Science.gov

Sample records for 4-point scale results

  1. MULTIPLE SCALES FOR SUSTAINABLE RESULTS

    EPA Science Inventory

    This session will highlight recent research that incorporates the use of multiple scales and innovative environmental accounting to better inform decisions that affect sustainability, resilience, and vulnerability at all scales. Effective decision-making involves assessment at mu...

  2. Biomechanics of 4-point seat belt systems in frontal impacts.

    PubMed

    Rouhana, Stephen W; Bedewi, Paul G; Kankanala, Sundeep V; Prasad, Priya; Zwolinski, Joseph J; Meduvsky, Alex G; Rupp, Jonathan D; Jeffreys, Thomas A; Schneider, Lawrence W

    2003-01-01

    The biomechanical behavior of 4-point seat belt systems was investigated through MADYMO modeling, dummy tests and post mortem human subject tests. This study was conducted to assess the effect of 4-point seat belts on the risk of thoracic injury in frontal impacts, to evaluate the ability to prevent submarining under the lap belt using 4-point seat belts, and to examine whether 4-point belts may induce injuries not typically observed with 3-point seat belts. The performance of two types of 4-point seat belts was compared with that of a pretensioned, load-limited, 3-point seat belt. A 3-point belt with an extra shoulder belt that "crisscrossed" the chest (X4) appeared to add constraint to the torso and increased chest deflection and injury risk. Harness style shoulder belts (V4) loaded the body in a different biomechanical manner than 3-point and X4 belts. The V4 belt appeared to shift load to the clavicles and pelvis and to reduce traction of the shoulder belt across the chest, resulting in a reduction in chest deflection by a factor of two. This is associated with a 5 to 500-fold reduction in thoracic injury risk, depending on whether one assumes 4-point belts apply concentrated or distributed load. In four of six post mortem human subjects restrained by V4 belts during 40 km/h sled tests, chest compression was zero or negative and rib fractures were nearly eliminated. Submarining was not observed in any test with post mortem human subjects. Though lumbar, sacral and pelvic injuries were noted, they are believed to be due to the artificial restraint environment (no knee bolsters, instrument panels, steering systems or airbags). While they show significant potential to reduce thoracic injury risk, there are still many issues to be resolved before 4-point belts can be considered for production vehicles. These issues include, among others, potential effects on hard and soft neck tissues, of interaction with inboard shoulder belts in farside impacts and potential

  3. Report on 3- and 4-Point Correlation Statistics in COBE DMR Anisotropy Maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary; Gorski, Krzystof M.; Bennett, Charles L.; Banday, Anthony J.

    1996-01-01

    As part of the work performed under this contract, we have computed the 3- and 4-point correlation functions of the COBE-DMR 2-year and 4-year anisotropy maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data.

  4. The Results of the first world photovoltaic scale recalibration

    SciTech Connect

    Emery, K.

    2000-04-06

    Technical report that presents the results of primary reference cell calibrations conducted at NREL in October and November 1998. Twenty World PV Scale (WPVS) reference cells were calibrated along with six candidate WPVS reference cells.

  5. New convergence results for the scaled gradient projection method

    NASA Astrophysics Data System (ADS)

    Bonettini, S.; Prato, M.

    2015-09-01

    The aim of this paper is to deepen the convergence analysis of the scaled gradient projection (SGP) method, proposed by Bonettini et al in a recent paper for constrained smooth optimization. The main feature of SGP is the presence of a variable scaling matrix multiplying the gradient, which may change at each iteration. In the last few years, extensive numerical experimentation showed that SGP equipped with a suitable choice of the scaling matrix is a very effective tool for solving large scale variational problems arising in image and signal processing. In spite of the very reliable numerical results observed, only a weak convergence theorem is provided establishing that any limit point of the sequence generated by SGP is stationary. Here, under the only assumption that the objective function is convex and that a solution exists, we prove that the sequence generated by SGP converges to a minimum point, if the scaling matrices sequence satisfies a simple and implementable condition. Moreover, assuming that the gradient of the objective function is Lipschitz continuous, we are also able to prove the {O}(1/k) convergence rate with respect to the objective function values. Finally, we present the results of a numerical experience on some relevant image restoration problems, showing that the proposed scaling matrix selection rule performs well also from the computational point of view.

  6. Additional Results of Glaze Icing Scaling in SLD Conditions

    NASA Technical Reports Server (NTRS)

    Tsao, Jen-Ching

    2016-01-01

    New guidance of acceptable means of compliance with the super-cooled large drops (SLD) conditions has been issued by the U.S. Department of Transportation's Federal Aviation Administration (FAA) in its Advisory Circular AC 25-28 in November 2014. The Part 25, Appendix O is developed to define a representative icing environment for super-cooled large drops. Super-cooled large drops, which include freezing drizzle and freezing rain conditions, are not included in Appendix C. This paper reports results from recent glaze icing scaling tests conducted in NASA Glenn Icing Research Tunnel (IRT) to evaluate how well the scaling methods recommended for Appendix C conditions might apply to SLD conditions. The models were straight NACA 0012 wing sections. The reference model had a chord of 72 in. and the scale model had a chord of 21 in. Reference tests were run with airspeeds of 100 and 130.3 kn and with MVD's of 85 and 170 micron. Two scaling methods were considered. One was based on the modified Ruff method with scale velocity found by matching the Weber number WeL. The other was proposed and developed by Feo specifically for strong glaze icing conditions, in which the scale liquid water content and velocity were found by matching reference and scale values of the nondimensional water-film thickness expression and the film Weber number Wef. All tests were conducted at 0 deg AOA. Results will be presented for stagnation freezing fractions of 0.2 and 0.3. For nondimensional reference and scale ice shape comparison, a new post-scanning ice shape digitization procedure was developed for extracting 2-D ice shape profiles at any selected span-wise location from the high fidelity 3-D scanned ice shapes obtained in the IRT.

  7. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    SciTech Connect

    Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro

    2013-09-18

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  8. Scaling Relationships Based on Scaled Tank Mixing and Transfer Test Results

    SciTech Connect

    Piepel, Gregory F.; Holmes, Aimee E.; Heredia-Langner, Alejandro; Lee, Kearn P.; Kelly, Steven E.

    2014-01-01

    This report documents the statistical analyses performed (by Pacific Northwest National Laboratory for Washington River Protection Solutions) on data from 26 tests conducted using two scaled tanks (43 and 120 inches) in the Small Scale Mixing Demonstration platform. The 26 tests varied several test parameters, including mixer-jet nozzle velocity, base simulant, supernatant viscosity, and capture velocity. For each test, samples were taken pre-transfer and during five batch transfers. The samples were analyzed for the concentrations (lbs/gal slurry) of four primary components in the base simulants (gibbsite, stainless steel, sand, and ZrO2). The statistical analyses including modeling the component concentrations as functions of test parameters using stepwise regression with two different model forms. The resulting models were used in an equivalent performance approach to calculate values of scaling exponents (for a simple geometric scaling relationship) as functions of the parameters in the component concentration models. The resulting models and scaling exponents are displayed in tables and graphically. The sensitivities of component concentrations and scaling exponents to the test parameters are presented graphically. These results will serve as inputs to subsequent work by other researchers to develop scaling relationships that are applicable to full-scale tanks.

  9. Additional Results of Ice-Accretion Scaling at SLD Conditions

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H. (Technical Monitor); Anderson, David N.; Tsao, Jen-Ching

    2005-01-01

    To determine scale velocity an additional similarity parameter is needed to supplement the Ruff scaling method. A Weber number based on water droplet MVD has been included in several studies because the effect of droplet splashing on ice accretion was believed to be important, particularly for SLD conditions. In the present study, ice shapes recorded at Appendix-C conditions and recent results at SLD conditions are reviewed to show that droplet diameter cannot be important to main ice shape, and for low airspeeds splashing does not appear to affect SLD ice shapes. Evidence is presented to show that while a supplementary similarity parameter probably has the form of a Weber number, it must be based on a length proportional to model size rather than MVD. Scaling comparisons were made between SLD reference conditions and Appendix-C scale conditions using this Weber number. Scale-to-reference model size ratios were 1:1.7 and 1:3.4. The reference tests used a 91-cm-chord NACA 0012 model with a velocity of approximately 50 m/s and an MVD of 160 m. Freezing fractions of 0.3, 0.4, and 0.5 were included in the study.

  10. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used

  11. Small-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the

  12. Report on 3 and 4-point correlation statistics in the COBE DMR anisotrophy maps

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary (Principal Investigator); Gorski, Krzystof M.; Banday, Anthony J.; Bennett, Charles L.

    1996-01-01

    As part of the work performed under NASA contract # NAS5-32648, we have computed the 3-point and 4-point correlation functions of the COBE-DNIR 2-year and 4-year anisotropy maps. The motivation for this study was to search for evidence of non-Gaussian statistical fluctuations in the temperature maps: skewness or asymmetry in the case of the 3-point function, kurtosis in the case of the 4-point function. Such behavior would have very significant implications for our understanding of the processes of galaxy formation, because our current models of galaxy formation predict that non-Gaussian features should not be present in the DMR maps. The results of our work showed that the 3-point correlation function is consistent with zero and that the 4-point function is not a very sensitive probe of non-Gaussian behavior in the COBE-DMR data. Our computation and analysis of 3-point correlations in the 2-year DMR maps was published in the Astrophysical Journal Letters, volume 446, page L67, 1995. Our computation and analysis of 3-point correlations in the 4-year DMR maps will be published, together with some additional tests, in the June 10, 1996 issue of the Astrophysical Journal Letters. Copies of both of these papers are attached as an appendix to this report.

  13. SLS Scale Model Acoustic Test Liftoff Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, Douglas; Giacomoni, Clothilde

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible design phase test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments.

  14. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2012-11-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  15. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2013-05-29

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and

  16. Small-Scale Spray Releases: Orifice Plugging Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Blanchard, Jeremy; Kimura, Marcia L.; Kurath, Dean E.

    2012-09-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities, is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations published in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials present in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty introduced by extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches in which the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are largely absent. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine the aerosol release fractions and aerosol generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents (AFA) was assessed with most of the simulants. Orifices

  17. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  18. On collisional disruption - Experimental results and scaling laws

    NASA Astrophysics Data System (ADS)

    Davis, D. R.; Ryan, E. V.

    1990-01-01

    Both homogeneous and inhomogeneous targets have been addressed by the present experimental consideration of the impact strengths, fragment sizes, and fragment velocities generated by cement mortar targets whose crushing strengths vary by an order of magnitude, upon impact of projectiles in the velocity range of 50-5700 m/sec. When combined with additional published data, dynamic impact strength is found to correlate with quasi-static material strengths for materials ranging in character from basalt to ice; two materials not following this trend, however, are weak mortar and clay targets. Values consistent with experimental results are obtainable with a simple scaling algorithm based on impact energy, material properties, and collisional strain rate.

  19. Scale model test results of several STOVL ventral nozzle concepts

    NASA Technical Reports Server (NTRS)

    Meyer, B. E.; Re, R. J.; Yetter, J. A.

    1991-01-01

    Short take-off and vertical landing (STOVL) ventral nozzle concepts are investigated by means of a static cold flow scale model at a NASA facility. The internal aerodynamic performance characteristics of the cruise, transition, and vertical lift modes are considered for four ventral nozzle types. The nozzle configurations examined include those with: butterfly-type inner doors and vectoring exit vanes; circumferential inner doors and thrust vectoring vanes; a three-port segmented version with circumferential inner doors; and a two-port segmented version with cylindrical nozzle exit shells. During the testing, internal and external pressure is measured, and the thrust and flow coefficients and resultant vector angles are obtained. The inner door used for ventral nozzle flow control is found to affect performance negatively during the initial phase of transition. The best thrust performance is demonstrated by the two-port segmented ventral nozzle due to the elimination of the inner door.

  20. Metabolic scaling in animals: methods, empirical results, and theoretical explanations.

    PubMed

    White, Craig R; Kearney, Michael R

    2014-01-01

    Life on earth spans a size range of around 21 orders of magnitude across species and can span a range of more than 6 orders of magnitude within species of animal. The effect of size on physiology is, therefore, enormous and is typically expressed by how physiological phenomena scale with mass(b). When b ≠ 1 a trait does not vary in direct proportion to mass and is said to scale allometrically. The study of allometric scaling goes back to at least the time of Galileo Galilei, and published scaling relationships are now available for hundreds of traits. Here, the methods of scaling analysis are reviewed, using examples for a range of traits with an emphasis on those related to metabolism in animals. Where necessary, new relationships have been generated from published data using modern phylogenetically informed techniques. During recent decades one of the most controversial scaling relationships has been that between metabolic rate and body mass and a number of explanations have been proposed for the scaling of this trait. Examples of these mechanistic explanations for metabolic scaling are reviewed, and suggestions made for comparing between them. Finally, the conceptual links between metabolic scaling and ecological patterns are examined, emphasizing the distinction between (1) the hypothesis that size- and temperature-dependent variation among species and individuals in metabolic rate influences ecological processes at levels of organization from individuals to the biosphere and (2) mechanistic explanations for metabolic rate that may explain the size- and temperature-dependence of this trait. PMID:24692144

  1. Metabolic scaling in animals: methods, empirical results, and theoretical explanations.

    PubMed

    White, Craig R; Kearney, Michael R

    2014-01-01

    Life on earth spans a size range of around 21 orders of magnitude across species and can span a range of more than 6 orders of magnitude within species of animal. The effect of size on physiology is, therefore, enormous and is typically expressed by how physiological phenomena scale with mass(b). When b ≠ 1 a trait does not vary in direct proportion to mass and is said to scale allometrically. The study of allometric scaling goes back to at least the time of Galileo Galilei, and published scaling relationships are now available for hundreds of traits. Here, the methods of scaling analysis are reviewed, using examples for a range of traits with an emphasis on those related to metabolism in animals. Where necessary, new relationships have been generated from published data using modern phylogenetically informed techniques. During recent decades one of the most controversial scaling relationships has been that between metabolic rate and body mass and a number of explanations have been proposed for the scaling of this trait. Examples of these mechanistic explanations for metabolic scaling are reviewed, and suggestions made for comparing between them. Finally, the conceptual links between metabolic scaling and ecological patterns are examined, emphasizing the distinction between (1) the hypothesis that size- and temperature-dependent variation among species and individuals in metabolic rate influences ecological processes at levels of organization from individuals to the biosphere and (2) mechanistic explanations for metabolic rate that may explain the size- and temperature-dependence of this trait.

  2. Preliminary Results of Testing of Flow Effects on Evaporator Scaling

    SciTech Connect

    Hu, M.Z.

    2002-02-15

    This investigation has focused on the effects of fluid flow on solids deposition from solutions that simulate the feed to the 2H evaporator at the Savannah River Site. Literature studies indicate that the fluid flow (or shear) affects particle-particle and particle-surface interactions and thus the phenomena of particle aggregation in solution and particle deposition (i.e., scale formation) onto solid surfaces. Experimental tests were conducted with two configurations: (1) using a rheometer to provide controlled shear conditions and (2) using controlled flow of reactive solution through samples of stainless steel tubing. All tests were conducted at 80 C and at high silicon and aluminum concentrations, 0.133 M each, in solutions containing 4 M sodium hydroxide and 1 A4 each of sodium nitrate and sodium nitrite. Two findings from these experiments are important for consideration in developing approaches for reducing or eliminating evaporator scaling problems: (1) The rheometer tests suggested that for the conditions studied, maximum solids deposition occurs at a moderate shear rate, approximately 12 s{sup -1}. That value is expected to be on the order of shear rates that will occur in various parts of the evaporator system; for instance, a 6 gal/min single-phase liquid flow through the 2-in. lift or gravity drain lines would result in a shear rate of approximately 16 s{sup -1}. These results imply that engineering approaches aimed at reducing deposits through increased mixing would need to generate shear near all surfaces significantly greater than 12 s{sup -1}. However, further testing is needed to set a target value for shear that is applicable to evaporator operation. This is because the measured trend is not statistically significant at the 95% confidence interval due to variability in the results. In addition, testing at higher temperatures and lower concentrations of aluminum and silicon would more accurately represent conditions in the evaporator. Without

  3. Characterization results of the JUNGFRAU full scale readout ASIC

    NASA Astrophysics Data System (ADS)

    Mozzanica, A.; Bergamaschi, A.; Brueckner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Jungmann-Smith, J.; Maliakal, D.; Mezza, D.; Ramilli, M.; Ruder, C.; Schaedler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2016-02-01

    The two-dimensional pixel detector JUNGFRAU is designed for high performance photon science applications at free electron lasers and synchrotron light sources. It is developed for the SwissFEL currently under construction at the Paul Scherrer Institut, Switzerland. The detector is a hybrid pixel detector with a charge integration readout ASIC characterized by single photon sensitivity and a low noise performance over a dynamic range of 104 12 keV photons. Geometrically, a JUNGFRAU readout chip consists of 256×256 pixels of 75×75 μm2. The chips are bump bonded to 320 μm thick silicon sensors. Arrays of 2×4 chips are tiled to form modules of 4×8 cm2 area. Several multi-module systems with up to 16 Mpixels per system will be delivered to the two end stations at SwissFEL. The JUNGFRAU full scale readout ASIC and module design are presented along with characterization results of the first systems. Experiments from fluorescence X-ray, visible light illumination, and synchrotron irradiation are shown. The results include an electronic noise of ~50 electrons r.m.s., which enables single photon detection energies below 2 keV and a noise well below the Poisson statistical limit over the entire dynamic range. First imaging experiments are also shown.

  4. Taking Successful Programs to Scale and Creating Lasting Results

    ERIC Educational Resources Information Center

    National Math and Science Initiative, 2008

    2008-01-01

    Scaling Effective Programs is a category of giving that is quite unique. Philanthropists have many different interests that guide their giving, but Scaling Effective Programs offers an approach that can produce lasting transformation. This guide speaks to funders who: (1) view their giving as venture capital that stimulates other giving; (2) want…

  5. Results of a sub-scale model rotor icing test

    NASA Technical Reports Server (NTRS)

    Flemming, Robert J.; Bond, Thomas H.; Britton, Randall K.

    1991-01-01

    A heavily instrumented sub-scale model of a helicopter main rotor was tested in the NASA Lewis Research Center Icing Research Tunnel (IRT) in September and November 1989. The four-bladed main rotor had a diameter of 1.83 m (6.00 ft) and the 0.124 m (4.9 in) chord rotor blades were specially fabricated for this experiment. The instrumented rotor was mounted on a Sikorsky Aircraft Powered Force Model, which enclosed a rotor balance and other measurement systems. The model rotor was exposed to a range of icing conditions that included variations in temperature, liquid water content, and median droplet diameter, and was operated over ranges of advance ratio, shaft angle, tip Mach number (rotor speed) and weight coefficient to determine the effect of these parameters on ice accretion. In addition to strain gage and balance data, the test was documented with still, video, and high speed photography, ice profile tracings, and ice molds. The sensitivity of the model rotor to the test parameters, is given, and the result to theoretical predictions are compared. Test data quality was excellent, and ice accretion prediction methods and rotor performance prediction methods (using published icing lift and drag relationships) reproduced the performance trends observed in the test. Adjustments to the correlation coefficients to improve the level of correlation are suggested.

  6. Underground tank vitrification: Engineering-scale test results

    SciTech Connect

    Campbell, B.E.; Timmerman, C.L.; Bonner, W.F.

    1990-06-01

    Contamination associated with underground tanks at US Department of Energy sites and other sites may be effectively remediated by application of in situ vitrification (ISV) technology. In situ vitrification converts contaminated soil and buried wastes such as underground tanks into a glass and crystalline block, similar to obsidian with crystalline phases. A radioactive engineering-scale test performed at Pacific Northwest Laboratory in September 1989 demonstrated the feasibility of using ISV for this application. A 30-cm-diameter (12-in.-diameter) buried steel and concrete tank containing simulated tank sludge was vitrified, producing a solid block. The tank sludge used in the test simulated materials in tanks at Oak Ridge National Laboratory. Hazardous components of the tank sludge were immobilized or removed and captured in the off-gas treatment system. The steel tank was converted to ingots near the bottom of the block and the concrete walls were dissolved into the resulting glass and crystalline block. Although one of the four moving electrodes froze'' in place about halfway into the test, operations were able to continue. The test was successfully completed and all the tank sludge was vitrified. 7 refs., 12 figs., 5 tabs.

  7. Ares I Scale Model Acoustic Test Overpressure Results

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Alvord, D. A.; McDaniels, D. M.

    2011-01-01

    A summary of the overpressure environment from the 5% Ares I Scale Model Acoustic Test (ASMAT) and the implications to the full-scale Ares I are presented in this Technical Memorandum. These include the scaled environment that would be used for assessing the full-scale Ares I configuration, observations, and team recommendations. The ignition transient is first characterized and described, the overpressure suppression system configuration is then examined, and the final environment characteristics are detailed. The recommendation for Ares I is to keep the space shuttle heritage ignition overpressure (IOP) suppression system (below-deck IOP water in the launch mount and mobile launcher and also the crest water on the main flame deflector) and the water bags.

  8. Full-scale results for TAM limestone injection

    SciTech Connect

    Baer, S.

    1996-12-31

    Information is outlined on the use of thermally active marble (TAM) sorbents in boilers. Data are presented on: the comparison of TAM to limestone; NOVACON process development history; CFB test history; CFB pilot scale test; full-scale CFB trial; August, 1996 CFB demonstration; Foster Wheeler Mount Carmel sorbent feed rate comparison and Ca:S comparison; unburned carbon is ash; and advantages and savings in CFB boilers.

  9. Synthesizing large-scale pyroclastic flows: Experimental design, scaling, and first results from PELE

    NASA Astrophysics Data System (ADS)

    Lube, G.; Breard, E. C. P.; Cronin, S. J.; Jones, J.

    2015-03-01

    Pyroclastic flow eruption large-scale experiment (PELE) is a large-scale facility for experimental studies of pyroclastic density currents (PDCs). It is used to generate high-energy currents involving 500-6500 m3 natural volcanic material and air that achieve velocities of 7-30 m s-1, flow thicknesses of 2-4.5 m, and runouts of >35 m. The experimental PDCs are synthesized by a controlled "eruption column collapse" of ash-lapilli suspensions onto an instrumented channel. The first set of experiments are documented here and used to elucidate the main flow regimes that influence PDC dynamic structure. Four phases are identified: (1) mixture acceleration during eruption column collapse, (2) column-slope impact, (3) PDC generation, and (4) ash cloud diffusion. The currents produced are fully turbulent flows and scale well to natural PDCs including small to large scales of turbulent transport. PELE is capable of generating short, pulsed, and sustained currents over periods of several tens of seconds, and dilute surge-like PDCs through to highly concentrated pyroclastic flow-like currents. The surge-like variants develop a basal <0.05 m thick regime of saltating/rolling particles and shifting sand waves, capped by a 2.5-4.5 m thick, turbulent suspension that grades upward to lower particle concentrations. Resulting deposits include stratified dunes, wavy and planar laminated beds, and thin ash cloud fall layers. Concentrated currents segregate into a dense basal underflow of <0.6 m thickness that remains aerated. This is capped by an upper ash cloud surge (1.5-3 m thick) with 100 to 10-4 vol % particles. Their deposits include stratified, massive, normally and reversely graded beds, lobate fronts, and laterally extensive veneer facies beyond channel margins.

  10. Results of intermediate-scale hot isostatic press can experiments

    SciTech Connect

    Nelson, L.O.; Vinjamuri, K.

    1995-05-01

    Radioactive high-level waste (HLW) has been managed at the Idaho Chemical Processing Plant (ICPP) for a number of years. Since 1963, liquid HLW has been solidified into a granular solid (calcine). Presently, over 3,800 m{sup 3} of calcine is stored in partially-underground stainless steel bins. Four intermediate- scale HLW can tests (two 6-in OD {times} 12-in tall and two 4-in OD {times} 7-in tall) are described and compared to small-scale HIP can tests (1- to 3-in OD {times} 1- to 4.5-in tall). The intermediate-scale HIP cans were loaded with a 70/30 calcine/frit blend and HIPped at an off-site facility at 1050{degrees}C; and 20 ksi. The dimensions of two cans (4-in OD {times} 7-in tall) were monitored during the HIP cycle with eddy-current sensors. The sensor measurements indicated that can deformation occurs rapidly at 700{degrees}C; after which, there is little additional can shrinkage. HIP cans were subjected to a number of analyses including calculation of the overall packing efficiency (56 to 59%), measurement of glass-ceramic (3.0 to 3.2 g/cc), 14-day MCC-1 leach testing (total mass loss rates < 1 g/m{sup 2} day), and scanning electron microscopy (SEM). Based on these analyses, the glass-ceramic material produced in intermediate-scale cans is similar to material produced in small-scale cans. No major scale-up problems were indicated. Based on the packing efficiency observed in intermediate- and small-scale tests, the overall packing efficiency of production-scale (24-in OD {times} 36- to 190-in tall) cans would be approximately 64% for a pre-HIP right-circular cylinder geometry. An efficiency of 64% would represent a volume reduction factor of 2.5 over a candidate glass waste prepared at 33 wt% waste loading.

  11. Alternate Forms Reliability of the Behavioral Relaxation Scale: Preliminary Results

    ERIC Educational Resources Information Center

    Lundervold, Duane A.; Dunlap, Angel L.

    2006-01-01

    Alternate forms reliability of the Behavioral Relaxation Scale (BRS; Poppen,1998), a direct observation measure of relaxed behavior, was examined. A single BRS score, based on long duration observation (5-minute), has been found to be a valid measure of relaxation and is correlated with self-report and some physiological measures. Recently,…

  12. Validation Results for Core-Scale Oil Shale Pyrolysis

    SciTech Connect

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation. Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.

  13. Radiative shocks on large scale lasers. Preliminary results

    NASA Astrophysics Data System (ADS)

    Leygnac, S.; Bouquet, S.; Stehle, C.; Barroso, P.; Batani, D.; Benuzzi, A.; Cathala, B.; Chièze, J.-P.; Fleury, X.; Grandjouan, N.; Grenier, J.; Hall, T.; Henry, E.; Koenig, M.; Lafon, J. P. J.; Malka, V.; Marchet, B.; Merdji, H.; Michaut, C.; Poles, L.; Thais, F.

    2001-05-01

    Radiative shocks, those structure is strongly influenced by the radiation field, are present in various astrophysical objects (circumstellar envelopes of variable stars, supernovae ...). Their modeling is very difficult and thus will take benefit from experimental informations. This approach is now possible using large scale lasers. Preliminary experiments have been performed with the nanosecond LULI laser at Ecole Polytechnique (France) in 2000. A radiative shock has been obtained in a low pressure xenon cell. The preparation of such experiments and their interpretation is performed using analytical calculations and numerical simulations.

  14. Scaling Behavior in Economics: I. Empirical Results for Company Growth

    NASA Astrophysics Data System (ADS)

    Nunes Amaral, Luís A.; Buldyrev, Sergey V.; Havlin, Shlomo; Leschhorn, Heiko; Maass, Philipp; Salinger, Michael A.; Stanley, H. Eugene; Stanley, Michael H. R.

    1997-04-01

    We address the question of the growth of firm size. To this end, we analyze the Compustat data base comprising all publicly-traded United States manufacturing firms within the years 1974-1993. We find that the distribution of firm sizes remains stable for the 20 years we study, i.e., the mean value and standard deviation remain approximately constant. We study the distribution of sizes of the “new” companies in each year and find it to be well approximated by a log-normal. We find (i) the distribution of the logarithm of the growth rates, for a fixed growth period of one year, and for companies with approximately the same size S, display an exponential form, and (ii) the fluctuations in the growth rates measured by the width of this distribution σ_1 scale as a power with S, σ_1sim S^{-β}. We find that the exponent β takes the same value, within the error bars, for several measures of the size of a company. In particular, we obtain: β = 0.20± 0.03 for sales, β = 0.18± 0.03 for number of employees, β = 0.18± 0.03 for assets, β = 0.18± 0.03 for cost of goods sold, and β = 0.20± 0.03 for property, plant, and equipment.

  15. A 4×4 point to point router based on microring resonators

    NASA Astrophysics Data System (ADS)

    Lu, Huanyu; Yang, Junbo; Zhang, Jingjing; Wu, Wenjun; Huang, Jie; Yang, Yuanjie

    2015-10-01

    A new 4×4 point to point router is investigated with the transfer matrix method. Its routing paths and low loss of power are successfully demonstrated. The proposed design is easily integrated to a larger scale with less microring resonators, and the power loss from the input port to the output port is demonstrated to be lower than 10%. All of the microrings designed here have the identical radii of 6.98 μm, and they are all in resonance at a wavelength of 1550 nm. Both the gap between the microring and the bus waveguide and the gap between two neighbouring rings are 100 nm. The width of bus waveguide as well as the microrings is designed to be 200 nm. Free spectral range (FSR) is supposed to be around 17 nm based on the parameters above. A large extinction ratio (ER) is also achieved, which shows the high coupling efficiency to a certain extent. Thermal tuning is employed to make the microrings be in resonance or not, not including the two microring resonators in the middle. In other words, the two microrings are always in resonance and transport signals when the input signals pass by them. Hence, only two microrings are needed to deal with if one wants to route a signal. Although this architecture is blocking and not available for multicasting and multiplexing, it is a valuable effort that could be available for some optical experiments on-chip, such as optical interconnection, optical router.

  16. Scaling results for the Liquid Sheet Radiator (LSR)

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.

    1989-01-01

    Surface tension forces at the edges of a thin liquid (approx. 100 micrometers) sheet flow result in a triangularly shaped sheet. Such a geometry is ideal for an external flow radiator. The experimental investigation of such sheet flows was extended to large sheets (width = W = 23.5 cm, length = L approx. = 3.5 m). Experimental L/W results are greater than the calculated results. However, more experimental results are necessary for a complete comparison. The calculated emissivity of a sheet of Dow-Corning 705 silicone oil, which is a low temperature (300 to 400K) candidate for a liquid sheet radiator (LSR), is greater than .8 for sheet thicknesses greater than 100 micrometers.

  17. COMPILATION OF LABORATORY SCALE ALUMINUM WASH AND LEACH REPORT RESULTS

    SciTech Connect

    HARRINGTON SJ

    2011-01-06

    This report compiles and analyzes all known wash and caustic leach laboratory studies. As further data is produced, this report will be updated. Included are aluminum mineralogical analysis results as well as a summation of the wash and leach procedures and results. Of the 177 underground storage tanks at Hanford, information was only available for five individual double-shell tanks, forty-one individual single-shell tanks (e.g. thirty-nine 100 series and two 200 series tanks), and twelve grouped tank wastes. Seven of the individual single-shell tank studies provided data for the percent of aluminum removal as a function of time for various caustic concentrations and leaching temperatures. It was determined that in most cases increased leaching temperature, caustic concentration, and leaching time leads to increased dissolution of leachable aluminum solids.

  18. Intervention Validity of Social Behavior Rating Scales: Features of Assessments that Link Results to Treatment Plans

    ERIC Educational Resources Information Center

    Elliott, Stephen N.; Gresham, Frank M.; Frank, Jennifer L.; Beddow, Peter A., III

    2008-01-01

    The term "intervention validity" refers to the extent to which assessment results can be used to guide the selection of interventions and evaluation of outcomes. In this article, the authors review the defining attributes of rating scales that distinguish them from other assessment tools, assumptions regarding the use of rating scales to measure…

  19. Acoustic resonance in tube bundles -- Comparison of full scale and laboratory test results

    SciTech Connect

    Eisinger, F.L.

    1995-12-01

    Full scale operational data from steam generator tube bundles exposed to hot gases in crossflow are compared with small scale laboratory test results with cold air. Vibration thresholds based on input energy, acoustic particle velocity and effective damping are evaluated and compared. It is shown that these parameters play an important role in the development, or suppression of acoustic resonance.

  20. Final-Year Results from the i3 Scale-Up of Reading Recovery

    ERIC Educational Resources Information Center

    May, Henry; Sirinides, Philip; Gray, Abby; Davila, Heather Goldsworthy; Sam, Cecile; Blalock, Toscha; Blackman, Horatio; Anderson-Clark, Helen; Schiera, Andrew J.

    2015-01-01

    As part of the 2010 economic stimulus, a $55 million "Investing in Innovation" (i3) grant from the US Department of Education was awarded to scale up Reading Recovery across the nation. This paper presents the final round of results from the large-scale, mixed methods randomized evaluation of the implementation and impacts of Reading…

  1. The Sarah evaluation scale for children and adolescents with cerebral palsy: description and results

    PubMed Central

    Pinto, Katia S.; Carvalho, Camila G. C.; Nakamoto, Lilian; Nunes, Luiz G. N.

    2016-01-01

    ABSTRACT Background Assessments of motor-functional aspects in cerebral palsy are crucial to rehabilitation programs. Objective To introduce the Sarah motor-functional evaluation scale and to report the initial results of its measurement properties. This scale was created based on the experience of the Sarah Network of Rehabilitation Hospitals in the care of children and adolescents with cerebral palsy. Method Preliminary results concerning the measurement properties of the scale were obtained via assessment of 76 children and adolescents with cerebral palsy. Experts' opinions were used to determine an expected empirical score by age group and to differentiate severity levels. Results The scale exhibited a high Cronbach’s alpha coefficient (0.95). Strong correlation was observed with experts’ classification for severity levels (0.81 to 0.97) and with the scales Gross Motor Function Measure and Pediatric Evaluation of Disability Inventory (0.80 to 0.98). Regression analysis detected a significant relationship between the scale score and the severity of the child’s motor impairment. The inter-rater reliability was also strong (intraclass correlation coefficient ranging from 0.98 to 0.99). The internal responsiveness of the scale score was confirmed by significant differences between longitudinal evaluations (paired Student’s t test with p<0.01; standardized response mean of 0.60). Conclusion The Sarah scale provides a valid measure for assessing the motor skills and functional performance of children and adolescents with cerebral palsy. The preliminary results showed that the Sarah scale has potential for use in routine clinical practice and rehabilitation units. PMID:27437718

  2. Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses?

    USGS Publications Warehouse

    Luco, N.; Bazzurro, P.

    2007-01-01

    Limitations of the existing earthquake ground motion database lead to scaling of records to obtain seismograms consistent with a ground motion target for structural design and evaluation. In the engineering seismology community, acceptable limits for 'legitimate' scaling vary from one (no scaling allowed) to 10 or more. The concerns expressed by detractors of scaling are mostly based on the knowledge of, for example, differences in ground motion characteristics for different earthquake magnitude-distance (Mw-Rclose) scenarios, and much less on their effects on structures. At the other end of the spectrum, proponents have demonstrated that scaling is not only legitimate but also useful for assessing structural response statistics for Mw-Rclose scenarios. Their studies, however, have not investigated more recent purposes of scaling and have not always drawn conclusions for a wide spectrum of structural vibration periods and strengths. This article investigates whether scaling of records randomly selected from an Mw-Rclose bin (or range) to a target fundamental-mode spectral acceleration (Sa) level introduces bias in the expected nonlinear structural drift response of both single-degree-of-freedom oscillators and one multi-degree-of-freedom building. The bias is quantified relative to unscaled records from the target Mw-Rclose bin that are 'naturally' at the target Sa level. We consider scaling of records from the target Mw-Rclose bin and from other Mw-Rclose bins. The results demonstrate that scaling can indeed introduce a bias that, for the most part, ca be explained by differences between the elastic response spectra of the scaled versus unscaled records. Copyright ?? 2007 John Wiley & Sons, Ltd.

  3. Ares I Scale Model Acoustic Test Above Deck Water Sound Suppression Results

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program test matrix was designed to determine the acoustic reduction for the Liftoff acoustics (LOA) environment with an above deck water sound suppression system. The scale model test can be used to quantify the effectiveness of the water suppression system as well as optimize the systems necessary for the LOA noise reduction. Several water flow rates were tested to determine which rate provides the greatest acoustic reductions. Preliminary results are presented.

  4. SiC-CMC-Zircaloy-4 Nuclear Fuel Cladding Performance during 4-Point Tubular Bend Testing

    SciTech Connect

    IJ van Rooyen; WR Lloyd; TL Trowbridge; SR Novascone; KM Wendt; SM Bragg-Sitton

    2013-09-01

    The U.S. Department of Energy Office of Nuclear Energy (DOE NE) established the Light Water Reactor Sustainability (LWRS) program to develop technologies and other solutions to improve the reliability, sustain the safety, and extend the life of current reactors. The Advanced LWR Nuclear Fuel Development Pathway in the LWRS program encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. Recent investigations of potential options for “accident tolerant” nuclear fuel systems point to the potential benefits of silicon carbide (SiC) cladding. One of the proposed SiC-based fuel cladding designs being investigated incorporates a SiC ceramic matrix composite (CMC) as a structural material supplementing an internal Zircaloy-4 (Zr-4) liner tube, referred to as the hybrid clad design. Characterization of the advanced cladding designs will include a number of out-of-pile (nonnuclear) tests, followed by in-pile irradiation testing of the most promising designs. One of the out-of-pile characterization tests provides measurement of the mechanical properties of the cladding tube using four point bend testing. Although the material properties of the different subsystems (materials) will be determined separately, in this paper we present results of 4-point bending tests performed on fully assembled hybrid cladding tube mock-ups, an assembled Zr-4 cladding tube mock-up as a standard and initial testing results on bare SiC-CMC sleeves to assist in defining design parameters. The hybrid mock-up samples incorporated SiC-CMC sleeves fabricated with 7 polymer impregnation and pyrolysis (PIP) cycles. To provide comparative information; both 1- and 2-ply braided SiC-CMC sleeves were used in this development study. Preliminary stress simulations were performed using the BISON nuclear fuel performance code to show the stress distribution differences for varying lengths between loading points

  5. Dynamical Scaling Implications of Ferrari, Prähofer, and Spohn's Remarkable Spatial Scaling Results for Facet-Edge Fluctuations

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Pimpinelli, Alberto

    2014-06-01

    Spurred by theoretical predictions from Ferrari et al. (Phys Rev E 69:035102(R), 2004), we rederived and extended their result heuristically. With experimental colleagues we used STM line scans to corroborate their prediction that the fluctuations of the step bounding a facet exhibit scaling properties distinct from those of isolated steps or steps on vicinal surfaces. The correlation functions was shown to go as , decidedly different from the behavior for fluctuations of isolated steps.

  6. Results of aerodynamic testing of large-scale wing sections in a simulated natural rain environment

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Campbell, Bryan A.; Melson, W. Edward, Jr.

    1990-01-01

    The NASA Langley Research Center has developed a large-scale ground testing capability for evaluating the effect of heavy rain on airfoil lift. The paper presents the results obtained at the Langley Aircraft Landing Dynamics Facility on a 10-foot cord NACA 64-210 wing section equipped with a leading-edge slat and double-slotted trailing-edge flap deflected to simulate landing conditions. Aerodynamic lift data were obtained with and without the rain simulation system turned on for an angle-of-attack range of 7.5 to 19.5 deg and for two rainfall conditions: 9 in/hr and 40 in/hr. The results are compared to and correlated with previous small-scale wind tunnel results for the same airfoil section. It appears that to first order, scale effects are not large and the wind tunnel research technique can be used to predict rain effects on airplane performance.

  7. Laser profilometry and length-scale analysis of stone tools: second series experiment results.

    PubMed

    James Stemp, W; Childs, Ben E; Vionnet, Samuel

    2010-01-01

    Based on the need to develop a method to reliably and objectively document and discriminate the use-wear on archaeological stone tools, Stemp et al. (2009) tested whether the surface roughness measured on experimentally worn stone tools used on different contact materials could be discriminated. Results of these initial experiments indicated that discrimination was possible and also determined the scales over which this discrimination occurred. In this article, we report the results of additional experiments using the same method on a second set of tools to test its reliability and reproducibility. In these experiments, four flint flakes were intensively used for 20 min on either conch shell or dry deer antler. The surface roughness or texture of the stone tools was measured by generating 2D profiles using a UBM laser profilometer. Relative lengths (RLs) calculated from the profiles were used directly as characterization parameters and subsequently compared statistically at each scale using the F-test to establish a level of confidence for the differentiation at each scale represented in the measured profiles. The mean square ratios of measurement data were used to determine whether the variation in roughness was statistically significant and to what level of confidence. The scales at which there was a high level of confidence were the ones at which the tools were differentiable. The results of these experiments confirm our previous findings that RLs, over certain scale ranges, can discriminate the stone tool surface wear profiles produced by the different contact materials.

