgios; Lolis, Elias; Leng, Lin; Schulte, Wibke; Bucala, Richard; Weber, Christian

    2015-01-01

    Abstract Aims: Cardiac surgery involves myocardial ischemia/reperfusion (I/R) with potentially deleterious consequences. Macrophage migration inhibitory factor (MIF) is a stress-regulating chemokine-like cytokine that protects against I/R damage, but functional links with its homolog, d-dopachrome tautomerase (MIF-2), and the circulating soluble receptor CD74 (sCD74) are unknown. In this study, we investigate the role of MIF, MIF-2, sCD74, and MIF genotypes in patients scheduled for elective single or complex surgical procedures such as coronary artery bypass grafting or valve replacement. Results: MIF and MIF-2 levels significantly increased intraoperatively, whereas measured sCD74 decreased correspondingly. Circulating sCD74/MIF complexes were detectable in 50% of patients and enhanced MIF antioxidant activity. Intraoperative MIF levels were independently associated with a reduced risk for the development of atrial fibrillation (AF) (odds ratio 0.99 [0.98–1.00]; p=0.007). Circulating levels of MIF-2, but not MIF, were associated with an increased frequency of organ dysfunction and predicted the occurrence of AF (area under the curve [AUC]=0.663; p=0.041) and pneumonia (AUC=0.708; p=0.040). Patients with a high-expression MIF genotype exhibited a reduced incidence of organ dysfunction compared with patients with low-expression MIF genotypes (3 vs. 25; p=0.042). Innovation: The current study comprehensively highlights the kinetics and clinical relevance of MIF family proteins and the MIF genotype in cardiac surgery patients. Conclusion: Our findings suggest that increased MIF levels during cardiac surgery feature organ-protective properties during myocardial I/R, while the soluble MIF receptor, sCD74, may enhance MIF antioxidant activity. In contrast, high MIF-2 levels are predictive of the development of organ dysfunction. Importantly, we provide first evidence for a gene–phenotype relationship between variant MIF alleles and clinical outcome in cardiac

  10. Liver proteomics in progressive alcoholic steatosis

    SciTech Connect

    Fernando, Harshica; Wiktorowicz, John E.; Soman, Kizhake V.; Kaphalia, Bhupendra S.; Khan, M. Firoze; Shakeel Ansari, G.A.

    2013-02-01

    Fatty liver is an early stage of alcoholic and nonalcoholic liver disease (ALD and NALD) that progresses to steatohepatitis and other irreversible conditions. In this study, we identified proteins that were differentially expressed in the livers of rats fed 5% ethanol in a Lieber–DeCarli diet daily for 1 and 3 months by discovery proteomics (two-dimensional gel electrophoresis and mass spectrometry) and non-parametric modeling (Multivariate Adaptive Regression Splines). Hepatic fatty infiltration was significantly higher in ethanol-fed animals as compared to controls, and more pronounced at 3 months of ethanol feeding. Discovery proteomics identified changes in the expression of proteins involved in alcohol, lipid, and amino acid metabolism after ethanol feeding. At 1 and 3 months, 12 and 15 different proteins were differentially expressed. Of the identified proteins, down regulation of alcohol dehydrogenase (− 1.6) at 1 month and up regulation of aldehyde dehydrogenase (2.1) at 3 months could be a protective/adaptive mechanism against ethanol toxicity. In addition, betaine-homocysteine S-methyltransferase 2 a protein responsible for methionine metabolism and previously implicated in fatty liver development was significantly up regulated (1.4) at ethanol-induced fatty liver stage (1 month) while peroxiredoxin-1 was down regulated (− 1.5) at late fatty liver stage (3 months). Nonparametric analysis of the protein spots yielded fewer proteins and narrowed the list of possible markers and identified D-dopachrome tautomerase (− 1.7, at 3 months) as a possible marker for ethanol-induced early steatohepatitis. The observed differential regulation of proteins have potential to serve as biomarker signature for the detection of steatosis and its progression to steatohepatitis once validated in plasma/serum. -- Graphical abstract: The figure shows the Hierarchial cluster analysis of differentially expressed protein spots obtained after ethanol feeding for 1 (1–3

