Science.gov

Sample records for 4-point scale results

  1. Measuring the Mathematical Attitudes of Elementary Students: The Effects of a 4-Point or 5-Point Likert-Type Scale

    ERIC Educational Resources Information Center

    Adelson, Jill L.; McCoach, D. Betsy

    2010-01-01

    The purpose of this study was to compare how students in Grades 3 to 6 respond to a mathematics attitudes instrument with a 4-point Likert-type scale compared with one with an additional neutral point (a 5-point Likert-type scale). The 606 participating students from six elementary and middle schools randomly received either the 4-point or 5-point…

  2. MULTIPLE SCALES FOR SUSTAINABLE RESULTS

    EPA Science Inventory

    This session will highlight recent research that incorporates the use of multiple scales and innovative environmental accounting to better inform decisions that affect sustainability, resilience, and vulnerability at all scales. Effective decision-making involves assessment at mu...

  3. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  4. Scale Model Thruster Acoustic Measurement Results

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Vargas, Magda B.

    2013-01-01

    Subscale rocket acoustic data is used to predict acoustic environments for full scale rockets. Over the last several years acoustic data has been collected during horizontal tests of solid rocket motors. Space Launch System (SLS) Scale Model Acoustic Test (SMAT) was designed to evaluate the acoustics of the SLS vehicle including the liquid engines and solid rocket boosters. SMAT is comprised of liquid thrusters scalable to the Space Shuttle Main engines (SSME) and Rocket Assisted Take Off (RATO) motors scalable to the 5-segment Reusable Solid Rocket Motor (RSTMV). Horizontal testing of the liquid thrusters provided an opportunity to collect acoustic data from liquid thrusters to characterize the acoustic environments. Acoustic data was collected during the horizontal firings of a single thruster and a 4-thruster (Quad) configuration. Presentation scope. Discuss the results of the single and 4-thruster acoustic measurements. Compare the measured acoustic levels of the liquid thrusters to the Solid Rocket Test Motor V - Nozzle 2 (SRTMV-N2).

  5. Fairing geometric modeling based on 4-point interpolatory subdivision scheme

    NASA Astrophysics Data System (ADS)

    Luo, Xiaonan; Liu, Ning; Gao, Chengying

    2004-02-01

    A 4-point interpolatory subdivision scheme with a tension parameter is analyzed, and the local property of 4-point interpolatory subdivision scheme and a kind of G1-continuity sufficient condition between surfaces as well as between curves are discussed. An efficient method of generating natural boundary points of 4-point interpolatory curve is presented, as well as a surface modeling method with the entire fairing property by combining energy optimization with subdivision scheme. The method has been applied in modeling 3D virtual garment surface.

  6. Report on 3- and 4-Point Correlation Statistics in COBE DMR Anisotropy Maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary; Gorski, Krzystof M.; Bennett, Charles L.; Banday, Anthony J.

    1996-01-01

    As part of the work performed under this contract, we have computed the 3- and 4-point correlation functions of the COBE-DMR 2-year and 4-year anisotropy maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data.

  7. The Results of the first world photovoltaic scale recalibration

    SciTech Connect

    Emery, K.

    2000-04-06

    Technical report that presents the results of primary reference cell calibrations conducted at NREL in October and November 1998. Twenty World PV Scale (WPVS) reference cells were calibrated along with six candidate WPVS reference cells.

  8. New convergence results for the scaled gradient projection method

    NASA Astrophysics Data System (ADS)

    Bonettini, S.; Prato, M.

    2015-09-01

    The aim of this paper is to deepen the convergence analysis of the scaled gradient projection (SGP) method, proposed by Bonettini et al in a recent paper for constrained smooth optimization. The main feature of SGP is the presence of a variable scaling matrix multiplying the gradient, which may change at each iteration. In the last few years, extensive numerical experimentation showed that SGP equipped with a suitable choice of the scaling matrix is a very effective tool for solving large scale variational problems arising in image and signal processing. In spite of the very reliable numerical results observed, only a weak convergence theorem is provided establishing that any limit point of the sequence generated by SGP is stationary. Here, under the only assumption that the objective function is convex and that a solution exists, we prove that the sequence generated by SGP converges to a minimum point, if the scaling matrices sequence satisfies a simple and implementable condition. Moreover, assuming that the gradient of the objective function is Lipschitz continuous, we are also able to prove the {O}(1/k) convergence rate with respect to the objective function values. Finally, we present the results of a numerical experience on some relevant image restoration problems, showing that the proposed scaling matrix selection rule performs well also from the computational point of view.

  9. Additional Results of Glaze Icing Scaling in SLD Conditions

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2016-01-01

    New guidance of acceptable means of compliance with the super-cooled large drops (SLD) conditions has been issued by the U.S. Department of Transportation's Federal Aviation Administration (FAA) in its Advisory Circular AC 25-28 in November 2014. The Part 25, Appendix O is developed to define a representative icing environment for super-cooled large drops. Super-cooled large drops, which include freezing drizzle and freezing rain conditions, are not included in Appendix C. This paper reports results from recent glaze icing scaling tests conducted in NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the scaling methods recommended for Appendix C conditions might apply to SLD conditions. The models were straight NACA 0012 wing sections. The reference model had a chord of 72 in. and the scale model had a chord of 21 in. Reference tests were run with airspeeds of 100 and 130.3 kn and with MVD's of 85 and 170 micron. Two scaling methods were considered. One was based on the modified Ruff method with scale velocity found by matching the Weber number WeL. The other was proposed and developed by Feo specifically for strong glaze icing conditions, in which the scale liquid water content and velocity were found by matching reference and scale values of the nondimensional water-film thickness expression and the film Weber number Wef. All tests were conducted at 0 deg AOA. Results will be presented for stagnation freezing fractions of 0.2 and 0.3. For nondimensional reference and scale ice shape comparison, a new post-scanning ice shape digitization procedure was developed for extracting 2-D ice shape profiles at any selected span-wise location from the high fidelity 3-D scanned ice shapes obtained in the IRT.

  10. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    SciTech Connect

    Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro; Lee, Kearn P.; Kelly, Steven E.

    2014-01-01

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  11. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    SciTech Connect

    Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro

    2013-09-18

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  12. Additional Results of Ice-Accretion Scaling at SLD Conditions

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H. (Technical Monitor); Anderson, David N.; Tsao, Jen-Ching

    2005-01-01

    To determine scale velocity an additional similarity parameter is needed to supplement the Ruff scaling method. A Weber number based on water droplet MVD has been included in several studies because the effect of droplet splashing on ice accretion was believed to be important, particularly for SLD conditions. In the present study, ice shapes recorded at Appendix-C conditions and recent results at SLD conditions are reviewed to show that droplet diameter cannot be important to main ice shape, and for low airspeeds splashing does not appear to affect SLD ice shapes. Evidence is presented to show that while a supplementary similarity parameter probably has the form of a Weber number, it must be based on a length proportional to model size rather than MVD. Scaling comparisons were made between SLD reference conditions and Appendix-C scale conditions using this Weber number. Scale-to-reference model size ratios were 1:1.7 and 1:3.4. The reference tests used a 91-cm-chord NACA 0012 model with a velocity of approximately 50 m/s and an MVD of 160 m. Freezing fractions of 0.3, 0.4, and 0.5 were included in the study.

  13. Small-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the

  14. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used

  15. Report on 3 and 4-point correlation statistics in the COBE DMR anisotrophy maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary (Principal Investigator); Gorski, Krzystof M.; Banday, Anthony J.; Bennett, Charles L.

    1996-01-01

    As part of the work performed under NASA contract # NAS5-32648, we have computed the 3-point and 4-point correlation functions of the COBE-DNIR 2-year and 4-year anisotropy maps. The motivation for this study was to search for evidence of non-Gaussian statistical fluctuations in the temperature maps: skewness or asymmetry in the case of the 3-point function, kurtosis in the case of the 4-point function. Such behavior would have very significant implications for our understanding of the processes of galaxy formation, because our current models of galaxy formation predict that non-Gaussian features should not be present in the DMR maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data. Our computation and analysis of 3-point correlations in the 2-year DMR maps was published in the Astrophysical Journal Letters, volume 446, page L67, 1995. Our computation and analysis of 3-point correlations in the 4-year DMR maps will be published, together with some additional tests, in the June 10, 1996 issue of the Astrophysical Journal Letters. Copies of both of these papers are attached as an appendix to this report.

  16. Global scale flood exposure assessment - Methodologies and results

    NASA Astrophysics Data System (ADS)

    Jongman, B.; Ward, P. J.; Aerts, J. C. J. H.

    2012-04-01

    Flood damage modelling has traditionally been limited to the local, regional or national scale. Recent flood events, population growth and climate change concerns have increased the need for global methods with both spatial and temporal dynamics. In this study we present a first estimate of economic exposure to both river and coastal flooding on a global scale from 1970 - 2050, using two different methods for economic exposure calculation. One methodology is based on population densities and GDP, while the other method uses land-use and maximum damage figures to calculate economic exposure. Both methods show very similar upward trends in economic exposure over the period 1970-2050. However, the absolute exposure values resulting from the two methods show different magnitudes, reflecting variation in urbanisation and income. Furthermore we found that growth of population and economic assets in flood prone areas is higher than average national growth, especially in developing countries. As a next step, we propose a methodology for assessing total flood vulnerability that goes beyond economic impact, using a welfare-based approach based on a broad range of development indicators. The results are interesting for academics and practitioners working on international environmental, economic and development issues at the regional and global scales.

  17. SLS Scale Model Acoustic Test Liftoff Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, Douglas; Giacomoni, Clothilde

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible design phase test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments.

  18. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2013-05-29

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and

  19. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2012-11-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  20. Small-Scale Spray Releases: Orifice Plugging Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Blanchard, Jeremy; Kimura, Marcia L.; Kurath, Dean E.

    2012-09-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities, is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations published in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials present in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty introduced by extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches in which the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are largely absent. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine the aerosol release fractions and aerosol generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents (AFA) was assessed with most of the simulants. Orifices

  1. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  2. Scale model test results of several STOVL ventral nozzle concepts

    NASA Technical Reports Server (NTRS)

    Meyer, B. E.; Re, R. J.; Yetter, J. A.

    1991-01-01

    Short take-off and vertical landing (STOVL) ventral nozzle concepts are investigated by means of a static cold flow scale model at a NASA facility. The internal aerodynamic performance characteristics of the cruise, transition, and vertical lift modes are considered for four ventral nozzle types. The nozzle configurations examined include those with: butterfly-type inner doors and vectoring exit vanes; circumferential inner doors and thrust vectoring vanes; a three-port segmented version with circumferential inner doors; and a two-port segmented version with cylindrical nozzle exit shells. During the testing, internal and external pressure is measured, and the thrust and flow coefficients and resultant vector angles are obtained. The inner door used for ventral nozzle flow control is found to affect performance negatively during the initial phase of transition. The best thrust performance is demonstrated by the two-port segmented ventral nozzle due to the elimination of the inner door.

  3. On collisional disruption - Experimental results and scaling laws

    NASA Technical Reports Server (NTRS)

    Davis, Donald R.; Ryan, Eileen V.

    1990-01-01

    Both homogeneous and inhomogeneous targets have been addressed by the present experimental consideration of the impact strengths, fragment sizes, and fragment velocities generated by cement mortar targets whose crushing strengths vary by an order of magnitude, upon impact of projectiles in the velocity range of 50-5700 m/sec. When combined with additional published data, dynamic impact strength is found to correlate with quasi-static material strengths for materials ranging in character from basalt to ice; two materials not following this trend, however, are weak mortar and clay targets. Values consistent with experimental results are obtainable with a simple scaling algorithm based on impact energy, material properties, and collisional strain rate.

  4. Preliminary Results of Testing of Flow Effects on Evaporator Scaling

    SciTech Connect

    Hu, M.Z.

    2002-02-15

    This investigation has focused on the effects of fluid flow on solids deposition from solutions that simulate the feed to the 2H evaporator at the Savannah River Site. Literature studies indicate that the fluid flow (or shear) affects particle-particle and particle-surface interactions and thus the phenomena of particle aggregation in solution and particle deposition (i.e., scale formation) onto solid surfaces. Experimental tests were conducted with two configurations: (1) using a rheometer to provide controlled shear conditions and (2) using controlled flow of reactive solution through samples of stainless steel tubing. All tests were conducted at 80 C and at high silicon and aluminum concentrations, 0.133 M each, in solutions containing 4 M sodium hydroxide and 1 A4 each of sodium nitrate and sodium nitrite. Two findings from these experiments are important for consideration in developing approaches for reducing or eliminating evaporator scaling problems: (1) The rheometer tests suggested that for the conditions studied, maximum solids deposition occurs at a moderate shear rate, approximately 12 s{sup -1}. That value is expected to be on the order of shear rates that will occur in various parts of the evaporator system; for instance, a 6 gal/min single-phase liquid flow through the 2-in. lift or gravity drain lines would result in a shear rate of approximately 16 s{sup -1}. These results imply that engineering approaches aimed at reducing deposits through increased mixing would need to generate shear near all surfaces significantly greater than 12 s{sup -1}. However, further testing is needed to set a target value for shear that is applicable to evaporator operation. This is because the measured trend is not statistically significant at the 95% confidence interval due to variability in the results. In addition, testing at higher temperatures and lower concentrations of aluminum and silicon would more accurately represent conditions in the evaporator. Without

  5. Metabolic scaling in animals: methods, empirical results, and theoretical explanations.

    PubMed

    White, Craig R; Kearney, Michael R

    2014-01-01

    Life on earth spans a size range of around 21 orders of magnitude across species and can span a range of more than 6 orders of magnitude within species of animal. The effect of size on physiology is, therefore, enormous and is typically expressed by how physiological phenomena scale with mass(b). When b ≠ 1 a trait does not vary in direct proportion to mass and is said to scale allometrically. The study of allometric scaling goes back to at least the time of Galileo Galilei, and published scaling relationships are now available for hundreds of traits. Here, the methods of scaling analysis are reviewed, using examples for a range of traits with an emphasis on those related to metabolism in animals. Where necessary, new relationships have been generated from published data using modern phylogenetically informed techniques. During recent decades one of the most controversial scaling relationships has been that between metabolic rate and body mass and a number of explanations have been proposed for the scaling of this trait. Examples of these mechanistic explanations for metabolic scaling are reviewed, and suggestions made for comparing between them. Finally, the conceptual links between metabolic scaling and ecological patterns are examined, emphasizing the distinction between (1) the hypothesis that size- and temperature-dependent variation among species and individuals in metabolic rate influences ecological processes at levels of organization from individuals to the biosphere and (2) mechanistic explanations for metabolic rate that may explain the size- and temperature-dependence of this trait. PMID:24692144

  6. Characterization results of the JUNGFRAU full scale readout ASIC

    NASA Astrophysics Data System (ADS)

    Mozzanica, A.; Bergamaschi, A.; Brueckner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jungmann-Smith, J.; Maliakal, D.; Mezza, D.; Ramilli, M.; Ruder, C.; Schaedler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2016-02-01

    The two-dimensional pixel detector JUNGFRAU is designed for high performance photon science applications at free electron lasers and synchrotron light sources. It is developed for the SwissFEL currently under construction at the Paul Scherrer Institut, Switzerland. The detector is a hybrid pixel detector with a charge integration readout ASIC characterized by single photon sensitivity and a low noise performance over a dynamic range of 104 12 keV photons. Geometrically, a JUNGFRAU readout chip consists of 256×256 pixels of 75×75 μm2. The chips are bump bonded to 320 μm thick silicon sensors. Arrays of 2×4 chips are tiled to form modules of 4×8 cm2 area. Several multi-module systems with up to 16 Mpixels per system will be delivered to the two end stations at SwissFEL. The JUNGFRAU full scale readout ASIC and module design are presented along with characterization results of the first systems. Experiments from fluorescence X-ray, visible light illumination, and synchrotron irradiation are shown. The results include an electronic noise of ~50 electrons r.m.s., which enables single photon detection energies below 2 keV and a noise well below the Poisson statistical limit over the entire dynamic range. First imaging experiments are also shown.

  7. Taking Successful Programs to Scale and Creating Lasting Results

    ERIC Educational Resources Information Center

    National Math and Science Initiative, 2008

    2008-01-01

    Scaling Effective Programs is a category of giving that is quite unique. Philanthropists have many different interests that guide their giving, but Scaling Effective Programs offers an approach that can produce lasting transformation. This guide speaks to funders who: (1) view their giving as venture capital that stimulates other giving; (2) want…

  8. Underground tank vitrification: Engineering-scale test results

    SciTech Connect

    Campbell, B.E.; Timmerman, C.L.; Bonner, W.F.

    1990-06-01

    Contamination associated with underground tanks at US Department of Energy sites and other sites may be effectively remediated by application of in situ vitrification (ISV) technology. In situ vitrification converts contaminated soil and buried wastes such as underground tanks into a glass and crystalline block, similar to obsidian with crystalline phases. A radioactive engineering-scale test performed at Pacific Northwest Laboratory in September 1989 demonstrated the feasibility of using ISV for this application. A 30-cm-diameter (12-in.-diameter) buried steel and concrete tank containing simulated tank sludge was vitrified, producing a solid block. The tank sludge used in the test simulated materials in tanks at Oak Ridge National Laboratory. Hazardous components of the tank sludge were immobilized or removed and captured in the off-gas treatment system. The steel tank was converted to ingots near the bottom of the block and the concrete walls were dissolved into the resulting glass and crystalline block. Although one of the four moving electrodes froze'' in place about halfway into the test, operations were able to continue. The test was successfully completed and all the tank sludge was vitrified. 7 refs., 12 figs., 5 tabs.

  9. Results of a sub-scale model rotor icing test

    NASA Technical Reports Server (NTRS)

    Flemming, Robert J.; Bond, Thomas H.; Britton, Randall K.

    1991-01-01

    A heavily instrumented sub-scale model of a helicopter main rotor was tested in the NASA Lewis Research Center Icing Research Tunnel (IRT) in September and November 1989. The four-bladed main rotor had a diameter of 1.83 m (6.00 ft) and the 0.124 m (4.9 in) chord rotor blades were specially fabricated for this experiment. The instrumented rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The model rotor was exposed to a range of icing conditions that included variations in temperature, liquid water content, and median droplet diameter, and was operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed) and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracings, and ice molds. The sensitivity of the model rotor to the test parameters is given, and the result to theoretical predictions are compared. Test data quality was excellent, and ice accretion prediction methods and rotor performance prediction methods (using published icing lift and drag relationships) reproduced the performance trends observed in the test. Adjustments to the correlation coefficients to improve the level of correlation are suggested.

  10. Results of a sub-scale model rotor icing test

    NASA Technical Reports Server (NTRS)

    Flemming, Robert J.; Bond, Thomas H.; Britton, Randall K.

    1991-01-01

    A heavily instrumented sub-scale model of a helicopter main rotor was tested in the NASA Lewis Research Center Icing Research Tunnel (IRT) in September and November 1989. The four-bladed main rotor had a diameter of 1.83 m (6.00 ft) and the 0.124 m (4.9 in) chord rotor blades were specially fabricated for this experiment. The instrumented rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The model rotor was exposed to a range of icing conditions that included variations in temperature, liquid water content, and median droplet diameter, and was operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed) and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracings, and ice molds. The sensitivity of the model rotor to the test parameters, is given, and the result to theoretical predictions are compared. Test data quality was excellent, and ice accretion prediction methods and rotor performance prediction methods (using published icing lift and drag relationships) reproduced the performance trends observed in the test. Adjustments to the correlation coefficients to improve the level of correlation are suggested.

  11. Synthesizing large-scale pyroclastic flows: Experimental design, scaling, and first results from PELE

    NASA Astrophysics Data System (ADS)

    Lube, G.; Breard, E. C. P.; Cronin, S. J.; Jones, J.

    2015-03-01

    Pyroclastic flow eruption large-scale experiment (PELE) is a large-scale facility for experimental studies of pyroclastic density currents (PDCs). It is used to generate high-energy currents involving 500-6500 m3 natural volcanic material and air that achieve velocities of 7-30 m s-1, flow thicknesses of 2-4.5 m, and runouts of >35 m. The experimental PDCs are synthesized by a controlled "eruption column collapse" of ash-lapilli suspensions onto an instrumented channel. The first set of experiments are documented here and used to elucidate the main flow regimes that influence PDC dynamic structure. Four phases are identified: (1) mixture acceleration during eruption column collapse, (2) column-slope impact, (3) PDC generation, and (4) ash cloud diffusion. The currents produced are fully turbulent flows and scale well to natural PDCs including small to large scales of turbulent transport. PELE is capable of generating short, pulsed, and sustained currents over periods of several tens of seconds, and dilute surge-like PDCs through to highly concentrated pyroclastic flow-like currents. The surge-like variants develop a basal <0.05 m thick regime of saltating/rolling particles and shifting sand waves, capped by a 2.5-4.5 m thick, turbulent suspension that grades upward to lower particle concentrations. Resulting deposits include stratified dunes, wavy and planar laminated beds, and thin ash cloud fall layers. Concentrated currents segregate into a dense basal underflow of <0.6 m thickness that remains aerated. This is capped by an upper ash cloud surge (1.5-3 m thick) with 100 to 10-4 vol % particles. Their deposits include stratified, massive, normally and reversely graded beds, lobate fronts, and laterally extensive veneer facies beyond channel margins.

  12. Ares I Scale Model Acoustic Test Overpressure Results

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Alvord, D. A.; McDaniels, D. M.

    2011-01-01

    A summary of the overpressure environment from the 5% Ares I Scale Model Acoustic Test (ASMAT) and the implications to the full-scale Ares I are presented in this Technical Memorandum. These include the scaled environment that would be used for assessing the full-scale Ares I configuration, observations, and team recommendations. The ignition transient is first characterized and described, the overpressure suppression system configuration is then examined, and the final environment characteristics are detailed. The recommendation for Ares I is to keep the space shuttle heritage ignition overpressure (IOP) suppression system (below-deck IOP water in the launch mount and mobile launcher and also the crest water on the main flame deflector) and the water bags.

  13. Full-scale results for TAM limestone injection

    SciTech Connect

    Baer, S.

    1996-12-31

    Information is outlined on the use of thermally active marble (TAM) sorbents in boilers. Data are presented on: the comparison of TAM to limestone; NOVACON process development history; CFB test history; CFB pilot scale test; full-scale CFB trial; August, 1996 CFB demonstration; Foster Wheeler Mount Carmel sorbent feed rate comparison and Ca:S comparison; unburned carbon is ash; and advantages and savings in CFB boilers.

  14. Results of intermediate-scale hot isostatic press can experiments

    SciTech Connect

    Nelson, L.O.; Vinjamuri, K.

    1995-05-01

    Radioactive high-level waste (HLW) has been managed at the Idaho Chemical Processing Plant (ICPP) for a number of years. Since 1963, liquid HLW has been solidified into a granular solid (calcine). Presently, over 3,800 m{sup 3} of calcine is stored in partially-underground stainless steel bins. Four intermediate- scale HLW can tests (two 6-in OD {times} 12-in tall and two 4-in OD {times} 7-in tall) are described and compared to small-scale HIP can tests (1- to 3-in OD {times} 1- to 4.5-in tall). The intermediate-scale HIP cans were loaded with a 70/30 calcine/frit blend and HIPped at an off-site facility at 1050{degrees}C; and 20 ksi. The dimensions of two cans (4-in OD {times} 7-in tall) were monitored during the HIP cycle with eddy-current sensors. The sensor measurements indicated that can deformation occurs rapidly at 700{degrees}C; after which, there is little additional can shrinkage. HIP cans were subjected to a number of analyses including calculation of the overall packing efficiency (56 to 59%), measurement of glass-ceramic (3.0 to 3.2 g/cc), 14-day MCC-1 leach testing (total mass loss rates < 1 g/m{sup 2} day), and scanning electron microscopy (SEM). Based on these analyses, the glass-ceramic material produced in intermediate-scale cans is similar to material produced in small-scale cans. No major scale-up problems were indicated. Based on the packing efficiency observed in intermediate- and small-scale tests, the overall packing efficiency of production-scale (24-in OD {times} 36- to 190-in tall) cans would be approximately 64% for a pre-HIP right-circular cylinder geometry. An efficiency of 64% would represent a volume reduction factor of 2.5 over a candidate glass waste prepared at 33 wt% waste loading.

  15. Validation Results for Core-Scale Oil Shale Pyrolysis

    SciTech Connect

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  16. Alternate Forms Reliability of the Behavioral Relaxation Scale: Preliminary Results

    ERIC Educational Resources Information Center

    Lundervold, Duane A.; Dunlap, Angel L.

    2006-01-01

    Alternate forms reliability of the Behavioral Relaxation Scale (BRS; Poppen,1998), a direct observation measure of relaxed behavior, was examined. A single BRS score, based on long duration observation (5-minute), has been found to be a valid measure of relaxation and is correlated with self-report and some physiological measures. Recently,…

  17. Initial Results of a Survey of Earth's L4 Point for Possible Earth Trojan Asteroids

    NASA Astrophysics Data System (ADS)

    Connors, M.; Veillet, C.; Wiegert, P.; Innanen, K.; Mikkola, S.

    2000-10-01

    Using the Canada-France-Hawaii 3.6 m telescope and the new CFH12k wide-field CCD imager, a survey of the region near Earth's L4 (morning) Lagrange Point was conducted in May and July/August 2000, in hopes of finding asteroids at or near this point. This survey was motivated by the dynamical interest of a possible Earth Trojan asteroid (ETA) population and by the fact that they would be the easiest asteroids to access from Earth. Recent calculations (Wiegert, Innanen and Mikkola, 2000, Icarus v. 145, 33-43) indicate stability of objects in ETA orbits over a million year timescale and that their on-sky density would be greatest roughly five degrees sunward of the L4 position. An optimized search technique was used, with tracking at the anticipated rate of the target bodies, near real-time scanning of images, and duplication of fields to aid in detection and permit followup. Limited time is available on any given night to search near the Lagrange points, and operations must be conducted at large air mass. Approximately 9 square degrees were efficiently searched and two interesting asteroids were found, NEA 2000 PM8 and our provisionally named CFZ001. CFZ001 cannot be excluded from being an Earth Trojan although that is not the optimal solution for the short arc we observed. This object, of R magnitude 22, was easily detected, suggesting that our search technique worked well. This survey supports the earlier conclusion of Whitely and Tholen (1998, Icarus v. 136, 154-167) that a large population of several hundred meter diameter ETAs does not exist. However, our effective search technique and the discovery of two interesting asteroids suggest the value of completing the survey with approximately 10 more square degrees to be searched near L4 and a comparable search to be done at L5. Funding from Canada's NSERC and HIA and the Academic Research Fund of Athabasca University is gratefully acknowledged.

  18. Radiative shocks on large scale lasers. Preliminary results

    NASA Astrophysics Data System (ADS)

    Leygnac, S.; Bouquet, S.; Stehle, C.; Barroso, P.; Batani, D.; Benuzzi, A.; Cathala, B.; Chièze, J.-P.; Fleury, X.; Grandjouan, N.; Grenier, J.; Hall, T.; Henry, E.; Koenig, M.; Lafon, J. P. J.; Malka, V.; Marchet, B.; Merdji, H.; Michaut, C.; Poles, L.; Thais, F.

    2001-05-01

    Radiative shocks, those structure is strongly influenced by the radiation field, are present in various astrophysical objects (circumstellar envelopes of variable stars, supernovae ...). Their modeling is very difficult and thus will take benefit from experimental informations. This approach is now possible using large scale lasers. Preliminary experiments have been performed with the nanosecond LULI laser at Ecole Polytechnique (France) in 2000. A radiative shock has been obtained in a low pressure xenon cell. The preparation of such experiments and their interpretation is performed using analytical calculations and numerical simulations.

  19. Keypoint-based 4-Points Congruent Sets - Automated marker-less registration of laser scans

    NASA Astrophysics Data System (ADS)

    Theiler, Pascal Willy; Wegner, Jan Dirk; Schindler, Konrad

    2014-10-01

    We propose a method to automatically register two point clouds acquired with a terrestrial laser scanner without placing any markers in the scene. What makes this task challenging are the strongly varying point densities caused by the line-of-sight measurement principle, and the huge amount of data. The first property leads to low point densities in potential overlap areas with scans taken from different viewpoints while the latter calls for highly efficient methods in terms of runtime and memory requirements. A crucial yet largely unsolved step is the initial coarse alignment of two scans without any simplifying assumptions, that is, point clouds are given in arbitrary local coordinates and no knowledge about their relative orientation is available. Once coarse alignment has been solved, scans can easily be fine-registered with standard methods like least-squares surface or Iterative Closest Point matching. In order to drastically thin out the original point clouds while retaining characteristic features, we resort to extracting 3D keypoints. Such clouds of keypoints, which can be viewed as a sparse but nevertheless discriminative representation of the original scans, are then used as input to a very efficient matching method originally developed in computer graphics, called 4-Points Congruent Sets (4PCS) algorithm. We adapt the 4PCS matching approach to better suit the characteristics of laser scans. The resulting Keypoint-based 4-Points Congruent Sets (K-4PCS) method is extensively evaluated on challenging indoor and outdoor scans. Beyond the evaluation on real terrestrial laser scans, we also perform experiments with simulated indoor scenes, paying particular attention to the sensitivity of the approach with respect to highly symmetric scenes.

  20. Waste Receiving and Processing (WRAP) Facility Weight Scale Analysis Fairbanks Weight Scale Evaluation Results

    SciTech Connect

    JOHNSON, M.D.

    2000-03-13

    Fairbanks Weight Scales are used at the Waste Receiving and Processing (WRAP) facility to determine the weight of waste drums as they are received, processed, and shipped. Due to recent problems, discovered during calibration, the WRAP Engineering Department has completed this document which outlines both the investigation of the infeed conveyor scale failure in September of 1999 and recommendations for calibration procedure modifications designed to correct deficiencies in the current procedures.

  1. COMPILATION OF LABORATORY SCALE ALUMINUM WASH AND LEACH REPORT RESULTS

    SciTech Connect

    HARRINGTON SJ

    2011-01-06

    This report compiles and analyzes all known wash and caustic leach laboratory studies. As further data is produced, this report will be updated. Included are aluminum mineralogical analysis results as well as a summation of the wash and leach procedures and results. Of the 177 underground storage tanks at Hanford, information was only available for five individual double-shell tanks, forty-one individual single-shell tanks (e.g. thirty-nine 100 series and two 200 series tanks), and twelve grouped tank wastes. Seven of the individual single-shell tank studies provided data for the percent of aluminum removal as a function of time for various caustic concentrations and leaching temperatures. It was determined that in most cases increased leaching temperature, caustic concentration, and leaching time leads to increased dissolution of leachable aluminum solids.

  2. BRAVISSIMO: 12-month results from a large scale prospective trial.

    PubMed

    Bosiers, M; Deloose, K; Callaert, J; Maene, L; Beelen, R; Keirse, K; Verbist, J; Peeters, P; Schroë, H; Lauwers, G; Lansink, W; Vanslembroeck, K; D'archambeau, O; Hendriks, J; Lauwers, P; Vermassen, F; Randon, C; Van Herzeele, I; De Ryck, F; De Letter, J; Lanckneus, M; Van Betsbrugge, M; Thomas, B; Deleersnijder, R; Vandekerkhof, J; Baeyens, I; Berghmans, T; Buttiens, J; Van Den Brande, P; Debing, E; Rabbia, C; Ruffino, A; Tealdi, D; Nano, G; Stegher, S; Gasparini, D; Piccoli, G; Coppi, G; Silingardi, R; Cataldi, V; Paroni, G; Palazzo, V; Stella, A; Gargiulo, M; Muccini, N; Nessi, F; Ferrero, E; Pratesi, C; Fargion, A; Chiesa, R; Marone, E; Bertoglio, L; Cremonesi, A; Dozza, L; Galzerano, G; De Donato, G; Setacci, C

    2013-04-01

    The BRAVISSIMO study is a prospective, non-randomized, multi-center, multi-national, monitored trial, conducted at 12 hospitals in Belgium and 11 hospitals in Italy. This manuscript reports the findings up to the 12-month follow-up time point for both the TASC A&B cohort and the TASC C&D cohort. The primary endpoint of the study is primary patency at 12 months, defined as a target lesion without a hemodynamically significant stenosis on Duplex ultrasound (>50%, systolic velocity ratio no greater than 2.0) and without target lesion revascularization (TLR) within 12 months. Between July 2009 and September 2010, 190 patients with TASC A or TASC B aortoiliac lesions and 135 patients with TASC C or TASC D aortoiliac lesions were included. The demographic data were comparable for the TASC A/B cohort and the TASC C/D cohort. The number of claudicants was significantly higher in the TASC A/B cohort, The TASC C/D cohort contains more CLI patients. The primary patency rate for the total patient population was 93.1%. The primary patency rates at 12 months for the TASC A, B, C and D lesions were 94.0%, 96.5%, 91.3% and 90.2% respectively. No statistical significant difference was shown when comparing these groups. Our findings confirm that endovascular therapy, and more specifically primary stenting, is the preferred treatment for patients with TASC A, B, C and D aortoiliac lesions. We notice similar endovascular results compared to surgery, however without the invasive character of surgery. PMID:23558659

  3. Topography on Titan : New Results on Large and Small Scales

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Cassini Radar Team

    2011-12-01

    Although topographic coverage of Titan is and will remain sparse, some significant results have been obtained from global, regional and local measurements, via stereo, radarclinometry (shape-from-shading), autostereo (deviation from an assumed symmetric shape due to the inclined incidence), altimetry and SARtopo (monopulse) techniques. The global ellipsoidal shape (Zebker et al., 2009) provides important geophysical constraints on the interior. Hypsometry (Lorenz et al., 2011) provides insight into the balance of constructional and erosive processes and the strength of the lithosphere. Some local observations to be summarized in the talk include the measurement of mountains, the quantification of slopes that divert dunes and that drive fluid flow in river networks, as well as depth measurement of several impact craters and the assessment of candidate cryovolcanic structures. A recent new observation is a long altimetry pass T77 along the equator at the western edge of Xanadu, acquired both to constrain Titan's global shape and to understand the surface slopes and properties that may maintain the striking contrast between the dune fields of Shangri-La and the rugged and radiometrically anomalous Xanadu region. T77 also featured a SAR observation of the Ksa impact structure (discovered in SAR on T17), allowing a stereo DEM to be constructed. A feature shared by Earth and Titan is the ephemeral topography of liquids on the surface. Titan's lakes and seas likely vary in depth on geological (Myr-Gyr) and astronomical (~10 kyr) timescales : the depth of Ontario Lacus has been observed to vary on a seasonal timescale (~1 m/yr). Periodic changes of the order of 0.2-5m may occur diurnally, forced by Saturn gravitational tides. Finally, waves may be generated, at least during the windy season (which for Titan's north may be just about to begin) which can be constrained by radar and optical scattering measurements. Looking to the future, a Phase A study of the Titan Mare

  4. Results from the New IGS Time Scale Algorithm (version 2.0)

    NASA Astrophysics Data System (ADS)

    Senior, K.; Ray, J.

    2009-12-01

    Since 2004 the IGS Rapid and Final clock products have been aligned to a highly stable time scale derived from a weighted ensemble of clocks in the IGS network. The time scale is driven mostly by Hydrogen Maser ground clocks though the GPS satellite clocks also carry non-negligible weight, resulting in a time scale having a one-day frequency stability of about 1E-15. However, because of the relatively simple weighting scheme used in the time scale algorithm and because the scale is aligned to UTC by steering it to GPS Time the resulting stability beyond several days suffers. The authors present results of a new 2.0 version of the IGS time scale highlighting the improvements to the algorithm, new modeling considerations, as well as improved time scale stability.

  5. The formation of small-scale irregularities as a result of ionospheric plasma mixing by large-scale drifts

    NASA Astrophysics Data System (ADS)

    Fridman, S. V.

    1990-08-01

    This paper reports some results derived by studying statistical characteristics of irregularities which are produced as a result of plasma mixing by random drifts. It is found that as time progresses, the irregularity amplitude grows in proportion to sq rt of t. Characteristics of the irregularity spectrum undergo more violent changes. For example, the spectrum width grows according to a law close to the exponential one. Thus, relatively large-scale random motions rapidly generate a broad spectrum of small-scale irregularities as small as meter scales. A broadening of the spectrum is stopped by the transverse diffusion or by the longitudinal diffusion and recombination. An assessment is made of the influence of these processes.

  6. Intervention Validity of Social Behavior Rating Scales: Features of Assessments that Link Results to Treatment Plans

    ERIC Educational Resources Information Center

    Elliott, Stephen N.; Gresham, Frank M.; Frank, Jennifer L.; Beddow, Peter A., III

    2008-01-01

    The term "intervention validity" refers to the extent to which assessment results can be used to guide the selection of interventions and evaluation of outcomes. In this article, the authors review the defining attributes of rating scales that distinguish them from other assessment tools, assumptions regarding the use of rating scales to measure…

  7. Acoustic resonance in tube bundles -- Comparison of full scale and laboratory test results

    SciTech Connect

    Eisinger, F.L.

    1995-12-01

    Full scale operational data from steam generator tube bundles exposed to hot gases in crossflow are compared with small scale laboratory test results with cold air. Vibration thresholds based on input energy, acoustic particle velocity and effective damping are evaluated and compared. It is shown that these parameters play an important role in the development, or suppression of acoustic resonance.

  8. Final-Year Results from the i3 Scale-Up of Reading Recovery

    ERIC Educational Resources Information Center

    May, Henry; Sirinides, Philip; Gray, Abby; Davila, Heather Goldsworthy; Sam, Cecile; Blalock, Toscha; Blackman, Horatio; Anderson-Clark, Helen; Schiera, Andrew J.

    2015-01-01

    As part of the 2010 economic stimulus, a $55 million "Investing in Innovation" (i3) grant from the US Department of Education was awarded to scale up Reading Recovery across the nation. This paper presents the final round of results from the large-scale, mixed methods randomized evaluation of the implementation and impacts of Reading…

  9. The Sarah evaluation scale for children and adolescents with cerebral palsy: description and results

    PubMed Central

    Pinto, Katia S.; Carvalho, Camila G. C.; Nakamoto, Lilian; Nunes, Luiz G. N.

    2016-01-01

    ABSTRACT Background Assessments of motor-functional aspects in cerebral palsy are crucial to rehabilitation programs. Objective To introduce the Sarah motor-functional evaluation scale and to report the initial results of its measurement properties. This scale was created based on the experience of the Sarah Network of Rehabilitation Hospitals in the care of children and adolescents with cerebral palsy. Method Preliminary results concerning the measurement properties of the scale were obtained via assessment of 76 children and adolescents with cerebral palsy. Experts' opinions were used to determine an expected empirical score by age group and to differentiate severity levels. Results The scale exhibited a high Cronbach’s alpha coefficient (0.95). Strong correlation was observed with experts’ classification for severity levels (0.81 to 0.97) and with the scales Gross Motor Function Measure and Pediatric Evaluation of Disability Inventory (0.80 to 0.98). Regression analysis detected a significant relationship between the scale score and the severity of the child’s motor impairment. The inter-rater reliability was also strong (intraclass correlation coefficient ranging from 0.98 to 0.99). The internal responsiveness of the scale score was confirmed by significant differences between longitudinal evaluations (paired Student’s t test with p<0.01; standardized response mean of 0.60). Conclusion The Sarah scale provides a valid measure for assessing the motor skills and functional performance of children and adolescents with cerebral palsy. The preliminary results showed that the Sarah scale has potential for use in routine clinical practice and rehabilitation units. PMID:27437718

  10. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    SciTech Connect

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points

  11. Ares I Scale Model Acoustic Test Above Deck Water Sound Suppression Results

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program test matrix was designed to determine the acoustic reduction for the Liftoff acoustics (LOA) environment with an above deck water sound suppression system. The scale model test can be used to quantify the effectiveness of the water suppression system as well as optimize the systems necessary for the LOA noise reduction. Several water flow rates were tested to determine which rate provides the greatest acoustic reductions. Preliminary results are presented.

  12. Dynamical Scaling Implications of Ferrari, Prähofer, and Spohn's Remarkable Spatial Scaling Results for Facet-Edge Fluctuations

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Pimpinelli, Alberto

    2014-06-01

    Spurred by theoretical predictions from Ferrari et al. (Phys Rev E 69:035102(R), 2004), we rederived and extended their result heuristically. With experimental colleagues we used STM line scans to corroborate their prediction that the fluctuations of the step bounding a facet exhibit scaling properties distinct from those of isolated steps or steps on vicinal surfaces. The correlation functions was shown to go as , decidedly different from the behavior for fluctuations of isolated steps.

  13. Results of aerodynamic testing of large-scale wing sections in a simulated natural rain environment

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Campbell, Bryan A.; Melson, W. Edward, Jr.

    1990-01-01

    The NASA Langley Research Center has developed a large-scale ground testing capability for evaluating the effect of heavy rain on airfoil lift. The paper presents the results obtained at the Langley Aircraft Landing Dynamics Facility on a 10-foot cord NACA 64-210 wing section equipped with a leading-edge slat and double-slotted trailing-edge flap deflected to simulate landing conditions. Aerodynamic lift data were obtained with and without the rain simulation system turned on for an angle-of-attack range of 7.5 to 19.5 deg and for two rainfall conditions: 9 in/hr and 40 in/hr. The results are compared to and correlated with previous small-scale wind tunnel results for the same airfoil section. It appears that to first order, scale effects are not large and the wind tunnel research technique can be used to predict rain effects on airplane performance.

  14. Nonlinear electric reaction arising in dry bone subjected to 4-point bending

    NASA Astrophysics Data System (ADS)

    Murasawa, Go; Cho, Hideo; Ogawa, Kazuma

    2007-04-01

    Bone is a smart, self-adaptive and also partly self-repairing tissue. In recent years, many researchers seek to find how to give the effective mechanical stimulation to bone, because it is the predominant loading that determines the bone shape and macroscopic structure. However, the trial of regeneration of bone is still under way. On the other hand, it has been known that electrical potential generates from bone by mechanical stimulation (Yasuda, 1977; Williams, 1982; Starkebaum, 1979; Cochran, 1968; Lanyon, 1977; Salzstein, 1987a,b; Friedenberg, 1966). This is called "stress-generated potential (SGP)". The process of information transfer between "strain" and "cells" is not still clear. But, there is some possibility that SGP has something to do with the process of information transfer. If the electrical potential is more clear under some mechanical loadings, we will be able to regenerate bone artificially and freely. Therefore, it is important to investigate SGP in detail. The aim of present study is to investigate the electric reaction arising in dry bone subjected to mechanical loadings at high amplitude and low frequency strain. Firstly, specimen is fabricated from femur of cow. Next, the speeds of wave propagation in bone are tried to measure by laser ultra sonic technique and wavelet transform, because these have relationship with bone density. Secondary, 4-point bending test is conducted up to fracture. Then, electric reaction arising in bone is measured during loading. Finally, cyclic 4-point bending tests are conducted to investigate the electric reaction arising in bone at low frequency strain.

  15. Laser profilometry and length-scale analysis of stone tools: second series experiment results.

    PubMed

    James Stemp, W; Childs, Ben E; Vionnet, Samuel

    2010-01-01

    Based on the need to develop a method to reliably and objectively document and discriminate the use-wear on archaeological stone tools, Stemp et al. (2009) tested whether the surface roughness measured on experimentally worn stone tools used on different contact materials could be discriminated. Results of these initial experiments indicated that discrimination was possible and also determined the scales over which this discrimination occurred. In this article, we report the results of additional experiments using the same method on a second set of tools to test its reliability and reproducibility. In these experiments, four flint flakes were intensively used for 20 min on either conch shell or dry deer antler. The surface roughness or texture of the stone tools was measured by generating 2D profiles using a UBM laser profilometer. Relative lengths (RLs) calculated from the profiles were used directly as characterization parameters and subsequently compared statistically at each scale using the F-test to establish a level of confidence for the differentiation at each scale represented in the measured profiles. The mean square ratios of measurement data were used to determine whether the variation in roughness was statistically significant and to what level of confidence. The scales at which there was a high level of confidence were the ones at which the tools were differentiable. The results of these experiments confirm our previous findings that RLs, over certain scale ranges, can discriminate the stone tool surface wear profiles produced by the different contact materials. PMID:20853403

  16. Comparison of scaled model data to full size energy efficient engine test results

    NASA Technical Reports Server (NTRS)

    Lavin, S. P.; Ho, P. Y.; Chamberlin, R.

    1984-01-01

    Acoustic tests of a subscale fan and a subscale mixer nozzle were conducted in anechoic chambers over a variety of operating conditions. The subscale fan test was an investigation into the effects of vane/blade ratio and spacing on fan generated noise. A turbulence control structure (TCS) was used to simulate the 'turbulence-free' condition in flight. The subscale mixer nozzle test investigated the acoustic properties of several different forced mixer designs. A tertiary flow was utilized on the mixer model to simulate the forward velocity effects on the jet. The results were scaled up to full size conditions and compared with measured engine data. The comparisons showed good agreement between the component scaled model results and the full scale engine data.

  17. RichMind: A Tool for Improved Inference from Large-Scale Neuroimaging Results

    PubMed Central

    Maron-Katz, Adi; Amar, David; Simon, Eti Ben; Hendler, Talma; Shamir, Ron

    2016-01-01

    As the use of large-scale data-driven analysis becomes increasingly common, the need for robust methods for interpreting a large number of results increases. To date, neuroimaging attempts to interpret large-scale activity or connectivity results often turn to existing neural mapping based on previous literature. In case of a large number of results, manual selection or percent of overlap with existing maps is frequently used to facilitate interpretation, often without a clear statistical justification. Such methodology holds the risk of reporting false positive results and overlooking additional results. Here, we propose using enrichment analysis for improving the interpretation of large-scale neuroimaging results. We focus on two possible cases: position group analysis, where the identified results are a set of neural positions; and connection group analysis, where the identified results are a set of neural position-pairs (i.e. neural connections). We explore different models for detecting significant overrepresentation of known functional brain annotations using simulated and real data. We implemented our methods in a tool called RichMind, which provides both statistical significance reports and brain visualization. We demonstrate the abilities of RichMind by revisiting two previous fMRI studies. In both studies RichMind automatically highlighted most of the findings that were reported in the original studies as well as several additional findings that were overlooked. Hence, RichMind is a valuable new tool for rigorous inference from neuroimaging results. PMID:27455041

  18. Reproducing the Wechsler Intelligence Scale for Children-Fifth Edition: Factor Model Results

    ERIC Educational Resources Information Center

    Beaujean, A. Alexander

    2016-01-01

    One of the ways to increase the reproducibility of research is for authors to provide a sufficient description of the data analytic procedures so that others can replicate the results. The publishers of the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V) do not follow these guidelines when reporting their confirmatory factor…

  19. Lessons from a Large-Scale Assessment: Results from Conceptual Inventories

    ERIC Educational Resources Information Center

    Thacker, Beth; Dulli, Hani; Pattillo, Dave; West, Keith

    2014-01-01

    We report conceptual inventory results of a large-scale assessment project at a large university. We studied the introduction of materials and instructional methods informed by physics education research (PER) (physics education research-informed materials) into a department where most instruction has previously been traditional and a significant…

  20. Initial Laboratory-Scale Melter Test Results for Combined Fission Product Waste

    SciTech Connect

    Riley, Brian J.; Crum, Jarrod V.; Buchmiller, William C.; Rieck, Bennett T.; Schweiger, Michael J.; Vienna, John D.

    2009-10-01

    This report describes the methods and results used to vitrify a baseline glass, CSLNTM-C-2.5 in support of the AFCI (Advanced Fuel Cycle Initiative) using a Quartz Crucible Scale Melter at the Pacific Northwest National Laboratory. Document number AFCI-WAST-PMO-MI-DV-2009-000184.

  1. Seismic decoupling of an explosion centered in a granite chimney rubble -- scaled experiment results. Final report

    SciTech Connect

    Keller, C.; Miller, S.; Florence, A.; Fogle, M.; Kilb, D.

    1991-12-01

    This report describes the small scale evaluation of the feasibility of significant decoupling by siting an explosion in granite rubble. The chimney characteristics scaled to laboratory dimensions were those of the PILE DRIVER event. The scaled charges were of 1 KT and 8KT in the PILE DRIVER chimney. The measure of the effect was the velocity field history in the granite outside the chimney volume with the chimney rubble and with no rubble. A number of chimney sizes and shapes were studied. The explosion process was modeled via two-din=mensional, finite-difference methods used for prediction of velocity histories at the Nevada Test Site. The result was that both the spectral shape and the magnitude of the transmitted shock wave were drastically altered. The chimney geometry was as important as the rubble characteristics.

  2. Pore-scale analysis of permeability reduction resulting from colloid deposition

    SciTech Connect

    Chen, C.; Packman, A.I.; Gaillard, J.-F.

    2008-06-20

    High-energy, synchrotron-based x-ray difference micro-tomography (XDMT) was combined with lattice Boltzmann simulations to assess changes in pore-scale flow patterns and bulk permeability resulting from colloid deposition in a granular porous medium. The detailed structural information obtained from XDMT was used to define internal boundary conditions for simulations of pore fluid flow both with and without colloidal deposits. As colloids accumulated in the pore space, the mean tortuosity increased and the tortuosity distribution became multi-modal, indicating the development of macro-scale heterogeneity. These structural changes also produced large reductions in bulk permeability that were not captured by empirical or semi-empirical estimators based on the first-order geometric properties of the porous medium. This work demonstrates that coupling between fluid flow and particle transport produces heterogeneities at the sub-millimeter scale that greatly affect the hydrogeologic properties of natural porous media.

  3. Random antiferromagnetic quantum spin chains: Exact results from scaling of rare regions

    NASA Astrophysics Data System (ADS)

    Iglói, Ferenc; Juhász, Róbert; Rieger, Heiko

    2000-05-01

    We study XY and dimerized XX spin-1/2 chains with random exchange couplings by analytical and numerical methods and scaling considerations. We extend previous investigations to dynamical properties, to surface quantities, and operator profiles, and give a detailed analysis of the Griffiths phase. We present a phenomenological scaling theory of average quantities based on the scaling properties of rare regions, in which the distribution of the couplings follows a surviving random-walk character. Using this theory we have obtained the complete set of critical decay exponents of the random XY and XX models, both in the volume and at the surface. The scaling results are confirmed by numerical calculations based on a mapping to free fermions, which then lead to an exact correspondence with directed walks. The numerically calculated critical operator profiles on large finite systems (L<=512) are found to follow conformal predictions with the decay exponents of the phenomenological scaling theory. Dynamical correlations in the critical state are in average logarithmically slow and their distribution shows multiscaling character. In the Griffiths phase, which is an extended part of the off-critical region, average autocorrelations have a power-law form with a nonuniversal decay exponent, which is analytically calculated. We note on extensions of our work to the random antiferromagnetic XXZ chain and to higher dimensions.

  4. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect

    Gary M. Blythe

    2006-03-01

    Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

  5. Dewatering Treatment Scale-up Testing Results of Hanford Tank Wastes

    SciTech Connect

    Tedeschi, A.R.; May, T.H.; Bryan, W.E.

    2008-07-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process. (authors)

  6. DEWATERING TREATMENT SCALE-UP TESTING RESULTS OF HANFORD TANK WASTES

    SciTech Connect

    TEDESCHI AR

    2008-01-23

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low-activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process.

  7. Critical adsorption in the undersaturated regime: Scaling and exact results in Ising strips

    NASA Astrophysics Data System (ADS)

    Ciach, A.; Maciolek, A.; Stecki, J.

    1998-04-01

    Critical adsorption for weak surface field h1 is reconsidered. On the basis of physical heuristic arguments, approximate behavior of the scaling function is derived. New form of a scaling for weak h1 in finite systems is proposed and verified by testing against exact results obtained for this purpose in the 2D Ising strips. For weak h1 we find the approximate behavior of adsorption Γ˜τβ-Δ1 for the reduced temperatures h11/Δ1˜τ≪1. This behavior is consistent with experimental data [N. S. Desai, S. Peach, and C. Franck, Phys. Rev. E 52, 4129 (1995)] obtained for τ=10-5, and is in a very good agreement with exact results in the 2D Ising strip.

  8. A Retrospective Look at the Collected Results on the Large Scale Ionospheric Magnetic Fields at Venus

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Ma, Y.-J.; Villarreal, M.; Russell, C. T.; Zhang, T.-L.; Alvarez, K.

    2015-10-01

    We revisit the collected large scale ionospheric magnetic field results obtained by the Pioneer Venus Orbiter (PVO) and Venus Express (VEX) missions to ask how much we really understand about that field's global structure. To assist in this assessment we make use of several previously described MHD simulations of the solar wind interaction that reproduce its other observed features. These comparisons help to support our conceptual pictures in some cases, and to raise questions in others.

  9. Condor equatorial spread F-italic Campaign: Overview and results of the large-scale measurements

    SciTech Connect

    Kelley, M.C.; LaBelle, J.; Kudeki, E.; Fejer, B.G.; Basu, S.; Basu, S.; Baker, K.D.; Hanuise, C.; Argo, P.; Woodman, R.F.; Swartz, W.E.; Farley, D.T.; Meriwether J.W. Jr.

    1986-05-01

    During the Condor campaign a number of instruments were set up in Peru to support the rocket experiments. In this series of papers we report on the results of the experiments designed to study the equatorial F-italic region. In this overview paper we summarize the main results as well as report upon the macroscopic developments of spread F-italic as evidenced by data from backscatter radars, from scintillation observations, and from digital ionosonde measurements. In this latter regard, we argue here that at least two factors other than the classical gravitational Rayleigh-Taylor plasma instability process must operate to yield the longest-scale horizontal organization of spread F-italic structures. The horizontal scale typical of plume separation distances can be explained by invoking the effect of a shear in the plasma flow, although detailed comparison with theory seems to require shear frequencies a bit higher than observations indicate. On the other hand, the largest-scale organization or modulation of the scattering layer cannot be explained by the shear theory and must be due to local time variations in the ionospheric drift or to gravity wave induced vertical motions. Using simultaneous rocket and radar data, we were also able to confirm the oft quoted hypothesis that rapid overhead height variations in the scattering region over Jicamarca are primarily spatial structures advecting overhead. The detailed rocket-radar comparison verified several other earlier results and speculations, particularly those made in the PLUMEX experiments.

  10. Chemical and Mechanical Alteration of Fractures: Micro-Scale Simulations and Comparison to Experimental Results

    NASA Astrophysics Data System (ADS)

    Ameli, P.; Detwiler, R. L.; Elkhoury, J. E.; Morris, J. P.

    2012-12-01

    Fractures are often the main pathways for subsurface fluid flow especially in rocks with low matrix porosity. Therefore, the hydro-mechanical properties of fractures are of fundamental concern for subsurface CO2 sequestration, enhanced geothermal energy production, enhanced oil recovery, and nuclear waste disposal. Chemical and mechanical stresses induced during these applications may lead to significant alteration of the hydro-mechanical properties of fractures. Laboratory experiments aimed at understanding the chemo-hydro-mechanical response of fractures have shown a range of results that contradict simple conceptual models. For example, under conditions favoring mineral dissolution, where one would expect an overall increase in permeability and fracture aperture, permeability increases under some conditions and decreases under others. Recent experiments have attempted to link these core-scale observations to the relevant small-scale processes occurring within fractures. Results suggest that the loss of mechanical strength in asperities due to chemical alteration may cause non-uniform deformation and alteration of fracture apertures. However, it remains difficult to directly measure the coupled chemical and mechanical processes that lead to alteration of contacting fracture surfaces, which challenges our ability to predict the long-term evolution of the hydro-mechanical properties of fractures. Here, we present a computational model that uses micro-scale surface roughness and explicitly couples dissolution and elastic deformation to calculate local alterations in fracture aperture under chemical and mechanical stresses. Chemical alteration of the fracture surfaces is modeled using a depth-averaged algorithm of fracture flow and reactive transport. Then, we deform the resulting altered fracture-surfaces using an algorithm that calculates the elastic deformation. Nonuniform dissolution may cause the location of the resultant force between the two contacting

  11. Effect of Model Scale and Particle Size Distribution on PFC3D Simulation Results

    NASA Astrophysics Data System (ADS)

    Ding, Xiaobin; Zhang, Lianyang; Zhu, Hehua; Zhang, Qi

    2014-11-01

    This paper investigates the effect of model scale and particle size distribution on the simulated macroscopic mechanical properties, unconfined compressive strength (UCS), Young's modulus and Poisson's ratio, using the three-dimensional particle flow code (PFC3D). Four different maximum to minimum particle size ( d max/ d min) ratios, all having a continuous uniform size distribution, were considered and seven model (specimen) diameter to median particle size ratios ( L/ d) were studied for each d max/ d min ratio. The results indicate that the coefficients of variation (COVs) of the simulated macroscopic mechanical properties using PFC3D decrease significantly as L/ d increases. The results also indicate that the simulated mechanical properties using PFC3D show much lower COVs than those in PFC2D at all model scales. The average simulated UCS and Young's modulus using the default PFC3D procedure keep increasing with larger L/ d, although the rate of increase decreases with larger L/ d. This is mainly caused by the decrease of model porosity with larger L/ d associated with the default PFC3D method and the better balanced contact force chains at larger L/ d. After the effect of model porosity is eliminated, the results on the net model scale effect indicate that the average simulated UCS still increases with larger L/ d but the rate is much smaller, the average simulated Young's modulus decreases with larger L/ d instead, and the average simulated Poisson's ratio versus L/ d relationship remains about the same. Particle size distribution also affects the simulated macroscopic mechanical properties, larger d max/ d min leading to greater average simulated UCS and Young's modulus and smaller average simulated Poisson's ratio, and the changing rates become smaller at larger d max/ d min. This study shows that it is important to properly consider the effect of model scale and particle size distribution in PFC3D simulations.

  12. Condor equatorial Spread F campaign. Overview and results of the large-scale measurements

    SciTech Connect

    Kelley, M.C.; LaBelle, J.; Kudeki, E.; Fejer, B.G.; Basu, S.

    1986-05-01

    During the Condor campaign a number of instruments were set up in Peru to support the rocket experiments. This overview paper summarizes the main results on the macroscopic developments of spread F as evidenced by data from backscatter radars, from scintillation observations, and from digital ionosonde measurements. In this regard, at least two factors other than the classical gravitational Rayleigh-Taylor plasma instability process must operate to yield the longest scales horizontal organization of spread F structures. The horizontal scale typical of plume separation distances can be explained by invoking the effect of a shear in the plasma flow, although detailed comparison with theory seems to require shear frequencies a bit higher than observations indicate. On the other hand, the largest-scale organization or modulation of the scattering layer cannot be explained by the shear theory and must be due to local time variations in the ionospheric drift or to gravity wave induced vertical motions. Using simultaneous rocket and radar data, it is hypothesized that rapid overhead height variations in the scattering region over Jicamarca are primarily spatial structures advecting overhead. The detailed rocket-radar comparison verified several other earlier results and speculations, particularly those made in the PLUMEX experiments.

  13. Short-duration low-gravity experiments - Time scales, challenges and results

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1993-01-01

    Short-duration low-gravity experiments can be conducted either in drop tubes and drop towers, or on sounding rockets and aircraft on ballistic trajectories. While these facilities offer more frequent flight opportunities and higher cost effectiveness than orbiting spacecraft, their relatively short low-gravity times are often perceived as limiting their utility to only a narrow range of applications and research areas. In this review it is shown, based on scaling laws for diffusive transport of momentum, species and heat, radiative heat transfer and capillarity-driven motion, that with proper consideration of the characteristic length scales, a host of phenomena can be meaningfully investigated during a few seconds. This usefulness of short-duration low-gravity facilities is illustrated with numerous results of recent studies of solidification, combustion, transport in multiphase systems, statics and dynamics of liquid surfaces, magnetic Benard convection, fluid management, transport properties and the graviperception in cells.

  14. Assessing flood risk at the global scale: model setup, results, and sensitivity

    NASA Astrophysics Data System (ADS)

    Ward, Philip J.; Jongman, Brenden; Sperna Weiland, Frederiek; Bouwman, Arno; van Beek, Rens; Bierkens, Marc F. P.; Ligtvoet, Willem; Winsemius, Hessel C.

    2013-12-01

    Globally, economic losses from flooding exceeded 19 billion in 2012, and are rising rapidly. Hence, there is an increasing need for global-scale flood risk assessments, also within the context of integrated global assessments. We have developed and validated a model cascade for producing global flood risk maps, based on numerous flood return-periods. Validation results indicate that the model simulates interannual fluctuations in flood impacts well. The cascade involves: hydrological and hydraulic modelling; extreme value statistics; inundation modelling; flood impact modelling; and estimating annual expected impacts. The initial results estimate global impacts for several indicators, for example annual expected exposed population (169 million); and annual expected exposed GDP (1383 billion). These results are relatively insensitive to the extreme value distribution employed to estimate low frequency flood volumes. However, they are extremely sensitive to the assumed flood protection standard; developing a database of such standards should be a research priority. Also, results are sensitive to the use of two different climate forcing datasets. The impact model can easily accommodate new, user-defined, impact indicators. We envisage several applications, for example: identifying risk hotspots; calculating macro-scale risk for the insurance industry and large companies; and assessing potential benefits (and costs) of adaptation measures.

  15. Results of Overpressurization Test of a 1:4-Scale Prestressed Concrete Containment Vessel Model

    SciTech Connect

    Hessheimer, Michael F.; Shibata, Satoru; Costello, James F.

    2002-07-01

    The Nuclear Power Engineering Corporation (NUPEC) of Japan and the U.S. Nuclear Regulatory Commission (NRC) have been co-sponsoring and jointly funding a Cooperative Containment Research Program at Sandia National Laboratories. The purpose of the program is to investigate the response of representative models of nuclear containment structures to pressure loading beyond the design basis accident and to compare analytical predictions with measured behavior. This is accomplished by conducting static, pneumatic overpressurization tests of scale models at ambient temperature. The first project in this program was a test of a mixed scale steel containment vessel (SCV). Next, a 1:4-scale model of a prestressed concrete containment vessel (PCCV), representative of a pressurized water reactor (PWR) plant in Japan, was constructed by NUPEC at Sandia National Laboratories from January 1997 through June, 2000. Concurrently, Sandia instrumented the model with over 1500 transducers to measure strain, displacement and forces in the model from prestressing through the pressure testing. The limit state test of the PCCV model was conducted in September, 2000 at Sandia National Laboratories. This paper describes the conduct and some of the results of this test. (authors)

  16. Comparison of RAGE Hydrocode Mars Impact Model Results to Scaling Law Predictions

    NASA Astrophysics Data System (ADS)

    Plesko, Catherine S.; Wohletz, K. H.; Coker, R. F.; Asphaug, E.; Gittings, M. L.

    2007-10-01

    Impact devolatilization has been proposed by Segura et al. (2002) and Carr (1996) as a mechanism for triggering sporadic, intense precipitation on Mars. We seek to examine this hypothesis, specifically to determine the lower bound on possible energy/size scales, and thus an upper bound on the frequency of such events. To do this, we employ various analytical and numerical modeling techniques including the RAGE hydrocode. RAGE (Baltrusaitis et al. 1996) is an Eulerian Hydrocode that runs in up to three dimensions and incorporates a variety of detailed equations of state including the temperature-based SESAME tables maintained by LANL. In order to validate RAGE hydrocode results at the scale of moderate to large asteroid impacts, we compare simplified models of vertical impacts of objects of diameter 10 -100 km into homogeneous basalt targets under Martian conditions to pressure scaling law predictions (Holsapple 1993, e.g. Tables 3-4) for the same scenario. Peak pressures are important to the volatile mobilization question (Stewart and Ahrens, 2005), thus it is of primary importance for planned future modeling efforts to confirm that pressures in RAGE are well behaved. Knowledge of the final crater geometry and the fate of ejecta are not required to understand our main question: to what depth and radius are subsurface volatiles are mobilized, for a given impact and target? This effort is supported by LANL/IGPP (CSP, RFC, KHW, MLG) and by NASA PG&G "Small Bodies and Planetary Collisions" (EA).