  8. Laser profilometry and length-scale analysis of stone tools: second series experiment results.

    PubMed

    James Stemp, W; Childs, Ben E; Vionnet, Samuel

    2010-01-01

    Based on the need to develop a method to reliably and objectively document and discriminate the use-wear on archaeological stone tools, Stemp et al. (2009) tested whether the surface roughness measured on experimentally worn stone tools used on different contact materials could be discriminated. Results of these initial experiments indicated that discrimination was possible and also determined the scales over which this discrimination occurred. In this article, we report the results of additional experiments using the same method on a second set of tools to test its reliability and reproducibility. In these experiments, four flint flakes were intensively used for 20 min on either conch shell or dry deer antler. The surface roughness or texture of the stone tools was measured by generating 2D profiles using a UBM laser profilometer. Relative lengths (RLs) calculated from the profiles were used directly as characterization parameters and subsequently compared statistically at each scale using the F-test to establish a level of confidence for the differentiation at each scale represented in the measured profiles. The mean square ratios of measurement data were used to determine whether the variation in roughness was statistically significant and to what level of confidence. The scales at which there was a high level of confidence were the ones at which the tools were differentiable. The results of these experiments confirm our previous findings that RLs, over certain scale ranges, can discriminate the stone tool surface wear profiles produced by the different contact materials. PMID:20853403

  9. Arthroscopic 4-Point Suture Fixation of Anterior Cruciate Ligament Tibial Avulsion Fractures

    PubMed Central

    Boutsiadis, Achilleas; Karataglis, Dimitrios; Agathangelidis, Filon; Ditsios, Konstantinos; Papadopoulos, Pericles

    2014-01-01

    Tibial eminence avulsion fractures are rare injuries occurring mainly in adolescents and young adults. When necessary, regardless of patient age, anatomic reduction and stable internal fixation are mandatory for fracture healing and accurate restoration of normal knee biomechanics. Various arthroscopically assisted fixation methods with sutures, anchors, wires, or screws have been described but can be technically demanding, thus elongating operative times. The purpose of this article is to present a technical variation of arthroscopic suture fixation of anterior cruciate ligament avulsion fractures. Using thoracic drain needles over 2.4-mm anterior cruciate ligament tibial guidewires, we recommend the safe and easy creation of four 2.9-mm tibial tunnels at different angles and at specific points. This technique uses thoracic drain needles as suture passage cannulas and offers 4-point fixation stability, avoiding potential complications of bony bridge fracture and tunnel connection. PMID:25685674

  10. Nonlinear electric reaction arising in dry bone subjected to 4-point bending

    NASA Astrophysics Data System (ADS)

    Murasawa, Go; Cho, Hideo; Ogawa, Kazuma

    2007-04-01

    Bone is a smart, self-adaptive and also partly self-repairing tissue. In recent years, many researchers seek to find how to give the effective mechanical stimulation to bone, because it is the predominant loading that determines the bone shape and macroscopic structure. However, the trial of regeneration of bone is still under way. On the other hand, it has been known that electrical potential generates from bone by mechanical stimulation (Yasuda, 1977; Williams, 1982; Starkebaum, 1979; Cochran, 1968; Lanyon, 1977; Salzstein, 1987a,b; Friedenberg, 1966). This is called "stress-generated potential (SGP)". The process of information transfer between "strain" and "cells" is not still clear. But, there is some possibility that SGP has something to do with the process of information transfer. If the electrical potential is more clear under some mechanical loadings, we will be able to regenerate bone artificially and freely. Therefore, it is important to investigate SGP in detail. The aim of present study is to investigate the electric reaction arising in dry bone subjected to mechanical loadings at high amplitude and low frequency strain. Firstly, specimen is fabricated from femur of cow. Next, the speeds of wave propagation in bone are tried to measure by laser ultra sonic technique and wavelet transform, because these have relationship with bone density. Secondary, 4-point bending test is conducted up to fracture. Then, electric reaction arising in bone is measured during loading. Finally, cyclic 4-point bending tests are conducted to investigate the electric reaction arising in bone at low frequency strain.

  11. RichMind: A Tool for Improved Inference from Large-Scale Neuroimaging Results

    PubMed Central

    Maron-Katz, Adi; Amar, David; Simon, Eti Ben; Hendler, Talma; Shamir, Ron

    2016-01-01

    As the use of large-scale data-driven analysis becomes increasingly common, the need for robust methods for interpreting a large number of results increases. To date, neuroimaging attempts to interpret large-scale activity or connectivity results often turn to existing neural mapping based on previous literature. In case of a large number of results, manual selection or percent of overlap with existing maps is frequently used to facilitate interpretation, often without a clear statistical justification. Such methodology holds the risk of reporting false positive results and overlooking additional results. Here, we propose using enrichment analysis for improving the interpretation of large-scale neuroimaging results. We focus on two possible cases: position group analysis, where the identified results are a set of neural positions; and connection group analysis, where the identified results are a set of neural position-pairs (i.e. neural connections). We explore different models for detecting significant overrepresentation of known functional brain annotations using simulated and real data. We implemented our methods in a tool called RichMind, which provides both statistical significance reports and brain visualization. We demonstrate the abilities of RichMind by revisiting two previous fMRI studies. In both studies RichMind automatically highlighted most of the findings that were reported in the original studies as well as several additional findings that were overlooked. Hence, RichMind is a valuable new tool for rigorous inference from neuroimaging results. PMID:27455041

  12. Reproducing the Wechsler Intelligence Scale for Children-Fifth Edition: Factor Model Results

    ERIC Educational Resources Information Center

    Beaujean, A. Alexander

    2016-01-01

    One of the ways to increase the reproducibility of research is for authors to provide a sufficient description of the data analytic procedures so that others can replicate the results. The publishers of the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V) do not follow these guidelines when reporting their confirmatory factor…

  13. Lessons from a Large-Scale Assessment: Results from Conceptual Inventories

    ERIC Educational Resources Information Center

    Thacker, Beth; Dulli, Hani; Pattillo, Dave; West, Keith

    2014-01-01

    We report conceptual inventory results of a large-scale assessment project at a large university. We studied the introduction of materials and instructional methods informed by physics education research (PER) (physics education research-informed materials) into a department where most instruction has previously been traditional and a significant…

  14. Initial Laboratory-Scale Melter Test Results for Combined Fission Product Waste

    SciTech Connect

    Riley, Brian J.; Crum, Jarrod V.; Buchmiller, William C.; Rieck, Bennett T.; Schweiger, Michael J.; Vienna, John D.

    2009-10-01

    This report describes the methods and results used to vitrify a baseline glass, CSLNTM-C-2.5 in support of the AFCI (Advanced Fuel Cycle Initiative) using a Quartz Crucible Scale Melter at the Pacific Northwest National Laboratory. Document number AFCI-WAST-PMO-MI-DV-2009-000184.

  15. Results from large scale ultimate strength tests of K-braced jacket frame structures

    SciTech Connect

    Bolt, H.M.

    1995-12-01

    Phase 2 of the JIP Frames Project included four large scale collapse tests of K-braced frames in which both gap and overlap K joints were the critical components. The results are presented in this paper. The local failure modes differed from typical isolated component tests, yet were representative of structural damage observed following Hurricane Andrew. The frame test results therefore provide important insight to the ultimate response of offshore jacket structures.

  16. Large Scale Structure Studies: Final Results from a Rich Cluster Redshift Survey

    NASA Astrophysics Data System (ADS)

    Slinglend, K.; Batuski, D.; Haase, S.; Hill, J.

    1995-12-01

    The results from the COBE satellite show the existence of structure on scales on the order of 10% or more of the horizon scale of the universe. Rich clusters of galaxies from the Abell-ACO catalogs show evidence of structure on scales of 100 Mpc and hold the promise of confirming structure on the scale of the COBE result. Unfortunately, until now, redshift information has been unavailable for a large percentage of these clusters, so present knowledge of their three dimensional distribution has quite large uncertainties. Our approach in this effort has been to use the MX multifiber spectrometer on the Steward 2.3m to measure redshifts of at least ten galaxies in each of 88 Abell cluster fields with richness class R>= 1 and mag10 <= 16.8 (estimated z<= 0.12) and zero or one measured redshifts. This work has resulted in a deeper, 95% complete and more reliable sample of 3-D positions of rich clusters. The primary intent of this survey has been to constrain theoretical models for the formation of the structure we see in the universe today through 2-pt. spatial correlation function and other analyses of the large scale structures traced by these clusters. In addition, we have obtained enough redshifts per cluster to greatly improve the quality and size of the sample of reliable cluster velocity dispersions available for use in other studies of cluster properties. This new data has also allowed the construction of an updated and more reliable supercluster candidate catalog. Our efforts have resulted in effectively doubling the volume traced by these clusters. Presented here is the resulting 2-pt. spatial correlation function, as well as density plots and several other figures quantifying the large scale structure from this much deeper and complete sample. Also, with 10 or more redshifts in most of our cluster fields, we have investigated the extent of projection effects within the Abell catalog in an effort to quantify and understand how this may effect the Abell sample.

  17. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect

    Gary M. Blythe

    2006-03-01

    Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

  18. Critical adsorption in the undersaturated regime: Scaling and exact results in Ising strips

    NASA Astrophysics Data System (ADS)

    Ciach, A.; Maciolek, A.; Stecki, J.

    1998-04-01

    Critical adsorption for weak surface field h1 is reconsidered. On the basis of physical heuristic arguments, approximate behavior of the scaling function is derived. New form of a scaling for weak h1 in finite systems is proposed and verified by testing against exact results obtained for this purpose in the 2D Ising strips. For weak h1 we find the approximate behavior of adsorption Γ˜τβ-Δ1 for the reduced temperatures h11/Δ1˜τ≪1. This behavior is consistent with experimental data [N. S. Desai, S. Peach, and C. Franck, Phys. Rev. E 52, 4129 (1995)] obtained for τ=10-5, and is in a very good agreement with exact results in the 2D Ising strip.

  19. Condor equatorial spread F-italic Campaign: Overview and results of the large-scale measurements

    SciTech Connect

    Kelley, M.C.; LaBelle, J.; Kudeki, E.; Fejer, B.G.; Basu, S.; Basu, S.; Baker, K.D.; Hanuise, C.; Argo, P.; Woodman, R.F.; Swartz, W.E.; Farley, D.T.; Meriwether J.W. Jr.

    1986-05-01

    During the Condor campaign a number of instruments were set up in Peru to support the rocket experiments. In this series of papers we report on the results of the experiments designed to study the equatorial F-italic region. In this overview paper we summarize the main results as well as report upon the macroscopic developments of spread F-italic as evidenced by data from backscatter radars, from scintillation observations, and from digital ionosonde measurements. In this latter regard, we argue here that at least two factors other than the classical gravitational Rayleigh-Taylor plasma instability process must operate to yield the longest-scale horizontal organization of spread F-italic structures. The horizontal scale typical of plume separation distances can be explained by invoking the effect of a shear in the plasma flow, although detailed comparison with theory seems to require shear frequencies a bit higher than observations indicate. On the other hand, the largest-scale organization or modulation of the scattering layer cannot be explained by the shear theory and must be due to local time variations in the ionospheric drift or to gravity wave induced vertical motions. Using simultaneous rocket and radar data, we were also able to confirm the oft quoted hypothesis that rapid overhead height variations in the scattering region over Jicamarca are primarily spatial structures advecting overhead. The detailed rocket-radar comparison verified several other earlier results and speculations, particularly those made in the PLUMEX experiments.

  20. Condor equatorial Spread F campaign. Overview and results of the large-scale measurements

    SciTech Connect

    Kelley, M.C.; LaBelle, J.; Kudeki, E.; Fejer, B.G.; Basu, S.

    1986-05-01

    During the Condor campaign a number of instruments were set up in Peru to support the rocket experiments. This overview paper summarizes the main results on the macroscopic developments of spread F as evidenced by data from backscatter radars, from scintillation observations, and from digital ionosonde measurements. In this regard, at least two factors other than the classical gravitational Rayleigh-Taylor plasma instability process must operate to yield the longest scales horizontal organization of spread F structures. The horizontal scale typical of plume separation distances can be explained by invoking the effect of a shear in the plasma flow, although detailed comparison with theory seems to require shear frequencies a bit higher than observations indicate. On the other hand, the largest-scale organization or modulation of the scattering layer cannot be explained by the shear theory and must be due to local time variations in the ionospheric drift or to gravity wave induced vertical motions. Using simultaneous rocket and radar data, it is hypothesized that rapid overhead height variations in the scattering region over Jicamarca are primarily spatial structures advecting overhead. The detailed rocket-radar comparison verified several other earlier results and speculations, particularly those made in the PLUMEX experiments.

  1. Ozone treatment of cooling water, results of a full-scale performance evaluation

    SciTech Connect

    Coppenger, D.G.; Crocker, B.R.; Wheeler, D.E.

    1989-01-01

    This paper is the first technical status report of a continuing evaluation of ozone treatment for cooling tower water. Data will be presented that illustrate the results of ozone treatment in a 3400-ton air-conditioning cooling system at the Oak Ridge Y-12 Plant. Heat-transfer data and equipment inspections confirm that a threshold surface temperature exists, below which heat-exchange surfaces remain free of mineral scale. Heat-exchange surfaces that exceed the temperature threshold experience calcium carbonate scaling. The temperature threshold effect may explain why ozone treatment has been reported as a successful treatment for air-conditioning cooling towers but has not been successful in higher temperature process cooling systems. Plans for future ozone investigations will be discussed. 15 refs., 6 figs., 6 tabs.

  2. Short-duration low-gravity experiments - Time scales, challenges and results

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.

    1993-01-01

    Short-duration low-gravity experiments can be conducted either in drop tubes and drop towers, or on sounding rockets and aircraft on ballistic trajectories. While these facilities offer more frequent flight opportunities and higher cost effectiveness than orbiting spacecraft, their relatively short low-gravity times are often perceived as limiting their utility to only a narrow range of applications and research areas. In this review it is shown, based on scaling laws for diffusive transport of momentum, species and heat, radiative heat transfer and capillarity-driven motion, that with proper consideration of the characteristic length scales, a host of phenomena can be meaningfully investigated during a few seconds. This usefulness of short-duration low-gravity facilities is illustrated with numerous results of recent studies of solidification, combustion, transport in multiphase systems, statics and dynamics of liquid surfaces, magnetic Benard convection, fluid management, transport properties and the graviperception in cells.

  3. Cosmic background radiation anisotropy at degree angular scales - Further results from the South Pole

    NASA Technical Reports Server (NTRS)

    Schuster, Jeffrey; Gaier, Todd; Gundersen, Joshua; Meinhold, Peter; Koch, Timothy; Seiffert, Michael; Wuensche, Carlos A.; Lubin, Philip

    1993-01-01

    We report further results from the University of California at Santa Barbara program to measure anisotropy in the cosmic background radiation at angular scales near 1 deg, an angular range corresponding to the largest scales where structure is observed. A 30 GHz high electron mobility transistor amplifier-based detector was coupled to the Advanced Cosmic Microwave Explorer, a 1 m off-axis Gregorian telescope. We present data that represent 64 of the total of 500 hr acquired with this system during the 1990-1991 season. The data have a statistical error of 13.5/micro-K/pixel. These are the smallest error bars of any data set of this type published to date. The data contain a significant signal with a maximum likelihood Delta T/T roughly 1 x 10 exp -5. The spectrum of the signal seen in slightly less than 2 sigma away from the thermal spectrum expected of primordial fluctuations in the cosmic background radiation. If the source of the fluctuations is primordial, then the data are consistent with cold dark matter scenarios when normalized to the large-scale anisotropy observed by COBE, while if the origin of the signal is foreground emission or another form of contaminant then the data are marginally inconsistent with standard cold dark matter models. In either case, the data are sufficiently sensitive to provide a crucial test of many models.

  4. Comparison of RAGE Hydrocode Mars Impact Model Results to Scaling Law Predictions

    NASA Astrophysics Data System (ADS)

    Plesko, Catherine S.; Wohletz, K. H.; Coker, R. F.; Asphaug, E.; Gittings, M. L.

    2007-10-01

    Impact devolatilization has been proposed by Segura et al. (2002) and Carr (1996) as a mechanism for triggering sporadic, intense precipitation on Mars. We seek to examine this hypothesis, specifically to determine the lower bound on possible energy/size scales, and thus an upper bound on the frequency of such events. To do this, we employ various analytical and numerical modeling techniques including the RAGE hydrocode. RAGE (Baltrusaitis et al. 1996) is an Eulerian Hydrocode that runs in up to three dimensions and incorporates a variety of detailed equations of state including the temperature-based SESAME tables maintained by LANL. In order to validate RAGE hydrocode results at the scale of moderate to large asteroid impacts, we compare simplified models of vertical impacts of objects of diameter 10 -100 km into homogeneous basalt targets under Martian conditions to pressure scaling law predictions (Holsapple 1993, e.g. Tables 3-4) for the same scenario. Peak pressures are important to the volatile mobilization question (Stewart and Ahrens, 2005), thus it is of primary importance for planned future modeling efforts to confirm that pressures in RAGE are well behaved. Knowledge of the final crater geometry and the fate of ejecta are not required to understand our main question: to what depth and radius are subsurface volatiles are mobilized, for a given impact and target? This effort is supported by LANL/IGPP (CSP, RFC, KHW, MLG) and by NASA PG&G "Small Bodies and Planetary Collisions" (EA).

  5. Large-scale dynamic compaction demonstration using WIPP salt: Fielding and preliminary results

    SciTech Connect

    Ahrens, E.H.; Hansen, F.D.

    1995-10-01

    Reconsolidation of crushed rock salt is a phenomenon of great interest to programs studying isolation of hazardous materials in natural salt geologic settings. Of particular interest is the potential for disaggregated salt to be restored to nearly an impermeable state. For example, reconsolidated crushed salt is proposed as a major shaft seal component for the Waste Isolation Pilot Plant (WIPP) Project. The concept for a permanent shaft seal component of the WIPP repository is to densely compact crushed salt in the four shafts; an effective seal will then be developed as the surrounding salt creeps into the shafts, further consolidating the crushed salt. Fundamental information on placement density and permeability is required to ensure attainment of the design function. The work reported here is the first large-scale compaction demonstration to provide information on initial salt properties applicable to design, construction, and performance expectations. The shaft seals must function for 10,000 years. Over this period a crushed salt mass will become less permeable as it is compressed by creep closure of salt surrounding the shaft. These facts preclude the possibility of conducting a full-scale, real-time field test. Because permanent seals taking advantage of salt reconsolidation have never been constructed, performance measurements have not been made on an appropriately large scale. An understanding of potential construction methods, achievable initial density and permeability, and performance of reconsolidated salt over time is required for seal design and performance assessment. This report discusses fielding and operations of a nearly full-scale dynamic compaction of mine-run WIPP salt, and presents preliminary density and in situ (in place) gas permeability results.

  6. Heavy-flavor results for the era of SUSY and TeV-scale

    SciTech Connect

    Kwon, Youngjoon

    2008-11-23

    In this talk, we review recent experimental results in the heavy-flavor physics, in particular, in the B meson and {tau} lepton systems. We focus on the phenomena which could be sensitive to new physics effects in the TeV scale, including SUSY. The CP violations in B and B{sub s} mesons, radiative and electroweak penguin decays of B, search for lepton-flavor-violaing {tau} decays, prospects of CP violation search in {tau} and B decays to final states including {tau} leptons are discussed.

  7. Results of a coupled fracture-flow test at the 0.5-m scale

    SciTech Connect

    Costantino, M. S.

    1998-08-14

    This report presents progress made on two experiments on 0.5-meter-scale blocks to determine thermohydromechanical (THM) behavior of fractured rock. We first present results for an experiment on sample SB3, including data for flow measurements through a horizontally oriented, artifical (saw-cut) fracture at a series of differential fluid pressures and temperatures under uniaxial stress conditions up to 14 MPa. We then present the experiment design and a progress report on the assembly of experiment SB4, flow through a vertically oriented fracture intersected by a line heat source.

  8. Free-Flight Test Results of Scale Models Simulating Viking Parachute/Lander Staging

    NASA Technical Reports Server (NTRS)

    Polutchko, Robert J.

    1973-01-01

    This report presents the results of Viking Aerothermodynamics Test D4-34.0. Motion picture coverage of a number of Scale model drop tests provides the data from which time-position characteristics as well as canopy shape and model system attitudes are measured. These data are processed to obtain the instantaneous drag during staging of a model simulating the Viking decelerator system during parachute staging at Mars. Through scaling laws derived prior to test (Appendix A and B) these results are used to predict such performance of the Viking decelerator parachute during staging at Mars. The tests were performed at the NASA/Kennedy Space Center (KSC) Vertical Assembly Building (VAB). Model assemblies were dropped 300 feet to a platform in High Bay No. 3. The data consist of an edited master film (negative) which is on permanent file in the NASA/LRC Library. Principal results of this investigation indicate that for Viking parachute staging at Mars: 1. Parachute staging separation distance is always positive and continuously increasing generally along the descent path. 2. At staging, the parachute drag coefficient is at least 55% of its prestage equilibrium value. One quarter minute later, it has recovered to its pre-stage value.

  9. Unexpected results from large-scale cryptosporidiosis screening study in calves in Tanzania.

    PubMed

    Chang'a, J S; Robertson, L J; Mtambo, M M A; Mdegela, R H; Løken, T; Reksen, O

    2011-10-01

    A study was undertaken to investigate Cryptosporidium infection in crossbreed dairy calves in two districts in Tanzania. A total of 943 fecal samples from 601 dairy calves were included in the study, with calves from both smallholder dairy farms and from large-scale and medium-scale dairy farms. The modified Ziehl-Neelsen (mZN) technique was used to examine 710 samples, and 13 of these were considered to be positive for Cryptosporidium. These 13 samples considered positive by mZN, along with the remaining 233 samples, were analysed by immunofluorescent antibody test (IFAT). Of these 246 samples examined by IFAT, 15 samples, 10 of which were considered positive by mZN, were also examined by the auramine phenol technique, and 5 samples, all of which were considered positive by mZN, were analysed by PCR. The results from the IFAT, auramine phenol and PCR analyses demonstrated that none of the samples contained Cryptosporidium oocysts, indicating that, cryptosporidiosis is currently not a problem in dairy calves in these regions of Tanzania. These unexpected results are discussed with respect to other reports on cryptosporidiosis in calves that suggest that this parasite is a serious calf disease globally, and particularly in relation to studies from Tanzania. We suggest that results from studies of cattle in Tanzania, in which mZN has been used as the sole analytical method, should be treated with caution.

  10. Large-scale hydrogen combustion experiments: Volume 1, Methodology and results: Final report

    SciTech Connect

    Thompson, R.T.; Torok, R.C.; Randall, D.S.; Sullivan, J.S.; Thompson, L.B.; Haugh, J.J.

    1988-10-01

    Forty large-scale experiments to investigate the combustion behavior of hydrogen during postulated degraded core accidents were conducted in a 16 m (52 ft) diameter sphere. The performance of safety related equipment and cable also was examined. Combustion was initiated by thermal igniters in both premixed hydrogen-air-steam atmospheres and during the continuous injection of hydrogen and steam. The effects of steam, igniter location, water sprays, fans and injection rates were studied. Measurements were made of gas concentrations, combustion pressures, temperatures and heat fluxes. Burn fractions and flame speeds also were determined. Near-infrared seeing cameras permitted direct observation of the hydrogen burns. Combustion pressures and temperatures in premixed atmospheres with hydrogen concentrations up to 13 vol% (steam saturated) were less than the theoretical maximum values. Multiple deflagrations were not encountered during continuous hydrogen injection with pre-activated igniters. Moderate pressure rises resulted from diffusion flames. These flames generally were found above the source. Combustion results have been compared to smaller scale experiments. Several safety related equipment items exhibited degraded performance after a number of tests. Most cable samples passed their electrical checks at the end of the test series. These experiments confirm the effectiveness of the deliberate ignition approach to controlling hydrogen. They also provide data for validating computer codes used to predict hydrogen combustion during degraded core accidents, and for assessing the performance of safety related equipment in such environments. 236 figs., 110 tabs.

  11. Mercury emissions control by wet FGD systems: EPRI pilot-scale results

    SciTech Connect

    Peterson, J.R.; Hargrove, O.W. Jr.; Seeger, D.M.

    1995-06-01

    This paper presents results from pilot-scale tests that investigated mercury removal across wet limestone flue gas desulfurization (FGD) systems. The program was conducted at EPRIs Environmental Control Technology Center, located in Barker, NY. The test results showed that mercuric chloride (HgCl{sub 2}) was efficiently removed across the FGD system, while elemental mercury was not collected. The practical implication of this study is that although FGD systems efficiently remove some forms of mercury from flue gas, the overall mercury removal efficiency, and therefore the total mercury emissions from a coal-fired power plant equipped with an FGD system, will depend on the chemical form of the mercury in the flue gas. Unfortunately, no validated gas sampling method is available for speciating the different forms of mercury in flue gas. It is, therefore, difficult to predict mercury removal across FGD systems and to interpret any mercury removal data that have been collected.

  12. Is the Short Distance Scale a Result of a Problem with the LMC Photometric Zero Point?

    SciTech Connect

    Popowski, P

    2004-03-29

    I present a promising route to harmonize distance measurements based on clump giants and RR Lyrae stars. This is achieved by comparing the brightness of these distance indicators in three environments: the solar neighborhood, Galactic bulge and Large Magellanic Cloud (LMC). As a result of harmonizing the distance scales in the solar neighborhood and Baade's Window, I derive the new absolute magnitude of RR Lyrae stars, M{sub v}(RR) at [Fe/H] = -1.6 (0.59 {+-} 0.05, 0.70 {+-} 0.05). Being somewhat brighter than the statistical parallax solution, but fainter than typical results of the main sequence fitting to Hipparcos data, these values of M{sub V}(RR) favor intermediate or old ages of globular clusters. Harmonizing the distance scales in the LMC and Baade's Window, I show that the most likely distance modulus to the LMC, {mu}{sub LMC} is in the range 18.24 - 18.44. The Hubble constant of about 70 km/s/Mpc reported by the HST Key Project is based on the assumption that the distance modulus to the LMC equals 18.50. The results presented here indicate that the Hubble Constant may be up to 12% higher. This in turn would call for a younger Universe and could result in some tension between the age of the Universe and the ages of globular clusters. I argue that the remaining uncertainty in the distance to the LMC is now a question of one, single photometric reference point rather than discrepancies between different standard candles.

  13. Validation and results of a scale model of dew deposition in urban environments

    NASA Astrophysics Data System (ADS)

    Richards, K.; Oke, T. R.

    2002-12-01

    There is growing interest in urban dew and its significance in questions of urban climate and air pollution deposition, but little research has been undertaken to study it. In this study, a generic, urban residential neighbourhood is modelled out-of-doors at a scale of 0.125, using three wooden houses (1.08 m tall), a concrete pavement (1.0 m in width), a grassed park (7.5 m in half-width) and several small trees (up to 1.5 m tall). The thermal inertia of each house is inflated, according to the internal thermal mass (ITM) approach, so that nocturnal surface temperatures are conserved. First-order validation was achieved through comparison with data collected at nearby full-scale sites in Vancouver, BC, Canada. Moisture accumulation (measured by blotting on grass and by lysimetry) is found to be primarily controlled by nocturnal weather conditions and the intrinsic nature of each substrate, e.g. dewfall is abundant on nights with few clouds and light winds, and on surfaces such as grass and asphalt-shingle roofs, which cool rapidly after sunset. However, these responses are modified by location effects related to the net radiation balance of the surface, which itself is strongly linked to site geometry as expressed by sky view factor and whether surfaces are isolated from heat sources. The dominant mechanism is argued to be the systematic increase in longwave radiation loss that is associated with increased sky view. Results agree with those observed at the full scale and suggest that maps of sky view factor, and knowledge of dew at an open site, can potentially be used to create maps of dew distribution in urban and other complex environments.

  14. Experimental results from pressure testing a 1:6-scale nuclear power plant containment

    SciTech Connect

    Horschel, D.S.

    1992-01-01

    This report discusses the testing of a 1:6-scale, reinforced-concrete containment building at Sandia National Laboratories, in Albuquerque, New Mexico. The scale-model, Light Water Reactor (LWR) containment building was designed and built to the American Society of Mechanical Engineers (ASME) code by United Engineers and Constructors, Inc., and was instrumented with over 1200 transducers to prepare for the test. The containment model was tested to failure to determine its response to static internal overpressurization. As part of the US Nuclear Regulatory Commission`s program on containment integrity, the test results will be used to assess the capability of analytical methods to predict the performance of containments under severe-accident loads. The scaled dimensions of the cylindrical wall and hemispherical dome were typical of a full-size containment. Other typical features included in the heavily reinforced model were equipment hatches, personnel air locks, several small piping penetrations, and a ihin steel liner that was attached to the concrete by headed studs. In addition to the transducers attached to the model, an acoustic detection system and several video and still cameras were used during testing to gather data and to aid in the conduct of the test. The model and its instrumentation are briefly discussed, and is followed by the testing procedures and measured response of the containment model. A summary discussion is included to aid in understanding the significance of the test as it applies to real world reinforced concrete containment structures. The data gathered during SIT and overpressure testing are included as an appendix.

  15. Results from a scaled reactor cavity cooling system with water at steady state

    SciTech Connect

    Lisowski, D. D.; Albiston, S. M.; Tokuhiro, A.; Anderson, M. H.; Corradini, M. L.

    2012-07-01

    We present a summary of steady-state experiments performed with a scaled, water-cooled Reactor Cavity Cooling System (RCCS) at the Univ. of Wisconsin - Madison. The RCCS concept is used for passive decay heat removal in the Next Generation Nuclear Plant (NGNP) design and was based on open literature of the GA-MHTGR, HTR-10 and AVR reactor. The RCCS is a 1/4 scale model of the full scale prototype system, with a 7.6 m structure housing, a 5 m tall test section, and 1,200 liter water storage tank. Radiant heaters impose a heat flux onto a three riser tube test section, representing a 5 deg. radial sector of the actual 360 deg. RCCS design. The maximum heat flux and power levels are 25 kW/m{sup 2} and 42.5 kW, and can be configured for variable, axial, or radial power profiles to simulate prototypic conditions. Experimental results yielded measurements of local surface temperatures, internal water temperatures, volumetric flow rates, and pressure drop along the test section and into the water storage tank. The majority of the tests achieved a steady state condition while remaining single-phase. A selected number of experiments were allowed to reach saturation and subsequently two-phase flow. RELAP5 simulations with the experimental data have been refined during test facility development and separate effects validation of the experimental facility. This test series represents the completion of our steady-state testing, with future experiments investigating normal and off-normal accident scenarios with two-phase flow effects. The ultimate goal of the project is to combine experimental data from UW - Madison, UI, ANL, and Texas A and M, with system model simulations to ascertain the feasibility of the RCCS as a successful long-term heat removal system during accident scenarios for the NGNP. (authors)

  16. Re-evaluation of the 1995 Hanford Large Scale Drum Fire Test Results

    SciTech Connect

    Yang, J M

    2007-05-02

    A large-scale drum performance test was conducted at the Hanford Site in June 1995, in which over one hundred (100) 55-gal drums in each of two storage configurations were subjected to severe fuel pool fires. The two storage configurations in the test were pallet storage and rack storage. The description and results of the large-scale drum test at the Hanford Site were reported in WHC-SD-WM-TRP-246, ''Solid Waste Drum Array Fire Performance,'' Rev. 0, 1995. This was one of the main references used to develop the analytical methodology to predict drum failures in WHC-SD-SQA-ANAL-501, 'Fire Protection Guide for Waste Drum Storage Array,'' September 1996. Three drum failure modes were observed from the test reported in WHC-SD-WM-TRP-246. They consisted of seal failure, lid warping, and catastrophic lid ejection. There was no discernible failure criterion that distinguished one failure mode from another. Hence, all three failure modes were treated equally for the purpose of determining the number of failed drums. General observations from the results of the test are as follows: {lg_bullet} Trash expulsion was negligible. {lg_bullet} Flame impingement was identified as the main cause for failure. {lg_bullet} The range of drum temperatures at failure was 600 C to 800 C. This is above the yield strength temperature for steel, approximately 540 C (1,000 F). {lg_bullet} The critical heat flux required for failure is above 45 kW/m{sup 2}. {lg_bullet} Fire propagation from one drum to the next was not observed. The statistical evaluation of the test results using, for example, the student's t-distribution, will demonstrate that the failure criteria for TRU waste drums currently employed at nuclear facilities are very conservative relative to the large-scale test results. Hence, the safety analysis utilizing the general criteria described in the five bullets above will lead to a technically robust and defensible product that bounds the potential consequences from postulated

  17. Validation of the FRAIL scale in Mexican elderly: results from the Mexican Health and Aging Study

    PubMed Central

    Díaz de León González, Enrique; Gutiérrez Hermosillo, Hugo; Martinez Beltran, Jesus Avilio; Medina Chavez, Juan Humberto; Palacios Corona, Rebeca; Salinas Garza, Deborah Patricia; Rodriguez Quintanilla, Karina Alejandra

    2016-01-01

    Background The aging population in Latin America is characterized by not optimal conditions for good health, experiencing high burden of comorbidity, which contribute to increase the frequency of frailty; thus, identification should be a priority, to classify patients at high risk to develop its negative consequences. Aim The objective of this analysis was to validate the FRAIL instrument to measure frailty in Mexican elderly population, from the database of the Mexican Health and Aging Study (MHAS). Materials and methods Prospective, population study in Mexico, that included subjects of 60 years and older who were evaluated for the variables of frailty during the year 2001 (first wave of the study). Frailty was measured with the five-item FRAIL scale (fatigue, resistance, ambulation, illnesses, and weight loss). The robust, pre-frail or intermediate, and the frail group were considered when they had zero, one, and at least two components, respectively. Mortality, hospitalizations, falls, and functional dependency were evaluated during 2003 (second wave of the study). Relative risk was calculated for each complications, as well as hazard ratio (for mortality) through Cox regression model and odds ratio with logistic regression (for the rest of the outcomes), adjusted for covariates. Results The state of frailty was independently associated with mortality, hospitalizations, functional dependency, and falls. The pre-frailty state was only independently associated with hospitalizations, functional dependency, and falls. Conclusions Frailty measured through the FRAIL scale, is associated with an increase in the rate of mortality, hospitalizations, dependency in activities of daily life, and falls. PMID:26646253

  18. Development and Validation of the Controller Acceptance Rating Scale (CARS): Results of Empirical Research

    NASA Technical Reports Server (NTRS)

    Lee, Katharine K.; Kerns, Karol; Bone, Randall

    2001-01-01

    The measurement of operational acceptability is important for the development, implementation, and evolution of air traffic management decision support tools. The Controller Acceptance Rating Scale was developed at NASA Ames Research Center for the development and evaluation of the Passive Final Approach Spacing Tool. CARS was modeled after a well-known pilot evaluation rating instrument, the Cooper-Harper Scale, and has since been used in the evaluation of the User Request Evaluation Tool, developed by MITRE's Center for Advanced Aviation System Development. In this paper, we provide a discussion of the development of CARS and an analysis of the empirical data collected with CARS to examine construct validity. Results of intraclass correlations indicated statistically significant reliability for the CARS. From the subjective workload data that were collected in conjunction with the CARS, it appears that the expected set of workload attributes was correlated with the CARS. As expected, the analysis also showed that CARS was a sensitive indicator of the impact of decision support tools on controller operations. Suggestions for future CARS development and its improvement are also provided.

  19. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    SciTech Connect

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W.

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the {open_quote}normal{close_quote} configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge.

  20. Results from sudden loss of vacuum on scaled superconducting radio frequency cryomodule experiment

    SciTech Connect

    Dalesandro, Andrew A.; Theilacker, Jay C.; Dhuley, Ram C.; Van Sciver, Steven W.

    2014-01-29

    Superconducting radio frequency (SRF) cavities for particle accelerators are at risk of failure due to sudden loss of vacuum (SLV) adjacent to liquid helium (LHe) spaces. To better understand this failure mode and its associated risks an experiment is designed to test the longitudinal effects of SLV within the beam tube of a scaled SRF cryomodule that has considerable length relative to beam tube cross section. The scaled cryomodule consists of six individual SRF cavities each roughly 350 mm long, initially cooled to 2 K by a superfluid helium bath and a beam tube pumped to vacuum. A fast-acting solenoid valve is used to simulate SLV on the beam tube, from which point it takes over 3 s for the beam tube pressure to equalize with atmosphere, and 30 s for the helium space to reach the relief pressure of 4 bara. A SLV longitudinal effect in the beam tube is evident in both pressure and temperature data, but interestingly the temperatures responds more quickly to SLV than do the pressures. It takes 500 ms (roughly 100 ms per cavity) for the far end of the 2 m long beam tube to respond to a pressure increase compared to 300 ms for temperature (approximately 50 ms per cavity). The paper expands upon these and other results to better understand the longitudinal effect for SRF cryomodules due to SLV.

  1. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  2. Scales

    ScienceCinema

    Murray Gibson

    2016-07-12

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  3. Density and Cavitating Flow Results from a Full-Scale Optical Multiphase Cryogenic Flowmeter

    NASA Technical Reports Server (NTRS)

    Korman, Valentin

    2007-01-01

    Liquid propulsion systems are hampered by poor flow measurements. The measurement of flow directly impacts safe motor operations, performance parameters as well as providing feedback from ground testing and developmental work. NASA Marshall Space Flight Center, in an effort to improve propulsion sensor technology, has developed an all optical flow meter that directly measures the density of the fluid. The full-scale sensor was tested in a transient, multiphase liquid nitrogen fluid environment. Comparison with traditional density models shows excellent agreement with fluid density with an error of approximately 0.8%. Further evaluation shows the sensor is able to detect cavitation or bubbles in the flow stream and separate out their resulting effects in fluid density.

  4. Analysis and test for space shuttle propellant dynamics: 1/60th scale model test results

    NASA Technical Reports Server (NTRS)

    Berry, R. L.; Tegart, J. R.

    1978-01-01

    During the abort sequence, the ET and orbiter separate under aerodynamic loading, with propellant remaining in the ET. The separation event included a seven second decelerating coast period during which the residual propellant accelerates relative to the ET/orbiter. At separation, ET clearance was primarily provided by aerodynamics acting on the ET to move it away. The motion of the propellant, primarily LOX, significantly influenced the resulting ET motion and could cause the ET to recontact the orbiter. A test program was conducted involving thirty-two drops with 1/60th scale models of the ET LOX tank. The objective was to acquire data on the nature of low g propellant reorientation, in the ET LOX tank, and to measure the forces exerted on the tank by the moving propellant.

  5. ATS 6 EMI field measurements techniques and results. [anechoic chamber scale model testing

    NASA Technical Reports Server (NTRS)

    Afifi, M. S.; Keiser, B. E.

    1974-01-01

    At the present time 'Applications Technology Satellite (ATS)-6' is the world's largest communication satellite. It handles telecommunications in the frequency range of 40 - 30,000 MHz. Power levels on board the spacecraft range from -110 dBm to 52.5 dBw. Consequently considerable care was required in the design and test of this spacecraft, in order to provide assurances that the spacecraft would perform properly in its own RF environments. The testing was performed first by placing the earth viewing module (EVM) in a specially constructed 'small' anechoic chamber with an overhead parabolic reflector section, of 8' in diameter, instead of the 30' reflector of the full scale design. The near field analysis of this paper proves that this test configuration leads to a desirable overtest for the spacecraft. The test requirements, procedure and results are also explained.