  11. Dendritic Cells Take up and Present Antigens from Viable and Apoptotic Polymorphonuclear Leukocytes

    PubMed Central

    Alfaro, Carlos; Suarez, Natalia; Oñate, Carmen; Perez-Gracia, Jose L.; Martinez-Forero, Ivan; Hervas-Stubbs, Sandra; Rodriguez, Inmaculada; Perez, Guiomar; Bolaños, Elixabet; Palazon, Asis; de Sanmamed, Miguel Fernandez; Morales-Kastresana, Aizea; Gonzalez, Alvaro; Melero, Ignacio

    2011-01-01

    Dendritic cells (DC) are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs) as a result of being co-attracted by interleukin-8 (IL-8), for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA) protein, were able to cross-present the antigen to CD8 (OT-1) and CD4 (OT-2) TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2d) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2d PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2b DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2d) are coinjected in the footpad of mice with autologous DC (H-2b). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC. PMID:22206007

  12. A closer look at evolution: Variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25(OH)D serum concentration.

    PubMed

    Saternus, Roman; Pilz, Stefan; Gräber, Stefan; Kleber, Marcus; März, Winfried; Vogt, Thomas; Reichrath, Jörg

    2015-01-01

    Vitamin D deficiency is common in the Caucasian population and is associated with increased incidence and unfavorable outcome of many diseases, including various types of cancer, infectious, cardiovascular, and autoimmune diseases. Individual factors that predispose for a person's vitamin D status, such as skin type, have been identified, but limited data exist on genetic determinants of serum 25-hydroxyvitamin D (25[OH]D) concentration. We have tested the hypothesis that variants of genes (single nucleotide polymorphisms [SNPs]) involved in skin pigmentation are predictive of serum 25(OH)D levels. Serum 25(OH)D and SNPs (n = 960) related to genes with relevance for skin pigmentation (tyrosinase [TYR], TYR-related protein 1 [TYRP1], dopachrome tautomerase [DCT], oculocutaneous albinism II [OCA2], two pore segment channel 2 [TPCN2], solute carrier family 24 A4 [SLC24A4], solute carrier family 45 A2 [SLC45A2], agouti signalling peptide [ASIP], cyclic AMP-dependent transcription factor [ATF1], microphthalmia-associated transcription factor [MITF], proopiomelanocortin [POMC], cAMP-dependent protein kinase catalytic subunit beta [PRKACB], cAMP-dependent protein kinase catalytic subunit gamma [PRKACG], cAMP-dependent protein kinase type I-alpha regulatory subunit [PRKAR1A], cAMP-dependent protein kinase type II-alpha regulatory subunit [PRKAR2A], cAMP-dependent protein kinase type II-beta regulatory subunit [PRKAR2B], tubulin beta-3 chain/melanocortin receptor 1 [TUBB3/MC1R], Cadherin-1 [CDH1], catenin beta 1 [CTNNB1], Endothelin 1 [EDN1], endothelin 3 [EDN3], endothelin receptor type B [EDNRB], fibroblast growth factor 2 [FGF2], KIT, KIT ligand [KITLG], nerve growth factor [NGF], interferon regulatory factor 4 [IRF4], exocyst complex component 2 [EXOC2], and tumor protein 53 [TP53]) were analyzed in a cohort of participants of the Ludwigshafen Risk and Cardiovascular Health Study (n = 2970). A total of 46 SNPs were associated (P <.05) with lower or higher serum 25(OH

  13. A closer look at evolution: Variants (SNPs) of genes involved in skin pigmentation, including EXOC2, TYR, TYRP1, and DCT, are associated with 25(OH)D serum concentration.