  17. Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results

    SciTech Connect

    Ahrens, E.H.; Hansen, F.D.

    1995-10-01

    Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results.

  18. Heavy-flavor results for the era of SUSY and TeV-scale

    SciTech Connect

    Kwon, Youngjoon

    2008-11-23

    In this talk, we review recent experimental results in the heavy-flavor physics, in particular, in the B meson and {tau} lepton systems. We focus on the phenomena which could be sensitive to new physics effects in the TeV scale, including SUSY. The CP violations in B and B{sub s} mesons, radiative and electroweak penguin decays of B, search for lepton-flavor-violaing {tau} decays, prospects of CP violation search in {tau} and B decays to final states including {tau} leptons are discussed.

  19. Comparisons of Methodologies and Results in Vertical Scaling for Educational Achievement Tests

    ERIC Educational Resources Information Center

    Tong, Ye; Kolen, Michael J.

    2007-01-01

    A number of vertical scaling methodologies were examined in this article. Scaling variations included data collection design, scaling method, item response theory (IRT) scoring procedure, and proficiency estimation method. Vertical scales were developed for Grade 3 through Grade 8 for 4 content areas and 9 simulated datasets. A total of 11 scaling…

  20. Free-Flight Test Results of Scale Models Simulating Viking Parachute/Lander Staging

    NASA Technical Reports Server (NTRS)

    Polutchko, Robert J.

    1973-01-01

    This report presents the results of Viking Aerothermodynamics Test D4-34.0. Motion picture coverage of a number of Scale model drop tests provides the data from which time-position characteristics as well as canopy shape and model system attitudes are measured. These data are processed to obtain the instantaneous drag during staging of a model simulating the Viking decelerator system during parachute staging at Mars. Through scaling laws derived prior to test (Appendix A and B) these results are used to predict such performance of the Viking decelerator parachute during staging at Mars. The tests were performed at the NASA/Kennedy Space Center (KSC) Vertical Assembly Building (VAB). Model assemblies were dropped 300 feet to a platform in High Bay No. 3. The data consist of an edited master film (negative) which is on permanent file in the NASA/LRC Library. Principal results of this investigation indicate that for Viking parachute staging at Mars: 1. Parachute staging separation distance is always positive and continuously increasing generally along the descent path. 2. At staging, the parachute drag coefficient is at least 55% of its prestage equilibrium value. One quarter minute later, it has recovered to its pre-stage value.

  1. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-06-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  2. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Cook, Jerry

    1993-01-01

    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  3. Hover test results of a small-scale twin-tilt nacelle model

    NASA Technical Reports Server (NTRS)

    Schmidt, S. B.

    1985-01-01

    Characteristics in hover of an 11/36%-scale, powered, twin-tilt nacelle model were measured in the NASA Ames Research Center's 40- by 80-Foot Wind Tunnel. The model was powered by two high-pressure air-driven turbofan propulsion simulators. The position of the sting-mounted model was fixed and a movable ground plane was used to vary ground height and orientation. Hover characteristics were investigated in and out of ground effect for roll angles of -2 deg to +14 deg and pitch angles of -15 deg to +10 deg. Results for the basic configurations are compared with data from hover tests of the full-scale tilt nacelle model. Two methods were investigated to increase vertical vane effectiveness: (1) extending the maximum vane deflection from 20 deg to 70 deg, and (2) adding a third vertical vane. The goal was to increase the roll-control capability to significantly reduce or balance the strong, unfavorable rolling moment created by the loss of one engine. Results indicate that the three-vertical-vane configuration is more effective than two vertical vanes and that extended vane deflections significantly reduce the engine-out roll in hover.

  4. Scales

    ScienceCinema

    Murray Gibson

    2010-01-08

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain ? a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  5. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  6. Mercury emissions control by wet FGD systems: EPRI pilot-scale results

    SciTech Connect

    Peterson, J.R.; Hargrove, O.W. Jr.; Seeger, D.M.

    1995-06-01

    This paper presents results from pilot-scale tests that investigated mercury removal across wet limestone flue gas desulfurization (FGD) systems. The program was conducted at EPRIs Environmental Control Technology Center, located in Barker, NY. The test results showed that mercuric chloride (HgCl{sub 2}) was efficiently removed across the FGD system, while elemental mercury was not collected. The practical implication of this study is that although FGD systems efficiently remove some forms of mercury from flue gas, the overall mercury removal efficiency, and therefore the total mercury emissions from a coal-fired power plant equipped with an FGD system, will depend on the chemical form of the mercury in the flue gas. Unfortunately, no validated gas sampling method is available for speciating the different forms of mercury in flue gas. It is, therefore, difficult to predict mercury removal across FGD systems and to interpret any mercury removal data that have been collected.

  7. Is the Short Distance Scale a Result of a Problem with the LMC Photometric Zero Point?

    SciTech Connect

    Popowski, P

    2004-03-29

    I present a promising route to harmonize distance measurements based on clump giants and RR Lyrae stars. This is achieved by comparing the brightness of these distance indicators in three environments: the solar neighborhood, Galactic bulge and Large Magellanic Cloud (LMC). As a result of harmonizing the distance scales in the solar neighborhood and Baade's Window, I derive the new absolute magnitude of RR Lyrae stars, M{sub v}(RR) at [Fe/H] = -1.6 (0.59 {+-} 0.05, 0.70 {+-} 0.05). Being somewhat brighter than the statistical parallax solution, but fainter than typical results of the main sequence fitting to Hipparcos data, these values of M{sub V}(RR) favor intermediate or old ages of globular clusters. Harmonizing the distance scales in the LMC and Baade's Window, I show that the most likely distance modulus to the LMC, {mu}{sub LMC} is in the range 18.24 - 18.44. The Hubble constant of about 70 km/s/Mpc reported by the HST Key Project is based on the assumption that the distance modulus to the LMC equals 18.50. The results presented here indicate that the Hubble Constant may be up to 12% higher. This in turn would call for a younger Universe and could result in some tension between the age of the Universe and the ages of globular clusters. I argue that the remaining uncertainty in the distance to the LMC is now a question of one, single photometric reference point rather than discrepancies between different standard candles.

  8. Results from a scaled reactor cavity cooling system with water at steady state

    SciTech Connect

    Lisowski, D. D.; Albiston, S. M.; Tokuhiro, A.; Anderson, M. H.; Corradini, M. L.

    2012-07-01

    We present a summary of steady-state experiments performed with a scaled, water-cooled Reactor Cavity Cooling System (RCCS) at the Univ. of Wisconsin - Madison. The RCCS concept is used for passive decay heat removal in the Next Generation Nuclear Plant (NGNP) design and was based on open literature of the GA-MHTGR, HTR-10 and AVR reactor. The RCCS is a 1/4 scale model of the full scale prototype system, with a 7.6 m structure housing, a 5 m tall test section, and 1,200 liter water storage tank. Radiant heaters impose a heat flux onto a three riser tube test section, representing a 5 deg. radial sector of the actual 360 deg. RCCS design. The maximum heat flux and power levels are 25 kW/m{sup 2} and 42.5 kW, and can be configured for variable, axial, or radial power profiles to simulate prototypic conditions. Experimental results yielded measurements of local surface temperatures, internal water temperatures, volumetric flow rates, and pressure drop along the test section and into the water storage tank. The majority of the tests achieved a steady state condition while remaining single-phase. A selected number of experiments were allowed to reach saturation and subsequently two-phase flow. RELAP5 simulations with the experimental data have been refined during test facility development and separate effects validation of the experimental facility. This test series represents the completion of our steady-state testing, with future experiments investigating normal and off-normal accident scenarios with two-phase flow effects. The ultimate goal of the project is to combine experimental data from UW - Madison, UI, ANL, and Texas A and M, with system model simulations to ascertain the feasibility of the RCCS as a successful long-term heat removal system during accident scenarios for the NGNP. (authors)

  9. Validation and results of a scale model of dew deposition in urban environments

    NASA Astrophysics Data System (ADS)

    Richards, K.; Oke, T. R.

    2002-12-01

    There is growing interest in urban dew and its significance in questions of urban climate and air pollution deposition, but little research has been undertaken to study it. In this study, a generic, urban residential neighbourhood is modelled out-of-doors at a scale of 0.125, using three wooden houses (1.08 m tall), a concrete pavement (1.0 m in width), a grassed park (7.5 m in half-width) and several small trees (up to 1.5 m tall). The thermal inertia of each house is inflated, according to the internal thermal mass (ITM) approach, so that nocturnal surface temperatures are conserved. First-order validation was achieved through comparison with data collected at nearby full-scale sites in Vancouver, BC, Canada. Moisture accumulation (measured by blotting on grass and by lysimetry) is found to be primarily controlled by nocturnal weather conditions and the intrinsic nature of each substrate, e.g. dewfall is abundant on nights with few clouds and light winds, and on surfaces such as grass and asphalt-shingle roofs, which cool rapidly after sunset. However, these responses are modified by location effects related to the net radiation balance of the surface, which itself is strongly linked to site geometry as expressed by sky view factor and whether surfaces are isolated from heat sources. The dominant mechanism is argued to be the systematic increase in longwave radiation loss that is associated with increased sky view. Results agree with those observed at the full scale and suggest that maps of sky view factor, and knowledge of dew at an open site, can potentially be used to create maps of dew distribution in urban and other complex environments.

  10. Experimental results from pressure testing a 1:6-scale nuclear power plant containment

    SciTech Connect

    Horschel, D.S.

    1992-01-01

    This report discusses the testing of a 1:6-scale, reinforced-concrete containment building at Sandia National Laboratories, in Albuquerque, New Mexico. The scale-model, Light Water Reactor (LWR) containment building was designed and built to the American Society of Mechanical Engineers (ASME) code by United Engineers and Constructors, Inc., and was instrumented with over 1200 transducers to prepare for the test. The containment model was tested to failure to determine its response to static internal overpressurization. As part of the US Nuclear Regulatory Commission`s program on containment integrity, the test results will be used to assess the capability of analytical methods to predict the performance of containments under severe-accident loads. The scaled dimensions of the cylindrical wall and hemispherical dome were typical of a full-size containment. Other typical features included in the heavily reinforced model were equipment hatches, personnel air locks, several small piping penetrations, and a ihin steel liner that was attached to the concrete by headed studs. In addition to the transducers attached to the model, an acoustic detection system and several video and still cameras were used during testing to gather data and to aid in the conduct of the test. The model and its instrumentation are briefly discussed, and is followed by the testing procedures and measured response of the containment model. A summary discussion is included to aid in understanding the significance of the test as it applies to real world reinforced concrete containment structures. The data gathered during SIT and overpressure testing are included as an appendix.

  11. Lithospheric-scale geoelectrical characterisation of a continental collision zone in Pyrenees: preliminary results.

    NASA Astrophysics Data System (ADS)

    Campanyà, J.; Ledo, J.; Queralt, P.; Marcuello, A.; Liesa, M.; Muñoz, J. A.; Jones, A. G.

    2012-04-01

    Continental collision orogenic systems, responsible of large mountains ranges like the Himalaya and the Alps, play a primary role in the development of the continents creating, shaping and destroying the lithosphere over millions of years. A particular case of continental collision between the Iberian and European plates resulted in the Pyrenees during the Alpine orogeny. The significant amount of available geophysical data and the well-constrained geological evolution make this mountain chain an ideal area to study orogenic processes. Although the geological evolution is as well constrained as possible from surface and crustal geophysics, lithospheric-scale physical processes are less well characterised and their interpretations differ significantly. To aid understanding of this orogen we have undertaken a series of magnetotelluric studies with the latest in 2011. In total, data at 70 broadband magnetotelluric (BBMT) sites and 27 long period magnetotelluric (LMT) sites were recorded in the Pyrenees, mixing old BBMT data with new BBMT and LMT data. Sites are distributed on four along-strike profiles from the Eastern to the Western part of the Pyrenees that border France and Spain. Each profile crosses the mountain range approximately from south to north and their lengths are from 70 km, the shortest, to 180 km, the longest. Additionally, some sites were located between MT profiles helping to constrain the three-dimensional geometries of the geoelectrical structures inbetween them. The geoelectrical information obtained from MT data is independent of other physical properties typically analyzed in lithospheric studies like density and velocity anomaly. Comparison of the MT data with independent available geological and geophysical data helps us to determine better the geological and physical processes of the study area. The results obtained in this study characterise the geological structures and the physical properties of the Pyrenees at lithospheric scale and

  12. Re-evaluation of the 1995 Hanford Large Scale Drum Fire Test Results

    SciTech Connect

    Yang, J M

    2007-05-02

    A large-scale drum performance test was conducted at the Hanford Site in June 1995, in which over one hundred (100) 55-gal drums in each of two storage configurations were subjected to severe fuel pool fires. The two storage configurations in the test were pallet storage and rack storage. The description and results of the large-scale drum test at the Hanford Site were reported in WHC-SD-WM-TRP-246, ''Solid Waste Drum Array Fire Performance,'' Rev. 0, 1995. This was one of the main references used to develop the analytical methodology to predict drum failures in WHC-SD-SQA-ANAL-501, 'Fire Protection Guide for Waste Drum Storage Array,'' September 1996. Three drum failure modes were observed from the test reported in WHC-SD-WM-TRP-246. They consisted of seal failure, lid warping, and catastrophic lid ejection. There was no discernible failure criterion that distinguished one failure mode from another. Hence, all three failure modes were treated equally for the purpose of determining the number of failed drums. General observations from the results of the test are as follows: {lg_bullet} Trash expulsion was negligible. {lg_bullet} Flame impingement was identified as the main cause for failure. {lg_bullet} The range of drum temperatures at failure was 600 C to 800 C. This is above the yield strength temperature for steel, approximately 540 C (1,000 F). {lg_bullet} The critical heat flux required for failure is above 45 kW/m{sup 2}. {lg_bullet} Fire propagation from one drum to the next was not observed. The statistical evaluation of the test results using, for example, the student's t-distribution, will demonstrate that the failure criteria for TRU waste drums currently employed at nuclear facilities are very conservative relative to the large-scale test results. Hence, the safety analysis utilizing the general criteria described in the five bullets above will lead to a technically robust and defensible product that bounds the potential consequences from postulated

  13. Kilometer-scale Roughness of Geological Units on Mars: Initial Results from MOLA Data

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W.

    1999-03-01

    Scale dependence of the median slope is studied for a number of geological units. Similarity of km-scale roughness of Vastitas Borealis Formation subunits and the circumpolar mantling deposits suggests similarity of their origin.

  14. Development and Validation of the Controller Acceptance Rating Scale (CARS): Results of Empirical Research

    NASA Technical Reports Server (NTRS)

    Lee, Katharine K.; Kerns, Karol; Bone, Randall

    2001-01-01

    The measurement of operational acceptability is important for the development, implementation, and evolution of air traffic management decision support tools. The Controller Acceptance Rating Scale was developed at NASA Ames Research Center for the development and evaluation of the Passive Final Approach Spacing Tool. CARS was modeled after a well-known pilot evaluation rating instrument, the Cooper-Harper Scale, and has since been used in the evaluation of the User Request Evaluation Tool, developed by MITRE's Center for Advanced Aviation System Development. In this paper, we provide a discussion of the development of CARS and an analysis of the empirical data collected with CARS to examine construct validity. Results of intraclass correlations indicated statistically significant reliability for the CARS. From the subjective workload data that were collected in conjunction with the CARS, it appears that the expected set of workload attributes was correlated with the CARS. As expected, the analysis also showed that CARS was a sensitive indicator of the impact of decision support tools on controller operations. Suggestions for future CARS development and its improvement are also provided.

  15. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    SciTech Connect

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W.

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the {open_quote}normal{close_quote} configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge.

  16. Results from sudden loss of vacuum on scaled superconducting radio frequency cryomodule experiment

    SciTech Connect

    Dalesandro, Andrew A.; Theilacker, Jay C.; Dhuley, Ram C.; Van Sciver, Steven W.

    2014-01-29

    Superconducting radio frequency (SRF) cavities for particle accelerators are at risk of failure due to sudden loss of vacuum (SLV) adjacent to liquid helium (LHe) spaces. To better understand this failure mode and its associated risks an experiment is designed to test the longitudinal effects of SLV within the beam tube of a scaled SRF cryomodule that has considerable length relative to beam tube cross section. The scaled cryomodule consists of six individual SRF cavities each roughly 350 mm long, initially cooled to 2 K by a superfluid helium bath and a beam tube pumped to vacuum. A fast-acting solenoid valve is used to simulate SLV on the beam tube, from which point it takes over 3 s for the beam tube pressure to equalize with atmosphere, and 30 s for the helium space to reach the relief pressure of 4 bara. A SLV longitudinal effect in the beam tube is evident in both pressure and temperature data, but interestingly the temperatures responds more quickly to SLV than do the pressures. It takes 500 ms (roughly 100 ms per cavity) for the far end of the 2 m long beam tube to respond to a pressure increase compared to 300 ms for temperature (approximately 50 ms per cavity). The paper expands upon these and other results to better understand the longitudinal effect for SRF cryomodules due to SLV.

  17. Results from sudden loss of vacuum on scaled superconducting radio frequency cryomodule experiment

    NASA Astrophysics Data System (ADS)

    Dalesandro, Andrew A.; Dhuley, Ram C.; Theilacker, Jay C.; Van Sciver, Steven W.

    2014-01-01

    Superconducting radio frequency (SRF) cavities for particle accelerators are at risk of failure due to sudden loss of vacuum (SLV) adjacent to liquid helium (LHe) spaces. To better understand this failure mode and its associated risks an experiment is designed to test the longitudinal effects of SLV within the beam tube of a scaled SRF cryomodule that has considerable length relative to beam tube cross section. The scaled cryomodule consists of six individual SRF cavities each roughly 350 mm long, initially cooled to 2 K by a superfluid helium bath and a beam tube pumped to vacuum. A fast-acting solenoid valve is used to simulate SLV on the beam tube, from which point it takes over 3 s for the beam tube pressure to equalize with atmosphere, and 30 s for the helium space to reach the relief pressure of 4 bara. A SLV longitudinal effect in the beam tube is evident in both pressure and temperature data, but interestingly the temperatures responds more quickly to SLV than do the pressures. It takes 500 ms (roughly 100 ms per cavity) for the far end of the 2 m long beam tube to respond to a pressure increase compared to 300 ms for temperature (approximately 50 ms per cavity). The paper expands upon these and other results to better understand the longitudinal effect for SRF cryomodules due to SLV.

  18. Validation of Atmospheric Dynamics (VADY) - results of large-scale teleconnectivity analysis within MiKlip

    NASA Astrophysics Data System (ADS)

    Lang, Benjamin; Jacobeit, Jucundus; Beck, Christoph; Philipp, Andreas

    2014-05-01

    The climate research program MiKlip, supported by the Federal Ministry of Education and Research in Germany (BMBF), has the aim to develop a climate model system that can provide reliable decadal projections of climate, including extreme weather events. A substantial part of the development process is model validation (module E within the project). Model validation within MiKlip performs comparisons of models and observations, a quantification of model uncertainties, a reliable review of the forecast results and thorough comparison of results of different model simulations. The research project "Validation of Atmospheric Dynamics" (VADY), initiated by the cooperation partners University of Augsburg and the German Aerospace Centre (DLR), contributes to model validation within Miklip. Within the framework of VADY the focus of the Climate Research Group at the Institute of Geography at the University of Augsburg is on the validation of models with respect to the representation of atmospheric circulation types, dynamical modes and the teleconnectivity of the atmospheric circulation. The poster shows first results of large-scale teleconnectivity analysis based on well-known teleconnections patterns such as the North Atlantic Oscillation (NAO) or the Pacific/North American Pattern (PNA). Different calculation methods are compared and results of the validation of the MiKlip prediction system, based on hindcast analysis, are shown.

  19. Ductile fracture propagation in gas pipelines - results of full scale burst tests of big diameter pipes

    SciTech Connect

    de Vito, A.; Morini, A.; Pozzi, A.; Bonomo, F.; Bramante, M.

    1981-01-01

    Full-scale burst tests have been conducted at Perdasdefogu station of 48- and 56-in. diameter pipes of grade X70 and X80; hoop stresses were between 317 and 385 N/sq mm and thicknesses between 17 and 20 m. Two types of materials have been examined and other aspects have been considered. Particular efforts have been devoted to deformation measured by strain gages. From results obtained, examined also using a new formula as a prevision arrest criterion, the following conclusions can be drawn: (1) behavior of Q.T. materials is not properly covered by current design criteria, related limit cv energy values predicting arrest appear in fact unsafe for Q.T. steels; (2) frozen backfill might play an important role in containing fracture; and (3) simple mechanical devices can act, if properly designed, as very efficient crack-arrestors. 10 references.

  20. Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter

    NASA Technical Reports Server (NTRS)

    Korman, Valentin

    2007-01-01

    Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.

  1. Analysis and test for space shuttle propellant dynamics: 1/60th scale model test results

    NASA Technical Reports Server (NTRS)

    Berry, R. L.; Tegart, J. R.

    1978-01-01

    During the abort sequence, the ET and orbiter separate under aerodynamic loading, with propellant remaining in the ET. The separation event included a seven second decelerating coast period during which the residual propellant accelerates relative to the ET/orbiter. At separation, ET clearance was primarily provided by aerodynamics acting on the ET to move it away. The motion of the propellant, primarily LOX, significantly influenced the resulting ET motion and could cause the ET to recontact the orbiter. A test program was conducted involving thirty-two drops with 1/60th scale models of the ET LOX tank. The objective was to acquire data on the nature of low g propellant reorientation, in the ET LOX tank, and to measure the forces exerted on the tank by the moving propellant.

  2. Preshot Calculations for a Small-Scale HE Experiment. Overview and Results for Symmetric Configurations

    SciTech Connect

    Holmes, Richard L.

    2015-05-27

    Explosively-driven magnetic flux compression generators create substantial currents (10’s of mega-amps) by compressing magnetic fields initially created by injected seed currents. In a Ranchero generator it is the field between two cylinders of aluminum that is compressed when the inner cylinder (armature) is driven across the magnetized gap toward the second cylinder (stator) [1]. All Rancheros to date have used the explosive PBXN-110, but future devices are expected to use PBX-9501 because of several advantages of the latter over the former. For Ranchero applications, though, a potentially important disadvantage stems from the requirement that the large PBX-9501 charges (15 to 50 kg) must built up from smaller machined pieces rather than cast into the appropriate shape as with PBXN-110. Calculations [2] and related experiments [3] raise the possibility that jetting may occur at gaps between machined pieces of PBX-9501 and lead to localized failure of the soft aluminum armature causing premature contact of the armature with the stator or, in the most extreme case, a severing of the armature into separate pieces and a subsequent loss of current. A set of small-scale experiments has been designed to provide Ranchero designers and users insight into the effects of gaps and also to provide useful data for the validation of Ranchero calculations. These experiments should be executed in early May 2015. The code Rage [4] was used to model the small-scale experiment and this paper presents the results. The emphasis here is on the calculations and the experimental details are limited, so the interested reader is referred to reference 5 for a fuller description of the experimental configuration and diagnostics. Less-interested readers may be interested in only a summary of results and are directed to the “Summary of key results” section later in this paper.

  3. Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey

    SciTech Connect

    Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2005-03-28

    Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.

  4. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  5. Acoustic Treatment Design Scaling Methods. Volume 3; Test Plans, Hardware, Results, and Evaluation

    NASA Technical Reports Server (NTRS)

    Yu, J.; Kwan, H. W.; Echternach, D. K.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The ability to design, build, and test miniaturized acoustic treatment panels on scale-model fan rigs representative of the full-scale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. To be able to use scale model treatment as a full-scale design tool, it is necessary that the designer be able to reliably translate the scale model design and performance to an equivalent full-scale design. The primary objective of the study presented in this volume of the final report was to conduct laboratory tests to evaluate liner acoustic properties and validate advanced treatment impedance models. These laboratory tests include DC flow resistance measurements, normal incidence impedance measurements, DC flow and impedance measurements in the presence of grazing flow, and in-duct liner attenuation as well as modal measurements. Test panels were fabricated at three different scale factors (i.e., full-scale, half-scale, and one-fifth scale) to support laboratory acoustic testing. The panel configurations include single-degree-of-freedom (SDOF) perforated sandwich panels, SDOF linear (wire mesh) liners, and double-degree-of-freedom (DDOF) linear acoustic panels.

  6. MEGAPOLI: concept and first results of multi-scale modelling of megacity impacts

    NASA Astrophysics Data System (ADS)

    Baklanov, A. A.; Lawrence, M.; Pandis, S.

    2009-09-01

    major city, Paris, performing detailed analysis for 12 megacities with existing air quality datasets and investigate the effects of all megacities on climate and global atmospheric chemistry. The project focuses on the multi-scale modelling of interacting meteorology and air quality, spanning the range from emissions to air quality, effects on climate, and feedbacks and mitigation potentials. Our hypothesis is that megacities around the world have an impact on air quality not only locally, but also regionally and globally and therefore can also influence the climate of our planet. Some of the links between megacities, air quality and climate are reasonably well-understood. However, a complete quantitative picture of these interactions is clearly missing. Understanding and quantifying these missing links is the focus of MEGAPOLI. The current status and modeling results after the first project year on examples of Paris and other European megacities are discussed.

  7. EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    SciTech Connect

    Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2009-08-14

    20 wt% solids using cross-flow ultrafiltration before the addition of caustic. For wastes that have significantly high chromium content, the caustic leaching and slurry dewatering is followed by adding sodium permanganate to UFP-VSL-T02A, and the slurry is subjected to oxidative leaching at nominally ambient temperature. The purpose of the oxidative leaching is to selectively oxidize the poorly alkaline-soluble Cr(III) believed to be the insoluble form in Hanford tank sludge to the much more alkaline-soluble Cr(VI), e.g., chromate. The work described in this report provides the test results that are related to the efficiency of the oxidative leaching process to support process modeling based on tests performed with a Hanford waste simulant. The tests were completed both at the lab-bench scale and in the PEP. The purpose of this report is to summarize the results from both scales that are related to oxidative leaching chemistry to support a scale factor for the submodels to be used in the G2 model, which predicts WTP operating performance. Owing to schedule constraints, the PEP test data to be included in this report are limited to those from Integrated Tests A (T01 A/B caustic leaching) and B (T02A caustic leaching).

  8. Results of bench-scale plasma system testing in support of the Plasma Hearth Process

    SciTech Connect

    Leatherman, G.L.; Cornelison, C.; Frank, S.

    1996-10-01

    The Plasma Hearth Process (PHP) is a high-temperature process that destroys hazardous organic components and stabilizes the radioactive components and hazardous metals in a leach-resistant vitreous slag waste form. The PHP technology development program is targeted at mixed waste that cannot be easily treated by conventional means. For example, heterogeneous debris, which may contain hazardous organics, toxic metals, and radionuclides, is difficult to characterize and cannot be treated with conventional thermal, chemical, or physical treatment methods. A major advantage of the PHP over other plasma processes is its ability to separate nonradioactive, non-hazardous metals from the non-metallic and radioactive components which are contained in the vitreous slag. The overall PHP program involves the design, fabrication, and operation of test hardware to demonstrate and certify that the PHP concept is viable for DOE waste treatment. The program involves bench-scale testing of PHP equipment in radioactive service, as well as pilot-scale demonstration of the PHP concept using nonradioactive, surrogate test materials. The fate of secondary waste streams is an important consideration for any technology considered for processing mixed waste. The main secondary waste stream generated by the PHP is flyash captured by the fabric- filter baghouse. The PHP concept is that flyash generated by the process can, to a large extent, be treated by processing this secondary waste stream in the PHP. Prior to the work presented in the paper, however, the PHP project has not quantitatively demonstrated the ability to treat PHP generated flyash. A major consideration is the quantity of radionuclides and RCRA-regulated metals in the flyash that can be retained the resultant waste form.

  9. CASH algorithm versus 3-point checklist and its modified version in evaluation of melanocytic pigmented skin lesions: The 4-point checklist.

    PubMed

    di Meo, Nicola; Stinco, Giuseppe; Bonin, Serena; Gatti, Alessandro; Trevisini, Sara; Damiani, Giovanni; Vichi, Silvia; Trevisan, Giusto

    2016-06-01

    Dermoscopy, in expert hands, increases accuracy, sensitivity and specificity in diagnosis of pigmented skin lesions of a single operator, compared with clinical examination. Simplified algorithmic methods have been developed to help less expert dermoscopists in diagnosis of melanocytic lesions. This study included 125 melanocytic skin lesions divided into melanocytic nevi, dysplastic nevi and thin melanomas (<1 mm). We compared the 3-point checklist and CASH algorithm to analyze different pigmented skin lesions. Based on preliminary results, we proposed a new modified algorithm, called the 4-point checklist, whose accuracy is similar to the CASH algorithm and whose simplicity is similar to the 3-point checklist. PMID:26589251

  10. Coupling FLEXPART to the regional scale numerical weather prediction model COSMO: Implementation, evaluation and first results

    NASA Astrophysics Data System (ADS)

    Henne, Stephan; Kaufmann, Pirmin; Schraner, Martin; Brunner, Dominik

    2013-04-01

    The Lagrangian particle dispersion model FLEXPART is a well-known and robust research tool used by many atmospheric scientists worldwide. In its standard version FLEXPART was developed for the use with global or limited area input files from the European Centre for Medium Range Weather Forecast (ECMWF). Further versions exist for input from the NCEP (National Centers for Environmental Prediction) GFS (Global Forecasting System) model and for regional scale input from the MM5 model and its successor WRF. In Europe several national weather services and research groups develop and operate the non-hydrostatic limited-area atmospheric model COSMO (Consortium for Small-scale Modeling). At MeteoSwiss COSMO is operationally run with data assimilation on two grids with approximately 7 km x 7 km and 2 km x 2 km horizontal resolution centered over Switzerland This offers the exceptional opportunity of studying atmospheric transport over complex terrain on an long-term basis. To this end, we have developed a new version of FLEXPART that is offline coupled to COSMO output (FLEXPART-COSMO hereafter) and supports output from multiple COSMO nests. The version features several new developments as compared to the standard version. Most importantly, particles are internally referenced against the native vertical coordinate system used in COSMO and not, as in standard FLEXPART, in a terrain following z-system. This eliminates the need for an additional interpolation step. A new flux deaccumulation scheme was introduced that removes the need for additional preprocessing of the input files. In addition to the existing Emmanuel based convection parameterisation, a convection parameterisation based on the Tiedtke scheme, which is identical to the one implemented in COSMO itself, was introduced. A possibility for offline nesting of a FLEXPART-COSMO run into a FLEXPART-ECMWF run for backward simulations was developed that only requires minor modifications on the FLEXPART-ECMWF version and

  11. Medium-Scale Traveling Ionospheric Disturbances (MSTIDs) resulting from Chelyabinsk Meteor Blast

    NASA Astrophysics Data System (ADS)

    Sheeks, B. J.; Warren, N.; Coster, A. J.

    2013-12-01

    A global network of GPS receivers continuously make line-of-sight (LOS) measurements of the total electron content (TEC) of the ionosphere. This TEC measurement data can be analyzed to 'persistently monitor' natural and man-made activity in the atmosphere (such as volcanic eruptions, earthquakes, rocket launches, etc) which propagate into the ionosphere to produce TIDs (Traveling Ionospheric Disturbances). As an example we have analyzed in detail the TIDs resulting from the 15 Feb 2013 Chelyabinsk meteor blast as observed by the Artu GPS receiver site in Arti, Russia close to the event. Seven of the GPS satellite measurements with LOS pierce points within 1000 km of the blast show disturbances. Four of these clearly show VTEC oscillations with ~12 minute periods. The other three show much weaker responses, but their LOS pierce points are far from the blast and their aspects between the geomagnetic field & blast propagation vector are unfavorable (near broadside). By fitting all seven measurements we estimate a propagation speed of ~380 m/s for these medium-scale TIDs. As future 'persistent surveillance' efforts we intend to investigate the observability of man-made activities such as static rocket engine firings in TEC measurements. Analysis of MSTIDs resulting from the Chelyabinsk meteor blast

  12. Spatial resolution effect on the simulated results of watershed scale models

    NASA Astrophysics Data System (ADS)

    Epelde, Ane; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José Miguel

    2016-04-01

    Numerical models are useful tools for water resources planning, development and management. Currently, their use is being spread and more complex modeling systems are being employed for these purposes. The adding of complexity allows the simulation of water quality related processes. Nevertheless, this implies a considerable increase on the computational requirements, which usually is compensated on the models by a decrease on their spatial resolution. The spatial resolution of the models is known to affect the simulation of hydrological processes and therefore, also the nutrient exportation and cycling processes. However, the implication of the spatial resolution on the simulated results is rarely assessed. In this study, we examine the effect of the change in the grid size on the integrated and distributed results of the Alegria River watershed model (Basque Country, Northern Spain). Variables such as discharge, water table level, relative water content of soils, nitrogen exportation and denitrification are analyzed in order to quantify the uncertainty involved in the spatial discretization of the watershed scale models. This is an aspect that needs to be carefully considered when numerical models are employed in watershed management studies or quality programs.

  13. Prediction of full-scale dewatering results of sewage sludges by the physical water distribution.

    PubMed

    Kopp, J; Dichtl, N

    2001-01-01

    The dewaterability of sewage sludge can be described by the total solids concentration of the sludge cake and the polymer-demand for conditioning. The total solids concentration of the sludge cake depends on the physical water distribution. The various types of water in sewage sludge are mainly distinguished by the type and the intensity of their physical bonding to the solids. In a sewage sludge suspension four different types of water can be distinguished. These are the free water, which is not bound to the particles, the interstitial water, which is bound by capillary forces between the sludge flocs, the surface water, which is bound by adhesive forces and intracellular water. Only the share of free water can be separated during mechanical dewatering. It can be shown, that by thermo-gravimeteric measurement of the free water content, an exact prediction of full-scale dewatering results is possible. By separation of all free water during centrifugation the maximum dewatering result is reached. Polymer conditioning increases the velocity of the sludge water release, but the free water content is not influenced by this process. Furthermore it is not possible, to replace the measuring of the water distribution by other individual parameters such as ignition loss. PMID:11443955

  14. Twelve Years of Cloud-to-Ground Lightning Characteristics, 1989-2000: Small Scale Results

    NASA Astrophysics Data System (ADS)

    Ely, B. L.; Steiger, S. M.; Phillips, S. E.; Orville, R. E.; Huffines, G. R.

    2001-12-01

    The National Lightning Detection Network recorded over 250 million cloud-to-ground lightning flashes from 1989 to 2000. Analysis of lightning flash density and polarity reveal significant small-scale geographical variations. These variations can occur as broad trends over several hundred kilometers, or as sharp contrasts over as little as a few kilometers. This study focuses on four regions of the United States: the Pacific Coast, Rocky Mountains, Appalachian Mountains, and the Houston Metropolitan area. In the Pacific Coastal region, an interesting geographical variation is found in the percentage of positive lightning. A higher than normal percentage of positive lightning discharges (up to five times the national average) dominates the coastline, but drastically decreases about a hundred kilometers inland. In the Rocky and Appalachian Mountains, observations of lightning flash density reveal two distinct and opposite patterns, despite similar terrain. Although located at about the same latitude, the southern Rockies display a significant increase in flash density over regions of high terrain, while the southern Appalachians show a significant decrease in flash density as elevations increase. Further analysis shows that the pattern in the Southern Rockies is a result of a large number of days with low flash counts, while the pattern in the Appalachians results from a few large events. The top 5 percent of lightning producing days accounted for 28.6 percent of all flashes in the high terrain of Rockies, but 56.9 percent of the total flashes in the Appalachians. Our final area of research concerns the lightning enhancement over the Houston, TX region. Fine scale analysis of this area suggests two leading hypotheses to explain this phenomenon. The first explanation is that the complex coastline of Galveston Bay in combination with the urban heat island alters the wind flow in the Houston area, initiating new thunderstorms directly over the city. The second

  15. Same Constructs, Different Results: Examining the Consistency of Two Behavior-Rating Scales with Referred Preschoolers

    ERIC Educational Resources Information Center

    Myers, Carl L.; Bour, Jennifer L.; Sidebottom, Kristina J.; Murphy, Sara B.; Hakman, Melissa

    2010-01-01

    Broad-band or multidimensional behavior-rating scales are common tools for evaluating children. Two popular behavior-rating scales, the Behavior Assessment System for Children, Second Edition (BASC-2; Reynolds & Kamphaus, 2004) and the Child Behavior Checklist (CBCL; Achenbach & Rescorla, 2000), have undergone downward extensions so that the…

  16. A Scale for Evaluating Standardized Reading Tests, with Results for Nelson-Denny, Iowa, and Stanford.

    ERIC Educational Resources Information Center

    Webb, Melvin W., II

    1983-01-01

    Uses a scale to analyze three tests used for assessing community college students' reading levels: The Stanford Diagnostic Reading Test (SDRT), the Nelson-Denny Reading Test (NDRT), and the Iowa Silent Reading Tests (ISRT). Judges the ISRT to be the best and the NDRT to be unacceptable according to the criteria of the scale. (FL)

  17. The Arabic Scale of Death Anxiety (ASDA): Its Development, Validation, and Results in Three Arab Countries

    ERIC Educational Resources Information Center

    Abdel-Khalek, Ahmed M.

    2004-01-01

    The Arabic Scale of Death Anxiety (ASDA) was constructed and validated in a sample of undergraduates (17-33 yrs) in 3 Arab countries, Egypt (n = 418), Kuwait (n = 509), and Syria (n = 709). In its final form, the ASDA consists of 20 statements. Each item is answered on a 5-point intensity scale anchored by 1: No, and 5: Very much. Alpha…

  18. Adjustments Made to the Results of the NWEA RIT Scale Minnesota Comprehensive Assessment Alignment Study

    ERIC Educational Resources Information Center

    Cronin, John

    2004-01-01

    Recently the Northwest Evaluation Association (NWEA) completed a project to connect the scale of the MCA and BST with NWEA's RIT scale. Six Minnesota systems participated in the study, using test information from a group of over 13,000 students enrolled in third, fifth, and eighth grades who took these Minnesota Assessments and NWEA tests in the…

  19. Evaluation of Environmental Attitudes: Analysis and Results of a Scale Applied to University Students

    ERIC Educational Resources Information Center

    Fernandez-Manzanal, Rosario; Rodriguez-Barreiro, Luis; Carrasquer, Jose

    2007-01-01

    Over the last few decades, environmental work has increased significantly. An important part of this has to do with attitudes. This research presents the design and validation of an environmental attitudes scale aimed at university students. Detailed information on development and validation of the scale is provided. Similarly, it presents the…

  20. The scaling of model test results to predict intake hot gas reingestion for STOVL aircraft with augmented vectored thrust engines

    NASA Technical Reports Server (NTRS)

    Penrose, C. J.

    1987-01-01

    The difficulties of modeling the complex recirculating flow fields produced by multiple jet STOVL aircraft close to the ground have led to extensive use of experimental model tests to predict intake Hot Gas Reingestion (HGR). Model test results reliability is dependent on a satisfactory set of scaling rules which must be validated by fully comparable full scale tests. Scaling rules devised in the U.K. in the mid 60's gave good model/full scale agreement for the BAe P1127 aircraft. Until recently no opportunity has occurred to check the applicability of the rules to the high energy exhaust of current ASTOVL aircraft projects. Such an opportunity has arisen following tests on a Tethered Harrier. Comparison of this full scale data and results from tests on a model configuration approximating to the full scale aircraft geometry has shown discrepancies between HGR levels. These discrepancies although probably due to geometry and other model/scale differences indicate some reexamination of the scaling rules is needed. Therefore the scaling rules are reviewed, further scaling studies planned are described and potential areas for further work are suggested.

  1. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY

    SciTech Connect

    Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson

    2005-04-08

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal

  2. SCALE-UP OF RAPID SMALL-SCALE ADSORPTION TESTS TO FIELD-SCALE ADSORBERS: THEORETICAL BASIS AND EXPERIMENTAL RESULTS FOR A CONSTANT DIFFUSIVITY

    EPA Science Inventory

    Granular activated carbon (GAC) is an effective treatment technique for the removal of some toxic organics from drinking water or wastewater, however, it can be a relatively expensive process, especially if it is designed improperly. A rapid method for the design of large-scale f...

  3. Analysis and experiments for composite laminates with holes and subjected to 4-point bending

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Prasad, C. B.

    1990-01-01

    Analytical and experimental results are presented for composite laminates with a hole and subjected to four-point bending. A finite-plate analysis is used to predict moment and strain distributions for six-layer quasi-isotropic laminates and transverse-ply laminates. Experimental data are compared with the analytical results. Experimental and analytical strain results show good agreement for the quasi-isotropic laminates. Failure of the two types of composite laminates is described, and failure strain results are presented as a function of normalized hole diameter. The failure results suggest that the initial failure mechanism for laminates subjected to four-point bending are similar to the initial failure mechanisms for corresponding laminates subjected to uniaxial inplane loadings.

  4. Comparison of Computational and Experimental Microphone Array Results for an 18%-Scale Aircraft Model

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Humphreys, William M.; Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano; Ravetta, Patricio A.

    2015-01-01

    An 18%-scale, semi-span model is used as a platform for examining the efficacy of microphone array processing using synthetic data from numerical simulations. Two hybrid RANS/LES codes coupled with Ffowcs Williams-Hawkings solvers are used to calculate 97 microphone signals at the locations of an array employed in the NASA LaRC 14x22 tunnel. Conventional, DAMAS, and CLEAN-SC array processing is applied in an identical fashion to the experimental and computational results for three different configurations involving deploying and retracting the main landing gear and a part span flap. Despite the short time records of the numerical signals, the beamform maps are able to isolate the noise sources, and the appearance of the DAMAS synthetic array maps is generally better than those from the experimental data. The experimental CLEAN-SC maps are similar in quality to those from the simulations indicating that CLEAN-SC may have less sensitivity to background noise. The spectrum obtained from DAMAS processing of synthetic array data is nearly identical to the spectrum of the center microphone of the array, indicating that for this problem array processing of synthetic data does not improve spectral comparisons with experiment. However, the beamform maps do provide an additional means of comparison that can reveal differences that cannot be ascertained from spectra alone.

  5. Dynamic stability test results on an 0.024 scale B-1 air vehicle

    NASA Technical Reports Server (NTRS)

    Beeman, R. R.

    1972-01-01

    Dynamic longitudinal and lateral-directional stability characteristics of the B-1 air vehicle were investigated in three wind tunnels at the Langley Research Center. The main rotary derivatives were obtained for an angle of attack range of -3 degrees to +16 degrees for a Mach number range of 0.2 to 2.16. Damping in roll data could not be obtained at the supersonic Mach numbers. The Langley 7 x 10 foot high speed tunnel, the 8 foot transonic pressure tunnel, and the 4 foot Unitary Plan wind tunnel were the test sites. An 0.024 scale light-weight model was used on a forced oscillation type balance. Test Reynolds number varied from 474,000/ft to 1,550,000/ft. through the Mach number range tested. The results showed that the dynamic stability characteristics of the model in pitch and roll were generally satisfactory up to an angle attack of about +6 degrees. In the wing sweep range from 15 to 25 degrees the positive damping levels in roll deteriorated rapidly above +2 degrees angle of attack. This reduction in roll damping is believed to be due to the onset of separation over the wing as stall is approached.

  6. Indications of regional scale groundwater flows in the Amazon Basins: Inferences from results of geothermal studies

    NASA Astrophysics Data System (ADS)

    Pimentel, Elizabeth T.; Hamza, Valiya M.

    2012-08-01

    The present work deals with determination groundwater flows in the Amazon region, based on analysis of geothermal data acquired in shallow and deep wells. The method employed is based on the model of simultaneous heat transfer by conduction and advection in permeable media. Analysis of temperature data acquired in water wells indicates down flows of groundwaters with velocities in excess of 10-7 m/s at depths less than 300 m in the Amazonas basin. Bottom-hole temperature (BHT) data sets have been used in determining characteristics of fluid movements at larger depths in the basins of Acre, Solimões, Amazonas, Marajó and Barreirinhas. The results of model simulations point to down flow of groundwaters with velocities of the order of 10-8 to 10-9 m/s, at depths of up to 4000 m. No evidence has been found for up flow typical of discharge zones. The general conclusion compatible with such results is that large-scale groundwater recharge systems operate at both shallow and deep levels in all sedimentary basins of the Amazon region. However, the basement rock formations of the Amazon region are relatively impermeable and hence extensive down flow systems through the sedimentary strata are possible only in the presence of generalized lateral movement of groundwater in the basal parts of the sedimentary basins. The direction of this lateral flow, inferred from the basement topography and geological characteristics of the region, is from west to east, following roughly the course of surface drainage system of the Amazon River, with eventual discharge into the Atlantic Ocean. The estimated flow rate at the continental margin is 3287 m3/s, with velocities of the order of 218 m/year. It is possible that dynamic changes in the fluvial systems in the western parts of South American continent have been responsible for triggering alterations in the groundwater recharge systems and deep seated lateral flows in the Amazon region.

  7. Moving on up: Can Results from Simple Aquatic Mesocosm Experiments be Applied Across Broad Spatial Scales?

    EPA Science Inventory

    1. Aquatic ecologists use mesocosm experiments to understand mechanisms driving ecological processes. Comparisons across experiments, and extrapolations to larger scales, are complicated by the use of mesocosms with varying dimensions. We conducted a mesocosm experiment over a vo...

  8. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    EPA Science Inventory

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  9. Results of direct containment heating integral experiments at 1/40th scale at Argonne National Laboratory

    SciTech Connect

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-09-01

    A series of integral tests have been completed that investigate the effect of scale and containment atmosphere initial composition on Direct Containment Heating (DCH) phenomena at 1/40 linear scale. A portion of these experiments were performed as counterparts to integral experiments conducted at 1/10th linear scale at Sandia National Laboratories. The tests investigated DCH phenomena in a 1/40th scale mockup of Zion Nuclear Power Plant geometry. The test apparatus was a scaled down version of the SNL apparatus and included models of the reactor vessel lower head, containment cavity, instrument tunnel, lower subcompartment structures and the upper dome. A High Pressure Melt Ejection (HPME) was produced using steam as a blowdown gas and iron-alumina thermite with chromium as a core melt simulant. The results of the counterpart experiments indicated no effect of scale on debris/gas heat transfer and debris metal oxidation with steam. However, the tests indicated a slight effect of scale on hydrogen combustion, the results indicating slightly more efficient combustion with increasing scale. The experiments demonstrated the effectiveness of the subcompartment structures in trapping debris exiting the cavity and preventing it from reaching the upper dome. The test results also indicated that a 50% air -- 50% steam atmosphere prevented hydrogen combustion. However, a 50% air - 50% nitrogen did not prevent hydrogen combustion in a HPME with all other conditions being nominally the same.

  10. Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed

    SciTech Connect

    Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

    2000-04-01

    Electrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to transform windows and skylights from an energy liability to an energy source for the nation's building stock. Monitored results from a full-scale demonstration of large-area electrochromic windows are given. The test consisted of two side-by-side, 3.7x4.6-m, office-like rooms. In each room, five 62x173-cm lower electrochromic windows and five 62x43-cm upper electrochromic windows formed a large window wall. The window-to-exterior-wall ratio (WWR) was 0.40. The southeast-facing electrochromic windows had an overall visible transmittance (Tv) range of Tv=0.11-0.38 and were integrated with a dimmable electric lighting system to provide constant work plane illuminance and to control direct sun. Daily lighting use from the automated electrochromic window system decreased by 6 to 24% compared to energy use with static, low-transmission (Tv =0.11), unshaded windows in overcast to cle ar sky winter conditions in Oakland, California. Daily lighting energy use increased as much as 13% compared to lighting energy use with static windows that had Tv=0.38. Even when lighting energy savings were not obtainable, the visual environment produced by the electrochromic windows, indicated by well-controlled window and room luminance levels, was significantly improved for computer-type tasks throughout the day compared to the visual environment with unshaded 38%-glazing. Cooling loads were not measured, but previous building energy simulations indicate that additional savings could be achieved. To ensure visual and thermal comfort, electrochromics require occasional use of interior or exterior shading systems when direct sun is present. Other recommendations to improve electrochromic materials and controls are noted along with some architectural constraints.

  11. Test results from the GA technologies engineering-scale off-gas treatment system

    SciTech Connect

    Jensen, D.D.; Olguin, L.J.; Wilbourn, R.G.

    1984-06-01

    One method for reducing the volume of HTGR fuel prior to reprocessing or spent fuel storage is to crush and burn the graphite fuel elements. The burner off-gas (BOG) contains radioactive components, principally H-3, C-14, Kr-85, I-129, and Rn-220, as well as chemical forms such as CO/sub 2/, CO, O/sub 2/, and SO/sub 2/. The BOG system employs components designed to remove these constitutents. Test results are reported for the iodine and SO/sub 2/ adsorbers and the CO/HT oxidizer. Silver-based iodine adsorbents were found to catalyze the premature conversion of CO to CO/sub 2/. Subsequent tests showed that iodine removal could not be performed downstream of the CO/HT oxidizer since iodine in the BOG system rapidly deactivated the Pt-coated alumina CO catalyst. Lead-exchanged zeolite (PbX) was found to be an acceptable alternative for removing iodine from BOG without CO conversion. Intermittent and steady-state tests of the pilot-plant SO/sub 2/ removal unit containing sodium-exchanged zeolite (NaX) demonstrated that decontamination factors greater than or equal to 100 could be maintained for up to 50 h. In a reprocessing flowsheet, the solid product from the burners is dissolved in nitric or Thorex acid. The dissolver off-gas (DOG) contains radioactive components H-3, Kr-85, I-129, Rn-220 plus chemical forms such as nitrogen oxides (NO/sub x/). In the pilot-scale system at GA, iodine is removed from the DOG by adsorption. Tests of iodine removal have been conducted using either silver-exchanged mordenite (AgZ) or AgNO/sub 3/-impregnated silica gel (AC-6120). Although each sorbent performed well in the presence of NO/sub x/, the silica gel adsorbent proved more efficient in silver utilization and, thus, more cost effective.

  12. Outcome Preferences in Patients With Noninfectious Uveitis: Results of a Best–Worst Scaling Study

    PubMed Central

    Yu, Tsung; Holbrook, Janet T.; Thorne, Jennifer E.; Flynn, Terry N.; Van Natta, Mark L.; Puhan, Milo A.

    2015-01-01

    Purpose To estimate patient preferences regarding potential adverse outcomes of local versus systemic corticosteroid therapies for noninfectious uveitis by using a best–worst scaling (BWS) approach. Methods Local and systemic therapies are alternatives for noninfectious uveitis that have different potential adverse outcomes. Patients participating in the Multicenter Uveitis Steroid Treatment Trial Follow-up Study (MUST FS) and additional patients with a history of noninfectious uveitis treated at two academic medical centers (Johns Hopkins University and University of Pennsylvania) were surveyed about their preferences regarding six adverse outcomes deemed important to patients. Using “case 1” BWS, patients were asked to repeatedly select the most and least worrying from a list of outcomes (in the survey three outcomes per task). Results Eighty-two patients in the MUST FS and 100 patients treated at the academic medical centers completed the survey. According to BWS, patients were more likely to select vision not meeting the requirement for driving (individual BWS score: median = 3, interquartile range, 0–5), development of glaucoma (2, 1–4), and needing eye surgery (1, 0–3) as the most worrying outcomes as compared to needing medicine for high blood pressure/cholesterol (−2, −4 to 0), development of cataracts (−2, −3 to −1), or infection (sinusitis) (−3, −5 to 0). Larger BWS scores indicated the outcomes were more worrying to patients. Conclusions Patients with noninfectious uveitis considered impaired vision, development of glaucoma, and need for eye surgery worrying adverse outcomes, which suggests that it is especially desirable to avoid these outcomes if possible. (ClinicalTrials.gov number, NCT00132691.) PMID:26501236

  13. Volatile Organic Compound (VOC) Removal by Vapor Permeation at Low VOC Concentrations: Laboratory Scale Results and Modeling for Scale Up.

    PubMed

    Rebollar-Perez, Georgette; Carretier, Emilie; Lesage, Nicolas; Moulin, Philippe

    2011-01-01

    Petroleum transformation industries have applied membrane processes for solvent and hydrocarbon recovery as an economic alternative to reduce their emissions and reuse evaporated components. Separation of the volatile organic compounds (VOCs) (toluene-propylene-butadiene) from air was performed using a poly dimethyl siloxane (PDMS)/α-alumina membrane. The experimental set-up followed the constant pressure/variable flow set-up and was operated at ~21 °C. The membrane is held in a stainless steel module and has a separation area of 55 × 10-4 m². Feed stream was set to atmospheric pressure and permeate side to vacuum between 3 and 5 mbar. To determine the performance of the module, the removed fraction of VOC was analyzed by Gas Chromatography/Flame Ionization Detector (GC/FID). The separation of the binary, ternary and quaternary hydrocarbon mixtures from air was performed at different flow rates and more especially at low concentrations. The permeate flux, permeance, enrichment factor, separation efficiency and the recovery extent of the membrane were determined as a function of these operating conditions. The permeability coefficients and the permeate flux through the composite PDMS-alumina membrane follow the order given by the Hildebrand parameter: toluene > 1,3-butadiene > propylene. The simulated data for the binary VOC/air mixtures showed fairly good agreement with the experimental results in the case of 1,3-butadiene and propylene. The discrepancies observed for toluene permeation could be minimized by taking into account the effects of the porous support and an influence of the concentration polarization. Finally, the installation of a 0.02 m2 membrane module would reduce 95% of the VOC content introduced at real concentration conditions used in the oil industry. PMID:24957498

  14. Latest COBE results, large-scale data, and predictions of inflation

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1992-01-01

    One of the predictions of the inflationary scenario of cosmology is that the initial spectrum of primordial density fluctuations (PDFs) must have the Harrison-Zeldovich (HZ) form. Here, in order to test the inflationary scenario, predictions of the microwave background radiation (MBR) anisotropies measured by COBE are computed based on large-scale data for the universe and assuming Omega-1 and the HZ spectrum on large scales. It is found that the minimal scale where the spectrum can first enter the HZ regime is found, constraining the power spectrum of the mass distribution to within the bias factor b. This factor is determined and used to predict parameters of the MBR anisotropy field. For the spectrum of PDFs that reaches the HZ regime immediately after the scale accessible to the APM catalog, the numbers on MBR anisotropies are consistent with the COBE detections and thus the standard inflation can indeed be considered a viable theory for the origin of the large-scale structure in the universe.

  15. Acoustic Treatment Design Scaling Methods. Volume 1; Overview, Results, and Recommendations

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.

    1999-01-01

    Scale model fan rigs that simulate new generation ultra-high-bypass engines at about 1/5-scale are achieving increased importance as development vehicles for the design of low-noise aircraft engines. Testing at small scale allows the tests to be performed in existing anechoic wind tunnels, which provides an accurate simulation of the important effects of aircraft forward motion on the noise generation. The ability to design, build, and test miniaturized acoustic treatment panels on scale model fan rigs representative of the fullscale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. The primary objective of this study was to develop methods that will allow scale model fan rigs to be successfully used as acoustic treatment design tools. The study focuses on finding methods to extend the upper limit of the frequency range of impedance prediction models and acoustic impedance measurement methods for subscale treatment liner designs, and confirm the predictions by correlation with measured data. This phase of the program had as a goal doubling the upper limit of impedance measurement from 6 kHz to 12 kHz. The program utilizes combined analytical and experimental methods to achieve the objectives.

  16. Debris-flow Dynamics Inferred From Aggregated Results of 28 Large-scale Experiments

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.; Logan, M.; Lahusen, R. G.; Berti, M.

    2008-12-01

    Key features of debris-flow dynamics are revealed by identifying reproducible trends in data collected during 28 large-scale experiments with closely controlled initial and boundary conditions. In each experiment, 10 m3 of water-saturated sediment consisting mostly of sand and gravel discharges abruptly from behind a vertical headgate, descends a ~90 m concrete flume inclined 31 degrees, and forms a deposit on a nearly horizontal runout surface. The experiments are grouped into three sets of 8 to 11 replicates distinguished by differing mud contents (1% vs. 7% by dry weight) and basal boundary roughnesses (1 mm vs. 20 mm characteristic amplitude). Aggregation of sensor data from each set of replicates reveals universal patterns, as well as variances, in evolution of flow velocities, depths, basal normal stresses, and basal pore pressures. The patterns show that debris flows consistently develop blunt, coarse-grained, high-friction flow fronts pushed from behind by nearly liquefied, finer-grained debris. This flow architecture yields lobate deposits bounded by coarse-grained snouts and lateral levees. The aggregated data also show that imposed differences in basal boundary conditions and debris compositions produce systematic -- and sometimes surprising -- differences in flow dynamics and deposits. For example, flows on rough beds run out further than flows on smooth beds, despite the fact that flows on smooth beds attain greater velocities. This counterintuitive behavior results from enhanced grain-size segregation in the presence of a rough bed; segregation accentuates development of lateral levees that channelize flow and retard depletion of downstream momentum by lateral spreading. Another consistent finding is that flows with significant mud content are more mobile (attain greater velocities and runouts) than flows lacking much mud. This behavior is evident despite the fact that mud measurably increases the viscosity and yield strength of the fluid component

  17. Gunshot residue inserted under hair scales as a result of a muzzle blast

    NASA Astrophysics Data System (ADS)

    Burnett, Bryan R.

    2009-05-01

    The victim was alleged to have been shot in the head with a .40 caliber pistol from several feet. The defendant claimed that the shot was on the order of inches. Examination in the scanning electron microscope of the hair from around the victim's wound showed no adherent gunshot residue (GSR). However, when the hair was pulled apart by the adhesive of a standard GSR sampler, GSR was found associated with the exposed inner surfaces of the cuticle and cortex fragments. The pistol was discharged close enough to the victim's head that some of the cuticular scales were lifted in the muzzle blast which allowed GSR to be inserted under those scales. Gunshot residue associated with the surface of the victim's hair had somehow been removed. The defendant's account of the shooting was verified by the presence of under-scale GSR.

  18. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  19. Study of concrete's behavior under 4-point bending load using Coda Wave Interferometry (CWI) analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Abraham, O.; Chapeleau, X.; Cottineau, L.-M.; Tournat, V.; Le Duff, A.; Lascoup, B.; Durand, O.

    2013-01-01

    Coda Wave Interferometry (CWI) is an ultrasonic NDT method suitable for complex material such as concrete that can precisely measure small propagation velocity variation (10-2%). By measuring variation of propagation velocity in concrete caused by acoustoelasticity phenomena, CWI analysis can be used to monitor concrete's internal stress level. For the first time, CWI is used to measure propagation velocity variations due to a stress field in a concrete beam under four-points bending test, which contains simultaneously compressive and tensile stress. Embedded optical-fiber sensors, strain gauges are used in the experiment, in order to confirm and validate the CWI analysis result. Thermocouples are also embedded into concrete beams for monitoring internal temperature fluctuations.

  20. High-resolution chemical composition of geothermal scalings from Hungary: Preliminary results

    NASA Astrophysics Data System (ADS)

    Boch, Ronny; Dietzel, Martin; Deák, József; Leis, Albrecht; Mindszenty, Andrea; Demeny, Attila

    2015-04-01

    Geothermal fluids originating from several hundreds to thousands meters depth mostly hold a high potential for secondary mineral precipitation (scaling) due to high total dissolved solid contents at elevated temperature and pressure conditions. The precipitation of e.g. carbonates, sulfates, sulfides, and silica has shown to cause severe problems in geothermal heat and electric power production, when clogging of drill-holes, downhole pumps, pipes and heat exchangers occurs (e.g. deep geothermal doublet systems). Ongoing scaling reduces the efficiency in energy extraction and might even question the abandonment of installations in worst cases. In an attempt to study scaling processes both temporally and spatially we collected mineral precipitates from selected sites in Hungary (Bükfürdo, Szechenyi, Szentes, Igal, Hajduszoboszlo). The samples of up to 8 cm thickness were recovered from different positions of the geothermal systems and precipitated from waters of various temperatures (40-120 °C) and variable overall chemical composition. Most of these scalings show fine lamination patterns representing mineral deposition from weeks up to 45 years at our study sites. Solid-fluid interaction over time captured in the samples are investigated applying high-resolution analytical techniques such as laser-ablation mass-spectrometry and electron microprobe, micromill-sampling for stable isotope analysis, and micro-XRD combined with hydrogeochemical modeling. A detailed investigation of the processes determining the formation and growth of precipitates can help to elucidate the short-term versus long-term geothermal performance with regard to anthropogenic and natural reservoir and production dynamics. Changes in fluid chemistry, temperature, pressure, pH, degassing rate (CO2) and flow rate are reflected by the mineralogical, chemical and isotopic composition of the precipitates. Consequently, this high-resolution approach is intended as a contribution to decipher the

  1. Process Testing Results and Scaling for the Hanford Waste Treatment and Immobilization Plant (WTP) Pretreatment Engineering Platform - 10173

    SciTech Connect

    Kurath, Dean E.; Daniel, Richard C.; Baldwin, David L.; Rapko, Brian M.; Barnes, Steven M.; Gilbert, Robert A.; Mahoney, Lenna A.; Huckaby, James L.

    2010-01-14

    The U.S. Department of Energy-Office of River Protection’s Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks at Richland, Washington. In support of this effort, engineering-scale tests at the Pretreatment Engineering Platform (PEP) have been completed to confirm the process design and provide improved projections of system capacity. The PEP is a 1/4.5-scale facility designed, constructed, and operated to test the integrated leaching and ultrafiltration processes being deployed at the WTP. The PEP replicates the WTP leaching processes with prototypic equipment and control strategies and non-prototypic ancillary equipment to support the core processing. The testing approach used a nonradioactive aqueous slurry simulant to demonstrate the unit operations of caustic and oxidative leaching, cross-flow ultrafiltration solids concentration, and solids washing. Parallel tests conducted at the laboratory scale with identical simulants provided results that allow scale-up factors to be developed between the laboratory and PEP performance. This paper presents the scale-up factors determined between the laboratory and engineering-scale results and presents arguments that extend these results to the full-scale process.