  6. Lessons from a large-scale assessment: Results from conceptual inventories

    NASA Astrophysics Data System (ADS)

    Thacker, Beth; Dulli, Hani; Pattillo, Dave; West, Keith

    2014-12-01

    We report conceptual inventory results of a large-scale assessment project at a large university. We studied the introduction of materials and instructional methods informed by physics education research (PER) (physics education research-informed materials) into a department where most instruction has previously been traditional and a significant number of faculty are hesitant, ambivalent, or even resistant to the introduction of such reforms. Data were collected in all of the sections of both the large algebra- and calculus-based introductory courses for a number of years employing commonly used conceptual inventories. Results from a small PER-informed, inquiry-based, laboratory-based class are also reported. Results suggest that when PER-informed materials are introduced in the labs and recitations, independent of the lecture style, there is an increase in students' conceptual inventory gains. There is also an increase in the results on conceptual inventories if PER-informed instruction is used in the lecture. The highest conceptual inventory gains were achieved by the combination of PER-informed lectures and laboratories in large class settings and by the hands-on, laboratory-based, inquiry-based course taught in a small class setting.

  7. Preshot Calculations for a Small-Scale HE Experiment. Overview and Results for Symmetric Configurations

    SciTech Connect

    Holmes, Richard L.

    2015-05-27

    Explosively-driven magnetic flux compression generators create substantial currents (10’s of mega-amps) by compressing magnetic fields initially created by injected seed currents. In a Ranchero generator it is the field between two cylinders of aluminum that is compressed when the inner cylinder (armature) is driven across the magnetized gap toward the second cylinder (stator) [1]. All Rancheros to date have used the explosive PBXN-110, but future devices are expected to use PBX-9501 because of several advantages of the latter over the former. For Ranchero applications, though, a potentially important disadvantage stems from the requirement that the large PBX-9501 charges (15 to 50 kg) must built up from smaller machined pieces rather than cast into the appropriate shape as with PBXN-110. Calculations [2] and related experiments [3] raise the possibility that jetting may occur at gaps between machined pieces of PBX-9501 and lead to localized failure of the soft aluminum armature causing premature contact of the armature with the stator or, in the most extreme case, a severing of the armature into separate pieces and a subsequent loss of current. A set of small-scale experiments has been designed to provide Ranchero designers and users insight into the effects of gaps and also to provide useful data for the validation of Ranchero calculations. These experiments should be executed in early May 2015. The code Rage [4] was used to model the small-scale experiment and this paper presents the results. The emphasis here is on the calculations and the experimental details are limited, so the interested reader is referred to reference 5 for a fuller description of the experimental configuration and diagnostics. Less-interested readers may be interested in only a summary of results and are directed to the “Summary of key results” section later in this paper.

  8. Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey

    SciTech Connect

    Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2005-03-28

    Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.

  9. Field-scale effective matrix diffusion coefficient for fractured rock: results from literature survey.

    PubMed

    Zhou, Quanlin; Liu, Hui-Hai; Molz, Fred J; Zhang, Yingqi; Bodvarsson, Gudmundur S

    2007-08-15

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D(m)(e), a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D(m)(e) values were calculated, either directly using data reported in the literature, or by reanalyzing the corresponding field tracer tests. The reanalysis was conducted for the selected tracer tests using analytic or semi-analytic solutions for tracer transport in linear, radial, or interwell flow fields. Surveyed data show that the scale factor of the effective matrix diffusion coefficient (defined as the ratio of D(m)(e) to the lab-scale matrix diffusion coefficient, D(m), of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate, on average trend toward systematic increase in the scale factor with observation scale. This trend suggests that the effective matrix diffusion coefficient is likely to be statistically scale-dependent. The scale-factor value ranges from 0.5 to 884 for observation scales from 5 to 2000 m. At a given scale, the scale factor varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different geologic sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity

  10. Acoustic Treatment Design Scaling Methods. Volume 3; Test Plans, Hardware, Results, and Evaluation

    NASA Technical Reports Server (NTRS)

    Yu, J.; Kwan, H. W.; Echternach, D. K.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The ability to design, build, and test miniaturized acoustic treatment panels on scale-model fan rigs representative of the full-scale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. To be able to use scale model treatment as a full-scale design tool, it is necessary that the designer be able to reliably translate the scale model design and performance to an equivalent full-scale design. The primary objective of the study presented in this volume of the final report was to conduct laboratory tests to evaluate liner acoustic properties and validate advanced treatment impedance models. These laboratory tests include DC flow resistance measurements, normal incidence impedance measurements, DC flow and impedance measurements in the presence of grazing flow, and in-duct liner attenuation as well as modal measurements. Test panels were fabricated at three different scale factors (i.e., full-scale, half-scale, and one-fifth scale) to support laboratory acoustic testing. The panel configurations include single-degree-of-freedom (SDOF) perforated sandwich panels, SDOF linear (wire mesh) liners, and double-degree-of-freedom (DDOF) linear acoustic panels.

  11. The impact of subgrid-scale vegetation distribution on the results of terrestrial carbon cycle modeling

    NASA Astrophysics Data System (ADS)

    Sergeev, Dennis; Eliseev, Alexey

    2013-04-01

    To understand the behavior of the terrestrial carbon cycle under changing atmospheric carbon dioxide levels and climate it is essential to integrate and improve an interactive carbon cycle in all climate models, including Earth system models of intermediate complexity (EMICs). Vegetation distribution and dynamics in each grid cell of these models due to their coarse resolution remains the key area of uncertainty. The present paper focuses on the impact of different mosaic approaches implemented in climate model on the main carbon cycle parameters, such as primary production and carbon stocks. In this study we use the new version of the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS) climate model (CM) [1], which terrestrial carbon cycle module was improved by implementing subgrid-scale heterogeneity of plant functional types (PFT). Moreover, two additional PFTs were added: natural wetlands and bare land/deserts. The model was also extended by including the nitrogen limitation for plant photosynthesis. Different scenarios of natural and anthropogenic climate forcing described in the EMIC AR5 protocol [http://climate.uvic.ca/EMICAR5], were considered in simulations for the period of time from 850 to 2300 yr. In the 21st-23rd centuries simulations external forcing was prescribed according to the RCP (Representative Concentration Pathways) scenarios [2]. Natural vegetation in each 4.5°×6° grid cell was arranged in two different ways: 1) with a dominant PFT, spread on the whole grid cell space (mosaic-1), and 2) with all PFTs that are may be present in a grid cell (mosaic-2). In addition to natural vegetation, changes in agricultural area prescribed by CMIP5 scenarios were taken into account. Numerical experiments show that consideration of subgrid-scale PFT inhomogeneities results in 3 PgC yr-1 increase in global gross primary production (GPP) during the preindustrial period and the early 20th century. This growth is more

  12. EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    SciTech Connect

    Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2009-08-14

    20 wt% solids using cross-flow ultrafiltration before the addition of caustic. For wastes that have significantly high chromium content, the caustic leaching and slurry dewatering is followed by adding sodium permanganate to UFP-VSL-T02A, and the slurry is subjected to oxidative leaching at nominally ambient temperature. The purpose of the oxidative leaching is to selectively oxidize the poorly alkaline-soluble Cr(III) believed to be the insoluble form in Hanford tank sludge to the much more alkaline-soluble Cr(VI), e.g., chromate. The work described in this report provides the test results that are related to the efficiency of the oxidative leaching process to support process modeling based on tests performed with a Hanford waste simulant. The tests were completed both at the lab-bench scale and in the PEP. The purpose of this report is to summarize the results from both scales that are related to oxidative leaching chemistry to support a scale factor for the submodels to be used in the G2 model, which predicts WTP operating performance. Owing to schedule constraints, the PEP test data to be included in this report are limited to those from Integrated Tests A (T01 A/B caustic leaching) and B (T02A caustic leaching).

  13. Results of bench-scale plasma system testing in support of the Plasma Hearth Process

    SciTech Connect

    Leatherman, G.L.; Cornelison, C.; Frank, S.

    1996-10-01

    The Plasma Hearth Process (PHP) is a high-temperature process that destroys hazardous organic components and stabilizes the radioactive components and hazardous metals in a leach-resistant vitreous slag waste form. The PHP technology development program is targeted at mixed waste that cannot be easily treated by conventional means. For example, heterogeneous debris, which may contain hazardous organics, toxic metals, and radionuclides, is difficult to characterize and cannot be treated with conventional thermal, chemical, or physical treatment methods. A major advantage of the PHP over other plasma processes is its ability to separate nonradioactive, non-hazardous metals from the non-metallic and radioactive components which are contained in the vitreous slag. The overall PHP program involves the design, fabrication, and operation of test hardware to demonstrate and certify that the PHP concept is viable for DOE waste treatment. The program involves bench-scale testing of PHP equipment in radioactive service, as well as pilot-scale demonstration of the PHP concept using nonradioactive, surrogate test materials. The fate of secondary waste streams is an important consideration for any technology considered for processing mixed waste. The main secondary waste stream generated by the PHP is flyash captured by the fabric- filter baghouse. The PHP concept is that flyash generated by the process can, to a large extent, be treated by processing this secondary waste stream in the PHP. Prior to the work presented in the paper, however, the PHP project has not quantitatively demonstrated the ability to treat PHP generated flyash. A major consideration is the quantity of radionuclides and RCRA-regulated metals in the flyash that can be retained the resultant waste form.

  14. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  15. Prediction of full-scale dewatering results of sewage sludges by the physical water distribution.

    PubMed

    Kopp, J; Dichtl, N

    2001-01-01

    The dewaterability of sewage sludge can be described by the total solids concentration of the sludge cake and the polymer-demand for conditioning. The total solids concentration of the sludge cake depends on the physical water distribution. The various types of water in sewage sludge are mainly distinguished by the type and the intensity of their physical bonding to the solids. In a sewage sludge suspension four different types of water can be distinguished. These are the free water, which is not bound to the particles, the interstitial water, which is bound by capillary forces between the sludge flocs, the surface water, which is bound by adhesive forces and intracellular water. Only the share of free water can be separated during mechanical dewatering. It can be shown, that by thermo-gravimeteric measurement of the free water content, an exact prediction of full-scale dewatering results is possible. By separation of all free water during centrifugation the maximum dewatering result is reached. Polymer conditioning increases the velocity of the sludge water release, but the free water content is not influenced by this process. Furthermore it is not possible, to replace the measuring of the water distribution by other individual parameters such as ignition loss.

  16. Spatial resolution effect on the simulated results of watershed scale models

    NASA Astrophysics Data System (ADS)

    Epelde, Ane; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José Miguel

    2016-04-01

    Numerical models are useful tools for water resources planning, development and management. Currently, their use is being spread and more complex modeling systems are being employed for these purposes. The adding of complexity allows the simulation of water quality related processes. Nevertheless, this implies a considerable increase on the computational requirements, which usually is compensated on the models by a decrease on their spatial resolution. The spatial resolution of the models is known to affect the simulation of hydrological processes and therefore, also the nutrient exportation and cycling processes. However, the implication of the spatial resolution on the simulated results is rarely assessed. In this study, we examine the effect of the change in the grid size on the integrated and distributed results of the Alegria River watershed model (Basque Country, Northern Spain). Variables such as discharge, water table level, relative water content of soils, nitrogen exportation and denitrification are analyzed in order to quantify the uncertainty involved in the spatial discretization of the watershed scale models. This is an aspect that needs to be carefully considered when numerical models are employed in watershed management studies or quality programs.

  17. A Measurement of Large-Scale Peculiar Velocities of Clusters of Galaxies: Results and Cosmological Implications

    NASA Astrophysics Data System (ADS)

    Kashlinsky, A.; Atrio-Barandela, F.; Kocevski, D.; Ebeling, H.

    2008-10-01

    Peculiar velocities of clusters of galaxies can be measured by studying the fluctuations in the cosmic microwave background (CMB) generated by the scattering of the microwave photons by the hot X-ray-emitting gas inside clusters. While for individual clusters such measurements result in large errors, a large statistical sample of clusters allows one to study cumulative quantities dominated by the overall bulk flow of the sample with the statistical errors integrating down. We present results from such a measurement using the largest all-sky X-ray cluster catalog combined to date and the 3 yr WMAP CMB data. We find a strong and coherent bulk flow on scales out to at least gsim300 h-1 Mpc, the limit of our catalog. This flow is difficult to explain by gravitational evolution within the framework of the concordance ΛCDM model and may be indicative of the tilt exerted across the entire current horizon by far-away pre-inflationary inhomogeneities.

  18. The Arabic Scale of Death Anxiety (ASDA): Its Development, Validation, and Results in Three Arab Countries

    ERIC Educational Resources Information Center

    Abdel-Khalek, Ahmed M.

    2004-01-01

    The Arabic Scale of Death Anxiety (ASDA) was constructed and validated in a sample of undergraduates (17-33 yrs) in 3 Arab countries, Egypt (n = 418), Kuwait (n = 509), and Syria (n = 709). In its final form, the ASDA consists of 20 statements. Each item is answered on a 5-point intensity scale anchored by 1: No, and 5: Very much. Alpha…

  19. Evaluation of Environmental Attitudes: Analysis and Results of a Scale Applied to University Students

    ERIC Educational Resources Information Center

    Fernandez-Manzanal, Rosario; Rodriguez-Barreiro, Luis; Carrasquer, Jose

    2007-01-01

    Over the last few decades, environmental work has increased significantly. An important part of this has to do with attitudes. This research presents the design and validation of an environmental attitudes scale aimed at university students. Detailed information on development and validation of the scale is provided. Similarly, it presents the…

  20. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY

    SciTech Connect

    Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson

    2005-04-08

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal

  1. SCALE-UP OF RAPID SMALL-SCALE ADSORPTION TESTS TO FIELD-SCALE ADSORBERS: THEORETICAL BASIS AND EXPERIMENTAL RESULTS FOR A CONSTANT DIFFUSIVITY

    EPA Science Inventory

    Granular activated carbon (GAC) is an effective treatment technique for the removal of some toxic organics from drinking water or wastewater, however, it can be a relatively expensive process, especially if it is designed improperly. A rapid method for the design of large-scale f...

  2. Dynamic stability test results on an 0.024 scale B-1 air vehicle

    NASA Technical Reports Server (NTRS)

    Beeman, R. R.

    1972-01-01

    Dynamic longitudinal and lateral-directional stability characteristics of the B-1 air vehicle were investigated in three wind tunnels at the Langley Research Center. The main rotary derivatives were obtained for an angle of attack range of -3 degrees to +16 degrees for a Mach number range of 0.2 to 2.16. Damping in roll data could not be obtained at the supersonic Mach numbers. The Langley 7 x 10 foot high speed tunnel, the 8 foot transonic pressure tunnel, and the 4 foot Unitary Plan wind tunnel were the test sites. An 0.024 scale light-weight model was used on a forced oscillation type balance. Test Reynolds number varied from 474,000/ft to 1,550,000/ft. through the Mach number range tested. The results showed that the dynamic stability characteristics of the model in pitch and roll were generally satisfactory up to an angle attack of about +6 degrees. In the wing sweep range from 15 to 25 degrees the positive damping levels in roll deteriorated rapidly above +2 degrees angle of attack. This reduction in roll damping is believed to be due to the onset of separation over the wing as stall is approached.

  3. Planck early results. XI. Calibration of the local galaxy cluster Sunyaev-Zeldovich scaling relations

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Brown, M. L.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; da Silva, A.; Dahle, H.; Danese, L.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lanoux, J.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Liddle, A.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Valenziano, L.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    We present precise Sunyaev-Zeldovich (SZ) effect measurements in the direction of 62 nearby galaxy clusters (z < 0.5) detected at high signal-to-noise in the first Planck all-sky data set. The sample spans approximately a decade in total mass, 2 × 1014 M⊙ < M500 < 2 × 1015 M⊙, where M500 is the mass corresponding to a total density contrast of 500. Combining these high quality Planck measurements with deep XMM-Newton X-ray data, we investigate the relations between DA2 Y500, the integrated Compton parameter due to the SZ effect, and the X-ray-derived gas mass Mg,500, temperature TX, luminosity LX,500, SZ signal analogue YX,500 = Mg,500 × TX, and total mass M500. After correction for the effect of selection bias on the scaling relations, we find results that are in excellent agreement with both X-ray predictions and recently-published ground-based data derived from smaller samples. The present data yield an exceptionally robust, high-quality local reference, and illustrate Planck's unique capabilities for all-sky statistical studies of galaxy clusters. Corresponding author: G. W. Pratt, e-mail: gabriel.pratt@cea.fr

  4. Comparison of Computational and Experimental Microphone Array Results for an 18%-Scale Aircraft Model

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Humphreys, William M.; Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano; Ravetta, Patricio A.

    2015-01-01

    An 18%-scale, semi-span model is used as a platform for examining the efficacy of microphone array processing using synthetic data from numerical simulations. Two hybrid RANS/LES codes coupled with Ffowcs Williams-Hawkings solvers are used to calculate 97 microphone signals at the locations of an array employed in the NASA LaRC 14x22 tunnel. Conventional, DAMAS, and CLEAN-SC array processing is applied in an identical fashion to the experimental and computational results for three different configurations involving deploying and retracting the main landing gear and a part span flap. Despite the short time records of the numerical signals, the beamform maps are able to isolate the noise sources, and the appearance of the DAMAS synthetic array maps is generally better than those from the experimental data. The experimental CLEAN-SC maps are similar in quality to those from the simulations indicating that CLEAN-SC may have less sensitivity to background noise. The spectrum obtained from DAMAS processing of synthetic array data is nearly identical to the spectrum of the center microphone of the array, indicating that for this problem array processing of synthetic data does not improve spectral comparisons with experiment. However, the beamform maps do provide an additional means of comparison that can reveal differences that cannot be ascertained from spectra alone.

  5. Large Scale Analysis of Phenotype-Pathway Relationships Based on GWAS Results

    PubMed Central

    Brodie, Aharon; Tovia-Brodie, Oholi; Ofran, Yanay

    2014-01-01

    The widely used pathway-based approach for interpreting Genome Wide Association Studies (GWAS), assumes that since function is executed through the interactions of multiple genes, different perturbations of the same pathway would result in a similar phenotype. This assumption, however, was not systemically assessed on a large scale. To determine whether SNPs associated with a given complex phenotype affect the same pathways more than expected by chance, we analyzed 368 phenotypes that were studied in >5000 GWAS. We found 216 significant phenotype-pathway associations between 70 of the phenotypes we analyzed and known pathways. We also report 391 strong phenotype-phenotype associations between phenotypes that are affected by the same pathways. While some of these associations confirm previously reported connections, others are new and could shed light on the molecular basis of these diseases. Our findings confirm that phenotype-associated SNPs cluster into pathways much more than expected by chance. However, this is true for <20% (70/368) of the phenotypes. Different types of phenotypes show markedly different tendencies: Virtually all autoimmune phenotypes show strong clustering of SNPs into pathways, while most cancers and metabolic conditions, and all electrophysiological phenotypes, could not be significantly associated with any pathway despite being significantly associated with a large number of SNPs. While this may be due to missing data, it may also suggest that these phenotypes could result only from perturbations of specific genes and not from other perturbations of the same pathway. Further analysis of pathway-associated versus gene-associated phenotypes is, therefore, needed in order to understand disease etiology and in order to promote better drug target selection. PMID:25007247

  6. Indications of regional scale groundwater flows in the Amazon Basins: Inferences from results of geothermal studies

    NASA Astrophysics Data System (ADS)

    Pimentel, Elizabeth T.; Hamza, Valiya M.

    2012-08-01

    The present work deals with determination groundwater flows in the Amazon region, based on analysis of geothermal data acquired in shallow and deep wells. The method employed is based on the model of simultaneous heat transfer by conduction and advection in permeable media. Analysis of temperature data acquired in water wells indicates down flows of groundwaters with velocities in excess of 10-7 m/s at depths less than 300 m in the Amazonas basin. Bottom-hole temperature (BHT) data sets have been used in determining characteristics of fluid movements at larger depths in the basins of Acre, Solimões, Amazonas, Marajó and Barreirinhas. The results of model simulations point to down flow of groundwaters with velocities of the order of 10-8 to 10-9 m/s, at depths of up to 4000 m. No evidence has been found for up flow typical of discharge zones. The general conclusion compatible with such results is that large-scale groundwater recharge systems operate at both shallow and deep levels in all sedimentary basins of the Amazon region. However, the basement rock formations of the Amazon region are relatively impermeable and hence extensive down flow systems through the sedimentary strata are possible only in the presence of generalized lateral movement of groundwater in the basal parts of the sedimentary basins. The direction of this lateral flow, inferred from the basement topography and geological characteristics of the region, is from west to east, following roughly the course of surface drainage system of the Amazon River, with eventual discharge into the Atlantic Ocean. The estimated flow rate at the continental margin is 3287 m3/s, with velocities of the order of 218 m/year. It is possible that dynamic changes in the fluvial systems in the western parts of South American continent have been responsible for triggering alterations in the groundwater recharge systems and deep seated lateral flows in the Amazon region.

  7. Moving on up: Can Results from Simple Aquatic Mesocosm Experiments be Applied Across Broad Spatial Scales?

    EPA Science Inventory

    1. Aquatic ecologists use mesocosm experiments to understand mechanisms driving ecological processes. Comparisons across experiments, and extrapolations to larger scales, are complicated by the use of mesocosms with varying dimensions. We conducted a mesocosm experiment over a vo...

  8. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    EPA Science Inventory

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  9. Analysis and experiments for composite laminates with holes and subjected to 4-point bending

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Prasad, C. B.

    1990-01-01

    Analytical and experimental results are presented for composite laminates with a hole and subjected to four-point bending. A finite-plate analysis is used to predict moment and strain distributions for six-layer quasi-isotropic laminates and transverse-ply laminates. Experimental data are compared with the analytical results. Experimental and analytical strain results show good agreement for the quasi-isotropic laminates. Failure of the two types of composite laminates is described, and failure strain results are presented as a function of normalized hole diameter. The failure results suggest that the initial failure mechanism for laminates subjected to four-point bending are similar to the initial failure mechanisms for corresponding laminates subjected to uniaxial inplane loadings.

  10. Trophic cascades result in large-scale coralline algae loss through differential grazer effects.

    PubMed

    O'Leary, Jennifer K; McClanahan, Timothy R

    2010-12-01

    Removal of predators can have strong indirect effects on primary producers through trophic cascades. Crustose coralline algae (CCA) are major primary producers worldwide that may be influenced by predator removal through changes in grazer composition and biomass. CCA have been most widely studied in Caribbean and temperate reefs, where cover increases with increasing grazer biomass due to removal of competitive fleshy algae. However, each of these systems has one dominant grazer type, herbivorous fishes or sea urchins, which may not be functionally equivalent. Where fishes and sea urchins co-occur, fishing can result in a phase shift in the grazing community with subsequent effects on CCA and other substrata. Kenyan reefs have herbivorous fishes and sea urchins, providing an opportunity to determine the relative impacts of each grazer type and evaluate potential human-induced trophic cascades. We hypothesized that fish benefit CCA, abundant sea urchins erode CCA, and that fishing indirectly reduces CCA cover by removing sea urchin predators. We used closures and fished reefs as a large-scale, long-term natural experiment to assess how fishing and resultant changes in communities affect CCA abundance. We used a short-term caging experiment to directly test the effects of grazing on CCA. CCA cover declined with increasing fish and sea urchin abundance, but the negative impact of sea urchin grazing was much stronger than that of fishes. Abundant sea urchins reduced the CCA growth rate to almost zero and prevented CCA accumulation. A warming event (El Niño Southern Oscillation, ENSO) occurred during the 18-year study and had a strong but short-term positive effect on CCA cover. However, the effect of the ENSO on CCA was lower in magnitude than the effect of sea urchin grazing. We compare our results with worldwide literature on bioerosion by fishes and sea urchins. Grazer influence depends on whether benefits of fleshy algae removal outweigh costs of grazer

  11. Electrochromic windows for commercial buildings: Monitored results from a full-scale testbed

    SciTech Connect

    Lee, Eleanor S.; DiBartolomeo, Dennis L.; Selkowitz, Stephen E.

    2000-04-01

    Electrochromic glazings promise to be the next major advance in energy-efficient window technology, helping to transform windows and skylights from an energy liability to an energy source for the nation's building stock. Monitored results from a full-scale demonstration of large-area electrochromic windows are given. The test consisted of two side-by-side, 3.7x4.6-m, office-like rooms. In each room, five 62x173-cm lower electrochromic windows and five 62x43-cm upper electrochromic windows formed a large window wall. The window-to-exterior-wall ratio (WWR) was 0.40. The southeast-facing electrochromic windows had an overall visible transmittance (Tv) range of Tv=0.11-0.38 and were integrated with a dimmable electric lighting system to provide constant work plane illuminance and to control direct sun. Daily lighting use from the automated electrochromic window system decreased by 6 to 24% compared to energy use with static, low-transmission (Tv =0.11), unshaded windows in overcast to cle ar sky winter conditions in Oakland, California. Daily lighting energy use increased as much as 13% compared to lighting energy use with static windows that had Tv=0.38. Even when lighting energy savings were not obtainable, the visual environment produced by the electrochromic windows, indicated by well-controlled window and room luminance levels, was significantly improved for computer-type tasks throughout the day compared to the visual environment with unshaded 38%-glazing. Cooling loads were not measured, but previous building energy simulations indicate that additional savings could be achieved. To ensure visual and thermal comfort, electrochromics require occasional use of interior or exterior shading systems when direct sun is present. Other recommendations to improve electrochromic materials and controls are noted along with some architectural constraints.

  12. Results of direct containment heating integral experiments at 1/40th scale at Argonne National Laboratory

    SciTech Connect

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-09-01

    A series of integral tests have been completed that investigate the effect of scale and containment atmosphere initial composition on Direct Containment Heating (DCH) phenomena at 1/40 linear scale. A portion of these experiments were performed as counterparts to integral experiments conducted at 1/10th linear scale at Sandia National Laboratories. The tests investigated DCH phenomena in a 1/40th scale mockup of Zion Nuclear Power Plant geometry. The test apparatus was a scaled down version of the SNL apparatus and included models of the reactor vessel lower head, containment cavity, instrument tunnel, lower subcompartment structures and the upper dome. A High Pressure Melt Ejection (HPME) was produced using steam as a blowdown gas and iron-alumina thermite with chromium as a core melt simulant. The results of the counterpart experiments indicated no effect of scale on debris/gas heat transfer and debris metal oxidation with steam. However, the tests indicated a slight effect of scale on hydrogen combustion, the results indicating slightly more efficient combustion with increasing scale. The experiments demonstrated the effectiveness of the subcompartment structures in trapping debris exiting the cavity and preventing it from reaching the upper dome. The test results also indicated that a 50% air -- 50% steam atmosphere prevented hydrogen combustion. However, a 50% air - 50% nitrogen did not prevent hydrogen combustion in a HPME with all other conditions being nominally the same.

  13. Acoustic Treatment Design Scaling Methods. Volume 1; Overview, Results, and Recommendations

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.

    1999-01-01

    Scale model fan rigs that simulate new generation ultra-high-bypass engines at about 1/5-scale are achieving increased importance as development vehicles for the design of low-noise aircraft engines. Testing at small scale allows the tests to be performed in existing anechoic wind tunnels, which provides an accurate simulation of the important effects of aircraft forward motion on the noise generation. The ability to design, build, and test miniaturized acoustic treatment panels on scale model fan rigs representative of the fullscale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. The primary objective of this study was to develop methods that will allow scale model fan rigs to be successfully used as acoustic treatment design tools. The study focuses on finding methods to extend the upper limit of the frequency range of impedance prediction models and acoustic impedance measurement methods for subscale treatment liner designs, and confirm the predictions by correlation with measured data. This phase of the program had as a goal doubling the upper limit of impedance measurement from 6 kHz to 12 kHz. The program utilizes combined analytical and experimental methods to achieve the objectives.

  14. Latest COBE results, large-scale data, and predictions of inflation

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1992-01-01

    One of the predictions of the inflationary scenario of cosmology is that the initial spectrum of primordial density fluctuations (PDFs) must have the Harrison-Zeldovich (HZ) form. Here, in order to test the inflationary scenario, predictions of the microwave background radiation (MBR) anisotropies measured by COBE are computed based on large-scale data for the universe and assuming Omega-1 and the HZ spectrum on large scales. It is found that the minimal scale where the spectrum can first enter the HZ regime is found, constraining the power spectrum of the mass distribution to within the bias factor b. This factor is determined and used to predict parameters of the MBR anisotropy field. For the spectrum of PDFs that reaches the HZ regime immediately after the scale accessible to the APM catalog, the numbers on MBR anisotropies are consistent with the COBE detections and thus the standard inflation can indeed be considered a viable theory for the origin of the large-scale structure in the universe.

  15. Debris-flow Dynamics Inferred From Aggregated Results of 28 Large-scale Experiments

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.; Logan, M.; Lahusen, R. G.; Berti, M.

    2008-12-01

    Key features of debris-flow dynamics are revealed by identifying reproducible trends in data collected during 28 large-scale experiments with closely controlled initial and boundary conditions. In each experiment, 10 m3 of water-saturated sediment consisting mostly of sand and gravel discharges abruptly from behind a vertical headgate, descends a ~90 m concrete flume inclined 31 degrees, and forms a deposit on a nearly horizontal runout surface. The experiments are grouped into three sets of 8 to 11 replicates distinguished by differing mud contents (1% vs. 7% by dry weight) and basal boundary roughnesses (1 mm vs. 20 mm characteristic amplitude). Aggregation of sensor data from each set of replicates reveals universal patterns, as well as variances, in evolution of flow velocities, depths, basal normal stresses, and basal pore pressures. The patterns show that debris flows consistently develop blunt, coarse-grained, high-friction flow fronts pushed from behind by nearly liquefied, finer-grained debris. This flow architecture yields lobate deposits bounded by coarse-grained snouts and lateral levees. The aggregated data also show that imposed differences in basal boundary conditions and debris compositions produce systematic -- and sometimes surprising -- differences in flow dynamics and deposits. For example, flows on rough beds run out further than flows on smooth beds, despite the fact that flows on smooth beds attain greater velocities. This counterintuitive behavior results from enhanced grain-size segregation in the presence of a rough bed; segregation accentuates development of lateral levees that channelize flow and retard depletion of downstream momentum by lateral spreading. Another consistent finding is that flows with significant mud content are more mobile (attain greater velocities and runouts) than flows lacking much mud. This behavior is evident despite the fact that mud measurably increases the viscosity and yield strength of the fluid component

  16. Gunshot residue inserted under hair scales as a result of a muzzle blast

    NASA Astrophysics Data System (ADS)

    Burnett, Bryan R.

    2009-05-01

    The victim was alleged to have been shot in the head with a .40 caliber pistol from several feet. The defendant claimed that the shot was on the order of inches. Examination in the scanning electron microscope of the hair from around the victim's wound showed no adherent gunshot residue (GSR). However, when the hair was pulled apart by the adhesive of a standard GSR sampler, GSR was found associated with the exposed inner surfaces of the cuticle and cortex fragments. The pistol was discharged close enough to the victim's head that some of the cuticular scales were lifted in the muzzle blast which allowed GSR to be inserted under those scales. Gunshot residue associated with the surface of the victim's hair had somehow been removed. The defendant's account of the shooting was verified by the presence of under-scale GSR.

  17. High-resolution chemical composition of geothermal scalings from Hungary: Preliminary results

    NASA Astrophysics Data System (ADS)

    Boch, Ronny; Dietzel, Martin; Deák, József; Leis, Albrecht; Mindszenty, Andrea; Demeny, Attila

    2015-04-01

    Geothermal fluids originating from several hundreds to thousands meters depth mostly hold a high potential for secondary mineral precipitation (scaling) due to high total dissolved solid contents at elevated temperature and pressure conditions. The precipitation of e.g. carbonates, sulfates, sulfides, and silica has shown to cause severe problems in geothermal heat and electric power production, when clogging of drill-holes, downhole pumps, pipes and heat exchangers occurs (e.g. deep geothermal doublet systems). Ongoing scaling reduces the efficiency in energy extraction and might even question the abandonment of installations in worst cases. In an attempt to study scaling processes both temporally and spatially we collected mineral precipitates from selected sites in Hungary (Bükfürdo, Szechenyi, Szentes, Igal, Hajduszoboszlo). The samples of up to 8 cm thickness were recovered from different positions of the geothermal systems and precipitated from waters of various temperatures (40-120 °C) and variable overall chemical composition. Most of these scalings show fine lamination patterns representing mineral deposition from weeks up to 45 years at our study sites. Solid-fluid interaction over time captured in the samples are investigated applying high-resolution analytical techniques such as laser-ablation mass-spectrometry and electron microprobe, micromill-sampling for stable isotope analysis, and micro-XRD combined with hydrogeochemical modeling. A detailed investigation of the processes determining the formation and growth of precipitates can help to elucidate the short-term versus long-term geothermal performance with regard to anthropogenic and natural reservoir and production dynamics. Changes in fluid chemistry, temperature, pressure, pH, degassing rate (CO2) and flow rate are reflected by the mineralogical, chemical and isotopic composition of the precipitates. Consequently, this high-resolution approach is intended as a contribution to decipher the

  18. Scale dependence of the effective matrix diffusion coefficient:some analytical results

    SciTech Connect

    Liu, H.H.; Zhang, Y.Q.; Molz, F.J.

    2005-05-30

    Matrix diffusion is an important process affecting solutetransport in fractured rock, and the matrix diffusion coefficient is akey parameter for describing this process. Previous studies haveindicated that the effective matrix-diffusion coefficient values,obtained from a number of field tracer tests, are enhanced in comparisonwith local values and may increase with test scale. In thiscommunication, we develop analytical expressions for the effective matrixdiffusion coefficient for two simple fracture-matrix systems, anddemonstrate that heterogeneities in the rock matrix at different scalescontribute to the scale dependence of the effective matrix diffusioncoefficient.

  19. Multilingual Literacy Skill Development in Kenya: Results from Medium Scale Randomized Controlled Trials

    ERIC Educational Resources Information Center

    Piper, Benjamin

    2016-01-01

    If children do not learn how to read in the first few years of primary school, they at greater risk of dropping out. It is therefore crucial to identify and test interventions that have the potential of making a large impact, can be implemented quickly, and are affordable to be taken to scale by the Kenyan government. This paper presents the…

  20. The Impact of Silhouette Randomization on the Results of Figure Rating Scales

    ERIC Educational Resources Information Center

    Duncan, Michael J.; Dodd, Lorna J.; Al-Nakeeb, Yahya

    2005-01-01

    This study was designed to examine the impact of silhouette randomization on the responses to rating scales developed to rate the perceived current and ideal body shape, as well as body dissatisfaction. Seventy students (30 men and 40 women), ages 18 to 43 (M [plus or minus] SD = 22.1 [plus or minus] 5.7) years, completed the Stunkard, Sorensen,…

  1. Language Learning Motivation in China: Results of a Large-Scale Stratified Survey

    ERIC Educational Resources Information Center

    You, Chenjing; Dörnyei, Zoltán

    2016-01-01

    This article reports on the findings of a large-scale cross-sectional survey of the motivational disposition of English language learners in secondary schools and universities in China. The total sample involved over 10,000 students and was stratified according to geographical region and teaching contexts, selecting participants both from urban…

  2. Validity and Reliability of Turkish Version of Gilliam Autism Rating Scale-2: Results of Preliminary Study

    ERIC Educational Resources Information Center

    Diken, Ibrahim H.; Diken, Ozlem; Gilliam, James E.; Ardic, Avsar; Sweeney, Dwight

    2012-01-01

    The purpose of this preliminary study was to explore the validity and reliability of Turkish Version of the Gilliam Autism Rating Scale-2 (TV-GARS-2). Participants included 436 children diagnosed with autism (331 male and 105 female, mean of ages was 8.01 with SD = 3.77). Data were also collected from individuals diagnosed with intellectual…

  3. Process Testing Results and Scaling for the Hanford Waste Treatment and Immobilization Plant (WTP) Pretreatment Engineering Platform - 10173

    SciTech Connect

    Kurath, Dean E.; Daniel, Richard C.; Baldwin, David L.; Rapko, Brian M.; Barnes, Steven M.; Gilbert, Robert A.; Mahoney, Lenna A.; Huckaby, James L.

    2010-01-14

    The U.S. Department of Energy-Office of River Protection’s Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks at Richland, Washington. In support of this effort, engineering-scale tests at the Pretreatment Engineering Platform (PEP) have been completed to confirm the process design and provide improved projections of system capacity. The PEP is a 1/4.5-scale facility designed, constructed, and operated to test the integrated leaching and ultrafiltration processes being deployed at the WTP. The PEP replicates the WTP leaching processes with prototypic equipment and control strategies and non-prototypic ancillary equipment to support the core processing. The testing approach used a nonradioactive aqueous slurry simulant to demonstrate the unit operations of caustic and oxidative leaching, cross-flow ultrafiltration solids concentration, and solids washing. Parallel tests conducted at the laboratory scale with identical simulants provided results that allow scale-up factors to be developed between the laboratory and PEP performance. This paper presents the scale-up factors determined between the laboratory and engineering-scale results and presents arguments that extend these results to the full-scale process.

  4. Study of concrete's behavior under 4-point bending load using Coda Wave Interferometry (CWI) analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Abraham, O.; Chapeleau, X.; Cottineau, L.-M.; Tournat, V.; Le Duff, A.; Lascoup, B.; Durand, O.

    2013-01-01

    Coda Wave Interferometry (CWI) is an ultrasonic NDT method suitable for complex material such as concrete that can precisely measure small propagation velocity variation (10-2%). By measuring variation of propagation velocity in concrete caused by acoustoelasticity phenomena, CWI analysis can be used to monitor concrete's internal stress level. For the first time, CWI is used to measure propagation velocity variations due to a stress field in a concrete beam under four-points bending test, which contains simultaneously compressive and tensile stress. Embedded optical-fiber sensors, strain gauges are used in the experiment, in order to confirm and validate the CWI analysis result. Thermocouples are also embedded into concrete beams for monitoring internal temperature fluctuations.

  5. Approximation of HRPITS results for SI GaAs by large scale support vector machine algorithms

    NASA Astrophysics Data System (ADS)

    Jankowski, Stanisław; Wojdan, Konrad; Szymański, Zbigniew; Kozłowski, Roman

    2006-10-01

    For the first time large-scale support vector machine algorithms are used to extraction defect parameters in semi-insulating (SI) GaAs from high resolution photoinduced transient spectroscopy experiment. By smart decomposition of the data set the SVNTorch algorithm enabled to obtain good approximation of analyzed correlation surface by a parsimonious model (with small number of support vector). The extracted parameters of deep level defect centers from SVM approximation are of good quality as compared to the reference data.

  6. Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook.

    PubMed

    Goldstein, M L; Wicks, R T; Perri, S; Sahraoui, F

    2015-05-13

    Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of turbulence to solar wind dynamics. PMID:25848084

  7. Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook.

    PubMed

    Goldstein, M L; Wicks, R T; Perri, S; Sahraoui, F

    2015-05-13

    Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of turbulence to solar wind dynamics.

  8. Kinetic scale turbulence and dissipation in the solar wind: key observational results and future outlook

    PubMed Central

    Goldstein, M. L.; Wicks, R. T.; Perri, S.; Sahraoui, F.

    2015-01-01

    Turbulence is ubiquitous in the solar wind. Turbulence causes kinetic and magnetic energy to cascade to small scales where they are eventually dissipated, adding heat to the plasma. The details of how this occurs are not well understood. This article reviews the evidence for turbulent dissipation and examines various diagnostics for identifying solar wind regions where dissipation is occurring. We also discuss how future missions will further enhance our understanding of the importance of turbulence to solar wind dynamics. PMID:25848084

  9. Variability in results from negative binomial models for Lyme disease measured at different spatial scales.

    PubMed

    Tran, Phoebe; Waller, Lance

    2015-01-01

    Lyme disease has been the subject of many studies due to increasing incidence rates year after year and the severe complications that can arise in later stages of the disease. Negative binomial models have been used to model Lyme disease in the past with some success. However, there has been little focus on the reliability and consistency of these models when they are used to study Lyme disease at multiple spatial scales. This study seeks to explore how sensitive/consistent negative binomial models are when they are used to study Lyme disease at different spatial scales (at the regional and sub-regional levels). The study area includes the thirteen states in the Northeastern United States with the highest Lyme disease incidence during the 2002-2006 period. Lyme disease incidence at county level for the period of 2002-2006 was linked with several previously identified key landscape and climatic variables in a negative binomial regression model for the Northeastern region and two smaller sub-regions (the New England sub-region and the Mid-Atlantic sub-region). This study found that negative binomial models, indeed, were sensitive/inconsistent when used at different spatial scales. We discuss various plausible explanations for such behavior of negative binomial models. Further investigation of the inconsistency and sensitivity of negative binomial models when used at different spatial scales is important for not only future Lyme disease studies and Lyme disease risk assessment/management but any study that requires use of this model type in a spatial context.