    PubMed

    Saternus, Roman; Pilz, Stefan; Gräber, Stefan; Kleber, Marcus; März, Winfried; Vogt, Thomas; Reichrath, Jörg

    2015-01-01

    Vitamin D deficiency is common in the Caucasian population and is associated with increased incidence and unfavorable outcome of many diseases, including various types of cancer, infectious, cardiovascular, and autoimmune diseases. Individual factors that predispose for a person's vitamin D status, such as skin type, have been identified, but limited data exist on genetic determinants of serum 25-hydroxyvitamin D (25[OH]D) concentration. We have tested the hypothesis that variants of genes (single nucleotide polymorphisms [SNPs]) involved in skin pigmentation are predictive of serum 25(OH)D levels. Serum 25(OH)D and SNPs (n = 960) related to genes with relevance for skin pigmentation (tyrosinase [TYR], TYR-related protein 1 [TYRP1], dopachrome tautomerase [DCT], oculocutaneous albinism II [OCA2], two pore segment channel 2 [TPCN2], solute carrier family 24 A4 [SLC24A4], solute carrier family 45 A2 [SLC45A2], agouti signalling peptide [ASIP], cyclic AMP-dependent transcription factor [ATF1], microphthalmia-associated transcription factor [MITF], proopiomelanocortin [POMC], cAMP-dependent protein kinase catalytic subunit beta [PRKACB], cAMP-dependent protein kinase catalytic subunit gamma [PRKACG], cAMP-dependent protein kinase type I-alpha regulatory subunit [PRKAR1A], cAMP-dependent protein kinase type II-alpha regulatory subunit [PRKAR2A], cAMP-dependent protein kinase type II-beta regulatory subunit [PRKAR2B], tubulin beta-3 chain/melanocortin receptor 1 [TUBB3/MC1R], Cadherin-1 [CDH1], catenin beta 1 [CTNNB1], Endothelin 1 [EDN1], endothelin 3 [EDN3], endothelin receptor type B [EDNRB], fibroblast growth factor 2 [FGF2], KIT, KIT ligand [KITLG], nerve growth factor [NGF], interferon regulatory factor 4 [IRF4], exocyst complex component 2 [EXOC2], and tumor protein 53 [TP53]) were analyzed in a cohort of participants of the Ludwigshafen Risk and Cardiovascular Health Study (n = 2970). A total of 46 SNPs were associated (P <.05) with lower or higher serum 25(OH

  14. A library of near-infrared integral field spectra of young M-L dwarfs

    NASA Astrophysics Data System (ADS)

    Bonnefoy, M.; Chauvin, G.; Lagrange, A.-M.; Rojo, P.; Allard, F.; Pinte, C.; Dumas, C.; Homeier, D.

    2014-02-01

    Context. At young ages, low surface gravity affects the atmospheric properties of ultracool dwarfs. The impact on medium-resolution near-infrared (NIR) spectra has only been slightly investigated at the M-L transition so far. Aims: We present a library of NIR (1.1-2.45 μm) medium-resolution (R ~ 1500-2000) integral field spectra of 15 young M6-L0 dwarfs. We aim at deriving updated NIR spectral type, luminosity, and physical parameters (Teff, log g, M, L/L⊙) for each source. This work also aims at testing the latest generation of BT-SETTL atmospheric models. Methods: We estimated spectral types using spectral indices and the spectra of young objects classified in the optical. We used the 2010 and 2012 releases of the BT-SETTL synthetic spectral grid and cross-checked the results with the DRIFT-PHOENIX models to derive the atmospheric properties of the sources. Results: We do not find significant differences between the spectra of young companions and those of young isolated brown dwarfs in the same spectral type range. We derive infrared spectral types L0 ± 1, L0 ± 1, M9.5 ± 0.5, M9.5 ± 0.5, M9.25 ± 0.25, M8+0.5-0.75, and M8.5 ± 0.5 for AB Pic b, Cha J110913-773444, USco CTIO 108B, GSC 08047-00232 B, DH Tau B, CT Cha b, and HR7329B, respectively. The BT-SETTL and DRIFT-PHOENIX models yield close Teff and log g estimates for each source. The models seem to show a 600+600-300 K drop in the effective temperature at the M-L transition. Assuming the former temperatures are correct, we then derive new mass estimates that confirm that DH Tau B, USco CTIO 108B, AB Pic b, KPNO Tau 4, OTS 44, and Cha1109 lie inside or at the boundary of the planetary mass range. We combine the empirical luminosities of the M9.5-L0 sources to the Teff to derive semi-empirical radii estimates that do not match "hot-start" evolutionary models predictions at 1-3 Myr. We use complementary data to demonstrate that atmospheric models are able to reproduce the combined optical and infrared