  2. Preliminary results of a finite-element, multi-scale model of the Mahakam Delta (Indonesia)

    NASA Astrophysics Data System (ADS)

    de Brye, Benjamin; Schellen, Sébastien; Sassi, Maximiliano; Vermeulen, Bart; Kärnä, Tuomas; Deleersnijder, Eric; Hoitink, Ton

    2011-08-01

    The Mahakam is a 980-km-long tropical river flowing in the East Kalimantan province (Borneo Island, Indonesia). A significant fraction of this river is influenced by tides, the modelling of which is the main subject of this study. Various physical and numerical issues must be addressed. In the upstream part of the domain, the river flows through a region of three lakes surrounded by peat swamps. In the lowland regions, the river is meandering and its hydrodynamics is mostly influenced by tides. The latter propagate upstream of the delta, in the main river and its tributaries. Finally, the mouth of the Mahakam is a delta exhibiting a high number of channels connected to the Makassar Strait. This article focusses on the flow in the delta channels, which is characterised by a wide range of time and space scales. To capture most of them, the depth-integrated and the section-integrated versions of the unstructured mesh, finite-element model Second-Generation Louvain-la-Neuve Ice-Ocean Model are used. Unstructured grids allow for a refinement of the mesh in the narrowest channels and also an extension of the domain upstream and downstream of the delta in order to prescribe the open-boundary conditions. The Makassar Strait, the Mahakam Delta and the three lakes are modelled with 2D elements. The rivers, from the upstream limit of the delta to the lakes and the upstream limit of the domain, are modelled in 1D. The calibration of the tidal elevation simulated in the Mahakam Delta is presented. Preliminary results on the division of the Eulerian residual discharge through the channels of the delta are also presented. Finally, as a first-order description of the long-term transport, the age of the water originating from the upstream limit of the delta is computed. It is seen that for May and June 2008, the time taken by the water parcel to cross the estuary varies from 4 to 7 days depending on the channel under consideration.

  3. Dimensionality of the Contact with Disabled Persons Scale: Results from Exploratory and Confirmatory Factor Analyses

    ERIC Educational Resources Information Center

    Pruett, Steven R.; Lee, Eun-Jeong; Chan, Fong; Wang, Ming Hung; Lane, Frank J.

    2008-01-01

    The purpose of this study was to examine the dimensionality of the "Contact With Disabled Persons Scale" (CDP). An exploratory factor analysis of the CDP yielded three factors: General Interpersonal Contacts, Positive Contact Experiences, and Negative Contact Experiences. A confirmatory factor analysis provided further evidence for the stability…

  4. Validity and Reliability of Turkish Version of Gilliam Autism Rating Scale-2: Results of Preliminary Study

    ERIC Educational Resources Information Center

    Diken, Ibrahim H.; Diken, Ozlem; Gilliam, James E.; Ardic, Avsar; Sweeney, Dwight

    2012-01-01

    The purpose of this preliminary study was to explore the validity and reliability of Turkish Version of the Gilliam Autism Rating Scale-2 (TV-GARS-2). Participants included 436 children diagnosed with autism (331 male and 105 female, mean of ages was 8.01 with SD = 3.77). Data were also collected from individuals diagnosed with intellectual…

  5. Some Results on Proper Eigenvalues and Eigenvectors with Applications to Scaling.

    ERIC Educational Resources Information Center

    McDonald, Roderick P.; And Others

    1979-01-01

    Problems in avoiding the singularity problem in analyzing matrices for optimal scaling are addressed. Conditions are given under which the stationary points and values of a ratio of quadratic forms in two singular matrices can be obtained by a series of simple matrix operations. (Author/JKS)

  6. Multilingual Literacy Skill Development in Kenya: Results from Medium Scale Randomized Controlled Trials

    ERIC Educational Resources Information Center

    Piper, Benjamin

    2016-01-01

    If children do not learn how to read in the first few years of primary school, they at greater risk of dropping out. It is therefore crucial to identify and test interventions that have the potential of making a large impact, can be implemented quickly, and are affordable to be taken to scale by the Kenyan government. This paper presents the…

  7. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1980-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are investigated by means of flow visualization and hot-wire measurements. The manipulator was found to be effective in inhibiting the intermittent large scale structure of the boundary layer, and the effect persists for at least 70 boundary-layer thicknesses downstream of the manipulator. With the removal of the large scale, there was an observed reduction in the streamwise turbulence intensity levels near the wall. The downstream distribution of the skin friction coefficient, determined from the stream wise change in fluid momentum, was also altered by the introduction of the manipulator. The data from both the visualization and hot wire studies are provided.

  8. Planck 2013 results. XVII. Gravitational lensing by large-scale structure

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Smith, K.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25σ. We use thetemperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ΛCDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z ~ 2.

  9. Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook

    PubMed Central

    Goldstein, M. L.; Wicks, R. T.; Perri, S.; Sahraoui, F.

    2015-01-01

    Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of turbulence to solar wind dynamics. PMID:25848084

  10. Scale

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2009-01-01

    The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to fail, and fail…

  11. 1/6TH SCALE STRIP EFFLUENT FEED TANK-MIXING RESULTS USING MCU SOLVENT

    SciTech Connect

    Hansen, E

    2006-02-01

    The purpose of this task was to determine if mixing was an issue for the entrainment and dispersion of the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) solvent in the Defense Waste Processing Facility (DWPF) Strip Effluent Feed Tank (SEFT). The MCU strip effluent stream containing the Cs removed during salt processing will be transferred to the DWPF for immobilization in HLW glass. In lab-scale DWPF chemical process cell testing, mixing of the solvent in the dilute nitric acid solution proved problematic, and the Savannah River National Laboratory (SRNL) was requested to perform scaled SEFT mixing tests to evaluate whether the problem was symptomatic of the lab-scale set-up or of the solvent. The solvent levels tested were 228 and 235 ppm, which represented levels near the estimated DWPF solvent limit of 239 ppm in 0.001M HNO{sub 3} solution. The 239 ppm limit was calculated by Norato in X-CLC-S-00141. The general approach for the mixing investigation was to: (1) Investigate the use of fluorescent dyes to aid in observing the mixing behavior. Evaluate and compare the physical properties of the fluorescent dyed MCU solvents to the baseline Oak Ridge CSSX solvent. Based on the data, use the dyed MCU solvent that best approximates the physical properties. (2) Use approximately a 1/6th linear scale of the SEFT to replicate the internal configuration for DWPF mixing. (3) Determine agitator speed(s) for scaled testing based on the DWPF SEFT mixing speed. (4) Perform mixing tests using the 1/6th SEFT and determine any mixing issues (entrainment/dispersion, accumulation, adhesion) through visual observations and by pulling samples to assess uniformity. The mixing tests used MCU solvent fabricated at SRNL blended with Risk Reactor DFSB-K43 fluorescent dye. This dyed SRNL MCU solvent had equivalent physical properties important to mixing as compared to the Oak Ridge baseline solvent, blended easily with the MCU solvent, and provided an excellent visual aid.

  12. Revision of ACRIMSAT/ACRIM3 TSI results based on LASP/TRF diagnostic test results for the effects of scattering, diffraction and basic SI scale traceability

    NASA Astrophysics Data System (ADS)

    Willson, R. C.

    2011-12-01

    The ACRIMSAT/ACRIM3 - SORCE/TIM TSI scale difference was investigated through diagnostic testing of ACRIM3 flight backup instrumentation in the Laboratory for Atmospheric and Space Physics Total Solar Irradiance Radiometer Facility (LASP/TRF). A preliminary downward correction of 5000 ppm was derived to conform ACRIM3 results to the TRF indicated effects of scattering, diffraction and basic radiation scale traceability to the international system of units (SI). Additional testing and analysis is required to reduce the uncertainties of these results which is estimated to be +/- 500 ppm. The net effect of the TRF corrections places average ACRIM3 TSI results slightly lower than those of SORCE/TIM but within the uncertainty of the TRF comparisons.

  13. Scaling laws and simulation results for the self-organized critical forest-fire model

    NASA Astrophysics Data System (ADS)

    Clar, S.; Drossel, B.; Schwabl, F.

    1994-08-01

    We discuss the properties of a self-organized critical forest-fire model which has been introduced recently [B. Drossel and F. Schwabl, Phys. Rev. Lett. 69, 1629 (1992)]. We derive scaling laws and define critical exponents. The values of these critical exponents are determined by computer simulations in one to eight dimensions. The simulations suggest a critical dimension dc=6 above which the critical exponents assume their mean-field values. Changing the lattice symmetry and allowing trees to be immune against fire, we show that the critical exponents are universal.

  14. The optimization of aircraft seat cushion fire-blocking layers. Full Scale: Test description and results

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Duskin, F. E.

    1982-01-01

    Full-scale burn tests were conducted on thirteen different seat cushion configurations in a cabin fire simulator. The fire source used was a quartz lamp radiant energy panel with a propane pilot flame. During each test, data were recorded for cushion temperatures, radiant heat flux, rate of weight loss of test specimens, and cabin temperatures. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advance materials, using improved construction methods, exhibited significantly greater fire resistance.

  15. SCALING PROPERTIES OF FLUCTUATION RESULTS FROM THE PHENIX EXPERIMENT AT RHIC.

    SciTech Connect

    MITCHELL,J.T.

    2006-06-05

    The PHENIX Experiment at the Relativistic Heavy Ion Collider has made measurements of event-by-event fluctuations in the charged particle multiplicity as a function of collision energy, centrality, collision species, and transverse momentum in several heavy ion collision systems. It is observed that the fluctuations in terms of {sigma}{sup 2}/{mu}{sup 2} exhibit a universal power-law scaling as a function of N{sub participants} that is independent of the transverse momentum range of the measurement.

  16. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS

    SciTech Connect

    JACKSON VL

    2011-08-31

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  17. Characterization results for 106-AN grout produced in a pilot-scale test

    SciTech Connect

    Lokken, R.O.; Bagaasen, L.M.; Martin, P.F.C.; Palmer, S.E.; Anderson, C.M.

    1993-06-01

    The Grout Treatment Facility (GTF) at Hanford. Washington, will process the low-level fraction of selected double-shell tank (DST) wastes into a cementitious waste form. This facility, which is operated by Westinghouse Hanford Company (WHC), mixes liquid waste with cementitious materials to produce a waste form that immobilizes hazardous constituents through chemical reactions and/or microencapsulation. Over one million gallons of phosphate/sulfate waste were solidified in the first production campaign with this facility. The next tank waste scheduled for treatment is 106-AN (the waste from Tank 241-AN-106). After laboratory studies were conducted to select the grout formulation, tests using the 1/4-scale pilot facilities at the Pacific Northwest Laboratory (PNL) were conducted as part of the formulation verification process. The major objectives of these pilot-scale tests were to determine if the proposed grout formulation could be processed in the pilotscale equipment. to collect thermal information to help determine the best way to manage the grout hydration heat, and to characterize the solidified grout.

  18. Resource recovery from source separated domestic waste(water) streams; full scale results.

    PubMed

    Zeeman, Grietje; Kujawa-Roeleveld, Katarzyna

    2011-01-01

    A major fraction of nutrients emitted from households are originally present in only 1% of total wastewater volume. New sanitation concepts enable the recovery and reuse of these nutrients from feces and urine. Two possible sanitation concepts are presented, with varying degree of source separation leading to various recovery products. Separate vacuum collection and transport followed by anaerobic treatment of concentrated black water (BW) demonstrated on a scale of 32 houses preserve 7.6 g/N/p/d and 0.63 gP/p/d amounting to respectively 69 and 48% of the theoretically produced N and P in the household, and 95% of the retained P was shown to be recoverable via struvite precipitation. Reuse of the anaerobic sludge in agriculture can substantially increase the P recovery. Energy recovery in the form of biogas from anaerobic digestion of concentrated BW, fits well in new concepts of sustainable, zero energy buildings. Nutrient recovery from separately collected urine lowers the percentage of nutrient recovery in comparison with BW but can, on the other hand, often be implemented in existing sanitation concepts. Theoretically 11gN/p/d and 1.0 g P/p/d are produced with urine, of which 38-63 and 34-61% were recovered in practice on a scale of 8-160 inhabitants in Sweden. New sanitation concepts with resource recovery and reuse are being demonstrated worldwide and more and more experience is being gained. PMID:22105119

  19. The Arabic scale of death anxiety: some results from east and west.

    PubMed

    Abdel-Khalek, Ahmed M; Lester, David; Maltby, John; Tomás-Sábado, Joaquin

    2009-01-01

    The twofold objectives of the present study were (a) to examine sex-related differences on the Arabic Scale of Death Anxiety (ASDA) in seven Arabic and Western countries, and (b) to compare the mean ASDA scores among Arabic samples (Egypt, Kuwait, Lebanon, and Syria) with Western samples (Spain, the United Kingdom, and the United States). A total sample of 2978 volunteer undergraduates participated in this study. They resided in their countries of origin and responded to the scale in their respective native-speaking languages. Sex-related differences on the ASDA were statistically significant in all countries (except the United Kingdom), with women having higher mean scores than their male peers. It was found that all the Arab samples, except the Lebanese men, had significantly higher mean ASDA scores than their Western counterparts. These differences might be explained either in the light of higher emotionally responsiveness of the Arab samples, differences in individualism and collectivism and in secularism in the countries, and the lower per capita income in the Arab countries except in Kuwait. PMID:19634505

  20. A Self-Efficacy Scale for Clinical Nurse Leaders: Results of a Pilot Study.

    PubMed

    Gilmartin, Mattia J; Nokes, Kathleen

    2015-01-01

    Introduced in 2003, the Clinical Nurse Leader (CNL) role is the first new nursing role introduced in more than 30 years. The hallmark of CNL practice is the management of client-centered care and clinical excellence at the point of care. As part of multifaceted efforts to implement the CNL role, understanding how an individual's self-efficacy with the identified role competencies changes over time has important implications for individuals, educational programs preparing CNLs, and health care organizations employing CNLs. In this study, preliminary psychometric analyses assessing the construct validity, reliability, and discriminant validity for a new state-specific scale (CNL Self-Efficacy Scale) that assesses nurses' perceptions of their ability to function effectively as a CNL are reported. Because self-confidence is a key predictor of successful role transition, job satisfaction, and job performance, measuring individuals' self-confidence with the core competencies associated with the CNL role over time will be important to gain the full benefit of this innovative, unit-based advanced generalist role. PMID:26259337

  1. Flux-canceling electrodynamics maglev suspension. Part 2: Test results and scaling laws

    SciTech Connect

    Thompson, M.T.; Thornton, R.D.

    1999-05-01

    Electrodynamic suspension (EDS) are highly undamped and require some form of active control or a secondary suspension to achieve adequate ride quality. This paper reports on efforts to develop a version of EDS that uses controllable magnetic forces to eliminate the need for any secondary suspension. The magnetic forces act directly on the guideway and avoid the need to have unsprung weight and a secondary suspension. It is shown that the energy required to effect this control can be less than 1% of the energy stored in the suspension magnets, so a modest size controller can be used. The same controller can also provide life at very low speeds and thereby eliminate the need for a separate low-speed suspension system. A set of scaling laws is described which is used to size a full-scale high-temperature superconductor (HTSC)-based suspension magnet. The test fixture was also used to verify the use of zero velocity lift, where ac excitation is used in the suspension coils to achieve lift at low train velocity.

  2. Analytic results for scaling function and moments for a different type of avalanche in the Bak-Sneppen evolution model

    NASA Astrophysics Data System (ADS)

    Li, W.; Cai, X.

    2000-12-01

    Starting from the master equation for the hierarchical structure of avalanches of a different kind within the frame of the Bak-Sneppen evolution model, we derive the exact formula of the scaling function describing the probability distribution of avalanches. The scaling function displays features required by the scaling ansatz and verified by simulations. Using the scaling function we investigate the avalanche moment, denoted by Δf¯. It is found that for any non-negative integer k, Δf¯ diverges as Δf¯-k, which gives an infinite group of exact critical exponents. Simulation outcomes of avalanche moments with k=1,2,3, are found to be consistent with the corresponding analytical results.

  3. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    SciTech Connect

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and sensible

  4. Modeling Of Small Scale Surface Deformation Based On DInSAR Result

    NASA Astrophysics Data System (ADS)

    Furuta, Ryoichi

    2012-01-01

    Monitoring of small scale surface deformation as subsidence and landslides is very important to protect lifeline, manmade structures, buildings and houses, roads and railways, and so on. In order to monitor subsidence and landslides, several technologies were applied. However, these technologies cannot be applied to broad area and it is difficult to understand spatial distribution of affected area of subsidence and landslides. DInSAR analysis can be understand spatial distribution of affected area of subsidence and landslide, therefore, it has high prospect in Japan because Japan has a lot of sites of subsidence and landslides. However, DInSAR analysis cannot extract sub-surface information like depth of source of deformation. In order to enhance a capability of detection of small scale surface deformation as subsidence and landslide by DInSAR analysis, integration use of DInSAR analysis and numerical model and original model for estimation of small scale surface deformation was proposed in this paper. Proposed model was applied to subsidence which was detected by ALOS PALSAR DInSAR. Target area is located in the North-East part of China. At the target area, large subsidence occurred due to coal mining activity and overuse of ground water. In order to consider way of countermeasure work for subsidence, it is important to know affected area of subsidence, depth of source of subsidence, and so on. Affected area of subsidence can be understood by the DInSAR analysis, however, depth of source of subsidence has difficult to understand by the DInSAR analysis. In order to understand the depth of source of subsidence, numerical model was necessary. Proposed model can be estimating affected area of subsidence and depth of source of subsidence by a few parameters derived from DInSAR analysis. Proposed model was well performed in the simulation of subsidence pattern of 1-D space and it could be estimated depth of subsidence source. However, it wasn't well performed to

  5. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  6. EFRT M-12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    SciTech Connect

    Rapko, Brian M.; Schonewill, Philip P.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2010-01-01

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  7. Testing of aircraft passenger seat cushion materials. Full scale, test description and results, volume 1

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1981-01-01

    Eight different seat cushion configurations were subjected to full-scale burn tests. Each cushion configuration was tested twice for a total of sixteen tests. Two different fire sources were used. They consisted of one liter of Jet A fuel for eight tests and a radiant energy source with propane flame for eight tests. Both fire sources were ignited by a propane flame. During each test, data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and for the type and content of gas within the cabin atmosphere. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance.

  8. The acoustic results of a United Techologies scale model helicopter rotor tested at DNW

    NASA Technical Reports Server (NTRS)

    Liu, Sandy R.; Marcolini, Michael A.

    1990-01-01

    An initial summary is presented of the acoustic measurements acquired for some of the different configurations of a 1/6 geometrically and aeroelastically scaled UTC model helicopter rotor which was tested in the open-jet anechoic test section of the Duits-Nederlandse Windtunnel in the Netherlands. Of particular interest are high-speed impulsive noise and blade-vortex interaction. An analysis is provided of baseline swept tip rotor acoustic characteristics in the regimes of high-speed forward flight, where high-speed impulsive noise dominates, and low-speed descent, where severe blade vortex interaction noise occurs. Also discussed are more recent studies of data which involve the animation of the acoustic field upstream of the rotor to evaluate the detailed radiation patters caused by BVI and HSI noise sources. The trends of these primary noise sources are examined as the first step in validating the data for release and application.

  9. Sources of Discomfort in Persons with Dementia: Scale and Initial Results

    PubMed Central

    Cohen-Mansfield, Jiska; Thein, Khin; Marx, Marcia S.; Dakheel-Ali, Maha; Jensen, Barbara

    2015-01-01

    The Sources of Discomfort Scale (SODS) assesses discomfort manifestations based on source of discomfort, thus making it both distinct from and complementary to pain assessments for persons with dementia. Sources were categorized as pertaining to physical discomfort, to body position, and to environmental sources. Body position sources of discomfort were related to poor functional status and to pain. The SODS scores were not related to cognitive functioning, and sources of discomfort other than those pertaining to body position were not correlated with pain. This paper demonstrates a direct and enhanced method to detect the manifestations of discomfort separately from pain indicators in a population with advanced dementia. The determination of the source of discomfort has direct implications for intervention. PMID:26180375

  10. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    SciTech Connect

    Kaye, S.M.

    1985-05-01

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood.

  11. Phenomenological features of dreams: Results from dream log studies using the Subjective Experiences Rating Scale (SERS).

    PubMed

    Kahan, Tracey L; Claudatos, Stephanie

    2016-04-01

    Self-ratings of dream experiences were obtained from 144 college women for 788 dreams, using the Subjective Experiences Rating Scale (SERS). Consistent with past studies, dreams were characterized by a greater prevalence of vision, audition, and movement than smell, touch, or taste, by both positive and negative emotion, and by a range of cognitive processes. A Principal Components Analysis of SERS ratings revealed ten subscales: four sensory, three affective, one cognitive, and two structural (events/actions, locations). Correlations (Pearson r) among subscale means showed a stronger relationship among the process-oriented features (sensory, cognitive, affective) than between the process-oriented and content-centered (structural) features--a pattern predicted from past research (e.g., Bulkeley & Kahan, 2008). Notably, cognition and positive emotion were associated with a greater number of other phenomenal features than was negative emotion; these findings are consistent with studies of the qualitative features of waking autobiographical memory (e.g., Fredrickson, 2001). PMID:26945159

  12. Recent Results from Broad-Band Intensity Mapping Measurements of Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Zemcov, Michael B.; CIBER, Herschel-SPIRE

    2016-01-01

    Intensity mapping integrates the total emission in a given spectral band over the universe's history. Tomographic measurements of cosmic structure can be performed using specific line tracers observed in narrow bands, but a wealth of information is also available from broad-band observations performed by instruments capable of capturing high-fidelity, wide-angle images of extragalactic emission. Sensitive to the continuum emission from faint and diffuse sources, these broad-band measurements provide a view on cosmic structure traced by components not readily detected in point source surveys. After accounting for measurement effects and astrophysical foregrounds, the angular power spectra of such data can be compared to predictions from models to yield powerful insights into the history of cosmic structure formation. This talk will highlight some recent measurements of large scale structure performed using broad-band intensity mapping methods that have given new insights on faint, distant, and diffuse components in the extragalactic background light.

  13. Comparison of numerical simulation with experimental result for small scale one seater wing in ground effect (WIG) craft

    NASA Astrophysics Data System (ADS)

    Baharun, A. Tarmizi; Maimun, Adi; Ahmed, Yasser M.; Mobassher, M.; Nakisa, M.

    2015-05-01

    In this paper, three dimensional data and behavior of incompressible and steady air flow around a small scale Wing in Ground Effect Craft (WIG) were investigated and studied numerically then compared to the experimental result and also published data. This computational simulation (CFD) adopted two turbulence models, which were k-ɛ and k-ω in order to determine which model produces minimum difference to the experimental result of the small scale WIG tested in wind tunnel. Unstructured mesh was used in the simulation and data of drag coefficient (Cd) and lift coefficient (Cl) were obtained with angle of attack (AoA) of the WIG model as the parameter. Ansys ICEM was used for the meshing process while Ansys Fluent was used for solution. Aerodynamic forces, Cl, Cd and Cl/Cd along with fluid flow pattern of the small scale WIG craft was shown and discussed.

  14. Results of static tests of a 1/4 scale model of the Boeing YC-14 powered-lift system

    NASA Technical Reports Server (NTRS)

    Hassell, J. L., Jr.

    1976-01-01

    One quarter scale static ground tests of the Boeing YC-14 powered lift system were conducted for correlation with full scale test results. The 1/4 scale model utilized a JT-15D turbofan engine to represent the CF6-50D engine employed on the YC-14 advanced medium STOL transport prototype aircraft. The tests included evaluation of static turning performance, static surface pressure and temperature distributions, fluctuating loads, and accelerations of portions of the wing, flaps, and fuselage. Results are presented for the landing flap configuration over an appropriate range of fan pressure ratio as affected by several variables including ground height and vortex generator modifications. Static turning angles of the order of 60 deg were obtained. The highest surface pressures and temperatures were concentrated over the upper surface of the flaps in the region immediately aft of the upper surface blown nozzle.

  15. Wind tunnel test results of a 1/8-scale fan-in-wing model

    NASA Technical Reports Server (NTRS)

    Wilson, John C.; Gentry, Garl L.; Gorton, Susan A.

    1996-01-01

    A 1/8-scale model of a fan-in-wing concept considered for development by Grumman Aerospace Corporation for the U.S. Army was tested in the Langley 14- by 22-Foot Subsonic Tunnel. Hover testing, which included height above a pressure-instrumented ground plane, angle of pitch, and angle of roll for a range of fan thrust, was conducted in a model preparation area near the tunnel. The air loads and surface pressures on the model were measured for several configurations in the model preparation area and in the tunnel. The major hover configuration change was varying the angles of the vanes attached to the exit of the fans for producing propulsive force. As the model height above the ground was decreased, there was a significant variation of thrust-removed normal force with constant fan speed. The greatest variation was generally for the height-to-fan exit diameter ratio of less than 2.5; the variation was reduced by deflecting fan exit flow outboard with the vanes. In the tunnel angles of pitch and sideslip, height above the tunnel floor, and wind speed were varied for a range of fan thrust and different vane angle configurations. Other configuration features such as flap deflections and tail incidence were evaluated as well. Though the V-tail empennage provided an increase in static longitudinal stability, the total model configuration remained unstable.

  16. The acoustic results of a United Technologies scale model helicopter rotor tested at DNW

    NASA Technical Reports Server (NTRS)

    Liu, Sandy R.; Marcolini, Michael A.

    1990-01-01

    In a major cooperative program between U.S. Government agencies (represented by the U.S. Army Aeroflightdynamics Directorate and NASA Ames and Langley Research Centers) and United Technologies Corp., a 1/6 geometrically and aeroelastically scaled UTC model helicopter rotor was tested in the open-jet anechoic test section of the Duits-Nederlandse Windtunnel in the Netherlands. As the fourth entry under the Aerodynamic and Acoustic Testing of Model Rotors Program, several comprehensive acoustic and aerodynamic databases were obtained relating the important aerodynamic phenomena to both the near- and far-field acoustic radiation. In particular, high speed impulsive noise and blade-vortex interaction are of primary interest. This paper provides an initial summary of the acoustic measurements acquired for some of the different configurations tested. A review of the baseline swept tip rotor acoustic characteristics in the regimes of high speed forward flight, where high speed impulsive noise dominates, and low speed descent, where severe blade vortex interaction noise occurs, is presented. The trends of these primary noise sources are studied as the first step in validating the data for release and application.

  17. Acoustic and Aero-Mixing Experimental Results for Fluid Shield Scale Model Nozzles

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Mengle, V. G.; Shin, H. W.; Majjigi, R. K.

    2005-01-01

    The principle objectives of this investigation are to evaluate the acoustic and aerodynamic characteristics of fluid shield nozzle concept and to assess Far 36, Stage 3 potential for fluid shield nozzle with Flade Cycle. Acoustic data for nine scale model nozzle configurations are obtained. The effects of simulated flight and geometric and aerothermodynamic flow variables on the acoustic behavior of the fluid shield are determined. The acoustic tests are aimed at studying the effect of: (1) shield thickness, (2) wrap angle, (3) mass flow and velocity ratios between shield and core streams at constant cycle specific thrust (i.e., mixed velocity), (4) porous plug, and (5) subsonic shield. Shadowgraphs of six nozzle configurations are obtained to understand the plume flowfield features. Static pressure data on suppressor chutes in the core stream (shielded and unshielded) sides and on plug surface are acquired to determine the impact of fluid shield on base drag of the 36-chute suppressor nozzle and the thrust augmentation due to the plug, respectively.

  18. Static jet noise test results of four 0.35 scale-model QCGAT mixer nozzles

    NASA Technical Reports Server (NTRS)

    Groesbeck, D. E.; Wasserbauer, C. A.

    1984-01-01

    As part of the NASA Quiet Clean General Aviation Turbofan (QCGAT) engine mixer-nozzle exhaust system program, static jet exhaust noise was recorded at microphone angles of 45 to 155 deg relative to the nozzle inlet for a conventional profile coaxial nozzle and three 12-lobed coaxial mixer nozzles. Both flows in all four nozzles are internally mixed before being discharged from a single exhaust nozzle. The conventional profile coaxial nozzle jet noise is compared to the current NASA Lewis coaxial jet noise prediction and after applying an adjustment to the predicted levels based on the ratio of the kinetic energy of the primary and secondary flows, the prediction is within a standard deviation of 0.9 dB of the measured data. The mass average (mixed flow) prediction is also compared to the noise data for the three mixer nozzles with a reasonably good fit after applying another kinetic energy ratio adjustment (standard deviation of 0.7 to 1.5 dB with the measured data). The tests included conditions for the full-scale engine at takeoff (T.O.), cutback (86% T.O.) and approach (67% T.O.).

  19. DEM-based Modeling at the Hillslope Scale: Recent Results and Future Process Research Needs

    NASA Astrophysics Data System (ADS)

    McDonnell, J.; Coles, A.; Gabrielli, C. P.; Appels, W. M.; Ameli, A.

    2015-12-01

    Hillslope scale patterns of overland flow, infiltration, subsurface stormflow and groundwater recharge are all topographically mediated. However, the mechanisms by which macro-, meso- and micro-topographies control filling and spilling of lateral flow, and vertical infiltration, are still poorly understood. Here we present high-resolution DEMs derived from ground-based LiDAR, airborne LiDAR, and GPR (ground penetrating rebar!) with model analysis to examine the topographic controls on water flow at three distinct hillslopes. We explore surface topographic effects on rainfall- and snowmelt-infiltration and overland flow on the Canadian Prairies; the surface and subsurface topographic controls on lateral subsurface stormflow generation and groundwater recharge at a steep, wet temperate rainforest in New Zealand; and subsurface topographic controls on patterns of groundwater recharge at a forested hillslope on the Georgia Piedmont in the United States. We demonstrate how these studies reveal future research needs for improving DEM-based watershed delineation and modeling along with some surprising similarities between topographic controls on soil surface infiltration and overland flow and twin subsurface processes at the soil-bedrock interface.

  20. Laboratory-scale analysis of aquifer remediation by in-well vapor stripping 1. Laboratory results

    NASA Astrophysics Data System (ADS)

    Gonen, Ori; Gvirtzman, Haim

    1997-12-01

    This study is a laboratory test of the aquifer remediation concept proposed by Gvirtzman and Gorelick (1992, Transp. Porous Media, 8: 71-92), which involves the removal of volatile organic compounds (VOCs) dissolved in groundwater. The principle is to inject air into a well, creating air-lift pumping, which is used as a means of in-well vapor stripping. The partially treated water is separated from the VOC vapor and infiltrates back to the water table. A laboratory-scale aquifer model containing a remediation-well prototype was used to trace VOC removal over time. The removal rates of trichloroethylene (TCE), toluene and chloroform were monitored using eight triple-level observation wells. The continuous decrease of VOC concentrations in space and time was interpreted based on three processes: (1) the diffusional mass transfer between the contaminated water and the air bubbles during their rise within the well: (2) the desorption of VOCs from the solid matrix to the water phase; (3) the flow field in the saturated zone driven by the continuous water circulation between the pumping well and the recharging area. In a companion paper (Pinto et al., 1997), three-dimensional flow and transport modeling with inter-phase mass transfer is carried out to simulate these processes.

  1. Results.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Describes the Collegiate Results Instrument (CRI), which measures a range of collegiate outcomes for alumni 6 years after graduation. The CRI was designed to target alumni from institutions across market segments and assess their values, abilities, work skills, occupations, and pursuit of lifelong learning. (EV)

  2. THE NATIONAL EPIDEMIOLOGICAL AND ENVIRONMENTAL ASSESSMENT OF RECREATIONAL WATERS: RESULTS FROM THE FIRST SUMMER OF FULL-SCALE STUDIES

    EPA Science Inventory

    The National Epidemiological and Environmental Assessment of Recreational Waters: Results from the first summer of full-scale studies. Timothy J. Wade, Rebecca L. Calderon, Elizabeth Sams, Kristen Brenner, Michael Beach, Ann H. Williams, Al Dufour.

    Abstract

    Introduc...

  3. Year One Results from the Multisite Randomized Evaluation of the i3 Scale-Up of Reading Recovery

    ERIC Educational Resources Information Center

    May, Henry; Gray, Abigail; Sirinides, Philip; Goldsworthy, Heather; Armijo, Michael; Sam, Cecile; Gillespie, Jessica N.; Tognatta, Namrata

    2015-01-01

    Reading Recovery (RR) is a short-term, one-to-one intervention designed to help the lowest achieving readers in first grade. This article presents first-year results from the multisite randomized controlled trial (RCT) and implementation study under the $55 million Investing in Innovation (i3) Scale-Up Project. For the 2011-2012 school year, the…

  4. A Comparative Evaluation of Score Results from Computerized and Paper & Pencil Mathematics Testing in a Large Scale State Assessment Program

    ERIC Educational Resources Information Center

    Poggio, John; Glasnapp, Douglas R.; Yang, Xiangdong; Poggio, Andrew J.

    2005-01-01

    The present study reports results from a quasi-controlled empirical investigation addressing the impact on student test scores when using fixed form computer based testing (CBT) versus paper and pencil (P&P) testing as the delivery mode to assess student mathematics achievement in a state's large scale assessment program. Grade 7 students served…

  5. The Kinetic Scale Structure of the Low Latitude Boundary Layer: Initial MMS Results

    NASA Astrophysics Data System (ADS)

    Dorelli, John; Gershman, Dan; Avanov, Levon; Pollock, Craig; Giles, Barbara; Gliese, Ulrik; Barrie, Alexander; Holland, Matthew; Salo, Chad; Dickson, Charles; Coffey, Victoria; Chandler, Michael; Sato, Yoshifumi; Strangeway, Robert; Russell, Christopher; Baumjohann, Wolfgang; Khotyainstev, Yuri; Torbert, Roy; Burch, James

    2016-04-01

    Since its launch in March of 2015, NASA's Magnetospheric Multiscale (MMS) mission has captured thousands of high resolution magnetopause crossings, routinely resolving the sub-Larmor radius structure of the magnetopause boundary layer for the first time. The primary goal of MMS is to understand the microphysics of magnetic reconnection, and it is well on its way to achieving this objective. However, MMS is also making routine measurements of the electron and ion gyroviscous and heat flux tensors with unprecedented resolution and accuracy. This opens up the possibility of directly observing the physical processes that facilitate momentum and energy transport across the magnetopause boundary layer under arbitrary conditions (e.g., magnetic field geometry and flow shear) far from the reconnection X line. Currently, our global magnetosphere fluid models (e.g., resistive or Hall MHD) do not include accurate descriptions of viscosity and heat flow, both of which are known to be critical players at the magnetopause (not just at the reconnection sites), and several groups are attempting to make progress on this difficult fluid closure problem. In this talk, we will address the fluid closure problem in the context of MMS observations of the Low Latitude Boundary Layer (LLBL), focusing on high resolution particle observations by the Fast Plasma Investigation (FPI). FPI electron bulk velocities are accurate enough to compute current density in both the high density magnetosheath and low density magnetosphere and have already revealed that the LLBL has a complex parallel current structure on the proton Larmor radius scale. We discuss the relationship between these parallel currents and the Hall electric field structures predicted by kinetic models. We also present first observations of the ion and electron gyroviscous and heat flux tensors in the LLBL and discuss implications for the fluid closure problem at Earth's magnetopause.

  6. FY results for the Los Alamos large scale demonstration and deployment project

    SciTech Connect

    Stallings, E.; McFee, J.

    2000-11-01

    The Los Alamos Large Scale Demonstration and Deployment Project (LSDDP) in support of the US Department of Energy (DOE) Deactivation and Decommissioning Focus Area (DDFA) is identifying and demonstrating technologies to reduce the cost and risk of management of transuranic element contaminated large metal objects, i.e. gloveboxes. DOE must dispose of hundreds of gloveboxes from Rocky Flats, Los Alamos and other DOE sites. Current practices for removal, decontamination and size reduction of large metal objects translates to a DOE system-wide cost in excess of $800 million, without disposal costs. In FY99 and FY00 the Los Alamos LSDDP performed several demonstrations on cost/risk savings technologies. Commercial air pallets were demonstrated for movement and positioning of the oversized crates in neutron counting equipment. The air pallets are able to cost effectively address the complete waste management inventory, whereas the baseline wheeled carts could address only 25% of the inventory with higher manpower costs. A gamma interrogation radiography technology was demonstrated to support characterization of the crates. The technology was developed for radiography of trucks for identification of contraband. The radiographs were extremely useful in guiding the selection and method for opening very large crated metal objects. The cost of the radiography was small and the operating benefit is high. Another demonstration compared a Blade Cutting Plunger and reciprocating saw for removal of glovebox legs and appurtenances. The cost comparison showed that the Blade Cutting Plunger costs were comparable, and a significant safety advantage was reported. A second radiography demonstration was conducted evaluation of a technology based on WIPP-type x-ray characterization of large boxes. This technology provides considerable detail of the contents of the crates. The technology identified details as small as the fasteners in the crates, an unpunctured aerosol can, and a vessel

  7. Is Current CMBR Temperature: The Scale Independent Quantum Gravitational Result of Black Hole Cosmology?

    NASA Astrophysics Data System (ADS)

    Seshavatharam, U. V. S.; Lakshminarayana, S.

    If one is willing to consider the current cosmic microwave back ground temperature as a quantum gravitational effect of the evolving primordial cosmic black hole (universe that constitutes dynamic space-time and exhibits quantum behavior) automatically general theory of relativity and quantum mechanics can be combined into a `scale independent' true unified model of quantum gravity. By considering the `Planck mass' as the initial mass of the baby Hubble volume, past and current physical and thermal parameters of the cosmic black hole can be understood. Current rate of cosmic black hole expansion is being stopped by the microscopic quantum mechanical lengths. In this new direction authors observed 5 important quantum mechanical methods for understanding the current cosmic deceleration. To understand the ground reality of current cosmic rate of expansion, sensitivity and accuracy of current methods of estimating the magnitudes of current CMBR temperature and current Hubble constant must be improved and alternative methods must be developed. If it is true that galaxy constitutes so many stars, each star constitutes so many hydrogen atoms and light is coming from the excited electron of galactic hydrogen atom, then considering redshift as an index of `whole galaxy' receding may not be reasonable. During cosmic evolution, at any time in the past, in hydrogen atom emitted photon energy was always inversely proportional to the CMBR temperature. Thus past light emitted from older galaxy's excited hydrogen atom will show redshift with reference to the current laboratory data. As cosmic time passes, in future, the absolute rate of cosmic expansion can be understood by observing the rate of increase in the magnitude of photon energy emitted from laboratory hydrogen atom. Aged super novae dimming may be due to the effect of high cosmic back ground temperature. Need of new mathematical methods & techniques, computer simulations, advanced engineering skills seem to be essential

  8. Large Scale Association Analysis for Drug Addiction: Results from SNP to Gene

    PubMed Central

    Guo, Xiaobo; Liu, Zhifa; Wang, Xueqin; Zhang, Heping

    2012-01-01

    Many genetic association studies used single nucleotide polymorphisms (SNPs) data to identify genetic variants for complex diseases. Although SNP-based associations are most common in genome-wide association studies (GWAS), gene-based association analysis has received increasing attention in understanding genetic etiologies for complex diseases. While both methods have been used to analyze the same data, few genome-wide association studies compare the results or observe the connection between them. We performed a comprehensive analysis of the data from the Study of Addiction: Genetics and Environment (SAGE) and compared the results from the SNP-based and gene-based analyses. Our results suggest that the gene-based method complements the individual SNP-based analysis, and conceptually they are closely related. In terms of gene findings, our results validate many genes that were either reported from the analysis of the same dataset or based on animal studies for substance dependence. PMID:23365539

  9. Stress-resultant models for ultimate load design of reinforced concrete frames and multi-scale parameter estimates

    NASA Astrophysics Data System (ADS)

    Pham, B. H.; Brancherie, D.; Davenne, L.; Ibrahimbegovic, A.

    2013-03-01

    In this work, we present a new finite element for (geometrically linear) Timoshenko beam model for ultimate load computation of reinforced concrete frames. The proposed model combines the descriptions of the diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or collapse of the concrete and of the re-bars. A modified multi-scale analysis is performed in order to identify the parameters for stress-resultant-based macro model, which is used to described the behavior of the Timoshenko beam element. For clarity, we focus upon the micro-scale models using the multi-fiber elements with embedded displacement discontinuities in mode I, which would typically be triggered by bending failure mode. More general case of micro-scale model capable of describing shear failure is described by Ibrahimbegovic et al. (Int J Numer Methods Eng 83(4):452-481, 2010).

  10. Helicopter blade-vortex interaction locations: Scale-model acoustics and free-wake analysis results

    NASA Technical Reports Server (NTRS)

    Hoad, Danny R.

    1987-01-01

    The results of a model rotor acoustic test in the Langley 4by 7-Meter Tunnel are used to evaluate a free-wake analytical technique. An acoustic triangulation technique is used to locate the position in the rotor disk where the blade-vortex interaction noise originates. These locations, along with results of the rotor free-wake analysis, are used to define the geometry of the blade-vortex interaction noise phenomena as well as to determine if the free-wake analysis is a capable diagnostic tool. Data from tests of two teetering rotor systems are used in these analyses.

  11. Characteristics of aeroelastic instabilities in turbomachinery - NASA full scale engine test results

    NASA Technical Reports Server (NTRS)

    Lubomski, J. F.

    1979-01-01

    Several aeromechanical programs have been conducted in the NASA/USAF Joint Engine System Research Programs. The scope of these programs, the instrumentation, data acquisition and reduction, and the test results are discussed. Data pertinent to four different instabilities were acquired; two types of stall flutter, choke flutter and a system mode instability. The data indicates that each instability has its own unique characteristics. These characteristics are described.

  12. Characteristics of aeroelastic instabilities in turbomachinery - NASA full scale engine test results

    NASA Technical Reports Server (NTRS)

    Lubomski, J. F.

    1979-01-01

    Several aeromechanical programs were conducted in the NASA/USAF Joint Engine System Research Programs. The scope of these programs, the instrumentation, data acquisition and reduction, and the test results are discussed. Data pertinent to four different instabilities were acquired; two types of stall flutter, choke flutter and a system mode instability. The data indicates that each instability has its own unique characteristics. These characteristics are described.

  13. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    SciTech Connect

    Gary Blythe

    2007-05-01

    in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

  14. Core Heat Flow and Suppression of Mantle Plumes by Plate-Scale Mantle Flow: Results From Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Gonnermann, H. M.; Jellinek, A. M.; Richards, M. A.; Manga, M.

    2002-12-01

    Heat flow from the Earth's core to the mantle remains an unresolved quantity. Its value has implications for the core's thermal evolution and growth of the inner core, the geodynamo, and the relative abundance of radioactive elements in the core and mantle. Core heat flow is affected by dynamics of the lowermost mantle in three ways: (1) advection of heat by plume instabilities; (2) conductive heating of subducted material; and (3) suppression of plume instabilities, as well as advection of heat by plate-scale mantle flow. We present results from a boundary-layer analysis and laboratory experiments aimed at understanding the effects of an imposed large-scale circulation on thermal convection at high-Rayleigh number (106<=Ra<=109) in a fluid with a strongly temperature-dependent viscosity. The ultimate goal of this work is to better understand the effect of plate-scale mantle flow on heat flux across the CMB and on the dynamics of plume formation at the CMB. Our theoretical analysis is complemented by lab experiments, in which a layer of corn syrup is heated from below and a large-scale flow is induced in the fluid above the hot boundary. We identify 4 convective regions associated with high-Rayleigh number convection in the presence of a large-scale flow: (1) a subcritical TBL region (Domain I), where plume instabilities are suppressed by the advective thinning of the TBL and heat flux is increased relative to convection without large-scale flow; (2) a supercritical TBL region (Domain II), where plume instabilities are no longer suppressed and heat flux is equal to convection without large-scale flow; (3) a flow-dominated region (Domain III), which is free of plumes; and (4) a plume-dominated domain (Domain IV), where the interaction of hot buoyant plumes and imposed large-scale flow results in lateral advection and distortion of rising plumes. In addition, we present a boundary-layer analysis that predicts heat flux, Q, from a hot surface as a function of imposed

  15. Test results from a full-scale sodium reflux pool-boiler solar receiver

    NASA Astrophysics Data System (ADS)

    Moreno, J. B.; Andraka, C. E.; Diver, R. B.; Ginn, W. C.; Dudley, V.; Rawlinson, K. S.

    1990-01-01

    A sodium reflux pool-boiler solar receiver has been tested on a nominal 75 kW sub t parabolic-dish concentrator. The purpose was to demonstrate the feasibility of reflux-receiver technology for application to Stirling-engine dish-electric systems. In this application, pool boilers (and more generally liquid-metal reflux receivers) have a number of advantages over directly-illuminated tube receivers. The advantages, to be discussed, include more uniform temperature, which results in longer lifetime and higher temperature available to the engine.

  16. Test results from a full-scale sodium reflux pool-boiler solar receiver

    SciTech Connect

    Moreno, J.B.; Andraka, C.E.; Diver, R.B.; Ginn, W.C.; Dudley, V.; Rawlinson, K.S.

    1990-01-01

    A sodium reflux pool-boiler solar receiver has been tested on a nominal 75-kW{sub t} parabolic-dish concentrator. The purpose was to demonstrate the feasibility of reflux-receiver technology for application to Stirling-engine dish-electric systems. In this application, pool boilers (and more generally liquid-metal reflux receivers) have a number of advantages over directly-illuminated tube receivers. The advantages, to be discussed, include more uniform temperature, which results in longer lifetime and higher temperature available to the engine. 17 refs., 10 figs.

  17. Particle-In-Cell (PIC) code simulation results and comparison with theory scaling laws for photoelectron-generated radiation

    SciTech Connect

    Dipp, T.M. |

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using Particle-In-Cell (PIC) code computer simulations. Using the MAGIC PIC code, the simulations were performed in one dimension to handle the diverse scale lengths of the particles and fields in the problem. The simulations involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train, as well as unmodulated emission, were used to explore the behavior of the particles, fields, and generated radiation. A special postprocessor was written to convert the PIC code simulated electron sheath into far-field radiation parameters by means of rigorous retarded time calculations. The results of the small-spot PIC simulations were used to generate various graphs showing resonance and nonresonance radiation quantities such as radiated lobe patterns, frequency, and power. A database of PIC simulation results was created and, using a nonlinear curve-fitting program, compared with theoretical scaling laws. Overall, the small-spot behavior predicted by the theoretical scaling laws was generally observed in the PIC simulation data, providing confidence in both the theoretical scaling laws and the PIC simulations.

  18. A model for scaling the results of U excretion rate studies in beagle dogs to man.

    PubMed

    Eidson, A F; Griffith, W C; Hahn, F F; Pickrell, J A

    1989-01-01

    A biokinetic model was used to simulate retention and excretion of two forms of U: ammonium diuranate (ADU), a relatively soluble form, and U3O8, a relatively insoluble form. These two U forms represent those most likely to be encountered in the U milling industry. The simulation model was compared with results from a study of aerosols of commercial refined U ore inhaled by laboratory animals. Beagle dogs were exposed by inhalation to ADU aerosols to achieve a median initial body burden of 0.058 mg U kg-1 body weight (within a range of 0.016 to 0.64 mg U kg-1), or to U3O8 aerosols to achieve a median retained body burden of 0.28 mg U kg-1 (0.030-0.81 mg U kg-1). The simulation model accurately described the accumulation of nephrotoxic concentrations of U in kidneys of animals exposed to ADU. Very small fractions of the initial body burden of U3O8 were translocated to kidney, and these fractions were overestimated by the model. The model showed general agreement with results of other laboratory animal studies and with available information from human exposures to ADU, UF6, or U3O8. PMID:2606682

  19. Heavy metal contaminant remediation study of western Xiamen Bay sediment, China: laboratory bench scale testing results.

    PubMed

    Zhang, Luoping; Feng, Huan; Li, Xiaoxia; Ye, Xin; Jing, Youhai; Ouyang, Tong; Yu, Xingtian; Liang, Rongyuan; Chen, Weiqi

    2009-12-15

    A surface sediment sample (<5cm) was collected from a sewage sludge contaminated site (118 degrees 02.711'E, 24 degrees 32.585'N) within western Xiamen Bay, China, in July 2005 for a sediment decontamination study. A series of laboratory-based experiments under various conditions were performed using chemical complexation reagents (e.g., H2C2O4, EDTA-2Na, etc.) and their combination in order to provide information for sediment remediation technology development. In this study, the results suggest that aeration and agitation of the sediment samples in distilled-deionized water (DDW) have either no or weak (<30%) effect on metal removal, whereas agitation, aeration and rotation of the samples in chemical complexation solutions yield much better metal removal efficiency (up to 90%). A low pH condition (e.g., pH<3) and a low solid to liquid ratio (e.g., S:L=1:50) could increase metal removal efficiency. The experimental results suggest that 0.20 M (NH4)2C2O4+0.025 M EDTA combination with solid:liquid ratio=1:50 and 0.50 M ammonium acetate (NH4Ac)+0.025 M EDTA combination with solid:liquid ratio=1:50 are the most effective methods for metal removal from the contaminated sediments. This research provides additional useful information for sediment metal remediation technology development. PMID:19631459

  20. Formation of chocolate-tablet boudins: Results from scaled analogue models

    NASA Astrophysics Data System (ADS)

    Zulauf, J.; Zulauf, G.; Göttlich, J.; Peinl, M.

    2014-11-01

    We used power-law viscous plasticine as a rock analogue to simulate chocolate tablet boudinage of rocks undergoing dislocation creep. A competent plasticine layer, oriented perpendicular to the main shortening direction, Z, underwent two phases of plane strain in a weaker plasticine matrix, with the principal stretching axis, X, and the axis of no-change, Y, replacing each other from the first to the second phase. In each phase of plane strain, boudinage was controlled by an initial phase of viscous necking followed by extension fracture along the neck domain. Increase in the magnitude of finite strain (e) and decrease in layer thickness (Hi) result in a decrease in the boudin width (Wa) and an increase in the number of boudins (N). Given the viscosity ratio between layer and matrix (m) is higher than ca. 5, the number of boudins decreases and the boudin width increases with increasing values of m. An unexpected result of the present study is that in each experiment, the number of boudins was significantly higher during the second phase of plane strain. This difference should be related to additional drag of the matrix plasticine on the stiff layer in the neck domains formed during the first phase of boudinage. The aspect ratio of the second generation of boudins (Wd = Wa/Hi) is compatible with aspect ratios of natural boudins and with aspect ratios calculated using analytical solutions.

  1. Halogenated aromatics from steel production: results of a pilot-scale investigation.

    PubMed

    Oberg, Tomas

    2004-08-01

    The potential environmental impact of emissions of halogenated aromatics from the steel industry is of growing concern. It has been suggested that electric arc furnaces are the only industrial source with constant or increasing emissions of dioxins to air. Here the results are reported from a pilot plant study on how scrap composition and various treatment alternatives affect the formation and release of chlorinated and brominated aromatics. The experiments were conducted with a statistical mixture design, and it is shown that scrap composition has a significant impact on the outcome. In contrast, the various treatment schemes examined--shredding, disassembly, and briquetting--did not affect the formation and release of halogenated aromatics. Parallel experiments with injection of adsorbents showed that it is possible to reduce emissions without substantial investments, and this option is recommended as a low-cost solution. PMID:15212909

  2. The effect of small scale variablity in isotopic composition of precipitation on hydrograph separation results

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin; van Meerveld, Ilja; Seibert, Jan

    2016-04-01

    Understanding runoff processes is important for predictions of streamflow quantity and quality. The two-component isotope hydrograph separation (IHS) method is a valuable tool to study how catchments transform rainfall into runoff. IHS allows the stormflow hydrograph to be separated into rainfall (event water) and water that was stored in the catchment before the event (pre-event water). To be able to perform an IHS, water samples of baseflow (pre-event water) and stormflow are collected at the stream outlet. Rainfall is usually collected at one location by hand as an event total or sampled sequentially during the event. It is usually assumed that the spatial variability in rainfall and the isotopic composition of rainfall are negligible for small (<10km2) catchments. However, different studies have shown that precipitation can vary within short distances. Subsequently it remains unclear how the spatio-temproal variability of rainfall and the stable isotope composition of rainfall affect the results of an IHS. In this study, we investigated the effects of the spatio-temporal variability in the isotopic composition of rainfall across a small headwater catchment in Switzerland. Rainfall was measured at eight locations and three streams (catchment area of 0.15, 0.23, and 0.7 km2). The isotopic composition of rainfall and streamflow were sampled for 10 different rain events (P: 5 mm intervals, Q: 12 to 51 samples per events). This dataset was used to perform a two-component isotope hydrograph separation. The results show that for some events the spatial variability in total rainfall, mean and maximum rainfall intensity and stable isotope composition of rainfall was high. There was no relation between the stable isotope composition of rainfall and the rainfall sum, rainfall intensity or altitude. The spatial variability of the isotopic composition of rainfall was for 4 out of the 10 events as large as the temporal variability in the isotopic composition. Different

  3. Results of Small-Scale Tests for Removing Mercury from ORNL Process Wastewater

    SciTech Connect

    Taylor, P.A.; Klasson, K.T.

    1999-06-01

    Oak Ridge National Laboratory (ORNL) received a new National Pollutant Discharge Elimination System (NPDES) Permit from the state of Tennessee in 1997. This permit reduced the limit for mercury in the effluent from the Process Wastewater Treatment Complex - Building 3608 (PWTC-3608) to 19 ppt for the monthly average, which is well below the current effluent concentration. The mercury limit is being appealed, so it is not currently being enforced, but experimental work is being done to determine if it is possible to meet this new limit. Various mercury sorbents were evaluated in small, continuous-flow columns. The first set of sorbent tests that were conducted at PWTC-3608 in August 1997 showed excellent mercury removal by the Forager Sponge, even at high flow rates. Subsequent tests, however, showed that the mercury removal by the Forager Sponge, even at high flow rates. Subsequent tests, however, showed that the mercury removal efficiency of the sorbents varied considerably over time, probably as a result of changes in the form of the mercury in the wastewater. A significant portion of the mercury in PWTC-3608 water was bound to small particles during the later tests, which made the mercury less accessible to the sorbents. Chlorination of the water, which could convert the mercury to an ionic form, improved the performance of some of the sorbents.

  4. Odor control in composting plants: results from full-scale experiences.

    PubMed

    Canovai, Alessandro; Valentini, Federico; Manetti, Edoardo; Zagaroli, Mauro

    2004-01-01

    The development and spread of mechanical biological treatment (MBT) and composting plants is often hindered by the problems and concerns arising from emission bad odors. Several technologies are now available to process exhausted air originated from these or similar plants. Exhausted air emissions contain a large amount of organic compounds, most of them in very low concentrations. This determines the advantage in using biological abatement systems (biofilters) instead of physical-chemical treatments. This article describes the operative results obtained in two Italian waste treatment plants, one in Albano, near Rome, and the other in the "ex-Maserati area" of Milan, including (i) the analysis of operational parameters as temperature, pH. humidity, loss of pressure of the biofilter affecting the biofiltration efficiency, for both chemical parameters and odorous compound concentration, measured by means of odor panel evaluation technique and (ii) the efficiency of the biofiltration system for several compounds present in air emissions, analyzing organic substances by means of gas chromatography/mass spectrometry. The two plants used similar biofiltration systems except for the material used as biofilter bed. A bioscrubber pretreatment of the air flow coming from the aerobic reactor was tested in the Albano plant for the purpose of reducing the odor concentration of the most impacting flow going to the biofilter. PMID:15137709

  5. Cometary dust at the smallest scale - latest results of the MIDAS Atomic Force Microscope onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Bentley, Mark; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Schmied, Roland; Mannel, Thurid

    2015-04-01

    The MIDAS instrument onboard the Rosetta orbit is a unique combination of a dust collection and handling system and a high resolution Atomic Force Microscope (AFM). By building three-dimensional images of the dust particle topography, MIDAS addresses a range of fundamental questions in Solar System and cometary science. The first few months of dust collection and scanning revealed a deficit of smaller (micron and below) particles but eventually several 10 µm-class grains were discovered. In fact these were unexpectedly large and close to the limit of what is observable with MIDAS. As a result the sharp tip used by the AFM struck the particles from the side, causing particle breakage and distortion. Analyses so far suggest that the collected particles are fluffy aggregates of smaller sub-units, although determination of the size of these sub-units and high resolution re-imaging remains to be done. The latest findings will be presented here, including a description of the particles collected and the implications of these observations for cometary science and the Rosetta mission at comet 67P.

  6. Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks

    SciTech Connect

    Oostrom, Martinus; Wietsma, Thomas W.

    2014-09-30

    Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

  7. Scaling and Exponent Equalities in Island Nucleation: Novel Results and Application to Organic Films

    PubMed Central

    2014-01-01

    It is known in thin-film deposition that the density of nucleated clusters N varies with the deposition rate F as a power law, N ∼ Fα. The exponent α is a function of the critical nucleus size i in a way that changes with the aggregation limiting process. We extend here the derivation of the analytical capture-zone distribution function Pβ(s) = aß·sβ·exp(-bβs2) of Pimpinelli and Einstein to generic aggregation-limiting processes. We show that the parameter β is generally related to the critical nucleus size i and to the exponent α by the equality α·β = i, in the case of compact islands. This remarkable result allows one to measure i with no a priori knowledge of the actual aggregation mechanism. We apply this equality to measuring the critical nucleus size for pentacene deposition on mica. This system shows a crossover from diffusion-limited to attachment-limited aggregation with increasing deposition rates. PMID:24660052

  8. Formation of dome and basin structures: Results from scaled experiments using non-linear rock analogues

    NASA Astrophysics Data System (ADS)

    Zulauf, J.; Zulauf, G.; Zanella, F.

    2016-09-01

    Dome and basin folds are structures with circular or slightly elongate outcrop patterns, which can form during single- and polyphase deformation in various tectonic settings. We used power-law viscous rock analogues to simulate single-phase dome-and-basin folding of rocks undergoing dislocation creep. The viscosity ratio between a single competent layer and incompetent matrix was 5, and the stress exponent of both materials was 7. The samples underwent layer-parallel shortening under bulk pure constriction. Increasing initial layer thickness resulted in a decrease in the number of domes and basins and an increase in amplitude, A, arc-length, L, wavelength, λ, and layer thickness, Hf. Samples deformed incrementally show progressive development of domes and basins until a strain of eY=Z = -30% is attained. During the dome-and-basin formation the layer thickened permanently, while A, L, and λ increased. A dominant wavelength was not attained. The normalized amplitude (A/λ) increased almost linearly reaching a maximum of 0.12 at eY=Z = -30%. During the last increment of shortening (eY=Z = -30 to -40%) the domes and basins did not further grow, but were overprinted by a second generation of non-cylindrical folds. Most of the geometrical parameters of the previously formed domes and basins behaved stable or decreased during this phase. The normalized arc-length (L/Hf) of domes and basins is significantly higher than that of 2D cylindrical folds. For this reason, the normalized arc length can probably be used to identify domes and basins in the field, even if these structures are not fully exposed in 3D.

  9. Optimising The Available Scarce Water Resources At European Scale In A Modelling Environment: Results And Challenges

    NASA Astrophysics Data System (ADS)

    de Roo, Ad; Burek, Peter; Gentile, Alessandro; Udias, Angel; Bouraoui, Faycal

    2013-04-01

    sector, the manufacturing-industry sector, the energy-production sector and the domestic sector. Also, potential flood damage of a 100-year return period flood has been used as an indicator. The study has shown that technically this modelling software environment can deliver optimum scenario combinations of packages of measures that improve various water quantity and water quality indicators, but that additional work is needed before final conclusions can be made using the tool. Further work is necessary, especially in the economic loss estimations, the water prices and price-elasticity, as well as the implementation and maintenance costs of individual scenarios. First results and challenges will be presented and discussed.

  10. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are

  11. Heap leach studies on the removal of uranium from soil. Report of laboratory-scale test results

    SciTech Connect

    Turney, W.R.J.R.; York, D.A.; Mason, C.F.V.; Chisholm-Brause, C.J.; Dander, D.C.; Longmire, P.A.; Morris, D.E.; Strait, R.K.; Brewer, J.S.

    1994-05-01

    This report details the initial results of laboratory-scale testing of heap leach that is being developed as a method for removing uranium from uranium-contaminated soil. The soil used was obtained from the site of the Feed Materials Production Center (FMPC) near the village of Fernald in Ohio. The testing is being conducted on a laboratory scale, but it is intended that this methodology will eventually be enlarged to field scale where, millions of cubic meters of uranium-contaminated soil can be remediated. The laboratory scale experiments show that, using carbonate/bicarbonate solutions, uranium can be effectively removed from the soil from initial values of around 600 ppM down to 100 ppM or less. The goal of this research is to selectively remove uranium from the contaminated soil, without causing serious changes in the characteristics of the soil. It is also hoped that the new technologies developed for soil remediation at FEMP will be transferred to other sites that also have uranium-contaminated soil.

  12. Payments for Environmental Services as source of development funding for small-scale farmers in northern Namibia: preliminary results

    NASA Astrophysics Data System (ADS)

    Angombe, Simon; Bloemertz, Lena; Käch, Simon; Asino, Josefina; Kuhn, Nikolaus J.

    2013-04-01

    Studies in Africa suggest that improving Soil Organic Carbon (SOC) on cropland soils increases yields, but also offers the opportunity of earning carbon credits. Further potential for earning carbon credits and generating Payments for Environmental Services (PES) lies in an integrated approach to landscape carbon management, including shrubland and pasture used for grazing and timber supply. These studies indicate that funds raised from PES could be used to foster the development of small-scale farming in northern Namibia. However, the limited information on soil quality and the rationale for particular soil management and land use practices applied by small-scale farmers in Namibia prohibits a conclusive assessment of the potential of Payment for PES as a source of income or funding opportunity for development initiatives in Northern Central Regions of Namibia. Therefore, the aim of this study is the identification of potential intervention mechanisms to improve the livelihood of small scale-farmers and reducing land degradation with the support of PES in the communal regions of northern Namibia. The work in Namibia aimed at identifying existing soil management and land use practices as well as soil quality, including carbon stocks, on land used by small-scale farmers in the densely populated northern central region. The main objective of the first part of the field work was to develop an overview of farming practices and soil quality as well as sampling and interviewing approaches. Four settlements were selected for the field work based on their distance to the urbanized road corridor between Oshakati and the Angolan border. Initial results confirm the potential to increase productivity on land used by small-scale farmers as well as the opportunity to develop landscape carbon stocks. However, limits to earning PES might be the lack of a market, and thus incentive for the farmers, to shift from subsistence to commercial farming.

  13. Seamless atmospheric modeling across the hydrostatic-nonhydrostatic scales - preliminary results using an unstructured-Voronoi mesh for weather prediction.

    NASA Astrophysics Data System (ADS)

    Skamarock, W. C.

    2015-12-01

    One of the major problems in atmospheric model applications is the representation of deep convection within the models; explicit simulation of deep convection on fine meshes performs much better than sub-grid parameterized deep convection on coarse meshes. Unfortunately, the high cost of explicit convective simulation has meant it has only been used to down-scale global simulations in weather prediction and regional climate applications, typically using traditional one-way interactive nesting technology. We have been performing real-time weather forecast tests using a global non-hydrostatic atmospheric model (the Model for Prediction Across Scales, MPAS) that employs a variable-resolution unstructured Voronoi horizontal mesh (nominally hexagons) to span hydrostatic to nonhydrostatic scales. The smoothly varying Voronoi mesh eliminates many downscaling problems encountered using traditional one- or two-way grid nesting. Our test weather forecasts cover two periods - the 2015 Spring Forecast Experiment conducted at the NOAA Storm Prediction Center during the month of May in which we used a 50-3 km mesh, and the PECAN field program examining nocturnal convection over the US during the months of June and July in which we used a 15-3 km mesh. An important aspect of this modeling system is that the model physics be scale-aware, particularly the deep convection parameterization. These MPAS simulations employ the Grell-Freitas scale-aware convection scheme. Our test forecasts show that the scheme produces a gradual transition in the deep convection, from the deep unstable convection being handled entirely by the convection scheme on the coarse mesh regions (dx > 15 km), to the deep convection being almost entirely explicit on the 3 km NA region of the meshes. We will present results illustrating the performance of critical aspects of the MPAS model in these tests.