  10. 1/6TH SCALE STRIP EFFLUENT FEED TANK-MIXING RESULTS USING MCU SOLVENT

    SciTech Connect

    Hansen, E

    2006-02-01

    The purpose of this task was to determine if mixing was an issue for the entrainment and dispersion of the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU) solvent in the Defense Waste Processing Facility (DWPF) Strip Effluent Feed Tank (SEFT). The MCU strip effluent stream containing the Cs removed during salt processing will be transferred to the DWPF for immobilization in HLW glass. In lab-scale DWPF chemical process cell testing, mixing of the solvent in the dilute nitric acid solution proved problematic, and the Savannah River National Laboratory (SRNL) was requested to perform scaled SEFT mixing tests to evaluate whether the problem was symptomatic of the lab-scale set-up or of the solvent. The solvent levels tested were 228 and 235 ppm, which represented levels near the estimated DWPF solvent limit of 239 ppm in 0.001M HNO{sub 3} solution. The 239 ppm limit was calculated by Norato in X-CLC-S-00141. The general approach for the mixing investigation was to: (1) Investigate the use of fluorescent dyes to aid in observing the mixing behavior. Evaluate and compare the physical properties of the fluorescent dyed MCU solvents to the baseline Oak Ridge CSSX solvent. Based on the data, use the dyed MCU solvent that best approximates the physical properties. (2) Use approximately a 1/6th linear scale of the SEFT to replicate the internal configuration for DWPF mixing. (3) Determine agitator speed(s) for scaled testing based on the DWPF SEFT mixing speed. (4) Perform mixing tests using the 1/6th SEFT and determine any mixing issues (entrainment/dispersion, accumulation, adhesion) through visual observations and by pulling samples to assess uniformity. The mixing tests used MCU solvent fabricated at SRNL blended with Risk Reactor DFSB-K43 fluorescent dye. This dyed SRNL MCU solvent had equivalent physical properties important to mixing as compared to the Oak Ridge baseline solvent, blended easily with the MCU solvent, and provided an excellent visual aid.

  11. COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS

    SciTech Connect

    JACKSON VL

    2011-08-31

    The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

  12. SCALING PROPERTIES OF FLUCTUATION RESULTS FROM THE PHENIX EXPERIMENT AT RHIC.

    SciTech Connect

    MITCHELL,J.T.

    2006-06-05

    The PHENIX Experiment at the Relativistic Heavy Ion Collider has made measurements of event-by-event fluctuations in the charged particle multiplicity as a function of collision energy, centrality, collision species, and transverse momentum in several heavy ion collision systems. It is observed that the fluctuations in terms of {sigma}{sup 2}/{mu}{sup 2} exhibit a universal power-law scaling as a function of N{sub participants} that is independent of the transverse momentum range of the measurement.

  13. The optimization of aircraft seat cushion fire-blocking layers. Full Scale: Test description and results

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Duskin, F. E.

    1982-01-01

    Full-scale burn tests were conducted on thirteen different seat cushion configurations in a cabin fire simulator. The fire source used was a quartz lamp radiant energy panel with a propane pilot flame. During each test, data were recorded for cushion temperatures, radiant heat flux, rate of weight loss of test specimens, and cabin temperatures. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advance materials, using improved construction methods, exhibited significantly greater fire resistance.

  14. Scale

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2009-01-01

    The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to fail, and fail…

  15. Flux-canceling electrodynamics maglev suspension. Part 2: Test results and scaling laws

    SciTech Connect

    Thompson, M.T.; Thornton, R.D.

    1999-05-01

    Electrodynamic suspension (EDS) are highly undamped and require some form of active control or a secondary suspension to achieve adequate ride quality. This paper reports on efforts to develop a version of EDS that uses controllable magnetic forces to eliminate the need for any secondary suspension. The magnetic forces act directly on the guideway and avoid the need to have unsprung weight and a secondary suspension. It is shown that the energy required to effect this control can be less than 1% of the energy stored in the suspension magnets, so a modest size controller can be used. The same controller can also provide life at very low speeds and thereby eliminate the need for a separate low-speed suspension system. A set of scaling laws is described which is used to size a full-scale high-temperature superconductor (HTSC)-based suspension magnet. The test fixture was also used to verify the use of zero velocity lift, where ac excitation is used in the suspension coils to achieve lift at low train velocity.

  16. A Self-Efficacy Scale for Clinical Nurse Leaders: Results of a Pilot Study.

    PubMed

    Gilmartin, Mattia J; Nokes, Kathleen

    2015-01-01

    Introduced in 2003, the Clinical Nurse Leader (CNL) role is the first new nursing role introduced in more than 30 years. The hallmark of CNL practice is the management of client-centered care and clinical excellence at the point of care. As part of multifaceted efforts to implement the CNL role, understanding how an individual's self-efficacy with the identified role competencies changes over time has important implications for individuals, educational programs preparing CNLs, and health care organizations employing CNLs. In this study, preliminary psychometric analyses assessing the construct validity, reliability, and discriminant validity for a new state-specific scale (CNL Self-Efficacy Scale) that assesses nurses' perceptions of their ability to function effectively as a CNL are reported. Because self-confidence is a key predictor of successful role transition, job satisfaction, and job performance, measuring individuals' self-confidence with the core competencies associated with the CNL role over time will be important to gain the full benefit of this innovative, unit-based advanced generalist role. PMID:26259337

  17. Large-scale Validation of AMIP II Land-surface Simulations: Preliminary Results for Ten Models

    SciTech Connect

    Phillips, T J; Henderson-Sellers, A; Irannejad, P; McGuffie, K; Zhang, H

    2005-12-01

    This report summarizes initial findings of a large-scale validation of the land-surface simulations of ten atmospheric general circulation models that are entries in phase II of the Atmospheric Model Intercomparison Project (AMIP II). This validation is conducted by AMIP Diagnostic Subproject 12 on Land-surface Processes and Parameterizations, which is focusing on putative relationships between the continental climate simulations and the associated models' land-surface schemes. The selected models typify the diversity of representations of land-surface climate that are currently implemented by the global modeling community. The current dearth of global-scale terrestrial observations makes exacting validation of AMIP II continental simulations impractical. Thus, selected land-surface processes of the models are compared with several alternative validation data sets, which include merged in-situ/satellite products, climate reanalyses, and off-line simulations of land-surface schemes that are driven by observed forcings. The aggregated spatio-temporal differences between each simulated process and a chosen reference data set then are quantified by means of root-mean-square error statistics; the differences among alternative validation data sets are similarly quantified as an estimate of the current observational uncertainty in the selected land-surface process. Examples of these metrics are displayed for land-surface air temperature, precipitation, and the latent and sensible heat fluxes. It is found that the simulations of surface air temperature, when aggregated over all land and seasons, agree most closely with the chosen reference data, while the simulations of precipitation agree least. In the latter case, there also is considerable inter-model scatter in the error statistics, with the reanalyses estimates of precipitation resembling the AMIP II simulations more than to the chosen reference data. In aggregate, the simulations of land-surface latent and sensible

  18. Phenomenological features of dreams: Results from dream log studies using the Subjective Experiences Rating Scale (SERS).

    PubMed

    Kahan, Tracey L; Claudatos, Stephanie

    2016-04-01

    Self-ratings of dream experiences were obtained from 144 college women for 788 dreams, using the Subjective Experiences Rating Scale (SERS). Consistent with past studies, dreams were characterized by a greater prevalence of vision, audition, and movement than smell, touch, or taste, by both positive and negative emotion, and by a range of cognitive processes. A Principal Components Analysis of SERS ratings revealed ten subscales: four sensory, three affective, one cognitive, and two structural (events/actions, locations). Correlations (Pearson r) among subscale means showed a stronger relationship among the process-oriented features (sensory, cognitive, affective) than between the process-oriented and content-centered (structural) features--a pattern predicted from past research (e.g., Bulkeley & Kahan, 2008). Notably, cognition and positive emotion were associated with a greater number of other phenomenal features than was negative emotion; these findings are consistent with studies of the qualitative features of waking autobiographical memory (e.g., Fredrickson, 2001). PMID:26945159

  19. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  20. Testing of aircraft passenger seat cushion materials. Full scale, test description and results, volume 1

    NASA Technical Reports Server (NTRS)

    Schutter, K. J.; Gaume, J. G.; Duskin, F. E.

    1981-01-01

    Eight different seat cushion configurations were subjected to full-scale burn tests. Each cushion configuration was tested twice for a total of sixteen tests. Two different fire sources were used. They consisted of one liter of Jet A fuel for eight tests and a radiant energy source with propane flame for eight tests. Both fire sources were ignited by a propane flame. During each test, data were recorded for smoke density, cushion temperatures, radiant heat flux, animal response to combustion products, rate of weight loss of test specimens, cabin temperature, and for the type and content of gas within the cabin atmosphere. When compared to existing passenger aircraft seat cushions, the test specimens incorporating a fire barrier and those fabricated from advanced materials, using improved construction methods, exhibited significantly greater fire resistance.

  1. EFRT M-12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    SciTech Connect

    Rapko, Brian M.; Schonewill, Philip P.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2010-01-01

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  2. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    SciTech Connect

    Kaye, S.M.

    1985-05-01

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood.

  3. Recent Results from Broad-Band Intensity Mapping Measurements of Cosmic Large Scale Structure

    NASA Astrophysics Data System (ADS)

    Zemcov, Michael B.; CIBER, Herschel-SPIRE

    2016-01-01

    Intensity mapping integrates the total emission in a given spectral band over the universe's history. Tomographic measurements of cosmic structure can be performed using specific line tracers observed in narrow bands, but a wealth of information is also available from broad-band observations performed by instruments capable of capturing high-fidelity, wide-angle images of extragalactic emission. Sensitive to the continuum emission from faint and diffuse sources, these broad-band measurements provide a view on cosmic structure traced by components not readily detected in point source surveys. After accounting for measurement effects and astrophysical foregrounds, the angular power spectra of such data can be compared to predictions from models to yield powerful insights into the history of cosmic structure formation. This talk will highlight some recent measurements of large scale structure performed using broad-band intensity mapping methods that have given new insights on faint, distant, and diffuse components in the extragalactic background light.

  4. Phenomenological features of dreams: Results from dream log studies using the Subjective Experiences Rating Scale (SERS).

    PubMed

    Kahan, Tracey L; Claudatos, Stephanie

    2016-04-01

    Self-ratings of dream experiences were obtained from 144 college women for 788 dreams, using the Subjective Experiences Rating Scale (SERS). Consistent with past studies, dreams were characterized by a greater prevalence of vision, audition, and movement than smell, touch, or taste, by both positive and negative emotion, and by a range of cognitive processes. A Principal Components Analysis of SERS ratings revealed ten subscales: four sensory, three affective, one cognitive, and two structural (events/actions, locations). Correlations (Pearson r) among subscale means showed a stronger relationship among the process-oriented features (sensory, cognitive, affective) than between the process-oriented and content-centered (structural) features--a pattern predicted from past research (e.g., Bulkeley & Kahan, 2008). Notably, cognition and positive emotion were associated with a greater number of other phenomenal features than was negative emotion; these findings are consistent with studies of the qualitative features of waking autobiographical memory (e.g., Fredrickson, 2001).

  5. Results.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Describes the Collegiate Results Instrument (CRI), which measures a range of collegiate outcomes for alumni 6 years after graduation. The CRI was designed to target alumni from institutions across market segments and assess their values, abilities, work skills, occupations, and pursuit of lifelong learning. (EV)

  6. Wind tunnel test results of a 1/8-scale fan-in-wing model

    NASA Technical Reports Server (NTRS)

    Wilson, John C.; Gentry, Garl L.; Gorton, Susan A.

    1996-01-01

    A 1/8-scale model of a fan-in-wing concept considered for development by Grumman Aerospace Corporation for the U.S. Army was tested in the Langley 14- by 22-Foot Subsonic Tunnel. Hover testing, which included height above a pressure-instrumented ground plane, angle of pitch, and angle of roll for a range of fan thrust, was conducted in a model preparation area near the tunnel. The air loads and surface pressures on the model were measured for several configurations in the model preparation area and in the tunnel. The major hover configuration change was varying the angles of the vanes attached to the exit of the fans for producing propulsive force. As the model height above the ground was decreased, there was a significant variation of thrust-removed normal force with constant fan speed. The greatest variation was generally for the height-to-fan exit diameter ratio of less than 2.5; the variation was reduced by deflecting fan exit flow outboard with the vanes. In the tunnel angles of pitch and sideslip, height above the tunnel floor, and wind speed were varied for a range of fan thrust and different vane angle configurations. Other configuration features such as flap deflections and tail incidence were evaluated as well. Though the V-tail empennage provided an increase in static longitudinal stability, the total model configuration remained unstable.

  7. DEM-based Modeling at the Hillslope Scale: Recent Results and Future Process Research Needs

    NASA Astrophysics Data System (ADS)

    McDonnell, J.; Coles, A.; Gabrielli, C. P.; Appels, W. M.; Ameli, A.

    2015-12-01

    Hillslope scale patterns of overland flow, infiltration, subsurface stormflow and groundwater recharge are all topographically mediated. However, the mechanisms by which macro-, meso- and micro-topographies control filling and spilling of lateral flow, and vertical infiltration, are still poorly understood. Here we present high-resolution DEMs derived from ground-based LiDAR, airborne LiDAR, and GPR (ground penetrating rebar!) with model analysis to examine the topographic controls on water flow at three distinct hillslopes. We explore surface topographic effects on rainfall- and snowmelt-infiltration and overland flow on the Canadian Prairies; the surface and subsurface topographic controls on lateral subsurface stormflow generation and groundwater recharge at a steep, wet temperate rainforest in New Zealand; and subsurface topographic controls on patterns of groundwater recharge at a forested hillslope on the Georgia Piedmont in the United States. We demonstrate how these studies reveal future research needs for improving DEM-based watershed delineation and modeling along with some surprising similarities between topographic controls on soil surface infiltration and overland flow and twin subsurface processes at the soil-bedrock interface.

  8. Acoustic and Aero-Mixing Experimental Results for Fluid Shield Scale Model Nozzles

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Mengle, V. G.; Shin, H. W.; Majjigi, R. K.

    2005-01-01

    The principle objectives of this investigation are to evaluate the acoustic and aerodynamic characteristics of fluid shield nozzle concept and to assess Far 36, Stage 3 potential for fluid shield nozzle with Flade Cycle. Acoustic data for nine scale model nozzle configurations are obtained. The effects of simulated flight and geometric and aerothermodynamic flow variables on the acoustic behavior of the fluid shield are determined. The acoustic tests are aimed at studying the effect of: (1) shield thickness, (2) wrap angle, (3) mass flow and velocity ratios between shield and core streams at constant cycle specific thrust (i.e., mixed velocity), (4) porous plug, and (5) subsonic shield. Shadowgraphs of six nozzle configurations are obtained to understand the plume flowfield features. Static pressure data on suppressor chutes in the core stream (shielded and unshielded) sides and on plug surface are acquired to determine the impact of fluid shield on base drag of the 36-chute suppressor nozzle and the thrust augmentation due to the plug, respectively.

  9. Is Current CMBR Temperature: The Scale Independent Quantum Gravitational Result of Black Hole Cosmology?

    NASA Astrophysics Data System (ADS)

    Seshavatharam, U. V. S.; Lakshminarayana, S.

    If one is willing to consider the current cosmic microwave back ground temperature as a quantum gravitational effect of the evolving primordial cosmic black hole (universe that constitutes dynamic space-time and exhibits quantum behavior) automatically general theory of relativity and quantum mechanics can be combined into a `scale independent' true unified model of quantum gravity. By considering the `Planck mass' as the initial mass of the baby Hubble volume, past and current physical and thermal parameters of the cosmic black hole can be understood. Current rate of cosmic black hole expansion is being stopped by the microscopic quantum mechanical lengths. In this new direction authors observed 5 important quantum mechanical methods for understanding the current cosmic deceleration. To understand the ground reality of current cosmic rate of expansion, sensitivity and accuracy of current methods of estimating the magnitudes of current CMBR temperature and current Hubble constant must be improved and alternative methods must be developed. If it is true that galaxy constitutes so many stars, each star constitutes so many hydrogen atoms and light is coming from the excited electron of galactic hydrogen atom, then considering redshift as an index of `whole galaxy' receding may not be reasonable. During cosmic evolution, at any time in the past, in hydrogen atom emitted photon energy was always inversely proportional to the CMBR temperature. Thus past light emitted from older galaxy's excited hydrogen atom will show redshift with reference to the current laboratory data. As cosmic time passes, in future, the absolute rate of cosmic expansion can be understood by observing the rate of increase in the magnitude of photon energy emitted from laboratory hydrogen atom. Aged super novae dimming may be due to the effect of high cosmic back ground temperature. Need of new mathematical methods & techniques, computer simulations, advanced engineering skills seem to be essential

  10. FY results for the Los Alamos large scale demonstration and deployment project

    SciTech Connect

    Stallings, E.; McFee, J.

    2000-11-01

    The Los Alamos Large Scale Demonstration and Deployment Project (LSDDP) in support of the US Department of Energy (DOE) Deactivation and Decommissioning Focus Area (DDFA) is identifying and demonstrating technologies to reduce the cost and risk of management of transuranic element contaminated large metal objects, i.e. gloveboxes. DOE must dispose of hundreds of gloveboxes from Rocky Flats, Los Alamos and other DOE sites. Current practices for removal, decontamination and size reduction of large metal objects translates to a DOE system-wide cost in excess of $800 million, without disposal costs. In FY99 and FY00 the Los Alamos LSDDP performed several demonstrations on cost/risk savings technologies. Commercial air pallets were demonstrated for movement and positioning of the oversized crates in neutron counting equipment. The air pallets are able to cost effectively address the complete waste management inventory, whereas the baseline wheeled carts could address only 25% of the inventory with higher manpower costs. A gamma interrogation radiography technology was demonstrated to support characterization of the crates. The technology was developed for radiography of trucks for identification of contraband. The radiographs were extremely useful in guiding the selection and method for opening very large crated metal objects. The cost of the radiography was small and the operating benefit is high. Another demonstration compared a Blade Cutting Plunger and reciprocating saw for removal of glovebox legs and appurtenances. The cost comparison showed that the Blade Cutting Plunger costs were comparable, and a significant safety advantage was reported. A second radiography demonstration was conducted evaluation of a technology based on WIPP-type x-ray characterization of large boxes. This technology provides considerable detail of the contents of the crates. The technology identified details as small as the fasteners in the crates, an unpunctured aerosol can, and a vessel

  11. The Kinetic Scale Structure of the Low Latitude Boundary Layer: Initial MMS Results

    NASA Astrophysics Data System (ADS)

    Dorelli, John; Gershman, Dan; Avanov, Levon; Pollock, Craig; Giles, Barbara; Gliese, Ulrik; Barrie, Alexander; Holland, Matthew; Salo, Chad; Dickson, Charles; Coffey, Victoria; Chandler, Michael; Sato, Yoshifumi; Strangeway, Robert; Russell, Christopher; Baumjohann, Wolfgang; Khotyainstev, Yuri; Torbert, Roy; Burch, James

    2016-04-01

    Since its launch in March of 2015, NASA's Magnetospheric Multiscale (MMS) mission has captured thousands of high resolution magnetopause crossings, routinely resolving the sub-Larmor radius structure of the magnetopause boundary layer for the first time. The primary goal of MMS is to understand the microphysics of magnetic reconnection, and it is well on its way to achieving this objective. However, MMS is also making routine measurements of the electron and ion gyroviscous and heat flux tensors with unprecedented resolution and accuracy. This opens up the possibility of directly observing the physical processes that facilitate momentum and energy transport across the magnetopause boundary layer under arbitrary conditions (e.g., magnetic field geometry and flow shear) far from the reconnection X line. Currently, our global magnetosphere fluid models (e.g., resistive or Hall MHD) do not include accurate descriptions of viscosity and heat flow, both of which are known to be critical players at the magnetopause (not just at the reconnection sites), and several groups are attempting to make progress on this difficult fluid closure problem. In this talk, we will address the fluid closure problem in the context of MMS observations of the Low Latitude Boundary Layer (LLBL), focusing on high resolution particle observations by the Fast Plasma Investigation (FPI). FPI electron bulk velocities are accurate enough to compute current density in both the high density magnetosheath and low density magnetosphere and have already revealed that the LLBL has a complex parallel current structure on the proton Larmor radius scale. We discuss the relationship between these parallel currents and the Hall electric field structures predicted by kinetic models. We also present first observations of the ion and electron gyroviscous and heat flux tensors in the LLBL and discuss implications for the fluid closure problem at Earth's magnetopause.

  12. THE NATIONAL EPIDEMIOLOGICAL AND ENVIRONMENTAL ASSESSMENT OF RECREATIONAL WATERS: RESULTS FROM THE FIRST SUMMER OF FULL-SCALE STUDIES

    EPA Science Inventory

    The National Epidemiological and Environmental Assessment of Recreational Waters: Results from the first summer of full-scale studies. Timothy J. Wade, Rebecca L. Calderon, Elizabeth Sams, Kristen Brenner, Michael Beach, Ann H. Williams, Al Dufour.

    Abstract

    Introduc...

  13. Is the applicability of fractal statistics to sedimentary structures the result of scale-invariant stochastic processes or deterministic chaos

    SciTech Connect

    Turcotte, D.L. )

    1991-03-01

    Fractal statistics are the only statistics that are scale invariant. Examples in tectonics include distributions of faults, displacements on faults, distributions and permeabilities of fractures, and distributions of folds. Many aspects of sedimentology are also fractal including distributions of sedimentary sequences, variations in permeability, and shapes of boundaries. Since the underlying processes are likely to be scale invariant, it is reasonable to conclude that the number-size statistics of oil fields will be fractal. Log-normal statistics are often applied; they are not scale invariant. Two explanations for fractal statistics can be given. They may be the result of scale-invariant stochastic processes. Random walk (Brownian noise) is one example. Topography generally resembles Brownian noise, a power-law spectrum with fractal dimension D = 1.5. Alternatively fractal statistics can be the result of deterministic chaos. Turbulent flows are examples of deterministic chaos, the governing equations are deterministic but the resulting flows are statistical. Tectonic displacements can be shown to be the result of deterministic chaos; it is likely that erosion is another example.

  14. Effects of Geographic Region upon Wechsler Adult Intelligence Scale Results: A Hawaii-Mainland United States Comparison

    ERIC Educational Resources Information Center

    Tsushima, William T.; Bratton, Joseph C.

    1977-01-01

    Investigated geographic differences in Wechsler Adult Intelligence Scale (WAIS) results by comparing 60 Hawaiian and 60 mainland United States psychiatric outpatients. The influence of pidgin English led to expectations that Hawaiian subjects would have significantly lower WAIS Verbal scores than mainland subjects. Data verified these…

  15. Year One Results from the Multisite Randomized Evaluation of the i3 Scale-Up of Reading Recovery

    ERIC Educational Resources Information Center

    May, Henry; Gray, Abigail; Sirinides, Philip; Goldsworthy, Heather; Armijo, Michael; Sam, Cecile; Gillespie, Jessica N.; Tognatta, Namrata

    2015-01-01

    Reading Recovery (RR) is a short-term, one-to-one intervention designed to help the lowest achieving readers in first grade. This article presents first-year results from the multisite randomized controlled trial (RCT) and implementation study under the $55 million Investing in Innovation (i3) Scale-Up Project. For the 2011-2012 school year, the…

  16. Large-Scale Wind Integration Studies in the United States: Preliminary Results

    SciTech Connect

    Milligan, M.; Lew, D.; Corbus, D.; Piwko, R.; Miller, N.; Clark, K.; Jordan, G.; Freeman, L.; Zavadi, B.; Schuerger, M.

    2009-09-01

    This paper discusses key results that had emerged at the time from two studies, the Western Wind and Solar Integration Study (covers the footprint of WestConnect, a group of transmission owners that covers most of Colorado, New Mexico, Arizona, Nevada, and Wyoming) and the Eastern Wind Integration and Transmission Study (covers a large part of the Eastern Interconnection). Results from both studies showed that high wind penetrations could be successfully integrated into the power system, but were dependant on sufficient transmission and significant changes in operations.

  17. Helicopter blade-vortex interaction locations: Scale-model acoustics and free-wake analysis results

    NASA Technical Reports Server (NTRS)

    Hoad, Danny R.

    1987-01-01

    The results of a model rotor acoustic test in the Langley 4by 7-Meter Tunnel are used to evaluate a free-wake analytical technique. An acoustic triangulation technique is used to locate the position in the rotor disk where the blade-vortex interaction noise originates. These locations, along with results of the rotor free-wake analysis, are used to define the geometry of the blade-vortex interaction noise phenomena as well as to determine if the free-wake analysis is a capable diagnostic tool. Data from tests of two teetering rotor systems are used in these analyses.

  18. Geochemical data for Colorado soils-Results from the 2006 state-scale geochemical survey

    USGS Publications Warehouse

    Smith, David B.; Ellefsen, Karl J.; Kilburn, James E.

    2010-01-01

    In 2006, soil samples were collected at 960 sites (1 site per 280 square kilometers) throughout the state of Colorado. These samples were collected from a depth of 0-15 centimeters and, following a near-total multi-acid digestion, were analyzed for a suite of more than 40 major and trace elements. The resulting data set provides a baseline for the natural variation in soil geochemistry for Colorado and forms the basis for detecting changes in soil composition that might result from natural processes or anthropogenic activities. This report describes the sampling and analytical protocols used and makes available all the soil geochemical data generated in the study.

  19. Stress-resultant models for ultimate load design of reinforced concrete frames and multi-scale parameter estimates

    NASA Astrophysics Data System (ADS)

    Pham, B. H.; Brancherie, D.; Davenne, L.; Ibrahimbegovic, A.

    2013-03-01

    In this work, we present a new finite element for (geometrically linear) Timoshenko beam model for ultimate load computation of reinforced concrete frames. The proposed model combines the descriptions of the diffuse plastic failure in the beam-column followed by the creation of plastic hinges due to the failure or collapse of the concrete and of the re-bars. A modified multi-scale analysis is performed in order to identify the parameters for stress-resultant-based macro model, which is used to described the behavior of the Timoshenko beam element. For clarity, we focus upon the micro-scale models using the multi-fiber elements with embedded displacement discontinuities in mode I, which would typically be triggered by bending failure mode. More general case of micro-scale model capable of describing shear failure is described by Ibrahimbegovic et al. (Int J Numer Methods Eng 83(4):452-481, 2010).

  20. A class of collinear scaling algorithms for bound-constrained optimization: Derivation and computational results

    NASA Astrophysics Data System (ADS)

    Ariyawansa, K. A.; Tabor, Wayne L.

    2009-08-01

    A family of algorithms for the approximate solution of the bound-constrained minimization problem is described. These algorithms employ the standard barrier method, with the inner iteration based on trust region methods. Local models are conic functions rather than the usual quadratic functions, and are required to match first and second derivatives of the barrier function at the current iterate. The various members of the family are distinguished by the choice of a vector-valued parameter, which is the zero vector in the degenerate case that quadratic local models are used. Computational results are used to compare the efficiency of various members of the family on a selection of test functions.

  1. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    SciTech Connect

    Gary Blythe

    2007-05-01

    in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

  2. Coupling solar photo-Fenton and biotreatment at industrial scale: main results of a demonstration plant.

    PubMed

    Malato, Sixto; Blanco, Julián; Maldonado, Manuel I; Oller, Isabel; Gernjak, Wolfgang; Pérez-Estrada, Leonidas

    2007-07-31

    This paper reports on the combined solar photo-Fenton/biological treatment of an industrial effluent (initial total organic carbon, TOC, around 500mgL(-1)) containing a non-biodegradable organic substance (alpha-methylphenylglycine at 500mgL(-1)), focusing on pilot plant tests performed for design of an industrial plant, the design itself and the plant layout. Pilot plant tests have demonstrated that biodegradability enhancement is closely related to disappearance of the parent compound, for which a certain illumination time and hydrogen peroxide consumption are required, working at pH 2.8 and adding Fe(2+)=20mgL(-1). Based on pilot plant results, an industrial plant with 100m(2) of CPC collectors for a 250L/h treatment capacity has been designed. The solar system discharges the wastewater (WW) pre-treated by photo-Fenton into a biotreatment based on an immobilized biomass reactor. First, results of the industrial plant are also presented, demonstrating that it is able to treat up to 500Lh(-1) at an average solar ultraviolet radiation of 22.9Wm(-2), under the same conditions (pH, hydrogen peroxide consumption) tested in the pilot plant.

  3. Formation of chocolate-tablet boudins: Results from scaled analogue models

    NASA Astrophysics Data System (ADS)

    Zulauf, J.; Zulauf, G.; Göttlich, J.; Peinl, M.

    2014-11-01

    We used power-law viscous plasticine as a rock analogue to simulate chocolate tablet boudinage of rocks undergoing dislocation creep. A competent plasticine layer, oriented perpendicular to the main shortening direction, Z, underwent two phases of plane strain in a weaker plasticine matrix, with the principal stretching axis, X, and the axis of no-change, Y, replacing each other from the first to the second phase. In each phase of plane strain, boudinage was controlled by an initial phase of viscous necking followed by extension fracture along the neck domain. Increase in the magnitude of finite strain (e) and decrease in layer thickness (Hi) result in a decrease in the boudin width (Wa) and an increase in the number of boudins (N). Given the viscosity ratio between layer and matrix (m) is higher than ca. 5, the number of boudins decreases and the boudin width increases with increasing values of m. An unexpected result of the present study is that in each experiment, the number of boudins was significantly higher during the second phase of plane strain. This difference should be related to additional drag of the matrix plasticine on the stiff layer in the neck domains formed during the first phase of boudinage. The aspect ratio of the second generation of boudins (Wd = Wa/Hi) is compatible with aspect ratios of natural boudins and with aspect ratios calculated using analytical solutions.

  4. Core Heat Flow and Suppression of Mantle Plumes by Plate-Scale Mantle Flow: Results From Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Gonnermann, H. M.; Jellinek, A. M.; Richards, M. A.; Manga, M.

    2002-12-01

    Heat flow from the Earth's core to the mantle remains an unresolved quantity. Its value has implications for the core's thermal evolution and growth of the inner core, the geodynamo, and the relative abundance of radioactive elements in the core and mantle. Core heat flow is affected by dynamics of the lowermost mantle in three ways: (1) advection of heat by plume instabilities; (2) conductive heating of subducted material; and (3) suppression of plume instabilities, as well as advection of heat by plate-scale mantle flow. We present results from a boundary-layer analysis and laboratory experiments aimed at understanding the effects of an imposed large-scale circulation on thermal convection at high-Rayleigh number (106<=Ra<=109) in a fluid with a strongly temperature-dependent viscosity. The ultimate goal of this work is to better understand the effect of plate-scale mantle flow on heat flux across the CMB and on the dynamics of plume formation at the CMB. Our theoretical analysis is complemented by lab experiments, in which a layer of corn syrup is heated from below and a large-scale flow is induced in the fluid above the hot boundary. We identify 4 convective regions associated with high-Rayleigh number convection in the presence of a large-scale flow: (1) a subcritical TBL region (Domain I), where plume instabilities are suppressed by the advective thinning of the TBL and heat flux is increased relative to convection without large-scale flow; (2) a supercritical TBL region (Domain II), where plume instabilities are no longer suppressed and heat flux is equal to convection without large-scale flow; (3) a flow-dominated region (Domain III), which is free of plumes; and (4) a plume-dominated domain (Domain IV), where the interaction of hot buoyant plumes and imposed large-scale flow results in lateral advection and distortion of rising plumes. In addition, we present a boundary-layer analysis that predicts heat flux, Q, from a hot surface as a function of imposed

  5. Particle-In-Cell (PIC) code simulation results and comparison with theory scaling laws for photoelectron-generated radiation

    SciTech Connect

    Dipp, T.M. |

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using Particle-In-Cell (PIC) code computer simulations. Using the MAGIC PIC code, the simulations were performed in one dimension to handle the diverse scale lengths of the particles and fields in the problem. The simulations involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train, as well as unmodulated emission, were used to explore the behavior of the particles, fields, and generated radiation. A special postprocessor was written to convert the PIC code simulated electron sheath into far-field radiation parameters by means of rigorous retarded time calculations. The results of the small-spot PIC simulations were used to generate various graphs showing resonance and nonresonance radiation quantities such as radiated lobe patterns, frequency, and power. A database of PIC simulation results was created and, using a nonlinear curve-fitting program, compared with theoretical scaling laws. Overall, the small-spot behavior predicted by the theoretical scaling laws was generally observed in the PIC simulation data, providing confidence in both the theoretical scaling laws and the PIC simulations.

  6. The effect of small scale variablity in isotopic composition of precipitation on hydrograph separation results

    NASA Astrophysics Data System (ADS)

    Fischer, Benjamin; van Meerveld, Ilja; Seibert, Jan

    2016-04-01

    Understanding runoff processes is important for predictions of streamflow quantity and quality. The two-component isotope hydrograph separation (IHS) method is a valuable tool to study how catchments transform rainfall into runoff. IHS allows the stormflow hydrograph to be separated into rainfall (event water) and water that was stored in the catchment before the event (pre-event water). To be able to perform an IHS, water samples of baseflow (pre-event water) and stormflow are collected at the stream outlet. Rainfall is usually collected at one location by hand as an event total or sampled sequentially during the event. It is usually assumed that the spatial variability in rainfall and the isotopic composition of rainfall are negligible for small (<10km2) catchments. However, different studies have shown that precipitation can vary within short distances. Subsequently it remains unclear how the spatio-temproal variability of rainfall and the stable isotope composition of rainfall affect the results of an IHS. In this study, we investigated the effects of the spatio-temporal variability in the isotopic composition of rainfall across a small headwater catchment in Switzerland. Rainfall was measured at eight locations and three streams (catchment area of 0.15, 0.23, and 0.7 km2). The isotopic composition of rainfall and streamflow were sampled for 10 different rain events (P: 5 mm intervals, Q: 12 to 51 samples per events). This dataset was used to perform a two-component isotope hydrograph separation. The results show that for some events the spatial variability in total rainfall, mean and maximum rainfall intensity and stable isotope composition of rainfall was high. There was no relation between the stable isotope composition of rainfall and the rainfall sum, rainfall intensity or altitude. The spatial variability of the isotopic composition of rainfall was for 4 out of the 10 events as large as the temporal variability in the isotopic composition. Different

  7. Cometary dust at the smallest scale - latest results of the MIDAS Atomic Force Microscope onboard Rosetta

    NASA Astrophysics Data System (ADS)

    Bentley, Mark; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Schmied, Roland; Mannel, Thurid

    2015-04-01

    The MIDAS instrument onboard the Rosetta orbit is a unique combination of a dust collection and handling system and a high resolution Atomic Force Microscope (AFM). By building three-dimensional images of the dust particle topography, MIDAS addresses a range of fundamental questions in Solar System and cometary science. The first few months of dust collection and scanning revealed a deficit of smaller (micron and below) particles but eventually several 10 µm-class grains were discovered. In fact these were unexpectedly large and close to the limit of what is observable with MIDAS. As a result the sharp tip used by the AFM struck the particles from the side, causing particle breakage and distortion. Analyses so far suggest that the collected particles are fluffy aggregates of smaller sub-units, although determination of the size of these sub-units and high resolution re-imaging remains to be done. The latest findings will be presented here, including a description of the particles collected and the implications of these observations for cometary science and the Rosetta mission at comet 67P.

  8. Odor control in composting plants: results from full-scale experiences.

    PubMed

    Canovai, Alessandro; Valentini, Federico; Manetti, Edoardo; Zagaroli, Mauro

    2004-01-01

    The development and spread of mechanical biological treatment (MBT) and composting plants is often hindered by the problems and concerns arising from emission bad odors. Several technologies are now available to process exhausted air originated from these or similar plants. Exhausted air emissions contain a large amount of organic compounds, most of them in very low concentrations. This determines the advantage in using biological abatement systems (biofilters) instead of physical-chemical treatments. This article describes the operative results obtained in two Italian waste treatment plants, one in Albano, near Rome, and the other in the "ex-Maserati area" of Milan, including (i) the analysis of operational parameters as temperature, pH. humidity, loss of pressure of the biofilter affecting the biofiltration efficiency, for both chemical parameters and odorous compound concentration, measured by means of odor panel evaluation technique and (ii) the efficiency of the biofiltration system for several compounds present in air emissions, analyzing organic substances by means of gas chromatography/mass spectrometry. The two plants used similar biofiltration systems except for the material used as biofilter bed. A bioscrubber pretreatment of the air flow coming from the aerobic reactor was tested in the Albano plant for the purpose of reducing the odor concentration of the most impacting flow going to the biofilter.

  9. Scaling and Exponent Equalities in Island Nucleation: Novel Results and Application to Organic Films

    PubMed Central

    2014-01-01

    It is known in thin-film deposition that the density of nucleated clusters N varies with the deposition rate F as a power law, N ∼ Fα. The exponent α is a function of the critical nucleus size i in a way that changes with the aggregation limiting process. We extend here the derivation of the analytical capture-zone distribution function Pβ(s) = aß·sβ·exp(-bβs2) of Pimpinelli and Einstein to generic aggregation-limiting processes. We show that the parameter β is generally related to the critical nucleus size i and to the exponent α by the equality α·β = i, in the case of compact islands. This remarkable result allows one to measure i with no a priori knowledge of the actual aggregation mechanism. We apply this equality to measuring the critical nucleus size for pentacene deposition on mica. This system shows a crossover from diffusion-limited to attachment-limited aggregation with increasing deposition rates. PMID:24660052

  10. Results of Small-Scale Tests for Removing Mercury from ORNL Process Wastewater

    SciTech Connect

    Taylor, P.A.; Klasson, K.T.

    1999-06-01

    Oak Ridge National Laboratory (ORNL) received a new National Pollutant Discharge Elimination System (NPDES) Permit from the state of Tennessee in 1997. This permit reduced the limit for mercury in the effluent from the Process Wastewater Treatment Complex - Building 3608 (PWTC-3608) to 19 ppt for the monthly average, which is well below the current effluent concentration. The mercury limit is being appealed, so it is not currently being enforced, but experimental work is being done to determine if it is possible to meet this new limit. Various mercury sorbents were evaluated in small, continuous-flow columns. The first set of sorbent tests that were conducted at PWTC-3608 in August 1997 showed excellent mercury removal by the Forager Sponge, even at high flow rates. Subsequent tests, however, showed that the mercury removal by the Forager Sponge, even at high flow rates. Subsequent tests, however, showed that the mercury removal efficiency of the sorbents varied considerably over time, probably as a result of changes in the form of the mercury in the wastewater. A significant portion of the mercury in PWTC-3608 water was bound to small particles during the later tests, which made the mercury less accessible to the sorbents. Chlorination of the water, which could convert the mercury to an ionic form, improved the performance of some of the sorbents.

  11. Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks

    SciTech Connect

    Oostrom, Martinus; Wietsma, Thomas W.

    2014-09-30

    Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

  12. Formation of dome and basin structures: Results from scaled experiments using non-linear rock analogues

    NASA Astrophysics Data System (ADS)

    Zulauf, J.; Zulauf, G.; Zanella, F.