  14. Brief Report: the Social Responsiveness Scale for Adults (SRS-A): initial results in a German cohort.

    PubMed

    Bölte, Sven

    2012-09-01

    The Social Responsiveness Scale (SRS) is a tool for quantitative autism assessment in children and adolescents. The SRS-A addresses social responsiveness in adulthood. Reliability and validity using the German adaptation of the SRS-A was examined in 20 adults with Autism Spectrum Disorder (ASD), 62 with other mental disorders (CLIN) and 163 typically developing (TD) participants. Cronbach's alpha ranged from .71 (TD) to .89 (ASD). A SRS-A total score of 67 had a sensitivity of .85, and a specificity of .83 for ASD versus CLIN/TD. Correlations with established autism scales (ADOS, AQ, SCQ) were moderate to high (r = .25-.83). Results provide adequate preliminary support for the application of the SRS-A. PMID:22183423

  15. Producing K indices by the interactive method based on the traditional hand-scaling methodology - preliminary results

    NASA Astrophysics Data System (ADS)

    Valach, Fridrich; Váczyová, Magdaléna; Revallo, Miloš

    2016-01-01

    This paper reports on an interactive computer method for producing K indices. The method is based on the traditional hand-scaling methodology that had been practised at Hurbanovo Geomagnetic Observatory till the end of 1997. Here, the performance of the method was tested on the data of the Kakioka Magnetic Observatory. We have found that in some ranges of the K-index values our method might be a beneficial supplement to the computer-based methods approved and endorsed by IAGA. This result was achieved for both very low (K=0) and high (K ≥ 5) levels of the geomagnetic activity. The method incorporated an interactive procedure of selecting quiet days by a human operator (observer). This introduces a certain amount of subjectivity, similarly as the traditional hand-scaling method.

  16. The Job Satisfaction of Finnish Nursing Staff: The Development of a Job Satisfaction Scale and Survey Results

    PubMed Central

    Kvist, Tarja; Mäntynen, Raija; Partanen, Pirjo; Turunen, Hannele; Miettinen, Merja; Vehviläinen-Julkunen, Katri

    2012-01-01

    This paper describes the development of the Kuopio University Hospital Job Satisfaction Scale (KUHJSS) and the results of the survey. The scale was developed through a systematic literature review, and its validity and reliability were assessed using several psychometric properties including expert evaluation (n = 5), a pilot survey (n = 172), and exploratory factor analysis. The final version of KUHJSS included 37 items. A large sample psychometric evaluation was made by nursing staff (n = 2708). The exploratory factor analysis revealed seven factors with modest internal consistency (0.64–0.92). The staff reported relatively high job satisfaction. The greatest satisfaction was derived from motivating factors associated with the work; the least, from the job's demands. Respondents who considered their working units to provide an excellent quality of care reported the highest job satisfaction in every subarea (P < .0001). The KUHJSS proved to be a reliable and valid tool for measuring job satisfaction in hospital care. PMID:23133750

  17. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    SciTech Connect

    Gary Blythe; MariJon Owens

    2007-12-01

    and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

  18. Electrokinetic remediation of plutonium-contaminated nuclear site wastes: results from a pilot-scale on-site trial.

    PubMed

    Agnew, Kieran; Cundy, Andrew B; Hopkinson, Laurence; Croudace, Ian W; Warwick, Phillip E; Purdie, Philip

    2011-02-28

    This paper examines the field-scale application of a novel low-energy electrokinetic technique for the remediation of plutonium-contaminated nuclear site soils, using soil wastes from the Atomic Weapons Establishment (AWE) Aldermaston site, Berkshire, UK as a test medium. Soils and sediments with varying composition, contaminated with Pu through historical site operations, were electrokinetically treated at laboratory-scale with and without various soil pre-conditioning agents. Results from these bench-scale trials were used to inform a larger on-site remediation trial, using an adapted containment pack with battery power supply. 2.4 m(3) (ca. 4t onnes) of Pu-contaminated soil was treated for 60 days at a power consumption of 33 kWh/m(3), and then destructively sampled. Radiochemical data indicate mobilisation of Pu in the treated soil, and migration (probably as a negatively charged Pu-citrate complex) towards the anodic compartment of the treatment cell. Soil in the cathodic zone of the treatment unit was remediated to a level below free-release disposal thresholds (1.7 Bq/g, or <0.4 Bq/g above background activities). The data show the potential of this method as a low-cost, on-site tool for remediation of radioactively contaminated soils and wastes which can be operated remotely on working sites, with minimal disruption to site infrastructure or operations. PMID:21227583

  19. Recent results and future challenges for large scale Particle-In-Cell simulations of plasma-based accelerator concepts

    SciTech Connect

    Huang, C.; An, W.; Decyk, V.K.; Lu, W.; Mori, W.B.; Tsung, F.S.; Tzoufras, M.; Morshed, S.; Antomsen, T.; Feng, B.; Katsouleas, T; Fonseca, R.A.; Martins, S.F.; Vieira, J.; Silva, L.O.; Geddes, C.G.R.; Cormier-Michel, E; Vay, J.-L.; Esarey, E.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Cary, J.R.; Paul, K.

    2009-05-01

    The concept and designs of plasma-based advanced accelerators for high energy physics and photon science are modeled in the SciDAC COMPASS project with a suite of Particle-In-Cell codes and simulation techniques including the full electromagnetic model, the envelope model, the boosted frame approach and the quasi-static model. In this paper, we report the progress of the development of these models and techniques and present recent results achieved with large-scale parallel PIC simulations. The simulation needs for modeling the plasma-based advanced accelerator at the energy frontier is discussed and a path towards this goal is outlined.

  20. Full-scale engine demonstration of an advanced sensor failure detection, isolation and accommodation algorithm: Preliminary results

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Delaat, John C.; Kroszkewicz, Steven M.; Abdelwahab, Mahmood

    1987-01-01

    The objective of the advanced detection, isolation, and accommodation (ADIA) program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines. For this purpose, algorithms were developed which detect, isolate, and accommodate sensor failures using analytical redundancy. Preliminary results of a full scale engine demonstration of the ADIA algorithm are presented. Minimum detectable levels of sensor failures for an F100 turbofan engine control system are determined and compared to those obtained during a previous evaluation of this algorithm using a real-time hybrid computer simulation of the engine.

  1. Full-scale engine demonstration of an advanced sensor failure detection, isolation and accommodation algorithm: Preliminary results

    NASA Astrophysics Data System (ADS)

    Merrill, Walter C.; Delaat, John C.; Kroszkewicz, Steven M.; Abdelwahab, Mahmood

    The objective of the advanced detection, isolation, and accommodation (ADIA) program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines. For this purpose, algorithms were developed which detect, isolate, and accommodate sensor failures using analytical redundancy. Preliminary results of a full scale engine demonstration of the ADIA algorithm are presented. Minimum detectable levels of sensor failures for an F100 turbofan engine control system are determined and compared to those obtained during a previous evaluation of this algorithm using a real-time hybrid computer simulation of the engine.

  2. Full-scale engine demonstration of an advanced sensor failure detection isolation, and accommodation algorithm - Preliminary results

    NASA Technical Reports Server (NTRS)

    Merrill, Walter C.; Delaat, John C.; Kroszkewicz, Steven M.; Abdelwahab, Mahmood

    1987-01-01

    The objective of the advanced detection, isolation, and accommodation (ADIA) program is to improve the overall demonstrated reliability of digital electronic control systems for turbine engines. For this purpose, algorithms were developed which detect, isolate, and accommodate sensor failures using analytical redundancy. Preliminary results of a full scale engine demonstration of the ADIA algorithm are presented. Minimum detectable levels of sensor failures for an F100 turbofan engine control system are determined and compared to those obtained during a previous evaluation of this algorithm using a real-time hybrid computer simulation of the engine.

  3. Wing Download Results from a Test of a 0.658-Scale V-22 Rotor and Wing

    NASA Technical Reports Server (NTRS)

    Felker, Fort F.

    1992-01-01

    A test of a 0.658-scale V-22 rotor and wing was conducted in the 40 x 80 Foot Wind Tunnel at Ames Research Center. One of the principal objectives of the test was to measure the wing download in hover for a variety of test configurations. The wing download and surface pressures were measured for a wide range of thrust coefficients, with five different flap angles, two nacelle angles, and both directions or rotor rotation. This paper presents these results, and describes a new method for interpreting wing surface pressure data in hover. This method shows that the wing flap can produce substantial lift loads in hover.

  4. Full-Scale Test and Analysis Results of a PRSEUS Fuselage Panel to Assess Damage Containment Features

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew; Bakuckas, John G., Jr.; Lovejoy, Andrew; Jegley, Dawn; Linton, Kim; Neal, Bert; Korkosz, Gregory; Awerbuch, Jonathan; Tan, Tein-Min

    2012-01-01

    Integrally stitched composite technology is an area that shows promise in enhancing the structural integrity of aircraft and aerospace structures. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. The goal of the PRSEUS concept relevant to this test is to provide damage containment capability for composite structures while reducing overall structural weight. The National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and The Boeing Company have partnered in an effort to assess the damage containment features of a full-scale curved PRSEUS panel using the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. A single PRSEUS test panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure loads. The test results showed excellent performance of the PRSEUS concept. No growth of Barely Visible Impact Damage (BVID) was observed after ultimate loads were applied. With a two-bay notch severing the central stringer, damage was contained within the two-bay region well above the required limit load conditions. Catastrophic failure was well above the ultimate load level. Information describing the test panel and procedure has been previously presented, so this paper focuses on the experimental procedure, test results, nondestructive inspection results, and preliminary test and analysis correlation.

  5. What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results?

    SciTech Connect

    Ping Yang; Daniel B. Ames; Andre Fonseca; Danny Anderson; Rupesh Shrestha; Nancy F. Glenn; Yang Cao

    2014-08-01

    This paper examines the effect of raster cell size on hydrographic feature extraction and hydrological modeling using LiDAR derived DEMs. LiDAR datasets for three experimental watersheds were converted to DEMs at various cell sizes. Watershed boundaries and stream networks were delineated from each DEM and were compared to reference data. Hydrological simulations were conducted and the outputs were compared. Smaller cell size DEMs consistently resulted in less difference between DEM-delineated features and reference data. However, minor differences been found between streamflow simulations resulted for a lumped watershed model run at daily simulations aggregated at an annual average. These findings indicate that while higher resolution DEM grids may result in more accurate representation of terrain characteristics, such variations do not necessarily improve watershed scale simulation modeling. Hence the additional expense of generating high resolution DEM's for the purpose of watershed modeling at daily or longer time steps may not be warranted.

  6. Large Scale DD Simulation Results for Crystal Plasticity Parameters in Fe-Cr And Fe-Ni Systems

    SciTech Connect

    Zbib, Hussein M.; Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2012-04-30

    The development of viable nuclear energy source depends on ensuring structural materials integrity. Structural materials in nuclear reactors will operate in harsh radiation conditions coupled with high level hydrogen and helium production, as well as formation of high density of point defects and defect clusters, and thus will experience severe degradation of mechanical properties. Therefore, the main objective of this work is to develop a capability that predicts aging behavior and in-service lifetime of nuclear reactor components and, thus provide an instrumental tool for tailoring materials design and development for application in future nuclear reactor technologies. Towards this end goal, the long term effort is to develop a physically based multiscale modeling hierarchy, validated and verified, to address outstanding questions regarding the effects of irradiation on materials microstructure and mechanical properties during extended service in the fission and fusion environments. The focus of the current investigation is on modern steels for use in nuclear reactors including high strength ferritic-martensitic steels (Fe-Cr-Ni alloys). The effort is to develop a predicative capability for the influence of irradiation on mechanical behavior. Irradiation hardening is related to structural information crossing different length scales, such as composition, dislocation, and crystal orientation distribution. To predict effective hardening, the influence factors along different length scales should be considered. Therefore, a hierarchical upscaling methodology is implemented in this work in which relevant information is passed between models at three scales, namely, from molecular dynamics to dislocation dynamics to dislocation-based crystal plasticity. The molecular dynamics (MD) was used to predict the dislocation mobility in body centered cubic (bcc) Fe and its Ni and Cr alloys. The results are then passed on to dislocation dynamics to predict the critical resolved

  7. The role of coarse woody debris in southeastern pine forests; preliminary results from a large-scale experiment.

    SciTech Connect

    McCay Timothy, S.; Hanula, James, L.; Loeb, Susan, C.; Lohr, Steven, M.; McMinn, James, W.; Wright-Miley. Bret, D.

    2002-08-01

    McCay, Timothy S., James L. Hanula, Susan C. Loeb, Steven M. Lohr, James W. McMinn, and Bret D. Wright-Miley. 2002. The role of coarse woody debris in southeastern pine forests; preliminary results from a large-scale experiment. 135-144. In: Proceedings of the symposium on the ecology and management of dead wood in western forests. 1999 November 2-4; Reno, NV. Gen. Tech. Rep. PSW-GTR-181. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture 949 p. ABSTRACT: We initiated a long-term experiment involving manipulation of coarse woody debris (CWD) at the Savannah River National Environmental Research Park in the upper Coastal Plain of South Carolina. Each of four 9.3-ha plots in each of four blocks was subject to one of the following treatments: removal of all snags and fallen logs, removal of fallen logs only, felling and girdling to simulate a catastrophic pulse of CWD, and control. Removal treatments were applied in 1996, and the felling or snag-creation treatment will be applied in 2000-2001. Monitoring of invertebrate, herptile, avian, and mammalian assemblages and CWD dynamics began immediately after CWD removal and continues through the present. Removal treatments resulted in a fivefold to tenfold reduction in CWD abundance. To date, significant differences among treatments have only been detected for a few animal taxa. However, preliminary results underscore the benefits of large-scale experiments. This experiment allowed unambiguous tests of hypotheses regarding the effect of CWD abundance on fauna. Coupled with studies of habitat use and trophic interactions, the experimental approach may result in stronger inferences regarding the function of CWD than results obtained through natural history observation or uncontrolled correlative studies.

  8. Visual Mapping of Sedimentary Facies Can Yield Accurate And Geomorphically Meaningful Results at Morphological Unit to River Segment Scales

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Wyrick, J. R.; Jackson, J. R.

    2014-12-01

    Long practiced in fisheries, visual substrate mapping of coarse-bedded rivers is eschewed by geomorphologists for inaccuracy and limited sizing data. Geomorphologists perform time-consuming measurements of surficial grains, with the few locations precluding spatially explicit mapping and analysis of sediment facies. Remote sensing works for bare land, but not vegetated or subaqueous sediments. As visual systems apply the log2 Wentworth scale made for sieving, they suffer from human inability to readily discern those classes. We hypothesized that size classes centered on the PDF of the anticipated sediment size distribution would enable field crews to accurately (i) identify presence/absence of each class in a facies patch and (ii) estimate the relative amount of each class to within 10%. We first tested 6 people using 14 measured samples with different mixtures. Next, we carried out facies mapping for ~ 37 km of the lower Yuba River in California. Finally, we tested the resulting data to see if it produced statistically significant hydraulic-sedimentary-geomorphic results. Presence/absence performance error was 0-4% for four people, 13% for one person, and 33% for one person. The last person was excluded from further effort. For the abundance estimation performance error was 1% for one person, 7-12% for three people, and 33% for one person. This last person was further trained and re-tested. We found that the samples easiest to visually quantify were unimodal and bimodal, while those most difficult had nearly equal amounts of each size. This confirms psychological studies showing that humans have a more difficult time quantifying abundances of subgroups when confronted with well-mixed groups. In the Yuba, mean grain size decreased downstream, as is typical for an alluvial river. When averaged by reach, mean grain size and bed slope were correlated with an r2 of 0.95. At the morphological unit (MU) scale, eight in-channel bed MU types had an r2 of 0.90 between mean

  9. Scattering of electromagnetic waves by vortex density structures associated with interchange instability: Analytical and large scale plasma simulation results

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-05-01

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics, and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present particle-in-cell simulation results of electromagnetic scattering on vortex type density structures using the large scale plasma code LSP and compare them with analytical results.

  10. Scattering of electromagnetic waves by vortex density structures associated with interchange instability: Analytical and large scale plasma simulation results

    SciTech Connect

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-05-15

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics, and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present particle-in-cell simulation results of electromagnetic scattering on vortex type density structures using the large scale plasma code LSP and compare them with analytical results.

  11. Dawn-dusk asymmetry in dayside ion precipitation for southward IMF: results from large-scale simulations

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Richard, R. L.; Escoubet, C.; Wing, S.; Pitout, F.

    2013-12-01

    We present the results of numerical studies of the interaction of solar wind ions with the dayside magnetospheric boundary for a southward interplanetary magnetic field (IMF). These studies use the time-dependent electric and magnetic fields predicted by three-dimensional global magnetohydrodynamic (MHD) simulations to compute the trajectories of large samples of solar wind ions launched upstream of the bow shock. Energy-latitude spectra computed from the large scale kinetic (LSK) simulations show that a strong dawn-dusk asymmetry develops in the precipitation of low to middle energy ions over the high-latitude dayside magnetosphere. These results are consistent with statistical studies of DMSP data showing that ion precipitation from the mantle is predominantly seen over the morning and pre-noon sector.

  12. Methods for Quantifying the Uncertainties of LSIT Test Parameters, Test Results, and Full-Scale Mixing Performance Using Models Developed from Scaled Test Data

    SciTech Connect

    Piepel, Gregory F.; Cooley, Scott K.; Kuhn, William L.; Rector, David R.; Heredia-Langner, Alejandro

    2015-05-01

    This report discusses the statistical methods for quantifying uncertainties in 1) test responses and other parameters in the Large Scale Integrated Testing (LSIT), and 2) estimates of coefficients and predictions of mixing performance from models that relate test responses to test parameters. Testing at a larger scale has been committed to by Bechtel National, Inc. and the U.S. Department of Energy (DOE) to “address uncertainties and increase confidence in the projected, full-scale mixing performance and operations” in the Waste Treatment and Immobilization Plant (WTP).

  13. Scaling characteristics of the aerodynamics and low-NOx properties of industrial natural gas burners: The scaling 400 study. Part 3. The 30kw test results

    SciTech Connect

    Driscoll, J.F.; Dahm, W.J.A.; Wu, M.S.

    1993-08-15

    The objective of the SCALING 400 study is to assist in the development of new ultra-low NOx natural gas burners for industrial and utility operations so as to maintain and expand future demand for natural gas as the fuel of choice for clean combustion applications. The study is determining the scaling characteristics of near-burner aerodynamics and low-NOx properties of industrial natural gas burners, thereby yielding valuable new engineering information on the scaling of natural gas burners to contribute to the development of new low-NOx designs.

  14. Water and nutrient dynamics at various spatial scales of a tropical agricultural watershed in Eastern Amazon region, Brazil: First Results

    NASA Astrophysics Data System (ADS)

    Wickel, A. J.; Van de Giesen, N.; Sa, T.; Vlek, P. L.; Vielhauer, K.; Denich, M.

    2002-05-01

    As a part of the German-Brazilian Studies project on Human Impacts on Floodplains In the Tropics (SHIFT) the small agricultural "Cumaru" watershed (16 km2), Eastern Amazon region, Brazil, was monitored at various spatial scales for a period of one and a half year. The overall aim of this project is to provide sustainable alternatives to slash-and-burn agriculture. With the current study an attempt is made to close the water and nutrient balance for two sub-watersheds (1 km2) and the fields surrounding their source. In order to understand the processes of water and nutrient dynamics from a field to watershed scale, a wide variety of hydrological and micro-meteorological measurements were made. An automatic weather station, throughfall gauges, TDR-profiles, a piezometer network, and weirs were installed to monitor the main components of the water balance. A digital database of topography, soils, hydrological properties, land use, and vegetation was made to serve as the base input of the various models that are intended to be used. In order to evaluate nutrient dynamics samples were taken of rain-, soil-, ground- and runoff-water at various temporal scales. The modeling of water yield and runoff response will be performed with the physically based TOPOG model. This model is capable of solving water, energy, solute and sediment balances of a catchment in a fully distributed way. Regional (shallow) groundwater modeling will be done with a Finite Element Model (MicroFEM). Preliminary measurement and modeling results indicate that the regional water balance is mainly determined by shallow groundwater flow. A strong nutrient fixation is observed throughout the soil profile, and in the riparian forest zone.

  15. Continental-scale patterns in soil geochemistry and mineralogy: results from two transects across the United States and Canada

    USGS Publications Warehouse

    Woodruff, L.G.; Cannon, W.F.; Eberl, D.D.; Smith, D.B.; Kilburn, J.E.; Horton, J.D.; Garrett, R.G.; Klassen, R.A.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada (GSC) initiated a pilot study that involved collection of more than 1500 soil samples from 221 sites along two continental transects across Canada and the United States. The pilot study was designed to test and refine protocols for a soil geochemical survey of North America. The two transects crossed a wide array of soil parent materials, soil ages, climatic conditions, landforms, land covers and land uses. Sample sites were selected randomly at approximately 40-km intervals from a population defined as all soils of the continent. At each site, soils representing 0 to 5 cm depth, and the O, A, and C horizons, if present, were collected and analyzed for their near-total content of over 40 major and trace elements. Soils from 0–5 cm depth were also collected for analysis of organic compounds. Results from the transects confirm that soil samples collected at a 40-km spacing reveal coherent, continental- to subcontinental-scale geochemical and mineralogical patterns that can be correlated to aspects of underlying soil parent material, soil age and climate influence. The geochemical data also demonstrate that at the continental-scale the dominance of any of these major factors that control soil geochemistry can change across the landscape. Along both transects, soil mineralogy and geochemistry change abruptly with changes in soil parent materials. However, the chemical influence of a soil’s parent material can be obscured by changing climatic conditions. For the transects, increasing precipitation from west to east and increasing temperature from north to south affect both soil mineralogy and geochemistry because of climate effects on soil weathering and leaching, and plant productivity. Regional anomalous metal concentrations can be linked to natural variations in soil parent materials, such as high Ni and Cr in soils developed on ultramafic rocks in California or high P in soils formed on

  16. Payments for Environmental Services as source of development funding for small-scale farmers in northern Namibia: preliminary results

    NASA Astrophysics Data System (ADS)

    Angombe, Simon; Bloemertz, Lena; Käch, Simon; Böller, Marianne; Kuhn, Nikolaus J.

    2014-05-01

    Studies in Africa suggest that improving Soil Organic Carbon (SOC) on cropland soils increases yields, but also offers the opportunity of earning carbon credits. However, at the current price for a ton of carbon, the potential to earn significant carbon credits is limited. Therefore carbon storage should not be seen as a goal in itself. Potential for earning carbon credits and generating further benefits lies in an integrated approach to landscape carbon management, including shrub land and pasture used for grazing and timber supply. Therefore, soil management has to be addressed from a holistic understanding of the livelihoods of small-scale farmers. This includes a detailed understanding of the constraints in farming, as well as the motivation behind farming. The aim of this study is the identification of intervention mechanisms to improve the livelihood of small scale-farmers and reducing land degradation with the support of Payments for Ecosystem Services (PES) in the communal regions of northern Namibia. The main objective of the first part of the field work was to develop an overview of soil quality, farm management and the constraints and motivations regarding farming. Initial results confirm the potential to increase productivity of land while at the same time building up landscape carbon stocks. They furthermore show the importance of carefully choosing the way new farming techniques are introduced, as many farmers are afraid of trying something new.

  17. Public knowledge and preventive behavior during a large-scale Salmonella outbreak: results from an online survey in the Netherlands

    PubMed Central

    2014-01-01

    Background Food-borne Salmonella infections are a worldwide concern. During a large-scale outbreak, it is important that the public follows preventive advice. To increase compliance, insight in how the public gathers its knowledge and which factors determine whether or not an individual complies with preventive advice is crucial. Methods In 2012, contaminated salmon caused a large Salmonella Thompson outbreak in the Netherlands. During the outbreak, we conducted an online survey (n = 1,057) to assess the general public’s perceptions, knowledge, preventive behavior and sources of information. Results Respondents perceived Salmonella infections and the 2012 outbreak as severe (m = 4.21; five-point scale with 5 as severe). Their knowledge regarding common food sources, the incubation period and regular treatment of Salmonella (gastro-enteritis) was relatively low (e.g., only 28.7% knew that Salmonella is not normally treated with antibiotics). Preventive behavior differed widely, and the majority (64.7%) did not check for contaminated salmon at home. Most information about the outbreak was gathered through traditional media and news and newspaper websites. This was mostly determined by time spent on the medium. Social media played a marginal role. Wikipedia seemed a potentially important source of information. Conclusions To persuade the public to take preventive actions, public health organizations should deliver their message primarily through mass media. Wikipedia seems a promising instrument for educating the public about food-borne Salmonella. PMID:24479614

  18. Experimental results and numerical modeling of a high-performance large-scale cryopump. I. Test particle Monte Carlo simulation

    SciTech Connect

    Luo Xueli; Day, Christian; Haas, Horst; Varoutis, Stylianos

    2011-07-15

    For the torus of the nuclear fusion project ITER (originally the International Thermonuclear Experimental Reactor, but also Latin: the way), eight high-performance large-scale customized cryopumps must be designed and manufactured to accommodate the very high pumping speeds and throughputs of the fusion exhaust gas needed to maintain the plasma under stable vacuum conditions and comply with other criteria which cannot be met by standard commercial vacuum pumps. Under an earlier research and development program, a model pump of reduced scale based on active cryosorption on charcoal-coated panels at 4.5 K was manufactured and tested systematically. The present article focuses on the simulation of the true three-dimensional complex geometry of the model pump by the newly developed ProVac3D Monte Carlo code. It is shown for gas throughputs of up to 1000 sccm ({approx}1.69 Pa m{sup 3}/s at T = 0 deg. C) in the free molecular regime that the numerical simulation results are in good agreement with the pumping speeds measured. Meanwhile, the capture coefficient associated with the virtual region around the cryogenic panels and shields which holds for higher throughputs is calculated using this generic approach. This means that the test particle Monte Carlo simulations in free molecular flow can be used not only for the optimization of the pumping system but also for the supply of the input parameters necessary for the future direct simulation Monte Carlo in the full flow regime.

  19. Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale.

    PubMed

    Deasy, Clare; Titman, Andrew; Quinton, John N

    2014-01-01

    As a result of several serious flood events which have occurred since 2000, flooding across Europe is now receiving considerable public and media attention. The impact of land use on hydrology and flood response is significantly under-researched, and the links between land use change and flooding are still unclear. This study considers runoff data available from studies of arable in-field land use management options, applied with the aim of reducing diffuse pollution from arable land, in order to investigate whether these treatments also have potential to reduce downstream flooding. Intensive monitoring of 17 hillslope treatment areas produced a record of flood peak data covering different mitigation treatments for runoff which occurred in the winter of 2007-2008. We investigated event total runoff responses to rainfall, peak runoff, and timing of the runoff peaks from replicates of different treatments, in order to assess whether there is a significant difference in flood peak response between different mitigation options which could be used to mitigate downstream flood risk. A mixed-modelling approach was adopted in order to determine whether differences observed in runoff response were significant. The results of this study suggest that changes in land use management using arable in-field mitigation treatments can affect local-scale runoff generation, with differences observed in the size, duration and timing of flood peaks as a result of different management practices, but the study was unable to allow significant treatment effects to be determined. We suggest that further field studies of the effects of changes in land use and land use management need to upscale towards farm and catchment scale experiments which consider high quality before-and-after data over longer temporal timescales. This type of data collection is essential in order to allow appropriate land use management decisions to be made. PMID:24325823

  20. Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales

    NASA Astrophysics Data System (ADS)

    Ni, Binbin; Cao, Xing; Zou, Zhengyang; Zhou, Chen; Gu, Xudong; Bortnik, Jacob; Zhang, Jichun; Fu, Song; Zhao, Zhengyu; Shi, Run; Xie, Lun

    2015-09-01

    To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave-induced resonant scattering of outer zone relativistic (>0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+-band EMIC waves dominate the scattering losses of ~1-4 MeV outer zone relativistic electrons, it is He+-band and O+-band waves that prevail over the pitch angle diffusion of ultrarelativistic electrons at higher energies. Given the wave amplitude, EMIC waves at higher L shells tend to resonantly interact with a larger population of outer zone relativistic electrons and drive their pitch angle scattering more efficiently. Obliquity of EMIC waves can reduce the efficiency of wave-induced relativistic electron pitch angle scattering. Compared to the frequently adopted parallel or quasi-parallel model, use of the latitudinally varying wave normal angle model produces the largest decrease in H+-band EMIC wave scattering rates at pitch angles < ~40° for electrons > ~5 MeV. At a representative nominal amplitude of 1 nT, EMIC wave scattering produces the equilibrium state (i.e., the lowest normal mode under which electrons at the same energy but different pitch angles decay exponentially on the same time scale) of outer belt relativistic electrons within several to tens of minutes and the following exponential decay extending to higher pitch angles on time scales from <1 min to ~1 h. The electron loss cone can be either empty as a result of the weak diffusion or heavily/fully filled due to approaching the strong diffusion limit, while the trapped electron population at high pitch angles close to 90° remains intact because of no resonant scattering. In this manner, EMIC wave scattering has the potential to deepen the anisotropic distribution of outer zone relativistic electrons by

  1. Comparison of PWR - Burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results

    SciTech Connect

    Oberle, P.; Broeders, C. H. M.; Dagan, R.

    2006-07-01

    The increasing tendency towards fuel lifetime extension in thermal nuclear reactors motivated validation work for available evaluation tools for nuclear fuel burnup calculations. In this study two deterministic codes with different transport solvers and one Monte Carlo method are investigated. The code system KAPROS/KARBUS uses the classical deterministic First Collision Probability method utilizing a cylinderized Wigner-Seitz cell. In the SCALES.0/TRITON/NEWT code the Extended Step Characteristic method is applied. In a first step the two deterministic codes are compared with experimental results from the KWO-Isotope Correlation Experiment up to 30 MWD/kg HM burnup, published in 1981. Two pin cell calculations are analyzed by comparison of calculated and experimental results for important heavy isotope vectors. The results are very satisfactory. Subsequently, further validation at higher burnup (< 80 MWD/kg HM) is provided by comparison of the two deterministic codes and the Monte Carlo based burnup code MONTEBURNS for PWR UO{sub 2} fuel assembly calculations. Possible reasons for differences in the results are analyzed and discussed. Especially the influence of cross section data and processing is presented. (authors)

  2. Mixing of process heels, process solutions, and recycle streams: Results of the small-scale radioactive tests

    SciTech Connect

    GJ Lumetta; JP Bramson; OT Farmer III; LR Greenwood; FV Hoopes; MA Mann; MJ Steele; RT Steele; RG Swoboda; MW Urie

    2000-05-17

    Various recycle streams will be combined with the low-activity waste (LAW) or the high-level waste (HLW) feed solutions during the processing of the Hanford tank wastes by BNFL, Inc. In addition, the LAW and HLW feed solutions will also be mixed with heels present in the processing equipment. This report describes the results of a test conducted by Battelle to assess the effects of mixing specific process streams. Observations were made regarding adverse reactions (mainly precipitation) and effects on the Tc oxidation state (as indicated by K{sub d} measurements with SuperLig{reg_sign} 639). The work was conducted according to test plan BNFL-TP-29953-023, Rev. 0, Small Scale Mixing of Process Heels, Solutions, and Recycle Streams. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

  3. Results of an Academic, Health Care Worksite Weight Loss Contest for Southeastern Americans: Scale Back Alabama 2011-2013.

    PubMed

    Breaux-Shropshire, Tonya L; Whitt, Lauren; Oster, Robert A; Lewis, Dwight; Shropshire, Toneyell S; Calhoun, David A

    2015-04-01

    Few studies have assessed the effectiveness of competitive incentivized worksite weight loss programs. Scale Back Alabama (SBA) is a free, state-supported program designed to promote weight loss among overweight and obese citizens. The purpose of this manuscript is to describe the design and preliminary findings of SBA as a worksite intervention among employees at a collegiate institution and university hospital. In teams of 4 employees, SBA participants volunteered to engage in a 10-week competitive weight loss contest; both teams and individuals who lost significant weight were eligible for randomly drawn cash incentives. Trained staff objectively measured participants' weight before and at the conclusion of the contest. Preliminary analyses suggest that SBA as a worksite program can promote weight loss among employees, but future analyses are warranted to understand the context of these findings and determine if current results are confounded by unmeasured factors. PMID:26081473

  4. Geochemical Variations in Paleoseeps Over Short Time Scales: Stable Isotope Results From the Panoche-Tumey Hills Paleoseep (PTHP), California

    NASA Astrophysics Data System (ADS)

    Sample, J. C.; Csar, A.; Schwartz, H.

    2007-12-01

    Fluctuations in fluids compositions over varying time scales are widely recognized from modern cold seep deposits. We present results from a detailed study of carbonate mineral proxies for fluid flow from the PTHP. This cold seep deposit extends for 20 km along strike and was fed by a system of sandstone injectites during its mid- Paleocene lifespan. We sampled carbonate-bearing portions of the seep horizons both laterally and vertically over an area of approximately 5 km2. We analyzed the elemental and stable isotopic chemistry to examine temporal variations. Carbonate occurrences include dolomite to low-Mg calcite mineralogies in matrix cements, cemented pipe structures, laminated carbonates (fossilized bacterial mats?), and carbonate veins. In all cases the direction of carbonate mineral growth can be determined. Previous work on bulk samples has yielded a range of δ13C of --54 to +3 ‰ and δ18O of --7 to +7 ‰ (all values VPDB). Our more detailed sampling shows a smaller range, but significant variation of isotopic results over mm's to cm's (δ13C values vary in individual features from as much as --28.19 to +3.58 ‰; δ18O values from --8.68 to +4.71 ‰). Sequential sampling by micromilling of transects across carbonate infill show the greatest range in carbon isotopes. Individual transects show ranges in carbon isotopes minimum and maximum of 4.8 and 29.7 ‰, respectively. Oxygen isotopes vary less - from 4.1 to 10.1 ‰ for different transects. The influence of meteoric diagenesis on the oxygen is difficult to constrain well. Coupled with carbonate and sulfate/sulfide mineralogy, the variations in isotopic compositions can be related to fine-scale variations in microchemical environments, perhaps due to repeated changes in the chemistry of fluids fluxing through the features examined. Given the age range of the seep horizon, and the size of individual carbonate features, we estimate that total cementation times of individual features, and hence fluid

  5. Field-scale evidence for biogeophysical signatures resulting from natural attenuation of a well characterized crude oil spill

    NASA Astrophysics Data System (ADS)

    Slater, L. D.; Revil, A.; Atekwana, E. A.; Mewafy, F.; Bekins, B. A.; Cozzarelli, I.; Herkelrath, W. N.; Skold, M.; Ntarlagiannis, D.; Trost, J.; Erickson, M.; Heenan, J. W.; Lane, J. W.; Werkema, D. D.

    2012-12-01

    Recent biogeophysical research has indicated that unique geophysical signatures are associated with the long-term biodegradation of organic contaminants. However, field-scale demonstrations of the presence of these signatures at sites of organic contamination are lacking. For the last three years, we have performed geophysical measurements at the National Crude Oil Spill Fate and Natural Attenuation Research Site, a unique field laboratory situated just outside of Bemidji, MN. At this site, a ruptured pipeline spilled 1,700,000 L of crude oil into an uninhabited area in 1979. Natural attenuation of the spill has been extensively documented and a geochemical database extending back over 20 years is available to constrain interpretation of the geophysical signatures. We report compelling evidence of a transient geobattery associated with biodegradation of this mature hydrocarbon spill. Using an array of boreholes, self-potential measurements acquired from land surface, passing through the smear zone, capture a diagnostic dipole (peak to peak voltages up to 64 mV) indicating a current source centered on the smear zone, with anodic and cathodic reactions below and above the smear zone respectively. Down borehole measurements reveal that the smear zone is characterized by high magnetic susceptibility (MS); laboratory measurements show that this MS enhancement results from precipitation of iron mineral byproducts of biodegradation. These iron minerals presumably facilitate the electron transport between anode and cathode required to support a geobattery. Furthermore, laboratory and field-scale complex resistivity measurements reveal an enhancement in the complex surface conductivity within the smear zone most likely due to these biodegradation byproducts. The geobattery is not permanent, but instead periodically shuts down, presumably due to changes in the gradient of the redox species driving anodic and cathodic reactions. Gas samples show that conditions are anaerobic

  6. S-2 stage 1/25 scale model base region thermal environment test. Volume 1: Test results, comparison with theory and flight data

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; French, E. P.; Sexton, H.

    1973-01-01

    A 1/25 scale model S-2 stage base region thermal environment test is presented. Analytical results are included which reflect the effect of engine operating conditions, model scale, turbo-pump exhaust gas injection on base region thermal environment. Comparisons are made between full scale flight data, model test data, and analytical results. The report is prepared in two volumes. The description of analytical predictions and comparisons with flight data are presented. Tabulation of the test data is provided.

  7. Dawn-dusk asymmetry in solar wind ion entry and dayside precipitation: Results from large-scale simulations

    NASA Astrophysics Data System (ADS)

    Berchem, J.; Richard, R.; Escoubet, P.; Wing, S.; Pitout, F.

    2014-03-01

    We present the results of numerical studies of the interaction of solar wind ions with the dayside magnetospheric boundary for a southward interplanetary magnetic field and two solar wind speeds (250 and 500 km/s) using the results of global magnetohydrodynamics simulations in conjunction with large-scale kinetic calculations. Results of these studies show that a dawn-dusk asymmetry is found in the precipitation of low- to middle-energy ions over the high-latitude dayside magnetosphere. This asymmetry is consistent with statistical studies of DMSP data showing that ion precipitation from the mantle is predominantly seen over the morning and prenoon sector. Analysis of energy-latitude spectra and study of individual particle trajectories from the simulations revealed that low-energy ions can enter the magnetopause at high latitudes in regions where the parallel electric field associated with the magnetopause current is positive and strong enough for the ions to gain energies of the order of the parallel potential drop across the magnetopause. Because the parallel electric field in the Northern Hemisphere is positive in the prenoon sector and negative in the afternoon-evening sector, solar wind ions reaching the magnetopause in these regions are accelerated toward the ionosphere on the dawnside and outward on the duskside, creating the asymmetry in precipitation. The same dawn-dusk asymmetry is found in the Southern Hemisphere because both parallel electric field and magnetic field are reversed in direction.

  8. Potential use of pyrite cinders as raw material in cement production: results of industrial scale trial operations.

    PubMed

    Alp, I; Deveci, H; Yazici, E Y; Türk, T; Süngün, Y H

    2009-07-15

    Pyrite cinders, which are the waste products of sulphuric acid manufacturing plants, contain hazardous heavy metals with potential environmental risks for disposal. In this study, the potential use of pyrite cinders (PyCs) as iron source in the production of Portland cement clinker was demonstrated at the industrial scale. The chemical and mineralogical analyses of the PyC sample used in this study have revealed that it is essentially a suitable raw material for use as iron source since it contains >87% Fe(2)O(3) mainly in the form of hematite (Fe(2)O(3)) and magnetite (Fe(3)O(4)). The samples of the clinkers produced from PyC in the industrial scale trial operation of 6 months were tested for the conformity of their chemical composition and the physico-mechanical performance of the resultant cement products. The data were compared with the clinker products of the iron ore, which is used as the raw material for the production Portland cement clinker in the plant. The chemical compositions of all the clinker products of PyC appeared to conform to those of the iron ore clinker, and hence, a Portland cement clinker. The mechanical performance of the mortars prepared from the PyC clinker was found to be consistent with those of the industrial cements e.g. CEM I type cements. It can be inferred from the leachability tests (TCLP and SPLP) that PyC could be a potential source of heavy metal pollution while the mortar samples obtained from the PyC clinkers present no environmental problems. These findings suggest that the waste pyrite cinders can be readily used as iron source for the production of Portland cement. The availability of PyC in large quantities at low cost provides further significant benefits for the management/environmental practices of these wastes and for the reduction of mining and processing costs of cement raw materials. PMID:19100685

  9. NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis

    SciTech Connect

    Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.; Moreno, J.B.; Moss, T.A.; Jones, S.A.

    1994-06-01

    Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system has been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.

  10. Commercial-scale evaluation of two agricultural waste products, cotton burr/stem and module wraps in thermoplastic composites and comparison with laboratory-scale results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory-scale research had shown the potential of using cotton burr/stem (CBS) as a fiber filler in thermoplastic composites. This study evaluates the potential of using waste materials from cotton harvesting/ginning operations, CBS, and cotton module wraps (CMW) as a filler and substrate in ther...

  11. Large-scale hormone replacement therapy and life expectancy: results from an international comparison among European and North American populations.

    PubMed Central

    Panico, S; Galasso, R; Celentano, E; Ciardullo, A V; Frova, L; Capocaccia, R; Trevisan, M; Berrino, F

    2000-01-01

    OBJECTIVES: An analysis was performed to determine the risks and benefits of a 10-year hormone replacement therapy regimen that had been applied to all women at 50 years of age in 8 countries. METHODS: Cumulative mortality with and without hormone replacement therapy over 20 years was estimated, with both current and predicted total and disease-specific secular mortality trends and the influence of a generational cohort effect taken into account. RESULTS: In countries with high ischemic heart disease frequency and predictable relative predominance of ischemic heart disease rates over breast cancer rates for the next 20 years, hormone replacement therapy could result in benefits with regard to overall mortality; this advantage decreases in younger-generation cohorts. In countries in which breast cancer mortality predominates over ischemic heart disease in early postmenopause and in which the predictable trends for both diseases reinforce this condition, a negative effect on overall mortality would be observed. In the United States, the effect of large-scale hormone replacement therapy would change over time. CONCLUSIONS: The long-term effect of hormone replacement therapy on life expectancy of postmenopausal women may vary among countries. PMID:10983196

  12. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

    SciTech Connect

    LaClair, Tim J

    2011-05-01

    This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

  13. Strike-slip fault Kinematics and mechanics at the seismic cycle time-scale : Results from new analogue model experiments.

    NASA Astrophysics Data System (ADS)

    Caniven, Yannick; Dominguez, Stéphane; Soliva, Roger; Cattin, Rodolphe; Peyret, Michel; Chéry, Jean; Romano, Christian

    2013-04-01

    The average seismic cycle duration extends from hundred to a few thousands years but geodetic measurements, including trilateration, GPS, Insar and seismological data extend over less than one century. This short time observation scale renders difficult, then, to constrain the role of key parameters such as fault friction and geometry, crust rheology, stress and strain rate that control the kinematics and mechanics of active faults. To solve this time scale issue, we have developed a new experimental set-up that reproduces scaled micro-earthquakes and several hundreds of seismic cycles along a strike-slip fault. The model is constituted by two polyurethane foam plates laterally in contact, lying on a basal silicone layer, which simulate the mechanical behaviour of an elastoplastic upper crust over a ductile lower crust, respectively. To simulate the boundary conditions of a strike-slip fault, a computerized motoreductor system moves the two compartments on an opposite sens and at a constant very low velocity (a few µm/s). The model spatial and temporal scaling, deduces from analog material physical and mechanical parameters, implies that 1 cm in the model represents 2-3 km in the nature and 1 s is equivalent to 5-15 years. Surface-horizontal strain field is quantified by sub-pixel correlation of digital camera pictures recorded every 16 µm of displacement. For each experience about 2000 horizontal-velocity field measurements are recorded. The analysis of model-interseismic and coseismic surface displacements and their comparison to seismogenic natural faults demonstrate that our analog model reproduces correctly both near and far-field surface strains. To compare the experiences, we have developed several algorithms that allow studying the main spatial and temporal evolution of the physical parameters and surface deformation processes that characterise the seismic cycle (magnitudes, stress, strain, friction coefficients, interseismic locking depth, recurrence

  14. Scaling-up from an implementation trial to state-wide coverage: results from the preliminary Melbourne Diabetes Prevention Study

    PubMed Central

    2012-01-01

    Background The successful Greater Green Triangle Diabetes Prevention Program (GGT DPP), a small implementation trial, has been scaled-up to the Victorian state-wide ‘Life!’ programme with over 10,000 individuals enrolled. The Melbourne Diabetes Prevention Study (MDPS) is an evaluation of the translation from the GGT DPP to the Life! programme. We report results from the preliminary phase (pMDPS) of this evaluation. Methods The pMDPS is a randomised controlled trial with 92 individuals aged 50 to 75 at high risk of developing type 2 diabetes randomised to Life! or usual care. Intervention consisted of six structured 90-minute group sessions: five fortnightly sessions and the final session at 8 months. Participants underwent anthropometric and laboratory tests at baseline and 12 months, and provided self-reported psychosocial, dietary, and physical activity measures. Intervention group participants additionally underwent these tests at 3 months. Paired t tests were used to analyse within-group changes over time. Chi-square tests were used to analyse differences between groups in goals met at 12 months. Differences between groups for changes over time were tested with generalised estimating equations and analysis of covariance. Results Intervention participants significantly improved at 12 months in mean body mass index (−0.98 kg/m2, standard error (SE) = 0.26), weight (−2.65 kg, SE = 0.72), waist circumference (−7.45 cm, SE = 1.15), and systolic blood pressure (−3.18 mmHg, SE = 1.26), increased high-density lipoprotein-cholesterol (0.07 mmol/l, SE = 0.03), reduced energy from total (−2.00%, SE = 0.78) and saturated fat (−1.54%, SE = 0.41), and increased fibre intake (1.98 g/1,000 kcal energy, SE = 0.47). In controls, oral glucose at 2 hours deteriorated (0.59 mmol/l, SE = 0.27). Only waist circumference reduced significantly (−4.02 cm, SE = 0.95). Intervention participants significantly outperformed controls

  15. Investigation of the impacts of Asian pollution on Pacific storm track using multi-scale modeling results

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, M.; Ghan, S. J.; Zhang, R.

    2012-12-01

    Long-term satellite data and numerical simulations with the cloud-resolving model (CRM) suggest that increasing pollution levels in Asia and associated outflows may impact the Pacific storm track by altering cloud development, lifetime, albedo, and precipitation. In this study, results from a pair of 6-year global atmosphere simulations were analyzed, using the multi-scale aerosol-climate model PNNL-MMF where a CRM is embedded within each grid column of the Community Atmosphere Model (CAM). Two different aerosol conditions are considered in the simulations, representing Present Day (PD) and Pre-Industrial (PI) emissions, respectively. A comparison of those two scenarios shows that over the Northwest Pacific region aerosol optical depth is increased by 50% and cloud droplet number concentration is doubled under the influence of Asian pollution outflow. Meanwhile, cloud liquid water path and ice water path are enhanced by 9% and 8% due to the elevated aerosol loading in the PD case. The larger percentage of convective cloud coverage and the higher cloud top height in the PD case demonstrate that the convection strength of mid-latitude cyclones is invigorated. A 3% increase of precipitation induced by the larger PD aerosol concentration is found over the Northwest Pacific area. Smaller cloud droplets and the larger liquid and ice water path lead to the increase of cloud optical thickness by 10% in the PD case. Cloud shortwave and longwave forcing at the top of atmosphere (TOA) are enlarged by 7% and 6%, respectively. The poleward eddy heat transport along the storm track at 850 hPa is enhanced by 5% in the PD case. In addition, the results from the standard CAM model (no embedded CRM), simulates a similar increase in the aerosol concentration in the PD case but predicts significant suppression of the convection strength and heavy precipitation associated with the cyclones. This indicates that the multi-scale framework approach is critical for reproducing the aerosol

  16. Long Term Effectiveness on Prescribing of Two Multifaceted Educational Interventions: Results of Two Large Scale Randomized Cluster Trials

    PubMed Central

    Magrini, Nicola; Formoso, Giulio; Capelli, Oreste; Maestri, Emilio; Nonino, Francesco; Paltrinieri, Barbara; Giovane, Cinzia Del; Voci, Claudio; Magnano, Lucia; Daya, Lisa; Marata, Anna Maria

    2014-01-01

    Introduction Information on benefits and risks of drugs is a key element affecting doctors’ prescribing decisions. Outreach visits promoting independent information have proved moderately effective in changing prescribing behaviours. Objectives Testing the short and long-term effectiveness on general practitioners’ prescribing of small groups meetings led by pharmacists. Methods Two cluster open randomised controlled trials (RCTs) were carried out in a large scale NHS setting. Ad hoc prepared evidence based material were used considering a therapeutic area approach - TEA, with information materials on osteoporosis or prostatic hyperplasia - and a single drug oriented approach - SIDRO, with information materials on me-too drugs of 2 different classes: barnidipine or prulifloxacin. In each study, all 115 Primary Care Groups in a Northern Italy area (2.2 million inhabitants, 1737 general practitioners) were randomised to educational small groups meetings, in which available evidence was provided together with drug utilization data and clinical scenarios. Main outcomes were changes in the six-months prescription of targeted drugs. Longer term results (24 and 48 months) were also evaluated. Results In the TEA trial, one of the four primary outcomes showed a reduction (prescription of alfuzosin compared to tamsulosin and terazosin in benign prostatic hyperplasia: prescribing ratio −8.5%, p = 0.03). Another primary outcome (prescription of risedronate) showed a reduction at 24 and 48 months (−7.6%, p = 0.02; and −9,8%, p = 0.03), but not at six months (−5.1%, p = 0.36). In the SIDRO trial both primary outcomes showed a statistically significant reduction (prescription of barnidipine −9.8%, p = 0.02; prescription of prulifloxacin −11.1%, p = 0.04), which persisted or increased over time. Interpretation These two cluster RCTs showed the large scale feasibility of a complex educational program in a NHS setting, and its potentially

  17. Agricultural production and groundwater depletion under climate variability in India - Results from a regional scale crop modeling approach

    NASA Astrophysics Data System (ADS)

    Siegfried, T. U.; Sobolowski, S.; Fishman, R.; Vasquez, V.; Raj, P.; Narula, K. K.; Modi, V.; Lall, U.

    2009-12-01

    In India, recent declines in national food security may point to systemic deficiencies of agricultural production. Over the past decade and in the face of declining public investments in irrigation projects, the growth of production has increasingly become reliant on the allocation of large volumes of groundwater in an unsustainable manner. As a result, shallow as well as deep fossil groundwater resources are increasingly depleted and the buffer that mitigates negative impacts on production in case of Monsoonal dry-spells / drought conditions is lost. In the face of future climate and food supply uncertainty, it is vital that the connections between climate variability, unsustainable irrigation practices and their impacts on regional scale agricultural production be quantified and better understood. In our analysis, we focus on rice production in the Telengana region in Andhra Pradesh, which is characterized by a semi-arid tropical climate that is driven by the bimodal seasonality of the south-western monsoon. Traditionally, agricultural production of rice was constrained by precipitation variations during the wet season (Kharif). However, the advent of inexpensive pump technology in the 1970's, coupled with governmentally subsidized electricity has allowed year-round rice production. Thus, the Monsoon rains must not only drive wet season production but must also sufficiently recharge groundwater in order to support dry season production. Observed Production time series are characterized by non-stationarity and heteroscedasticity. Using a subset of eight districts, a non-linear Gaussian Process regression model is developed and yearly crop production is modeled at the district level over 48 years. We show that interannual climate variations, in the form of the monsoon rains, play a significant role in determining the area of land set aside for dry season planting and thus affect total yearly production. The results suggest that a non-linear Bayesian regression

  18. Awareness and Concern about Large-Scale Livestock and Poultry: Results from a Statewide Survey of Ohioans

    ERIC Educational Resources Information Center

    Sharp, Jeff; Tucker, Mark

    2005-01-01

    The development of large-scale livestock facilities has become a controversial issue in many regions of the U.S. in recent years. In this research, rural-urban differences in familiarity and concern about large-scale livestock facilities among Ohioans is examined as well as the relationship of social distance from agriculture and trust in risk…

  19. Observation of flow processes in the vadose zone using ERT on different space and time scales: results, obstacles, and suggestions

    NASA Astrophysics Data System (ADS)

    Noell, Ursula; Ganz, Christina; Lamparter, Axel; Duijnisveld, Wilhelmus; Bachmann, Jörg

    2013-04-01

    Electrical resistivity tomography (ERT) observes the flow processes in the vadose zone indirectly. ERT has been used to estimate water flow in different soil types and under different flow conditions using active experiments or monitoring the natural process in many cases. Our experiments in sand and loess soil connected ERT with local soil probing using TDR devices and tensiometers in order to proof the reliability of the ERT inversion results in terms of infiltration velocity. Additionally, a colour tracer was used and sections through the infiltration zones were excavated in order to compare the shape of the dye -stained infiltration zone with the results of the ERT inversion. The data revealed the complicated infiltration pattern with a higher transport velocity in sand and a different shape than expected by classical soil hydraulic models. These results indicate the need for independent observations in order to correctly assess the water storage in the vadose zone with its hydrological consequences, the groundwater recharge and the contamination risk caused by rapid movement of water. ERT can be used for this purpose on different spatial- and time scales but for reliable results various obstacles need to be dealt with. Firstly, the ambiguity of the resistivity because soil resistivity depends on both, soil water content and electrical soil/water conductivity. This obstacle is less severe when the infiltration velocity is investigated, because then only the first onset of resistivity change is interpreted as the water arrival time. Our results show that the arrival of the water front as well as the final infiltration depth can be reliably detected. In contrast, this obstacle is very severe when the amount of water stored is observed using conductive tracer. The problem is not critical during a passive experiment when the natural rain fall and the waters fate through the vadose zone is monitored. The second obstacle is the limited resolution of ERT which

  20. Results from the Phoenix Urban Heat Island (UHI) experiment: effects at the local, neighbourhood and urban scales

    NASA Astrophysics Data System (ADS)

    di Sabatino, S.; Leo, L. S.; Hedquist, B. C.; Carter, W.; Fernando, H. J. S.

    2009-04-01

    This paper reports on the analysis of results from a large urban heat island experiment (UHI) performed in Phoenix (AZ) in April 2008. From 1960 to 2000, the city of Phoenix experienced a minimum temperature rise of 0.47 °C per decade, which is one of the highest rates in the world for a city of this size (Golden, 2004). Contemporaneously, the city has recorded a rapid enlargement and large portion of the land and desert vegetation have been replaced by buildings, asphalt and concrete (Brazel et al., 2007, Emmanuel and Fernando, 2007). Besides, model predictions show that minimum air temperatures for Phoenix metropolitan area in future years might be even higher than 38 °C. In order to make general statements and mitigation strategies of the UHI phenomenon in Phoenix and other cities in hot arid climates, a one-day intensive experiment was conducted on the 4th-5th April 2008 to collect surface and ambient temperatures within various landscapes in Central Phoenix. Inter alia, infrared thermography (IRT) was used for UHI mapping. The aim was to investigate UHI modifications within the city of Phoenix at three spatial scales i.e. the local (Central Business District, CBD), the neighborhood and the city scales. This was achieved by combining IRT measurements taken at ground level by mobile equipment (automobile-mounted and pedicab) and at high elevation by a helicopter. At local scale detailed thermographic images of about twenty building façades and several street canyons were collected. In total, about two thousand images were taken during the 24-hour campaign. Image analysis provides detailed information on building surface and pavement temperatures at fine resolution (Hedquist et al. 2009, Di Sabatino et al. 2009). This unique dataset allows us several investigations on local air temperature dependence on albedo, building thermal inertia, building shape and orientation and sky view factors. Besides, the mosaic of building façade temperatures are being analyzed

  1. Quantifying microwear on experimental Mistassini quartzite scrapers: preliminary results of exploratory research using LSCM and scale-sensitive fractal analysis.

    PubMed

    Stemp, W James; Lerner, Harry J; Kristant, Elaine H

    2013-01-01

    Although previous use-wear studies involving quartz and quartzite have been undertaken by archaeologists, these are comparatively few in number. Moreover, there has been relatively little effort to quantify use-wear on stone tools made from quartzite. The purpose of this article is to determine the effectiveness of a measurement system, laser scanning confocal microscopy (LSCM), to document the surface roughness or texture of experimental Mistassini quartzite scrapers used on two different contact materials (fresh and dry deer hide). As in previous studies using LSCM on chert, flint, and obsidian, this exploratory study incorporates a mathematical algorithm that permits the discrimination of surface roughness based on comparisons at multiple scales. Specifically, we employ measures of relative area (RelA) coupled with the F-test to discriminate used from unused stone tool surfaces, as well as surfaces of quartzite scrapers used on dry and fresh deer hide. Our results further demonstrate the effect of raw material variation on use-wear formation and its documentation using LSCM and RelA. PMID:22688593

  2. Two-dimensional small-scale variability of pore water phosphate in freshwater lakes: results from a novel dialysis sampler.

    PubMed

    Lewandowski, Jorg; Rüter, Kristina; Hupfer, Michael

    2002-05-01

    Vertical concentration profiles of soluble reactive phosphorus (SRP) in the upper sedimentary zone of freshwater lakes are an important means for studying internal phosphorus (P) loading and to gain insight into early diagenetic processes. The interpretation of such pore water profiles generally neglects the occurrence of horizontal variability at a specific sampling site. To further examine this variability, we have designed a novel two-dimensional sampler (2D peeper) consisting of 2280 chambers at a spatial resolution of 9 mm providing a sampling area of 43 x 44 cm. This new device was deployed in three eutrophic lakes in north-eastern Germany. The resulting 2D images of the SRP concentrations, diffusive fluxes, and turnover rates revealed systematic vertical and horizontal structures with local niches of increased phosphorus release. Thus, the extrapolation of P flux calculations based on one-dimensional pore water profiles may lead to a considerable error. The observed small-scale horizontal heterogeneity, probably mainly caused by organisms, was larger in the biologically more active Lake Müllrose and Süsser See than in the deeper Arendsee where meio- and macrozoobenthos were missing. In all cases, the variability was highest at the sediment-water interface and diminished with sediment depth. PMID:12026990

  3. Mapping between Visual Analogue Scale and Standard Gamble data; results from the UK Health Utilities Index 2 valuation survey.

    PubMed

    Stevens, Katherine J; McCabe, Christopher J; Brazier, John E

    2006-05-01

    We examine the relationship between Visual Analogue Scale (VAS) and Standard Gamble (SG) assumed in the development of the multiplicative multi-attribute utility functions (M-MAUFs) for the Health Utilities Index (HUI) Mark 2 and Mark 3, using data from a UK valuation study of the HUI2. A range of functional forms are considered, and are compared on the basis of their explanatory power and predictive ability.A restricted cubic function fits the data better than a power curve with a mean absolute error (MAE) of 0.025 and root mean square error (RMSE) of 0.029 compared to a MAE of 0.135 and RMSE of 0.135 for the power curve. The use of a cubic mapping function instead of a power function leads to different predicted health state values. We question the reliance on the assumption of a power curve relationship between VAS and SG data, in the Health Utilities Index valuation framework. Our results demonstrate that further work is required to examine the appropriateness of the published M-MAUFs for the Health Utilities Indices. PMID:16389651

  4. Preliminary results from the COBE differential microwave radiometers - Large angular scale isotropy of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Aymon, J.; Bennett, C. L.; Kogut, A.; Backus, C.

    1991-01-01

    Preliminary but precise micowave maps are presented of the sky, and thus of the early universe, derived as the first results from the Differential Microwave Radiometers experiment aboard COBE. The dipole anisotropy attributed to the motion of the solar system with respect to the CMB reference frame shows strongly in all six sky maps and is consistent with a Doppler-shifted thermal spectrum. The best-fitted dipole has amplitude 3.3 + or - 0.2 mK in the direction (alpha, delta) = 11.2 h + or - 0.2 h, -7 deg + or - 2 deg (J2000) or (l,b) = 265 deg + or - 2 deg, 48 deg + or - 2 deg. There is no clear evidence in the maps for any other large angular-scale feature. Limits on Delta T/T0 of 3 x 10 to the -5th (T0 = 2.735 K), 4 x 10 to the -5th, and 4 x 10 to the -5th are found for the rms quadrupole amplitude, monochromatic fluctuations, and Gaussian fluctuations, respectively. These measurements place the most severe constraints to date on many potential physical processes in the early universe.

  5. Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model

    NASA Astrophysics Data System (ADS)

    van der Molen, Johan; Ruardij, Piet; Greenwood, Naomi

    2016-05-01

    A model study was carried out of the potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth, using the 3-D hydrodynamics-biogeochemistry model GETM-ERSEM-BFM. A realistic 800 MW scenario and a high-impact scenario with massive expansion of tidal energy extraction to 8 GW scenario were considered. The realistic 800 MW scenario suggested minor effects on the tides, and undetectable effects on the biogeochemistry. The massive-expansion 8 GW scenario suggested effects would be observed over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, in particular in a broad area in the vicinity of the Wash. There, waters became less turbid, and primary production increased with associated increases in faunal ecosystem variables. Moreover, a one-off increase in carbon storage in the sea bed was detected. Although these first results suggest positive environmental effects, further investigation is recommended of (i) the residual circulation in the vicinity of the Pentland Firth and effects on larval dispersal using a higher-resolution model and (ii) ecosystem effects with (future) state-of-the-art models if energy extraction substantially beyond 1 GW is planned.

  6. Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model

    NASA Astrophysics Data System (ADS)

    van der Molen, J.; Ruardij, P.; Greenwood, N.

    2015-12-01

    A model study was carried out of the potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth, using the 3-D hydrodynamics-biogeochemistry model GETM-ERSEM-BFM. A realistic 800 MW scenario and an exaggerated academic 8 GW scenario were considered. The realistic 800 MW scenario suggested minor effects on the tides, and undetectable effects on the biogeochemistry. The academic 8 GW scenario suggested effects would be observed over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, in particular in a broad area in the vicinity of The Wash. There, waters became less turbid, and primary production increased with associated increases in faunal ecosystem variables. Moreover, a one-off increase in carbon storage in the sea bed was detected. Although these first results suggest positive environmental effects, further investigation is recommended of: (i) the residual circulation in the vicinity of the Pentland Firth and effects on larval dispersal using a higher resolution model, (ii) ecosystem effects with (future) state-of-the-art models if energy extraction substantially beyond 1 GW is planned.

  7. Beginning with sustainable scale up in mind: initial results from a population, health and environment project in East Africa.

    PubMed

    Ghiron, Laura; Shillingi, Lucy; Kabiswa, Charles; Ogonda, Godfrey; Omimo, Antony; Ntabona, Alexis; Simmons, Ruth; Fajans, Peter

    2014-05-01

    Small-scale pilot projects have demonstrated that integrated population, health and environment approaches can address the needs and rights of vulnerable communities. However, these and other types of health and development projects have rarely gone on to influence larger policy and programme development. ExpandNet, a network of health professionals working on scaling up, argues this is because projects are often not designed with future sustainability and scaling up in mind. Developing and implementing sustainable interventions that can be applied on a larger scale requires a different mindset and new approaches to small-scale/pilot testing. This paper shows how this new approach is being applied and the initial lessons from its use in the Health of People and Environment in the Lake Victoria Basin Project currently underway in Uganda and Kenya. Specific lessons that are emerging are: 1) ongoing, meaningful stakeholder engagement has significantly shaped the design and implementation, 2) multi-sectoral projects are complex and striving for simplicity in the interventins is challenging, and 3) projects that address a sharply felt need experience substantial pressure for scale up, even before their effectiveness is established. Implicit in this paper is the recommendation that other projects would also benefit from applying a scale-up perspective from the outset. PMID:24908459

  8. Experiments on Natural-Scale Basaltic Lava Flows: Scope and First Results of the Syracuse University Lava Project

    NASA Astrophysics Data System (ADS)

    Karson, J.; Wysocki, R.; Kissane, M. T.; Smith, C.; Spencer, S.

    2012-12-01

    The Syracuse University Lava Project creates natural-scale basaltic lava flows for scientific investigations, educational opportunities and artistic projects. Modified furnaces designed for melting and pouring metals are used to create individual basaltic lava flow lobes of up to 450 kg (10-2m2) with the potential to generate much larger flow fields under controlled conditions. At present, the starting material used in 1.1 Ga Keewenan basalt from the Mid-Continent Rift in NW Wisconsin, a relatively uniform, well-characterized tholeiitic-alkalic basalt. Other compositions (andesite, komatiite, carbonatite) are planned for future experiments. Basaltic gravel is heated to 1100° to 1300°C in a crucible resulting in homogeneous, convecting basaltic magma. Lava is poured over a variety of surfaces including rock slabs, wet or dry sand, H2O or CO2 ice, rough or smooth material, and confined or unconfined channels. Resulting lava flows can be dissected for mapping details of morphological and textural variations. Video from various perspectives is used to document flow behavior and evolution. Infrared images constrain flow temperatures. Textural features of flows such as vesicles and plagioclase microlites have vertical and lateral variations similar to those of natural flows. Differing experimental set-ups provide analogs for a wide range of terrestrial, marine, and extraterrestrial lava flows. In an initial series of experiments, basaltic lava flows (50-200 kg) were poured over dry sand at near constant effusion rates (~10-4m3s-1). Flow temperature and slope were varied to produce a range of different flow morphologies. The results show systematic behavior consistent with observations of natural lava flows and analog experiments. At relatively high T (>1200°C) and steeper slopes (>15°) thin, narrow, leveed flows form. At intermediate T and slope, sheet-like, ropey, pahoehoe forms develop. Flows at the lowest T (1100°C) and gentlest slopes (<10°) investigated

  9. Antiretroviral Treatment Scale-up Among Persons Living With HIV in Kenya: Results From a Nationally Representative Survey

    PubMed Central

    Odhiambo, Jacob O.; Kellogg, Timothy A.; Kim, Andrea A.; Ng’ang’a, Lucy; Mukui, Irene; Umuro, Mamo; Mohammed, Ibrahim; De Cock, Kevin M.; Kimanga, Davies O.; Schwarcz, Sandra

    2016-01-01

    Background In 2007, 29% of HIV-infected Kenyans in need of antiretroviral therapy (ART), based on an immunologic criterion of CD4 ≤350 cells per microliter, were receiving ART. Since then, substantial treatment scale-up has occurred in the country. We analyzed data from the second Kenya AIDS Indicator Survey (KAIS 2012) to assess progress of treatment scale-up in Kenya. Methods KAIS 2012 was a nationally representative survey of persons aged 18 months to 64 years that collected information on HIV status, care, and treatment. ART eligibility was defined based on 2 standards: (1) 2011 Kenya eligibility criteria for ART initiation: CD4 ≤350 cells per microliter or co-infection with active tuberculosis and (2) 2013 World Health Organization (WHO) eligibility criteria for ART initiation: CD4 ≤500 cells per microliter, co-infection with active tuberculosis, currently pregnant or breastfeeding, and infected partners in serodiscordant relationships. Blood specimens were tested for HIV antibodies and HIV-positive specimens tested for CD4 cell counts. Results Among 13,720 adults and adolescents aged 15–64 years, 11,626 provided a blood sample, and 648 were HIV infected. Overall, 58.8% [95% confidence interval (CI): 52.0 to 65.5) were eligible for treatment using the 2011 Kenya eligibility criteria and 77.4% (95% CI: 72.4 to 82.4) using the 2013 WHO eligibility criteria. Coverage of ART was 60.5% (95% CI: 50.8 to 70.2) using the 2011 Kenya eligibility criteria and 45.9% (95% CI: 37.7 to 54.2) using the 2013 WHO eligibility criteria. Conclusions ART coverage has increased from 29% in 2007 to 61% in 2012. If Kenya adopts the 2013 WHO guidelines for ART initiation, need for ART increases by an additional 19 percentage points and current coverage decreases by an additional 15 percentage points, representing an additional 214,000 persons who will need to be reached. PMID:24732815

  10. Comparison of the results of different scale hydrogeological models on a terraced slope of Valtellina (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Camera, C.; Apuani, T.; Masetti, M.; Mele, M.

    2012-04-01

    The aim of this work was to understand and reproduce the hydrological dynamics of a slope that is terraced by dry-stone retaining walls. At first, the processes of interest were analyzed with a classical 2D unsaturated-saturated finite elements analysis, reproducing the geometry of a single terrace. In a second moment, a raster analysis at the slope scale was performed. The studied slope is located in Valtellina (Northern Italy), near the village of Tresenda, and in the last 30 years it experienced several soil slip/debris flow events that in 1983 caused 18 victims. Direct observation of the events of 1983 permitted to recognize the principal triggering cause of these events in the formation of an overpressure at the base of a dry-stone wall, that caused its failure. Using field tests and monitoring activity as input and calibration data respectively, the 2D model is able to explain the mechanisms of rainfall infiltration that can lead to the formation and evolution of a perched groundwater table at the contact between the bedrock and the walls backfill soil. Once calibrated and validated the model has been used to investigate the influence of different parameters on the studied processes, such as walls height, bedrock slope angle, and changes of both isotropic and anisotropic saturated hydraulic conductivity of soil and wall. From this sensitivity analysis, one of the most interesting results is the ability of the model to well differentiate the behaviour of a well maintained wall with an higher hydraulic conductivity than soil, from a poorly maintained wall that has lost part of its drainage capacity. In fact, only in this latter circumstance significant pore-water pressures can form at the base of the retaining structure. Moving the problem to the slope scale, although the used raster-model takes into account both the unsaturated and saturated components of flux as the 2D model, it is less precise in the description of the processes involved in the formation of

  11. Mechanisms of vegetation-induced channel narrowing of an unregulated canyon river: Results from a natural field-scale experiment

    NASA Astrophysics Data System (ADS)

    Manners, Rebecca B.; Schmidt, John C.; Scott, Michael L.

    2014-04-01

    The lower Yampa River in Yampa Canyon, western Colorado serves as a natural, field-scale experiment, initiated when the invasive riparian plant, tamarisk (Tamarix spp.), colonized an unregulated river. In response to tamarisk's rapid invasion, the channel narrowed by 6% in the widest reaches since 1961. Taking advantage of this unique setting, we reconstructed the geomorphic and vegetation history in order to identify the key mechanisms for which, in the absence of other environmental perturbations, vegetation alters fluvial processes that result in a narrower channel. From our reconstruction, we identified a distinct similarity in the timing and magnitude of tamarisk encroachment and channel change, albeit with a lag in the channel response, thus suggesting tamarisk as the driving force. Within a decade of establishment, tamarisk effectively trapped sediment and, as a result, increased floodplain construction rates. Increasing tamarisk coverage over time also reduced the occurrence of floodplain stripping. Tamarisk recruitment was driven by both hydrologic and hydraulic variables, and the majority of tamarisk plants (84%) established below the stage of the 2-year flood. Thus, upon establishment nearly all plants regularly interact with the flow and sediment transport field. Our analyses were predicated on the hypothesis that the flow regime of the Yampa River was stationary, and that only the riparian vegetation community had changed. While not heavily impacted by water development, we determined that some aspects of the flow regime have shifted. However, this shift, which involved the clustering in time of extremely wet and dry years, did not influence fluvial processes directly. Instead these changes directly impacted riparian vegetation and changes in vegetation cover, in turn, altered fluvial processes. Today, the rate of channel change and new tamarisk recruitment is small. We believe that the rapid expansion of tamarisk and related floodplain construction

  12. Predators on rocky shores in the northern Atlantic: Can the results of local experiments be generalized on a geographical scale?

    NASA Astrophysics Data System (ADS)

    Ingólfsson, Agnar

    2009-07-01

    Experimental manipulations of invertebrate prey and predators on rocky shores have been done by many authors. In the northern Atlantic the predators involved are usually the green crab Carcinus maenas and/or the dogwhelk Nucella lapillus, and the prey species studied are acorn barnacles (balanid Cirripedia), mussels ( Mytilus spp.) and winkles ( Littorina spp.). Usually the predators are found to have a regulating "top-down" effect on the prey species. In Iceland the acorn barnacle Semibalanus balanoides, the blue mussel Mytilus edulis and the flat periwinkle Littorina obtusata (including to some extent Littorina mariae) are found on rocky shores all around Iceland in what would seem to be near-optimal physical conditions. The predators Carcinus maenas and Nucella lapillus, on the other hand, are relatively southern species that do not thrive on the colder coasts of Iceland. Thus general surveys of different coasts of Iceland would seem to offer opportunities to see whether the results of local experiments can be discerned on a geographical scale (hundreds of km). The roughly 4900 km of the rocky coastline in Iceland was in this study subdivided into four regions, I-IV, according to the commonness or presence of the two predators. With the hope of reducing compounding factors the surveys were confined to sheltered or semi-sheltered fucoid shores, which were further divided into Ascophyllum (more sheltered) and Fucus vesiculosus (less sheltered) shores. Estuaries or other low-salinity environments were avoided. The study was based on 761 stations distributed around the rocky coastline on these two types of shores. The results for barnacles and mussels, being generally more abundant in regions were predators were scarce or absent, and being less common in Ascophyllum than F. vesiculosus shores in contrast to the predatory dogwelks, were in large measure in accord with predictions from experiments indicating "top-down" regulation. The results for the periwinkles

  13. Basin scale reactive-transport simulations of CO2 leakage and resulting metal transport in a shallow drinking water aquifer

    NASA Astrophysics Data System (ADS)

    Navarre-Sitchler, A.; Maxwell, R. M.; Hammond, G. E.; Lichtner, P. C.

    2011-12-01

    Leakage of CO2 from underground storage formations into overlying aquifers will decrease groundwater pH resulting in a geochemical response of the aquifer. If metal containing aquifer minerals dissolve as a part of this response, there is a risk of exceeding regulatory limits set by the EPA. Risk assessment methods require a realistic prediction of the maximum metal concentration at wells or other points of exposure. Currently, these predictions are based on numerical reactive transport simulations of CO2 leaks. While previous studies have simulated galena dissolution as a source of lead to explore the potential for contamination of drinking water aquifers, it may be more realistic to simulate lead release from more common minerals that are known to contain trace amounts of metals, e.g. calcite. Model domains for these previous studies are often sub-km in scale or have very coarse grid resolution, due to computation limitations. In this study we simulate CO2 leakage into a drinking water aquifer using the massively parallel subsurface flow and reactive transport code PFLOTRAN. The regional model domain is 4km x 1km x 0.1 km. Even with fairly coarse grid spacing (~ 9 m x 9 m x 0.9 m), the simulations have > 49 million degrees of freedom, requiring the use of High-Performance Computing (HPC). Our simulations are run on Jaguar at Oak Ridge National Laboratory. Lead concentrations in extraction wells 3 km down gradient from a CO2 leak increase above background concentrations due to kinetic mineral dissolution along the flow path. Increases in aqueous concentrations are less when lead is allowed to sorb onto mineral surfaces. Surprisingly, lead concentration increases are greater in simulations where lead is present as a trace constituent in calcite (5% by volume) relative to simulations with galena (0.001% by volume) as the lead source. It appears that galena becomes oversaturated and begins to precipitate, a result observed in previous modeling studies, and its low

  14. Large and Small Scale Nitrogen and Phosporous Manipulation Experiment in a Tree-Grass Ecosystem: first year of results

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco; Perez Priego, Oscar; El-Madany, Tarek; Guan, JinHong; Carrara, Arnaud; Fava, Francesco; Moreno, Gerardo; Kolle, Olaf; Rossini, Micol; Schrumpf, Marion; Julitta, Tommaso; Reichstein, Markus

    2015-04-01

    Recent studies have shown how human induced N/P imbalances affect essential ecosystem processes (e.g. photosynthesis, plant growth rate, respiration), and might be particularly important in water-limited ecosystems. In this contribution we will present the experimental design and the results of the first year of two nutrient manipulation experiments conducted at different spatial scale. In the first experiment a cluster of 2 eddy covariance (EC) flux towers has been set up beside a long-term EC site (Las Majadas del Tietar, Spain). Sites are selected in a way to have similar nutrient conditions, canopy structure, and stoichiometry of the different vegetation and soil pools. Two of the three footprints will be manipulated with addition of N and NP fertilizer at the beginning of 2015. The comparison of the three EC flux towers installed during the first year of the experiment (without fertilization) will be shown. We characterized the differences of the responses of carbon and water fluxes measured by the EC systems to environmental drivers, and structural and biophysical properties of the canopy. The second experiment was conducted over a Mediterranean grassland, where 16 plots of 10x10 meters that were manipulated by adding nutrient (N, P, and NP). The overall objective was to investigate the response of the gross primary productivity (GPP), assessed by using transparent transient-state canopy chambers, to different nutrient availability. The second objective was to evaluate the capability of hyperspectral data and Solar induced fluorescence to track short- and long-term GPP and light use efficiency variation under different N and P fertilization treatments. Spectral vegetation indices (VIs) were acquired manually using high resolution spectrometers (HR4000, OceanOptics, USA) along a phenological cycle. The VIs used included photochemical reflectance index (PRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI). Solar

  15. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19 Test Results from Phase A: Small-Scale Testing at ITT Flygt

    SciTech Connect

    Powell, M.R.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Poirier, M.R.; Rodwell, P.O.

    1999-03-30

    The key findings of the small-scale Flygt mixer tests are provided in this section. Some of these findings may not apply in larger tanks, so these data must be applied carefully when making predictions for large tanks. Flygt mixer testing in larger tanks at PNNL and in a full-scale tank at the SRS will be used to determine the applicability of these findings. The principal objectives of the small-scale Flygt mixer tests were to measure the critical fluid velocities required for sludge mobilization and particle suspension, to evaluate the applicability of the Gladki (1997) method for predicting required mixer thrust, and to provide small-scale test results for comparison with larger-scale tests to observe the effects of scale-up. The tank profile and mixer orientation (i.e., stationary, horizontal mixers) were in the same configuration as the prototype system, however, available resources did not allow geometric, kinematic, and dynamic similitude to be achieved. The results of these tests will be used in conjunction with the results from similar tests using larger tanks and mixers (tank diameters of 1.8 and 5.7 m [Powell et al. 1999]) to evaluate the effects of scaling and to aid in developing a methodology for predicting performance at full scale.

  16. Preliminary results of lab-scale investigations of products of incomplete combustion during incineration of primary and mixed digested sludge.

    PubMed

    Braguglia, C M; Bagnuolo, G; Gianico, A; Mininni, G; Pastore, C; Mascolo, G

    2016-03-01

    Separation between primary and secondary sludge treatment could be a valuable solution for sludge management. According to this approach, secondary sludge can be conveniently used in agriculture while primary sludge could be easily dried and incinerated. It follows that some concern may arise from incinerating primary sludge with respect to the current practice to incinerate mixed digested sludge. Incineration of primary and mixed digested municipal sludge was investigated with a lab-scale equipment in terms of emissions of products of incomplete combustion (PICs) during incineration failure modes. PICs can be grouped in three sub-categories, namely aliphatic hydrocarbons (alkanes and alkenes), compounds with a single aromatic ring, and polycyclic aromatic hydrocarbons (PAHs). After-burning temperature was the most important parameter to be controlled in order to minimize emissions of alkanes and alkenes. As for mono-aromatic compounds, benzene and toluene are the most thermally resistant compounds, and in some cases, an after-burning temperature of 1100 °C was not enough to get the complete destruction of benzene leading to a residual emission of 18 mg/kgsludge. PAHs showed an opposite trend with respect to aliphatic and mono-aromatic hydrocarbons being the thermal failure mode the main responsible of PIC emissions. A proper oxygen concentration is more important than elevated temperature thus reflecting the high thermal stability of PAHs. Overall, obtained results, even though obtained under flameless conditions that are different from those of the industrial plants, demonstrated that separation of primary and secondary sludge does not pose any drawbacks or concern regarding primary sludge being disposed of by incineration even though it is more contaminated than mixed digested sludge in terms of organic pollutants. PMID:26520096

  17. Feasibility analysis and residual evaluation of automated planar segmentation results of large-scale Martian surface structures

    NASA Astrophysics Data System (ADS)

    Székely, B.; Dorninger, P.; Koma, Zs.; Jansa, J.; Kovács, G.; Nothegger, C.

    2012-04-01

    As increasingly larger coverage of DTMs is available for the Martian surface, not only the number of studies on individual specific Martian features increase, but the need for large-scale geomorphometric evaluation is amplified as well. The computer power and the increasingly sophisticated methods are about to allow such extensive studies. Our DTM segmentation method that has been tailored and tested recently for various geoscientific applications, now allows to process large DTMs created within the framework of ESA Mars Express HRSC project. The implementation uses computation parallelization, kd-tree approach for storage and several sophisticated techniques in seeking for seed points to improve performance. Test runs on high-capacity multi-core computers demonstrate that now processing of complete DTMs of an orbit is feasible. The possibility to process large areas also implies that the segmentation results in high number of planar facets, typically several thousand features. Furthermore, the segmentation is often sensitive to the initial parameters (number of points to calculate local normal vectors, point-to-plane distance, angular tolerance, etc.) and also the use of splitting segments parameter has typically a stronger influence on the corresponding segmentation pattern. This complexity may complicate the evaluation of the results. In order to recognize the general behaviour a number of test runs have been carried out. The resulting sets of planar facets were then evaluated whether the segmentation fulfilled the original purpose (e.g., in the case of the modeling of an impact crater, its typical features should be modeled. In case of unsatisfying coverage or residual values those models have been sorted out. Model results considered to be satisfying are then analysed from the point of view of the residual values (the pointwise difference of measured height and modeled height). The distributions of the residuals are sometimes asymmetric, but the results are

  18. RESULTS OF CAUSTIC DISSOLUTION OF ALUMINOSILICATE SCALE AND CHARACTERIZATION DATA FOR SAMPLES FROM THE EVAPORATOR POT AND GRAVITY DRAIN LINE

    SciTech Connect

    Wilmarth, B; Rita Sullivan, R; Chris Martino, C

    2006-08-21

    The build-up of sodium aluminosilicate scale in the 2H Evaporator system continues to cause operational difficulties. The use of a nitric acid cleaning operation proved successful in 2001. However, the operation required additional facilities to support spent cleaning solution neutralization and was quite costly. A proposed caustic cleaning flowsheet has many advantages over the acid flowsheet. Therefore, samples were retrieved from the evaporator system (gravity drain line and pot) for both chemical and radiological characterization and dissolution testing. The characterization of these scale samples showed the presence of nitrated cancrinite along with a dehydrated zeolite. Small amounts of depleted uranium were also found in these samples as expected and the amount of uranium ranged from 0.5 wt% to 2 wt%. Dissolution in sodium hydroxide solutions of various caustic concentrations showed that the scale slowly dissolves at elevated temperature (90 C). Data from similar testing indicate that the scale removed from the GDL in 2005 dissolves slower than that removed in 1997. Differences in the particle size of these samples of scale may well explain the measured dissolution rate differences.

  19. From Boundary Layer Turbulence to Hydrologic Response: Recent Results on Scaling, Nonlinearity, and Predictability and Their Implications

    NASA Astrophysics Data System (ADS)

    Foufoula-Georgiou, E.

    2002-12-01

    Deepening our understanding of the space-time variability of atmospheric/hydrologic processes and their interactions over a range of scales has important implications for improving model parameterizations and increasing the accuracy of predictive models. At the same time, the inherent nonlinear and chaotic character of some of these processes imposes limits on their predictability, and therefore provides upper bounds on the expected prediction accuracy from numerical models. This paper will address questions of scaling, nonlinearity and predictability in processes active at two major interfaces of the hydrologic system: the land-atmosphere interface, and the land-water interface. Specifically, recent findings and their practical implications will be presented on: (a) multiscale interactions in turbulent boundary layers and implications for boundary condition formulations; (b) predictability assessment of turbulent velocities in a boundary layer as a function of scale; and (c) nonlinear dynamics of basin hydrologic response as a function of spatio-temporally varying forcing and basin geomorphological organization.

  20. Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-6 test data report : thermal hydraulic results, Rev. 0.

    SciTech Connect

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B.

    2011-06-28

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure? (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx} {phi} 30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength is being addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus measures the fracture strength of the crust while it is either at room temperature or above, the latter state being achieved with a heating element placed below the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the sixth water ingression test, designated SSWICS-6. This test

  1. Millennial scale system impulse response of polar climates - deconvolution results between δ 18O records from Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Reischmann, E.; Yang, X.; Rial, J. A.

    2013-12-01

    Deconvolution has long been used in science to recover real input given a system's impulse response and output. In this study, we applied spectral division deconvolution to select, polar, δ 18O time series to investigate the possible relationship between the climates of the Polar Regions, i.e. the equivalent to a climate system's ';impulse response.' While the records may be the result of nonlinear processes, deconvolution remains an appropriate tool because the two polar climates are synchronized, forming a Hilbert transform pair. In order to compare records, the age models of three Greenland and four Antarctica records have been matched via a Monte Carlo method using the methane-matched pair GRIP and BYRD as a basis for the calculations. For all twelve polar pairs, various deconvolution schemes (Wiener, Damped Least Squares, Tikhonov, Kalman filter) give consistent, quasi-periodic, impulse responses of the system. Multitaper analysis reveals strong, millennia scale, quasi-periodic oscillations in these system responses with a range of 2,500 to 1,000 years. These are not symmetric, as the transfer function from north to south differs from that of south to north. However, the difference is systematic and occurs in the predominant period of the deconvolved signals. Specifically, the north to south transfer function is generally of longer period than the south to north transfer function. High amplitude power peaks at 5.0ky to 1.7ky characterize the former, while the latter contains peaks at mostly short periods, with a range of 2.5ky to 1.0ky. Consistent with many observations, the deconvolved, quasi-periodic, transfer functions share the predominant periodicities found in the data, some of which are likely related to solar forcing (2.5-1.0ky), while some are probably indicative of the internal oscillations of the climate system (1.6-1.4ky). The approximately 1.5 ky transfer function may represent the internal periodicity of the system, perhaps even related to the

  2. LABORATORY-SCALE ANALYSIS OF AQUIFER REMEDIATION BY IN-WELL VAPOR STRIPPING 2. MODELING RESULTS. (R825689C061)

    EPA Science Inventory

    Abstract

    The removal of volatile organic compounds (VOCs) from groundwater through in-well vapor stripping has been demonstrated by Gonen and Gvirtzman (1997, J. Contam. Hydrol., 00: 000-000) at the laboratory scale. The present study compares experimental breakthrough...

  3. High-Quality Charter Schools at Scale in Big Cities: Results of a Symposium (Seattle, Washington, January 20, 2006)

    ERIC Educational Resources Information Center

    Harvey, James; Rainey, Lydia

    2006-01-01

    Bringing charters to scale remains a major challenge. To learn more about barriers to the expansion of high-quality public charter schools and how they might be removed, the National Charter School Research Project (NCSRP) at the University of Washington and the National Alliance for Public Charter Schools convened a meeting of leaders from…

  4. Brief Report: The Social Responsiveness Scale for Adults (SRS-A)-- Initial Results in a German Cohort

    ERIC Educational Resources Information Center

    Bolte, Sven

    2012-01-01

    The Social Responsiveness Scale (SRS) is a tool for quantitative autism assessment in children and adolescents. The SRS-A addresses social responsiveness in adulthood. Reliability and validity using the German adaptation of the SRS-A was examined in 20 adults with Autism Spectrum Disorder (ASD), 62 with other mental disorders (CLIN) and 163…

  5. CONTROL OF AIR POLLUTION EMISSIONS FROM MOLYBDENUM ROASTING. VOLUME 3. PILOT SCALE TEST RESULTS FOR MAGNESIUM OXIDE SCRUBBING

    EPA Science Inventory

    A research project was conducted to determine the feasibility of applying the magnesium oxide (MgO) scrubbing system to smelter off-gas streams containing approximately one percent SO2. Pilot scale (4000 cu Nm/hr) tests of the MgO system using a packed tower absorber with no rege...

  6. Summary of Results Obtained in Full-Scale Tunnel Investigation of the Ryan Flex-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr.; Hassell, James L., Jr.

    1962-01-01

    The performance and static stability and control characteristics of the Ryan Flex-Wing airplane were determined in an investigation conducted in the Langley full-scale tunnel through an angle-of-attack range of the keel from about 14 to 44 deg. for power-on and -off conditions. Comparisons of the wind-tunnel data with flight-test data obtained with the same airplane by the Ryan Aeronautical Company were made in a number of cases.

  7. Analysis of Environmental Issues Related to Small-Scale Hydroelectric Development IV: Fish Mortality Resulting From Turbine Passage

    SciTech Connect

    Turbak, Susan C.; Reichle, Donna R.; Shriner, Carole R.

    1981-01-01

    The purpose of this report is to provide summary information for use by potential developers and regulators of small-scale hydroelectric projects (defined as existing dams that can be retrofitted to a total site capacity of ≤30 MW), where turbine-related mortality of fish is a potential issue affecting site-specific development. Mitigation techniques for turbine-related mortality are not covered in this report.

  8. Planetary-scale variability in the low-latitude E region field-aligned irregularities: First results from Gadanki observations

    NASA Astrophysics Data System (ADS)

    Phanikumar, D. V.; Patra, A. K.; Ratnam, M. V.; Sripathi, S.

    2009-01-01

    In this paper, we present for the first time planetary-scale wave signatures in the low-latitude E region field-aligned irregularities (FAI) observed during June 2004 to May 2005 using the Gadanki mesosphere-stratosphere-troposphere radar. We have observed a clear signature of 5-8 day variability in echo occurrence, in SNR, and also in Doppler velocity observed above 100 km. Concurrent temperature observations made using the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the Thermosphere-Ionosphere-Mesosphere Energetic and Dynamics (TIMED) satellite have also clearly shown the presence of 5-8 day variability similar to that of FAI. The temperature variations have been characterized with zonal wave numbers of 3 and 4 and vertical wavelength of 15-20 km. These waves are found to have increasing amplitude with increasing height and phase progressing downward, suggesting that they were of lower atmospheric origin. It is emphasized that the planetary-scale characteristics of neutral atmosphere in the FAI observations are important in understanding the vertical coupling of the low-latitude ionosphere-atmosphere system. These observations and the pertinent issues are discussed in the light of current understanding of the planetary-scale role on the FAI variability.

  9. Results of Large-Scale Testing on Effects of Anti-Foam Agent on Gas Retention and Release

    SciTech Connect

    Stewart, Charles W.; Guzman-Leong, Consuelo E.; Arm, Stuart T.; Butcher, Mark G.; Golovich, Elizabeth C.; Jagoda, Lynette K.; Park, Walter R.; Slaugh, Ryan W.; Su, Yin-Fong; Wend, Christopher F.; Mahoney, Lenna A.; Alzheimer, James M.; Bailey, Jeffrey A.; Cooley, Scott K.; Hurley, David E.; Johnson, Christian D.; Reid, Larry D.; Smith, Harry D.; Wells, Beric E.; Yokuda, Satoru T.

    2008-01-03

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. The waste treatment process in the pretreatment facility will mix both Newtonian and non-Newtonian slurries in large process tanks. Process vessels mixing non-Newtonian slurries will use pulse jet mixers (PJMs), air sparging, and recirculation pumps. An anti-foam agent (AFA) will be added to the process streams to prevent surface foaming, but may also increase gas holdup and retention within the slurry. The work described in this report addresses gas retention and release in simulants with AFA through testing and analytical studies. Gas holdup and release tests were conducted in a 1/4-scale replica of the lag storage vessel operated in the Pacific Northwest National Laboratory (PNNL) Applied Process Engineering Laboratory using a kaolin/bentonite clay and AZ-101 HLW chemical simulant with non-Newtonian rheological properties representative of actual waste slurries. Additional tests were performed in a small-scale mixing vessel in the PNNL Physical Sciences Building using liquids and slurries representing major components of typical WTP waste streams. Analytical studies were directed at discovering how the effect of AFA might depend on gas composition and predicting the effect of AFA on gas retention and release in the full-scale plant, including the effects of mass transfer to the sparge air. The work at PNNL was part of a larger program that included tests conducted at Savannah River National Laboratory (SRNL) that is being reported separately. SRNL conducted gas holdup tests in a small-scale mixing vessel using the AZ-101 high-level waste (HLW) chemical simulant to investigate the effects of different AFAs, their components, and of adding noble metals. Full-scale, single-sparger mass transfer tests were also conducted at SRNL in water and AZ-101 HLW simulant to provide data for PNNL

  10. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX)

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.

    2012-12-01

    Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to

  11. Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale

    USGS Publications Warehouse

    Cruikshank, D.P.; Meyer, A.W.; Brown, R.H.; Clark, R.N.; Jaumann, R.; Stephan, K.; Hibbitts, C.A.; Sandford, S.A.; Mastrapa, R.M.E.; Filacchione, G.; Ore, C.M.D.; Nicholson, P.D.; Buratti, B.J.; McCord, T.B.; Nelson, R.M.; Dalton, J.B.; Baines, K.H.; Matson, D.L.

    2010-01-01

    Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 ??m (2343.3 cm-1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule's nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ???4.255 ??m (???2350.2 cm-1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe's CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior. The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 ??m, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector

  12. Analysis and test for space shuttle propellant dynamics (1/10th scale model test results). Volume 1: Technical discussion

    NASA Technical Reports Server (NTRS)

    Berry, R. L.; Tegart, J. R.; Demchak, L. J.

    1979-01-01

    Space shuttle propellant dynamics during ET/Orbiter separation in the RTLS (return to launch site) mission abort sequence were investigated in a test program conducted in the NASA KC-135 "Zero G" aircraft using a 1/10th-scale model of the ET LOX Tank. Low-g parabolas were flown from which thirty tests were selected for evaluation. Data on the nature of low-g propellant reorientation in the ET LOX tank, and measurements of the forces exerted on the tank by the moving propellent will provide a basis for correlation with an analytical model of the slosh phenomenon.

  13. Control of the growth of Microthrix parvicelle by using an aerobic selector--results of pilot and full scale plant operation.

    PubMed

    Lebek, M; Rosenwinkel, K H

    2002-01-01

    A two-stage wastewater treatment plant experiences bulking sludge problems in winter, correlating with Microthixparvicella abundance. Pilot and full-scale studies of the use of an aerobic selector to control M. parvicella had little success, probably resulting from long chain fatty acid retention in foam at the tank surface. Initial pilot studies with reduced foam retention showed better results. PMID:12216674

  14. Reforming tuberculosis control in Ukraine: results of pilot projects and implications for the national scale-up of DOTS.

    PubMed

    Vassall, A; Chechulin, Y; Raykhert, I; Osalenko, N; Svetlichnaya, S; Kovalyova, A; van der Werf, M J; Turchenko, L V; Hasker, E; Miskinis, K; Veen, J; Zaleskis, R

    2009-01-01

    The period of economic transition has had severe consequences for health and health systems in Ukraine. The tuberculosis (TB) situation illustrates this. The strategy recommended by the World Health Organization (WHO) for TB, directly observed treatment short-course (DOTS), has the potential to provide real improvements in TB services, forming the basis of the response to the growing epidemic. In 2002, Ukraine, financially supported by USAID and the European Community (EC), began to introduce DOTS through pilot projects in Mariupol and Kyiv City. The aim of this study is to assess the feasibility, effectiveness, health service cost, patient cost, and the cost-effectiveness of these pilots, in order to inform the national scale-up of DOTS. The study finds that DOTS is feasible and has the potential to be both effective and cost-effective in Ukraine. Following this study, Ukraine adopted DOTS as a national TB control strategy in 2005. However, the pilots also found that there are several evidence-related concerns and perverse economic incentives to both providers and patients that will need to be addressed if national scale-up is to be successful. These include concerns related to the treatment of MDR-TB, economic benefits to some patients to remain hospitalized, and payments to providers and health facilities that support current practices. These will need to be addressed if Ukraine is to develop an effective response to its emerging TB epidemic. PMID:19056804

  15. Correlation study of theoretical and experimental results for spin tests of a 1/10 scale radio control model

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.

    1976-01-01

    A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.

  16. Structure and dynamics of small scale magnetic fields in the solar atmosphere Results of high resolution polarimetry and image reconstruction

    NASA Astrophysics Data System (ADS)

    Janssen, K.

    2003-07-01

    Two-dimensional spectrograms were obtained at the Vacuum Tower Telescope, Tenerife, in order to study the structure of small scale magnetic fields on the Sun. The speckle reconstruction method that is used for data processing gives high resolution images and wavelength scans in left and right circular polarized light, from which magnetic field maps are calculated using the center of gravity method. The geometric similarity of magnetic structures is studied via the area- perimeter-relation, from which the Hausdorff-dimension of the rim of a structure is determined. The investigation shows that the actual value of the fractal dimension depends on the threshold that is used to determine the borders of the magnetic areas. Higher treshold values lead to smaller fractal dimensions. This can be explained by the concentration of strong magnetic fields while weak fields spread out in more complex structures. With a treshold of 80 Gauss a fractal dimension of D=1,40(5) is obtained. Furthermore, the dimension obtained by observed data is compared to the fractal dimension gained from MHD simulations. It is found that if the measurement scales are adjusted correctly the dimensions for both datasets match quite well. In a second part the dynamics of the mass motions were analysed and a coarse estimate of the energy conveyed by these movements to the magnetic field is given. The energy flux is strong enough to participate in the heating of the solar chromosphere and corona over active regions.

  17. Genetic Geostatistical Framework for Spatial Analysis of Fine-Scale Genetic Heterogeneity in Modern Populations: Results from the KORA Study.

    PubMed

    Diaz-Lacava, A N; Walier, M; Holler, D; Steffens, M; Gieger, C; Furlanello, C; Lamina, C; Wichmann, H E; Becker, T

    2015-01-01

    Aiming to investigate fine-scale patterns of genetic heterogeneity in modern humans from a geographic perspective, a genetic geostatistical approach framed within a geographic information system is presented. A sample collected for prospective studies in a small area of southern Germany was analyzed. None indication of genetic heterogeneity was detected in previous analysis. Socio-demographic and genotypic data of German citizens were analyzed (212 SNPs; n = 728). Genetic heterogeneity was evaluated with observed heterozygosity (H O ). Best-fitting spatial autoregressive models were identified, using socio-demographic variables as covariates. Spatial analysis included surface interpolation and geostatistics of observed and predicted patterns. Prediction accuracy was quantified. Spatial autocorrelation was detected for both socio-demographic and genetic variables. Augsburg City and eastern suburban areas showed higher H O values. The selected model gave best predictions in suburban areas. Fine-scale patterns of genetic heterogeneity were observed. In accordance to literature, more urbanized areas showed higher levels of admixture. This approach showed efficacy for detecting and analyzing subtle patterns of genetic heterogeneity within small areas. It is scalable in number of loci, even up to whole-genome analysis. It may be suggested that this approach may be applicable to investigate the underlying genetic history that is, at least partially, embedded in geographic data. PMID:26258132

  18. Some results of the testing of a full-scale Ogee tip helicopter rotor; acoustics, loads, and performance

    NASA Technical Reports Server (NTRS)

    Mantay, W. R.; Shidler, P. A.; Campbell, R. L.

    1977-01-01

    Full-scale tests were utilized to investigate the effect of the Ogee tip on helicopter rotor acoustics, performance, and loads. Two facilities were used for this study: the Langley whirl tower and a UH-1H helicopter. The test matrix for hover on the whirl tower involved thrust values from 0 to 44,480 N (10,000 lbs) at several tip Mach numbers for both standard and Ogee rotors. The full-scale testing on the UH-1H encompassed the major portion of the flight envelope for that aircraft. Both near-field acoustic measurements as well as far-field flyover data were obtained for both the Ogee and standard rotors. Data analysis of the whirl-tower test shows that the Ogee tip does significantly diffuse the tip vortex while providing some improvement in hover performance. Flight testing of both rotors indicates that the strong impulsive noise signature of the standard rotor can be reduced with the Ogee rotor. Forward flight performance was significantly improved with the Ogee configuration for a large number of flight conditions. Further, rotor control loads and vibrations were reduced through use of this advanced tip rotor.

  19. Genetic Geostatistical Framework for Spatial Analysis of Fine-Scale Genetic Heterogeneity in Modern Populations: Results from the KORA Study

    PubMed Central

    Diaz-Lacava, A. N.; Walier, M.; Holler, D.; Steffens, M.; Gieger, C.; Furlanello, C.; Lamina, C.; Wichmann, H. E.; Becker, T.

    2015-01-01

    Aiming to investigate fine-scale patterns of genetic heterogeneity in modern humans from a geographic perspective, a genetic geostatistical approach framed within a geographic information system is presented. A sample collected for prospective studies in a small area of southern Germany was analyzed. None indication of genetic heterogeneity was detected in previous analysis. Socio-demographic and genotypic data of German citizens were analyzed (212 SNPs; n = 728). Genetic heterogeneity was evaluated with observed heterozygosity (HO). Best-fitting spatial autoregressive models were identified, using socio-demographic variables as covariates. Spatial analysis included surface interpolation and geostatistics of observed and predicted patterns. Prediction accuracy was quantified. Spatial autocorrelation was detected for both socio-demographic and genetic variables. Augsburg City and eastern suburban areas showed higher HO values. The selected model gave best predictions in suburban areas. Fine-scale patterns of genetic heterogeneity were observed. In accordance to literature, more urbanized areas showed higher levels of admixture. This approach showed efficacy for detecting and analyzing subtle patterns of genetic heterogeneity within small areas. It is scalable in number of loci, even up to whole-genome analysis. It may be suggested that this approach may be applicable to investigate the underlying genetic history that is, at least partially, embedded in geographic data. PMID:26258132

  20. Analysis of environmental issues related to small-scale hydroelectric development IV: fish mortality resulting from turbine passage

    SciTech Connect

    Turbak, S. C.; Reichle, D. R.; Shriner, C. R.

    1981-01-01

    This document presents a state-of-the-art review of literature concerning turbine-related fish mortality. The review discusses conventional and, to a lesser degree, pumped-storage (reversible) hydroelectric facilities. Much of the research on conventional facilities discussed in this report deals with studies performed in the Pacific Northwest and covers both prototype and model studies. Research conducted on Kaplan and Francis turbines during the 1950s and 1960s has been extensively reviewed and is discussed. Very little work on turbine-related fish mortality has been undertaken with newer turbine designs developed for more modern small-scale hydropower facilities; however, one study on a bulb unit (Kaplan runner) has recently been released. In discussing turbine-related fish mortality at pumped-storage facilities, much of the literature relates to the Ludington Pumped Storage Power Plant. As such, it is used as the principal facility in discussing research concerning pumped storage.

  1. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick

    2014-01-01

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  2. NaK pool-boiler bench-scale receiver durability test: Test design and initial results

    SciTech Connect

    Andraka, C.E.; Jones, S.A.; Moreno, J.B.; Moss, T.A.

    1993-06-01

    Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Fool boilers offer simplicity in desip and fabrication. Pool-boiler solar receiver operation has been demonstrated for short periods of time. However, in order to generate cost-effective electricity, the receiver must operate without significant maintenance for the entire system life. At least one theory explaining incipient-boiling behavior of alkali metals indicates that favorable start-up behavior should deteriorate over time. Many factors affect the stability and startup behavior of the boiling system. Therefore, it is necessary to simulate the full-scale design in every detail as much as possible, including flux levels materials, and operating cycles. On-sun testing is impractical due to the limited test time available. No boiling system has been demonstrated with the current porous boiling enhancement surface and materials for a significant period of time. A test vessel was constructed with a Friction Coatings Inc. porous boiling enhancement surface. The vessel is heated with a quartz lamp array providing about 92 W/Cm{sup 2} peak incident thermal flux. The vessel is charged with NaK-78, which is liquid at room temperature. This allows the elimination of costly electric preheating, both on this test and on full-scale receivers. The vessel is fabricated from Haynes 230 alloy, selected for its high temperature strength and oxidation resistance. The vessel operates at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. Temperature data is continually collected. The test design and initial (first 2500 hours and 300 start-ups) test data are presented here. The test is designed to operate for 10,000 hours, and will be complete in the spring of 1994.

  3. NaK pool-boiler bench-scale receiver durability test: Test design and initial results

    SciTech Connect

    Andraka, C.E.; Jones, S.A.; Moreno, J.B.; Moss, T.A.

    1993-01-01

    Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Fool boilers offer simplicity in desip and fabrication. Pool-boiler solar receiver operation has been demonstrated for short periods of time. However, in order to generate cost-effective electricity, the receiver must operate without significant maintenance for the entire system life. At least one theory explaining incipient-boiling behavior of alkali metals indicates that favorable start-up behavior should deteriorate over time. Many factors affect the stability and startup behavior of the boiling system. Therefore, it is necessary to simulate the full-scale design in every detail as much as possible, including flux levels materials, and operating cycles. On-sun testing is impractical due to the limited test time available. No boiling system has been demonstrated with the current porous boiling enhancement surface and materials for a significant period of time. A test vessel was constructed with a Friction Coatings Inc. porous boiling enhancement surface. The vessel is heated with a quartz lamp array providing about 92 W/Cm[sup 2] peak incident thermal flux. The vessel is charged with NaK-78, which is liquid at room temperature. This allows the elimination of costly electric preheating, both on this test and on full-scale receivers. The vessel is fabricated from Haynes 230 alloy, selected for its high temperature strength and oxidation resistance. The vessel operates at 750[degrees]C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. Temperature data is continually collected. The test design and initial (first 2500 hours and 300 start-ups) test data are presented here. The test is designed to operate for 10,000 hours, and will be complete in the spring of 1994.

  4. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    SciTech Connect

    Bonne, François; Bonnay, Patrick

    2014-01-29

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  5. Modulation of mantle plumes and heat flow at the core mantle boundary by plate-scale flow: results from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge M.; Jellinek, A. Mark; Richards, Mark A.; Manga, Michael

    2004-09-01

    We report results from analog laboratory experiments, in which a large-scale flow is imposed upon natural convection from a hot boundary layer at the base of a large tank of corn syrup. The experiments show that the subdivision of the convective flow into four regions provides a reasonable conceptual framework for interpreting the effects of large-scale flow on plumes. Region I includes the area of the hot thermal boundary layer (TBL) that is thinned by the large-scale flow, thereby suppressing plumes. Region II encompasses the critically unstable boundary layer where plumes form. Region III is the area above the boundary layer that is devoid of plumes. Region IV comprises the area of hot upwelling and plume conduits. Quantitative analysis of our experiments results in a scaling law for heat flux from the hot boundary and for the spatial extent of plume suppression. When applied to the Earth's core-mantle boundary (CMB), our results suggest that large-scale mantle flow, due to sinking lithospheric plates, can locally thin the TBL and suppress plume formation over large fractions of the CMB. Approximately 30% of heat flow from the core may be due to increased heat flux from plate-scale flow. Furthermore, CMB heat flux is non-uniformly distributed along the CMB, with large areas where heat flux is increased on average by a factor of 2. As a consequence, the convective flow pattern in the outer core may be affected by CMB heat-flux heterogeneity and sensitive to changes in plate-scale mantle flow. Because of plume suppression and 'focusing' of hot mantle from the CMB into zones of upwelling flow, plume conduits (hotspots) are expected to be spatially associated with lower-mantle regions of low seismic velocities, inferred as hot upwelling mantle flow.

  6. Validation of the Medication Adherence Rating Scale in homeless patients with schizophrenia: Results from the French Housing First experience

    PubMed Central

    Zemmour, K.; Tinland, A.; Boucekine, M.; Girard, V.; Loubière, S.; Resseguier, N.; Fond, G.; Auquier, P.; Boyer, L.; Apostolidis, T.; Birmes, P.; Bossetti, T.; Bouloudnine, R.; Combes, B.; Debieve, J.; Falissard, B.; Greacen, T.; Laval, C.; Lancon, C.; Le Cardinal, P.; Mantovani, J.; Moreau, D.; Naudin, J.; Rhunter, P.; Videau, B.

    2016-01-01

    The Medication Adherence Rating Scale (MARS) is one of the most widely used measurements of adherence in schizophrenia (SZ), but there is no available data regarding its psychometric properties in homeless SZ patients (HSZ). The aim of this study was therefore to assess the psychometric properties of the MARS in a large multicenter sample of HSZ subjects. This multi-centre prospective study was conducted in the following 4 French cities: Lille, Marseille, Paris and Toulouse. Three hundred and fifty-three patients were included. The 3-factor structure of the MARS was confirmed using confirmatory factor analysis: RMSEA = 0.045, CFI = 0.98, TLI = 0.97 and WRMR = 0.76. The unidimensionality of each factor was supported by the satisfactory INFIT statistics. Item internal consistencies were all higher than 0.20 and the Kuder–Richardson were higher than to 0.6, except for factor 2, which was closed to 0.5. Significant associations with symptoms, functioning and quality of life showed satisfactory external validity. The acceptability was satisfactory with missing data lower than 5% for each dimension. The MARS is a short self-administered instrument with acceptable psychometric properties in homeless SZ patients that yields interesting information about medication adherence. PMID:27534796

  7. Results of HWVP transuranic process waste treatment laboratory and pilot-scale filtration tests using specially ground zeolite

    SciTech Connect

    Eakin, D.E.

    1996-03-01

    Process waste streams from the Hanford Waste Vitrification Plant (HWVP) may require treatment for cesium, strontium, and transuranic (TRU) element removal in order to meet criteria for incorporation in grout. The approach planned for cesium and strontium removal is ion exchange using a zeolite exchanger followed by filtration. Filtration using a pneumatic hydropulse filter is planned to remove TRU elements which are associated with process solids and to also remove zeolite bearing the cesium and strontium. The solids removed during filtration are recycled to the melter feed system to be incorporated into the HWVP glass product. Fluor Daniel, Inc., the architect-engineering firm for HWVP, recommended a Pneumatic Hydropulse (PHP) filter manufactured by Mott Metallurgical Corporation for use in the HWVP. The primary waste streams considered for application of zeolite contact and filtration are melter off-gas condensate from the submerged bed scrubber (SBS), and equipment decontamination solutions from the Decontamination Waste Treatment Tank (DWTT). Other waste streams could be treated depending on TRU element and radionuclide content. Laboratory and pilot-scale filtration tests were conducted to provide a preliminary assessment of the adequacy of the recommended filter for application to HWVP waste treatment.

  8. Validation of the Medication Adherence Rating Scale in homeless patients with schizophrenia: Results from the French Housing First experience.

    PubMed

    Zemmour, K; Tinland, A; Boucekine, M; Girard, V; Loubière, S; Resseguier, N; Fond, G; Auquier, P; Boyer, L

    2016-01-01

    The Medication Adherence Rating Scale (MARS) is one of the most widely used measurements of adherence in schizophrenia (SZ), but there is no available data regarding its psychometric properties in homeless SZ patients (HSZ). The aim of this study was therefore to assess the psychometric properties of the MARS in a large multicenter sample of HSZ subjects. This multi-centre prospective study was conducted in the following 4 French cities: Lille, Marseille, Paris and Toulouse. Three hundred and fifty-three patients were included. The 3-factor structure of the MARS was confirmed using confirmatory factor analysis: RMSEA = 0.045, CFI = 0.98, TLI = 0.97 and WRMR = 0.76. The unidimensionality of each factor was supported by the satisfactory INFIT statistics. Item internal consistencies were all higher than 0.20 and the Kuder-Richardson were higher than to 0.6, except for factor 2, which was closed to 0.5. Significant associations with symptoms, functioning and quality of life showed satisfactory external validity. The acceptability was satisfactory with missing data lower than 5% for each dimension. The MARS is a short self-administered instrument with acceptable psychometric properties in homeless SZ patients that yields interesting information about medication adherence. PMID:27534796

  9. Turbulent CO2 Flux Measurements by Lidar: Length Scales, Results and Comparison with In-Situ Sensors

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2009-01-01

    The vertical CO2 flux in the atmospheric boundary layer (ABL) is investigated with a Doppler differential absorption lidar (DIAL). The instrument was operated next to the WLEF instrumented tall tower in Park Falls, Wisconsin during three days and nights in June 2007. Profiles of turbulent CO2 mixing ratio and vertical velocity fluctuations are measured by in-situ sensors and Doppler DIAL. Time and space scales of turbulence are precisely defined in the ABL. The eddy-covariance method is applied to calculate turbulent CO2 flux both by lidar and in-situ sensors. We show preliminary mean lidar CO2 flux measurements in the ABL with a time and space resolution of 6 h and 1500 m respectively. The flux instrumental errors decrease linearly with the standard deviation of the CO2 data, as expected. Although turbulent fluctuations of CO2 are negligible with respect to the mean (0.1 %), we show that the eddy-covariance method can provide 2-h, 150-m range resolved CO2 flux estimates as long as the CO2 mixing ratio instrumental error is no greater than 10 ppm and the vertical velocity error is lower than the natural fluctuations over a time resolution of 10 s.

  10. Grid-scale Indirect Radiative Forcing of Climate due to aerosols over the northern hemisphere simulated by the integrated WRF-CMAQ model: Preliminary results

    EPA Science Inventory

    In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...

  11. Use of electronic pill boxes to assess risk of poor treatment compliance: results of a large-scale trial.

    PubMed

    Vaur, L; Vaisse, B; Genes, N; Elkik, F; Legrand, C; Poggi, L

    1999-04-01

    The objective of the present study was to determine the predictive factors of treatment compliance in hypertensive patients. This was an open large-scale multicenter study where mild to moderate essential hypertensive patients received trandolapril (2 mg) once daily for 30 to 60 days in addition to their usual treatment. Trandolapril was packed in electronic pill boxes that registered date and time of each opening. The main compliance parameters were the percentage of missed doses, the percentage of delayed doses, and the percentage of correct dosing periods. Predictive factors of poor compliance (correct dosing periods < 80%) were determined using a multivariate stepwise logistic regression analysis. Two thousand one hundred seventy-three patients aged 60 +/- 12 years were analyzed. Of the total patients 37% were poor compliers; 29% of patients forgot more than 10% of doses and 36% of patients delayed more than 10% of doses. Ranked predictive factors of poor compliance were: age < 60 years (odds ratio [OR], 1.80 [1.49 to 2.17], P = .0001), the Paris area (OR, 1.70 [1.32 to 2.19], P = .0001), smokers (OR, 1.65 [1.29 to 2.11], P = .0001), monotherapy (OR, 1.40 [1.14 to 1.72], P = .0012), and baseline diastolic blood pressure > or = 100 mm Hg (OR, 1.21 [1.01 to 1.46], P = .044). Therefore, we conclude that young hypertensives, large city dwellers, and smokers are more likely to be poor compliers. The presence of some of these characteristics might incite the physician either to encourage patient compliance or to prescribe antihypertensive drugs that have an effect that persists even beyond 24 h. PMID:10232497

  12. Local Validation of Global Estimates of Biosphere Properties: Synthesis of Scaling Methods and Results Across Several Major Biomes

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.; Wessman, Carol A.; Aber, John D.; VanderCaslte, John R.; Running, Steven W.

    1998-01-01

    To assist in validating future MODIS land cover, LAI, IPAR, and NPP products, this project conducted a series of prototyping exercises that resulted in enhanced understanding of the issues regarding such validation. As a result, we have several papers to appear as a special issue of Remote Sensing of Environment in 1999. Also, we have been successful at obtaining a follow-on grant to pursue actual validation of these products over the next several years. This document consists of a delivery letter, including a listing of published papers.

  13. Free-Flight Zero-Lift Drag Results from a 1/5-Scale Model and Several Small-Scale Equivalent Bodies of Revolution of the Convair F-102 Configuration at Mach Numbers up to 1.34

    NASA Technical Reports Server (NTRS)

    Wallskog, Harvey A.

    1954-01-01

    A 1/5-scale, rocket-propelled model of the Convair F-102 configuration was tested in free flight to determine zero-lift drag at Mach numbers up to 1.34 and at Reynolds numbers comparable to those of the full-scale airplane. This large-scale model corresponded to the prototype airplane and had air flow through the duct. Additional zero-lift drag tests involved a series of small equivalent bodies of revolution which were launched by means of a helium gun. The several small-scale models tested corresponded to: the basic configuration, the 1/5-scale rocket-propelled model configuration, a 2-foot (full-scale) fuselage-extension configuration, and a 7-foot (full-scale) fuselage-extension configuration. Models designed to correspond to the area distribution at a Mach number of 1.0 were flown for each of these 'shapes and, in addition, models designed to correspond to the area distribution at a Mach number of 1.2 were flown for the 1/5-scale rocket-propelled model and the 7-foot-fuselage-extension configuration. The value of external pressure drag coefficient (including base drag) obtained from the large-scale rocket model was 0.0190 at a Mach number of 1..05 and the corresponding values from the equivalent-body tests varied from 0.0183 for the rocket-propelled model shape to 0.0137 for the 7-foot-fuselage-extension configuration. From the results of tests of equivalent bodies designed to correspond to the area distribution at a Mach number of 1.0, it is evident that the small changes in shape incorporated in the basic and 2-foot-fuselage-extension configurations from that of the rocket-propelled model configuration will provide no significant change in pressure drag. On the other hand, the data from the 7-foot-fuselage-extension model indicate a substantial reduction in pressure drag at transonic speeds.

  14. Flue gas conditioning for improved particle collection in electrostatic precipitators. Second topical report, Results of bench-scale screening of additives

    SciTech Connect

    Durham, M.D.

    1993-08-13

    ADA Technologies, Inc. (ADA) has completed the bench-scale testing phase of a program to evaluate additives that will improve the collection of fine particles in electrostatic precipitators (ESPs). A bench-scale ESP was installed at the Consolidation Coal Company (CONSOL) combustion research and development facility in Library, PA in order to conduct the evaluation. During a two-week test, four candidate additives were injected into the flue gas ahead of a 100 acfm ESP to determine the effect on fly ash collectability. Two additives were found to reduce the emissions from the ESP. Additives ``C`` and ``D`` performed better than initially anticipated -- reducing emissions initially by 17%. Emissions were reduced by 27% after the ESP was modified by the installation of baffles to minimize sneakage. In addition to the measured improvements in performance, no detrimental effects (i.e., electrode fouling) were observed in the operation of the ESP during the testing. The measures of success identified for the bench-scale phase of the program have been surpassed. Since the additives will affect only non-rapping reentrainment particle losses, it is expected that an even greater improvement in particle collection will be observed in larger-scale ESPs. Therefore, positive results are anticipated during the pilot-scale phase of the program and during a future full-scale demonstration test. A preliminary economic analysis was performed to evaluate the cost of the additive process and to compare its costs against alternative means for reducing emissions from ESPs. The results show that conditioning with additive C at a rate of 0.05% (wt. additive to wt. fly ash) is much less expensive than adding new ESP capacity, and more cost competitive than existing chemical conditioning processes. Preliminary chemical analysis of conditioned fly ash shows that it passes the Toxicity Characteristic Leaching Procedure criteria.

  15. Breakdown of the scale invariance in a near-Tonks-Girardeau gas: some exact results and beyond

    NASA Astrophysics Data System (ADS)

    Zhang, Zhedong; Astrakharchik, Gregory; Aveline, David; Choi, Steven; Perrin, Hélène; Bergeman, Thomas; Olshanii, Maxim

    2014-05-01

    In this Letter, we consider the elementary monopole excitations of the harmonically trapped Bose gas in the vicinity of Tonks-Girardeau limit. Using Girardeau's Fermi-Bose duality and subsequently, an effective fermion-fermion odd-wave interaction, we obtain the dominant correction to the scaleinvariance- protected value of the excitation frequency. We produce a series of diffusion Monte Carlo results that confirm our analytic perturbative value for three particles. And less expectedly, our result stands in an excellent agreement with the result of a hydrodynamic simulation of the collective excitations in the limit of a large number of atoms (with the Lieb-Liniger equation of state as an input). The sub-leading term in the near-Tonks-Girardeau expansion of the sum rule upper bound to the monopole frequency, by Menotti and Stringari [Phys. Rev. A 66, 043610 (2002)], also gives the same number. Surprisingly it was found that the usually successful hydrodynamic perturbation theory predicts a shift that is 9/4 higher than its ab initio numerical counterpart. We conjecture that the sharp boundary of the cloud in local density approximation-characterized by an infinite density gradient-renders the perturbation theory for the collective excitation frequencies inapplicable.

  16. Abuse of Medications Employed for the Treatment of ADHD: Results From a Large-Scale Community Survey

    PubMed Central

    Bright, George M.

    2008-01-01

    Objective The objective is to assess abuse of prescription and illicit stimulants among individuals being treated for attention-deficit/hyperactivity disorder (ADHD). Methods A survey was distributed to patients enrolled in an ADHD treatment center. It included questions designed to gain information about demographics; ADHD treatment history; illicit drug use; and misuse of prescribed stimulant medications, including type of stimulant medication most frequently misused or abused, and how the stimulant was prepared and administered. Results A total of 545 subjects (89.2% with ADHD) were included in the survey. Results indicated that 14.3% of respondents abused prescription stimulants. Of these, 79.8% abused short-acting agents; 17.2% abused long-acting stimulants; 2.0% abused both short- and long-acting agents; and 1.0% abused other agents. The specific medications abused most often were mixed amphetamine salts (Adderall; 40.0%), mixed amphetamine salts extended release (Adderall XR; 14.2%), and methylphenidate (Ritalin; 15.0%), and the most common manner of stimulant abuse was crushing pills and snorting (75.0%). Survey results also showed that 39.1% of respondents used nonprescription stimulants, most often cocaine (62.2%), methamphetamine (4.8%), and both cocaine and amphetamine (31.1%). Choice of illicit drug was based on rapidity of high onset (43.5%), ease of acquisition (40.7%), ease of use (10.2%), and cost (5.5%). Conclusions The risks for abuse of prescription and illicit stimulants are elevated among individuals being treated in an ADHD clinic. Prescription agents used most often are those with pharmacologic and pharmacokinetic characteristics that provide a rapid high. This suggests that long-acting stimulant preparations that have been developed for the treatment of ADHD may have lower abuse potential than short-acting formulations. PMID:18596945

  17. Oceanography at coastal scales: Introduction to the special issue on results from the EU FP7 FIELD_AC project

    NASA Astrophysics Data System (ADS)

    Sánchez-Arcilla, Agustín; Wolf, Judith; Monbaliu, Jaak

    2014-09-01

    The high-resolution and coupled forecasting of wind, waves and currents, in restricted coastal domains, offer a number of important challenges; these limit the quality of predictions, in the present state-of-the-art. This paper presents the main results obtained for such coastal domains, with reference to a variety of modelling suites and observing networks for: a) Liverpool Bay; b) German Bight; c) Gulf of Venice; and d) the Catalan coast. All of these areas are restricted domains, where boundary effects play a significant role in the resulting inner dynamics. This contribution addresses also the themes of the other papers in this Special Issue, ranging from observations to simulations. Emphasis is placed upon the physics controlling such restricted areas. The text deals also with the transfer to end-users and other interested parties, since the requirements on resolution, accuracy and robustness must be linked to their applications. Finally, some remarks are included on the way forward for coastal oceanography and the synergetic combination of in-situ and remote measurements, with high-resolution 3D simulations.

  18. Stall flag, prior development and first results. Aiming at visualization of the stalled area on full scale wind turbines

    SciTech Connect

    Corten, G.P.

    1997-02-01

    Presently even the most sophisticated predictions of the stall behavior of commercial wind turbines are often bad. Therefore a new method to visualize stall was developed. The method is based on a very thin detector, the so called stall flag, that provides a clearly visible signal that shows whether the flow over the stall flag is reversed (stalled) or not. The stall flags operate passively, are contactless and have a fast response, they can be seen as advanced tufts. Their weight is about 1 g and they can be seen clearly from the ground. The stall flags do not limit the operational range of the turbine under study. To equip the turbine with stall flags takes only several hours, installation of a rotating camera is not required. Stall flags have the potential to visualize the complete stalled area on commercial rotors. ECN applied for a patent on the stall flag. This report starts with the arguments to develop the stall flags. Then the design of the stall flag and the optical details on the visualization method are presented. Also the first results of the application of stall flags on turbines in the fields will be described. Among these results are high quality photographs of the area of reversed/radial flow on a 10 m diameter wind turbine and several test pictures of the Rotorline 32 rotor of the Nedwind 30 wind turbine.

  19. A Dual Isotope Study of Nitrates in Aquifer and Surface Waters: Initial Results at the Watershed Scale

    NASA Astrophysics Data System (ADS)

    Savard, M. M.; Simpson, S.; Smirnoff, A.; Somers, G.; van Bochove, E.

    2004-12-01

    This dual isotope-nitrate study is aimed at contributing to the quantification of the annual N budget of the Wilmot River watershed on Prince-Edward Island (PEI, Canada). Aquifers constitute the only source of freshwater on PEI. In many areas, nitrate concentrations in groundwater (GW) have been increasing over time. It is assumed that mineral fertilization for potato cropping constitutes a major source of nitrates. However, a better understanding of the transfer dynamics of nitrates from soils to GW is required to reduce their detrimental effects. Here we report on N concentrations ([N-NO3-]), nitrate isotope analyses (N and O), and water isotope ratios (H and O) obtained after one year of seasonal sampling of surface water and groundwater (GW). The analyses of the nitrate isotopes were performed on silver nitrates using EA-CF- and Pyrolysis/EA-IRMS systems for N and O, respectively. Water isotopes were analysed with an equilibration system in continuous flow. Our 2003 summer and fall results indicate that 23% of the samples have N-NO3 concentrations above the threshold established for human health (10 mg/L), whereas 10% have concentrations within natural ranges (<1 mg/L). Combined nitrate and water isotope results suggest that during summer and fall most nitrates in the Wilmot River are derived from GW, and that about 75% of the GW samples contain nitrates from chemical fertilizers while the remaining 25% of nitrates are from natural soils, manures or septic wastes. Moreover, the N isotopes-nitrate concentration trend for GW departs significantly from the curve expected to result from microbial denitrification and corresponds better to natural attenuation due to dilution of nitrate-rich waters with water devoid of nitrates. The oxygen isotopes in GW nitrates indicate that summer rain and evaporated vadose water likely represent the O sources involved in soil nitrification. Future work will involve characterization of potential nitrate sources and of N

  20. Small-scale impacts into rock - An evaluation of the effects of target temperature on experimental results

    NASA Technical Reports Server (NTRS)

    Smrekar, S.; Cintala, M. J.; Horz, F.

    1986-01-01

    A series of cratering and catastrophic fragmentation experiments has been performed, involving the impact of aluminum and stainless-steel spheres into warm (about 298 K) and cold (about 100 K) granodiorite targets. Although some vague hints of a thermal effect might be found in some of the results, in no case was there a substantial difference between the warm and cold series. Since these experiments were well within the strength-dominated regime of impact phenomena, variations due to low target temperatures in more energetic events will probably be negligible. Thus, there appear to be no significant temperature-dependent mechanical effects during impact into solid rock over a wide range of temperatures prevalent in the solar system.

  1. University of california at Santa Barbara Anisotropy Program: degree scale results from the South Pole 1990-1991.

    PubMed Central

    Gaier, T; Schuster, J; Gundersen, J; Meinhold, P; Lubin, P

    1993-01-01

    We report on the preliminary result of a search for anisotropy in the cosmic background radiation (CBR). Our receiver operates with four equally spaced channels from 25 to 35 GHz with a beam size of approximately 1.5 degrees full width at half maximum. The system operated successfully for 500 hr at the South Pole during 1990-1991 austral summer. The data from one region, representing 25 hr after editing, are presented here. A strong signal is present in the lower-frequency channels with a spectrum unlike CBR fluctuations. The highest-frequency channel has the smallest contribution from this signal and has been used to set a 95% confidence level upper limit DeltaT/T

  2. Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 geosequestration experiment.