    2016-09-01

    Dome and basin folds are structures with circular or slightly elongate outcrop patterns, which can form during single- and polyphase deformation in various tectonic settings. We used power-law viscous rock analogues to simulate single-phase dome-and-basin folding of rocks undergoing dislocation creep. The viscosity ratio between a single competent layer and incompetent matrix was 5, and the stress exponent of both materials was 7. The samples underwent layer-parallel shortening under bulk pure constriction. Increasing initial layer thickness resulted in a decrease in the number of domes and basins and an increase in amplitude, A, arc-length, L, wavelength, λ, and layer thickness, Hf. Samples deformed incrementally show progressive development of domes and basins until a strain of eY=Z = -30% is attained. During the dome-and-basin formation the layer thickened permanently, while A, L, and λ increased. A dominant wavelength was not attained. The normalized amplitude (A/λ) increased almost linearly reaching a maximum of 0.12 at eY=Z = -30%. During the last increment of shortening (eY=Z = -30 to -40%) the domes and basins did not further grow, but were overprinted by a second generation of non-cylindrical folds. Most of the geometrical parameters of the previously formed domes and basins behaved stable or decreased during this phase. The normalized arc-length (L/Hf) of domes and basins is significantly higher than that of 2D cylindrical folds. For this reason, the normalized arc length can probably be used to identify domes and basins in the field, even if these structures are not fully exposed in 3D.

  13. Effects of Added Rigid Vegetation on the Bar Formation: Results from Full-scale Experimental

    NASA Astrophysics Data System (ADS)

    Peng, K. Y.; Chen, S. C.; An, H. P.

    2015-12-01

    River corridors were characterized by island and floodplain development driven by the inter-play of flows, sediments and vegetation. This study used a natural stream as an experimental site with the site was 60m long by 30m wide, which was in downstream of Landao Creek, Huisun forest, Taiwan. The field experiment was designed to investigate the effects of river processes on bar, and the effects vegetation dynamics had on bar formation, which cause by upstream dam broke. To analysis how vegetation impact on bar-form and bar-stabilization, we used wood piles (4.4×4.4×80cm) as natural rigid vegetation, which inserted into the bar upstream. In the field site, we chose 6 site to set wood piles, each site was designed 4 row and were total 11 piles within, which set at in-row and in- line spacing of 50×20cm. According to the results, two primary phase of forming bar in the fluvial processes were discussed. First, in the flood period, presence of piles could trap large gravel in the front and turn the gravel into deposition. When the deposition gradually accreted, the front of deposition would induce flow to divide, let flow disperse into two branches around the deposition; some coarser particles rather are transported along the bar surface with momentum of flow movement and deposited at the top of bar, than are transported along the diversion channel around the bar (the median grain size of bar top were coarser 50% than before). Second, in the flood recession period, bar quickly accreted portions of passing bed load sheets and grew laterally and in the headward direction. Phenomenon showed that the composition of grain size were decreasing in the headward direction, which flow entrained were getting smaller with flood recession (the median grain size between top and the front of bar differed 30%).

  14. Optimising The Available Scarce Water Resources At European Scale In A Modelling Environment: Results And Challenges

    NASA Astrophysics Data System (ADS)

    de Roo, Ad; Burek, Peter; Gentile, Alessandro; Udias, Angel; Bouraoui, Faycal

    2013-04-01

    sector, the manufacturing-industry sector, the energy-production sector and the domestic sector. Also, potential flood damage of a 100-year return period flood has been used as an indicator. The study has shown that technically this modelling software environment can deliver optimum scenario combinations of packages of measures that improve various water quantity and water quality indicators, but that additional work is needed before final conclusions can be made using the tool. Further work is necessary, especially in the economic loss estimations, the water prices and price-elasticity, as well as the implementation and maintenance costs of individual scenarios. First results and challenges will be presented and discussed.

  15. Developing a scale to measure stigmatizing attitudes and beliefs about women who have abortions: results from Ghana and Zambia.

    PubMed

    Shellenberg, Kristen M; Hessini, Leila; Levandowski, Brooke A

    2014-01-01

    The objective of this research was to explore the context of abortion stigma in Ghana and Zambia through qualitative research, and develop a quantitative instrument to measure stigmatizing attitudes and beliefs about abortion. Ultimately, we aimed to develop a scale to measure abortion stigma at the individual and community level that can also be used in the evaluation of stigma reduction interventions. Focus group discussions were conducted in both countries to provide information around attitudes and beliefs about abortion. A 57-item instrument was created from these data, pre-tested, and then administered to 531 individuals (n = 250 in Ghana and n = 281 in Zambia). Exploratory factor analyses were conducted on 33 of the original 57 items to identify a statistically and conceptually relevant scale. Items with factor loadings > 0.39 were retained. All analyses were completed using Stata IC/11.2. Exploratory factor analysis resulted in a three-factor solution that explained 53% of the variance in an 18-item instrument. The three identified subscales are: (i) negative stereotypes (eight items), (ii) discrimination and exclusion (seven items), and (iii) potential contagion (three items). Coefficient alphas of 0.85, 0.80, and 0.80 for the three subscales, and 0.90 for the full 18-item instrument provide evidence of internal consistency reliability. Our Stigmatizing Attitudes, Beliefs, and Actions scale captures three important dimensions of abortion stigma: negative stereotypes about men and women who are associated with abortion, discrimination/exclusion of women who have abortions, and fear of contagion as a result of coming in contact with a woman who has had an abortion. The development of this scale provides a validated tool for measuring stigmatizing attitudes and beliefs about abortion in Ghana and Zambia. Additionally, the scale has the potential to be applicable in other country settings. It represents an important contribution to the fields of reproductive

  16. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are

  17. Heap leach studies on the removal of uranium from soil. Report of laboratory-scale test results

    SciTech Connect

    Turney, W.R.J.R.; York, D.A.; Mason, C.F.V.; Chisholm-Brause, C.J.; Dander, D.C.; Longmire, P.A.; Morris, D.E.; Strait, R.K.; Brewer, J.S.

    1994-05-01

    This report details the initial results of laboratory-scale testing of heap leach that is being developed as a method for removing uranium from uranium-contaminated soil. The soil used was obtained from the site of the Feed Materials Production Center (FMPC) near the village of Fernald in Ohio. The testing is being conducted on a laboratory scale, but it is intended that this methodology will eventually be enlarged to field scale where, millions of cubic meters of uranium-contaminated soil can be remediated. The laboratory scale experiments show that, using carbonate/bicarbonate solutions, uranium can be effectively removed from the soil from initial values of around 600 ppM down to 100 ppM or less. The goal of this research is to selectively remove uranium from the contaminated soil, without causing serious changes in the characteristics of the soil. It is also hoped that the new technologies developed for soil remediation at FEMP will be transferred to other sites that also have uranium-contaminated soil.

  18. Payments for Environmental Services as source of development funding for small-scale farmers in northern Namibia: preliminary results

    NASA Astrophysics Data System (ADS)

    Angombe, Simon; Bloemertz, Lena; Käch, Simon; Asino, Josefina; Kuhn, Nikolaus J.

    2013-04-01

    Studies in Africa suggest that improving Soil Organic Carbon (SOC) on cropland soils increases yields, but also offers the opportunity of earning carbon credits. Further potential for earning carbon credits and generating Payments for Environmental Services (PES) lies in an integrated approach to landscape carbon management, including shrubland and pasture used for grazing and timber supply. These studies indicate that funds raised from PES could be used to foster the development of small-scale farming in northern Namibia. However, the limited information on soil quality and the rationale for particular soil management and land use practices applied by small-scale farmers in Namibia prohibits a conclusive assessment of the potential of Payment for PES as a source of income or funding opportunity for development initiatives in Northern Central Regions of Namibia. Therefore, the aim of this study is the identification of potential intervention mechanisms to improve the livelihood of small scale-farmers and reducing land degradation with the support of PES in the communal regions of northern Namibia. The work in Namibia aimed at identifying existing soil management and land use practices as well as soil quality, including carbon stocks, on land used by small-scale farmers in the densely populated northern central region. The main objective of the first part of the field work was to develop an overview of farming practices and soil quality as well as sampling and interviewing approaches. Four settlements were selected for the field work based on their distance to the urbanized road corridor between Oshakati and the Angolan border. Initial results confirm the potential to increase productivity on land used by small-scale farmers as well as the opportunity to develop landscape carbon stocks. However, limits to earning PES might be the lack of a market, and thus incentive for the farmers, to shift from subsistence to commercial farming.

  19. Seamless atmospheric modeling across the hydrostatic-nonhydrostatic scales - preliminary results using an unstructured-Voronoi mesh for weather prediction.

    NASA Astrophysics Data System (ADS)

    Skamarock, W. C.

    2015-12-01

    One of the major problems in atmospheric model applications is the representation of deep convection within the models; explicit simulation of deep convection on fine meshes performs much better than sub-grid parameterized deep convection on coarse meshes. Unfortunately, the high cost of explicit convective simulation has meant it has only been used to down-scale global simulations in weather prediction and regional climate applications, typically using traditional one-way interactive nesting technology. We have been performing real-time weather forecast tests using a global non-hydrostatic atmospheric model (the Model for Prediction Across Scales, MPAS) that employs a variable-resolution unstructured Voronoi horizontal mesh (nominally hexagons) to span hydrostatic to nonhydrostatic scales. The smoothly varying Voronoi mesh eliminates many downscaling problems encountered using traditional one- or two-way grid nesting. Our test weather forecasts cover two periods - the 2015 Spring Forecast Experiment conducted at the NOAA Storm Prediction Center during the month of May in which we used a 50-3 km mesh, and the PECAN field program examining nocturnal convection over the US during the months of June and July in which we used a 15-3 km mesh. An important aspect of this modeling system is that the model physics be scale-aware, particularly the deep convection parameterization. These MPAS simulations employ the Grell-Freitas scale-aware convection scheme. Our test forecasts show that the scheme produces a gradual transition in the deep convection, from the deep unstable convection being handled entirely by the convection scheme on the coarse mesh regions (dx > 15 km), to the deep convection being almost entirely explicit on the 3 km NA region of the meshes. We will present results illustrating the performance of critical aspects of the MPAS model in these tests.

  20. Brief Report: the Social Responsiveness Scale for Adults (SRS-A): initial results in a German cohort.

    PubMed

    Bölte, Sven

    2012-09-01

    The Social Responsiveness Scale (SRS) is a tool for quantitative autism assessment in children and adolescents. The SRS-A addresses social responsiveness in adulthood. Reliability and validity using the German adaptation of the SRS-A was examined in 20 adults with Autism Spectrum Disorder (ASD), 62 with other mental disorders (CLIN) and 163 typically developing (TD) participants. Cronbach's alpha ranged from .71 (TD) to .89 (ASD). A SRS-A total score of 67 had a sensitivity of .85, and a specificity of .83 for ASD versus CLIN/TD. Correlations with established autism scales (ADOS, AQ, SCQ) were moderate to high (r = .25-.83). Results provide adequate preliminary support for the application of the SRS-A. PMID:22183423

  1. Multiple-scale study of fracture indicators at eight sites across the Appalachian orogen in Pennsylvania: Summary of results

    SciTech Connect

    Shuman, C.A. . Dept. of Geosciences)

    1992-01-01

    Four scales of remote sensing were used to investigate fracture indicators (lineaments and fracture traces) at 8 study areas: (1) 1:500,000 Landsat 5 Thematic Mapper; (2) 1:250,000 Side-Looking Airborne Radar mosaics; (3) 1:80,000 National High-Altitude Program aerial photographs; and (4) 1:20,000 Agricultural Stabilization and Conservation Service aerial photographs. To allow for inter-comparison of results, two traverses of four study areas were arranged across the four major physiographic regions in the Appalachian orogen, (1) Plateau, (2) Ridge and Valley, (3) Great Valley; and (4) Piedmont. The remote sensing results for the Plateau and Ridge and Valley areas indicate that observed orientations are concentrated in the NW to NNW. Orientation peaks for the areas are less well defined but tend to be parallel and perpendicular to Mesozoic features. These findings indicate that causal relationships exist between bedrock paleo-stress trajectories and observed fracture indicator maxima. The results of the geomorphic parameter studies indicate that these features are complexly controlled by factors other than bedrock fracture fabric, most notably bedrock strike. Other findings of this study may generally characterize relationships between classes of fracture indicators. As imagery scale number increases: the average degree of expression of lineament features decreases; lineament frequency over each study area decreases in a decay curve; plots of average lineament length show a positive trend for the three larger scales; and total lineament length over the study area shows a decay curve. Other results define potentially useful relationships between feature length, type, and degree of expression.

  2. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    SciTech Connect

    Gary Blythe; MariJon Owens

    2007-12-01

    and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

  3. Electrokinetic remediation of plutonium-contaminated nuclear site wastes: results from a pilot-scale on-site trial.

    PubMed

    Agnew, Kieran; Cundy, Andrew B; Hopkinson, Laurence; Croudace, Ian W; Warwick, Phillip E; Purdie, Philip

    2011-02-28

    This paper examines the field-scale application of a novel low-energy electrokinetic technique for the remediation of plutonium-contaminated nuclear site soils, using soil wastes from the Atomic Weapons Establishment (AWE) Aldermaston site, Berkshire, UK as a test medium. Soils and sediments with varying composition, contaminated with Pu through historical site operations, were electrokinetically treated at laboratory-scale with and without various soil pre-conditioning agents. Results from these bench-scale trials were used to inform a larger on-site remediation trial, using an adapted containment pack with battery power supply. 2.4 m(3) (ca. 4t onnes) of Pu-contaminated soil was treated for 60 days at a power consumption of 33 kWh/m(3), and then destructively sampled. Radiochemical data indicate mobilisation of Pu in the treated soil, and migration (probably as a negatively charged Pu-citrate complex) towards the anodic compartment of the treatment cell. Soil in the cathodic zone of the treatment unit was remediated to a level below free-release disposal thresholds (1.7 Bq/g, or <0.4 Bq/g above background activities). The data show the potential of this method as a low-cost, on-site tool for remediation of radioactively contaminated soils and wastes which can be operated remotely on working sites, with minimal disruption to site infrastructure or operations. PMID:21227583

  4. Electrokinetic remediation of plutonium-contaminated nuclear site wastes: results from a pilot-scale on-site trial.

    PubMed

    Agnew, Kieran; Cundy, Andrew B; Hopkinson, Laurence; Croudace, Ian W; Warwick, Phillip E; Purdie, Philip

    2011-02-28

    This paper examines the field-scale application of a novel low-energy electrokinetic technique for the remediation of plutonium-contaminated nuclear site soils, using soil wastes from the Atomic Weapons Establishment (AWE) Aldermaston site, Berkshire, UK as a test medium. Soils and sediments with varying composition, contaminated with Pu through historical site operations, were electrokinetically treated at laboratory-scale with and without various soil pre-conditioning agents. Results from these bench-scale trials were used to inform a larger on-site remediation trial, using an adapted containment pack with battery power supply. 2.4 m(3) (ca. 4t onnes) of Pu-contaminated soil was treated for 60 days at a power consumption of 33 kWh/m(3), and then destructively sampled. Radiochemical data indicate mobilisation of Pu in the treated soil, and migration (probably as a negatively charged Pu-citrate complex) towards the anodic compartment of the treatment cell. Soil in the cathodic zone of the treatment unit was remediated to a level below free-release disposal thresholds (1.7 Bq/g, or <0.4 Bq/g above background activities). The data show the potential of this method as a low-cost, on-site tool for remediation of radioactively contaminated soils and wastes which can be operated remotely on working sites, with minimal disruption to site infrastructure or operations.

  5. Large-Scale Dynamics of the Magnetospheric Boundary: Comparisons between Global MHD Simulation Results and ISTP Observations

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.

    1998-01-01

    Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an investigation of the evolution of the distant tail at 200 R(sub E) from the Earth.

  6. Use of Polyacrylamide to Reduce Seepage From Unlined Irrigation Canals: Initial Results From Small Scale Test Troughs

    NASA Astrophysics Data System (ADS)

    Susfalk, R. B.; Young, M. H.; Schmidt, M.; Epstein, B. J.; Goreham, J.; Swhihart, J.; Smith, D.

    2005-12-01

    Polyacrylamide (PAM) is a class of long-chain synthetic polymers that are used extensively in food packaging, paper manufacturing, wastewater treatment, and as a soil amendment to reduce erosion. Recent empirical evidence has shown that applying linear, anionic PAM seepage can also reduce seepage from unlined irrigation canals. A diverse set of experiments has been initiated to understand the efficacy of PAM usage in ditch environments. The experiments span multiple scales, from small-scale bench top and artificial furrow experiments, to larger engineered furrows and irrigation ditches. Our objective was to assess the effectiveness of different PAM application methods and concentrations on seepage reductions in small scale, artificial Test Troughs (TT). The TT consists of two 24 m long, 10 cm deep furrows formed from native ASTM C-33 sand. During water application, inflows, outflows, and seepage from under the furrows were continuously measured. PAM in either granular or partially hydrated form was applied at various rates. The results presented here cover one facet of the research program. The application of granular PAM to the TT reduced seepage from 49 L/min to less than 22 L/min, depending on treatment. A PAM application rate of 44 kg/(canal ha) reduced seepage by 69+/-9 percent, and was more effective than an application rate of 11 kg/(canal ha) that reduced seepage by 56+/-22 percent. Seepage reduction was calculated using flow rates between 400 and 600 elapsed minutes. Inclusion of later data (up to 1440 min) into seepage calculations was complicated by a reduction in seepage at the control trough caused either by a reduction in head or deposition of suspended sediment. We hypothesize that the PAM-sediment layer present in the treated trough exerted a greater control on seepage than sediment deposition alone. However, heavy suspended sediment loads associated with hydrologic events reduced seepage rates within both the control and treated troughs, somewhat

  7. A Local Baseline of the Black Hole Mass Scaling Relations for Active Galaxies. I. Methodology and Results of Pilot Study

    NASA Astrophysics Data System (ADS)

    Bennert, Vardha Nicola; Auger, Matthew W.; Treu, Tommaso; Woo, Jong-Hak; Malkan, Matthew A.

    2011-01-01

    We present high-quality Keck/LRIS long-slit spectroscopy of a pilot sample of 25 local active galaxies selected from the SDSS (0.02 <=z <= 0.1; M BH>107 M sun) to study the relations between black hole mass (M BH) and host-galaxy properties. We determine stellar kinematics of the host galaxy, deriving stellar-velocity dispersion profiles and rotation curves from three spectral regions (including CaH&K, MgIb triplet, and Ca II triplet). In addition, we perform surface photometry on SDSS images, using a newly developed code for joint multi-band analysis. BH masses are estimated from the width of the Hβ emission line and the host-galaxy free 5100 Å active galactic nucleus (AGN) luminosity. Combining results from spectroscopy and imaging allows us to study four M BH scaling relations: M BH-σ, M BH-L sph, M BH-M sph,sstarf, and M BH-M sph,dyn. We find the following results. First, stellar-velocity dispersions determined from aperture spectra (e.g., SDSS fiber spectra or unresolved data from distant galaxies) can be biased, depending on aperture size, AGN contamination, and host-galaxy morphology. However, such a bias cannot explain the offset seen in the M BH-σ relation at higher redshifts. Second, while the CaT region is the cleanest to determine stellar-velocity dispersions, both the MgIb region, corrected for Fe II emission, and the CaHK region, although often swamped by the AGN power-law continuum and emission lines, can give results accurate to within a few percent. Third, the M BH scaling relations of our pilot sample agree in slope and scatter with those of other local active and inactive galaxies. In the next papers of the series we will quantify the scaling relations, exploiting the full sample of ~100 objects.

  8. Recent results and future challenges for large scale Particle-In-Cell simulations of plasma-based accelerator concepts

    SciTech Connect

    Huang, C.; An, W.; Decyk, V.K.; Lu, W.; Mori, W.B.; Tsung, F.S.; Tzoufras, M.; Morshed, S.; Antomsen, T.; Feng, B.; Katsouleas, T; Fonseca, R.A.; Martins, S.F.; Vieira, J.; Silva, L.O.; Geddes, C.G.R.; Cormier-Michel, E; Vay, J.-L.; Esarey, E.; Leemans, W.P.; Bruhwiler, D.L.; Cowan, B.; Cary, J.R.; Paul, K.

    2009-05-01

    The concept and designs of plasma-based advanced accelerators for high energy physics and photon science are modeled in the SciDAC COMPASS project with a suite of Particle-In-Cell codes and simulation techniques including the full electromagnetic model, the envelope model, the boosted frame approach and the quasi-static model. In this paper, we report the progress of the development of these models and techniques and present recent results achieved with large-scale parallel PIC simulations. The simulation needs for modeling the plasma-based advanced accelerator at the energy frontier is discussed and a path towards this goal is outlined.

  9. Full-Scale Test and Analysis Results of a PRSEUS Fuselage Panel to Assess Damage Containment Features

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew; Bakuckas, John G., Jr.; Lovejoy, Andrew; Jegley, Dawn; Linton, Kim; Neal, Bert; Korkosz, Gregory; Awerbuch, Jonathan; Tan, Tein-Min

    2012-01-01

    Integrally stitched composite technology is an area that shows promise in enhancing the structural integrity of aircraft and aerospace structures. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. The goal of the PRSEUS concept relevant to this test is to provide damage containment capability for composite structures while reducing overall structural weight. The National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and The Boeing Company have partnered in an effort to assess the damage containment features of a full-scale curved PRSEUS panel using the FAA Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility. A single PRSEUS test panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure loads. The test results showed excellent performance of the PRSEUS concept. No growth of Barely Visible Impact Damage (BVID) was observed after ultimate loads were applied. With a two-bay notch severing the central stringer, damage was contained within the two-bay region well above the required limit load conditions. Catastrophic failure was well above the ultimate load level. Information describing the test panel and procedure has been previously presented, so this paper focuses on the experimental procedure, test results, nondestructive inspection results, and preliminary test and analysis correlation.

  10. What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results?

    SciTech Connect

    Ping Yang; Daniel B. Ames; Andre Fonseca; Danny Anderson; Rupesh Shrestha; Nancy F. Glenn; Yang Cao

    2014-08-01

    This paper examines the effect of raster cell size on hydrographic feature extraction and hydrological modeling using LiDAR derived DEMs. LiDAR datasets for three experimental watersheds were converted to DEMs at various cell sizes. Watershed boundaries and stream networks were delineated from each DEM and were compared to reference data. Hydrological simulations were conducted and the outputs were compared. Smaller cell size DEMs consistently resulted in less difference between DEM-delineated features and reference data. However, minor differences been found between streamflow simulations resulted for a lumped watershed model run at daily simulations aggregated at an annual average. These findings indicate that while higher resolution DEM grids may result in more accurate representation of terrain characteristics, such variations do not necessarily improve watershed scale simulation modeling. Hence the additional expense of generating high resolution DEM's for the purpose of watershed modeling at daily or longer time steps may not be warranted.

  11. Large Scale DD Simulation Results for Crystal Plasticity Parameters in Fe-Cr And Fe-Ni Systems

    SciTech Connect

    Zbib, Hussein M.; Li, Dongsheng; Sun, Xin; Khaleel, Mohammad A.

    2012-04-30

    The development of viable nuclear energy source depends on ensuring structural materials integrity. Structural materials in nuclear reactors will operate in harsh radiation conditions coupled with high level hydrogen and helium production, as well as formation of high density of point defects and defect clusters, and thus will experience severe degradation of mechanical properties. Therefore, the main objective of this work is to develop a capability that predicts aging behavior and in-service lifetime of nuclear reactor components and, thus provide an instrumental tool for tailoring materials design and development for application in future nuclear reactor technologies. Towards this end goal, the long term effort is to develop a physically based multiscale modeling hierarchy, validated and verified, to address outstanding questions regarding the effects of irradiation on materials microstructure and mechanical properties during extended service in the fission and fusion environments. The focus of the current investigation is on modern steels for use in nuclear reactors including high strength ferritic-martensitic steels (Fe-Cr-Ni alloys). The effort is to develop a predicative capability for the influence of irradiation on mechanical behavior. Irradiation hardening is related to structural information crossing different length scales, such as composition, dislocation, and crystal orientation distribution. To predict effective hardening, the influence factors along different length scales should be considered. Therefore, a hierarchical upscaling methodology is implemented in this work in which relevant information is passed between models at three scales, namely, from molecular dynamics to dislocation dynamics to dislocation-based crystal plasticity. The molecular dynamics (MD) was used to predict the dislocation mobility in body centered cubic (bcc) Fe and its Ni and Cr alloys. The results are then passed on to dislocation dynamics to predict the critical resolved

  12. The role of coarse woody debris in southeastern pine forests; preliminary results from a large-scale experiment.

    SciTech Connect

    McCay Timothy, S.; Hanula, James, L.; Loeb, Susan, C.; Lohr, Steven, M.; McMinn, James, W.; Wright-Miley. Bret, D.

    2002-08-01

    McCay, Timothy S., James L. Hanula, Susan C. Loeb, Steven M. Lohr, James W. McMinn, and Bret D. Wright-Miley. 2002. The role of coarse woody debris in southeastern pine forests; preliminary results from a large-scale experiment. 135-144. In: Proceedings of the symposium on the ecology and management of dead wood in western forests. 1999 November 2-4; Reno, NV. Gen. Tech. Rep. PSW-GTR-181. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture 949 p. ABSTRACT: We initiated a long-term experiment involving manipulation of coarse woody debris (CWD) at the Savannah River National Environmental Research Park in the upper Coastal Plain of South Carolina. Each of four 9.3-ha plots in each of four blocks was subject to one of the following treatments: removal of all snags and fallen logs, removal of fallen logs only, felling and girdling to simulate a catastrophic pulse of CWD, and control. Removal treatments were applied in 1996, and the felling or snag-creation treatment will be applied in 2000-2001. Monitoring of invertebrate, herptile, avian, and mammalian assemblages and CWD dynamics began immediately after CWD removal and continues through the present. Removal treatments resulted in a fivefold to tenfold reduction in CWD abundance. To date, significant differences among treatments have only been detected for a few animal taxa. However, preliminary results underscore the benefits of large-scale experiments. This experiment allowed unambiguous tests of hypotheses regarding the effect of CWD abundance on fauna. Coupled with studies of habitat use and trophic interactions, the experimental approach may result in stronger inferences regarding the function of CWD than results obtained through natural history observation or uncontrolled correlative studies.

  13. Visual Mapping of Sedimentary Facies Can Yield Accurate And Geomorphically Meaningful Results at Morphological Unit to River Segment Scales

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Wyrick, J. R.; Jackson, J. R.

    2014-12-01

    Long practiced in fisheries, visual substrate mapping of coarse-bedded rivers is eschewed by geomorphologists for inaccuracy and limited sizing data. Geomorphologists perform time-consuming measurements of surficial grains, with the few locations precluding spatially explicit mapping and analysis of sediment facies. Remote sensing works for bare land, but not vegetated or subaqueous sediments. As visual systems apply the log2 Wentworth scale made for sieving, they suffer from human inability to readily discern those classes. We hypothesized that size classes centered on the PDF of the anticipated sediment size distribution would enable field crews to accurately (i) identify presence/absence of each class in a facies patch and (ii) estimate the relative amount of each class to within 10%. We first tested 6 people using 14 measured samples with different mixtures. Next, we carried out facies mapping for ~ 37 km of the lower Yuba River in California. Finally, we tested the resulting data to see if it produced statistically significant hydraulic-sedimentary-geomorphic results. Presence/absence performance error was 0-4% for four people, 13% for one person, and 33% for one person. The last person was excluded from further effort. For the abundance estimation performance error was 1% for one person, 7-12% for three people, and 33% for one person. This last person was further trained and re-tested. We found that the samples easiest to visually quantify were unimodal and bimodal, while those most difficult had nearly equal amounts of each size. This confirms psychological studies showing that humans have a more difficult time quantifying abundances of subgroups when confronted with well-mixed groups. In the Yuba, mean grain size decreased downstream, as is typical for an alluvial river. When averaged by reach, mean grain size and bed slope were correlated with an r2 of 0.95. At the morphological unit (MU) scale, eight in-channel bed MU types had an r2 of 0.90 between mean

  14. Scattering of electromagnetic waves by vortex density structures associated with interchange instability: Analytical and large scale plasma simulation results

    SciTech Connect

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-05-15

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics, and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present particle-in-cell simulation results of electromagnetic scattering on vortex type density structures using the large scale plasma code LSP and compare them with analytical results.

  15. Scattering of electromagnetic waves by vortex density structures associated with interchange instability: Analytical and large scale plasma simulation results

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Lundberg, J.; Paraschiv, I.; Mehlhorn, T. A.

    2014-05-01

    The presence of plasma turbulence can strongly influence propagation properties of electromagnetic signals used for surveillance and communication. In particular, we are interested in the generation of low frequency plasma density irregularities in the form of coherent vortex structures. Interchange or flute type density irregularities in magnetized plasma are associated with Rayleigh-Taylor type instability. These types of density irregularities play an important role in refraction and scattering of high frequency electromagnetic signals propagating in the earth ionosphere, in high energy density physics, and in many other applications. We will discuss scattering of high frequency electromagnetic waves on low frequency density irregularities due to the presence of vortex density structures associated with interchange instability. We will also present particle-in-cell simulation results of electromagnetic scattering on vortex type density structures using the large scale plasma code LSP and compare them with analytical results.

  16. Methods for Quantifying the Uncertainties of LSIT Test Parameters, Test Results, and Full-Scale Mixing Performance Using Models Developed from Scaled Test Data

    SciTech Connect

    Piepel, Gregory F.; Cooley, Scott K.; Kuhn, William L.; Rector, David R.; Heredia-Langner, Alejandro

    2015-05-01

    This report discusses the statistical methods for quantifying uncertainties in 1) test responses and other parameters in the Large Scale Integrated Testing (LSIT), and 2) estimates of coefficients and predictions of mixing performance from models that relate test responses to test parameters. Testing at a larger scale has been committed to by Bechtel National, Inc. and the U.S. Department of Energy (DOE) to “address uncertainties and increase confidence in the projected, full-scale mixing performance and operations” in the Waste Treatment and Immobilization Plant (WTP).

  17. Water and nutrient dynamics at various spatial scales of a tropical agricultural watershed in Eastern Amazon region, Brazil: First Results

    NASA Astrophysics Data System (ADS)

    Wickel, A. J.; Van de Giesen, N.; Sa, T.; Vlek, P. L.; Vielhauer, K.; Denich, M.

    2002-05-01

    As a part of the German-Brazilian Studies project on Human Impacts on Floodplains In the Tropics (SHIFT) the small agricultural "Cumaru" watershed (16 km2), Eastern Amazon region, Brazil, was monitored at various spatial scales for a period of one and a half year. The overall aim of this project is to provide sustainable alternatives to slash-and-burn agriculture. With the current study an attempt is made to close the water and nutrient balance for two sub-watersheds (1 km2) and the fields surrounding their source. In order to understand the processes of water and nutrient dynamics from a field to watershed scale, a wide variety of hydrological and micro-meteorological measurements were made. An automatic weather station, throughfall gauges, TDR-profiles, a piezometer network, and weirs were installed to monitor the main components of the water balance. A digital database of topography, soils, hydrological properties, land use, and vegetation was made to serve as the base input of the various models that are intended to be used. In order to evaluate nutrient dynamics samples were taken of rain-, soil-, ground- and runoff-water at various temporal scales. The modeling of water yield and runoff response will be performed with the physically based TOPOG model. This model is capable of solving water, energy, solute and sediment balances of a catchment in a fully distributed way. Regional (shallow) groundwater modeling will be done with a Finite Element Model (MicroFEM). Preliminary measurement and modeling results indicate that the regional water balance is mainly determined by shallow groundwater flow. A strong nutrient fixation is observed throughout the soil profile, and in the riparian forest zone.

  18. Continental-scale patterns in soil geochemistry and mineralogy: results from two transects across the United States and Canada

    USGS Publications Warehouse

    Woodruff, L.G.; Cannon, W.F.; Eberl, D.D.; Smith, D.B.; Kilburn, J.E.; Horton, J.D.; Garrett, R.G.; Klassen, R.A.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada (GSC) initiated a pilot study that involved collection of more than 1500 soil samples from 221 sites along two continental transects across Canada and the United States. The pilot study was designed to test and refine protocols for a soil geochemical survey of North America. The two transects crossed a wide array of soil parent materials, soil ages, climatic conditions, landforms, land covers and land uses. Sample sites were selected randomly at approximately 40-km intervals from a population defined as all soils of the continent. At each site, soils representing 0 to 5 cm depth, and the O, A, and C horizons, if present, were collected and analyzed for their near-total content of over 40 major and trace elements. Soils from 0–5 cm depth were also collected for analysis of organic compounds. Results from the transects confirm that soil samples collected at a 40-km spacing reveal coherent, continental- to subcontinental-scale geochemical and mineralogical patterns that can be correlated to aspects of underlying soil parent material, soil age and climate influence. The geochemical data also demonstrate that at the continental-scale the dominance of any of these major factors that control soil geochemistry can change across the landscape. Along both transects, soil mineralogy and geochemistry change abruptly with changes in soil parent materials. However, the chemical influence of a soil’s parent material can be obscured by changing climatic conditions. For the transects, increasing precipitation from west to east and increasing temperature from north to south affect both soil mineralogy and geochemistry because of climate effects on soil weathering and leaching, and plant productivity. Regional anomalous metal concentrations can be linked to natural variations in soil parent materials, such as high Ni and Cr in soils developed on ultramafic rocks in California or high P in soils formed on

  19. Payments for Environmental Services as source of development funding for small-scale farmers in northern Namibia: preliminary results

    NASA Astrophysics Data System (ADS)

    Angombe, Simon; Bloemertz, Lena; Käch, Simon; Böller, Marianne; Kuhn, Nikolaus J.

    2014-05-01

    Studies in Africa suggest that improving Soil Organic Carbon (SOC) on cropland soils increases yields, but also offers the opportunity of earning carbon credits. However, at the current price for a ton of carbon, the potential to earn significant carbon credits is limited. Therefore carbon storage should not be seen as a goal in itself. Potential for earning carbon credits and generating further benefits lies in an integrated approach to landscape carbon management, including shrub land and pasture used for grazing and timber supply. Therefore, soil management has to be addressed from a holistic understanding of the livelihoods of small-scale farmers. This includes a detailed understanding of the constraints in farming, as well as the motivation behind farming. The aim of this study is the identification of intervention mechanisms to improve the livelihood of small scale-farmers and reducing land degradation with the support of Payments for Ecosystem Services (PES) in the communal regions of northern Namibia. The main objective of the first part of the field work was to develop an overview of soil quality, farm management and the constraints and motivations regarding farming. Initial results confirm the potential to increase productivity of land while at the same time building up landscape carbon stocks. They furthermore show the importance of carefully choosing the way new farming techniques are introduced, as many farmers are afraid of trying something new.

  20. Experimental results and numerical modeling of a high-performance large-scale cryopump. I. Test particle Monte Carlo simulation

    SciTech Connect

    Luo Xueli; Day, Christian; Haas, Horst; Varoutis, Stylianos

    2011-07-15

    For the torus of the nuclear fusion project ITER (originally the International Thermonuclear Experimental Reactor, but also Latin: the way), eight high-performance large-scale customized cryopumps must be designed and manufactured to accommodate the very high pumping speeds and throughputs of the fusion exhaust gas needed to maintain the plasma under stable vacuum conditions and comply with other criteria which cannot be met by standard commercial vacuum pumps. Under an earlier research and development program, a model pump of reduced scale based on active cryosorption on charcoal-coated panels at 4.5 K was manufactured and tested systematically. The present article focuses on the simulation of the true three-dimensional complex geometry of the model pump by the newly developed ProVac3D Monte Carlo code. It is shown for gas throughputs of up to 1000 sccm ({approx}1.69 Pa m{sup 3}/s at T = 0 deg. C) in the free molecular regime that the numerical simulation results are in good agreement with the pumping speeds measured. Meanwhile, the capture coefficient associated with the virtual region around the cryogenic panels and shields which holds for higher throughputs is calculated using this generic approach. This means that the test particle Monte Carlo simulations in free molecular flow can be used not only for the optimization of the pumping system but also for the supply of the input parameters necessary for the future direct simulation Monte Carlo in the full flow regime.

  1. Public knowledge and preventive behavior during a large-scale Salmonella outbreak: results from an online survey in the Netherlands

    PubMed Central

    2014-01-01

    Background Food-borne Salmonella infections are a worldwide concern. During a large-scale outbreak, it is important that the public follows preventive advice. To increase compliance, insight in how the public gathers its knowledge and which factors determine whether or not an individual complies with preventive advice is crucial. Methods In 2012, contaminated salmon caused a large Salmonella Thompson outbreak in the Netherlands. During the outbreak, we conducted an online survey (n = 1,057) to assess the general public’s perceptions, knowledge, preventive behavior and sources of information. Results Respondents perceived Salmonella infections and the 2012 outbreak as severe (m = 4.21; five-point scale with 5 as severe). Their knowledge regarding common food sources, the incubation period and regular treatment of Salmonella (gastro-enteritis) was relatively low (e.g., only 28.7% knew that Salmonella is not normally treated with antibiotics). Preventive behavior differed widely, and the majority (64.7%) did not check for contaminated salmon at home. Most information about the outbreak was gathered through traditional media and news and newspaper websites. This was mostly determined by time spent on the medium. Social media played a marginal role. Wikipedia seemed a potentially important source of information. Conclusions To persuade the public to take preventive actions, public health organizations should deliver their message primarily through mass media. Wikipedia seems a promising instrument for educating the public about food-borne Salmonella. PMID:24479614

  2. Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale.

    PubMed

    Deasy, Clare; Titman, Andrew; Quinton, John N

    2014-01-01

    As a result of several serious flood events which have occurred since 2000, flooding across Europe is now receiving considerable public and media attention. The impact of land use on hydrology and flood response is significantly under-researched, and the links between land use change and flooding are still unclear. This study considers runoff data available from studies of arable in-field land use management options, applied with the aim of reducing diffuse pollution from arable land, in order to investigate whether these treatments also have potential to reduce downstream flooding. Intensive monitoring of 17 hillslope treatment areas produced a record of flood peak data covering different mitigation treatments for runoff which occurred in the winter of 2007-2008. We investigated event total runoff responses to rainfall, peak runoff, and timing of the runoff peaks from replicates of different treatments, in order to assess whether there is a significant difference in flood peak response between different mitigation options which could be used to mitigate downstream flood risk. A mixed-modelling approach was adopted in order to determine whether differences observed in runoff response were significant. The results of this study suggest that changes in land use management using arable in-field mitigation treatments can affect local-scale runoff generation, with differences observed in the size, duration and timing of flood peaks as a result of different management practices, but the study was unable to allow significant treatment effects to be determined. We suggest that further field studies of the effects of changes in land use and land use management need to upscale towards farm and catchment scale experiments which consider high quality before-and-after data over longer temporal timescales. This type of data collection is essential in order to allow appropriate land use management decisions to be made.

  3. Measurement of flood peak effects as a result of soil and land management, with focus on experimental issues and scale.