    PubMed

    Mu, Andre; Boreham, Chris; Leong, Henrietta X; Haese, Ralf R; Moreau, John W

    2014-01-01

    Subsurface microorganisms may respond to increased CO2 levels in ways that significantly affect pore fluid chemistry. Changes in CO2 concentration or speciation may result from the injection of supercritical CO2 (scCO2) into deep aquifers. Therefore, understanding subsurface microbial responses to scCO2, or unnaturally high levels of dissolved CO2, will help to evaluate the use of geosequestration to reduce atmospheric CO2 emissions. This study characterized microbial community changes at the 16S rRNA gene level during a scCO2 geosequestration experiment in the 1.4 km-deep Paaratte Formation of the Otway Basin, Australia. One hundred and fifty tons of mixed scCO2 and groundwater was pumped into the sandstone Paaratte aquifer over 4 days. A novel U-tube sampling system was used to obtain groundwater samples under in situ pressure conditions for geochemical analyses and DNA extraction. Decreases in pH and temperature of 2.6 log units and 5.8°C, respectively, were observed. Polyethylene glycols (PEGs) were detected in the groundwater prior to scCO2 injection and were interpreted as residual from drilling fluid used during the emplacement of the CO2 injection well. Changes in microbial community structure prior to scCO2 injection revealed a general shift from Firmicutes to Proteobacteria concurrent with the disappearance of PEGs. However, the scCO2 injection event, including changes in response to the associated variables (e.g., pH, temperature and salinity), resulted in increases in the relative abundances of Comamonadaceae and Sphingomonadaceae suggesting the potential for enhanced scCO2 tolerance of these groups. This study demonstrates a successful new in situ sampling approach for detecting microbial community changes associated with an scCO2 geosequestration event. PMID:24860559

  3. Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 geosequestration experiment

    PubMed Central

    Mu, Andre; Boreham, Chris; Leong, Henrietta X.; Haese, Ralf R.; Moreau, John W.

    2014-01-01

    Subsurface microorganisms may respond to increased CO2 levels in ways that significantly affect pore fluid chemistry. Changes in CO2 concentration or speciation may result from the injection of supercritical CO2 (scCO2) into deep aquifers. Therefore, understanding subsurface microbial responses to scCO2, or unnaturally high levels of dissolved CO2, will help to evaluate the use of geosequestration to reduce atmospheric CO2 emissions. This study characterized microbial community changes at the 16S rRNA gene level during a scCO2 geosequestration experiment in the 1.4 km-deep Paaratte Formation of the Otway Basin, Australia. One hundred and fifty tons of mixed scCO2 and groundwater was pumped into the sandstone Paaratte aquifer over 4 days. A novel U-tube sampling system was used to obtain groundwater samples under in situ pressure conditions for geochemical analyses and DNA extraction. Decreases in pH and temperature of 2.6 log units and 5.8°C, respectively, were observed. Polyethylene glycols (PEGs) were detected in the groundwater prior to scCO2 injection and were interpreted as residual from drilling fluid used during the emplacement of the CO2 injection well. Changes in microbial community structure prior to scCO2 injection revealed a general shift from Firmicutes to Proteobacteria concurrent with the disappearance of PEGs. However, the scCO2 injection event, including changes in response to the associated variables (e.g., pH, temperature and salinity), resulted in increases in the relative abundances of Comamonadaceae and Sphingomonadaceae suggesting the potential for enhanced scCO2 tolerance of these groups. This study demonstrates a successful new in situ sampling approach for detecting microbial community changes associated with an scCO2 geosequestration event. PMID:24860559

  4. Large-Scale Forest Fires and Resulting Alterations to the Hydrologic Cycle in the Western U.S

    NASA Astrophysics Data System (ADS)

    Carr, J.; White, A. B.; Thomson, B.

    2012-12-01

    Recent changes in climate have resulted in a decrease in precipitation and snowpack amounts and increased temperatures in the western United States. Drier and warmer conditions coupled with forest management issues have led to an increase in the frequency and size of forest fires. The 2000 Cerro Grande fire in Los Alamos, New Mexico burned over 43,000 acres and 200 structures. Eleven years later, the Las Conchas fire burned over 156,000 acres and 100 structures, including areas previously burned in 2000, and was considered the largest fire in New Mexico's history. Both fires burned ponderosa, juniper, piñon and mixed conifer forests, resulting in dramatic decreases in vegetation, changes to surface soils, and alterations to the hydrologic cycle (decreased evapotranspiration, decreased infiltration, increased runoff volume and peak discharge, and decreased time to peak discharge) in surrounding watersheds. Burned Area Emergency Response (BAER) teams need to determine the flash-flood danger quickly in order to protect residents, fire-fighters, BAER-team field personnel, and property at risk. The USGS developed an analytical method for predicting post-fire peak discharges using data collected from eight different fires throughout the western United States. We use this method to predict peak discharge in Los Alamos watersheds post-Cerro Grande and post-Las Conchas, then compare predicted to measured peak discharge. We will evaluate the effectiveness of the three methodology levels presented by the USGS, which include varying levels of data input and processing. We expect the peak discharges to be similar in magnitude; however, we will also investigate different influential factors such as burn severity, soil type, vegetation type and density, ecological connectivity, topography, pre- and post-fire weather conditions, etc., as they relate to the fires and the results seen from the measured versus the analytical method. Determining the relative influence of these

  5. Seismic properties and mineral crystallographic preferred orientations from EBSD data: Results from a crustal-scale detachment system, Aegean region

    NASA Astrophysics Data System (ADS)

    Cossette, Élise; Schneider, David; Audet, Pascal; Grasemann, Bernhard; Habler, Gerlinde

    2015-05-01

    The crystallographic preferred orientations (CPOs) were measured on a suite of samples representative of different structural depths along the West Cycladic Detachment System, Greece. Electron backscatter diffraction (EBSD) analyses were conducted on calcitic and mica schists, impure quartzites, and a blueschist, and the average seismic properties of the rocks were calculated with the Voigt-Reuss-Hill average of the single minerals' elastic stiffness tensor. The calcitic and quartzitic rocks have P- and S-wave velocity anisotropies (AVp, AVs) averaging 8.1% and 7.1%, respectively. The anisotropy increases with depth represented by the blueschist, with AVp averaging 20.3% and AVs averaging 14.5%, due to the content of aligned glaucophane and mica, which strongly control the seismic properties of the rocks. Localised anisotropies of very high magnitudes are caused by the presence of mica schists as they possess the strongest anisotropies, with values of ~ 25% for AVp and AVs. The direction of the fast and slow P-wave velocities occurs parallel and perpendicular to the foliation, respectively, for most samples. The fast propagation has the same NE-SW orientation as the lithospheric stretching direction experienced in the Cyclades since the Late Oligocene. The maximum shear wave anisotropy is subhorizontal, similarly concordant with mineral alignment that developed during extension in the Aegean. Radial anisotropy in the Aegean mid-crust is strongly favoured to azimuthal anisotropy by our results.

  6. Evaluation of soil-washing technology: Results of bench-scale experiments on petroleum-fuels contaminated soils

    SciTech Connect

    Loden, M.E.

    1991-06-01

    The U.S. Environmental Protection Agency through its Risk Reduction Engineering Laboratory's Releases Control Branch has undertaken research and development efforts to address the problem of leaking underground storage tanks (USTs). Under this effort, EPA is currently evaluating soil washing technology for cleaning up soil contaminated by the release of petroleum products from leaking underground storage tanks. Soil washing is a dynamic physical process which remediates contaminated soil via two mechanisms--particle separation and dissolution of the contaminants into the washwater. As a result of the washing process, a significant fraction of the contaminated soil is cleaned and can be returned into the original excavation or used as cleaned secondary fill or aggregate material. Since the contaminants are more concentrated in the fine soil fractions, their separation and removal from the bulk soil increases the overall effectiveness of the process. Subsequent treatment will be required for the spent washwaters and the fine soil fractions. The soil washing program evaluated the effectiveness of soil washing technology in removing petroleum products (unleaded gasoline, diesel/home heating fuel, and waste crankcase oil) from an EPA-developed Synthetic Soil Matrix (SSM) and from actual site soils. Operating parameters such as contact time, washwater volume, rinsewater volume, washwater temperature, and effectiveness of additives were investigated.

  7. Extensional geometries as a result of regional scale thrusting: tectonic slides of the Dunlewy-NW Donegal area, Ireland

    NASA Astrophysics Data System (ADS)

    Hutton, Donald H. W.; Alsop, G. Ian

    1995-09-01

    The synmetamorphic ductile dislocations, known in the British Caledonian literature as 'Tectonic Slides', pose a classical structural problem. That is, despite being associated with synchronous contractional folds and cleavages the low angle dislocations have the effect, in many celebrated cases, of juxtaposing younger over older rocks: a geometry normally associated with extensional rather than contractional deformation. Recent models have attempted to demonstrate that this is the result of thrust reactivation of original, sedimentary, extensional growth faults. The Appin Group Dalradian metasediments of the complex and small Dunlewy area of NW Donegal, Ireland, contain the following geometric elements: (a) an early strike-swing-related stratigraphic facies change; (b) a major inter-deformational dolerite sheet; (c) major regional recumbent folds and slides; (d) major structures related to the 400 Ma sinistral Main Donegal Granite shear zone. This solution to the structural geometry reveals that the early mid-crustal (~11 km depth) D2 Ardsbeg-Dunlewy Slide is a thrust to the northwest. Its hangingwall contains rocks two-thirds of which are younger than the rocks of the footwall, together with major recumbent folds, coeval with the underlying thrust, which face downwards into the thrust in the direction of transport. Rather than thrust reactivation of an original extensional growth fault, we find that both stratigraphic and structural constraints are satisfied by a double thrusting model, with fault-bend folding onto an upper ramp of an earlier formed but penecontemporaneous and kinematically linked major fold pair. This solution to the geology also allows us to recognize that the regional (pre-granite) structure of the Dalradian of NW Donegal is a series of major D2 synmetamorphic thrust bounded nappes possibly involving up to 250 km of northwesterly overthrusting.

  8. Prevalence of disability in Manikganj district of Bangladesh: results from a large-scale cross-sectional survey

    PubMed Central

    Zaman, M Mostafa; Mashreky, Saidur Rahman

    2016-01-01

    Objective To conduct a comprehensive survey on disability to determine the prevalence and distribution of cause-specific disability among residents of the Manikganj district in Bangladesh. Methods The survey was conducted in Manikganj, a typical district in Bangladesh, in 2009. Data were collected from 37 030 individuals of all ages. Samples were drawn from 8905 households from urban and rural areas proportionate to population size. Three sets of interviewer-administered questionnaires were used separately for age groups 0–1 years, 2–10 years and 11 years and above to collect data. For the age groups 0–1 years and 2–10 years, the parents or the head of the household were interviewed to obtain the responses. Impairments, activity limitations and restriction of participation were considered in defining disability consistent with the International Classification of Functioning, Disability and Health framework. Results Overall, age-standardised prevalence of disability per 1000 was 46.5 (95% CI 44.4 to 48.6). Prevalence was significantly higher among respondents living in rural areas (50.2; 95% CI 47.7 to 52.7) than in urban areas (31.0; 95% CI 27.0 to 35.0). Overall, female respondents had more disability (50.0; 95% CI 46.9 to 53.1) than male respondents (43.4; 95% CI 40.5 to 46.3). Educational deprivation was closely linked to higher prevalence of disability. Commonly reported prevalences (per 1000) for underlying causes of disability were 20.2 for illness, followed by 9.4 for congenital causes and 6.8 for injury, and these were consistent in males and females. Conclusions Disability is a common problem in this typical district of Bangladesh, which is largely generalisable. Interventions at community level with special attention to the socioeconomically deprived are warranted. PMID:27431897

  9. Weakly nonparallel and curvature effects on stationary crossflow instability: Comparison of results from multiple-scales analysis and parabolized stability equations

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Choudhari, Meelan; Li, Fei

    1995-01-01

    A multiple-scales approach is used to approximate the effects of nonparallelism and streamwise surface curvature on the growth of stationary crossflow vortices in incompressible, three-dimesional boundary layers. The results agree with results predicted by solving the parabolized stability equations in regions where the nonparallelism is sufficiently weak. As the nonparallelism increases, the agreement between the two approaches worsens. An attempt has been made to quantify the nonparallelism on flow stability in terms of a nondimensional number that describes the rate of change of the mean flow relative to the disturbance wavelength. We find that the above nondimensional number provides useful information about the adequacy of the multiple-scales approximation for different disturbances for a given flow geometry, but the number does not collapse data for different flow geometries onto a single curve.

  10. Using Permanent Wetlands as Polishing Ponds to Remove Monomethylmercury: Results of a Large Scale Replicated Field Experiment

    NASA Astrophysics Data System (ADS)

    Heim, W. A.; Negrey, J.; Stephenson, M.; Coale, K. H.

    2015-12-01

    Seasonally inundated wetlands in the Yolo Bypass Wildlife Area (YBWA; Davis, CA) are producers of monomethylmercury (MeHg) during fall flood up. The export of MeHg from the YBWA is of serious concern to downstream habitats as it is a neurotoxin and poses a serious health concern to humans and wildlife. In this experiment, we routed water from a 40 hectare seasonal wetland through nine replicated 100 x 25 m constructed ponds to determine their efficiency at lowering MeHg. All of the sampling was conducted over a three year period (2011-2013) during fall months. We measured total and filtered (<0.45 µm) methyl and total mercury as well as nutrients in incoming tail water and at the outflow of each pond. Residence times in the ponds were modeled using rhodamine dye and ranged from 0.7 to 13.0 days in depending on flow (Q = 0.08 - 1.39 cfs). Reductions of dissolved (filtered) MeHg concentrations ranged from 0.024 - 0.455 ng L-1 d-1 and particulate (total - filtered) MeHg reductions ranged from 0.028 - 1.02 ng L-1 d-1 in the outflow of the ponds. We observed little to no change in dissolved MeHg concentrations at high flow rates, however, there was still a significant decrease in the particulate fraction of MeHg. In contrast, ponds with lower flow rates (e.g. longer residence times) were efficient at lowering both dissolved and particulate MeHg concentrations. During polishing periods when overlying water MeHg concentrations were highest dissolved MeHg flux was into sediments where we hypothesize bacterial demethylation was responsible for transformation back to inorganic mercury species. Loss of particulate MeHg from the water column was attributed to particle settling. Results from this experiment indicate small ponds with short residence times can be efficient at lowering MeHg concentrations. The design of the pond will vary depending on the volume of the seasonal wetland being drained and needs of the wetland manager.

  11. Plant diversity induces a shift of DOC concentration over time - results from long term and large scale experiment

    NASA Astrophysics Data System (ADS)

    Lange, Markus; Gleixner, Gerd

    2016-04-01

    , inter annual differences of total DOC fluxes reflect patterns of sampled soil water, indicating the major driver of total DOC flux is driven by rainfall. In contrast, intra annually the DOC flux reflects the patterns of the DOC concentrations with a strengthening positive impact of plant diversity among time. Our results show that variations of the total DOC fluxes are more affected by the pore water flux than by the differences in DOC concentrations as the magnitude of the pore water flux exceeds the magnitude of concentrations by a factor of 20. This indicates that abiotic conditions set the frame in which biotic properties can drive the DOC flux. However, the biotic drivers are getting more important over time and might outperform the dominating role of the abiotic conditions on the longer term.

  12. Discrimination of surface wear on obsidian tools using LSCM and RelA: pilot study results (area-scale analysis of obsidian tool surfaces).

    PubMed

    Stemp, W James; Chung, Steven

    2011-01-01

    This pilot study tests the reliability of laser scanning confocal microscopy (LSCM) to quantitatively measure wear on experimental obsidian tools. To our knowledge, this is the first use of confocal microscopy to study wear on stone flakes made from an amorphous silicate like obsidian. Three-dimensional surface roughness or texture area scans on three obsidian flakes used on different contact materials (hide, shell, wood) were documented using the LSCM to determine whether the worn surfaces could be discriminated using area-scale analysis, specifically relative area (RelA). When coupled with the F-test, this scale-sensitive fractal analysis could not only discriminate the used from unused surfaces on individual tools, but was also capable of discriminating the wear histories of tools used on different contact materials. Results indicate that such discriminations occur at different scales. Confidence levels for the discriminations at different scales were established using the F-test (mean square ratios or MSRs). In instances where discrimination of surface roughness or texture was not possible above the established confidence level based on MSRs, photomicrographs and RelA assisted in hypothesizing why this was so. PMID:21674537

  13. Screening for Serious Mental Illness in the General Population with the K6 screening scale: Results from the WHO World Mental Health (WMH) Survey Initiative

    PubMed Central

    Kessler, Ronald C.; Green, Jennifer Greif; Gruber, Michael J.; Sampson, Nancy A.; Bromet, Evelyn; Cuitan, Marius; Furukawa, Toshi A.; Gureje, Oye; Hinkov, Hristo; Hu, Chi-yi; Lara, Carmen; Lee, Sing; Mneimneh, Zeina; Myer, Landon; Oakley-Browne, Mark; Posada-Villa, Jose; Sagar, Rajesh; Viana, Maria Carmen; Zaslavsky, Alan M.

    2013-01-01

    Data are reported on the background and performance of the K6 screening scale for serious mental illness (SMI) in the World Health Organization (WHO) World Mental Health (WMH) surveys. The K6 is a 6-item scale developed to provide a brief valid screen for DSM-IV SMI based on the criteria in the US ADAMHA Reorganization Act. Although methodological studies have documented good K6 validity in a number of countries, optimal scoring rules have never been proposed. Such rules are presented here based on analysis of K6 data in nationally or regionally representative WMH surveys in 14 countries (combined n = 41,770 respondents). Twelve-month prevalence of DSM-IV SMI was assessed with the fully-structured WHO Composite International Diagnostic Interview. Nested logistic regression analysis was used to generate estimates of the predicted probability of SMI for each respondent from K6 scores taking into consideration the possibility of variable concordance as a function of respondent age, gender, education, and country. Concordance, assessed by calculating the area under the receiver operating characteristic curve (AUC), was generally substantial (Median .83; Range .76-.89; Inter-quartile range .81-.85). Based on this result, optimal scaling rules are presented for use by investigators working with the K6 scale in the countries studied. PMID:20527002

  14. Impact of anthropogenic and climatic changes on biomass and diversity of the Central African forests, from local to global scale: original methods for new results

    NASA Astrophysics Data System (ADS)

    Mortier, Frédéric; Gourlet-Fleury, Sylvie; Ouédraogo, Dakis; Picard, Nicolas; Rossi, Vivien

    2014-05-01

    Forests of the Congo Basin, the second most important remaining block of tropical moist forest in the world, are facing increasing anthropogenic pressure and climate change. Understanding the biomass and diversity dynamics under these pressures is one major challenge for African nations and international communities. This talk aims to present original methods to model, infer, and predict growth, biomass and diversity of Central African forests, as well as new results on the impacts of global change on those forests, at various scales. With respect to methods, we will present theoretical frameworks allowing (i) to model growth processes in species-rich ecosystems like tropical rain forests, (ii) to take into account uncertainties in biomass estimation. In terms of results, we will highlight at a local scale, how human activities as well as climatic variations would impact (i) the composition and diversity of forests, (ii) the dynamics of biomass and growth processes. At a global scale, we will demonstrate how environmental filtering controls the above ground biomass. The number of studies are currently increasing over the Congo Basin through several research projects led by our team (CoForTips, DynAfFor) and contributing to various international organization's programs (Cifor, FAO, Comifac, Ofac).

  15. Correlation of instrumental voice evaluation with perceptual voice analysis using a modified visual analog scale.

    PubMed

    Yu, Ping; Revis, Joana; Wuyts, Floris L; Zanaret, Michel; Giovanni, Antoine

    2002-01-01

    Various rating scales have been used for perceptual voice analysis including ordinal (ORD) scales and visual analog (VA) scales. The purpose of this study was to determine the most suitable scale for studies using perceptual voice analysis as a gold standard for validation of objective analysis protocols. The study was carried out on 74 female voice samples from 68 dysphonic patients and 6 controls. A panel of 4 raters with experience in perceptual analysis was asked to score voices according to the G component (overall quality) of the GRBAS system. Two rating scales were used. The first was a conventional 4-point ORD scale. The second was a modified VA (mVA) scale obtained by transforming the VA scale into an ORD scale using a weighted conversion scheme. Objective voice evaluation was performed using the EVA workstation. Objective measurements included acoustic, aerodynamic, and physiologic parameters as well as parameters based on nonlinear mathematics (e.g., Lyapunov coefficient). Instrumental measurements were compared with results of perceptual analysis using either the conventional ORD scale or mVA scale. Results demonstrate that correlation between perceptual and objective voice judgments is better using a mVA scale than a conventional ORD scale (concordance, 88 vs. 64%). Data also indicate that the mVA scale described herein improves the correlation between objective and perceptual voice analysis. PMID:12417797

  16. Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads

    SciTech Connect

    Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

    2004-01-01

    Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

  17. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    PubMed

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. PMID:26894840

  18. Quality of life in stroke survivors: first results from the reliability and validity of the Italian version of the Stroke Impact Scale 3.0.

    PubMed

    Vellone, E; Savini, S; Barbato, N; Carovillano, G; Caramia, M; Alvaro, R

    2010-01-01

    The purpose of this study was to establish the reliability and validity of the Italian version of the Stroke Impact Scale 3.0 (SIS 3.0), a specific and multidimensional instrument that assesses quality of life (QOL) in stroke survivors. Forty-five patients treated in three Rehabilitation Hospitals of the Lazio Region were included in the study. Patients were assessed using the SIS 3.0, the SF-36, the Barthel Index, the Mini Mental State Examination, the Hospital Anxiety and Depression Scale, the NIH Stroke Scale, the Modified Rankin Scale, and the Instrumental Activities of Daily Living. Results showed good internal consistency of the SIS 3.0 (Cronbach's alpha 0.86-0.98), and a good test-retest reliability (r > 0.70, p < 0.000) except for the Emotion and Social Participation subscales. At the re-test, 15 days after the first administration, SIS 3.0 showed a good responsiveness to change, documenting clinical improvement in stroke survivors. Significant correlations between the other instruments and the SIS 3.0 allowed to establish the concurrent validity of the SIS 3.0. Although the small sample size the Italian version of the SIS 3.0 showed good internal consistency and test retest reliability, as well as validity and responsiveness to changes. Since the SIS 3.0 is a specific tool to measure QOL in stroke survivors, its Italian version could be successfully used also in Italian population to better identify predictors of QOL and evaluate the effectiveness of health interventions. PMID:21381542

  19. 2009 PILOT SCALE FLUIDIZED BED STEAM REFORMING TESTING USING THE THOR (THERMAL ORGANIC REDUCTION) PROCESS: ANALYTICAL RESULTS FOR TANK 48H ORGANIC DESTRUCTION - 10408

    SciTech Connect

    Williams, M.; Jantzen, C.; Burket, P.; Crawford, C.; Daniel, G.; Aponte, C.; Johnson, C.

    2009-12-28

    The Savannah River Site (SRS) must empty the contents of Tank 48H, a 1.3 million gallon Type IIIA HLW storage tank, to return this tank to service. The tank contains organic compounds, mainly potassium tetraphenylborate that cannot be processed downstream until the organic components are destroyed. The THOR{reg_sign} Treatment Technologies (TTT) Fluidized Bed Steam Reforming (FBSR) technology, herein after referred to as steam reforming, has been demonstrated to be a viable process to remove greater than 99.9% of the organics from Tank 48H during various bench scale and pilot scale tests. These demonstrations were supported by Savannah River Remediation (SRR) and the Department of Energy (DOE) has concurred with the SRR recommendation to proceed with the deployment of the FBSR technology to treat the contents of Tank 48H. The Savannah River National Laboratory (SRNL) developed and proved the concept with non-radioactive simulants for SRR beginning in 2003. By 2008, several pilot scale campaigns had been completed and extensive crucible testing and bench scale testing were performed in the SRNL Shielded Cells using Tank 48H radioactive sample. SRNL developed a Tank 48H non-radioactive simulant complete with organic compounds, salt, and metals characteristic of those measured in a sample of the radioactive contents of Tank 48H. FBSR Pilot Scaled Testing with the Tank 48H simulant has demonstrated the ability to remove greater than 98% of the nitrites and greater than 99.5% of the nitrates from the Tank 48H simulant, and to form a solid product that is primarily alkali carbonate. The alkali carbonate is soluble and, thus, amenable to pumping as a liquid to downstream facilities for processing. The FBSR technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration (ESTD) pilot scale steam reformer at the Hazen Research Inc. (HRI) facility in Golden, CO. Additional ESTD tests were completed in 2008 and in 2009 that further demonstrated the

  20. Testing new approaches to carbonate system simulation at the reef scale: the ReefSam model first results, application to a question in reef morphology and future challenges.

    NASA Astrophysics Data System (ADS)

    Barrett, Samuel; Webster, Jody

    2016-04-01

    morphology and development are compared with observational data. Despite being a test-bed and work in progress, ReefSAM was able to simulate the Holocene development of One Tree Reef in the Southern Great Barrier Reef (Australia) and was able to improve upon previous modelling attempts in terms of both quantitative measures and qualitative outputs, such as the presence of previously un-simulated reef features. Given the success of the model in simulating the Holocene development of OTR, we used it to quantitatively explore the effect of basement substrate depth and morphology on reef maturity/lagoonal filling (as discussed by Purdy and Gischer 2005). Initial results show a number of non-linear relationships between basement substrate depth, lagoonal filling and volume of sand produced on the reef rims and deposited in the lagoon. Lastly, further testing of the model has revealed new challenges which are likely to manifest in any attempt at reef-scale simulation. Subtly different sets of energy direction and magnitude input parameters (different in each time step but with identical probability distributions across the entire model run) resulted in a wide range of quantitative model outputs. Time step length is a likely contributing factor and the results of further testing to address this challenge will be presented.

  1. Results of investigations on a 0.0405 scale model ATP version of the NR-SSV orbiter in the North American Aeronautical Laboratory low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Mennell, R.; Vaughn, J. E.; Singellton, R.

    1973-01-01

    Experimental aerodynamic investigations were conducted on a scale model space shuttle vehicle (SSV) orbiter. The purpose of the test was to investigate the longitudinal and lateral-directional aerodynamic characteristics. Emphasis was placed on model component, wing-glove, and wing-body fairing effects, as well as elevon, aileron, and rudder control effectiveness. Angles of attack from - 5 deg to + 30 deg and angles of sideslip from - 5 deg to + 10 deg were tested. Static pressures were recorded on base, fuselage, and wing surfaces. Tufts and talc-kerosene flow visualization techniques were also utilized. The aerodynamic force balance results are presented in plotted and tabular form.

  2. Understanding green roof spatial dynamics: results from a scale based hydrologic study and introduction of a low-cost method for wide-range monitoring

    NASA Astrophysics Data System (ADS)

    Hakimdavar, Raha; Culligan, Patricia J.; Guido, Aida

    2014-05-01

    used to test the reliability of the proposed approach using two different low-cost soil moisture probes. The estimates of runoff are compared with observed runoff data for durations ranging between 6 months to 1 year. Preliminary results indicate that this can be an effective low-cost and low-maintenance alternative to the custom made weir and lysimeter systems frequently used to quantify runoff during green roof studies. By significantly reducing the cost and labor associated with typical monitoring efforts, the SWA method makes large scale studies of green roof hydrologic performance more feasible.

  3. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19 Test Results from Phase B: Mid-Scale Testing at PNNL

    SciTech Connect

    Powell, M.R.; Combs, W.H.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Johnson, M.A.; Poirier, M.R.; Rodwell, P.O.

    1999-03-30

    Pacific Northwest National Laboratory (PNNL) performed mixer tests using 3-kW (4-hp) Flygt mixers in 1.8- and 5.7-m-diameter tanks at the 336 building facility in Richland, Washington to evaluate candidate scaling relationships for Flygt mixers used for sludge mobilization and particle suspension. These tests constituted the second phase of a three-phase test program involving representatives from ITT Flygt Corporation, the Savannah River Site (SRS), the Oak Ridge National Laboratory (ORNL), and PNNL. The results of the first phase of tests, which were conducted at ITT Flygt's facility in a 0.45-m-diameter tank, are documented in Powell et al. (1999). Although some of the Phase B tests were geometrically similar to selected Phase A tests (0.45-m tank), none of the Phase B tests were geometrically, cinematically, and/or dynamically similar to the planned Tank 19 mixing system. Therefore, the mixing observed during the Phase B tests is not directly indicative of the mixing expected in Tank 19 and some extrapolation of the data is required to make predictions for Tank 19 mixing. Of particular concern is the size of the mixer propellers used for the 5.7-m tank tests. These propellers were more than three times larger than required by geometric scaling of the Tank 19 mixers. The implications of the lack of geometric similarity, as well as other factors that complicate interpretation of the test results, are discussed in Section 5.4.

  4. Monitoring thermal stresses and incipient buckling of continuous-welded rails: results from the UCSD/BNSF/FRA large-scale laboratory test track

    NASA Astrophysics Data System (ADS)

    Phillips, Robert; Nucera, Claudio; Coccia, Stefano; Lanza di Scalea, Francesco; Bartoli, Ivan; Fateh, Mahmood; Carr, Gary

    2011-04-01

    Most modern railways use Continuous Welded Rail (CWR). A major problem is the almost total absence of expansion joints that can create buckling in hot weather and breakage in cold weather due to the rail thermal stresses. In June 2008 the University of California, San Diego (UCSD), under the sponsorship of a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, began work to develop a technique for in-situ measurement of stress and detection of incipient buckling in CWR. The method under investigation is based on ultrasonic guided waves, and the ultimate goal is to develop a prototype that can be used in motion. A large-scale full rail track (70 feet in length) has been constructed at UCSD's Powell Structural Laboratories, the largest laboratories in the country for structural testing, to validate the CWR stress measurement and buckling detection technique under rail heating conditions well controlled in the laboratory. This paper will report on the results obtained from this unique large-scale test track to date. These results will pave the road for the future development of the rail stress measurement & buckling detection prototype.

  5. Comparing results of an exact vs. an approximate (Bayesian) measurement invariance test: a cross-country illustration with a scale to measure 19 human values

    PubMed Central

    Cieciuch, Jan; Davidov, Eldad; Schmidt, Peter; Algesheimer, René; Schwartz, Shalom H.

    2014-01-01

    One of the most frequently used procedures for measurement invariance testing is the multigroup confirmatory factor analysis (MGCFA). Muthén and Asparouhov recently proposed a new approach to test for approximate rather than exact measurement invariance using Bayesian MGCFA. Approximate measurement invariance permits small differences between parameters otherwise constrained to be equal in the classical exact approach. However, extant knowledge about how results of approximate measurement invariance tests compare to the results of the exact measurement invariance test is missing. We address this gap by comparing the results of exact and approximate cross-country measurement invariance tests of a revised scale to measure human values. Several studies that measured basic human values with the Portrait Values Questionnaire (PVQ) reported problems of measurement noninvariance (especially scalar noninvariance) across countries. Recently Schwartz et al. proposed a refined value theory and an instrument (PVQ-5X) to measure 19 more narrowly defined values. Cieciuch et al. tested its measurement invariance properties across eight countries and established exact scalar measurement invariance for 10 of the 19 values. The current study applied the approximate measurement invariance procedure on the same data and established approximate scalar measurement invariance even for all 19 values. Thus, the first conclusion is that the approximate approach provides more encouraging results for the usefulness of the scale for cross-cultural research, although this finding needs to be generalized and validated in future research using population data. The second conclusion is that the approximate measurement invariance is more likely than the exact approach to establish measurement invariance, although further simulation studies are needed to determine more precise recommendations about how large the permissible variance of the priors may be. PMID:25249996

  6. Comparing results of an exact vs. an approximate (Bayesian) measurement invariance test: a cross-country illustration with a scale to measure 19 human values.

    PubMed

    Cieciuch, Jan; Davidov, Eldad; Schmidt, Peter; Algesheimer, René; Schwartz, Shalom H

    2014-01-01

    One of the most frequently used procedures for measurement invariance testing is the multigroup confirmatory factor analysis (MGCFA). Muthén and Asparouhov recently proposed a new approach to test for approximate rather than exact measurement invariance using Bayesian MGCFA. Approximate measurement invariance permits small differences between parameters otherwise constrained to be equal in the classical exact approach. However, extant knowledge about how results of approximate measurement invariance tests compare to the results of the exact measurement invariance test is missing. We address this gap by comparing the results of exact and approximate cross-country measurement invariance tests of a revised scale to measure human values. Several studies that measured basic human values with the Portrait Values Questionnaire (PVQ) reported problems of measurement noninvariance (especially scalar noninvariance) across countries. Recently Schwartz et al. proposed a refined value theory and an instrument (PVQ-5X) to measure 19 more narrowly defined values. Cieciuch et al. tested its measurement invariance properties across eight countries and established exact scalar measurement invariance for 10 of the 19 values. The current study applied the approximate measurement invariance procedure on the same data and established approximate scalar measurement invariance even for all 19 values. Thus, the first conclusion is that the approximate approach provides more encouraging results for the usefulness of the scale for cross-cultural research, although this finding needs to be generalized and validated in future research using population data. The second conclusion is that the approximate measurement invariance is more likely than the exact approach to establish measurement invariance, although further simulation studies are needed to determine more precise recommendations about how large the permissible variance of the priors may be. PMID:25249996

  7. Results of investigations on a 0.0405 scale model PRR version of the NR-SSV orbiter in the North American Aeronautical Laboratory low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.; Vaughn, J. E.; Singellton, R.

    1973-01-01

    Experimental aerodynamic investigations were conducted in a low speed wind tunnel on a scale model space shuttle vehicle (SSV) orbiter. The purpose of the test was to investigate the longitudinal and lateral-directional aerodynamic characteristics of the space shuttle orbiter. Emphasis was placed on model component, wing-glove, and wing-body fairing effects, as well as elevon, aileron, and rudder control effectiveness. Angles of attack from - 5 deg to + 30 deg and angles of sideslip of - 5 deg, 0 deg, and + 5 deg were tested. Static pressures were recorded on base, fuselage, and wing surfaces. Tufts and talc-kerosene flow visualization techniques were also utilized. The aerodynamic force balance results are presented in plotted and tabular form.

  8. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results

    NASA Astrophysics Data System (ADS)

    Piri, Mohammad; Blunt, Martin J.

    2005-02-01

    We use the model described in Piri and Blunt [Phys. Rev. E 71, 026301 (2005)] to predict two- and three-phase relative permeabilities of Berea sandstone using a random network to represent the pore space. We predict measured relative permeabilities for two-phase flow in a water-wet system. We then successfully predict the steady-state oil, water, and gas three-phase relative permeabilities measured by Oak (Proceedings of the SPE/DOE Seventh Symposium on Enhanced Oil Recovery, Tulsa, OK, 1990). We also study secondary and tertiary gas injection into media of different wettability and initial oil saturation and interpret the results in terms of pore-scale displacement processes.

  9. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results.

    PubMed

    Piri, Mohammad; Blunt, Martin J

    2005-02-01

    We use the model described in Piri and Blunt [Phys. Rev. E 71, 026301 (2005)] to predict two- and three-phase relative permeabilities of Berea sandstone using a random network to represent the pore space. We predict measured relative permeabilities for two-phase flow in a water-wet system. We then successfully predict the steady-state oil, water, and gas three-phase relative permeabilities measured by Oak (Proceedings of the SPE/DOE Seventh Symposium on Enhanced Oil Recovery, Tulsa, OK, 1990). We also study secondary and tertiary gas injection into media of different wettability and initial oil saturation and interpret the results in terms of pore-scale displacement processes. PMID:15783414

  10. Drift Velocity of Small-Scale Artificial Ionospheric Irregularities According to a Multifrequency HF Doppler Radar. II. Observation and Modeling Results

    NASA Astrophysics Data System (ADS)

    Vertogradov, G. G.; Uryadov, V. P.; Vertogradov, V. G.; Vertogradova, E. G.; Kubatko, S. V.

    2015-11-01

    We present the results of observations of the Doppler frequency shift for the radar radio signals of broadcast and exact-time RWM stations, which are scattered by small-scale artificial ionospheric irregularities. By the method described in our previous paper [1] and using the multifrequency HF Doppler radar, estimates were made for a three-dimensional vector of the drift velocity of irregularities. It is shown that the drift velocity of irregularities can vary considerably both in magnitude and direction for short periods of time. The velocity lies in a wide range of values, 20-270 m/s, but sometimes it exceeds 500-700 m/s. The most probable drift velocity ranges from 40 to 70 m/s.

  11. Matrix diffusion and sorption of Cs+, Na+, I- and HTO in granodiorite: Laboratory-scale results and their extrapolation to the in situ condition.

    PubMed

    Tachi, Yukio; Ebina, Takanori; Takeda, Chizuko; Saito, Toshihiko; Takahashi, Hiroaki; Ohuchi, Yuji; Martin, Andrew James

    2015-08-01

    Matrix diffusion and sorption are important processes controlling radionuclide transport in crystalline rocks. Such processes are typically studied in the laboratory using borehole core samples however there is still much uncertainty on the changes to rock transport properties during coring and decompression. It is therefore important to show how such laboratory-based results compare with in situ conditions. This paper focuses on laboratory-scale mechanistic understanding and how this can be extrapolated to in situ conditions as part of the Long Term Diffusion (LTD) project at the Grimsel Test Site, Switzerland. Diffusion and sorption of (137)Cs(+), (22)Na(+), (125)I(-) and tritiated water (HTO) in Grimsel granodiorite were studied using through-diffusion and batch sorption experiments. Effective diffusivities (De) of these tracers showed typical cation excess and anion exclusion effects and their salinity dependence, although the extent of these effects varied due to the heterogeneous pore networks in the crystalline rock samples. Rock capacity factors (α) and distribution coefficients (Kd) for Cs(+) and Na(+) were found to be sensitive to porewater salinity. Through-diffusion experiments indicated dual depth profiles for Cs(+) and Na(+) which could be explained by a near-surface Kd increment. A microscopic analysis indicated that this is caused by high porosity and sorption capacities in disturbed biotite minerals on the surface of the samples. The Kd values derived from the dual profiles are likely to correspond to Kd dependence on the grain sizes of crushed samples in the batch sorption experiments. The results of the in situ LTD experiments were interpreted reasonably well by using transport parameters derived from laboratory data and extrapolating them to in situ conditions. These comparative experimental and modelling studies provided a way to extrapolate from laboratory scale to in situ condition. It is well known that the difference in porosity between

  12. Multilevel analysis of clinical parameters in chronic periodontitis after root planing/scaling, surgery, and systemic and local antibiotics: 2-year results

    PubMed Central

    Mdala, Ibrahimu; Haffajee, Anne D.; Socransky, Sigmund S.; de Blasio, Birgitte Freiesleben; Thoresen, Magne; Olsen, Ingar; Goodson, J. Max

    2012-01-01

    Aim Find the periodontal treatment that best maintained clinical results over time evaluated by changes in pocket depth (PD) and clinical attachment level (CAL). Methods 229 patients with chronic periodontitis from USA (n=134) and Sweden (n=95) were randomly assigned to eight groups receiving (1) scaling+root planing (SRP) alone or combined with (2) surgery (SURG)+systemic amoxicillin (AMOX)+systemic metronidazole (MET); (3) SURG+local tetracycline (TET); (4) SURG; (5) AMOX+MET+TET; (6) AMOX+MET; (7) TET; and (8) SURG+AMOX+MET+TET. Antibiotics were given immediately after SRP. Plaque, gingival redness, bleeding on probing, suppuration, PD, and CAL were recorded at baseline and after 3, 6, 12, 18, and 24 months. Treatment effects were evaluated by linear multilevel regression and logistic multilevel regression models. We considered only data from sites with a baseline PD of at least 5 mm of 187 patients completing the study. Results Surgically treated patients experienced most CAL loss. Adjunctive therapy including SURG was most effective in reducing PD. Combining SURG with AMOX, MET, and TET gave significant clinical benefits. Past and current smoking habits were significant predictors of deeper PD. Only current smoking was a significant predictor of CAL loss. Bleeding, accumulation of plaque, gingival redness, and suppuration were significant predictors of further CAL loss and deeper PD. Conclusions Both surgical and non-surgical therapies can be used to arrest chronic periodontitis. SURG+AMOX+MET+TET gave best maintenance of clinical results. PMID:22545190

  13. Results from a high-speed imaging system for the observation of transient features in OH-Airglow with focus on small-scale structures

    NASA Astrophysics Data System (ADS)

    Hannawald, Patrick; Kazlova, Aliaksandra; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2016-04-01

    The OH-airglow layer in about 87 km altitude is suited to investigate atmospheric dynamics in a unique way, allowing continuous observations of the night-sky throughout the year. Especially, atmospheric gravity waves are prominent features in the data of airglow imaging systems. In the year 2014 the imaging system FAIM (Fast Airglow IMager) for the study of small-scale features (both in space and time) was operational at the NDMC (Network for the detection of mesospheric change) station Oberpfaffenhofen. The instrument covers many of the brightest OH vibrational bands between 1.0 μm and 1.7 μm and acquires images with a temporal resolution of 2 frames per second. It measures the night sky with an aperture angle of about 20° and a zenith angle of 45° oriented to the Southern Germany Alpine region. Hence, the field of view (FOV) is about 50 km times 60 km in the height of the mesopause (87 km) with a mean spatial resolution of about 200 m. With this resolution, the focus of the instrument is on small-scale wave structures ranging from about 1 km to 30 km and instability structures like so-called ripples or Kelvin-Helmholtz-Instabilities. Case studies will be presented showing dissipating gravity waves and the results of spectral analyses will give an overview of the prominent directions of propagation and the horizontal wavelengths within the year 2014. This work is funded by the Bavarian State Ministry of the Environment and Consumer Protection by grant no. TUS01UFS-67093. The project aims to analyse the influence of the Alpine region on the generation of atmospheric waves.

  14. The effects of the built environment, traffic patterns, and micrometeorology on street level ultrafine particle concentrations at a block scale: Results from multiple urban sites.

    PubMed

    Choi, Wonsik; Ranasinghe, Dilhara; Bunavage, Karen; DeShazo, J R; Wu, Lisa; Seguel, Rodrigo; Winer, Arthur M; Paulson, Suzanne E

    2016-05-15

    This study attempts to explain explicitly the direct and quantitative effects of complicated urban built-environment on near-road dispersion and levels of vehicular emissions at the scale of several city blocks, based on ultrafine particle concentrations ([UFP]). On short timescales, ultrafine particles are an excellent proxy for other roadway emissions. Five measurement sites in the greater Los Angeles with different built environments but similar mesoscale meteorology were explored. After controlling for traffic, for most sampling days and sites, morning [UFP] were higher than those in the afternoon due to limited dispersion capacity combined with a relatively stable surface layer. [UFP] at the intersection corners were also higher than those over the sampling sites, implying that accelerating vehicles around the intersections contributed to [UFP] elevation. In the calm morning, the areal aspect ratio (Ararea), developed in this study for real urban configurations, showed a strong relationship with block-scale [UFP]. Ararea includes the building area-weighted building height, the amount of open space, and the building footprint. In the afternoon, however, when wind speeds were generally higher and turbulence was stronger, vertical turbulence intensity σw was the most effective factor controlling [UFP]. The surrounding built environment appears to play an indirect role in observed [UFP], by affecting surface level micrometeorology. The effects are substantial; controlling for traffic, differences in Ararea and building heterogeneity were related to differences in [UFP] of factors of two to three among our five study sites. These results have significant implications for pedestrian exposure as well as transit-oriented urban planning. PMID:26938315

  15. A 3D analysis algorithm to improve interpretation of heat pulse sensor results for the determination of small-scale flow directions and velocities in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Angermann, Lisa; Lewandowski, Jörg; Fleckenstein, Jan H.; Nützmann, Gunnar

    2012-12-01

    The hyporheic zone is strongly influenced by the adjacent surface water and groundwater systems. It is subject to hydraulic head and pressure fluctuations at different space and time scales, causing dynamic and heterogeneous flow patterns. These patterns are crucial for many biogeochemical processes in the shallow sediment and need to be considered in investigations of this hydraulically dynamic and biogeochemical active interface. For this purpose a device employing heat as an artificial tracer and a data analysis routine were developed. The method aims at measuring hyporheic flow direction and velocity in three dimensions at a scale of a few centimeters. A short heat pulse is injected into the sediment by a point source and its propagation is detected by up to 24 temperature sensors arranged cylindrically around the heater. The resulting breakthrough curves are analyzed using an analytical solution of the heat transport equation. The device was tested in two laboratory flow-through tanks with defined flow velocities and directions. Using different flow situations and sensor arrays the sensitivity of the method was evaluated. After operational reliability was demonstrated in the laboratory, its applicability in the field was tested in the hyporheic zone of a low gradient stream with sandy streambed in NE-Germany. Median and maximum flow velocity in the hyporheic zone at the site were determined as 0.9 × 10-4 and 2.1 × 10-4 m s-1 respectively. Horizontal flow components were found to be spatially very heterogeneous, while vertical flow component appear to be predominantly driven by the streambed morphology.

  16. Individual and dyadic barriers to a pharmacotherapeutic treatment of hypoactive sexual desire disorders: results and implications from a small-scale study with bupropion.

    PubMed

    Hartmann, Uwe H; Rüffer-Hesse, Claudia; Krüger, Tillmann H C; Philippsohn, Susanne

    2012-01-01

    This article describes the results of an independent small-scale trial with the centrally acting agent bupropion for female hypoactive sexual desire disorder. The main goals were to gain insight into the intrapsychic and interpersonal barriers to improvement associated with the pharmacological treatment of this common disorder. Eligible subjects entered a 2-week run-in period and a 4-week placebo phase, followed by a 20-week treatment phase. In addition to semi-structured clinical interviews and a set of standardized questionnaires, we used 2 self-developed questionnaires, addressing the period between visits and the week preceding each visit. Participants were 16 women who entered the placebo phase and 10 who completed the medication period. Analyses of pre-post scores and of the questionnaire addressing the time between visits yielded no significant changes. The questionnaire focusing on the week preceding each visit indicated improvements in sexual desire, arousability, and orgasmic ease after Week 8. In the clinical interviews, half of the women reported subjective improvements of sexual desire and arousability that could not be transferred to the sexual relationship as a result of individual and dyadic barriers. Overall, a centrally acting agent such as bupropion may be a viable option for female sexual dysfunction, but it seems mandatory to embed it in a psychotherapeutic approach. PMID:22712818

  17. Wind Tunnel Results of the Aerodynamic Performance of a 1/8-Scale Model of a Twin-Engine Transport with Multi-Element Wing

    NASA Technical Reports Server (NTRS)

    Laflin, Brenda E. Gile; Applin, Zachary T.; Jones, Kenneth M.

    1997-01-01

    A wind tunnel investigation was performed in the 14- by 22-Foot Subsonic Tunnel on a pressure instrumented 1/8-scale twin-engine subsonic transport to better understand the flow physics on a multi-element wing section. The wing consisted of a part-span, triple-slotted trailing edge flap, inboard leading-edge Krueger flap and an outboard leading-edge slat. The model was instrumented with flush pressure ports at the fuselage centerline and seven spanwise wing locations. The model was tested in cruise, take-off and landing configurations at dynamic pressures and Mach numbers from 10 lbf/ft(exp 2) to 50 lbf/ft(exp 2) and 0.08 to 0.17, respectively. This resulted in corresponding Reynolds numbers of 0.8 x 10(exp 5) to 1.8 x 10(exp 6). Pressure data were collected using electronically scanned pressure devices and force and moment data were collected with a six component strain gauge balance. Results are presented for various control surface deflections over an angle-of-attack range from -4 degrees to 16 degrees and sideslip angle range from -10 degrees to 10 degrees. Longitudinal and lateral directional aerodynamic data are presented as well as chordwise pressure distributions at the seven spanwise wing locations and the fuselage centerline.

  18. New Evidence on the Validity of the Arnett Caregiver Interaction Scale: Results from the Early Childhood Longitudinal Study-Birth Cohort

    ERIC Educational Resources Information Center

    Colwell, Nicole; Gordon, Rachel A.; Fujimoto, Ken; Kaestner, Robert; Korenman, Sanders

    2013-01-01

    The Arnett Caregiver Interaction Scale (CIS) has been widely used in research studies to measure the quality of caregiver-child interactions. The scale was modeled on a well-established theory of parenting, but there are few psychometric studies of its validity. We applied factor analyses and item response theory methods to assess the psychometric…

  19. Using Likert-Type Scales in the Social Sciences

    ERIC Educational Resources Information Center

    Croasmun, James T.; Ostrom, Lee

    2011-01-01

    Likert scales are useful in social science and attitude research projects. The General Self-Efficacy Exam is a test used to determine whether factors in educational settings affect participant's learning self-efficacy. The original instrument had 10 efficacy items and used a 4-point Likert scale. The Cronbach's alphas for the original test ranged…

  20. Investigations with large-scale forest lysimeter research of the lowlands of Northeast Germany - Results and consequences for the choice of tree species and forest management

    NASA Astrophysics Data System (ADS)

    Müller, J.

    2009-04-01

    Investigations with large-scale forest lysimeter research of the lowlands of Northeast Germany - Results and consequences for the choice of tree species and forest management Introduction At present about 28 % - i.e. 1.9 million hectares - of the Northeast German Lowlands are covered with forests. The Lowlands are among the driest and at the same time the most densely wooded regions in Germany. The low annual precipitation between 500 and 600 mm and the light sandy soils with their low water storage capacity and a high porosity lead to a limited water availability. Therefore the hydrological functions of forests play an important role in the fields of regional water budget, water supply and water distribution. Experimental sites Lysimeters are suitable measuring instruments in the fields of granular soils and loose rocks to investgate evaporation and seepage water. The usage of lysimeter of different construction has a tradition of more than 100 years in this region. To investigate the water consumption of different tree species, lysimeters were installed at Britz near Eberswalde under comparable site conditions. In the early 1970s nine large-scale lysimeters were built with an area of 100 m2 and a depth of 5 m each. In 1974 the lysimeters were planted, together with their environment, with Scots pine (Pinus sylvestris L), common beech (Fagus sylvatica L.), larch (Larix decidua L.) and Douglas-fir (Pseudotsuga menziesii [Mirb.] FRANCO) as experimental stands of 0.5 ha each according to the usual management practices. Therefore the "Large-scale lysimeters of Britz" are unparalleled in Europe. It was the initial aim of the experiment to find out the influence of the species and age of the growing stock growing on identical sandy soil under comparable weather conditions on both natural groundwater recharge and evaporation. Future forests in the north-eastern lowlands of Germany shall be mixed stands with as large a number of different species as possible. And this is

  1. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  2. Decision aid on breast cancer screening reduces attendance rate: results of a large-scale, randomized, controlled study by the DECIDEO group.

    PubMed

    Bourmaud, Aurelie; Soler-Michel, Patricia; Oriol, Mathieu; Regnier, Véronique; Tinquaut, Fabien; Nourissat, Alice; Bremond, Alain; Moumjid, Nora; Chauvin, Franck

    2016-03-15

    Controversies regarding the benefits of breast cancer screening programs have led to the promotion of new strategies taking into account individual preferences, such as decision aid. The aim of this study was to assess the impact of a decision aid leaflet on the participation of women invited to participate in a national breast cancer screening program. This Randomized, multicentre, controlled trial. Women aged 50 to 74 years, were randomly assigned to receive either a decision aid or the usual invitation letter. Primary outcome was the participation rate 12 months after the invitation. 16 000 women were randomized and 15 844 included in the modified intention-to-treat analysis. The participation rate in the intervention group was 40.25% (3174/7885 women) compared with 42.13% (3353/7959) in the control group (p = 0.02). Previous attendance for screening (RR = 6.24; [95%IC: 5.75-6.77]; p < 0.0001) and medium household income (RR = 1.05; [95%IC: 1.01-1.09]; p = 0.0074) were independently associated with attendance for screening. This large-scale study demonstrates that the decision aid reduced the participation rate. The decision aid activate the decision making process of women toward non-attendance to screening. These results show the importance of promoting informed patient choices, especially when those choices cannot be anticipated. PMID:26883201

  3. Decision aid on breast cancer screening reduces attendance rate: results of a large-scale, randomized, controlled study by the DECIDEO group

    PubMed Central

    Bourmaud, Aurelie; Soler-Michel, Patricia; Oriol, Mathieu; Regnier, Véronique; Tinquaut, Fabien; Nourissat, Alice; Bremond, Alain; Moumjid, Nora; Chauvin, Franck

    2016-01-01

    Controversies regarding the benefits of breast cancer screening programs have led to the promotion of new strategies taking into account individual preferences, such as decision aid. The aim of this study was to assess the impact of a decision aid leaflet on the participation of women invited to participate in a national breast cancer screening program. This Randomized, multicentre, controlled trial. Women aged 50 to 74 years, were randomly assigned to receive either a decision aid or the usual invitation letter. Primary outcome was the participation rate 12 months after the invitation. 16 000 women were randomized and 15 844 included in the modified intention-to-treat analysis. The participation rate in the intervention group was 40.25% (3174/7885 women) compared with 42.13% (3353/7959) in the control group (p = 0.02). Previous attendance for screening (RR = 6.24; [95%IC: 5.75-6.77]; p < 0.0001) and medium household income (RR = 1.05; [95%IC: 1.01-1.09]; p = 0.0074) were independently associated with attendance for screening. This large-scale study demonstrates that the decision aid reduced the participation rate. The decision aid activate the decision making process of women toward non-attendance to screening. These results show the importance of promoting informed patient choices, especially when those choices cannot be anticipated. PMID:26883201

  4. Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five- and one-year field-scale experiments in Switzerland.

    PubMed

    Herzig, Rolf; Nehnevajova, Erika; Pfistner, Charlotte; Schwitzguebel, Jean-Paul; Ricci, Arturo; Keller, Charles

    2014-01-01

    Phytoextraction with somaclonal variants of tobacco and sunflower mutant lines (non-GMs) with enhanced metal uptake and tolerance can be a sustainable alternative to conventional destructive decontamination methods, especially for stripping bioavailable zinc excess in topsoil. The overall results of a 5-year time series experiment at field scale in north-eastern Switzerland confirm that the labile Zn pool in soil can be lowered by 45-70%, whereas subplots without phytoextraction treatment maintained labile Zn concentrations. In 2011, the phytoextraction experiment site was enlarged by a factor of 3, and the labile 0.1 M NaNO3 extractable Zn concentration in the soil was reduced up to 58% one period after harvest. A Mass Balance Analysis confirmed soil Zn decontamination in line with plant Zn uptake. The plants partially take Zn from the non-labile pool of the totaL The sustainability of Zn phytoextraction in subplots that no longer exceed the Swiss trigger value is now assessed over time. In contrary to the phytoextraction of total soil Zn which needs a long cleaning up time, the bioavailable Zn stripping is feasible within a few years period. PMID:24933882

  5. Evaluation of the geomorphometric results and residual values of a robust plane fitting method applied to different DTMs of various scales and accuracy

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Székely, Balázs; Dorninger, Peter; Kovács, Gábor

    2013-04-01

    Due to the need for quantitative analysis of various geomorphological landforms, the importance of fast and effective automatic processing of the different kind of digital terrain models (DTMs) is increasing. The robust plane fitting (segmentation) method, developed at the Institute of Photogrammetry and Remote Sensing at Vienna University of Technology, allows the processing of large 3D point clouds (containing millions of points), performs automatic detection of the planar elements of the surface via parameter estimation, and provides a considerable data reduction for the modeled area. Its geoscientific application allows the modeling of different landforms with the fitted planes as planar facets. In our study we aim to analyze the accuracy of the resulting set of fitted planes in terms of accuracy, model reliability and dependence on the input parameters. To this end we used DTMs of different scales and accuracy: (1) artificially generated 3D point cloud model with different magnitudes of error; (2) LiDAR data with 0.1 m error; (3) SRTM (Shuttle Radar Topography Mission) DTM database with 5 m accuracy; (4) DTM data from HRSC (High Resolution Stereo Camera) of the planet Mars with 10 m error. The analysis of the simulated 3D point cloud with normally distributed errors comprised different kinds of statistical tests (for example Chi-square and Kolmogorov-Smirnov tests) applied on the residual values and evaluation of dependence of the residual values on the input parameters. These tests have been repeated on the real data supplemented with the categorization of the segmentation result depending on the input parameters, model reliability and the geomorphological meaning of the fitted planes. The simulation results show that for the artificially generated data with normally distributed errors the null hypothesis can be accepted based on the residual value distribution being also normal, but in case of the test on the real data the residual value distribution is

  6. Animal Assisted Therapy (AAT) Program As a Useful Adjunct to Conventional Psychosocial Rehabilitation for Patients with Schizophrenia: Results of a Small-scale Randomized Controlled Trial

    PubMed Central

    Calvo, Paula; Fortuny, Joan R.; Guzmán, Sergio; Macías, Cristina; Bowen, Jonathan; García, María L.; Orejas, Olivia; Molins, Ferran; Tvarijonaviciute, Asta; Cerón, José J.; Bulbena, Antoni; Fatjó, Jaume

    2016-01-01

    . Adherence to the AAT-treatment was significantly higher than overall adherence to the control group’s functional rehabilitation activities. Cortisol level was significantly reduced after participating in an AAT session, which could indicate that interaction with the therapy dogs reduced stress. In conclusion, the results of this small-scale RCT suggest that AAT could be considered a useful adjunct to conventional psychosocial rehabilitation for people with schizophrenia. PMID:27199859

  7. Animal Assisted Therapy (AAT) Program As a Useful Adjunct to Conventional Psychosocial Rehabilitation for Patients with Schizophrenia: Results of a Small-scale Randomized Controlled Trial.

    PubMed

    Calvo, Paula; Fortuny, Joan R; Guzmán, Sergio; Macías, Cristina; Bowen, Jonathan; García, María L; Orejas, Olivia; Molins, Ferran; Tvarijonaviciute, Asta; Cerón, José J; Bulbena, Antoni; Fatjó, Jaume

    2016-01-01

    -treatment was significantly higher than overall adherence to the control group's functional rehabilitation activities. Cortisol level was significantly reduced after participating in an AAT session, which could indicate that interaction with the therapy dogs reduced stress. In conclusion, the results of this small-scale RCT suggest that AAT could be considered a useful adjunct to conventional psychosocial rehabilitation for people with schizophrenia. PMID:27199859

  8. Examining construct and predictive validity of the Health-IT Usability Evaluation Scale: confirmatory factor analysis and structural equation modeling results

    PubMed Central

    Yen, Po-Yin; Sousa, Karen H; Bakken, Suzanne

    2014-01-01

    Background In a previous study, we developed the Health Information Technology Usability Evaluation Scale (Health-ITUES), which is designed to support customization at the item level. Such customization matches the specific tasks/expectations of a health IT system while retaining comparability at the construct level, and provides evidence of its factorial validity and internal consistency reliability through exploratory factor analysis. Objective In this study, we advanced the development of Health-ITUES to examine its construct validity and predictive validity. Methods The health IT system studied was a web-based communication system that supported nurse staffing and scheduling. Using Health-ITUES, we conducted a cross-sectional study to evaluate users’ perception toward the web-based communication system after system implementation. We examined Health-ITUES's construct validity through first and second order confirmatory factor analysis (CFA), and its predictive validity via structural equation modeling (SEM). Results The sample comprised 541 staff nurses in two healthcare organizations. The CFA (n=165) showed that a general usability factor accounted for 78.1%, 93.4%, 51.0%, and 39.9% of the explained variance in ‘Quality of Work Life’, ‘Perceived Usefulness’, ‘Perceived Ease of Use’, and ‘User Control’, respectively. The SEM (n=541) supported the predictive validity of Health-ITUES, explaining 64% of the variance in intention for system use. Conclusions The results of CFA and SEM provide additional evidence for the construct and predictive validity of Health-ITUES. The customizability of Health-ITUES has the potential to support comparisons at the construct level, while allowing variation at the item level. We also illustrate application of Health-ITUES across stages of system development. PMID:24567081

  9. Road map to scaling-up: translating operations research study’s results into actions for expanding medical abortion services in rural health facilities in Nepal

    PubMed Central

    2014-01-01

    Background Identifying unsafe abortion among the major causes of maternal deaths and respecting the rights to health of women, in 2002, the Nepali parliament liberalized abortion up to 12 weeks of pregnancy on request. However, enhancing women’s awareness on and access to safe and legal abortion services, particularly in rural areas, remains a challenge in Nepal despite a decade of the initiation of safe abortion services. Methods Between January 2011 and December 2012, an operations research study was carried out using quasi-experimental design to determine the effectiveness of engaging female community health volunteers, auxiliary nurse midwives, and nurses to provide medical abortion services from outreach health facilities to increase the accessibility and acceptability of women to medical abortion. This paper describes key components of the operations research study, key research findings, and follow-up actions that contributed to create a conducive environment and evidence in scaling up medical abortion services in rural areas of Nepal. Results It was found that careful planning and implementation, continuous advocacy, and engagement of key stakeholders, including key government officials, from the planning stage of study is not only crucial for successful completion of the project but also instrumental for translating research results into action and policy change. While challenges remained at different levels, medical abortion services delivered by nurses and auxiliary nurse midwives working at rural outreach health facilities without oversight of physicians was perceived to be accessible, effective, and of good quality by the service providers and the women who received medical abortion services from these rural health facilities. Conclusions This research provided further evidence and a road-map for expanding medical abortion services to rural areas by mid-level service providers in minimum clinical settings without the oversight of physicians, thus

  10. Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results

    SciTech Connect

    Graham, N.E.

    1994-08-01

    An abrupt change in the large-scale boreal winter circulation pattern over the North Pacific was observed during the mid-1970s. This paper presents a variety of observed data and model results to describe the climate shift, and to understand some of the links within the coupled climate system that produced, it. Five main findings are emphasized: (1) evidence of abrupt, simultaneous, and apparently related changes can be found in many fields and in many model results; the climate shift is not an artifact, (2) over the tropical Pacific the climate change represents a shift in the state of the coupled ocean-atmosphere system, some aspects of which resemble features associated with El Nino episodes. However, the shift in state is not well characterized as due to a change in the frequency of intensity of El Nino episodes; it is better described as a change in background mean state, (3) When forced with observed SSTs, both a very simple atmospheric model and a full general circulation model (GCM) qualitatively simulate aspects of the decadalscale shift over the tropical Pacific, (4) when forced with observed surface wind stress, two ocean models of the tropical Pacific, in which surface heat fluxes are parameterized as Newtonian damping, reproduce some aspects of the near-equatorial decadal SST signal. However, the models do not reproduce the large changes in SST observed at higher latitudes of the tropical Pacific. suggesting that altered surface heat fluxes dominated in producing these changes, and (5) an important new finding of this study is the success of a GCM in reproducing important aspects of the observed mid-1970s shift in winter northern hemisphere circulation. Comparative analyses of the observed and GCM simulated circulation suggest the altered patterns of tropical Pacific SST and convection were important in forcing the changes in the mid-latitude circulation, a finding corroborated by recent GCM experiments. 70 refs., 18 figs.

  11. Soil acidification occurs under ambient conditions but is retarded by repeated drought: results of a field-scale climate manipulation experiment.