    PubMed

    Deasy, Clare; Titman, Andrew; Quinton, John N

    2014-01-01

    As a result of several serious flood events which have occurred since 2000, flooding across Europe is now receiving considerable public and media attention. The impact of land use on hydrology and flood response is significantly under-researched, and the links between land use change and flooding are still unclear. This study considers runoff data available from studies of arable in-field land use management options, applied with the aim of reducing diffuse pollution from arable land, in order to investigate whether these treatments also have potential to reduce downstream flooding. Intensive monitoring of 17 hillslope treatment areas produced a record of flood peak data covering different mitigation treatments for runoff which occurred in the winter of 2007-2008. We investigated event total runoff responses to rainfall, peak runoff, and timing of the runoff peaks from replicates of different treatments, in order to assess whether there is a significant difference in flood peak response between different mitigation options which could be used to mitigate downstream flood risk. A mixed-modelling approach was adopted in order to determine whether differences observed in runoff response were significant. The results of this study suggest that changes in land use management using arable in-field mitigation treatments can affect local-scale runoff generation, with differences observed in the size, duration and timing of flood peaks as a result of different management practices, but the study was unable to allow significant treatment effects to be determined. We suggest that further field studies of the effects of changes in land use and land use management need to upscale towards farm and catchment scale experiments which consider high quality before-and-after data over longer temporal timescales. This type of data collection is essential in order to allow appropriate land use management decisions to be made. PMID:24325823

  4. A LOCAL BASELINE OF THE BLACK HOLE MASS SCALING RELATIONS FOR ACTIVE GALAXIES. I. METHODOLOGY AND RESULTS OF PILOT STUDY

    SciTech Connect

    Bennert, Vardha Nicola; Auger, Matthew W.; Treu, Tommaso; Woo, Jong-Hak; Malkan, Matthew A. E-mail: mauger@physics.ucsb.edu E-mail: woo@astro.snu.ac.kr

    2011-01-10

    We present high-quality Keck/LRIS long-slit spectroscopy of a pilot sample of 25 local active galaxies selected from the SDSS (0.02 {<=}z {<=} 0.1; M{sub BH}>10{sup 7} M{sub sun}) to study the relations between black hole mass (M{sub BH}) and host-galaxy properties. We determine stellar kinematics of the host galaxy, deriving stellar-velocity dispersion profiles and rotation curves from three spectral regions (including CaH and K, MgIb triplet, and Ca II triplet). In addition, we perform surface photometry on SDSS images, using a newly developed code for joint multi-band analysis. BH masses are estimated from the width of the H{beta} emission line and the host-galaxy free 5100 A active galactic nucleus (AGN) luminosity. Combining results from spectroscopy and imaging allows us to study four M{sub BH} scaling relations: M{sub BH}-{sigma}, M{sub BH}-L{sub sph}, M{sub BH}-M{sub sph,*}, and M{sub BH}-M{sub sph,dyn}. We find the following results. First, stellar-velocity dispersions determined from aperture spectra (e.g., SDSS fiber spectra or unresolved data from distant galaxies) can be biased, depending on aperture size, AGN contamination, and host-galaxy morphology. However, such a bias cannot explain the offset seen in the M{sub BH}-{sigma} relation at higher redshifts. Second, while the CaT region is the cleanest to determine stellar-velocity dispersions, both the MgIb region, corrected for Fe II emission, and the CaHK region, although often swamped by the AGN power-law continuum and emission lines, can give results accurate to within a few percent. Third, the M{sub BH} scaling relations of our pilot sample agree in slope and scatter with those of other local active and inactive galaxies. In the next papers of the series we will quantify the scaling relations, exploiting the full sample of {approx}100 objects.

  5. Mixing of process heels, process solutions, and recycle streams: Results of the small-scale radioactive tests

    SciTech Connect

    GJ Lumetta; JP Bramson; OT Farmer III; LR Greenwood; FV Hoopes; MA Mann; MJ Steele; RT Steele; RG Swoboda; MW Urie

    2000-05-17

    Various recycle streams will be combined with the low-activity waste (LAW) or the high-level waste (HLW) feed solutions during the processing of the Hanford tank wastes by BNFL, Inc. In addition, the LAW and HLW feed solutions will also be mixed with heels present in the processing equipment. This report describes the results of a test conducted by Battelle to assess the effects of mixing specific process streams. Observations were made regarding adverse reactions (mainly precipitation) and effects on the Tc oxidation state (as indicated by K{sub d} measurements with SuperLig{reg_sign} 639). The work was conducted according to test plan BNFL-TP-29953-023, Rev. 0, Small Scale Mixing of Process Heels, Solutions, and Recycle Streams. The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

  6. Results of an Academic, Health Care Worksite Weight Loss Contest for Southeastern Americans: Scale Back Alabama 2011-2013.

    PubMed

    Breaux-Shropshire, Tonya L; Whitt, Lauren; Oster, Robert A; Lewis, Dwight; Shropshire, Toneyell S; Calhoun, David A

    2015-04-01

    Few studies have assessed the effectiveness of competitive incentivized worksite weight loss programs. Scale Back Alabama (SBA) is a free, state-supported program designed to promote weight loss among overweight and obese citizens. The purpose of this manuscript is to describe the design and preliminary findings of SBA as a worksite intervention among employees at a collegiate institution and university hospital. In teams of 4 employees, SBA participants volunteered to engage in a 10-week competitive weight loss contest; both teams and individuals who lost significant weight were eligible for randomly drawn cash incentives. Trained staff objectively measured participants' weight before and at the conclusion of the contest. Preliminary analyses suggest that SBA as a worksite program can promote weight loss among employees, but future analyses are warranted to understand the context of these findings and determine if current results are confounded by unmeasured factors. PMID:26081473

  7. Comparison of PWR - Burnup calculations with SCALE 5.0/TRITON other burnup codes and experimental results

    SciTech Connect

    Oberle, P.; Broeders, C. H. M.; Dagan, R.

    2006-07-01

    The increasing tendency towards fuel lifetime extension in thermal nuclear reactors motivated validation work for available evaluation tools for nuclear fuel burnup calculations. In this study two deterministic codes with different transport solvers and one Monte Carlo method are investigated. The code system KAPROS/KARBUS uses the classical deterministic First Collision Probability method utilizing a cylinderized Wigner-Seitz cell. In the SCALES.0/TRITON/NEWT code the Extended Step Characteristic method is applied. In a first step the two deterministic codes are compared with experimental results from the KWO-Isotope Correlation Experiment up to 30 MWD/kg HM burnup, published in 1981. Two pin cell calculations are analyzed by comparison of calculated and experimental results for important heavy isotope vectors. The results are very satisfactory. Subsequently, further validation at higher burnup (< 80 MWD/kg HM) is provided by comparison of the two deterministic codes and the Monte Carlo based burnup code MONTEBURNS for PWR UO{sub 2} fuel assembly calculations. Possible reasons for differences in the results are analyzed and discussed. Especially the influence of cross section data and processing is presented. (authors)

  8. Field-scale evidence for biogeophysical signatures resulting from natural attenuation of a well characterized crude oil spill

    NASA Astrophysics Data System (ADS)

    Slater, L. D.; Revil, A.; Atekwana, E. A.; Mewafy, F.; Bekins, B. A.; Cozzarelli, I.; Herkelrath, W. N.; Skold, M.; Ntarlagiannis, D.; Trost, J.; Erickson, M.; Heenan, J. W.; Lane, J. W.; Werkema, D. D.

    2012-12-01

    Recent biogeophysical research has indicated that unique geophysical signatures are associated with the long-term biodegradation of organic contaminants. However, field-scale demonstrations of the presence of these signatures at sites of organic contamination are lacking. For the last three years, we have performed geophysical measurements at the National Crude Oil Spill Fate and Natural Attenuation Research Site, a unique field laboratory situated just outside of Bemidji, MN. At this site, a ruptured pipeline spilled 1,700,000 L of crude oil into an uninhabited area in 1979. Natural attenuation of the spill has been extensively documented and a geochemical database extending back over 20 years is available to constrain interpretation of the geophysical signatures. We report compelling evidence of a transient geobattery associated with biodegradation of this mature hydrocarbon spill. Using an array of boreholes, self-potential measurements acquired from land surface, passing through the smear zone, capture a diagnostic dipole (peak to peak voltages up to 64 mV) indicating a current source centered on the smear zone, with anodic and cathodic reactions below and above the smear zone respectively. Down borehole measurements reveal that the smear zone is characterized by high magnetic susceptibility (MS); laboratory measurements show that this MS enhancement results from precipitation of iron mineral byproducts of biodegradation. These iron minerals presumably facilitate the electron transport between anode and cathode required to support a geobattery. Furthermore, laboratory and field-scale complex resistivity measurements reveal an enhancement in the complex surface conductivity within the smear zone most likely due to these biodegradation byproducts. The geobattery is not permanent, but instead periodically shuts down, presumably due to changes in the gradient of the redox species driving anodic and cathodic reactions. Gas samples show that conditions are anaerobic

  9. S-2 stage 1/25 scale model base region thermal environment test. Volume 1: Test results, comparison with theory and flight data

    NASA Technical Reports Server (NTRS)

    Sadunas, J. A.; French, E. P.; Sexton, H.

    1973-01-01

    A 1/25 scale model S-2 stage base region thermal environment test is presented. Analytical results are included which reflect the effect of engine operating conditions, model scale, turbo-pump exhaust gas injection on base region thermal environment. Comparisons are made between full scale flight data, model test data, and analytical results. The report is prepared in two volumes. The description of analytical predictions and comparisons with flight data are presented. Tabulation of the test data is provided.

  10. Results of Pulse-Scaling Experiments on Rapid-Growth DKDP Triplers Using the Optical Sciences Laser at 351 nm

    SciTech Connect

    Runkel, M; Burnham, A K; Milam, D; Sell, W; Feit, M; Rubenchik, A

    2000-12-11

    Results are reported from recently performed bulk-damage, pulse-scaling experiments on DKDP tripler samples taken from NIF-size, rapid-growth boule BD7. The tests were performed on LLNL's Optical Sciences Laser. A matrix of samples was exposed to single shots at 351 mn (3 {omega}) with average fluences from 4 to 8 J/cm{sup 2} for pulse durations of 1, 3 and 10 ns. The damage sites were scatter-mapped after testing to determine the damage evolution as a function of local beam fluence. The average bulk damage microcavity (pinpoint) density varied nearly linearly with fluence with peak values of approximately 16,000 pp/mm{sup 3} at 1 ns, 10,000 pp/mm{sup 3} at 3 ns and 400 pp/mm{sup 3} at 10 ns for fluences in the 8-10 J/cm{sup 2} range. The average size of a pinpoint was 10(+14,-9) {micro}m at 1 ns, 37 {+-} 20 {micro}m at 3 ns and {approx} 110 {micro}m at 10 ns, although all pulse durations produced pinpoints with a wide distribution of sizes. Analysis of the pinpoint density data yielded pulse-scaling behavior of t{sup 0.35}. Significant planar cracking around the pinpoint as was observed for the 10 ns case but not for the 1 and 3 ns pulses. Crack formation around pinpoints has also been observed frequently for Zeus ADT tests at {approx}8 ns. The high pinpoint densities also lead to significant eruption of near-surface bulk damage. Measurements of the damage site area for surface and bulk gave ratios (A{sub surf}/A{sub bulk}) of 2:1 at 1 ns, 7:1 at 3 ns and 110:1 at 10 ns. Maximum aperture averaged transmission losses on the order 15 percent have been measured by photometry for the worst damage at 1 and 3 ns for beam fluences in the 8-10 J/cm{sup 2} range. Analysis of this data yielded a pulse-scaling behavior of t{sup 0.25} for the obscured area. It was also determined that the crystals used in this test would survive unconditioned exposure to 4 J/cm{sup 2} shots on the NIF laser and still meet the obscuration requirement of 0.1%.

  11. The Korean Gastric Cancer Cohort Study: Study Protocol and Brief Results of a Large-Scale Prospective Cohort Study

    PubMed Central

    Eom, Bang Wool; Kim, Young-Woo; Nam, Byung-Ho; Ryu, Keun Won; Jeong, Hyun-Yong; Park, Young-Kyu; Lee, Young-Joon; Yang, Han-Kwang; Yu, Wansik; Yook, Jeong-Hwan; Song, Geun Am; Youn, Sei-Jin; Kim, Heung Up; Noh, Sung-Hoon; Park, Sung Bae; Yang, Doo-Hyun; Kim, Sung

    2016-01-01

    Purpose This study aimed to establish a large-scale database of patients with gastric cancer to facilitate the development of a national-cancer management system and a comprehensive cancer control policy. Materials and Methods An observational prospective cohort study on gastric cancer was initiated in 2010. A total of 14 cancer centers throughout the country and 152 researchers were involved in this study. Patient enrollment began in January 2011, and data regarding clinicopathological characteristics, life style-related factors, quality of life, as well as diet diaries were collected. Results In total, 4,963 patients were enrolled until December 2014, and approximately 5% of all Korean patients with gastric cancer annually were included. The mean age was 58.2±11.5 years, and 68.2% were men. The number of patients in each stage was as follows: 3,394 patients (68.4%) were in stage IA/B; 514 patients (10.4%), in stage IIA/B; 469 patients (9.5%), in stage IIIA/B/C; and 127 patients (2.6%), in stage IV. Surgical treatment was performed in 3,958 patients (79.8%), endoscopic resection was performed in 700 patients (14.1%), and 167 patients (3.4%) received palliative chemotherapy. The response rate for the questionnaire on the quality of life was 95%; however, diet diaries were only collected for 27% of patients. Conclusions To provide comprehensive information on gastric cancer for patients, physicians, and government officials, a large-scale database of Korean patients with gastric cancer was established. Based on the findings of this cohort study, an effective cancer management system and national cancer control policy could be developed. PMID:27752396

  12. NaK pool-boiler bench-scale receiver durability test: Test results and materials analysis

    SciTech Connect

    Andraka, C.E.; Goods, S.H.; Bradshaw, R.W.; Moreno, J.B.; Moss, T.A.; Jones, S.A.

    1994-06-01

    Pool-boiler reflux receivers have been considered as an alternative to heat pipes for the input of concentrated solar energy to Stirling-cycle engines in dish-Stirling electric generation systems. Pool boilers offer simplicity in design and fabrication. The operation of a full-scale pool-boiler receiver has been demonstrated for short periods of time. However, to generate cost-effective electricity, the receiver must operate Without significant maintenance for the entire system life, as much as 20 to 30 years. Long-term liquid-metal boiling stability and materials compatibility with refluxing NaK-78 is not known and must be determined for the pool boiler receiver. No boiling system has been demonstrated for a significant duration with the current porous boiling enhancement surface and materials. Therefore, it is necessary to simulate the full-scale pool boiler design as much as possible, including flux levels, materials, and operating cycles. On-sun testing is impractical because of the limited test time available. A test vessel was constructed with a porous boiling enhancement surface. The boiling surface consisted of a brazed stainless steel powder with about 50% porosity. The vessel was heated with a quartz lamp array providing about go W/CM2 peak incident thermal flux. The vessel was charged with NaK-78. This allows the elimination of costly electric preheating, both on this test and on fullscale receivers. The vessel was fabricated from Haynes 230 alloy. The vessel operated at 750{degrees}C around the clock, with a 1/2-hour shutdown cycle to ambient every 8 hours. The test completed 7500 hours of lamp-on operation time, and over 1000 startups from ambient. The test was terminated when a small leak in an Inconel 600 thermowell was detected. The test design and data are presented here. Metallurgical analysis of virgin and tested materials has begun, and initial results are also presented.

  13. Commercial-scale evaluation of two agricultural waste products, cotton burr/stem and module wraps in thermoplastic composites and comparison with laboratory-scale results

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory-scale research had shown the potential of using cotton burr/stem (CBS) as a fiber filler in thermoplastic composites. This study evaluates the potential of using waste materials from cotton harvesting/ginning operations, CBS, and cotton module wraps (CMW) as a filler and substrate in ther...

  14. Implications to stormwater management as a result of lot scale rainwater tank systems: a case study in Western Sydney, Australia.

    PubMed

    van der Sterren, M; Rahman, A; Dennis, G R

    2012-01-01

    Rainwater tanks are increasingly adopted in Australia to reduce potable water demand and are perceived to reduce the volume of stormwater discharge from developments. This paper investigates the water balance of rainwater tanks, in particular the possible impacts these tanks could have in controlling the stormwater discharge volume. The study collected water quantity data from two sites in the Hawkesbury City Council area, New South Wales, Australia and utilised the collected data in a simple water balance model to assess the effectiveness of rainwater tanks in reducing the stormwater discharge volume. The results indicate that a significant reduction in discharge volume from a lot scale development can be achieved if the rainwater tank is connected to multiple end-uses, but is minimal when using irrigation alone. In addition, the commonly used volumetric runoff coefficient of 0.9 was found to over-estimate the runoff from the roof areas and to thereby under-estimate the available volume within the rainwater tanks for retention or detention. Also, sole reliance on the water in the rainwater tanks can make the users aware of their water use pattern and water availability, resulting in significant reductions in water use as the supply dwindles, through self-imposed water restrictions.

  15. Large Scale Duty Cycle (LSDC) Project: Tractive Energy Analysis Methodology and Results from Long-Haul Truck Drive Cycle Evaluations

    SciTech Connect

    LaClair, Tim J

    2011-05-01

    This report addresses the approach that will be used in the Large Scale Duty Cycle (LSDC) project to evaluate the fuel savings potential of various truck efficiency technologies. The methods and equations used for performing the tractive energy evaluations are presented and the calculation approach is described. Several representative results for individual duty cycle segments are presented to demonstrate the approach and the significance of this analysis for the project. The report is divided into four sections, including an initial brief overview of the LSDC project and its current status. In the second section of the report, the concepts that form the basis of the analysis are presented through a discussion of basic principles pertaining to tractive energy and the role of tractive energy in relation to other losses on the vehicle. In the third section, the approach used for the analysis is formalized and the equations used in the analysis are presented. In the fourth section, results from the analysis for a set of individual duty cycle measurements are presented and different types of drive cycles are discussed relative to the fuel savings potential that specific technologies could bring if these drive cycles were representative of the use of a given vehicle or trucking application. Additionally, the calculation of vehicle mass from measured torque and speed data is presented and the accuracy of the approach is demonstrated.

  16. Awareness and Concern about Large-Scale Livestock and Poultry: Results from a Statewide Survey of Ohioans

    ERIC Educational Resources Information Center

    Sharp, Jeff; Tucker, Mark

    2005-01-01

    The development of large-scale livestock facilities has become a controversial issue in many regions of the U.S. in recent years. In this research, rural-urban differences in familiarity and concern about large-scale livestock facilities among Ohioans is examined as well as the relationship of social distance from agriculture and trust in risk…

  17. Investigation of the impacts of Asian pollution on Pacific storm track using multi-scale modeling results

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wang, M.; Ghan, S. J.; Zhang, R.

    2012-12-01

    Long-term satellite data and numerical simulations with the cloud-resolving model (CRM) suggest that increasing pollution levels in Asia and associated outflows may impact the Pacific storm track by altering cloud development, lifetime, albedo, and precipitation. In this study, results from a pair of 6-year global atmosphere simulations were analyzed, using the multi-scale aerosol-climate model PNNL-MMF where a CRM is embedded within each grid column of the Community Atmosphere Model (CAM). Two different aerosol conditions are considered in the simulations, representing Present Day (PD) and Pre-Industrial (PI) emissions, respectively. A comparison of those two scenarios shows that over the Northwest Pacific region aerosol optical depth is increased by 50% and cloud droplet number concentration is doubled under the influence of Asian pollution outflow. Meanwhile, cloud liquid water path and ice water path are enhanced by 9% and 8% due to the elevated aerosol loading in the PD case. The larger percentage of convective cloud coverage and the higher cloud top height in the PD case demonstrate that the convection strength of mid-latitude cyclones is invigorated. A 3% increase of precipitation induced by the larger PD aerosol concentration is found over the Northwest Pacific area. Smaller cloud droplets and the larger liquid and ice water path lead to the increase of cloud optical thickness by 10% in the PD case. Cloud shortwave and longwave forcing at the top of atmosphere (TOA) are enlarged by 7% and 6%, respectively. The poleward eddy heat transport along the storm track at 850 hPa is enhanced by 5% in the PD case. In addition, the results from the standard CAM model (no embedded CRM), simulates a similar increase in the aerosol concentration in the PD case but predicts significant suppression of the convection strength and heavy precipitation associated with the cyclones. This indicates that the multi-scale framework approach is critical for reproducing the aerosol

  18. Observation of flow processes in the vadose zone using ERT on different space and time scales: results, obstacles, and suggestions

    NASA Astrophysics Data System (ADS)

    Noell, Ursula; Ganz, Christina; Lamparter, Axel; Duijnisveld, Wilhelmus; Bachmann, Jörg

    2013-04-01

    Electrical resistivity tomography (ERT) observes the flow processes in the vadose zone indirectly. ERT has been used to estimate water flow in different soil types and under different flow conditions using active experiments or monitoring the natural process in many cases. Our experiments in sand and loess soil connected ERT with local soil probing using TDR devices and tensiometers in order to proof the reliability of the ERT inversion results in terms of infiltration velocity. Additionally, a colour tracer was used and sections through the infiltration zones were excavated in order to compare the shape of the dye -stained infiltration zone with the results of the ERT inversion. The data revealed the complicated infiltration pattern with a higher transport velocity in sand and a different shape than expected by classical soil hydraulic models. These results indicate the need for independent observations in order to correctly assess the water storage in the vadose zone with its hydrological consequences, the groundwater recharge and the contamination risk caused by rapid movement of water. ERT can be used for this purpose on different spatial- and time scales but for reliable results various obstacles need to be dealt with. Firstly, the ambiguity of the resistivity because soil resistivity depends on both, soil water content and electrical soil/water conductivity. This obstacle is less severe when the infiltration velocity is investigated, because then only the first onset of resistivity change is interpreted as the water arrival time. Our results show that the arrival of the water front as well as the final infiltration depth can be reliably detected. In contrast, this obstacle is very severe when the amount of water stored is observed using conductive tracer. The problem is not critical during a passive experiment when the natural rain fall and the waters fate through the vadose zone is monitored. The second obstacle is the limited resolution of ERT which

  19. Small scale noise and wind tunnel tests of upper surface blowing nozzle flap concepts. Volume 1. Aerodynamic test results

    NASA Technical Reports Server (NTRS)

    Renselaer, D. J.; Nishida, R. S.; Wilkin, C. A.

    1975-01-01

    The results and analyses of aerodynamic and acoustic studies conducted on the small scale noise and wind tunnel tests of upper surface blowing nozzle flap concepts are presented. Various types of nozzle flap concepts were tested. These are an upper surface blowing concept with a multiple slot arrangement with seven slots (seven slotted nozzle), an upper surface blowing type with a large nozzle exit at approximately mid-chord location in conjunction with a powered trailing edge flap with multiple slots (split flow or partially slotted nozzle). In addition, aerodynamic tests were continued on a similar multi-slotted nozzle flap, but with 14 slots. All three types of nozzle flap concepts tested appear to be about equal in overall aerodynamic performance but with the split flow nozzle somewhat better than the other two nozzle flaps in the landing approach mode. All nozzle flaps can be deflected to a large angle to increase drag without significant loss in lift. The nozzle flap concepts appear to be viable aerodynamic drag modulation devices for landing.

  20. BVI impulsive noise reduction by higher harmonic pitch control - Results of a scaled model rotor experiment in the DNW

    NASA Technical Reports Server (NTRS)

    Splettstoesser, Wolf R.; Schultz, KLAUS-J.; Kube, Roland; Brooks, Thomas F.; Booth, Earl R., Jr.; Niesl, Georg; Streby, Olivier

    1991-01-01

    Results are presented of a model rotor acoustics test performed to examine the benefit of higher harmonic control (HHC) of blade pitch to reduce blade-vortex interaction (BVI) impulsive noise. A dynamically scaled, four-bladed, rigid rotor model, a 40-percent replica of the B0-105 main rotor, was tested in the German Dutch Wind Tunnel. Noise characteristics and noise directivity patterns as well as vibratory loads were measured and used to demonstrate the changes when different HHC schedules were applied. Dramatic changes of the acoustic signatures and the noise radiation directivity with the HHC phase variations are found. Compared to the baseline conditions (without HHC), significant mid-frequency noise reductions of locally 6 dB are obtained for low-speed descent conditions where GVI is most intense. For other rotor operating conditions with less intense BVI there is less or no benefit from the use of HHC. LF noise and vibratory loads, especially at optimum noise reduction control settings, are found to increase.

  1. Mapping between Visual Analogue Scale and Standard Gamble data; results from the UK Health Utilities Index 2 valuation survey.

    PubMed

    Stevens, Katherine J; McCabe, Christopher J; Brazier, John E

    2006-05-01

    We examine the relationship between Visual Analogue Scale (VAS) and Standard Gamble (SG) assumed in the development of the multiplicative multi-attribute utility functions (M-MAUFs) for the Health Utilities Index (HUI) Mark 2 and Mark 3, using data from a UK valuation study of the HUI2. A range of functional forms are considered, and are compared on the basis of their explanatory power and predictive ability.A restricted cubic function fits the data better than a power curve with a mean absolute error (MAE) of 0.025 and root mean square error (RMSE) of 0.029 compared to a MAE of 0.135 and RMSE of 0.135 for the power curve. The use of a cubic mapping function instead of a power function leads to different predicted health state values. We question the reliance on the assumption of a power curve relationship between VAS and SG data, in the Health Utilities Index valuation framework. Our results demonstrate that further work is required to examine the appropriateness of the published M-MAUFs for the Health Utilities Indices. PMID:16389651

  2. Quantifying microwear on experimental Mistassini quartzite scrapers: preliminary results of exploratory research using LSCM and scale-sensitive fractal analysis.

    PubMed

    Stemp, W James; Lerner, Harry J; Kristant, Elaine H

    2013-01-01

    Although previous use-wear studies involving quartz and quartzite have been undertaken by archaeologists, these are comparatively few in number. Moreover, there has been relatively little effort to quantify use-wear on stone tools made from quartzite. The purpose of this article is to determine the effectiveness of a measurement system, laser scanning confocal microscopy (LSCM), to document the surface roughness or texture of experimental Mistassini quartzite scrapers used on two different contact materials (fresh and dry deer hide). As in previous studies using LSCM on chert, flint, and obsidian, this exploratory study incorporates a mathematical algorithm that permits the discrimination of surface roughness based on comparisons at multiple scales. Specifically, we employ measures of relative area (RelA) coupled with the F-test to discriminate used from unused stone tool surfaces, as well as surfaces of quartzite scrapers used on dry and fresh deer hide. Our results further demonstrate the effect of raw material variation on use-wear formation and its documentation using LSCM and RelA. PMID:22688593

  3. Preliminary results from the COBE differential microwave radiometers - Large angular scale isotropy of the cosmic microwave background

    NASA Technical Reports Server (NTRS)

    Smoot, G. F.; Aymon, J.; Bennett, C. L.; Kogut, A.; Backus, C.

    1991-01-01

    Preliminary but precise micowave maps are presented of the sky, and thus of the early universe, derived as the first results from the Differential Microwave Radiometers experiment aboard COBE. The dipole anisotropy attributed to the motion of the solar system with respect to the CMB reference frame shows strongly in all six sky maps and is consistent with a Doppler-shifted thermal spectrum. The best-fitted dipole has amplitude 3.3 + or - 0.2 mK in the direction (alpha, delta) = 11.2 h + or - 0.2 h, -7 deg + or - 2 deg (J2000) or (l,b) = 265 deg + or - 2 deg, 48 deg + or - 2 deg. There is no clear evidence in the maps for any other large angular-scale feature. Limits on Delta T/T0 of 3 x 10 to the -5th (T0 = 2.735 K), 4 x 10 to the -5th, and 4 x 10 to the -5th are found for the rms quadrupole amplitude, monochromatic fluctuations, and Gaussian fluctuations, respectively. These measurements place the most severe constraints to date on many potential physical processes in the early universe.

  4. Mapping between Visual Analogue Scale and Standard Gamble data; results from the UK Health Utilities Index 2 valuation survey.

    PubMed

    Stevens, Katherine J; McCabe, Christopher J; Brazier, John E

    2006-05-01

    We examine the relationship between Visual Analogue Scale (VAS) and Standard Gamble (SG) assumed in the development of the multiplicative multi-attribute utility functions (M-MAUFs) for the Health Utilities Index (HUI) Mark 2 and Mark 3, using data from a UK valuation study of the HUI2. A range of functional forms are considered, and are compared on the basis of their explanatory power and predictive ability.A restricted cubic function fits the data better than a power curve with a mean absolute error (MAE) of 0.025 and root mean square error (RMSE) of 0.029 compared to a MAE of 0.135 and RMSE of 0.135 for the power curve. The use of a cubic mapping function instead of a power function leads to different predicted health state values. We question the reliance on the assumption of a power curve relationship between VAS and SG data, in the Health Utilities Index valuation framework. Our results demonstrate that further work is required to examine the appropriateness of the published M-MAUFs for the Health Utilities Indices.

  5. Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil - Results of laboratory scale experiments.

    PubMed

    Durán-Álvarez, J C; Prado, B; González, D; Sánchez, Y; Jiménez-Cisneros, B

    2015-12-15

    Lab-scale photolysis, biodegradation and transport experiments were carried out for naproxen, carbamazepine and triclosan in soil, wastewater and surface water from a region where untreated wastewater is used for agricultural irrigation. Results showed that both photolysis and biodegradation occurred for the three emerging pollutants in the tested matrices as follows: triclosan>naproxen>carbamazepine. The highest photolysis rate for the three pollutants was obtained in experiments using surface water, while biodegradation rates were higher in wastewater and soil than in surface water. Carbamazepine showed to be recalcitrant to biodegradation both in soil and water; although photolysis occurred at a higher level than biodegradation, this compound was poorly degraded by natural processes. Transport experiments showed that naproxen was the most mobile compound through the first 30cm of the soil profile; conversely, the mobility of carbamazepine and triclosan through the soil was delayed. Biodegradation of target pollutants occurred within soil columns during transport experiments. Triclosan was not detected either in leachates or the soil in columns, suggesting its complete biodegradation. Data of these experiments can be used to develop more reliable fate-on-the-field and environmental risk assessment studies.

  6. Quantifying microwear on experimental Mistassini quartzite scrapers: preliminary results of exploratory research using LSCM and scale-sensitive fractal analysis.

    PubMed

    Stemp, W James; Lerner, Harry J; Kristant, Elaine H

    2013-01-01

    Although previous use-wear studies involving quartz and quartzite have been undertaken by archaeologists, these are comparatively few in number. Moreover, there has been relatively little effort to quantify use-wear on stone tools made from quartzite. The purpose of this article is to determine the effectiveness of a measurement system, laser scanning confocal microscopy (LSCM), to document the surface roughness or texture of experimental Mistassini quartzite scrapers used on two different contact materials (fresh and dry deer hide). As in previous studies using LSCM on chert, flint, and obsidian, this exploratory study incorporates a mathematical algorithm that permits the discrimination of surface roughness based on comparisons at multiple scales. Specifically, we employ measures of relative area (RelA) coupled with the F-test to discriminate used from unused stone tool surfaces, as well as surfaces of quartzite scrapers used on dry and fresh deer hide. Our results further demonstrate the effect of raw material variation on use-wear formation and its documentation using LSCM and RelA.

  7. Potential environmental impact of tidal energy extraction in the Pentland Firth at large spatial scales: results of a biogeochemical model

    NASA Astrophysics Data System (ADS)

    van der Molen, Johan; Ruardij, Piet; Greenwood, Naomi

    2016-05-01

    A model study was carried out of the potential large-scale (> 100 km) effects of marine renewable tidal energy generation in the Pentland Firth, using the 3-D hydrodynamics-biogeochemistry model GETM-ERSEM-BFM. A realistic 800 MW scenario and a high-impact scenario with massive expansion of tidal energy extraction to 8 GW scenario were considered. The realistic 800 MW scenario suggested minor effects on the tides, and undetectable effects on the biogeochemistry. The massive-expansion 8 GW scenario suggested effects would be observed over hundreds of kilometres away with changes of up to 10 % in tidal and ecosystem variables, in particular in a broad area in the vicinity of the Wash. There, waters became less turbid, and primary production increased with associated increases in faunal ecosystem variables. Moreover, a one-off increase in carbon storage in the sea bed was detected. Although these first results suggest positive environmental effects, further investigation is recommended of (i) the residual circulation in the vicinity of the Pentland Firth and effects on larval dispersal using a higher-resolution model and (ii) ecosystem effects with (future) state-of-the-art models if energy extraction substantially beyond 1 GW is planned.

  8. Beginning with sustainable scale up in mind: initial results from a population, health and environment project in East Africa.

    PubMed

    Ghiron, Laura; Shillingi, Lucy; Kabiswa, Charles; Ogonda, Godfrey; Omimo, Antony; Ntabona, Alexis; Simmons, Ruth; Fajans, Peter

    2014-05-01

    Small-scale pilot projects have demonstrated that integrated population, health and environment approaches can address the needs and rights of vulnerable communities. However, these and other types of health and development projects have rarely gone on to influence larger policy and programme development. ExpandNet, a network of health professionals working on scaling up, argues this is because projects are often not designed with future sustainability and scaling up in mind. Developing and implementing sustainable interventions that can be applied on a larger scale requires a different mindset and new approaches to small-scale/pilot testing. This paper shows how this new approach is being applied and the initial lessons from its use in the Health of People and Environment in the Lake Victoria Basin Project currently underway in Uganda and Kenya. Specific lessons that are emerging are: 1) ongoing, meaningful stakeholder engagement has significantly shaped the design and implementation, 2) multi-sectoral projects are complex and striving for simplicity in the interventins is challenging, and 3) projects that address a sharply felt need experience substantial pressure for scale up, even before their effectiveness is established. Implicit in this paper is the recommendation that other projects would also benefit from applying a scale-up perspective from the outset.

  9. Experiments on Natural-Scale Basaltic Lava Flows: Scope and First Results of the Syracuse University Lava Project

    NASA Astrophysics Data System (ADS)

    Karson, J.; Wysocki, R.; Kissane, M. T.; Smith, C.; Spencer, S.

    2012-12-01

    The Syracuse University Lava Project creates natural-scale basaltic lava flows for scientific investigations, educational opportunities and artistic projects. Modified furnaces designed for melting and pouring metals are used to create individual basaltic lava flow lobes of up to 450 kg (10-2m2) with the potential to generate much larger flow fields under controlled conditions. At present, the starting material used in 1.1 Ga Keewenan basalt from the Mid-Continent Rift in NW Wisconsin, a relatively uniform, well-characterized tholeiitic-alkalic basalt. Other compositions (andesite, komatiite, carbonatite) are planned for future experiments. Basaltic gravel is heated to 1100° to 1300°C in a crucible resulting in homogeneous, convecting basaltic magma. Lava is poured over a variety of surfaces including rock slabs, wet or dry sand, H2O or CO2 ice, rough or smooth material, and confined or unconfined channels. Resulting lava flows can be dissected for mapping details of morphological and textural variations. Video from various perspectives is used to document flow behavior and evolution. Infrared images constrain flow temperatures. Textural features of flows such as vesicles and plagioclase microlites have vertical and lateral variations similar to those of natural flows. Differing experimental set-ups provide analogs for a wide range of terrestrial, marine, and extraterrestrial lava flows. In an initial series of experiments, basaltic lava flows (50-200 kg) were poured over dry sand at near constant effusion rates (~10-4m3s-1). Flow temperature and slope were varied to produce a range of different flow morphologies. The results show systematic behavior consistent with observations of natural lava flows and analog experiments. At relatively high T (>1200°C) and steeper slopes (>15°) thin, narrow, leveed flows form. At intermediate T and slope, sheet-like, ropey, pahoehoe forms develop. Flows at the lowest T (1100°C) and gentlest slopes (<10°) investigated

  10. Aggregate-scale spatial heterogeneity in reductive transformation of ferrihydrite resulting from coupled biogeochemical and physical processes

    NASA Astrophysics Data System (ADS)

    Pallud, C.; Masue-Slowey, Y.; Fendorf, S.

    2010-05-01

    -section and interior at low lactate concentration (0.3 mM) after 30 d of reaction. Under high lactate (3 mM) concentration, magnetite was observed only as a transitory phase, and rather goethite/lepidocrocite and siderite were the dominant secondary mineralization products. Our results illustrate the importance of slow diffusive transport of both electron donor and metabolites concentrations and concomitant biogeochemical reactions within soils and sediments, giving rise to heterogeneous products over small spatial (μm) scale.

  11. Large and Small Scale Nitrogen and Phosporous Manipulation Experiment in a Tree-Grass Ecosystem: first year of results

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco; Perez Priego, Oscar; El-Madany, Tarek; Guan, JinHong; Carrara, Arnaud; Fava, Francesco; Moreno, Gerardo; Kolle, Olaf; Rossini, Micol; Schrumpf, Marion; Julitta, Tommaso; Reichstein, Markus

    2015-04-01

    Recent studies have shown how human induced N/P imbalances affect essential ecosystem processes (e.g. photosynthesis, plant growth rate, respiration), and might be particularly important in water-limited ecosystems. In this contribution we will present the experimental design and the results of the first year of two nutrient manipulation experiments conducted at different spatial scale. In the first experiment a cluster of 2 eddy covariance (EC) flux towers has been set up beside a long-term EC site (Las Majadas del Tietar, Spain). Sites are selected in a way to have similar nutrient conditions, canopy structure, and stoichiometry of the different vegetation and soil pools. Two of the three footprints will be manipulated with addition of N and NP fertilizer at the beginning of 2015. The comparison of the three EC flux towers installed during the first year of the experiment (without fertilization) will be shown. We characterized the differences of the responses of carbon and water fluxes measured by the EC systems to environmental drivers, and structural and biophysical properties of the canopy. The second experiment was conducted over a Mediterranean grassland, where 16 plots of 10x10 meters that were manipulated by adding nutrient (N, P, and NP). The overall objective was to investigate the response of the gross primary productivity (GPP), assessed by using transparent transient-state canopy chambers, to different nutrient availability. The second objective was to evaluate the capability of hyperspectral data and Solar induced fluorescence to track short- and long-term GPP and light use efficiency variation under different N and P fertilization treatments. Spectral vegetation indices (VIs) were acquired manually using high resolution spectrometers (HR4000, OceanOptics, USA) along a phenological cycle. The VIs used included photochemical reflectance index (PRI), MERIS terrestrial-chlorophyll index (MTCI) and normalized difference vegetation index (NDVI). Solar

  12. Basin scale reactive-transport simulations of CO2 leakage and resulting metal transport in a shallow drinking water aquifer

    NASA Astrophysics Data System (ADS)

    Navarre-Sitchler, A.; Maxwell, R. M.; Hammond, G. E.; Lichtner, P. C.

    2011-12-01

    Leakage of CO2 from underground storage formations into overlying aquifers will decrease groundwater pH resulting in a geochemical response of the aquifer. If metal containing aquifer minerals dissolve as a part of this response, there is a risk of exceeding regulatory limits set by the EPA. Risk assessment methods require a realistic prediction of the maximum metal concentration at wells or other points of exposure. Currently, these predictions are based on numerical reactive transport simulations of CO2 leaks. While previous studies have simulated galena dissolution as a source of lead to explore the potential for contamination of drinking water aquifers, it may be more realistic to simulate lead release from more common minerals that are known to contain trace amounts of metals, e.g. calcite. Model domains for these previous studies are often sub-km in scale or have very coarse grid resolution, due to computation limitations. In this study we simulate CO2 leakage into a drinking water aquifer using the massively parallel subsurface flow and reactive transport code PFLOTRAN. The regional model domain is 4km x 1km x 0.1 km. Even with fairly coarse grid spacing (~ 9 m x 9 m x 0.9 m), the simulations have > 49 million degrees of freedom, requiring the use of High-Performance Computing (HPC). Our simulations are run on Jaguar at Oak Ridge National Laboratory. Lead concentrations in extraction wells 3 km down gradient from a CO2 leak increase above background concentrations due to kinetic mineral dissolution along the flow path. Increases in aqueous concentrations are less when lead is allowed to sorb onto mineral surfaces. Surprisingly, lead concentration increases are greater in simulations where lead is present as a trace constituent in calcite (5% by volume) relative to simulations with galena (0.001% by volume) as the lead source. It appears that galena becomes oversaturated and begins to precipitate, a result observed in previous modeling studies, and its low

  13. Predators on rocky shores in the northern Atlantic: Can the results of local experiments be generalized on a geographical scale?

    NASA Astrophysics Data System (ADS)

    Ingólfsson, Agnar

    2009-07-01

    Experimental manipulations of invertebrate prey and predators on rocky shores have been done by many authors. In the northern Atlantic the predators involved are usually the green crab Carcinus maenas and/or the dogwhelk Nucella lapillus, and the prey species studied are acorn barnacles (balanid Cirripedia), mussels ( Mytilus spp.) and winkles ( Littorina spp.). Usually the predators are found to have a regulating "top-down" effect on the prey species. In Iceland the acorn barnacle Semibalanus balanoides, the blue mussel Mytilus edulis and the flat periwinkle Littorina obtusata (including to some extent Littorina mariae) are found on rocky shores all around Iceland in what would seem to be near-optimal physical conditions. The predators Carcinus maenas and Nucella lapillus, on the other hand, are relatively southern species that do not thrive on the colder coasts of Iceland. Thus general surveys of different coasts of Iceland would seem to offer opportunities to see whether the results of local experiments can be discerned on a geographical scale (hundreds of km). The roughly 4900 km of the rocky coastline in Iceland was in this study subdivided into four regions, I-IV, according to the commonness or presence of the two predators. With the hope of reducing compounding factors the surveys were confined to sheltered or semi-sheltered fucoid shores, which were further divided into Ascophyllum (more sheltered) and Fucus vesiculosus (less sheltered) shores. Estuaries or other low-salinity environments were avoided. The study was based on 761 stations distributed around the rocky coastline on these two types of shores. The results for barnacles and mussels, being generally more abundant in regions were predators were scarce or absent, and being less common in Ascophyllum than F. vesiculosus shores in contrast to the predatory dogwelks, were in large measure in accord with predictions from experiments indicating "top-down" regulation. The results for the periwinkles

  14. Preliminary results of lab-scale investigations of products of incomplete combustion during incineration of primary and mixed digested sludge.

    PubMed

    Braguglia, C M; Bagnuolo, G; Gianico, A; Mininni, G; Pastore, C; Mascolo, G

    2016-03-01

    Separation between primary and secondary sludge treatment could be a valuable solution for sludge management. According to this approach, secondary sludge can be conveniently used in agriculture while primary sludge could be easily dried and incinerated. It follows that some concern may arise from incinerating primary sludge with respect to the current practice to incinerate mixed digested sludge. Incineration of primary and mixed digested municipal sludge was investigated with a lab-scale equipment in terms of emissions of products of incomplete combustion (PICs) during incineration failure modes. PICs can be grouped in three sub-categories, namely aliphatic hydrocarbons (alkanes and alkenes), compounds with a single aromatic ring, and polycyclic aromatic hydrocarbons (PAHs). After-burning temperature was the most important parameter to be controlled in order to minimize emissions of alkanes and alkenes. As for mono-aromatic compounds, benzene and toluene are the most thermally resistant compounds, and in some cases, an after-burning temperature of 1100 °C was not enough to get the complete destruction of benzene leading to a residual emission of 18 mg/kgsludge. PAHs showed an opposite trend with respect to aliphatic and mono-aromatic hydrocarbons being the thermal failure mode the main responsible of PIC emissions. A proper oxygen concentration is more important than elevated temperature thus reflecting the high thermal stability of PAHs. Overall, obtained results, even though obtained under flameless conditions that are different from those of the industrial plants, demonstrated that separation of primary and secondary sludge does not pose any drawbacks or concern regarding primary sludge being disposed of by incineration even though it is more contaminated than mixed digested sludge in terms of organic pollutants.

  15. The prevalence of medical services use. How comparable are the results of large-scale population surveys in Germany?

    PubMed Central

    Swart, Enno

    2012-01-01

    Background: The large-scale representative population surveys conducted by Germany’s Robert Koch Institute (RKI) contain questions pertaining to health and its determinants as well as the prevalence and frequency of outpatient services utilization. The same holds for the Socioeconomic Panel (SOEP, Sozio-ökonomisches Panel) and the Bertelsmann Healthcare Monitor (Gesundheitsmonitor) surveys. The purpose of this study is to examine the comparability of the instruments used in these surveys and their results. Methods: The questions on outpatient care utilization examined in this study were taken from the public use files of the East-West Health Survey (Ost-West Survey; OW1991), the 1998 Federal National Health Survey (Bundesgesundheitssurvey; BGS1998), the 2003 Telephone Health Survey (TEL2003), and the 2009 German Health Update (Gesundheit in Deutschland aktuell GEDA2009). The study also used data from the 26 waves of the SOEP (1984–2009) and the 16 waves of the Bertelsmann Healthcare Monitor (2001–2009) studies. Results: In the OW1991 and the BGS1998, questions on outpatient services utilization differ by the types of physicians inquired about. The four-week prevalence of contact with general practitioneers (GP) was 29% in the OW1991; the twelve-month prevalence in the BGS1998 was 69%. The OW1991 and the BGS1998 also surveyed participants on the number of physician contacts made during those reference periods (average number of contacts: 1.8 over the previous four weeks (OW1991) and 4.9 over the previous 12 months (BGS1998)). The TEL2003 inquires into the three-month prevalence of contact with private practice physicians in general (63%) as well as the number of contacts with primary care physicians over the previous twelve months (88% with at least one contact, average number of contacts: 4.6, range: 1–92). In the GEDA2009 survey, 88% of participants reported having contacted a physician at least once over the previous twelve months and an average of 6

  16. RESULTS OF CAUSTIC DISSOLUTION OF ALUMINOSILICATE SCALE AND CHARACTERIZATION DATA FOR SAMPLES FROM THE EVAPORATOR POT AND GRAVITY DRAIN LINE

    SciTech Connect

    Wilmarth, B; Rita Sullivan, R; Chris Martino, C

    2006-08-21

    The build-up of sodium aluminosilicate scale in the 2H Evaporator system continues to cause operational difficulties. The use of a nitric acid cleaning operation proved successful in 2001. However, the operation required additional facilities to support spent cleaning solution neutralization and was quite costly. A proposed caustic cleaning flowsheet has many advantages over the acid flowsheet. Therefore, samples were retrieved from the evaporator system (gravity drain line and pot) for both chemical and radiological characterization and dissolution testing. The characterization of these scale samples showed the presence of nitrated cancrinite along with a dehydrated zeolite. Small amounts of depleted uranium were also found in these samples as expected and the amount of uranium ranged from 0.5 wt% to 2 wt%. Dissolution in sodium hydroxide solutions of various caustic concentrations showed that the scale slowly dissolves at elevated temperature (90 C). Data from similar testing indicate that the scale removed from the GDL in 2005 dissolves slower than that removed in 1997. Differences in the particle size of these samples of scale may well explain the measured dissolution rate differences.

  17. LABORATORY-SCALE ANALYSIS OF AQUIFER REMEDIATION BY IN-WELL VAPOR STRIPPING 2. MODELING RESULTS. (R825689C061)

    EPA Science Inventory

    Abstract

    The removal of volatile organic compounds (VOCs) from groundwater through in-well vapor stripping has been demonstrated by Gonen and Gvirtzman (1997, J. Contam. Hydrol., 00: 000-000) at the laboratory scale. The present study compares experimental breakthrough...

  18. Brief Report: The Social Responsiveness Scale for Adults (SRS-A)-- Initial Results in a German Cohort

    ERIC Educational Resources Information Center

    Bolte, Sven

    2012-01-01

    The Social Responsiveness Scale (SRS) is a tool for quantitative autism assessment in children and adolescents. The SRS-A addresses social responsiveness in adulthood. Reliability and validity using the German adaptation of the SRS-A was examined in 20 adults with Autism Spectrum Disorder (ASD), 62 with other mental disorders (CLIN) and 163…

  19. Simulation of maize irrigation requirements at the regional scale: comparison between results obtained with measured and FAO-56 crop coefficient

    NASA Astrophysics Data System (ADS)

    Facchi, A.; Gharsallah, O.; Gandolfi, C.; Chiaradia, E.; Mancini, M.

    2012-04-01

    The FAO-56 "single crop coefficient" or "double crop coefficient" approaches are the most recommended and widely adopted procedures for the estimation of crop irrigation requirements. In these methods crop evapotranspiration in well-watered conditions is calculated by multiplying the grass reference evapotranspiration ET0 determined by the Penman-Monteith FAO-56 equation and a crop coefficient Kc depending on the crop type and its growing stage. In particular, the "double crop coefficient" allows the separation of soil evaporation and crop transpiration, splitting Kc in two different terms: a basal crop coefficient Kcb and a soil evaporation coefficient Ke. Many authors in the last fifteen years showed that the FAO Kc and Kcb tabulated coefficients, even if adjusted using the specific procedure based on local meteorological, irrigation and crop data suggested by FAO-56, tend to underestimate the observed crop coefficients in arid and semi-arid environments, while an overestimation often occurs for humid and semi-humid regions. In the literature differences up to ±40% especially during the middle growth cycle are reported, mainly due to the complexity of the crop coefficient which actually integrates several physical and biological factors. The purpose of our research was to measure the Kc pattern for maize grown in the Lombardy Region (Northern Italy) and to evaluate the difference in crop irrigation requirements at a regional scale considering the measured Kc instead of the FAO tabulated values using a spatially distributed hydrological model. Kc was calculated for two experimental maize fields for years 2006, 2010 and 2011 as the ratio between actual crop evapotranspiration (ET) in well watered conditions and ET0. ET was measured using eddy-covariance technique while ET0 was determined from agro-meteorological data registered by the two standard meteo stations closest to the experimental areas. The second step of the research was achieved by using the

  20. Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-6 test data report : thermal hydraulic results, Rev. 0.

    SciTech Connect

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B.

    2011-06-28

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure? (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx} {phi} 30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength is being addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus measures the fracture strength of the crust while it is either at room temperature or above, the latter state being achieved with a heating element placed below the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the sixth water ingression test, designated SSWICS-6. This test

  1. Millennial scale system impulse response of polar climates - deconvolution results between δ 18O records from Greenland and Antarctica

    NASA Astrophysics Data System (ADS)

    Reischmann, E.; Yang, X.; Rial, J. A.

    2013-12-01

    Deconvolution has long been used in science to recover real input given a system's impulse response and output. In this study, we applied spectral division deconvolution to select, polar, δ 18O time series to investigate the possible relationship between the climates of the Polar Regions, i.e. the equivalent to a climate system's ';impulse response.' While the records may be the result of nonlinear processes, deconvolution remains an appropriate tool because the two polar climates are synchronized, forming a Hilbert transform pair. In order to compare records, the age models of three Greenland and four Antarctica records have been matched via a Monte Carlo method using the methane-matched pair GRIP and BYRD as a basis for the calculations. For all twelve polar pairs, various deconvolution schemes (Wiener, Damped Least Squares, Tikhonov, Kalman filter) give consistent, quasi-periodic, impulse responses of the system. Multitaper analysis reveals strong, millennia scale, quasi-periodic oscillations in these system responses with a range of 2,500 to 1,000 years. These are not symmetric, as the transfer function from north to south differs from that of south to north. However, the difference is systematic and occurs in the predominant period of the deconvolved signals. Specifically, the north to south transfer function is generally of longer period than the south to north transfer function. High amplitude power peaks at 5.0ky to 1.7ky characterize the former, while the latter contains peaks at mostly short periods, with a range of 2.5ky to 1.0ky. Consistent with many observations, the deconvolved, quasi-periodic, transfer functions share the predominant periodicities found in the data, some of which are likely related to solar forcing (2.5-1.0ky), while some are probably indicative of the internal oscillations of the climate system (1.6-1.4ky). The approximately 1.5 ky transfer function may represent the internal periodicity of the system, perhaps even related to the

  2. National Scale-up of Zinc Promotion in Nepal: Results from a Post-project Population-based Survey

    PubMed Central

    MacDonald, Vicki M.; Paudel, Mahesh; Banke, Kathryn K.

    2011-01-01

    The World Health Organization and the United Nations Children's Fund recommend using a new oral rehydration solution (ORS) plus zinc supplementation for 10-14 days for the treatment of diarrhoea in children aged less than five years. The Social Marketing Plus for Diarrhoeal Disease Control: Point of Use Water Disinfection and Zinc Treatment (POUZN) project in Nepal was one of the first zinc-promotion projects to move beyond pilot efforts into a scaled-up programme with national-level reach. This study used data from a survey conducted in 26 districts in Nepal in 2008 to examine zinc-use behaviour, knowledge, and beliefs of caregivers of children aged less than six years, other diarrhoea-treatment practices, and recollection of project communication messages. The results of the survey indicated that, by six months following the onset of a zinc-promotion campaign, the majority (67.5%) of children (n=289), aged less than six years, with diarrhoea were treated with ORS, and 15.4% were treated with zinc. Over half (53.1%) of all caregivers (n=3,550) interviewed had heard about zinc products; most (97.1%) of those who had heard of zinc knew that zinc should be used for the treatment of diarrhoea. Zinc-related knowledge and behaviours were positively associated with recall of communication messages. Children whose caregivers recalled the mass-media message that zinc should be used for 10 days [odds ratio (OR)=2.02, 95% confidence interval (CI) 1.85-2.19] and whose caregivers perceived that zinc is easy to obtain (OR=1.76, 95% CI 1.49-2.09) were more likely to be treated with zinc for 10 days, along with ORS. The findings demonstrated that mass media play an important role in increasing caregivers’ knowledge about zinc and encouraging trial and correct use. Future efforts should also focus on understanding the factors that motivate providers to continue recommending antibiotics and antidiarrhoeals instead of zinc. These findings are being used for informing the design

  3. A 4-point in-situ method to locate a discrete gamma-ray source in 3-D space.

    PubMed

    Byun, Jong-In; Choi, Hee-Yeoul; Yun, Ju-Yong

    2010-02-01

    The determination of the source position (x,y,z) of a discrete gamma-ray source using peak count rates from four measurement points was studied. We derived semi-empirical formulas to find the position under the condition to neglect attenuation effects by obstacles between the target source and the detector. To validate the methodology, we performed the locating experiments for a (137)Cs small volume source placed at 10 different positions on the floor of a laboratory using the formulas derived in this study. In this study, a portable HPGe gamma spectrometry system with a virtual point detector concept was used. The calculation results for the source positions were compared with reference values measured with a rule. The applicability of the methodology was estimated based on the differences of the results. PMID:19932029

  4. [Identification and analysis on the error of Guanyuan (CV 4) point in Yulong Ge (Jade Dragon Verse)].

    PubMed

    Gang, Wei-juan; Huang, Long-xiang

    2009-02-01

    After investigation on the contents about Yulong Ge (Jade Dragon Verse) and Guanyuan (CV 4) in Chinese ancient medical works of the successive dynasties, the authors of the present paper found some errors of recording on CV4. In fact, Guanyuan (CV 4) in the current edition Yulong Ge should be the extra point Lanmen. The author hold that this error mainly results from similar writing in Chinese character, repeated copy, such as [Chinese characters: see text] etc.

  5. Summary of Results Obtained in Full-Scale Tunnel Investigation of the Ryan Flex-Wing Airplane

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph L., Jr.; Hassell, James L., Jr.

    1962-01-01

    The performance and static stability and control characteristics of the Ryan Flex-Wing airplane were determined in an investigation conducted in the Langley full-scale tunnel through an angle-of-attack range of the keel from about 14 to 44 deg. for power-on and -off conditions. Comparisons of the wind-tunnel data with flight-test data obtained with the same airplane by the Ryan Aeronautical Company were made in a number of cases.

  6. Influence of sludge properties and hydraulic loading on the performance of secondary settling tanks--full-scale operational results.

    PubMed

    Vestner, R J; Günthert, F Wolfgang

    2004-01-01

    Full-scale investigations at a WWTP with a two-stage secondary settling tank process revealed relationships between significant operating parameters and performance in terms of effluent suspended solids concentration. Besides common parameters (e.g. surface overflow rate and sludge volume loading rate) feed SS concentration and flocculation time must be considered. Concentration of the return activated sludge may help to estimate the performance of existing secondary settling tanks.

  7. Analysis of Environmental Issues Related to Small-Scale Hydroelectric Development IV: Fish Mortality Resulting From Turbine Passage

    SciTech Connect

    Turbak, Susan C.; Reichle, Donna R.; Shriner, Carole R.

    1981-01-01

    The purpose of this report is to provide summary information for use by potential developers and regulators of small-scale hydroelectric projects (defined as existing dams that can be retrofitted to a total site capacity of ≤30 MW), where turbine-related mortality of fish is a potential issue affecting site-specific development. Mitigation techniques for turbine-related mortality are not covered in this report.

  8. Results of Large-Scale Testing on Effects of Anti-Foam Agent on Gas Retention and Release

    SciTech Connect

    Stewart, Charles W.; Guzman-Leong, Consuelo E.; Arm, Stuart T.; Butcher, Mark G.; Golovich, Elizabeth C.; Jagoda, Lynette K.; Park, Walter R.; Slaugh, Ryan W.; Su, Yin-Fong; Wend, Christopher F.; Mahoney, Lenna A.; Alzheimer, James M.; Bailey, Jeffrey A.; Cooley, Scott K.; Hurley, David E.; Johnson, Christian D.; Reid, Larry D.; Smith, Harry D.; Wells, Beric E.; Yokuda, Satoru T.

    2008-01-03

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. The waste treatment process in the pretreatment facility will mix both Newtonian and non-Newtonian slurries in large process tanks. Process vessels mixing non-Newtonian slurries will use pulse jet mixers (PJMs), air sparging, and recirculation pumps. An anti-foam agent (AFA) will be added to the process streams to prevent surface foaming, but may also increase gas holdup and retention within the slurry. The work described in this report addresses gas retention and release in simulants with AFA through testing and analytical studies. Gas holdup and release tests were conducted in a 1/4-scale replica of the lag storage vessel operated in the Pacific Northwest National Laboratory (PNNL) Applied Process Engineering Laboratory using a kaolin/bentonite clay and AZ-101 HLW chemical simulant with non-Newtonian rheological properties representative of actual waste slurries. Additional tests were performed in a small-scale mixing vessel in the PNNL Physical Sciences Building using liquids and slurries representing major components of typical WTP waste streams. Analytical studies were directed at discovering how the effect of AFA might depend on gas composition and predicting the effect of AFA on gas retention and release in the full-scale plant, including the effects of mass transfer to the sparge air. The work at PNNL was part of a larger program that included tests conducted at Savannah River National Laboratory (SRNL) that is being reported separately. SRNL conducted gas holdup tests in a small-scale mixing vessel using the AZ-101 high-level waste (HLW) chemical simulant to investigate the effects of different AFAs, their components, and of adding noble metals. Full-scale, single-sparger mass transfer tests were also conducted at SRNL in water and AZ-101 HLW simulant to provide data for PNNL

  9. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX)

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.

    2012-12-01

    Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to

  10. Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale

    USGS Publications Warehouse

    Cruikshank, D.P.; Meyer, A.W.; Brown, R.H.; Clark, R.N.; Jaumann, R.; Stephan, K.; Hibbitts, C.A.; Sandford, S.A.; Mastrapa, R.M.E.; Filacchione, G.; Ore, C.M.D.; Nicholson, P.D.; Buratti, B.J.; McCord, T.B.; Nelson, R.M.; Dalton, J.B.; Baines, K.H.; Matson, D.L.

    2010-01-01

    Several of the icy satellites of Saturn show the spectroscopic signature of the asymmetric stretching mode of C-O in carbon dioxide (CO2) at or near the nominal solid-phase laboratory wavelength of 4.2675 ??m (2343.3 cm-1), discovered with the Visible-Infrared Mapping Spectrometer (VIMS) on the Cassini spacecraft. We report here on an analysis of the variation in wavelength and width of the CO2 absorption band in the spectra of Phoebe, Iapetus, Hyperion, and Dione. Comparisons are made to laboratory spectra of pure CO2, CO2 clathrates, ternary mixtures of CO2 with other volatiles, implanted and adsorbed CO2 in non-volatile materials, and ab initio theoretical calculations of CO2 * nH2O. At the wavelength resolution of VIMS, the CO2 on Phoebe is indistinguishable from pure CO2 ice (each molecule's nearby neighbors are also CO2) or type II clathrate of CO2 in H2O. In contrast, the CO2 band on Iapetus, Hyperion, and Dione is shifted to shorter wavelengths (typically ???4.255 ??m (???2350.2 cm-1)) and broadened. These wavelengths are characteristic of complexes of CO2 with different near-neighbor molecules that are encountered in other volatile mixtures such as with H2O and CH3OH, and non-volatile host materials like silicates, some clays, and zeolites. We suggest that Phoebe's CO2 is native to the body as part of the initial inventory of condensates and now exposed on the surface, while CO2 on the other three satellites results at least in part from particle or UV irradiation of native H2O plus a source of C, implantation or accretion from external sources, or redistribution of native CO2 from the interior. The analysis presented here depends on an accurate VIMS wavelength scale. In preparation for this work, the baseline wavelength calibration for the Cassini VIMS was found to be distorted around 4.3 ??m, apparently as a consequence of telluric CO2 gas absorption in the pre-launch calibration. The effect can be reproduced by convolving a sequence of model detector

  11. Technical Performance Evaluation of the MyT4 Point of Care Technology for CD4+ T Cell Enumeration

    PubMed Central

    Mwau, Matilu; Kadima, Silvia; Mwende, Joy; Adhiambo, Maureen; Akinyi, Catherine; Prescott, Marta; Lusike, Judi; Hungu, Jackson; Vojnov, Lara

    2014-01-01

    Objective Though absolute CD4+ T cell enumeration is the primary gateway to antiretroviral therapy initiation for HIV-positive patients in all developing countries, patient access to this critical diagnostic test is relatively poor. We technically evaluated the performance of a newly developed point-of-care CD4+ T cell technology, the MyT4, compared with conventional CD4+ T cell testing technologies. Design Over 250 HIV-positive patients were consecutively enrolled and their blood tested on the MyT4, BD FACSCalibur, and BD FACSCount. Results Compared with the BD FACSCount, the MyT4 had an r2 of 0.7269 and a mean bias of −23.37 cells/µl. Compared with the BD FACSCalibur, the MyT4 had an r2 of 0.5825 and a mean bias of −46.58 cells/µl. Kenya currently uses a CD4+ T cell test threshold of 350 cells/µl to determine patient eligibility for antiretroviral therapy. At this threshold, the MyT4 had a sensitivity of 95.3% (95% CI: 88.4–98.7%) and a specificity of 87.9% (95% CI: 82.3–92.3%) compared with the BD FACSCount and sensitivity and specificity of 88.2% (95% CI: 79.4–94.2%) and 84.2% (95% CI: 78.2–89.2%), respectively, compared with the BD FACSCalibur. Finally, the MyT4 had a coefficient of variation of 12.80% compared with 14.03% for the BD FACSCalibur. Conclusions We conclude that the MyT4 performed well at the current 350 cells/µl ART initiation eligibility threshold when used by lower cadres of health care facility staff in rural clinics compared to conventional CD4+ T cell technologies. PMID:25229408

  12. [Relationship of hypertension prevalence in companies to business type and scale--from an analysis of health examination results in Fukui prefecture].

    PubMed

    Hirai, T; Kusaka, Y; Iki, M; Deguchi, Y; Sato, K; Umino, K; Kawahara, K

    1996-09-01

    The results of health examinations of 89,299 examines from companies in Fukui Prefecture conducted pursuant to the Occupational Safety and Health Act were analyzed to study the relationship between the prevalence in these companies of hypertension, and company size business type. The Mantel-Haenszel method was utilized to adjust for age structure of the examinees according to gender and the type of business of their companies to compare prevalence of hypertension. The results of the analysis indicated that the prevalence of hypertension was significantly higher in small-scale companies for the female examinees working in pulp/paper processing and motor freight transport business than in large-scale companies, but no significant difference was seen for scale of business when the female examinees were grouped without regard to the business type of their companies. In the case of the male examinees, the analysis results revealed that the prevalence of hypertension was significantly higher in small-scale companies for those working in ceramic/earth/rock, motor passenger transport and hotel/restaurant business than in large-scale industry while the prevalence of hypertension was significantly higher in large-scale companies for those working in non-ferrous metal industry, financial and other types of business. Moreover, the analysis results for the male examinees grouped without regard to the type of business of their companies indicated that the prevalence of hypertension remained significantly higher in small-scale companies. The above also suggests the need for measures for health care of workers that considers business type and scale for the purpose of primary prevention of hypertension.

  13. Factors influencing superimposition error of 3D cephalometric landmarks by plane orientation method using 4 reference points: 4 point superimposition error regression model.

    PubMed

    Hwang, Jae Joon; Kim, Kee-Deog; Park, Hyok; Park, Chang Seo; Jeong, Ho-Gul

    2014-01-01

    Superimposition has been used as a method to evaluate the changes of orthodontic or orthopedic treatment in the dental field. With the introduction of cone beam CT (CBCT), evaluating 3 dimensional changes after treatment became possible by superimposition. 4 point plane orientation is one of the simplest ways to achieve superimposition of 3 dimensional images. To find factors influencing superimposition error of cephalometric landmarks by 4 point plane orientation method and to evaluate the reproducibility of cephalometric landmarks for analyzing superimposition error, 20 patients were analyzed who had normal skeletal and occlusal relationship and took CBCT for diagnosis of temporomandibular disorder. The nasion, sella turcica, basion and midpoint between the left and the right most posterior point of the lesser wing of sphenoidal bone were used to define a three-dimensional (3D) anatomical reference co-ordinate system. Another 15 reference cephalometric points were also determined three times in the same image. Reorientation error of each landmark could be explained substantially (23%) by linear regression model, which consists of 3 factors describing position of each landmark towards reference axes and locating error. 4 point plane orientation system may produce an amount of reorientation error that may vary according to the perpendicular distance between the landmark and the x-axis; the reorientation error also increases as the locating error and shift of reference axes viewed from each landmark increases. Therefore, in order to reduce the reorientation error, accuracy of all landmarks including the reference points is important. Construction of the regression model using reference points of greater precision is required for the clinical application of this model. PMID:25372707

  14. Genetic Geostatistical Framework for Spatial Analysis of Fine-Scale Genetic Heterogeneity in Modern Populations: Results from the KORA Study

    PubMed Central

    Diaz-Lacava, A. N.; Walier, M.; Holler, D.; Steffens, M.; Gieger, C.; Furlanello, C.; Lamina, C.; Wichmann, H. E.; Becker, T.

    2015-01-01

    Aiming to investigate fine-scale patterns of genetic heterogeneity in modern humans from a geographic perspective, a genetic geostatistical approach framed within a geographic information system is presented. A sample collected for prospective studies in a small area of southern Germany was analyzed. None indication of genetic heterogeneity was detected in previous analysis. Socio-demographic and genotypic data of German citizens were analyzed (212 SNPs; n = 728). Genetic heterogeneity was evaluated with observed heterozygosity (HO). Best-fitting spatial autoregressive models were identified, using socio-demographic variables as covariates. Spatial analysis included surface interpolation and geostatistics of observed and predicted patterns. Prediction accuracy was quantified. Spatial autocorrelation was detected for both socio-demographic and genetic variables. Augsburg City and eastern suburban areas showed higher HO values. The selected model gave best predictions in suburban areas. Fine-scale patterns of genetic heterogeneity were observed. In accordance to literature, more urbanized areas showed higher levels of admixture. This approach showed efficacy for detecting and analyzing subtle patterns of genetic heterogeneity within small areas. It is scalable in number of loci, even up to whole-genome analysis. It may be suggested that this approach may be applicable to investigate the underlying genetic history that is, at least partially, embedded in geographic data. PMID:26258132

  15. Correlation study of theoretical and experimental results for spin tests of a 1/10 scale radio control model

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.

    1976-01-01

    A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.

  16. Modelling relationships between lichen bioindicators, air quality and climate on a national scale: results from the UK OPAL air survey.

    PubMed

    Seed, Lindsay; Wolseley, Pat; Gosling, Laura; Davies, Linda; Power, Sally A

    2013-11-01

    Air pollution has many negative effects on the natural environment, from changes in plant growth patterns to loss of ecosystem function. This study uses citizen science to investigate national-scale patterns in the distribution and abundance of selected lichen species on tree trunks and branches, and to relate these to air pollution and climate. Volunteers collected data for nine lichen indicators on 19,334 deciduous trees. Submitted data provided information on species-level patterns, and were used to derive composite lichen indices. Multiple linear regression and ANCOVA were used to model the relationships between lichen response variables on Quercus spp. and pollution, climate and location. The study demonstrated significant relationships between patterns in indicator lichens and levels of N- and S-containing pollutants on trunks and twigs. The derived lichen indices show great potential as a tool to provide information on local, site-specific levels of air quality. PMID:23992684

  17. Quantum versus classical annealing: insights from scaling theory and results for spin glasses on 3-regular graphs.

    PubMed

    Liu, Cheng-Wei; Polkovnikov, Anatoli; Sandvik, Anders W

    2015-04-10

    We discuss an Ising spin glass where each S=1/2 spin is coupled antiferromagnetically to three other spins (3-regular graphs). Inducing quantum fluctuations by a time-dependent transverse field, we use out-of-equilibrium quantum Monte Carlo simulations to study dynamic scaling at the quantum glass transition. Comparing the dynamic exponent and other critical exponents with those of the classical (temperature-driven) transition, we conclude that quantum annealing is less efficient than classical simulated annealing in bringing the system into the glass phase. Quantum computing based on the quantum annealing paradigm is therefore inferior to classical simulated annealing for this class of problems. We also comment on previous simulations where a parameter is changed with the simulation time, which is very different from the true Hamiltonian dynamics simulated here.

  18. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    SciTech Connect

    Bonne, François; Bonnay, Patrick

    2014-01-29

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  19. Physical control oriented model of large scale refrigerators to synthesize advanced control schemes. Design, validation, and first control results

    NASA Astrophysics Data System (ADS)

    Bonne, François; Alamir, Mazen; Bonnay, Patrick

    2014-01-01

    In this paper, a physical method to obtain control-oriented dynamical models of large scale cryogenic refrigerators is proposed, in order to synthesize model-based advanced control schemes. These schemes aim to replace classical user experience designed approaches usually based on many independent PI controllers. This is particularly useful in the case where cryoplants are submitted to large pulsed thermal loads, expected to take place in the cryogenic cooling systems of future fusion reactors such as the International Thermonuclear Experimental Reactor (ITER) or the Japan Torus-60 Super Advanced Fusion Experiment (JT-60SA). Advanced control schemes lead to a better perturbation immunity and rejection, to offer a safer utilization of cryoplants. The paper gives details on how basic components used in the field of large scale helium refrigeration (especially those present on the 400W @1.8K helium test facility at CEA-Grenoble) are modeled and assembled to obtain the complete dynamic description of controllable subsystems of the refrigerator (controllable subsystems are namely the Joule-Thompson Cycle, the Brayton Cycle, the Liquid Nitrogen Precooling Unit and the Warm Compression Station). The complete 400W @1.8K (in the 400W @4.4K configuration) helium test facility model is then validated against experimental data and the optimal control of both the Joule-Thompson valve and the turbine valve is proposed, to stabilize the plant under highly variable thermals loads. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  20. Modulation of mantle plumes and heat flow at the core mantle boundary by plate-scale flow: results from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Gonnermann, Helge M.; Jellinek, A. Mark; Richards, Mark A.; Manga, Michael

    2004-09-01

    We report results from analog laboratory experiments, in which a large-scale flow is imposed upon natural convection from a hot boundary layer at the base of a large tank of corn syrup. The experiments show that the subdivision of the convective flow into four regions provides a reasonable conceptual framework for interpreting the effects of large-scale flow on plumes. Region I includes the area of the hot thermal boundary layer (TBL) that is thinned by the large-scale flow, thereby suppressing plumes. Region II encompasses the critically unstable boundary layer where plumes form. Region III is the area above the boundary layer that is devoid of plumes. Region IV comprises the area of hot upwelling and plume conduits. Quantitative analysis of our experiments results in a scaling law for heat flux from the hot boundary and for the spatial extent of plume suppression. When applied to the Earth's core-mantle boundary (CMB), our results suggest that large-scale mantle flow, due to sinking lithospheric plates, can locally thin the TBL and suppress plume formation over large fractions of the CMB. Approximately 30% of heat flow from the core may be due to increased heat flux from plate-scale flow. Furthermore, CMB heat flux is non-uniformly distributed along the CMB, with large areas where heat flux is increased on average by a factor of 2. As a consequence, the convective flow pattern in the outer core may be affected by CMB heat-flux heterogeneity and sensitive to changes in plate-scale mantle flow. Because of plume suppression and 'focusing' of hot mantle from the CMB into zones of upwelling flow, plume conduits (hotspots) are expected to be spatially associated with lower-mantle regions of low seismic velocities, inferred as hot upwelling mantle flow.

  1. Turbulent CO2 Flux Measurements by Lidar: Length Scales, Results and Comparison with In-Situ Sensors

    NASA Technical Reports Server (NTRS)

    Gilbert, Fabien; Koch, Grady J.; Beyon, Jeffrey Y.; Hilton, Timothy W.; Davis, Kenneth J.; Andrews, Arlyn; Ismail, Syed; Singh, Upendra N.

    2009-01-01

    The vertical CO2 flux in the atmospheric boundary layer (ABL) is investigated with a Doppler differential absorption lidar (DIAL). The instrument was operated next to the WLEF instrumented tall tower in Park Falls, Wisconsin during three days and nights in June 2007. Profiles of turbulent CO2 mixing ratio and vertical velocity fluctuations are measured by in-situ sensors and Doppler DIAL. Time and space scales of turbulence are precisely defined in the ABL. The eddy-covariance method is applied to calculate turbulent CO2 flux both by lidar and in-situ sensors. We show preliminary mean lidar CO2 flux measurements in the ABL with a time and space resolution of 6 h and 1500 m respectively. The flux instrumental errors decrease linearly with the standard deviation of the CO2 data, as expected. Although turbulent fluctuations of CO2 are negligible with respect to the mean (0.1 %), we show that the eddy-covariance method can provide 2-h, 150-m range resolved CO2 flux estimates as long as the CO2 mixing ratio instrumental error is no greater than 10 ppm and the vertical velocity error is lower than the natural fluctuations over a time resolution of 10 s.

  2. Validation of the Medication Adherence Rating Scale in homeless patients with schizophrenia: Results from the French Housing First experience

    PubMed Central

    Zemmour, K.; Tinland, A.; Boucekine, M.; Girard, V.; Loubière, S.; Resseguier, N.; Fond, G.; Auquier, P.; Boyer, L.; Apostolidis, T.; Birmes, P.; Bossetti, T.; Bouloudnine, R.; Combes, B.; Debieve, J.; Falissard, B.; Greacen, T.; Laval, C.; Lancon, C.; Le Cardinal, P.; Mantovani, J.; Moreau, D.; Naudin, J.; Rhunter, P.; Videau, B.

    2016-01-01

    The Medication Adherence Rating Scale (MARS) is one of the most widely used measurements of adherence in schizophrenia (SZ), but there is no available data regarding its psychometric properties in homeless SZ patients (HSZ). The aim of this study was therefore to assess the psychometric properties of the MARS in a large multicenter sample of HSZ subjects. This multi-centre prospective study was conducted in the following 4 French cities: Lille, Marseille, Paris and Toulouse. Three hundred and fifty-three patients were included. The 3-factor structure of the MARS was confirmed using confirmatory factor analysis: RMSEA = 0.045, CFI = 0.98, TLI = 0.97 and WRMR = 0.76. The unidimensionality of each factor was supported by the satisfactory INFIT statistics. Item internal consistencies were all higher than 0.20 and the Kuder–Richardson were higher than to 0.6, except for factor 2, which was closed to 0.5. Significant associations with symptoms, functioning and quality of life showed satisfactory external validity. The acceptability was satisfactory with missing data lower than 5% for each dimension. The MARS is a short self-administered instrument with acceptable psychometric properties in homeless SZ patients that yields interesting information about medication adherence. PMID:27534796

  3. Validation of the Medication Adherence Rating Scale in homeless patients with schizophrenia: Results from the French Housing First experience.

    PubMed

    Zemmour, K; Tinland, A; Boucekine, M; Girard, V; Loubière, S; Resseguier, N; Fond, G; Auquier, P; Boyer, L

    2016-01-01

    The Medication Adherence Rating Scale (MARS) is one of the most widely used measurements of adherence in schizophrenia (SZ), but there is no available data regarding its psychometric properties in homeless SZ patients (HSZ). The aim of this study was therefore to assess the psychometric properties of the MARS in a large multicenter sample of HSZ subjects. This multi-centre prospective study was conducted in the following 4 French cities: Lille, Marseille, Paris and Toulouse. Three hundred and fifty-three patients were included. The 3-factor structure of the MARS was confirmed using confirmatory factor analysis: RMSEA = 0.045, CFI = 0.98, TLI = 0.97 and WRMR = 0.76. The unidimensionality of each factor was supported by the satisfactory INFIT statistics. Item internal consistencies were all higher than 0.20 and the Kuder-Richardson were higher than to 0.6, except for factor 2, which was closed to 0.5. Significant associations with symptoms, functioning and quality of life showed satisfactory external validity. The acceptability was satisfactory with missing data lower than 5% for each dimension. The MARS is a short self-administered instrument with acceptable psychometric properties in homeless SZ patients that yields interesting information about medication adherence. PMID:27534796

  4. Preliminary results of a multi-scale structural analisys in an analogue carbonate reservoir (Hyblean Plateau, Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Cilona, Antonino; Agosta, Fabrizio; Criscenti, Alessandro; Dipasquale, Mario; Giunta, Giuseppe; Napoli, Giuseppe; Occhipinti, Rosario; Renda, Pietro; Tondi, Emanuele

    2010-05-01

    With the aim of studying the multi-scale fault architecture and permeability in hydrocarbon-rich porous carbonate rocks, we are currently involved in a project focused on the structural analysis of fractured and faulted platform-to-ramp carbonates cropping out in the Hyblean Plateau (Sicily, Italy). The Hyblean Plateau is part of the Maghrebian foreland and forms the northern portion of the African plate. The plateau is a NE-oriented structural high crosscut by a large-scale N10°-20°E oriented strike-slip fault system, named Scicli-Ragusa, which was affected by right-lateral kinematics during the Upper Miocene-Lower Pliocene. Some authors documented a recent activity of the Scicli-Ragusa fault system, during the Quaternary, characterized by left-lateral kinematics. The portion of the Hyblean Plateau crosscut by this fault system represents an excellent example of an outcropping analogue of a fractured carbonate reservoir. By taking advantage of the several oil shows located along the Scicli-Ragusa fault system, we combine stratigraphic-structural analyses, both at outcrop and microscopic scales, to assess the structural control exerted by faults and fractures on hydrocarbon migration and storage. The field work focused on the geological mapping, at 1:10.000 scale, on detailed stratigraphic characterization of the outcropping layered carbonates (Ragusa Fm.) and on traditional faults and fractures analysis. Sample collection was also performed in order to conduct, in the laboratory, optical microscope and image analyses. The Oligo-Miocenic Ragusa Fm. is comprised of two main members: i) the lower Leonardo Member, which is characterised by well-cemented carbonate packstones intercalated with marl-rich levels; ii) the upper Irminio Member, characterised by an alternation of well-cemented and poorly-cemented grainstones/packstones. According to both orientations and kinematics, we grouped the fault segments of the Scicli-Ragusa fault system into three major sets: (i

  5. Video monitoring in the Gadria debris flow catchment: preliminary results of large scale particle image velocimetry (LSPIV)

    NASA Astrophysics Data System (ADS)

    Theule, Joshua; Crema, Stefano; Comiti, Francesco; Cavalli, Marco; Marchi, Lorenzo

    2015-04-01

    Large scale particle image velocimetry (LSPIV) is a technique mostly used in rivers to measure two dimensional velocities from high resolution images at high frame rates. This technique still needs to be thoroughly explored in the field of debris flow studies. The Gadria debris flow monitoring catchment in Val Venosta (Italian Alps) has been equipped with four MOBOTIX M12 video cameras. Two cameras are located in a sediment trap located close to the alluvial fan apex, one looking upstream and the other looking down and more perpendicular to the flow. The third camera is in the next reach upstream from the sediment trap at a closer proximity to the flow. These three cameras are connected to a field shelter equipped with power supply and a server collecting all the monitoring data. The fourth camera is located in an active gully, the camera is activated by a rain gauge when there is one minute of rainfall. Before LSPIV can be used, the highly distorted images need to be corrected and accurate reference points need to be made. We decided to use IMGRAFT (an opensource image georectification toolbox) which can correct distorted images using reference points and camera location, and then finally rectifies the batch of images onto a DEM grid (or the DEM grid onto the image coordinates). With the orthorectified images, we used the freeware Fudaa-LSPIV (developed by EDF, IRSTEA, and DeltaCAD Company) to generate the LSPIV calculations of the flow events. Calculated velocities can easily be checked manually because of the already orthorectified images. During the monitoring program (since 2011) we recorded three debris flow events at the sediment trap area (each with very different surge dynamics). The camera in the gully was in operation in 2014 which managed to record granular flows and rockfalls, which particle tracking may be more appropriate for velocity measurements. The four cameras allows us to explore the limitations of camera distance, angle, frame rate, and image

  6. Grid-scale Indirect Radiative Forcing of Climate due to aerosols over the northern hemisphere simulated by the integrated WRF-CMAQ model: Preliminary results

    EPA Science Inventory

    In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...