    PubMed

    Kopittke, G R; Tietema, A; Verstraten, J M

    2012-11-15

    Acid atmospheric emissions within Europe and North America have decreased strongly since 1985 and most recent acidification studies have focused on the changes occurring within ecosystems as a result of this decreased deposition. This current study documents a soil acidification trend under ambient N deposition conditions over a 13 year period, suggesting that acidification continues to be a process of concern at this Calluna vulgaris dominated heathland with an acidic sandy soil. The annual manipulation of climatic conditions on this heathland simulated the predicted summer rainfall reduction (drought) and resulted in a long term retardation of the soil acidification trend. The pH of the soil solution significantly decreased over the course of the trial for both treatments, however, in the final 2 years the decline continued only in the Control treatment. This retardation is primarily associated with the reduction in rainfall leading to lower drainage rates, reduced loss of cations and therefore reduced lowering of the soil acid neutralizing capacity (ANC). However, a change in the underlying mechanisms also indicated that N transformations became less important in the Drought treatment. This change corresponded to an increase in groundcover of an air-pollution tolerant moss species and it is hypothesized that this increasing moss cover filtered an increasing quantity of deposited N, thus reducing the N available for transformation. A soil acidification lag time is expected to increase between the two treatments due to the cumulative disparity in cation retention and rates of proton formation. To the authors' knowledge, this is the first study in which such acidification trends have been demonstrated in a field-scale climate manipulation experiment. PMID:23103759

  12. Orbital-scale variation in the magnetic content as a result of sea level changes in Papua New Guinea over the past 400 ka

    NASA Astrophysics Data System (ADS)

    Huang, Yin-Sheng; Lee, Teh-Quei; Hsu, Shu-Kun

    2015-08-01

    We describe the orbital-scale environmental variation around Papua New Guinea (PNG) for the last 400 ka based on the environmental magnetism. Six magnetic parameters and the δ18O record of the core MD05-2928 are presented in the study. Results of magnetic analyses reveal opposite responses to different environmental conditions: Magnetic minerals were relatively fewer and finer in interglacial periods and were more and coarser in glacial periods. The reason could be suggested: In interglacial periods, sediments coming from central New Guinea were transported by the coastal currents in the northern Coral Sea and then imported to the core site location. Magnetic minerals would be relatively fewer and finer due to this longer transportation process. In glacial periods, the routes of the currents might regress seaward with reduced current intensity because of lower sea level. Main sediment sources would shift to the Papuan Peninsula relatively near the core site, and therefore, the magnetic minerals became more and coarser. Further, period analyses using the eccentricity, tilt, and precession (ETP) curves and the wavelet spectra were applied to the study to analyze the periodicities embedded in the parameters. Results of both period analyses clearly present the Milankovitch periods, indicating the dominance of the orbital forcing in this area. The strongest signal of 100-ka period reveals that sea level change played the dominant role in long-term environmental setting for the past ~400 ka. However, influences of 40- and 20-ka periods, possibly related to regional precipitation, should also be considered though they might be second factors affecting the environmental variation around PNG.

  13. Low-calorie sweetener use and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans.

    PubMed

    Fowler, Sharon P G

    2016-10-01

    For more than a decade, pioneering animal studies conducted by investigators at Purdue University have provided evidence to support a central thesis: that the uncoupling of sweet taste and caloric intake by low-calorie sweeteners (LCS) can disrupt an animal's ability to predict the metabolic consequences of sweet taste, and thereby impair the animal's ability to respond appropriately to sweet-tasting foods. These investigators' work has been replicated and extended internationally. There now exists a body of evidence, from a number of investigators, that animals chronically exposed to any of a range of LCSs - including saccharin, sucralose, acesulfame potassium, aspartame, or the combination of erythritol+aspartame - have exhibited one or more of the following conditions: increased food consumption, lower post-prandial thermogenesis, increased weight gain, greater percent body fat, decreased GLP-1 release during glucose tolerance testing, and significantly greater fasting glucose, glucose area under the curve during glucose tolerance testing, and hyperinsulinemia, compared with animals exposed to plain water or - in many cases - even to calorically-sweetened foods or liquids. Adverse impacts of LCS have appeared diminished in animals on dietary restriction, but were pronounced among males, animals genetically predisposed to obesity, and animals with diet-induced obesity. Impacts have been especially striking in animals on high-energy diets: diets high in fats and sugars, and diets which resemble a highly-processed 'Western' diet, including trans-fatty acids and monosodium glutamate. These studies have offered both support for, and biologically plausible mechanisms to explain, the results from a series of large-scale, long-term prospective observational studies conducted in humans, in which longitudinal increases in weight, abdominal adiposity, and incidence of overweight and obesity have been observed among study participants who reported using diet sodas and other

  14. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    NASA Astrophysics Data System (ADS)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.

    2013-12-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need

  15. Multiple scales of temporal variability in ecosystem metabolism rates: results from two years of continuous monitoring in a forested headwater stream

    SciTech Connect

    Roberts, Brian J; Mulholland, Patrick J; Hill, Walter

    2007-01-01

    Headwater streams are key sites of nutrient and organic matter processing and retention, but little is known about temporal variability in gross primary production (GPP) and ecosystem respiration (ER) rates as a result of the short duration of most ecosystem metabolism measurements in lotic ecosystems. We examined temporal variability and controls on ecosystem metabolism by measuring daily rates continuously for two years in Walker Branch, a first-order deciduous forest stream. Four important scales of temporal variability in ecosystem metabolism rates were identified: (1) seasonal, (2) day-to-day, (3) episodic (storm-related), and (4) inter-annual. Seasonal patterns were largely controlled by the leaf phenology and productivity of the deciduous riparian forest. Walker Branch was strongly net heterotrophic throughout the year with the exception of the open-canopy spring when GPP and ER rates were similar. Day-to-day variability in weather conditions influenced light reaching the streambed, resulting in high day-to-day variability in GPP particularly during spring (daily light levels explained 84% of the variance in daily GPP in April). Episodic storms depressed GPP for several days in spring, but increased GPP in autumn by removing leaves shading the streambed. Storms depressed ER initially, but then stimulated ER to 2-3 times pre-storm levels for several days. Walker Branch was strongly net heterotrophic in both years of the study (NEP = -1156 and -773 g O2 m-2 y-1), with annual GPP being similar (488 and 519 g O2 m-2 y-1) but annual ER being higher in 2004 than 2005 (-1645 vs. -1292 g O2 m-2 y-1). Inter-annual variability in ecosystem metabolism (assessed by comparing 2004 and 2005 rates with previous measurements) was the result of the storm frequency and timing and the size of the spring macroalgal bloom. Changes in local climate can have substantial impacts on stream ecosystem metabolism rates and ultimately influence the carbon source and sink properties of

  16. Does mycorrhizal inoculation benefit plant survival, plant development and small-scale soil fixation? Results from a perennial eco-engineering field experiment in the Swiss Alps.

    NASA Astrophysics Data System (ADS)

    Bast, Alexander; Grimm, Maria; Graf, Frank; Baumhauer, Roland; Gärtner, Holger

    2015-04-01

    In mountain environments superficial slope failures on coarse grained, vegetation-free slopes are common processes and entail a certain risk for humans and socio-economic structures. Eco-engineering measures can be applied to mitigate slope instabilities. In this regard, limited plant survival and growth can be supported by mycorrhizal inoculation, which was successfully tested in laboratory studies. However, related studies on a field scale are lacking. Furthermore, mycorrhizae are known to enhance soil aggregation, which is linked to soil physics such as shear strength, and hence it is a useful indicator for near-surface soil/slope stability. The overall objective of our contribution was to test whether mycorrhizal inoculation can be used to promote eco-engineering measures in steep alpine environments based on a five-year field experiment. We hypothesized that mycorrhizal inoculation (i) enhances soil aggregation, (ii) stimulate plant survival and fine root development, (iii) effects plant performance, (iv) the stimulated root development in turn influences aggregate stability, and (v) that climatic variations play a major role in fine-root development. We established mycorrhizal and non-mycorrhizal treated eco-engineered research plots (hedge layers mainly consisting of Alnus spp. and Salix spp.) on a field experimental scale. The experimental site is in the eastern Swiss Alps at an erosion-prone slope where many environmental conditions can be seen as homogeneous. Soil aggregation, fine root development and plant survival was quantified at the end of four growing seasons (2010, '11, '12, '14). Additionally, growth properties of Alnus spp. and Salix spp. were measured and their biomass estimated. Meteorological conditions, soil temperature and soil water content were recorded. (i) The introduced eco-engineering measures enhanced aggregate stability significantly. In contrast to published greenhouse and laboratory studies, mycorrhizal inoculation delayed soil

  17. Utilisation of MSWI bottom ash as sub-base in road construction: first results from a large-scale test site.

    PubMed

    Hjelmar, Ole; Holm, Jesper; Crillesen, Kim

    2007-01-31

    The preferred management option for municipal solid waste incinerator (MSWI) bottom ash in Denmark is utilisation rather than landfilling, but the current environmental quality criteria for bottom ash to be utilised in bulk quantities are rather strict. To evaluate the impact and risk assessments, upon which those criteria are based, a large-scale test site has been established. Three different MSWI bottom ashes have been used as sub-base in six test units ranging from 100 to 200 m2 with top covers of asphalt, flagstones and pebbles, respectively. All units, except one, are equipped with bottom liners and leachate collection equipment. The test site provides information on the leachate quality and quantity as a function of time under different conditions and on the flow pattern in asphalt and flagstone covered roads and squares with MSWI bottom ash sub-base. In addition, the leaching behaviour of the bottom ashes has been studied in the laboratory. The test site was established in October 2002 and the project is still ongoing. Water balance results indicate that the water flow distribution is strongly influenced by lateral flow on or in the upper part of the bottom ash layer and possibly by preferential flow. Comparisons between eluates from laboratory leaching tests on the bottom ashes and observations of the leachate from the site as a function of L/S show fairly good agreement for salts but less agreement for some trace elements. Most likely, this is partly due to the fact that the pH observed in the leachate from the field sites is lower than that observed in the eluates from the laboratory leaching tests. PMID:16621249

  18. Planktic foraminiferal responses to orbital scale oceanographic changes off the western Iberian margin over the last 900 kyr: Results from IODP site U1391

    NASA Astrophysics Data System (ADS)

    Singh, A. D.; Verma, K.; Jaiswal, S.; Alonso-Garcia, M.; Li, B.; Abrantes, F.

    2015-12-01

    This paper presents planktic foraminiferal assemblage records of the last 900 kyr from the SW Iberian margin (IODP Site U1391). The faunal records show the history of surface oceanographic changes on glacial/interglacial scales before and after the Mid-Brunhes Event (MBE), a period when a major shift in the climate pattern was recorded in other regions. Temporal variations in relative abundances of characteristic species/groups are used to infer changes in the latitudinal position of the polar/Arctic water (% Neogloboquadrina pachyderma sinistral and Turborotalita quinqueloba), influence of the transitional subpolar water mass (% N. pachyderma dextral), and subtropical water (% tropical/subtropical species/group). Past changes in the upwelling intensity and productivity pattern associated with seasonal trade wind strength are inferred from the abundance variations of Globigerina bulloides and G. bulloides + Globigerinita glutinata, respectively. Faunal data reveal the influence of cold water masses (polar/subpolar) at the examined site was more pronounced during glacial stages except for marine isotope stage (MIS) 14 and 16. The magnitude of the polar/subpolar water mass invading the study area was at maximum before the MBE during MIS 18, 20 and 22, resulting in a situation like the present day Arctic Front. Interglacial periods prior to the MBE were also relatively colder than those of the post-MBE. Our faunal based inferences are in agreement with the ice-rafted debris (IRD) concentration and N. pachyderma sinistral records of the subpolar North Atlantic sites. Based on faunal proxies, we recorded major and rapid changes in upwelling intensity and related productivity during glacial Terminations. Both the upwelling intensity and productivity significantly increased after the MBE, particularly during the interglacials MIS 7, 9 and 11. Our productivity record parallels the EPICA CH4 record suggesting teleconnections between trade winds induced productivity and the

  19. Is the General Self-Efficacy Scale a Reliable Measure to be used in Cross-Cultural Studies? Results from Brazil, Germany and Colombia.

    PubMed

    Damásio, Bruno F; Valentini, Felipe; Núñes-Rodriguez, Susana I; Kliem, Soeren; Koller, Sílvia H; Hinz, Andreas; Brähler, Elmar; Finck, Carolyn; Zenger, Markus

    2016-01-01

    This study evaluated cross-cultural measurement invariance for the General Self-efficacy Scale (GSES) in a large Brazilian (N = 2.394) and representative German (N = 2.046) and Colombian (N = 1.500) samples. Initially, multiple-indicators multiple-causes (MIMIC) analyses showed that sex and age were biasing items responses on the total sample (2 and 10 items, respectively). After controlling for these two covariates, a multigroup confirmatory factor analysis (MGCFA) was employed. Configural invariance was attested. However, metric invariance was not supported for five items, in a total of 10, and scalar invariance was not supported for all items. We also evaluated the differences between the latent scores estimated by two models: MIMIC and MGCFA unconstraining the non-equivalent parameters across countries. The average difference was equal to |.07| on the estimation of the latent scores, and 22.8% of the scores were biased in at least .10 standardized points. Bias effects were above the mean for the German group, which the average difference was equal to |.09|, and 33.7% of the scores were biased in at least .10. In synthesis, the GSES did not provide evidence of measurement invariance to be employed in this cross-cultural study. More than that, our results showed that even when controlling for sex and age effects, the absence of control on items parameters in the MGCFA analyses across countries would implicate in bias of the latent scores estimation, with a higher effect for the German population. PMID:27225231

  20. Rheological variations across an active rift system -- results from lithosphere-scale 3D gravity and thermal models of the Kenya Rift

    NASA Astrophysics Data System (ADS)

    Meeßen, Christian; Sippel, Judith; Cacace, Mauro; Scheck-Wenderoth, Magdalena; Fishwick, Stewart; Heine, Christian; Strecker, Manfred R.

    2015-04-01

    Due to its tectono-volcanic activity and economic (geothermal and petroleum) potential, the eastern branch of the East African Rift System (EARS) is one of the best studied extensional systems worldwide and an important natural laboratory for the development of geodynamic concepts on rifting and nascent continental break-up. The Kenya Rift, an integral part of the eastern branch of the EARS, has formed in the area of weak Proterozoic crust of the Mozambique mobile belt adjacent to the rheologically stronger Archean Tanzania craton. To assess the variations in lithospheric strength between different tectonic domains and their influence on the tectonic evolution of the region, we developed a set of structural, density, thermal and rheological 3D models. For these models we integrated multi-disciplinary information, such as published geological field data, sediment thicknesses, well information, existing structural models, seismic refraction and reflection data, seismic tomography, gravity and heat-flow data. Our main approach focused on combined 3D isostatic and gravity modelling. The resulting lithosphere-scale 3D density model provides new insights into the depth distribution of the crust-mantle boundary and thickness variations of different crustal density domains. The latter further facilitate interpretations of variations of lithologies and related physical rock properties. By considering lithology-dependent heat production and thermal conductivity, we calculate the conductive thermal field across the region of the greater Kenya Rift. Finally, the assessed variations in lithology and temperature allow deriving differences in the integrated strength of the lithosphere across the different tectonic domains.

  1. Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.

    2012-04-01

    Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems

  2. Soil Carbon Sequestration and Greenhouse Gas Emissions Under a Changing Climate at the Foodshed Scale - Preliminary Results from Diverse Cropping Systems

    NASA Astrophysics Data System (ADS)

    Kong, A. Y.; Shukla, S. P.; Rosenzweig, C.

    2011-12-01

    The term 'foodshed' is an analog to the concept of a 'watershed' and describes "the flow of foodstuffs to consuming markets." Our main goals in identifying a foodshed are to: determine sustainable regional production and develop ideas for regional/local distribution systems that increase market access for producers and fresh food access for consumers, while reducing the carbon footprint of the food choices within the foodshed. The latter can be achieved by establishing policies that protect agricultural land from development, conserve water, and promote the adoption of agricultural management practices that decrease disturbance and/or increase carbon sequestration in soils, all of which can play a role in mitigating climate change. Because few studies relate climate change and agriculture at the regional-scale, we lack a good understanding of which elements of a foodshed are most vulnerable to changes in climate. With this foodshed analysis, our overall aims are to utilize the latest methods of climate and agricultural scenario generation to conduct multi-scale and transdisciplinary assessments of climate change impacts on the production, distribution and consumption of agricultural crops within a foodshed and to evaluate the potential for mitigation [soil carbon sequestration and greenhouse gas (GHG) emissions reduction)] and design the framework for adaptation (policy incentives) to climate change within a foodshed. Here, we present the methodology and preliminary results for an integrated climate/ecosystem modeling approach to look at how agricultural management practices can contribute to climate change mitigation within the Hudson Valley, a sub-region of the New York City foodshed. First, cutting-edge CMIP5 GCMs were validated against historical climatic data (1979-present) to identify which GCMs best simulate the climate of the Northeastern US (which includes the New York City foodshed). Subsequently, the selected GCMs were forced with the IPCC's four newly

  3. OECD MCCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-3 test data report : thermal Hydraulic results, Rev. 0 February 19, 2003.

    SciTech Connect

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the third water ingression test, designated SSWICS-3. This test investigated the quenching behavior of a fully

  4. OECD MMCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-2 test data report : thermal hydraulic results, Rev. 0 September 20, 2002.

    SciTech Connect

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the second water ingression test, designated SSWICS-2. The report includes a description of the test apparatus, the

  5. OECD MCCI project Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-1 test data report : thermal hydraulic results. Rev. 0 September 20, 2002.

    SciTech Connect

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the first water ingression test, designated SSWICS-1. The report includes a description of the test apparatus, the

  6. The Physical Properties and Effective Temperature Scale of O-Type Stars as a Function of Metallicity. III. More Results From the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Massey, Philip; Zangari, Amanda M.; Morrell, Nidia I.; Puls, Joachim; DeGioia-Eastwood, Kathleen; Bresolin, Fabio; Kudritzki, Rolf-Peter

    2009-02-01

    In order to better determine the physical properties of hot, massive stars as a function of metallicity, we obtained very high signal-to-noise ratio optical spectra of 26 O and early B stars in the Magellanic Clouds. These allow accurate modeling even in cases where the He I λ4471 line has an equivalent width of only a few tens of m Å. The spectra were modeled with FASTWIND, with good fits obtained for 18 stars; the remainder show signatures of being binaries. We include stars in common to recent studies to investigate possible systematic differences. The "automatic" FASTWIND modeling method of Mokiem and collaborators produced temperatures 1100 K hotter on average, presumably due to the different emphasis given to various temperature-sensitive lines. More significant, however, is that the automatic method always produced a "best" result for each star, even ones we identify as composite (binaries). The temperatures found by the TLUSTY/CMFGEN modeling of Bouret, Heap, and collaborators yielded temperatures 1000 K cooler than ours, on average. Significant outliers were due either to real differences in the data (some of the Bouret/Heap data were contaminated by moonlight continua) or the fact that we could detect the He I line needed to better constrain the temperature. Our new data agree well with the effective temperature scale we previously presented. We confirm that the "Of" emission characteristics do not track luminosity classes in exactly the same manner as in Milky Way stars. We revisit the issue of the "mass discrepancy," finding that some of the stars in our sample do have spectroscopic masses that are significantly smaller than those derived from stellar evolutionary models. We do not find that the size of the mass discrepancy is simply related to either effective temperature or surface gravity. This paper is based on data gathered with the 6.5 m Magellan telescopes located at Las Campanas Observatory, Chile, and also on observations made with the NASA

  7. The Role of Small Scale Industry in Employment Generation and Rural Development: Initial Research Results from Sierra Leone. African Rural Employment Paper No. 11.

    ERIC Educational Resources Information Center

    Chuta, Enyinna; Liedholm, Carl

    Urban and rural small scale industry and employment generation in Sierra Leone, Africa were studied via a 2 phase procedure. Phase 1 data collection (March-June, 1974) involved a random sampling procedure based on locality size. The following information was obtained from each of the localities (cities, towns, and villages) and "enumeration areas"…

  8. Sensitivity of the Modified Children's Yale-Brown Obsessive Compulsive Scale to Detect Change: Results from Two Multi-Site Trials

    ERIC Educational Resources Information Center

    Scahill, Lawrence; Sukhodolsky, Denis G.; Anderberg, Emily; Dimitropoulos, Anastasia; Dziura, James; Aman, Michael G.; McCracken, James; Tierney, Elaine; Hallett, Victoria; Katz, Karol; Vitiello, Benedetto; McDougle, Christopher

    2016-01-01

    Repetitive behavior is a core feature of autism spectrum disorder. We used 8-week data from two federally funded, multi-site, randomized trials with risperidone conducted by the Research Units on Pediatric Psychopharmacology Autism Network to evaluate the sensitivity of the Children's Yale-Brown Obsessive Compulsive Scale modified for autism…

  9. Technical Feasibility of Reporting YITS 2010 Skill Assessment Results on the PISA 2000 Reading Scale. OECD Education Working Papers, No. 69

    ERIC Educational Resources Information Center

    Cartwright, Fernando

    2012-01-01

    This study examines the feasibility of reporting scores of a test based on the Programme for International Student Assessment (PISA) 2000 instrument that was administered to a sample of 25-year-old Youth in Transition Survey (YITS) respondents on the PISA scale. Each of these respondents also participated in PISA 2000. The study examines the…

  10. Gender Differences in Reading Impairment and in the Identification of Impaired Readers: Results from a Large-Scale Study of At-Risk Readers

    ERIC Educational Resources Information Center

    Quinn, Jamie M.; Wagner, Richard K.

    2015-01-01

    Reading impairment is more common in males, but the magnitude and origin of this gender difference are debated. In a large-scale study of reading impairment among 491,103 beginning second-graders, gender differences increased with greater severity of reading impairment, peaking at a ratio of 2.4:1 for a broad measure of fluency and a ratio of…

  11. Kilometer-scale slopes on Mars and their correlation with geologic units: Initial results from Mars Orbiter Laser Altimeter (MOLA) data

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W.

    1999-09-01

    Martian surface slopes were calculated at baselines from 0.4 to 25 km using profiles obtained by the Mars Orbiter Laser Altimeter (MOLA) instrument during the aerobraking phase of the Mars Global Surveyor mission. Median slope is proposed as a characteristic measurement of the typical surface roughness at each corresponding scale. Median slope is favored over RMS slope because it is not influenced by the small number of higher slopes at the upper end of the slope-frequency distribution tail. Median slope complements interquartile scale roughness characterization in that it is more sensitive to smaller baseline slopes. A map of the median slope of the northern hemisphere is presented. Median slopes and their scale dependences are used to characterize typical kilometer-scale roughness for a set of geologic units mapped in the northern hemisphere. This analysis demonstrates that many individual units and groups of units are characterized by distinctive surface slopes and that these characteristics are sufficiently different that they hold promise for use in the definition and characterization of units. Characterization of the slope properties of geologic units provides information useful in the interpretation of their origin and evolution. For example, the generally smooth topography of the diverse Vastitas Borealis Formation subunits is dominated by about 3 km, 0.3° steep features almost indistinguishable in Viking images. The roughness characteristics of this unit differ from those of other geologic units on Mars and suggest some distinctive process(es) of formation and/or modification of kilometer-scale topography common for all subunits. The similarity of roughness characteristics of the several highland plateau units suggests that kilometer-scale topography was largely inherited from the period of heavy bombardment. The northern polar cap and layered terrains are largely very smooth at small scale. The long, steep-sloped tails of the slope

  12. Numerical friction experiments of heterogeneous fault with controlling shear stress by means of earthquake sequence simulations: Preliminary results on the relation between cm-scale and km-scale friction laws

    NASA Astrophysics Data System (ADS)

    Noda, H.; Hori, T.

    2014-12-01

    The scale effect of the friction law is crucial in connecting field observations, laboratory experiments, and natural fault behaviors. Here we present our recent study towards understanding of the scale effect of the friction law. The fault friction law is usually studied in laboratory experiments for cm-scale specimens, and one of the prominent problems is its direct applicability to the large-scale behavior. Small repeating earthquakes (repeaters) may be a realization of heterogeneous frictional property on faults, which were modeled by rate-weakening patches embedded in a rate-strengthening fault [e.g., Chen and Lapusta, 2009]. After the 2011 Tohoku-oki earthquake, so many repeaters were found in the Tohoku subduction zone [e.g., Kato and Igarashi, 2012]. But it is quite difficult to numerically resolve them in a large-scale simulation of the whole subduction zone, which is demanded for potential disaster mitigation. Then, it is important to investigate a spatiotemporally coarse-grained friction law of a fault region including unstable inclusions. We hypothesized that each point on a fault obeys the cm-scale friction law (the rate-state friction law in the aging law formulation) with sub-mm state evolution distance L, and assumed a rate-weakening circular patch (80 m diameter) which generates repeating events. We set 256 m periodicity along the fault, and conducted dynamic earthquake sequence simulations [e.g., Liu and Lapusta, 2009] by driving the system by far field stress τ0. We did not prescribe the long term slip rate by setting a region of constant slip rate as is done in previous studies. Those simulations can be seen as numerical friction experiments with controlling the shear stress and observing the slip rate. The macroscopic steady-state can be explained by a logarithmic law, with the frictional resistance slightly smaller and the rate-dependency slightly more rate-strengthening than the spatial average. The transient behavior on a step in τ0 can be

  13. Genomic rearrangements of the CDKN2A locus are infrequent in Italian malignant melanoma families without evidence of CDKN2A/CDK4 point mutations.

    PubMed

    Vignoli, Marina; Scaini, Maria Chiara; Ghiorzo, Paola; Sestini, Roberta; Bruno, William; Menin, Chiara; Gensini, Francesca; Piazzini, Mauro; Testori, Alessandro; Manoukian, Siranoush; Orlando, Claudio; D'Andrea, Emma; Bianchi-Scarrà, Giovanna; Genuardi, Maurizio

    2008-12-01

    Predisposition to familial cutaneous malignant melanoma has been associated with mutations in the CDKN2A and CDK4 genes. However, only a small subgroup of melanoma pedigrees harbour CDKN2A or CDK4 germline mutations. It is possible that other types of CDKN2A rearrangements, not detectable by routine PCR-based approaches, are involved in a fraction of melanoma cases negative for point sequence changes. In order to gain insights on the possible role of CDKN2A large deletions or duplications in melanoma susceptibility in the Italian population, we screened a series of 124 cutaneous malignant melanoma families referred to five national medical/cancer genetics centres. All probands were negative for point mutations in CDKN2A and CDK4. All samples were tested by MLPA (multiplex ligation-dependent probe amplification), and the results were confirmed by real-time quantitative PCR in a subset of 53 cases. No genomic rearrangements were detected in this series, one of the largest so far investigated. These data suggest that large deletions/duplications in the CDKN2A locus are infrequently involved in the development of familial melanoma in the Italian population. Based on these results, routine search for these rearrangements in CDKN2A- and CDK4-mutation negative melanoma families is not warranted, although it would be reasonable to pursue it in selected cases with very strong family history and/or showing linkage to 9p21. PMID:19011513

  14. Scaling and Exponent Equalities in Island Nucleation: Novel Results and Application to Organic Films Alberto Pimpinelli, Levent Tumbek, and Adolf Winkler

    NASA Astrophysics Data System (ADS)

    Pimpinelli, Alberto; Tumbek, Levent; Winkler, Adolf

    2015-03-01

    As discussed in the first talk, the scaling of the island density with the flux F and/or the capture zone distribution (CZD) can be used to determine the size of the critical nucleus i, but so far an analytic function for CZD exists only for diffusion-limited aggregation (DLA). For CZD the scaling function is Pβ (s) =aβsβ exp (-bβs2) , with β = i + 2 . We have extended the analytic description of the CZD in terms of Pβ also to attachment-limited aggregation (ALA); in this case we obtain β = (i + 3) / 2 . Furthermore, we could demonstrate that the general relationship αβ = i holds, independent of the aggregation mechanism. This important exponent equality should help to better characterize nucleation and growth of thin films. Work at Graz supported by Austrian Science Fund (FWF), Project No. P 23530.

  15. Results of flutter test OS7 obtained using the 0.14-scale space shuttle orbiter fin/rudder model number 55-0 in the NASA LaRC 16-foot transonic dynamics wind tunnel

    NASA Technical Reports Server (NTRS)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter vertical tail was tested in a 16-foot transonic dynamic wind tunnel to determine flutter, buffet, and rudder buzz boundaries. Mach numbers between .5 and 1.11 were investigated. Rockwell shuttle model 55-0 was used for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  16. Results of flutter test OS6 obtained using the 0.14-scale wing/elevon model (54-0) in the NASA LaRC 16-foot transonic dynamics wind tunnel

    NASA Technical Reports Server (NTRS)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter wing was tested in the Langley Research Center 16-Foot Transonic Dynamics Wind Tunnel to determine flutter, buffet, and elevon buzz boundaries. Mach numbers between 0.3 and 1.1 were investigated. Rockwell shuttle model 54-0 was utilized for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  17. Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules: Final Subcontract Report, 7 August 2003--30 September 2004

    SciTech Connect

    Keshner, M. S.; Arya, R.

    2004-10-01

    Hewlett Packard has created a design for a ''Solar City'' factory that will process 30 million sq. meters of glass panels per year and produce 2.1-3.6 GW of solar panels per year-100x the volume of a typical, thin-film, solar panel manufacturer in 2004. We have shown that with a reasonable selection of materials, and conservative assumptions, this ''Solar City'' can produce solar panels and hit the price target of $1.00 per peak watt (6.5x-8.5x lower than prices in 2004) as the total price for a complete and installed rooftop (or ground mounted) solar energy system. This breakthrough in the price of solar energy comes without the need for any significant new invention. It comes entirely from the manufacturing scale of a large plant and the cost savings inherent in operating at such a large manufacturing scale. We expect that further optimizations from these simple designs will lead to further improvements in cost. The manufacturing process and cost depend on the choice for the active layer that converts sunlight into electricity. The efficiency by which sunlight is converted into electricity can range from 7% to 15%. This parameter has a large effect on the overall price per watt. There are other impacts, as well, and we have attempted to capture them without creating undue distractions. Our primary purpose is to demonstrate the impact of large-scale manufacturing. This impact is largely independent of the choice of active layer. It is not our purpose to compare the pro's and con's for various types of active layers. Significant improvements in cost per watt can also come from scientific advances in active layers that lead to higher efficiency. But, again, our focus is on manufacturing gains and not on the potential advances in the basic technology.

  18. Quality assurance of specialised treatment of eating disorders using large-scale Internet-based collection systems: methods, results and lessons learned from designing the Stepwise database.

    PubMed

    Birgegård, Andreas; Björck, Caroline; Clinton, David

    2010-01-01

    Computer-based quality assurance of specialist eating disorder (ED) care is a possible way of meeting demands for evaluating the real-life effectiveness of treatment, in a large-scale, cost-effective and highly structured way. The Internet-based Stepwise system combines clinical utility for patients and practitioners, and provides research-quality naturalistic data. Stepwise was designed to capture relevant variables concerning EDs and general psychiatric status, and the database can be used for both clinical and research purposes. The system comprises semi-structured diagnostic interviews, clinical ratings and self-ratings, automated follow-up schedules, as well as administrative functions to facilitate registration compliance. As of June 2009, the system is in use at 20 treatment units and comprises 2776 patients. Diagnostic distribution (including subcategories of eating disorder not otherwise specified) and clinical characteristics are presented, as well as data on registration compliance. Obstacles and keys to successful implementation of the Stepwise system are discussed, including possible gains and on-going challenges inherent in large-scale, Internet-based quality assurance. PMID:20589767

  19. Liquid Oxygen Propellant Densification Production and Performance Test Results With a Large-Scale Flight-Weight Propellant Tank for the X33 RLV

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Meyer, Michael L.

    2010-01-01

    This paper describes in-detail a test program that was initiated at the Glenn Research Center (GRC) involving the cryogenic densification of liquid oxygen (LO2). A large scale LO2 propellant densification system rated for 200 gpm and sized for the X-33 LO2 propellant tank, was designed, fabricated and tested at the GRC. Multiple objectives of the test program included validation of LO2 production unit hardware and characterization of densifier performance at design and transient conditions. First, performance data is presented for an initial series of LO2 densifier screening and check-out tests using densified liquid nitrogen. The second series of tests show performance data collected during LO2 densifier test operations with liquid oxygen as the densified product fluid. An overview of LO2 X-33 tanking operations and load tests with the 20,000 gallon Structural Test Article (STA) are described. Tank loading testing and the thermal stratification that occurs inside of a flight-weight launch vehicle propellant tank were investigated. These operations involved a closed-loop recirculation process of LO2 flow through the densifier and then back into the STA. Finally, in excess of 200,000 gallons of densified LO2 at 120 oR was produced with the propellant densification unit during the demonstration program, an achievement that s never been done before in the realm of large-scale cryogenic tests.

  20. Criterion validity of the Center for Epidemiologic Studies Depression scale (CES-D): results from a community-based sample of older subjects in The Netherlands.

    PubMed

    Beekman, A T; Deeg, D J; Van Limbeek, J; Braam, A W; De Vries, M Z; Van Tilburg, W

    1997-01-01

    The Center for Epidemiologic Studies Depression scale (CES-D) has been widely used in studies of late-life depression. Psychometric properties are generally favourable, but data on the criterion validity of the CES-D in elderly community-based samples are lacking. In a sample of older (55-85 years) inhabitants of the Netherlands, 487 subjects were selected to study criterion validity of the CES-D. Using the 1-month prevalence of major depression derived from the Diagnostic Interview Schedule (DIS) as criterion, the weighted sensitivity of the CES-D was 100%; specificity 88%; and positive predictive value 13.2%. False positives were not more likely among elderly with physical illness, cognitive decline or anxiety. We conclude that the criterion validity of the CES-D for major depression was very satisfactory in this sample of older adults. PMID:9122304

  1. Regional characteristics of 5--10 m scale carbonate cycles of Late Mississippian Greenbrier depositional sequences, West Virginia; Comparison of field and modeling results

    SciTech Connect

    Al-Tawil, A.A.; Read, J.F. . Dept. of Geological Sciences)

    1992-01-01

    The Late Mississippian Greenbrier ramp carbonates contain depositional sequences (each up to tens of meters thick) which consists of a few transgressive shaly/muddy carbonates that shallow up into high energy skeletal/oolitic grainstones and associated shoreline facies and red beds. Sequence boundaries are characterized by erosional unconformities, caliches, breccias, channeling, and lowstand clastics. Superimposed on the larger scale third order cyclicity are high frequency, 5--10 m scale carbonate dominated cycles (parasequences), possibly of 100 to 400 KY duration each. Updip, few cycles are developed. These consist of grainstone-dominated facies with sharp/erosional tops, locally developed eolianites and caliches (especially where associated with a sequence boundary). Tidal flat facies are relatively rare and thin. In the much thicker downdip sections, more carbonate cycles are developed. Cycles are dominated by skeletal packstone grading up into skeletal/oolitic grainstone, and some thick (up to 8 m) tidal flat laminated dolomites. The oolites are sheets to channeled bodies that locally prograde out over local bioherms. Oolites are rare in the furthest downdip sections on the ramp. Cycle boundaries rarely have caliches, but erosional and microkarstic surfaces are common. Comparison of the observed sections with computer generated synthetic cross sections suggests that the cycles were developed under moderate amplitude (tens of meters) high frequency Milankovitch eustatic sea level fluctuations dominated by 100--400 KY periods. These likely mark the onset of the Late Carboniferous glaciation in Gondwana. The modeling closely simulates limited updip cycle development, and abundant cycle development downdip, along with locally well developed lowstand tidal flats.

  2. The Integrated Field-Scale Subsurface Research Challenge Site (IFC) at Rifle, Colorado: Preliminary Results on Microbiological, Geochemical and Hydrologic Processes Controlling Iron Reduction and Uranium Mobility

    NASA Astrophysics Data System (ADS)

    Long, P. E.; Banfield, J.; Bush, R.; Campbell, K.; Chandler, D. P.; Davis, J. A.; Dayvault, R.; Druhan, J.; Elifantz, H.; Englert, A.; Hettich, R. L.; Holmes, D.; Hubbard, S.; Icenhower, J.; Jaffe, P. R.; Kerkhof, L. J.; Kukkadapu, R. K.; Lesher, E.; Lipton, M.; Lovley, D.; Morris, S.; Morrison, S.; Mouser, P.; Newcomer, D.; N'guessan, L.; Peacock, A.; Qafoku, N.; Resch, C. T.; Spane, F.; Spaulding, B.; Steefel, C.; Verberkmoes, N.; Wilkins, M.; Williams, K. H.; Yabusaki, S. B.

    2007-12-01

    The IFC at Rifle, Colorado was recently funded by the U.S. Department of Energy to address knowledge gaps in 1) geochemical and microbial controls on stimulated U(VI) bioreduction by iron-reducers, 2) U(VI) sorption under Fe-reducing conditions, 3) post-biostimulation U(VI) stability and removal, and 4) rates of natural bioreduction of U(VI). The over-arching goal of the project is to develop a mechanistic understanding of bioreductive and abiotic processes that control uranium mobility targeting new knowledge that can be translated into scientifically defensible flow and reactive transport process models. The Rifle IFC will conduct a focused set of field and lab experiments that use recently developed sciences of proteogenomics and stable isotope probing to track microbial metabolic status during acetate amendment. This information will be linked to changes in Fe redox status and sulfide minerals, with field-scale changes detected by non-invasive hydrogeophysics, including 3-D resistivity tomography. A key goal of the project is to combine abiotic sorption processes under reducing conditions with biotic processes controlling U(VI) reduction. The initial field-scale experiment for the Rifle IFC was conducted during the summer of 2007 with the objectives of collecting simultaneous metagenomic and proteomic samples during acetate amendment and to assess the impact of intentionally decreasing electron donor concentration on the metabolic processes of iron reducers. The 2007 experiment replicated previous field experiments, producing dominance of Geobacter sp. in groundwater within 10 days after the start of acetate amendment. The experiment also confirmed the importance of heterogeneities in controlling the flux of electron donor and the impact of naturally reduced zones on the duration of Fe reduction.

  3. Results of tests in the MSFC 14 x 14 inch trisonic wind tunnel on a .004 scale model of the Rockwell International Space Shuttle Vehicle 3, (integrated configuration)

    NASA Technical Reports Server (NTRS)

    Allen, E. C.; Hamiliton, T.

    1973-01-01

    Experimental aerodynamic investigations were conducted during mid-July, 1973 on a .004 scale model of the Rockwell International integrated configuration Space Shuttle Vehicle 3. The purpose of the tests was three fold: (1) to determine the static stability characteristics of the integrated vehicle, utilizing the Vehicle 3 orbiter configuration; (2) to determine the effect of interstage structure and tank external fuel lines on the integrated vehicle aerodynamic characteristics; (3) to determine the effects of the aft interstage structure on orbiter aerodynamic loads. Data were recorded on the integrated vehicle (test no. 579) at angles of attack and sideslip ranging from -10 deg to 10 deg over a Mach number schedule from 0.6 to 4.96. Data were obtained on the orbiter alone in the presence of the external tank with SRB attached (test no. 580) at angles of attack from -10 deg to 10 deg over a Mach number range from .6 to 1.96. Plotted data are presented in the body axis system.

  4. Disinfection of tertiary wastewater effluent prior to river discharge using peracetic acid; treatment efficiency and results on by-products formed in full scale tests.

    PubMed

    Pedersen, Per Overgaard; Brodersen, Erling; Cecil, David

    2013-01-01

    This is an investigation of chemical disinfection, with peracetic acid (PAA), in a tertiary sand filter at a full scale activated sludge plant with nitrification/denitrification and P-removal. The reduction efficiency of Escherichia coli and intestinal enterococci in the sand filter is reported. E. coli log reductions of between 0.4 and 2.2 were found with contact times from 6 to 37 min and with dosing from 0 to 4.8 mg L(-1). The average log reduction was 1.3. The decomposition products, bromophenols, chlorophenols and formaldehyde and residual H2O2 were measured before and after the sand filter. The residual H2O2 concentration in the effluent was critical at short contact times and high dosages of PAA due to the discharge limit of 25 μg L(-1). The other three products could not be detected at 0.1 μg L(-1) levels. The chemical cost of PAA dosing is estimated to be 0.039 US$ m(-3) treated wastewater. PMID:24185070

  5. Results of tests using a 0.0125-scale model (70-QT) of the space shuttle vehicle orbiter in the AEDC VKF tunnel B (IA22), volume 2

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.

    1977-01-01

    Tabulated data of an experimental investigation are presented which was conducted in the AEDC/VKF Tunnel B to obtain interaction effects of RCS thruster jet plumes on SSV aerodynamics during staging to simulate RTLS abort. Interaction effects of the orbiter RCS thruster jet plumes on the orbiter and ET aerodynamics were investigated. RCS thruster jet plumes were simulated using both air and a 15 percent argon 85 percent helium gas mixture. The ET angle of attack range was -40 to +25 deg at sideslip angles of 0, 3, and 6 degrees. Orbiter angle of attack was varied from -15 to +10 degrees at sideslip angles of 0 and 3 deg. External tank full scale separation distances simulated were 0 to 1400 in. axially; 0 to 54 in. laterally; and a range of -100 to 1000 in. vertically. Data were also obtained on the ET in the interference-free flow field. Quiescent (no tunnel flow) thruster plume interaction data were obtained on the orbiter and orbiter-ET combination. Tests were conducted at Mach number 6 and a Reynolds number of 0.86 million per foot.

  6. A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage.

    PubMed

    Holtman, Kevin M; Bozzi, David V; Franqui-Villanueva, Diana; Offeman, Richard D; Orts, William J

    2016-05-01

    A pilot-scale (1800 kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organic content can be recovered at nearly 90% efficiency and the trommel rejects are also much easier to sort for recovery. This study provides the evaluation of autoclave operation, including mass and energy balances for the purpose of integration into organic diversion systems. Several methods of cooking municipal solid waste were explored from indirect oil heating only, a combination of oil and direct steam during the same cooking cycle, and steam only. Gross energy requirements averaged 1290 kJ kg(-1) material in vessel, including the weight of free water and steam added during heating. On average, steam recovery can recoup 43% of the water added and 30% of the energy, supplying on average 40% of steam requirements for the next cook. Steam recycle from one vessel to the next can reduce gross energy requirements to an average of 790 kJ kg(-1). PMID:26987737

  7. One-year clinical results of Er,Cr:YSGG laser application in addition to scaling and root planing in patients with early to moderate periodontitis.

    PubMed

    Kelbauskiene, Solveiga; Baseviciene, Nomeda; Goharkhay, Kawe; Moritz, Andreas; Machiulskiene, Vita

    2011-07-01

    In 30 patients with periodontitis, a total of 278 teeth exhibiting bleeding on probing, subgingival calculus, and a probing depth between 3-6 mm were examined. For each participant, two treatment types were alternatively applied on the contralateral quadrants: scaling and root planing (SRP) as control, and SRP followed by Er,Cr:YSGG laser application (SRP+laser), as a test method. Five clinical parameters: plaque level, bleeding on probing, probing depth, gingival recession and clinical attachment level were examined at baseline and at 2, 3, 6, 12 months after treatment. Of the total of 1,668 sites examined in all patients, 1,088 sites were found with a probing depth of 3-6 mm. In these sites, differences in clinical parameters between SRP and SRP+laser-treated quadrants were analyzed, assuming the level of p < 0.05 as significant. After 2 months from baseline, the mean probing depth reduction and the clinical attachment level gain were significantly greater in SRP+laser than in SRP quadrants, and remained so throughout the study (p < 0.001). A marked reduction of the bleeding scores occurred in all examined sites, irrespective of the treatment method. However, after 12 months, significantly less teeth exhibited bleeding on probing in SRP+laser quadrants than in SRP quadrants (p < 0.001). The mean plaque and gingival recession levels did not differ between the SRP and SRP+laser quadrants neither before nor after the treatment. The periodontal procedures either using Er,Cr:YSGG laser after SRP or SRP alone, lead to significant improvements in all clinical parameters investigated. However, laser application, as an adjunct to SRP, appeared to be more advantageous. PMID:20549280

  8. The Geographic Distribution of Loa loa in Africa: Results of Large-Scale Implementation of the Rapid Assessment Procedure for Loiasis (RAPLOA)

    PubMed Central

    Zouré, Honorat Gustave Marie; Wanji, Samuel; Noma, Mounkaïla; Amazigo, Uche Veronica; Diggle, Peter J.; Tekle, Afework Hailemariam; Remme, Jan H. F.

    2011-01-01

    Background Loiasis is a major obstacle to ivermectin treatment for onchocerciasis control and lymphatic filariasis elimination in central Africa. In communities with a high level of loiasis endemicity, there is a significant risk of severe adverse reactions to ivermectin treatment. Information on the geographic distribution of loiasis in Africa is urgently needed but available information is limited. The African Programme for Onchocerciasis Control (APOC) undertook large scale mapping of loiasis in 11 potentially endemic countries using a rapid assessment procedure for loiasis (RAPLOA) that uses a simple questionnaire on the history of eye worm. Methodology/Principal Findings RAPLOA surveys were done in a spatial sample of 4798 villages covering an area of 2500×3000 km centred on the heartland of loiasis in Africa. The surveys showed high risk levels of loiasis in 10 countries where an estimated 14.4 million people live in high risk areas. There was a strong spatial correlation among RAPLOA data, and kriging was used to produce spatially smoothed contour maps of the interpolated prevalence of eye worm and the predictive probability that the prevalence exceeds 40%. Conclusion/Significance The contour map of eye worm prevalence provides the first global map of loiasis based on actual survey data. It shows a clear distribution with two zones of hyper endemicity, large areas that are free of loiasis and several borderline or intermediate zones. The surveys detected several previously unknown hyperendemic foci, clarified the distribution of loiasis in the Central African Republic and large parts of the Republic of Congo and the Democratic Republic of Congo for which hardly any information was available, and confirmed known loiasis foci. The new maps of the prevalence of eye worm and the probability that the prevalence exceeds the risk threshold of 40% provide critical information for ivermectin treatment programs among millions of people in Africa. PMID:21738809

  9. Factor structure and sex differences on the Wechsler Preschool and Primary Scale of Intelligence in China, Japan and United States

    PubMed Central

    Liu, Jianghong; Lynn, Richard

    2011-01-01

    This study presents data on the factor structure of the Wechsler Preschool and Primary Scale of Intelligence (WPPSI) and sex and cultural differences in WPPSI test scores among 5- and 6-year-olds from China, Japan, and the United States. Results show the presence of a verbal and nonverbal factor structure across all three countries. Sex differences on the 10 subtests were generally consistent, with a male advantage on a subtest of spatial abilities (Mazes). Males in the Chinese sample obtained significantly higher Full Scale IQ scores than females and had lower variability in their test scores. These observations were not present in the Japan and United States samples. Mean Full Scale IQ score in the Chinese sample was 104.1, representing a 4-point increase from 1988 to 2004. PMID:21686316

  10. Multi-Scale Brightness Temperatures Over Snow Covered Northern Boreal and Tundra Environments: A Comparison of Results From Canada and Finland

    NASA Astrophysics Data System (ADS)

    Derksen, C.; Lemmetyinen, J.; Pulliainen, J.; Strapp, W.; Walker, A.; Hallikainen, M.

    2006-12-01

    The winter season land cover in Finland and large portions of northern Canada are very similar: a latitudinal evolution from closed canopy forest to open canopy forest to open tundra, all with a persistent snow cover. It is similarly important to both nations to retrieve timely and spatially continuous information on snow water equivalent (SWE) for issues such as flood forecasting and reservoir management for hydropower generation. In both countries, satellite passive microwave data are utilized to provide operational information on snow depth and SWE throughout the snow cover season. Airborne passive microwave surveys conducted independently across Finland and western Canada have provided the opportunity to assess the level of similarity in snowpack physical properties and brightness temperature response in these two countries. In Canada, flights occurred across the Northwest Territories (April 2005) and northern Manitoba (March 2006). Environment Canada radiometers (6.9, 19, 37, and 89 GHz) were mounted on the National Research Council Twin Otter aircraft. Long transect flight lines were flown from southern to northern Finland in March 2005 and 2006, with the Helsinki University of Technology Radiometer system (HUTRAD; 6.8, 10.7, 18.7, 23.8, 36.5, 94 GHz) mounted on a SC-7 Skyvan aircraft. Detailed surface snow cover measurements (SWE, depth, density, stratigraphy, grain size) were acquired coincidentally to all flights in both countries. A primary objective of these campaigns was to determine the influence of sub-satellite scale heterogeneity on brightness temperatures. Because comparable forest inventory datasets were not available in both countries, forest transmissivity estimates were produced from MODIS imagery in order to examine vegetation effects. A reduction in 37V-19V brightness temperature difference with decreased forest transmissivity was consistent in both datasets, and clearly illustrated the impact of forest vegetation density on brightness

  11. Planktic Foraminiferal Response to the "Latest Danian Event" (62.15 Ma) on an almost Global Scale - results from Shatsky Rise, Walvis Ridge and Newfoundland

    NASA Astrophysics Data System (ADS)

    Jehle, S.; Bornemann, A.; Deprez, A.; Speijer, R. P.

    2015-12-01

    The marine ecosystem of the Paleocene was disturbed by several transient warming events. One of these is the Latest Danian Event (LDE aka "Top C27n Event"). In deep-sea records the LDE is usually characterized by two distinctive XRF Fe peaks, paralleled by a ~0.7 ‰ negative δ13C excursion (prev. publ.). Here we present new stable isotope and faunal datasets from planktic foraminifera representing three ocean basins: The Pacific is covered by ODP Site 1210, the South Atlantic by ODP Site 1262 and the North Atlantic by IODP Site U1407. We compare the generated datasets in aspects of biotic response (planktic foraminifera), carbonate preservation as well as δ18O and δ13C signals of surface, subsurface and benthic taxa covering a time span of 900 kyr around the event to figure out to what extent the LDE influenced oceans and biota. At Site 1210 a drop in planktic and benthic δ18O record suggest a temperature rise of ~2.5°C within 100 ky which is on the same scale as the benthic δ18O shift at 1209 (prev. publ.) suggesting the LDE to be a further potential Paleocene hyperthermal. Multivariate statistics imply distinct faunal changes starting below the LDE. A different assemblage after the event was observed specifically in photosymbiont-bearing taxa including the disappearance of Praemurica spp. and the strong increase of Igorina albeari . Minor dissolution is considered to be present during the LDE according to enhanced test fragmentation and decreased CaCO3 and planktic foraminifera test abundance. A rising δ13C gradient between surface and subsurface dwelling foraminifera suggests sudden increased stratification of the upper water column ~100 ky below the LDE, strongly enhanced during it and less but still high above it. This might include a shallower thermocline and be linked to the development of a deep-chlorophyll maximum. Faunal assemblages of 1262 show a similar development with an overall higher abundance of subsurface dwellers. Multivariate statistisc

  12. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  13. How weight change is modelled in population studies can affect research findings: empirical results from a large-scale cohort study

    PubMed Central

    Paige, E; Korda, R J; Banks, E; Rodgers, B

    2014-01-01

    Objectives To investigate how results of the association between education and weight change vary when weight change is defined and modelled in different ways. Design Longitudinal cohort study. Participants 60 404 men and women participating in the Social, Environmental and Economic Factors (SEEF) subcomponent of the 45 and Up Study—a population-based cohort study of people aged 45 years or older, residing in New South Wales, Australia. Outcome measures The main exposure was self-reported education, categorised into four groups. The outcome was annual weight change, based on change in self-reported weight between the 45 and Up Study baseline questionnaire and SEEF questionnaire (completed an average of 3.3 years later). Weight change was modelled in four different ways: absolute change (kg) modelled as (1) a continuous variable and (2) a categorical variable (loss, maintenance and gain), and relative (%) change modelled as (3) a continuous variable and (4) a categorical variable. Different cut-points for defining weight-change categories were also tested. Results When weight change was measured categorically, people with higher levels of education (compared with no school certificate) were less likely to lose or to gain weight. When weight change was measured as the average of a continuous measure, a null relationship between education and annual weight change was observed. No material differences in the education and weight-change relationship were found when comparing weight change defined as an absolute (kg) versus a relative (%) measure. Results of the logistic regression were sensitive to different cut-points for defining weight-change categories. Conclusions Using average weight change can obscure important directional relationship information and, where possible, categorical outcome measurements should be included in analyses. PMID:24907245

  14. Initial results from flight testing a large, remotely piloted airplane model. [flight tests of remotely controlled scale model of F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Holleman, E. C. (Compiler)

    1974-01-01

    The first four flights of a remotely piloted airplane model showed that a flight envelope can be expanded rapidly and that hazardous flight tests can be conducted safely with good results. The flights also showed that aerodynamic data can be obtained quickly and effectively over a wide range of flight conditions, clear and useful impressions of handling and controllability of configurations can be obtained, and present computer and electronic technology provide the capability to close flight control loops on the ground, thus providing a new method of design and flight test for advanced aircraft.

  15. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests.

    PubMed

    Salinas, N; Malhi, Y; Meir, P; Silman, M; Roman Cuesta, R; Huaman, J; Salinas, D; Huaman, V; Gibaja, A; Mamani, M; Farfan, F

    2011-03-01

    • We present the results from a litter translocation experiment along a 2800-m elevation gradient in Peruvian tropical forests. The understanding of the environmental factors controlling litter decomposition is important in the description of the carbon and nutrient cycles of tropical ecosystems, and in predicting their response to long-term increases in temperature. • Samples of litter from 15 species were transplanted across all five sites in the study, and decomposition was tracked over 448 d. • Species' type had a large influence on the decomposition rate (k), most probably through its influence on leaf quality and morphology. When samples were pooled across species and elevations, soil temperature explained 95% of the variation in the decomposition rate, but no direct relationship was observed with either soil moisture or rainfall. The sensitivity of the decay rate to temperature (κ(T)) varied seven-fold across species, between 0.024 and 0.169 °C⁻¹, with a mean value of 0.118 ± 0.009 °C⁻¹ (SE). This is equivalent to a temperature sensitivity parameter (Q₁₀) for litter decay of 3.06 ± 0.28, higher than that frequently assumed for heterotrophic processes. • Our results suggest that the warming of approx. 0.9 °C experienced in the region in recent decades may have increased decomposition and nutrient mineralization rates by c. 10%. PMID:21077887

  16. Reducing the item number to obtain same-length self-assessment scales: a systematic approach using result of graphical loglinear Rasch modeling.

    PubMed

    Nielsen, Tine; Kreiner, Svend

    2011-01-01

    The Revised Danish Learning Styles Inventory (R-D-LSI) (Nielsen 2005), which is an adaptation of Sternberg-Wagner Thinking Styles Inventory (Sternberg, 1997), comprises 14 subscales, each measuring a separate learning style. Of these 14 subscales, 9 are eight items long and 5 are seven items long. For self-assessment, self-scoring and self-interpretational purposes it is deemed prudent that subscales measuring comparable constructs are of the same item length. Consequently, in order to obtain a self-assessment version of the R-D-LSI with an equal number of items in each subscale, a systematic approach to item reduction based on results of graphical loglinear Rasch modeling (GLLRM) was designed. This approach was then used to reduce the number of items in the subscales of the R-D-LSI which had an item-length of more than seven items, thereby obtaining the Danish Self-Assessment Learning Styles Inventory (D-SA-LSI) comprising 14 subscales each with an item length of seven. The systematic approach to item reduction based on results of GLLRM will be presented and exemplified by its application to the R-D-LSI. PMID:22357154

  17. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  18. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    NASA Astrophysics Data System (ADS)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  19. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones.

    PubMed Central

    Newman, T; de Bruijn, F J; Green, P; Keegstra, K; Kende, H; McIntosh, L; Ohlrogge, J; Raikhel, N; Somerville, S; Thomashow, M

    1994-01-01

    High-throughput automated partial sequencing of anonymous cDNA clones provides a method to survey the repertoire of expressed genes from an organism. Comparison of the coding capacity of these expressed sequence tags (ESTs) with the sequences in the public data bases results in assignment of putative function to a significant proportion of the ESTs. Thus, the more than 13,400 plant ESTs that are currently available provide a new resource that will facilitate progress in many areas of plant biology. These opportunities are illustrated by a description of the results obtained from analysis of 1500 Arabidopsis ESTs from a cDNA library prepared from equal portions of poly(A+) mRNA from etiolated seedlings, roots, leaves, and flowering inflorescences. More than 900 different sequences were represented, 32% of which showed significant nucleotide or deduced amino acid sequences similarity to previously characterized genes or proteins from a wide range of organisms. At least 165 of the clones had significant deduced amino acid sequence homology to proteins or gene products that have not been previously characterized from higher plants. A summary of methods for accessing the information and materials generated by the Arabidopsis cDNA sequencing project is provided. PMID:7846151

  20. Large-Scale Air Mass Characteristics Observed Over the Remote Tropical Pacific Ocean During March-April 1999: Results from PEM-Tropics B Field Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Grant, William B.; Ismail, Syed; Ferrare, Richard A.; Kooi, Susan A.; Brackett, Vincent G.; Clayton, Marian B.; Avery, Melody A.

    2001-01-01

    Eighteen long-range flights over the Pacific Ocean between 38 S to 20 N and 166 E to 90 W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The

  1. Direct liquefaction of biomass: Results from operation of continuous bench scale unit in liquefaction of water slurries of Douglas fir wood

    NASA Astrophysics Data System (ADS)

    Schaleger, L. L.; Figueroa, C.; Davis, H. G.

    1982-05-01

    A continuous liquefaction unit (CLU) is discussed. The operation was single pass, feeding water slurries of prehydrolyzed Douglas fir wood (LBL process). Significant differences from results with the oil slurry, high oil, and water recycle process (PERC process) were found. The LBL process, at practicable temperatures and residence times, makes somewhat less wood oil and considerably more water-soluble product than does PERC. Consumption of carbon monoxide in LBL, other than by water gas shift reaction, is minimal, as opposed to several tenths of a mole per 100 grams of wood in PERC. Replacement of carbon monoxide with hydrogen as reactant gas makes little or no difference in yield distribution or product analysis. Progress in characterizing the oil and water-soluble product, the overall stoichiometry of the LBL and PERC processes, and the role of formate ion are described.

  2. Diffusion of microcystins (cyanobacteria hepatotoxins) from the reservoir of Isahaya Bay, Japan, into the marine and surrounding ecosystems as a result of large-scale drainage.

    PubMed

    Takahashi, Tohru; Umehara, Akira; Tsutsumi, Hiroaki

    2014-12-15

    In the artificial reservoir of the Isahaya reclaimed land, Nagasaki, Japan, algal blooms have become an annual event, dominated primarily by the microcystin (MC) producing cyanobacteria Microcystis aeruginosa. Although the majority of MCs are either degraded by bacteria or washed out to sea, some remain in the sediment of the reservoir and bay throughout the year. As a result, they also accumulate in aquatic organisms (mullet, oyster, etc.) that inhabit the reservoir and surrounding areas, as well as midge flies that spend their larval period in the bottom of the reservoir. Accordingly, MCs also accumulate in the predators of these organisms, allowing the toxin to spread from the hydrosphere to terrestrial ecosystems. The most effective method for resolving this potentially dangerous condition is to introduce seawater into the reservoir by opening the drainage gates at high tide. PMID:25444624

  3. Awareness, treatment, and control of major cardiovascular risk factors in a small-scale Italian community: results of a screening campaign

    PubMed Central

    Omboni, Stefano; Carabelli, Giorgia; Ghirardi, Edoardo; Carugo, Stefano

    2013-01-01

    Introduction Hypertension, hypercholesterolemia, and diabetes are the main causes of cardiovascular diseases in developed countries. However, these conditions are still poorly recognized and treated. Objective This study aimed at estimating the prevalence, awareness, treatment, and control rates of major cardiovascular risk factors in an unselected sample of individuals of a small community located in northern Italy. Methods We screened 344 sequential subjects in this study. Data collection included family and clinical history, anthropometric data, blood pressure, blood glucose, and serum cholesterol values. Individual cardiovascular risk profiles were assessed by risk charts of the Progetto Cuore. Results Based on personal history and/or measured values, 78.2% of subjects had hypercholesterolemia (total cholesterol levels > 190 mg/dL), 61.0% had central obesity (waist circumference ≥ 94 cm for men and ≥80 cm for women), 51.2% had arterial hypertension (blood pressure ≥ 140/90 mmHg), 8.1% had diabetes (blood glucose ≥ 126 mg/dL), 22.7% had impaired fasting glucose (blood glucose 100–125 mg/dL), and 35.5% were overweight (body mass index 25–29 kg/m2). Alcohol drinkers and smokers accounted for 46.2% and 22.4% of subjects, respectively. Awareness of hypertension, hypercholesterolemia, and diabetes was poor, and control of these risk factors, except for diabetes, was even worse. Prevalence of high blood pressure, high serum cholesterol, overweight, and obesity significantly increased with aging. Hypercholesterolemia and obesity were significantly more common in women, while overweight and diabetes in men. In 15.4% of participants, the risk of a major cardiovascular event in the next 10 years was either high or very high. Conclusion In a small community in a wealthy region of Italy, the prevalence of major cardiovascular risk factors is high, while awareness, treatment, and control are poor. Such a result highlights the importance of screening campaigns as

  4. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  5. Scaling: An Items Module

    ERIC Educational Resources Information Center

    Tong, Ye; Kolen, Michael J.

    2010-01-01

    "Scaling" is the process of constructing a score scale that associates numbers or other ordered indicators with the performance of examinees. Scaling typically is conducted to aid users in interpreting test results. This module describes different types of raw scores and scale scores, illustrates how to incorporate various sources of information…

  6. Emotional and behavioural problems amongst Afghan unaccompanied asylum-seeking children: results from a large-scale cross-sectional study.

    PubMed

    Bronstein, Israel; Montgomery, Paul; Ott, Eleanor

    2013-05-01

    Unaccompanied asylum-seeking children (UASC) are considered at high risk for mental health problems, yet few studies focus on single ethnic populations. This study presents results from the largest Afghan UASC mental health survey in the U.K. Specifically, the study aims to estimate the prevalence of emotional and behavioural problems and to investigate the associations of these problems with demographic variables, cumulative traumatic events, and care and migration variables. A census sample of 222 Afghan UASC was interviewed using validated self-report screening measures. Emotional and behavioural problems were screened using the Hopkins Symptoms Checklist 37A (HSCL-37A). Pre-migration stressful life events were screened using the Stressful Life Events Questionnaire. Administrative data on care and asylum were provided by the local authority social services and the UK Border Agency. Approximately one-third (31.4%) scored above cut-offs for emotional and behavioural problems, 34.6% for anxiety and 23.4% for depression. Ordinary least squares regression indicated a significant dose-response relationship between total pre-migration traumatic events and distress as well as between increased time in the country and greater behavioural problems. Compound traumatic events in the pre-migration stages of forced migration have a deleterious association with UASC well-being. Increased time in country suggests a possible peer effect for these children. Consistent with other studies on refugee children, it should be stressed that the majority of UASC scored below suggested cut-offs, thus displaying a marked resilience despite the experience of adverse events. PMID:23229138

  7. Constraints on the Global-scale Chemical Weathering State of Mars From TES Results Based on Spectral Analysis of Chemically Weathered Basalts

    NASA Astrophysics Data System (ADS)

    Michalski, J. R.; Kraft, M. D.; Sharp, T. G.; Christensen, P. R.

    2005-12-01

    On Earth, subaerially exposed basaltic rocks (from arid-to-tropical regions) develop weathering rinds and rock coatings that affect spectroscopic measurements of their natural surfaces. Similarly, basaltic rocks and basaltic soil particles on Mars may have rinds and coatings that are spectroscopically observable. Thermal emission spectroscopy, because it provides information about the composition and structure of silicate and non-silicate minerals and mineraloids, provides a useful perspective on the mineralogy of weathered surfaces; reconciliation of the emission spectral features of weathered surfaces with observations from other datasets is critical to interpretations of thermal emission spectral features of Mars. In this study, we investigate the thermal emission (6-25 μm) and visible/near-infrared (VNIR) (0.4-2.5 μm) spectroscopic features of fresh and weathered surfaces of rock samples from the Columbia River Basalt Group (CRBG). VNIR spectra of weathered rock surfaces are brighter and redder than fresh rock surfaces, but contain no evidence for neoformation of clay minerals within subaerially exposed, weathered surfaces. In contrast, thermal emission spectroscopy suggests an enrichment of clay minerals in weathered surfaces. Also, thermal emission spectroscopy indicates the presence of glass-like materials in many weathered surfaces, which likely correspond to amorphous weathering products present within fractures, as coatings on minerals, or as coatings on the rocks themselves. These results have important implications for interpretation of TES and THEMIS data of Mars, including: 1) glasses and clays detected on Mars from thermal infrared spectra may correspond to poorly crystalline weathering products within chemically weathered rock surfaces, 2) chemically weathered surfaces of basalts may appear oxidized but clay-poor to VNIR datasets, and 3) the differential chemical breakdown of primary phases can affect interpretations of the remaining primary rock

  8. Results of experimental tests in the MSFC 14 x 14 inch trisonic wind tunnel on a .004 scale model space shuttle integrated vehicle 5 (model 77-O, 74-TS) to relieve wing loads during ascent (IA71)

    NASA Technical Reports Server (NTRS)

    Allen, E. C.

    1975-01-01

    Results are presented for the 0.004-scale orbiter, external tank, and solid rocket boosters combined as an integrated vehicle in a trisonic wind tunnel at mach numbers from 0.6 to 2.0. The primary test objective was to determine the effectiveness of several methods in relieving the Orbiter wing bending and torsion loads and moments during launch. Effects of several midwing spoilers, termed flipper doors, and Orbiter/external tank incidence were investigated. Photographs are included.

  9. Development, testing, and demonstration of an optimal fine coal cleaning circuit. Task 5: Evaluation of bench-scale test results and equipment selection for in-plant pilot tests

    SciTech Connect

    1995-12-14

    The overall objective of this research effort is to improve the efficiency of fine coal flotation in preparation plants above that of currently used conventional cells. In addition to evaluating single-stage operation of four selected advanced flotation devices, the project will also evaluate them in two-stage configurations. The project is being implemented in two phases. Phase 1 comprises bench-scale testing of the flotation units, and Phase 2 comprises in-plant, proof-of-concept (POC), pilot-scale testing of selected configurations at the Cyprus Emerald preparation plant. The Task 5 report presents the findings of the Phase 1 bench-scale test results and provides the basis for equipment selection for Phase 2. Four advanced flotation technologies selected for bench-scale testing are: Jameson cell; Outokumpu HG tank cell; packed column; and open column. In addition to testing all four of the cells in single-stage operation, the Jameson and Outokumpu cells were tested as candidate first-stage cells because of their propensity for rapid attachment of coal particles with air bubbles and low capital and operating costs. The column cells were selected as candidate second-stage cells because of their high-efficiency separation of low-ash products from high-ash feed coals. 32 figs., 72 tabs.

  10. Scaling satan.

    PubMed

    Wilson, K M; Huff, J L

    2001-05-01

    The influence on social behavior of beliefs in Satan and the nature of evil has received little empirical study. Elaine Pagels (1995) in her book, The Origin of Satan, argued that Christians' intolerance toward others is due to their belief in an active Satan. In this study, more than 200 college undergraduates completed the Manitoba Prejudice Scale and the Attitudes Toward Homosexuals Scale (B. Altemeyer, 1988), as well as the Belief in an Active Satan Scale, developed by the authors. The Belief in an Active Satan Scale demonstrated good internal consistency and temporal stability. Correlational analyses revealed that for the female participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men and intolerance toward ethnic minorities. For the male participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men but was not significantly related to intolerance toward ethnic minorities. Results of this research showed that it is possible to meaningfully measure belief in an active Satan and that such beliefs may encourage intolerance toward others. PMID:11577971

  11. Nuclear scales

    SciTech Connect

    Friar, J.L.

    1998-12-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  12. Occupational Cohort Time Scales

    PubMed Central

    Roth, H. Daniel

    2015-01-01

    Purpose: This study explores how highly correlated time variables (occupational cohort time scales) contribute to confounding and ambiguity of interpretation. Methods: Occupational cohort time scales were identified and organized through simple equations of three time scales (relational triads) and the connections between these triads (time scale web). The behavior of the time scales was examined when constraints were imposed on variable ranges and interrelationships. Results: Constraints on a time scale in a triad create high correlations between the other two time scales. These correlations combine with the connections between relational triads to produce association paths. High correlation between time scales leads to ambiguity of interpretation. Conclusions: Understanding the properties of occupational cohort time scales, their relational triads, and the time scale web is helpful in understanding the origins of otherwise obscure confounding bias and ambiguity of interpretation. PMID:25647318

  13. Results of phase change paint thermal mapping test OH46 using the 0.006-scale model 90-0 in the NASA LaRC variable density tunnel

    NASA Technical Reports Server (NTRS)

    Cummings, J. W.; Dye, W. H.

    1977-01-01

    Results of a test conducted in the NASA LaRC Mach 8 variable density tunnel to obtain thermal contours on a 0.006 scale model of the configuration 140B Space Shuttle Orbiter are presented using the phase change paint technique. The model was tested at 25 deg, 30 deg, and 35 deg angle of attack at unit Reynolds numbers ranging from 1.0 through 8.0 million per foot. The model was tested with and without a ventral fin mounted on its bottom centerline. Elevon deflections of 0 deg and 10 deg and bodyflap deflections of 0 and 13.75 deg were investigated.

  14. Results of an air data probe investigation utilizing a 0.10 scale orbiter forebody (model 57-0) in the Ames Research Center 14-foot wind tunnel (OA220)

    NASA Technical Reports Server (NTRS)

    Esparza, V.; Thornton, D. E.

    1976-01-01

    Results are presented of a 0.10 scale orbiter forebody test with left and right mounted air data probes (ADP) as well as a flight test probe (nose boom). Left and right ADP data were obtained at Mach numbers of .3, .4, .5, .6, .7, .8, .85, .9, .95, .98, 1.05 and 1.1 through a Reynolds number range of 1.3 to 4.4 million. Nose boom data were obtained at Mach numbers of .3, .4, .5, .6, .7, .9 and .98.

  15. Results of tests of a Rockwell International space shuttle orbiter (-139 configuration) 0.0175-scale model (no. 29-0) in AEDC tunnel F to determine hypersonic heating effects (OH11)

    NASA Technical Reports Server (NTRS)

    Quan, M.

    1975-01-01

    Results from wind tunnel tests to determine hypersonic aerodynamic heating rates on a NASA/Rockwell Space Shuttle Orbiter are reported. The tests were to determine Mach number effects, if any, and to obtain overall heating rate data at high Mach numbers from 10.5 to 16. The model used was a 0.0175-scale model built to Rockwell Orbiter lines VL70-000139. The model identity number is 29-0. These tests, designated OH11, were conducted in the AEDC Tunnel F.

  16. Results of tests using a 0.030-scale model (45-0) of space shuttle vehicle orbiter in the NASA/ARC 12-foot pressure wind tunnel (OA159)

    NASA Technical Reports Server (NTRS)

    Marroquin, J.

    1975-01-01

    An experimental investigation (test OA159) was conducted in the NASA/ARC 12-foot Pressure Wind Tunnel from June 23 through July 8, 1975. The objective was to obtain detailed strut tare and interference effects of the support system used in the NASA/ARC 40 x 80-foot wind tunnel during 0.36-scale orbiter testing (OA100). Six-component force and moment data were obtained through an angle-of-attack range from -9 through +18 degrees with 0 deg angle of sideslip and a sideslip angle range from -9 through +18 degrees at 9 deg angle of attack results are presented.

  17. Civilian PTSD Scales

    ERIC Educational Resources Information Center

    Shapinsky, Alicia C.; Rapport, Lisa J.; Henderson, Melinda J.; Axelrod, Bradley N.

    2005-01-01

    Strong associations between civilian posttraumatic stress disorder (PTSD) scales and measures of general psychological distress suggest that the scales are nonspecific to PTSD. Three common PTSD scales were administered to 122 undergraduates who had experienced an emotionally salient, nontraumatic event: a college examination. Results indicated…

  18. Manual of Scaling Methods

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H. (Technical Monitor); Anderson, David N.

    2004-01-01

    This manual reviews the derivation of the similitude relationships believed to be important to ice accretion and examines ice-accretion data to evaluate their importance. Both size scaling and test-condition scaling methods employing the resulting similarity parameters are described, and experimental icing tests performed to evaluate scaling methods are reviewed with results. The material included applies primarily to unprotected, unswept geometries, but some discussion of how to approach other situations is included as well. The studies given here and scaling methods considered are applicable only to Appendix-C icing conditions. Nearly all of the experimental results presented have been obtained in sea-level tunnels. Recommendations are given regarding which scaling methods to use for both size scaling and test-condition scaling, and icing test results are described to support those recommendations. Facility limitations and size-scaling restrictions are discussed. Finally, appendices summarize the air, water and ice properties used in NASA scaling studies, give expressions for each of the similarity parameters used and provide sample calculations for the size-scaling and test-condition scaling methods advocated.

  19. Radionuclide migration in clayrock host formations for deep geological disposal of radioactive waste: advances in process understanding and up-scaling methods resulting from the EC integrated project `Funmig

    NASA Astrophysics Data System (ADS)

    Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.

    2009-04-01

    migration of most radionuclides in clayrocks, in particular the actinides, is limited by their strong sorption on rock mineral surfaces. Much effort was devoted in Funmig to improving understanding of this process on the clayrocks being studied in the Swiss, Belgian and French radwaste management programs. Specific attention was focused on (i) elucidating the effect of dissolved organic matter on Am(III), Th(IV), Eu(III) sorption on clayrock surfaces and (ii) determining the link between Kd measured on dispersed rock systems and the Kd operant in intact rock volumes, i.e. during diffusion. Regarding the latter question, results indicate that Kd values for ‘dispersed' and ‘intact' materials are quite similar for certain elements (Na, Sr, Cs, Co). On the other hand, Kd values obtained by modeling results of diffusion experiments involving strongly sorbing elements as Cs, Co and Eu were always significantly smaller than those predicted based on sorption data measured in corresponding batch systems. This is an area where additional research is being planned. A major effort was devoted to improving understanding of the effects of small-scale (m to cm) clayrock structure and large-scale (dm to hm) mineralogical composition on radionuclide diffusion-retention. The program focusing on the small-scale produced a method for simulating the results of tracer diffusion in an intact rock based on the actual rock microstructure of the rock sample to be used in the diffusion experiment. This model was used to predict / inverse model the spatial distribution of highly sorbing tracers (Eu, Cu). This overall approach is also being used to understand how changes in mineralogical composition can affect the values of macroscopic diffusion parameters (De, tortuosity, anisiotropy). At a much larger scale, the results of (i) a geostatistical analysis of clayrock mineralogical variability and (ii) measurements of De and Kd dependence on mineralogy for Cs and Cl, were combined to create models

  20. Validity of the Children's Orientation to Book Reading Rating Scale

    ERIC Educational Resources Information Center

    Kaderavek, Joan N.; Guo, Ying; Justice, Laura M.

    2014-01-01

    The present study investigates the validity of a 4-point rating scale used to measure the level of preschool children's orientation to literacy during shared book reading. Validity was explored by (a) comparing the children's level of literacy orientation as measured with the "Children's Orientation to Book Reading Rating…

  1. Results of wind tunnel tests at Mach 5 on the .004 scale model 2A configuration space shuttle to determine proximity effects and orbiter control effectiveness during orbiter/external tank abort separation (IAG)

    NASA Technical Reports Server (NTRS)

    Garton, W. P.

    1974-01-01

    Results from tests in the NASA/MSFC Trisonic Wind Tunnel on 0.004-Scale Orbiter and External Tank Force Models in Close Proximity (RTLS Abort Separation Conditions) are presented. The primary test objectives were to obtain data concerning proximity effects on the aerodynamic forces and moments experienced by Vehicle 2A Configuration Shuttle Orbiter and External Tank during an abort separation (Return to Launch Site) at a Mach number of 5. Additionally, data on orbiter control effectiveness during such an abort was obtained. Proximity effects were investigated for relative angles of incidence from minus 5 deg to plus 10 deg of the orbiter FRL with respect to the external tank centerline over a range of vertical and longitudinal displacements from the mated position to 2.5 tank diameters below and 3 tank diameters aft of the mated position.

  2. Results of phase change paint heat transfer tests utilizing 0.040 scale 50% forebody models (No. 82-0) of the Rockwell International space shuttle orbiter in AEDC VKF hypersonic tunnel B (test OH54A)

    NASA Technical Reports Server (NTRS)

    Dye, W. H.

    1976-01-01

    Results of aerodynamic heating tests conducted in October 1974 on a space shuttle orbiter model using the phase change paint technique are presented. The model was a 0.040 scale representation of the forward 50 percent of the orbiter. Surface roughness effects on boundary layer transition were investigated. Roughness was simulated by using steel balls varying in diameter from 0 (no balls) to 0.039 inch with 0.040 inch wide by 0.080 inch deep gaps. A nominal Mach number of 8 was tested with Reynolds number varying from 0.75 through 3.5 million per foot. Angle of attack was varied from 20 deg to 40 deg.

  3. Results of an investigation of the acoustic and vibrational environment of a full scale space shuttle orbiter structural test panel with simulated TPS in the Ames unitary plan wind tunnel, model 81-0, test OS8A and B

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.

    1977-01-01

    Results of tests OS8A and B and pertinent test and model information are presented. The test was conducted in two parts. Test OS8A was performed in the NASA/ARC unitary 11-foot section and OS8B was conducted in the NASA/ARC unitary 9 x 7 tunnel. Test objectives were to investigate thermal protection system (TPS) tile sensitivity to extreme pressure gradients and vibration and to define the TPS aerodynamic environment. The model utilized for OS8 was a full-scale representation of a portion of the space shuttle orbiter lower wing carry-through structure forward of the aft tank strut and propellant lines. Thermal protection tiles were simulated on the model. The model was instrumented with static pressure orifices, accelerometers, and dynamic pressure transducers (Kulites). A total rake was utilized to obtain boundary layer surveys.

  4. Successful Up-Scaled Population Interventions to Reduce Risk Factors for Non-Communicable Disease in Adults: Results from the International Community Interventions for Health (CIH) Project in China, India and Mexico

    PubMed Central

    Dyson, Pamela A.; Anthony, Denis; Fenton, Brenda; Stevens, Denise E.; Champagne, Beatriz; Li, Li-Ming; Lv, Jun; Ramírez Hernández, Jorge; Thankappan, K. R.; Matthews, David R.

    2015-01-01

    Background Non-communicable disease (NCD) is increasing rapidly in low and middle-income countries (LMIC), and is associated with tobacco use, unhealthy diet and physical inactivity. There is little evidence for up-scaled interventions at the population level to reduce risk in LMIC. Methods The Community Interventions for Health (CIH) program was a population-scale community intervention study with comparator population group undertaken in communities in China, India, and Mexico, each with populations between 150,000-250,000. Culturally appropriate interventions were delivered over 18-24 months. Two independent cross-sectional surveys of a stratified sample of adults aged 18-64 years were conducted at baseline and follow-up. Results A total of 6,194 adults completed surveys at baseline, and 6,022 at follow-up. The proportion meeting physical activity recommendations decreased significantly in the control group (C) (44.1 to 30.2%), but not in the intervention group (I) (38.0 to 36.1%), p<0.001. Those eating ≥5 portions of fruit and vegetables daily decreased significantly in C (19.2 to 17.2%), but did not change in I (20.0 to 19.6%,), p=0.013. The proportion adding salt to food was unchanged in C (24.9 to 25.3%) and decreased in I (25.9 to 19.6%), p<0.001. Prevalence of obesity increased in C (8.3 to 11.2%), with no change in I (8.6 to 9.7%,) p=0.092. Concerning tobacco, for men the difference-in-difference analysis showed that the reduction in use was significantly greater in I compared to C (p=0.014) Conclusions Up-scaling known health promoting interventions designed to reduce the incidence of NCD in whole communities in LMIC is feasible, and has measurable beneficial outcomes on risk factors for NCD, namely tobacco use, diet, and physical inactivity. PMID:25875825

  5. Beyond the Floor Effect on the Wechsler Intelligence Scale for Children-4th Ed. (WISC-IV): Calculating IQ and Indexes of Subjects Presenting a Floored Pattern of Results

    ERIC Educational Resources Information Center

    Orsini, A.; Pezzuti, L.; Hulbert, S.

    2015-01-01

    Background: It is now widely known that children with severe intellectual disability show a 'floor effect' on the Wechsler scales. This effect emerges because the practice of transforming raw scores into scaled scores eliminates any variability present in participants with low intellectual ability and because intelligence quotient (IQ) scores are…

  6. Heat-transfer test results for a .0275-scale space shuttle external tank with a 10 deg/40 deg double cone-ogive nose in the NASA/AMES 3.5-foot hypersonic wind tunnel (FH14), volume 2

    NASA Technical Reports Server (NTRS)

    Carroll, H. R.

    1977-01-01

    A .0275 scale forebody model of the new baseline configuration of the space shuttle external tank vent cap configuration was tested to determine the flow field due to the double cone configuration. The tests were conducted in a 3.5 foot hypersonic wind tunnel at alpha = -5 deg, -4.59 deg, 0 deg, 5 deg, and 10 deg; beta = 0 deg, -3 deg, -5.51 deg, -6 deg, -9 deg, and +6 deg; nominal freestream Reynolds numbers per foot of 1.5 x 1 million, 3.0 x 1 million, and 5.0 x 1 million; and a nominal Mach number of 5. Separation and reattached flow from thermocouple data, shadowgraphs, and oil flows indicate that separation begins about 80% from the tip of the 10 deg cone, then reattaches on the vent cap and produces fully turbulent flow over most of the model forebody. The hardware disturbs the flow over a much larger area than present TPS application has assumed. A correction to the flow disturbance was experimentally suggested from the results of an additional test run.

  7. Results of an investigation of hypersonic viscous interaction effects on and 0.01 scale Space Shuttle Orbiter 51-0 model in the AEDC-VKF Hypervelocity Wind Tunnel (0A81)

    NASA Technical Reports Server (NTRS)

    Elder, D. J.

    1975-01-01

    The major hypersonic aerodynamic results obtained experimentally from the 0.010-scale (51-0) 140A/B orbiter vehicle are presented. The test was conducted over an angle-of-attack range from 20 to 35 degrees for nominal Mach numbers of 16 and 20. The Mach 16 data were obtained at Reynolds numbers, based on model length, of nominally 0.54 x 106 and 1.18 x 106. The Mach number 20 data were obtained at nominal Reynolds numbers of 0.08 x 106 and 0.27 x 106. Various elevon deflections and body flap deflections were tested for determination of control effectiveness. The test objectives were: (1) verify December 1973 aerodynamic Design Data Book estimates for Mach number greater than 10; (2) determine configuration forward and aft trim boundaries and control characteristics; (3) determine high Mach number - low Reynolds number effects; (4) determine if positive control surface flow separation is present and magnitude of separation effects.

  8. Preliminary Results of an Investigation by the Wing-Flow Method of the Longitudinal Stability Characteristics of a 1/50-Scale Semispan Model of the McDonnell XP-88 Airplane

    NASA Technical Reports Server (NTRS)

    Crane, Harold L.

    1948-01-01

    This paper presents the results of measurements of longitudinal stability of a 1/50-scale model of the XP-88 airplane by the wing-flow method. Lift, rolling-moment, hinge-moment, and pitching-moment characteristics as well as the downwash at the tail were measured over a Mach number range from approximately 0.5 to 1.05 at Reynolds numbers below 1,000,000. No measurements of drag were obtained. No abrupt changes due to Mach number were noted in any of the parameters measured. The data indicated that the wing was subject to early tip stalling; that the tail effectiveness decreased gradually with increasing Mach number up to M = 0.9, but increased again at higher Mach numbers; that the variation of downwash with angle of attack did not change appreciably with Mach number except between 0.95 and 1.0 where d(epsilon)/d(alpha), decreased from 0.46 to 0.32; that at zero lift with a stabilizer setting of -1.5 deg there was a gradually increasing nosing-up tendency with increasing Mach number; and that the control-fixed stability in maneuvers at constant speed gradually increased with increasing Mach number.

  9. Maslowian Scale.

    ERIC Educational Resources Information Center

    Falk, C.; And Others

    The development of the Maslowian Scale, a method of revealing a picture of one's needs and concerns based on Abraham Maslow's levels of self-actualization, is described. This paper also explains how the scale is supported by the theories of L. Kohlberg, C. Rogers, and T. Rusk. After a literature search, a list of statements was generated…

  10. Activity Scale.

    ERIC Educational Resources Information Center

    Kerpelman, Larry C.; Weiner, Michael J.

    This twenty-four item scale assesses students' actual and desired political-social activism in terms of physical participation, communication activities, and information-gathering activities. About ten minutes are required to complete the instrument. The scale is divided into two subscales. The first twelve items (ACT-A) question respondents on…

  11. Scale-Up of Palladium Powder Production Process for Use in the Tritium Facility at Westinghouse, Savannah River, SC/Summary of FY99-FY01 Results for the Preparation of Palladium Using the Sandia/LANL Process

    SciTech Connect

    David P. Baldwin; Daniel S. Zamzow; R. Dennis Vigil; Jesse T. Pikturna

    2001-08-24

    Palladium used at Savannah River (SR) for process tritium storage is currently obtained from a commercial source. In order to understand the processes involved in preparing this material, SR is supporting investigations into the chemical reactions used to synthesize this material. The material specifications are shown in Table 1. An improved understanding of the chemical processes should help to guarantee a continued reliable source of Pd in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and Ames Laboratory (AL) was initiated. During FY98, the process for producing Pd powder developed in 1986 by Dan Grove of Mound Applied Technologies, USDOE (the Mound muddy water process) was studied to understand the processing conditions that lead to changes in morphology in the final product. During FY99 and FY00, the process for producing Pd powder that has been used previously at Sandia and Los Alamos National Laboratories (the Sandia/LANL process) was studied to understand the processing conditions that lead to changes in the morphology of the final Pd product. During FY01, scale-up of the process to batch sizes greater than 600 grams of Pd using a 20-gallon Pfaudler reactor was conducted by the Iowa State University (ISU) Chemical Engineering Department. This report summarizes the results of FY99-FY01 Pd processing work done at AL and ISU using the Sandia/LANL process. In the Sandia/LANL process, Pd is dissolved in a mixture of nitric and hydrochloric acids. A number of chemical processing steps are performed to yield an intermediate species, diamminedichloropalladium (Pd(NH{sub 3}){sub 2}Cl{sub 2}, or DADC-Pd), which is isolated. In the final step of the process, the Pd(NH{sub 3}){sub 2}Cl{sub 2} intermediate is subsequently redissolved, and Pd is precipitated by the addition of a reducing agent (RA) mixture of formic acid and sodium formate. It is at this point that the morphology of the Pd product is

  12. Trends in the Global Net Land Sink and Their Sensitivity to Environmental Forcing Factors: Results From the Multi-Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP)

    NASA Astrophysics Data System (ADS)

    Huntzinger, D. N.; Schwalm, C. R.; Michalak, A. M.; Wei, Y.; Cook, R. B.; Schaefer, K. M.; Jacobson, A. R.; Arain, M. A.; Ciais, P.; Fisher, J. B.; Hayes, D. J.; Huang, M.; Huang, S.; Ito, A.; Jain, A.; Lei, H.; Lu, C.; Maignan, F.; Mao, J.; Parazoo, N.; Peng, S.; Peng, C.; Poulter, B.; Ricciuto, D. M.; Shi, X.; Tian, H.; Zeng, N.; Zhao, F.; Zhu, Q.; Wang, W.

    2014-12-01

    Predictions of future climate depend strongly on trends in net uptake or release of carbon by the land biosphere. However, model estimates of the strength of the net global land sink during the Industrial Era vary widely. Here we evaluate results from an ensemble of uncoupled models taken from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) and forced by the same input fields. When compared to estimates inferred from atmospheric CO2 observations (i.e., fossil fuel emission + net land use change - atmospheric increase - ocean uptake), MsTMIP models estimate, on average, a stronger global net land uptake of carbon (e.g., -0.3 to 8.7 Pg C/yr from 2000 to 2010, where a negative flux represents a net release to the atmosphere). Some models consistently show the land surface as a net source of carbon to the atmosphere, which is inconsistent with the other terms in the global anthropogenic CO2 budget. In addition, regional differences in land carbon exchange are compared across models and to estimates derived from atmospheric inversions and inventory based approaches. Using the semi-factorial simulations of the MsTMIP activity, we examine how model estimates of the cumulative global net land sink diverge over the period 1900 to 2010, and the degree to which model sensitivity to forcing factors contribute to this divergence. We link differences in estimates of the cumulative land sink back to each model's sensitivity to climate variability, CO2 fertilization, nitrogen limitation, and net land-use change. Throughout the 110-year time period, the strength of carbon uptake in most models appears to be strongly sensitive to atmospheric CO2 concentrations (CO2 fertilization effect). The strength of this relationship, however, varies across models depending on model structure (e.g., stronger CO2 fertilization effect in models without an interactive nitrogen cycle with N limitations) and across decades (e.g., strong sensitivity of net flux to

  13. Results of tests in the AEDC VKF Tunnel B using the phase change paint technique on 0.04 scale 50 percent forebody models (82-0) of the Rockwell space shuttle orbiter (OH50A)

    NASA Technical Reports Server (NTRS)

    Quan, M.

    1976-01-01

    Model information and data from wind tunnel tests conducted on 0.04 scale 50 percent forebody models of the Space Shuttle Orbiter were presented. These tests were conducted using the phase change paint technique to determine aerodynamic heating rates due to various proturberances and recessions. Angles of attack from 20 deg through 45 deg were investigated at Mach 8.

  14. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 3

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat-transfer data for the 0.0175-scale space shuttle vehicle 3 are presented, and interference heating effects were investigated by a model build-up technique of the orbiter. The test program was conducted at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1,500,000 and 5,000,000.

  15. Scaling Rules!

    NASA Astrophysics Data System (ADS)

    Malkinson, Dan; Wittenberg, Lea

    2015-04-01

    Scaling is a fundamental issue in any spatially or temporally hierarchical system. Defining domains and identifying the boundaries of the hierarchical levels may be a challenging task. Hierarchical systems may be broadly classified to two categories: compartmental and continuous ones. Examples of compartmental systems include: governments, companies, computerized networks, biological taxonomy and others. In such systems the compartments, and hence the various levels and their constituents are easily delineated. In contrast, in continuous systems, such as geomorphological, ecological or climatological ones, detecting the boundaries of the various levels may be difficult. We propose that in continuous hierarchical systems a transition from one functional scale to another is associated with increased system variance. Crossing from a domain of one scale to the domain of another is associated with a transition or substitution of the dominant drivers operating in the system. Accordingly we suggest that crossing this boundary is characterized by increased variance, or a "variance leap", which stabilizes, until crossing to the next domain or hierarchy level. To assess this we compiled sediment yield data from studies conducted at various spatial scales and from different environments. The studies were partitioned to ones conducted in undisturbed environments, and those conducted in disturbed environments, specifically by wildfires. The studies were conducted in plots as small as 1 m2, and watersheds larger than 555000 ha. Regressing sediment yield against plot size, and incrementally calculating the variance in the systems, enabled us to detect domains where variance values were exceedingly high. We propose that at these domains scale-crossing occurs, and the systems transition from one hierarchical level to another. Moreover, the degree of the "variance leaps" characterizes the degree of connectivity among the scales.

  16. New scale factor measure

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael

    2012-07-01

    The computation of probabilities in an eternally inflating universe requires a regulator or “measure.” The scale factor time measure truncates the Universe when a congruence of timelike geodesics has expanded by a fixed volume factor. This definition breaks down if the generating congruence is contracting—a serious limitation that excludes from consideration gravitationally bound regions such as our own. Here we propose a closely related regulator which is well defined in the entire spacetime. The new scale factor cutoff restricts to events with a scale factor below a given value. Since the scale factor vanishes at caustics and crunches, this cutoff always includes an infinite number of disconnected future regions. We show that this does not lead to divergences. The resulting measure combines desirable features of the old scale factor cutoff and of the light-cone time cutoff, while eliminating some of the disadvantages of each.

  17. The inflationary energy scale

    NASA Astrophysics Data System (ADS)

    Liddle, Andrew R.

    1994-01-01

    The energy scale of inflation is of much interest, as it suggests the scale of grand unified physics, governs whether cosmological events such as topological defect formation can occur after inflation, and also determines the amplitude of gravitational waves which may be detectable using interferometers. The COBE results are used to limit the energy scale of inflation at the time large scale perturbations were imprinted. An exact dynamical treatment based on the Hamilton-Jacobi equations is then used to translate this into limits on the energy scale at the end of inflation. General constraints are given, and then tighter constraints based on physically motivated assumptions regarding the allowed forms of density perturbation and gravitational wave spectra. These are also compared with the values of familiar models.

  18. Results of an experimental investigation to determine separation characteristics for the Orbiter/747 using a 0.0125-scale model (48-0 AX1318I-1 747) in the Ames Research Center 14-foot wind tunnel (CA23B)

    NASA Technical Reports Server (NTRS)

    Esparza, V.

    1976-01-01

    Aerodynamic separation data obtained from a wind tunnel test of an 0.0125-scale SSV Orbiter model of a VC70-000002 Configuration and a 0.0125-scale 747 model was presented. Separation data was obtained at a Mach number of 0.6 and three incidence angles of 4, 6, and 8 degrees. The orbiter angle of attack was varied from 0 to 14 degrees. Longitudinal, lateral and normal separation increments were obtained for fixed 747 angles of attack of 0, 2, and 4 degrees while varying the orbiter angle of attack. Control surface settings on the 747 carrier included rudder deflections of 0 and 10 degrees and horizontal stabilizer deflections of -1 and +5 degrees.

  19. Results of test IA137 in the NASA/ARC 14 foot transonic wind tunnel of the 0.07 scale external tank forebody (model 68-T) to determine auxiliary aerodynamic data system feasibility

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1976-01-01

    Tests were conducted in a 14 foot transonic wind tunnel to examine the feasibility of the auxiliary aerodynamic data system (AADS) for determining angles of attack and sideslip during boost flight. The model used was a 0.07 scale replica of the external tank forebody consisting of the nose portion and a 60 inch (full scale) cylindrical section of the ogive cylinder tangency point. The model terminated in a blunt base with a 320.0 inch diameter at external tank (ET) station 1120.37. Pressure data were obtained from five pressure orifices (one total and four statics) on the nose probe, and sixteen surface static pressure orifices along the ET forebody.

  20. Results of wind tunnel RCS interaction tests on a 0.010-scale space shuttle orbiter model (51-0) in the Calspan Corporation 48-inch hypersonic shock tunnel (test 0A93)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.; Rogers, C. E.

    1976-01-01

    A hypersonic shock tunnel test on a 0.010 scale SSV orbital configuration was performed to determine the effects of RCS jet/flow field interactions on SSV aerodynamic stability and control characteristics at various hypersonic Mach and Reynolds numbers. Flow field interaction data were obtained using pitch and roll jets. In addition, direct impingement data were obtained at a Mach number of zero with the test section pumped down to below 10 microns of mercury pressure.

  1. Results of investigations with an 0.015-scale model (49-0) of the Rockwell International space shuttle vehicle 140A/B configuration with modified OMS pods and elevons in the AEDC VKF tunnel B (0A79)

    NASA Technical Reports Server (NTRS)

    Esparza, V.; Lindsay, A. I.

    1975-01-01

    Aerodynamic data obtained from wind tunnel tests of an 0.015-scale space shuttle vehicle Orbiter model of a 140A/B configuration with modified orbital manuevering system pods and elevons are documented. Force data was obtained at various control surface settings and Reynolds numbers in the angle of attack range of 15 deg to 45 deg and at angles of sideslip of -5 deg to +5 deg. Control surface variables included elevon, rudder, speed brake, and body flap configurations.

  2. Results of a flow field survey conducted using the 0.0175 scale orbiter model 29-0 in AEDC VKF tunnel B during test OH52. [atmospheric entry simulation

    NASA Technical Reports Server (NTRS)

    Herrera, B. J.

    1976-01-01

    Static pressure data and flow field surveys of the boundary layer and shock layer on the lower surface of a 0.0175 scale model of the space shuttle orbiter were obtained in a hypersonic wind tunnel. The tests were conducted at Mach number 7.9 and Reynolds number based on the model length of 1.3 x 1 million to simulate atmospheric entry. Twenty-six stations were surveyed at 30 and 35 degree angles of attack.

  3. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5 foot hypersonic wind tunnel (IH3), volume 1

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat transfer data for the 0.0175-scale space shuttle vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-foot hypersonic wind tunnel at Mach 5.3 for nominal free stream Reynolds number per foot values of 1.5, and 5.0 million.

  4. Salzburger State Reactance Scale (SSR Scale)

    PubMed Central

    2015-01-01

    Abstract. This paper describes the construction and empirical evaluation of an instrument for measuring state reactance, the Salzburger State Reactance (SSR) Scale. The results of a confirmatory factor analysis supported a hypothesized three-factor structure: experience of reactance, aggressive behavioral intentions, and negative attitudes. Correlations with divergent and convergent measures support the validity of this structure. The SSR Subscales were strongly related to the other state reactance measures. Moreover, the SSR Subscales showed modest positive correlations with trait measures of reactance. The SSR Subscales correlated only slightly or not at all with neighboring constructs (e.g., autonomy, experience of control). The only exception was fairness scales, which showed moderate correlations with the SSR Subscales. Furthermore, a retest analysis confirmed the temporal stability of the scale. Suggestions for further validation of this questionnaire are discussed. PMID:27453806

  5. Scaling the Universe

    NASA Astrophysics Data System (ADS)

    Frankel, Norman E.

    2014-04-01

    A model is presented for the origin of the large scale structure of the universe and their Mass-Radius scaling law. The physics is conventional, orthodox, but it is used to fashion a highly unorthodox model of the origin of the galaxies, their groups, clusters, super-clusters, and great walls. The scaling law fits the observational results and the model offers new suggestions and predictions. These include a largest, a supreme, cosmic structure, and possible implications for the recently observed pressing cosmological anomalies.

  6. The Improbability scale

    SciTech Connect

    Ritchie, David J.; /Fermilab

    2005-03-01

    The Improbability Scale (IS) is proposed as a way of communicating to the general public the improbability (and by implication, the probability) of events predicted as the result of scientific research. Through the use of the Improbability Scale, the public will be able to evaluate more easily the relative risks of predicted events and draw proper conclusions when asked to support governmental and public policy decisions arising from that research.

  7. Results of tests OA12 and IA9 in the Ames Research Center unitary plan wind tunnels on an 0.030-scale model of the space shuttle vehicle 2A to determine aerodynamic loads, volume 2

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.

    1973-01-01

    Tests were conducted in Unitary Plan wind tunnels on a 0.30 scale model of the space shuttle. Tests were conducted on the integrated configuration and on the isolated orbiter. The integrated vehicle was tested at angles of attack and sideslip from minus 8 degrees to plus 8 degrees. The isolated orbiter was tested at angles of attack from minus 15 degrees to plus 40 degrees and angles of sideslip from minus 10 degrees to plus 10 degrees as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were investigated.

  8. Aerodynamic results of a support system interference effects test conducted at NASA/LaRC UPWT using an 0.015-scale model of the configuration 140A/B SSV orbiter (0A20B)

    NASA Technical Reports Server (NTRS)

    Campbell, J. H., II; Embury, W. R.

    1974-01-01

    An experimental aerodynamic investigation was conducted to determine the interference effects of a wind tunnel support system. The test article was a 0.015 scale model of the space shuttle orbiter. The primary objective of the test was to determine the extent that aerodynamic simulation of the space shuttle orbiter is affected by base mounting the model, without nozzles, on a straight sting. Two support systems were tested. The characteristics of the support systems are described. Data from the tests are presented in the form of graphs and tables.

  9. Results of investigation IA110 on a 0.015-scale integrated configuration of the space shuttle vehicle in the arc 9 x 7 supersonic wind tunnel using models 67-TS and 49-0

    NASA Technical Reports Server (NTRS)

    Chee, E.

    1975-01-01

    An 0.015-scale space shuttle vehicle model was tested to investigate Orbiter wind bending, elevon panel loads, and elevon effectiveness. Mach numbers from 1.5 through 2.5 were investigated. Angles of attack and sideslip were varied from -8 degrees through +8 degrees. Post test analysis of raw wind tunnel data indicated a zero shift had occured in the wing bending and torsional gages during the test. The mechanism by which this shift occurred was not determined. Therefore, all the wind root bending and torsional moment data is suspect.

  10. Results of an external tank separation test in AEDC/VKF tunnel B on 0.010-scale replica of space shuttle vehicle model 52-OT(IA17A), Volume 1

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.; Daileda, J. J.

    1975-01-01

    Tests were conducted on scale models of the space shuttle orbiter and external tank (ET) to determine the aerodynamic interactions during a return to launch site abort separation. The orbiter model was built to vehicle 3 configuration lines (139B) and the ET model approximated the vehicle 5 configurations with protuberances and attach hardware. For these investigations the orbiter was mounted on the primary support system and the external tank was mounted on the captive trajectory system. Six-component data were obtained for each vehicle at various orbiter angles of attack and sideslip for a range of relative angular and linear displacements of the ET from the orbiter.

  11. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 4

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat-transfer data for the 0.0175-scale Space Shuttle Vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of Orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-Foot Hypersonic Wind Tunnel at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1.5 x 1,000,000 and 5.0 x 1,000,000.

  12. Results of phase change paint heat transfer test utilizing 0.040-scale 50% forebody models (no. 82-0) of the Rockwell International Space Shuttle Orbiter in AEDC VKF hypersonic tunnel B (test OH54B)

    NASA Technical Reports Server (NTRS)

    Dye, W. H.

    1977-01-01

    Aerodynamic heating phase change paint tests for the space shuttle orbiter are reported. The model was a 0.040 scale representation of the forward 50% of the orbiter. Surface roughness effects on boundary layer transition were investigated. The roughness was simulated by steel balls 0.020 and 0.025 inch in diameter and a 0.25 in. diameter hole simulating the forward ET attach socket. A nominal Mach number of was tested with unit Reynolds number varying from 0.75 x 1 million ft through 3.5x 1 million ft. Angle of attack was varied from 20 degrees to 40 degrees.

  13. Comparing the theoretical versions of the Beaufort scale, the T-Scale and the Fujita scale

    NASA Astrophysics Data System (ADS)

    Meaden, G. Terence; Kochev, S.; Kolendowicz, L.; Kosa-Kiss, A.; Marcinoniene, Izolda; Sioutas, Michalis; Tooming, Heino; Tyrrell, John

    2007-02-01

    2005 is the bicentenary of the Beaufort Scale and its wind-speed codes: the marine version in 1805 and the land version later. In the 1920s when anemometers had come into general use, the Beaufort Scale was quantified by a formula based on experiment. In the early 1970s two tornado wind-speed scales were proposed: (1) an International T-Scale based on the Beaufort Scale; and (2) Fujita's damage scale developed for North America. The International Beaufort Scale and the T-Scale share a common root in having an integral theoretical relationship with an established scientific basis, whereas Fujita's Scale introduces criteria that make its intensities non-integral with Beaufort. Forces on the T-Scale, where T stands for Tornado force, span the range 0 to 10 which is highly useful world wide. The shorter range of Fujita's Scale (0 to 5) is acceptable for American use but less convenient elsewhere. To illustrate the simplicity of the decimal T-Scale, mean hurricane wind speed of Beaufort 12 is T2 on the T-Scale but F1.121 on the F-Scale; while a tornado wind speed of T9 (= B26) becomes F4.761. However, the three wind scales can be uni-fied by either making F-Scale numbers exactly half the magnitude of T-Scale numbers [i.e. F'half = T / 2 = (B / 4) - 4] or by doubling the numbers of this revised version to give integral equivalence with the T-Scale. The result is a decimal formula F'double = T = (B / 2) - 4 named the TF-Scale where TF stands for Tornado Force. This harmonious 10-digit scale has all the criteria needed for world-wide practical effectiveness.

  14. Research Results

    NASA Astrophysics Data System (ADS)

    2012-12-01

    Achievements in Sino-German Interdisciplinary Major Research Project Published by Small A Conserved Proline Switch on the Ribosome Facilitates the Recruitment and Binding of trGTPases Air Pollution Contributes in Sunshine Dimming in China Role of Lymphatic Trafficking and Biodistribution Soft Fibrin Gels Promote Selection and Growth of Tumorigenic Cells Targeted Therapy: The New Lease on Life for Acute Promyelocytic Leukemia, and Beyond The Structural Basis for the Sensing and Binding of Cyclic di-GMP by STING Research on Atomic-Scale Investigation of Li Storage Mechanism in Spinel Li4Ti5O12 NSFC Funded Project Made Significant Progress in Intelligent Nanomaterial and Device Palaeobotany and the Evolution of the Monsoon in China Non Heme System Asymmetric Epoxidation Reaction Made Progress Rapid Advancement of Immunology Study in China Chinese Experts Successfully Produced Transgenic Animals from Haploid Embryonic Stem Cells

  15. Integration of the Ultraviolet-Visible Spectral Clementine Data and the Gamma-Ray Lunar Prospector Data: Preliminary Results Concerning FeO, TiO2, and Th Abundances of the Lunar Surface at Global Scale

    NASA Astrophysics Data System (ADS)

    Chevrel, S. D.; Pinet, P. C.; Barreau, G.; Daydou, Y.; Richard, G.; Maurice, S.; Feldman, W. C.

    1999-01-01

    The Clementine mission (CLM) produced global multispectral data that resulted in a map of FeO and Ti02 concentrations of the lunar surface. The recent Lunar Prospector (LP) mission returned the first global data for the distribution of surface abundances of key elements in lunar rocks, using a gamma-ray spectrometer (GRS) and neutron spectrometer(NS). Integrating CLM mineralogical spectral reflectance and LP chemical data is important to enhance our view of lunar crust origin and evolution, lunar volcanism, and surface processes. Iron, Ti, and Th having relatively large compositional variation over the lunar surface, as well as strong isolated peaks in the GRS spectra, information concerning the distribution and concentration of these elements has been derived from maps of corrected (cosmic ray, nonsymmetric response of the instrument) counting rates only, without converting them into absolute abundances. Maps produced contain count rates in equal-area projection averaged into 5 x 5 degrees latitude/longitude bins, from -90 to +90 degrees latitude and -180 to +180 degrees longitude. In this work, we have used the CLM global FeO and Ti02 abundances (wt%) maps converted at the LP spatial resolution (about 150 km/pixel) to produce FeO and TiO2 GRS abundance maps, through a linear regression based on the analysis of the scatter distribution of both datasets. The regression coefficients have been determined from the data taken between -60 and +60 degrees latitude to avoid uncertainties in the CLM spectral data due to nonnominal conditions of observation at high latitudes. After a critical assessment of the validity of these coefficients for every class of absolute abundance, the LP data have been transformed into absolute abundances for the whole Moon. The Th LP data have been converted into abundances (ppm) using Th concentrations in average soils from the Apollo and Luna sites given. Values of Th abundances for these samples range between 0.5 and 13 ppm. A nonlinear

  16. Global scale precipitation from monthly to centennial scales: empirical space-time scaling analysis, anthropogenic effects

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to

  17. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 2

    NASA Technical Reports Server (NTRS)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering and Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Additional information is given in tabular form.

  18. Results of investigations on an 0.015 scale 140A/B configuration space shuttle vehicle orbiter model (49-0) in the LTV 4 by 4-foot high speed wind tunnel (0A84)

    NASA Technical Reports Server (NTRS)

    Esparza, V.; Embury, W. R.

    1974-01-01

    Data obtained from a wind tunnel test of an 0.015-scale 140 A/B configuration space shuttle vehicle orbiter model (49-0) are presented. Runs were conducted at Mach numbers 0.6, 0.9, 1.2, 1.6, and 2.0 and Reynolds numbers of 8.4, 9.0, 9.0, 10.9, and 13.6 million per foot respectively. Various control surface settings were investigated from angles of attack of minus 4 degrees to plus 30 degrees at fixed angles of sideslip of zero and minus 5 degrees and through angles of sideslip from minus 2 to plus 8 degrees at fixed angles of attack of zero, plus 10, plus 15, and plus 20 degrees. The purpose of the test was to define the longitudinal and lateral-directional stability and control characteristics for the updated SSV configuration.

  19. Aerodynamic results of a separation effects test on a 0.010-scale model (52-OTS) of the integrated SSV in the AEDC/VKF 40-by-40 inch supersonic wind tunnel A (IA111), volume 1

    NASA Technical Reports Server (NTRS)

    Chee, E.

    1976-01-01

    Graphical data obtained during experimental wind tunnel aerodynamic investigations of a 0.010 scale model (52-OTS) of the integrated space shuttle vehicle was presented. The purpose of this investigation was to obtain data with the solid rocket booster (SRB) in proximity to the orbiter/external tank (O/ET), over a large O/ET initial angle of attack and sideslip range, as well as data on the SRB alone (greatly separated from the O/ET). A captive trajectory system, which supported the SRB, was used with the tunnel primary sector (supporting the O/ET) to obtain grid type separation effects data. One symmetrical SRB model was used interchangeably to obtain right-hand and left-hand SRB data. The entire investigation was conducted at a free-stream Mach number of 4.5 at unit Reynolds number of 3.95 and 5.9 million per foot.

  20. Results of tests OA12 and IA9 in the Ames Research Center unitary plan wind tunnels on an 0.030-scale model of the space shuttle vehicle 2A to determine aerodynamic loads, volume 14

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.

    1974-01-01

    Tests were conducted in wind tunnels during April and May 1973, on a 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from -8 degrees to +8 degrees. The isolated orbiter was tested at angles of attack from -15 degrees to +40 degrees and angles of sideslip from -10 degrees to +10 degrees as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were also investigated. Tabulated pressure data were obtained for upper and lower wing surfaces and left and right vertical tail surfaces.

  1. Results of an investigation of the space shuttle integrated vehicle aerodynamic heating characteristics obtained using the 0.0175-scale model 60-OTS in AEDC tunnel A during tests IH41 and IH41A

    NASA Technical Reports Server (NTRS)

    Cummings, J. W.; Dye, W. H.

    1977-01-01

    A thin skin thermocouple test was conducted to obtain heat-transfer data on the space shuttle integrated vehicle during the ascent phase of the flight profile. The test model was the 0.0175-scale thin skin thermocouple model (60-OTS) of the Rockwell International vehicle 5 configuration. The test was conducted at nominal Mach numbers of 2.5, 3.5, 4.5, and 5.5, and a free stream unit Reynolds number of 5 million per ft. Heat transfer data were obtained for angles of attack of 0, + or - 5, and 10 deg and yaw angles of 0, 3, and 6 deg. The integrated vehicle model was tested with the external tank configured with both a smooth ogive nose and an ogive nose with a spherical nose tip (nipple nose). The remainder of the test was conducted with the external tank installed alone in the tunnel.

  2. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 1

    NASA Technical Reports Server (NTRS)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Data is given in graphical and tabular form.

  3. Results of tests OA12 and IA9 in the Ames Research Center Unitary Plan Wind Tunnels on an 0.030-scale model of the Space Shuttle Vehicle 2A to determine aerodynamic loads, volume 3

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.

    1973-01-01

    Tests were conducted in the NASA/ARC Unitary Plan Wind Tunnels during April and May 1973, on an 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests IA9A, B and C on the integrated (launch) configuration and tests OA12A and C on the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from -8 degrees to +8 degrees. The isolated orbiter was tested at angles of attack from -15 degrees to +40 degrees and angles of sideslip from -10 degrees to +10 degrees to as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were also investigated.

  4. Results of a landing gear loads test using a 0.0405-scale model (16-0) of the space shuttle orbiter in the Rockwell International NAAL wind tunnel (OA163B), volume 1

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1977-01-01

    Aerodynamic loads on a sting mounted 0.045-scale representation of the 140C outer mold line space shuttle orbiter configuration were measured to verify orbiter landing gear system pressure loading and hinge moment levels. Pressure, force, and hinge moment data, recorded over smaller increments of the landing gear deployment schedule to insure data accuracy and to investigate the effects of asymmetric gear deployment on all parameters, are presented. Tests were conducted at a Mach number of 0.17, and freestream dynamic pressure of 42.5 psf, and a Reynolds number per unit length of 1.2 million foot. Angle of attack variation was -2 to 10 degrees while angles of sideslip varied from -5 to 5 degrees.

  5. Results of a landing gear loads test using a 0.0405-scale model (16-0) of the space shuttle orbiter in the Rockwell International NAAL wind tunnel (OA163), volume 1

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1976-01-01

    Experimental aerodynamic investigations were conducted on a sting mounted scale representation of the 140C outer mold line space shuttle orbiter configuration in the low speed wind tunnel. The primary test objectives were to define the orbiter landing gear system pressure loading and to record landing gear door and strut hingemoment levels. Secondary objectives included recording the aerodynamic influence of various landing gear configurations on orbiter force data as well as investigating 40 x 80 ft. Ames Wind Tunnel strut simulation effects on both orbiter landing gear loads and aerodynamic characteristics. Testing was conducted at a Mach number of 0.17, free stream dynamic pressure of 42.5 PSF, and Reynolds number per unit length of 1.2 million per foot. Angle of attack variation was 0 to 20 while yaw angles ranged from -10 to 10 deg.

  6. Results of Aerothermodynamic and Boundary-Layer Transition Testing of 0.0362-Scale X-38 (Rev. 3.1) Vehicle in NASA Langley 20-Inch Mach 6 Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Roback, V. Eric; Williams, George B., Jr.

    1997-01-01

    The aeroheating characteristics of the X-38 Revision 3.1 lifting-body configuration have been experimentally examined in the Langley 20-inch Mach 6 Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on a 0.0362-scale model of a proposed Space Station Crew Return Vehicle at Mach 6 in air. Parametric variations include angles-of-attack of 20 deg, 30 deg, and 40 deg; Reynolds numbers based on model length of 0.9 to 3.7 million; and body-flap deflections of O deg, 20 deg, 25 deg, and 30 deg. The effects of discrete roughness elements, which included trip height, location, size, and orientation, as well as multiple-trip parametrics, were investigated. This document is intended to serve as a quick release of preliminary data to the X-38 program; analysis is limited to observations of the experimental trends in order to expedite dissemination.

  7. Results of investigations (OA77 and OA78) on an 0.015-scale 140A/B configuration space shuttle vehicle orbiter model 49-0 in the AEDC VKF B and C wind tunnels, revision A

    NASA Technical Reports Server (NTRS)

    Gillins, R. L.

    1975-01-01

    Aerodynamic data obtained from wind tunnel tests of an 0.015-scale 140A/B configuration SSV Orbiter model in the AEDC VKF B and C wind tunnels are presented. Tests were conducted at Mach numbers of 6 and 8 in the B tunnel and at a Mach number of 10 to in the C tunnel to verify hypersonic stability and control characteristics, determine control surface effectiveness, and investigate Reynolds number effects of the 140A/B configuration. Force data were obtained for various control surface settings and Reynolds numbers in the angle-of-attack range of 15 deg to 45 deg and at angles of sideslip of -5 deg to +10 deg. Data were obtained for a few configurations at angles of attack from -27 deg to 45 deg. Control surface variables included elevon, rudder, speedbrake and bodyflap deflections. The effects of an alternate wing leading edge shape were investigated to determine its hypersonic stability and control characteristics.

  8. Results of tests OA12 and IA9 in the Ames Research Center unitary plan wind tunnels on an 0.030-scale model of the space shuttle vehicle 2A to determine aerodynamic loads, volume 18

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.

    1974-01-01

    Tests were conducted, during April and May 1973, on an 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration, and on the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from -8 degrees to +8 degrees. The isolated orbiter was tested at angles of attack from -15 degrees to +40 degrees and angles of sideslip from -10 degrees to +10 degrees as dictated by trajectory considerations. The effect of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were also investigated.

  9. Results of investigations on a 0.004-scale 140C modified configuration space shuttle vehicle orbiter model (74-0) in the NASA/Langley Research Center hypersonic helium tunnel

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1975-01-01

    Data obtained during a wind tunnel test of a 0.004-scale 140C modified configuration SSV orbiter are documented. The test was conducted during August 1974 with 80 occupancy hours charged, and all runs were conducted at a nominal Mach number of 20 and at Reynolds numbers of 0.7, 1.0, 1.8, and 1,100,000 based on body length. The complete -140C modified model was tested with various elevon settings at angles of attack from 10 to 50 degrees at zero yaw and from angles of sideslip of -10 to +10 at 35 deg angle of attack. The purpose of this test was to obtain high hypersonic longitudinal and lateral-directional stability and control characteristics of the updated SSV configuration.

  10. Results of Tests OA12 and IA9 in the Ames Research Center unitary plan wind tunnels on an 0.030-scale model of the Space Shuttle Vehicle 2A to determine aerodynamic loads, volume 4

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.

    1973-01-01

    Tests were conducted in wind tunnels during April and May 1973, on an 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and on the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from minus 8 degrees to +8 degrees. The isolated orbiter was tested at angles of attack from minus 15 degrees to +40 degrees and angles of sideslip from minus 10 degrees to +10 degrees as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were also investigated.

  11. Results of tests OA12 and IA9 in the Ames Research Center unitary plan wind tunnels on an 0.030-scale model of the space shuttle vehicle 2A to determine aerodynamic loads, volume 1

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.

    1973-01-01

    Tests were conducted in unitary plan wind tunnels on an 0.030-scale replica of the space shuttle vehicle configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and tests on the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from minus 8 deg to plus 8 deg. The isolated orbiter was tested at angles of attack from minus 15 deg to plus 40 deg and angles of sideslip from minus 10 deg to plus 10 deg are dictated by trajectory considerations. The effects of orbiter/external tank incidence and deflected control surfaces on aerodynamic loads were also investigated.

  12. Results of transonic wind tunnel tests on an 0.010-scale space shuttle mated vehicle model 72-OTS in the LaRC 8-foot TPT (IA43)

    NASA Technical Reports Server (NTRS)

    Petrozzi, M. T.; Milam, M. D.

    1975-01-01

    Experimental aerodynamic investigations were conducted in NASA/Langley 8-Foot transonic pressure tunnel on a sting mounted 0.010-scale outer mold line model of 104A/B configuration of the Rockwell International space shuttle vehicle. Component aerodynamic force and moment data and base and balance cavity pressures were recorded over an angle of attack range of -10 deg to +10 deg at Mach numbers of 0.6, 0.8, 0.9, 0.98, 1.13, and 1.2. Selected configurations were tested at sideslip angles from -10 deg to +10 deg. For all configurations involving the orbit, wing bending and torsion were measured on the right wing. Inboard elevon setting of 0 deg, +4 deg and +8 deg and outboard settings of 0 deg, +4 deg and +8 deg were tested.

  13. Multidimensional scaling

    PubMed Central

    Papesh, Megan H.; Goldinger, Stephen D.

    2012-01-01

    The concept of similarity, or a sense of "sameness" among things, is pivotal to theories in the cognitive sciences and beyond. Similarity, however, is a difficult thing to measure. Multidimensional scaling (MDS) is a tool by which researchers can obtain quantitative estimates of similarity among groups of items. More formally, MDS refers to a set of statistical techniques that are used to reduce the complexity of a data set, permitting visual appreciation of the underlying relational structures contained therein. The current paper provides an overview of MDS. We discuss key aspects of performing this technique, such as methods that can be used to collect similarity estimates, analytic techniques for treating proximity data, and various concerns regarding interpretation of the MDS output. MDS analyses of two novel data sets are also included, highlighting in step-by-step fashion how MDS is performed, and key issues that may arise during analysis. PMID:23359318

  14. QCD results from CDF

    SciTech Connect

    Plunkett, R.; The CDF Collaboration

    1991-10-01

    Results are presented for hadronic jet and direct photon production at {radical}{bar s} = 1800 GeV. The data are compared with next-to-leading QCD calculations. A new limit on the scale of possible composite structure of the quarks is also reported. 12 refs., 4 figs.

  15. Remote sensing of large scale methane emission sources with the Methane Airborne MAPper (MAMAP) instrument over the Kern River and Kern Front Oil fields and validation through airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, K.; Krautwurst, S.; Kolyer, R.; Jonsson, H.; Krings, T.; Horstjann, M.; Leifer, I.; Schuettemeyer, D.; Fladeland, M. M.; Burrows, J. P.; Bovensmann, H.

    2014-12-01

    During three flights performed with the MAMAP (Methane Airborne MAPper) airborne remote sensing instrument in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of HyspIRI and CarbonSat mission definition activities - large scale methane plumes were detected over the Kern River and Kern Front Oil fields in the period between June 3 and 13, 2014. MAMAP was installed for these flights aboard of the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operate by the Ames Research Center, ARC), a 5 hole turbulence probe as well as a atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point and other atmospheric parameters. Data collected with the in-situ GHG analyzer will be used for validation of MAMAP remotely sensed data by acquiring vertical cross sections of the discovered plumes at a fixed downwind distance. Precise airborne wind information from the turbulence probe together with ground based wind data from the nearby airport will be used to estimate emission rates from the remote sensed and in-situ measured data. Remote sensed and in-situ data as well as initial flux estimates for the three flights will be presented.

  16. Aerodynamic results of a separation effects test on a 0.01-scale model (52-OTS) of integrated SSV in the AEDC/VKF 40-by-40 inch supersonic wind tunnel A, volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. H., II

    1975-01-01

    Experimental aerodynamic investigations were conducted, during the period July 18-19, 1974, in the AEDC/VKF Tunnel A facility on a 0.01-scale model (52-OTS) of the integrated space shuttle vehicle, including only one SRB. The purpose of the investigation was to obtain data for close-in proximity (SRB to orbiter/tank) effects with the orbiter/tank combination at relatively high alpha and beta attitudes, and with the SRB separation motors off. The AEDC Captive Trajectory System (CTS), which supported the SRB, was used in conjunction with the tunnel primary sector (supporting the orbiter/tank) to obtain grid type separation effects data. The one symmetrical SRB model was used interchangeably to obtain both right-hand and left-hand SRB data. Free-stream data were also obtained for the orbiter/tank and for the SRB. This data was used to provide baselines for proximity effects. The entire investigation was conducted at a free-stream Mach number of 4.5 with unit Reynolds number ranging from 4.0 to 6.5 million per foot.

  17. Results of an investigation of Reynolds effects on integrated vehicle elevon hinge moments and wing panel loads obtained with 0.010 scale model 72 OTS in the Rockwell trisonic wind tunnel (IA141)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1976-01-01

    Wind tunnel investigations were conducted on an 0.010-scale representation of the VL70-000140C Integrated Space Shuttle Launch Vehicle. The primary test objective was to obtain Reynolds number effects on orbiter elevon hinge moments and wing bending/torsional moments. Launch vehicle aerodynamic force data were also recorded. The elevon hinge moments, wing bending/torsional moments, and vehicle force data were recorded over an angle of attack range of -6 deg to +6 deg, an angle of sideslip range of -6 deg to +6 deg, at Mach numbers of 0.6, 0.975, 1.05 and 1.25. The Reynolds number was varied from a minimum of 4.5 million/foot to a maximum of 11.5 million/foot. The complete integrated configuration was tested with the orbiter elevons set at 0 deg and deflected to 9 deg on the outboard elevon and 10 deg on the inboard elevon. Testing was conducted in the TWT 19.7% porous transonic test section with the model sting mounted through the orbiter base. All aerodynamic force data were obtained from internal strain gage balance located in the orbiter.

  18. Results of transonic tests in the NASA/MSFC 14-inch trisonic wind tunnel on a 0.004-scale model (74-OTS) space shuttle launch vehicle (FA25)

    NASA Technical Reports Server (NTRS)

    Lundy, T. E.

    1979-01-01

    The primary objective of the test was to determine the aerodynamic increments due to the attach structure. Secondary objectives were to determine the effects of: (1) orbiter nose mold line changes; (2) wire bundle fairings on data measurements; and (3) flow angularity. The scale model was tested over the Mach range from 0.60 to 1.25 at angles of attack and sideslip from -8 to +8 deg. The total pressure was 22 psia for all runs. Six-component orbiter data were obtained from a balance in the orbiter which was sting supported. The external tank was attached to the solid rocket booster, each of which was sting supported. An alternate two sting/two balance arrangement was also tested with a single sting and balance in the external tank measuring combined ET/SRB aero data replacing the two stings in the SRB's. Two runs were also made at Mach number 4.96 with the two SRB's removed. The aerodynamic coefficients obtained are tabulated as a function of angle of attack or sideslip for each Mach number value.

  19. Results of investigations on an 0.015-scale configuration 140A/B space shuttle vehicle orbiter model (49-0) in the NASA/Langley Research Center 8-foot transonic pressure tunnel (OA25)

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1974-01-01

    Aerodynamic force and moment tests were conducted on an 0.015-scale space shuttle vehicle configuration 140A/B model (49-0) in a transonic pressure tunnel. The test was carried out at Mach numbers 0.35, 0.60, 0.80, 0.90, 0.98, and 1.20, and at Reynolds numbers ranging from 1.90 million per foot to 3.97 million per foot, depending on tunnel total pressure capability and model structural limits. The model attitude was varied in angle-of-attack from minus 2 deg to +22 deg at 0 deg and 5 deg angles of yaw, and in angle-of-sidelip from minus 5 to +10 deg at 0 deg, 7.5 deg, and 15 deg angles of pitch. The purpose of this test was to establish and verify longitudinal and lateral-directional characteristics of the 140A/B Configuration Orbiter and to determine the effects of surface deflections on vehicle performance, stability, and control.

  20. Results of investigations of an 0.010-scale 140A/B configuration (model 72-OTS) of the Rockwell International space shuttle orbiter in the NASA/Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Petrozzi, M. T.; Milam, M. D.

    1975-01-01

    Experimental aerodynamic investigations were conducted in the NASA/Langley unitary plan wind tunnel on a sting mounted 0.010-scale outer mold line model of the 140A/B configuration of the Rockwell International Space Shuttle Vehicle. The primary test objectives were to obtain: (1) six component force and moment data for the mated vehicle at subsonic and transonic conditions, (2) effects of configuration build-up, (3) effects of protuberances, ET/orbiter fairings and attach structures, and (4) elevon deflection effects on wing bending moment. Six component aerodynamic force and moment data and base and balance cavity pressures were recorded over Mach numbers of 1.6, 2.0, 2.5, 2.86, 3.9, and 4.63 at a nominal Reynolds number of 20 to the 6th power per foot. Selected configurations were tested at angles of attack and sideslip from -10 deg to +10 deg. For all configurations involving the orbiter, wing bending, and torsion coefficients were measured on the right wing.