  7. Relations of Water Quality to Agricultural Chemical Use and Environmental Setting at Various Scales - Results from Selected Studies of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    ,

    2008-01-01

    In 1991, the U.S. Geological Survey (USGS) began studies of 51 major river basins and aquifers across the United States as part of the National Water-Quality Assessment (NAWQA) Program to provide scientifically sound information for managing the Nation's water resources. The major goals of the NAWQA Program are to assess the status and long-term trends of the Nation's surface- and ground-water quality and to understand the natural and human factors that affect it (Gilliom and others, 1995). In 2001, the NAWQA Program began a second decade of intensive water-quality assessments. The 42 study units for this second decade were selected to represent a wide range of important hydrologic environments and potential contaminant sources. These NAWQA studies continue to address the goals of the first decade of the assessments to determine how water-quality conditions are changing over time. In addition to local- and regional-scale studies, NAWQA began to analyze and synthesize water-quality status and trends at the principal aquifer and major river-basin scales. This fact sheet summarizes results from four NAWQA studies that relate water quality to agricultural chemical use and environmental setting at these various scales: * Comparison of ground-water quality in northern and southern High Plains agricultural settings (principal aquifer scale); * Distribution patterns of pesticides and degradates in rain (local scale); * Occurrence of pesticides in shallow ground water underlying four agricultural areas (local and regional scales); and * Trends in nutrients and sediment over time in the Missouri River and its tributaries (major river-basin scale).

  8. Local Validation of Global Estimates of Biosphere Properties: Synthesis of Scaling Methods and Results Across Several Major Biomes

    NASA Technical Reports Server (NTRS)

    Cohen, Warren B.; Wessman, Carol A.; Aber, John D.; VanderCaslte, John R.; Running, Steven W.

    1998-01-01

    To assist in validating future MODIS land cover, LAI, IPAR, and NPP products, this project conducted a series of prototyping exercises that resulted in enhanced understanding of the issues regarding such validation. As a result, we have several papers to appear as a special issue of Remote Sensing of Environment in 1999. Also, we have been successful at obtaining a follow-on grant to pursue actual validation of these products over the next several years. This document consists of a delivery letter, including a listing of published papers.

  9. Mapping State Proficiency Standards onto NAEP Scales: Results from the 2013 NAEP Reading and Mathematics Assessments. NCES 2015-046

    ERIC Educational Resources Information Center

    Bandeira de Mello, V.; Bohrnstedt, G.; Blankenship, C.; Sherman, D.

    2015-01-01

    Under the 2001 reauthorization of the Elementary and Secondary Education Act of 1965, states developed their own assessments and set their own proficiency standards to measure student achievement. This has resulted in a great deal of variation among the states, both in their proficiency standards and in their student assessments (NCES 2008-475).…

  10. Flue gas conditioning for improved particle collection in electrostatic precipitators. Second topical report, Results of bench-scale screening of additives

    SciTech Connect

    Durham, M.D.

    1993-08-13

    ADA Technologies, Inc. (ADA) has completed the bench-scale testing phase of a program to evaluate additives that will improve the collection of fine particles in electrostatic precipitators (ESPs). A bench-scale ESP was installed at the Consolidation Coal Company (CONSOL) combustion research and development facility in Library, PA in order to conduct the evaluation. During a two-week test, four candidate additives were injected into the flue gas ahead of a 100 acfm ESP to determine the effect on fly ash collectability. Two additives were found to reduce the emissions from the ESP. Additives ``C`` and ``D`` performed better than initially anticipated -- reducing emissions initially by 17%. Emissions were reduced by 27% after the ESP was modified by the installation of baffles to minimize sneakage. In addition to the measured improvements in performance, no detrimental effects (i.e., electrode fouling) were observed in the operation of the ESP during the testing. The measures of success identified for the bench-scale phase of the program have been surpassed. Since the additives will affect only non-rapping reentrainment particle losses, it is expected that an even greater improvement in particle collection will be observed in larger-scale ESPs. Therefore, positive results are anticipated during the pilot-scale phase of the program and during a future full-scale demonstration test. A preliminary economic analysis was performed to evaluate the cost of the additive process and to compare its costs against alternative means for reducing emissions from ESPs. The results show that conditioning with additive C at a rate of 0.05% (wt. additive to wt. fly ash) is much less expensive than adding new ESP capacity, and more cost competitive than existing chemical conditioning processes. Preliminary chemical analysis of conditioned fly ash shows that it passes the Toxicity Characteristic Leaching Procedure criteria.

  11. Abuse of Medications Employed for the Treatment of ADHD: Results From a Large-Scale Community Survey

    PubMed Central

    Bright, George M.

    2008-01-01

    Objective The objective is to assess abuse of prescription and illicit stimulants among individuals being treated for attention-deficit/hyperactivity disorder (ADHD). Methods A survey was distributed to patients enrolled in an ADHD treatment center. It included questions designed to gain information about demographics; ADHD treatment history; illicit drug use; and misuse of prescribed stimulant medications, including type of stimulant medication most frequently misused or abused, and how the stimulant was prepared and administered. Results A total of 545 subjects (89.2% with ADHD) were included in the survey. Results indicated that 14.3% of respondents abused prescription stimulants. Of these, 79.8% abused short-acting agents; 17.2% abused long-acting stimulants; 2.0% abused both short- and long-acting agents; and 1.0% abused other agents. The specific medications abused most often were mixed amphetamine salts (Adderall; 40.0%), mixed amphetamine salts extended release (Adderall XR; 14.2%), and methylphenidate (Ritalin; 15.0%), and the most common manner of stimulant abuse was crushing pills and snorting (75.0%). Survey results also showed that 39.1% of respondents used nonprescription stimulants, most often cocaine (62.2%), methamphetamine (4.8%), and both cocaine and amphetamine (31.1%). Choice of illicit drug was based on rapidity of high onset (43.5%), ease of acquisition (40.7%), ease of use (10.2%), and cost (5.5%). Conclusions The risks for abuse of prescription and illicit stimulants are elevated among individuals being treated in an ADHD clinic. Prescription agents used most often are those with pharmacologic and pharmacokinetic characteristics that provide a rapid high. This suggests that long-acting stimulant preparations that have been developed for the treatment of ADHD may have lower abuse potential than short-acting formulations. PMID:18596945

  12. [The evidences for formulation of schistosomiasis control and elimination criteria: results from a large scale of retrospective investigations].

    PubMed

    Zhou, Xiao-Nong; Wang, Tian-Ping; Lin, Dan-Dan; Wen, Li-Yong; Zhou, Bo; Xu, Jing; Li Shi-Zhu

    2014-10-01

    In this study, we summarized the results from the retrospective investigation on endemic situation of schistosomiasis that was implemented in nine provinces (autonomous region), China in 2009, demonstrated the role of these retrospective investigations in accelerating the progress of schistosomiasis control in China, and clarified the great significance of the investigation for summarizing the experiences for the control of schistosomiasis, and analyzing the changing patterns and affecting factors of endemic status of schistosomiasis in China. In addition, these retrospective investigations provide reliable evidence for revising the Criteria of Schistosomiasis Control and Elimination, and for the more accurate and scientific assessment of the effectiveness of schistosomiasis control in China.

  13. Statistical Characterization of Kilometer-Scale Topography of Volcanic Units In Daedalia Planum, Mars: New Results From MGS MOLA Data Analysis

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W.

    2001-12-01

    Mars Orbiter Laser Altimeter (MOLA) onboard MGS spacecraft produced a large set of 300-m-spaced precise measurements of Mars surface elevation. We use this data set to study statistical characteristics of topography. We present new results on kilometer-scale topographic patterns of Daedalia Planum. For all MOLA profiles in the area 35S - 10S, 135W - 105W we calculated a characteristic of profile curvature at a set of baselines from 0.6 km to 10 km. For each cell of a grid covering the area under study we calculated the curvature-frequency distribution at each baseline. The width of the frequency distributions can be considered as a characteristic of roughness at a scale defined by the baseline length. The median curvature characterizes prevalence of convex or concave segments of the profiles. These parameters plotted within the grid form maps of kilometer-scale topographic patterns. Daedalia Planum is volcanic plain formed mainly by lava flows from Arsia Mons. Different generations of the lava flows display distinctively different kilometer-scale topographic patterns. Middle Amazonian flows (unit At5 according to USGS 1:15M geological map by D.H.Scott and K.L.Tanaka) are characterized by the steep increase of roughness at short baselines and by prevalence of convex profiles, while Late Hesperian flows (AHt3, Ht2, Ht1) are relatively rougher at longer baselines and often display prevalence of a concave relief. The roughness maps allow to accurately and reliably outline the units. High-resolution MOC images show high diversity of tens-meter-scale surface patterns within all units, as well as a systematic difference correlating with kilometer-scale topography pattern characteristics. MOC images show various buried and exhumed small-scale features in the areas and evidences for presence and erosion of surficial deposits of various thickness. The difference in kilometer-scale statistics of topography is probably controlled by the presence and characteristics of these

  14. University of california at Santa Barbara Anisotropy Program: degree scale results from the South Pole 1990-1991.

    PubMed Central

    Gaier, T; Schuster, J; Gundersen, J; Meinhold, P; Lubin, P

    1993-01-01

    We report on the preliminary result of a search for anisotropy in the cosmic background radiation (CBR). Our receiver operates with four equally spaced channels from 25 to 35 GHz with a beam size of approximately 1.5 degrees full width at half maximum. The system operated successfully for 500 hr at the South Pole during 1990-1991 austral summer. The data from one region, representing 25 hr after editing, are presented here. A strong signal is present in the lower-frequency channels with a spectrum unlike CBR fluctuations. The highest-frequency channel has the smallest contribution from this signal and has been used to set a 95% confidence level upper limit DeltaT/T

  15. Small-scale impacts into rock - An evaluation of the effects of target temperature on experimental results

    NASA Technical Reports Server (NTRS)

    Smrekar, S.; Cintala, M. J.; Horz, F.

    1986-01-01

    A series of cratering and catastrophic fragmentation experiments has been performed, involving the impact of aluminum and stainless-steel spheres into warm (about 298 K) and cold (about 100 K) granodiorite targets. Although some vague hints of a thermal effect might be found in some of the results, in no case was there a substantial difference between the warm and cold series. Since these experiments were well within the strength-dominated regime of impact phenomena, variations due to low target temperatures in more energetic events will probably be negligible. Thus, there appear to be no significant temperature-dependent mechanical effects during impact into solid rock over a wide range of temperatures prevalent in the solar system.

  16. Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 geosequestration experiment

    PubMed Central

    Mu, Andre; Boreham, Chris; Leong, Henrietta X.; Haese, Ralf R.; Moreau, John W.

    2014-01-01

    Subsurface microorganisms may respond to increased CO2 levels in ways that significantly affect pore fluid chemistry. Changes in CO2 concentration or speciation may result from the injection of supercritical CO2 (scCO2) into deep aquifers. Therefore, understanding subsurface microbial responses to scCO2, or unnaturally high levels of dissolved CO2, will help to evaluate the use of geosequestration to reduce atmospheric CO2 emissions. This study characterized microbial community changes at the 16S rRNA gene level during a scCO2 geosequestration experiment in the 1.4 km-deep Paaratte Formation of the Otway Basin, Australia. One hundred and fifty tons of mixed scCO2 and groundwater was pumped into the sandstone Paaratte aquifer over 4 days. A novel U-tube sampling system was used to obtain groundwater samples under in situ pressure conditions for geochemical analyses and DNA extraction. Decreases in pH and temperature of 2.6 log units and 5.8°C, respectively, were observed. Polyethylene glycols (PEGs) were detected in the groundwater prior to scCO2 injection and were interpreted as residual from drilling fluid used during the emplacement of the CO2 injection well. Changes in microbial community structure prior to scCO2 injection revealed a general shift from Firmicutes to Proteobacteria concurrent with the disappearance of PEGs. However, the scCO2 injection event, including changes in response to the associated variables (e.g., pH, temperature and salinity), resulted in increases in the relative abundances of Comamonadaceae and Sphingomonadaceae suggesting the potential for enhanced scCO2 tolerance of these groups. This study demonstrates a successful new in situ sampling approach for detecting microbial community changes associated with an scCO2 geosequestration event. PMID:24860559

  17. Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field: recent results and new exeprimental studies

    NASA Astrophysics Data System (ADS)

    Vinci, Tommaso; Revet, Guilhem; Higginson, Drew; Béard, Jérome; Burdonov, K.; Chen, Sophia; Khagani, D.; Khiar, B.; Naughton, K.; Pikuz, S.; Riconda, Caterina; Riquier, R.; Soloviev, A.; Willi, O.; Portugall, O.; Pépin, Henry; Ciardi, Andrea; Fuchs, Julien; Albertazzi, Bruno

    2015-08-01

    Accretion shocks in Young Stellar Objects (YSO) are a subject of great interest in astrophysics; they exhibit intense magnetic activity and are surrounded by an accretion disk from which matter falls down onto the stellar surface in the form of columns following the magnetic lines (B ~ kG) at the free-fall velocity (100-500 km/s). As a column impacts the stellar surface, a radiative shock is created which heats up the infalling flow. As a consequence, a new reverse shock forms and some oscillations are expected in the emitted radiation as a proof of this periodic dynamic, but no periodicity has yet been detected in observations.To understand the reasons for this apparent inconsistency, we have recently developped an experimental setup [B. Albertazzi et al. Science 346, 325 (2014)] in which a plasma flow (generated by a high energy laser: 1013 W/cm2 - 0.6 ns pulse) is confined inside a poloidal magnetic field (20 T). This jet has an aspect ratio >10, a temperature of tens of eV, an electron density of 1018 cm-3 and propagates at 700 km/s as show by our previous numerical work [A. Ciardi et al. Physical Review Letters, 110 (2013)]. To investigate the accretion dynamics, the jet acts as the accretion column and hits a secondary target acting as the stellar surface. We will present the recent results on generation and dynamics of the jet and the new experimental results of this configuration, namely of a supersonic reverse shock traveling within the accretion column with a speed of 100 km/s, representing a Mach number of ~ 30, and the observation of increased density structures along the edges of the interaction. This will be discussed in the light of 3D-magneto-hydrodynamic simulations which parametric variations allow to understand how the various plasma parameters affect the accretion.

  18. Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 geosequestration experiment.

    PubMed

    Mu, Andre; Boreham, Chris; Leong, Henrietta X; Haese, Ralf R; Moreau, John W

    2014-01-01

    Subsurface microorganisms may respond to increased CO2 levels in ways that significantly affect pore fluid chemistry. Changes in CO2 concentration or speciation may result from the injection of supercritical CO2 (scCO2) into deep aquifers. Therefore, understanding subsurface microbial responses to scCO2, or unnaturally high levels of dissolved CO2, will help to evaluate the use of geosequestration to reduce atmospheric CO2 emissions. This study characterized microbial community changes at the 16S rRNA gene level during a scCO2 geosequestration experiment in the 1.4 km-deep Paaratte Formation of the Otway Basin, Australia. One hundred and fifty tons of mixed scCO2 and groundwater was pumped into the sandstone Paaratte aquifer over 4 days. A novel U-tube sampling system was used to obtain groundwater samples under in situ pressure conditions for geochemical analyses and DNA extraction. Decreases in pH and temperature of 2.6 log units and 5.8°C, respectively, were observed. Polyethylene glycols (PEGs) were detected in the groundwater prior to scCO2 injection and were interpreted as residual from drilling fluid used during the emplacement of the CO2 injection well. Changes in microbial community structure prior to scCO2 injection revealed a general shift from Firmicutes to Proteobacteria concurrent with the disappearance of PEGs. However, the scCO2 injection event, including changes in response to the associated variables (e.g., pH, temperature and salinity), resulted in increases in the relative abundances of Comamonadaceae and Sphingomonadaceae suggesting the potential for enhanced scCO2 tolerance of these groups. This study demonstrates a successful new in situ sampling approach for detecting microbial community changes associated with an scCO2 geosequestration event. PMID:24860559

  19. Changes in the deep subsurface microbial biosphere resulting from a field-scale CO2 geosequestration experiment.

    PubMed

    Mu, Andre; Boreham, Chris; Leong, Henrietta X; Haese, Ralf R; Moreau, John W

    2014-01-01

    Subsurface microorganisms may respond to increased CO2 levels in ways that significantly affect pore fluid chemistry. Changes in CO2 concentration or speciation may result from the injection of supercritical CO2 (scCO2) into deep aquifers. Therefore, understanding subsurface microbial responses to scCO2, or unnaturally high levels of dissolved CO2, will help to evaluate the use of geosequestration to reduce atmospheric CO2 emissions. This study characterized microbial community changes at the 16S rRNA gene level during a scCO2 geosequestration experiment in the 1.4 km-deep Paaratte Formation of the Otway Basin, Australia. One hundred and fifty tons of mixed scCO2 and groundwater was pumped into the sandstone Paaratte aquifer over 4 days. A novel U-tube sampling system was used to obtain groundwater samples under in situ pressure conditions for geochemical analyses and DNA extraction. Decreases in pH and temperature of 2.6 log units and 5.8°C, respectively, were observed. Polyethylene glycols (PEGs) were detected in the groundwater prior to scCO2 injection and were interpreted as residual from drilling fluid used during the emplacement of the CO2 injection well. Changes in microbial community structure prior to scCO2 injection revealed a general shift from Firmicutes to Proteobacteria concurrent with the disappearance of PEGs. However, the scCO2 injection event, including changes in response to the associated variables (e.g., pH, temperature and salinity), resulted in increases in the relative abundances of Comamonadaceae and Sphingomonadaceae suggesting the potential for enhanced scCO2 tolerance of these groups. This study demonstrates a successful new in situ sampling approach for detecting microbial community changes associated with an scCO2 geosequestration event.

  20. Large-Scale Forest Fires and Resulting Alterations to the Hydrologic Cycle in the Western U.S

    NASA Astrophysics Data System (ADS)

    Carr, J.; White, A. B.; Thomson, B.

    2012-12-01

    Recent changes in climate have resulted in a decrease in precipitation and snowpack amounts and increased temperatures in the western United States. Drier and warmer conditions coupled with forest management issues have led to an increase in the frequency and size of forest fires. The 2000 Cerro Grande fire in Los Alamos, New Mexico burned over 43,000 acres and 200 structures. Eleven years later, the Las Conchas fire burned over 156,000 acres and 100 structures, including areas previously burned in 2000, and was considered the largest fire in New Mexico's history. Both fires burned ponderosa, juniper, piñon and mixed conifer forests, resulting in dramatic decreases in vegetation, changes to surface soils, and alterations to the hydrologic cycle (decreased evapotranspiration, decreased infiltration, increased runoff volume and peak discharge, and decreased time to peak discharge) in surrounding watersheds. Burned Area Emergency Response (BAER) teams need to determine the flash-flood danger quickly in order to protect residents, fire-fighters, BAER-team field personnel, and property at risk. The USGS developed an analytical method for predicting post-fire peak discharges using data collected from eight different fires throughout the western United States. We use this method to predict peak discharge in Los Alamos watersheds post-Cerro Grande and post-Las Conchas, then compare predicted to measured peak discharge. We will evaluate the effectiveness of the three methodology levels presented by the USGS, which include varying levels of data input and processing. We expect the peak discharges to be similar in magnitude; however, we will also investigate different influential factors such as burn severity, soil type, vegetation type and density, ecological connectivity, topography, pre- and post-fire weather conditions, etc., as they relate to the fires and the results seen from the measured versus the analytical method. Determining the relative influence of these

  1. Short Time-Scale Enhancements to the Global Thermosphere Temperature and Nitric Oxide Content Resulting From Ionospheric Joule Heating

    NASA Astrophysics Data System (ADS)

    Weimer, D. R.; Mlynczak, M. G.; Hunt, L. A.; Sutton, E. K.

    2014-12-01

    The total Joule heating in the polar ionosphere can be derived from an empirical model of the electric fields and currents, using input measurements of the solar wind velocity and interplanetary magnetic field (IMF). In the thermosphere, measurements of the neutral density from accelerometers on the CHAMP and GRACE satellites are used to derive exospheric temperatures, showing that enhanced ionospheric energy dissipation produces elevated temperatures with little delay.Using the total ionospheric heating, changes in the global mean exosphere temperature as a function of time can be calculated with a simple differential equation. The results compare very well with the CHAMP and GRACE measurement. A critical part of the calculation is the rate at which the thermosphere cools after the ionospheric heating is reduced. It had been noted previously that events with significant levels of heating subsequently cool at a faster rate, and this cooling was attributed to enhanced nitric oxide emissions. This correlation with nitric oxide has been confirmed with very high correlations with measurements of nitric oxide emissions in the thermosphere, from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. These measurements were used in a recent improvement in the equations that calculate the thermosphere temperature. The global nitric oxide cooling rates are included in this calculation, and the predicted levels of nitric oxide, derived from the ionosphere heating model, match the SABER measurements very well, having correlation coefficients on the order of 0.9.These calculations are used to govern the sorting of measurements CHAMP and GRACE measurements, on the basis of the global temperature enhancements due to Joule heating, as well as various solar indices, and season. Global maps of the exospheric temperature are produced from these sorted data.

  2. Extensional geometries as a result of regional scale thrusting: tectonic slides of the Dunlewy-NW Donegal area, Ireland

    NASA Astrophysics Data System (ADS)

    Hutton, Donald H. W.; Alsop, G. Ian

    1995-09-01

    The synmetamorphic ductile dislocations, known in the British Caledonian literature as 'Tectonic Slides', pose a classical structural problem. That is, despite being associated with synchronous contractional folds and cleavages the low angle dislocations have the effect, in many celebrated cases, of juxtaposing younger over older rocks: a geometry normally associated with extensional rather than contractional deformation. Recent models have attempted to demonstrate that this is the result of thrust reactivation of original, sedimentary, extensional growth faults. The Appin Group Dalradian metasediments of the complex and small Dunlewy area of NW Donegal, Ireland, contain the following geometric elements: (a) an early strike-swing-related stratigraphic facies change; (b) a major inter-deformational dolerite sheet; (c) major regional recumbent folds and slides; (d) major structures related to the 400 Ma sinistral Main Donegal Granite shear zone. This solution to the structural geometry reveals that the early mid-crustal (~11 km depth) D2 Ardsbeg-Dunlewy Slide is a thrust to the northwest. Its hangingwall contains rocks two-thirds of which are younger than the rocks of the footwall, together with major recumbent folds, coeval with the underlying thrust, which face downwards into the thrust in the direction of transport. Rather than thrust reactivation of an original extensional growth fault, we find that both stratigraphic and structural constraints are satisfied by a double thrusting model, with fault-bend folding onto an upper ramp of an earlier formed but penecontemporaneous and kinematically linked major fold pair. This solution to the geology also allows us to recognize that the regional (pre-granite) structure of the Dalradian of NW Donegal is a series of major D2 synmetamorphic thrust bounded nappes possibly involving up to 250 km of northwesterly overthrusting.

  3. Prevalence of disability in Manikganj district of Bangladesh: results from a large-scale cross-sectional survey

    PubMed Central

    Zaman, M Mostafa; Mashreky, Saidur Rahman

    2016-01-01

    Objective To conduct a comprehensive survey on disability to determine the prevalence and distribution of cause-specific disability among residents of the Manikganj district in Bangladesh. Methods The survey was conducted in Manikganj, a typical district in Bangladesh, in 2009. Data were collected from 37 030 individuals of all ages. Samples were drawn from 8905 households from urban and rural areas proportionate to population size. Three sets of interviewer-administered questionnaires were used separately for age groups 0–1 years, 2–10 years and 11 years and above to collect data. For the age groups 0–1 years and 2–10 years, the parents or the head of the household were interviewed to obtain the responses. Impairments, activity limitations and restriction of participation were considered in defining disability consistent with the International Classification of Functioning, Disability and Health framework. Results Overall, age-standardised prevalence of disability per 1000 was 46.5 (95% CI 44.4 to 48.6). Prevalence was significantly higher among respondents living in rural areas (50.2; 95% CI 47.7 to 52.7) than in urban areas (31.0; 95% CI 27.0 to 35.0). Overall, female respondents had more disability (50.0; 95% CI 46.9 to 53.1) than male respondents (43.4; 95% CI 40.5 to 46.3). Educational deprivation was closely linked to higher prevalence of disability. Commonly reported prevalences (per 1000) for underlying causes of disability were 20.2 for illness, followed by 9.4 for congenital causes and 6.8 for injury, and these were consistent in males and females. Conclusions Disability is a common problem in this typical district of Bangladesh, which is largely generalisable. Interventions at community level with special attention to the socioeconomically deprived are warranted. PMID:27431897

  4. Plant diversity induces a shift of DOC concentration over time - results from long term and large scale experiment

    NASA Astrophysics Data System (ADS)

    Lange, Markus; Gleixner, Gerd

    2016-04-01

    , inter annual differences of total DOC fluxes reflect patterns of sampled soil water, indicating the major driver of total DOC flux is driven by rainfall. In contrast, intra annually the DOC flux reflects the patterns of the DOC concentrations with a strengthening positive impact of plant diversity among time. Our results show that variations of the total DOC fluxes are more affected by the pore water flux than by the differences in DOC concentrations as the magnitude of the pore water flux exceeds the magnitude of concentrations by a factor of 20. This indicates that abiotic conditions set the frame in which biotic properties can drive the DOC flux. However, the biotic drivers are getting more important over time and might outperform the dominating role of the abiotic conditions on the longer term.

  5. Using Permanent Wetlands as Polishing Ponds to Remove Monomethylmercury: Results of a Large Scale Replicated Field Experiment

    NASA Astrophysics Data System (ADS)

    Heim, W. A.; Negrey, J.; Stephenson, M.; Coale, K. H.

    2015-12-01

    Seasonally inundated wetlands in the Yolo Bypass Wildlife Area (YBWA; Davis, CA) are producers of monomethylmercury (MeHg) during fall flood up. The export of MeHg from the YBWA is of serious concern to downstream habitats as it is a neurotoxin and poses a serious health concern to humans and wildlife. In this experiment, we routed water from a 40 hectare seasonal wetland through nine replicated 100 x 25 m constructed ponds to determine their efficiency at lowering MeHg. All of the sampling was conducted over a three year period (2011-2013) during fall months. We measured total and filtered (<0.45 µm) methyl and total mercury as well as nutrients in incoming tail water and at the outflow of each pond. Residence times in the ponds were modeled using rhodamine dye and ranged from 0.7 to 13.0 days in depending on flow (Q = 0.08 - 1.39 cfs). Reductions of dissolved (filtered) MeHg concentrations ranged from 0.024 - 0.455 ng L-1 d-1 and particulate (total - filtered) MeHg reductions ranged from 0.028 - 1.02 ng L-1 d-1 in the outflow of the ponds. We observed little to no change in dissolved MeHg concentrations at high flow rates, however, there was still a significant decrease in the particulate fraction of MeHg. In contrast, ponds with lower flow rates (e.g. longer residence times) were efficient at lowering both dissolved and particulate MeHg concentrations. During polishing periods when overlying water MeHg concentrations were highest dissolved MeHg flux was into sediments where we hypothesize bacterial demethylation was responsible for transformation back to inorganic mercury species. Loss of particulate MeHg from the water column was attributed to particle settling. Results from this experiment indicate small ponds with short residence times can be efficient at lowering MeHg concentrations. The design of the pond will vary depending on the volume of the seasonal wetland being drained and needs of the wetland manager.

  6. Discrimination of surface wear on obsidian tools using LSCM and RelA: pilot study results (area-scale analysis of obsidian tool surfaces).

    PubMed

    Stemp, W James; Chung, Steven

    2011-01-01

    This pilot study tests the reliability of laser scanning confocal microscopy (LSCM) to quantitatively measure wear on experimental obsidian tools. To our knowledge, this is the first use of confocal microscopy to study wear on stone flakes made from an amorphous silicate like obsidian. Three-dimensional surface roughness or texture area scans on three obsidian flakes used on different contact materials (hide, shell, wood) were documented using the LSCM to determine whether the worn surfaces could be discriminated using area-scale analysis, specifically relative area (RelA). When coupled with the F-test, this scale-sensitive fractal analysis could not only discriminate the used from unused surfaces on individual tools, but was also capable of discriminating the wear histories of tools used on different contact materials. Results indicate that such discriminations occur at different scales. Confidence levels for the discriminations at different scales were established using the F-test (mean square ratios or MSRs). In instances where discrimination of surface roughness or texture was not possible above the established confidence level based on MSRs, photomicrographs and RelA assisted in hypothesizing why this was so. PMID:21674537

  7. Discrimination of surface wear on obsidian tools using LSCM and RelA: pilot study results (area-scale analysis of obsidian tool surfaces).

    PubMed

    Stemp, W James; Chung, Steven

    2011-01-01

    This pilot study tests the reliability of laser scanning confocal microscopy (LSCM) to quantitatively measure wear on experimental obsidian tools. To our knowledge, this is the first use of confocal microscopy to study wear on stone flakes made from an amorphous silicate like obsidian. Three-dimensional surface roughness or texture area scans on three obsidian flakes used on different contact materials (hide, shell, wood) were documented using the LSCM to determine whether the worn surfaces could be discriminated using area-scale analysis, specifically relative area (RelA). When coupled with the F-test, this scale-sensitive fractal analysis could not only discriminate the used from unused surfaces on individual tools, but was also capable of discriminating the wear histories of tools used on different contact materials. Results indicate that such discriminations occur at different scales. Confidence levels for the discriminations at different scales were established using the F-test (mean square ratios or MSRs). In instances where discrimination of surface roughness or texture was not possible above the established confidence level based on MSRs, photomicrographs and RelA assisted in hypothesizing why this was so.

  8. New evidence on the validity of the Arnett Caregiver Interaction Scale: Results from the Early Childhood Longitudinal Study-Birth Cohort

    PubMed Central

    Colwell, Nicole; Gordon, Rachel A.; Fujimoto, Ken; Kaestner, Robert; Korenman, Sanders

    2013-01-01

    The Arnett Caregiver Interaction Scale (CIS) has been widely used in research studies to measure the quality of caregiver–child interactions. The scale was modeled on a well-established theory of parenting, but there are few psychometric studies of its validity. We applied factor analyses and item response theory methods to assess the psychometric properties of the Arnett CIS in a national sample of toddlers in home-based care and preschoolers in center-based care from the Early Childhood Longitudinal Study-Birth Cohort. We found that a bifactor structure (one common factor and a second set of specific factors) best fits the data. In the Arnett CIS, the bifactor model distinguishes a common substantive dimension from two methodological dimensions (for positively and negatively oriented items). Despite the good fit of this model, the items are skewed (most teachers/caregivers display positive interactions with children) and, as a result, the Arnett CIS is not well suited to distinguish between caregivers who are “highly” versus “moderately” positive in their interactions with children, according to the items on the scale. Regression-adjusted associations between the Arnett CIS and child outcomes are small, especially for preschoolers in centers. We encourage future scale development work on measures of child care quality by early childhood scholars. PMID:24058264

  9. Predictive validity and reliability of the Turkish version of the risk assessment pressure sore scale in intensive care patients: results of a prospective study.

    PubMed

    Günes, Ülkü Yapucu; Efteli, Elçin

    2015-04-01

    Multiple pressure ulcer (PU) risk assessment instruments have been developed and tested, but there is no general consensus on which instrument to use for specific patient populations and care settings. The purpose of this study was to determine the reliability and predictive validity of the Turkish version of the Risk Assessment Pressure Sore (RAPS) instrument, which includes 12 variables--5 from the modified Norton Scale, 3 from the Braden Scale, and 3 from other research results--for use in intensive care unit (ICU) patients. The English version of the RAPS instrument was translated into Turkish and tested for internal consistency and predictive validity (sensitivity, specificity, positive predictive value, and negative predictive value) using a convenience sample of 122 patients consecutively admitted to an ICU unit in Turkey. The patients were assessed within 24 hours of admission, and after that, once a week until the development of a PU or discharge from the unit. The incidence of PUs in this population was 23%. The majority of ulcers that developed were Stage I. Internal consistency of the RAPS tool was adequate (Cronbach's α = 0.81). The best balance between sensitivity and specificity for ICU patients was reached at a cut-off point of ≤ 27 (ie, sensitivity = 74.2%, specificity = 31.8%, positive predictive value = 38.7%, and negative predictive value 91.3%). This is lower than the cut-off point reported in other studies of the RAPS scale. In this population of ICU patients, the RAPS scale was found to have acceptable reliability and poor validity. Additional studies to evaluate the predictive validity and reliability of the RAPS scale in other patient populations and care settings are needed.

  10. Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads

    SciTech Connect

    Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

    2004-01-01

    Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

  11. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    PubMed

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures.

  12. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.

    PubMed

    Vafaeian, B; Le, L H; Tran, T N H T; El-Rich, M; El-Bialy, T; Adeeb, S

    2016-05-01

    The present study investigated the accuracy of micro-scale finite element modeling for simulating broadband ultrasound propagation in water-saturated trabecular bone-mimicking phantoms. To this end, five commercially manufactured aluminum foam samples as trabecular bone-mimicking phantoms were utilized for ultrasonic immersion through-transmission experiments. Based on micro-computed tomography images of the same physical samples, three-dimensional high-resolution computational samples were generated to be implemented in the micro-scale finite element models. The finite element models employed the standard Galerkin finite element method (FEM) in time domain to simulate the ultrasonic experiments. The numerical simulations did not include energy dissipative mechanisms of ultrasonic attenuation; however, they expectedly simulated reflection, refraction, scattering, and wave mode conversion. The accuracy of the finite element simulations were evaluated by comparing the simulated ultrasonic attenuation and velocity with the experimental data. The maximum and the average relative errors between the experimental and simulated attenuation coefficients in the frequency range of 0.6-1.4 MHz were 17% and 6% respectively. Moreover, the simulations closely predicted the time-of-flight based velocities and the phase velocities of ultrasound with maximum relative errors of 20 m/s and 11 m/s respectively. The results of this study strongly suggest that micro-scale finite element modeling can effectively simulate broadband ultrasound propagation in water-saturated trabecular bone-mimicking structures. PMID:26894840

  13. Testing new approaches to carbonate system simulation at the reef scale: the ReefSam model first results, application to a question in reef morphology and future challenges.

    NASA Astrophysics Data System (ADS)

    Barrett, Samuel; Webster, Jody

    2016-04-01

    morphology and development are compared with observational data. Despite being a test-bed and work in progress, ReefSAM was able to simulate the Holocene development of One Tree Reef in the Southern Great Barrier Reef (Australia) and was able to improve upon previous modelling attempts in terms of both quantitative measures and qualitative outputs, such as the presence of previously un-simulated reef features. Given the success of the model in simulating the Holocene development of OTR, we used it to quantitatively explore the effect of basement substrate depth and morphology on reef maturity/lagoonal filling (as discussed by Purdy and Gischer 2005). Initial results show a number of non-linear relationships between basement substrate depth, lagoonal filling and volume of sand produced on the reef rims and deposited in the lagoon. Lastly, further testing of the model has revealed new challenges which are likely to manifest in any attempt at reef-scale simulation. Subtly different sets of energy direction and magnitude input parameters (different in each time step but with identical probability distributions across the entire model run) resulted in a wide range of quantitative model outputs. Time step length is a likely contributing factor and the results of further testing to address this challenge will be presented.

  14. 2009 PILOT SCALE FLUIDIZED BED STEAM REFORMING TESTING USING THE THOR (THERMAL ORGANIC REDUCTION) PROCESS: ANALYTICAL RESULTS FOR TANK 48H ORGANIC DESTRUCTION - 10408

    SciTech Connect

    Williams, M.; Jantzen, C.; Burket, P.; Crawford, C.; Daniel, G.; Aponte, C.; Johnson, C.

    2009-12-28

    The Savannah River Site (SRS) must empty the contents of Tank 48H, a 1.3 million gallon Type IIIA HLW storage tank, to return this tank to service. The tank contains organic compounds, mainly potassium tetraphenylborate that cannot be processed downstream until the organic components are destroyed. The THOR{reg_sign} Treatment Technologies (TTT) Fluidized Bed Steam Reforming (FBSR) technology, herein after referred to as steam reforming, has been demonstrated to be a viable process to remove greater than 99.9% of the organics from Tank 48H during various bench scale and pilot scale tests. These demonstrations were supported by Savannah River Remediation (SRR) and the Department of Energy (DOE) has concurred with the SRR recommendation to proceed with the deployment of the FBSR technology to treat the contents of Tank 48H. The Savannah River National Laboratory (SRNL) developed and proved the concept with non-radioactive simulants for SRR beginning in 2003. By 2008, several pilot scale campaigns had been completed and extensive crucible testing and bench scale testing were performed in the SRNL Shielded Cells using Tank 48H radioactive sample. SRNL developed a Tank 48H non-radioactive simulant complete with organic compounds, salt, and metals characteristic of those measured in a sample of the radioactive contents of Tank 48H. FBSR Pilot Scaled Testing with the Tank 48H simulant has demonstrated the ability to remove greater than 98% of the nitrites and greater than 99.5% of the nitrates from the Tank 48H simulant, and to form a solid product that is primarily alkali carbonate. The alkali carbonate is soluble and, thus, amenable to pumping as a liquid to downstream facilities for processing. The FBSR technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration (ESTD) pilot scale steam reformer at the Hazen Research Inc. (HRI) facility in Golden, CO. Additional ESTD tests were completed in 2008 and in 2009 that further demonstrated the

  15. Results of investigations on a 0.0405 scale model ATP version of the NR-SSV orbiter in the North American Aeronautical Laboratory low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Mennell, R.; Vaughn, J. E.; Singellton, R.

    1973-01-01

    Experimental aerodynamic investigations were conducted on a scale model space shuttle vehicle (SSV) orbiter. The purpose of the test was to investigate the longitudinal and lateral-directional aerodynamic characteristics. Emphasis was placed on model component, wing-glove, and wing-body fairing effects, as well as elevon, aileron, and rudder control effectiveness. Angles of attack from - 5 deg to + 30 deg and angles of sideslip from - 5 deg to + 10 deg were tested. Static pressures were recorded on base, fuselage, and wing surfaces. Tufts and talc-kerosene flow visualization techniques were also utilized. The aerodynamic force balance results are presented in plotted and tabular form.

  16. Understanding green roof spatial dynamics: results from a scale based hydrologic study and introduction of a low-cost method for wide-range monitoring

    NASA Astrophysics Data System (ADS)

    Hakimdavar, Raha; Culligan, Patricia J.; Guido, Aida

    2014-05-01

    used to test the reliability of the proposed approach using two different low-cost soil moisture probes. The estimates of runoff are compared with observed runoff data for durations ranging between 6 months to 1 year. Preliminary results indicate that this can be an effective low-cost and low-maintenance alternative to the custom made weir and lysimeter systems frequently used to quantify runoff during green roof studies. By significantly reducing the cost and labor associated with typical monitoring efforts, the SWA method makes large scale studies of green roof hydrologic performance more feasible.

  17. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19 Test Results from Phase B: Mid-Scale Testing at PNNL

    SciTech Connect

    Powell, M.R.; Combs, W.H.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Johnson, M.A.; Poirier, M.R.; Rodwell, P.O.

    1999-03-30

    Pacific Northwest National Laboratory (PNNL) performed mixer tests using 3-kW (4-hp) Flygt mixers in 1.8- and 5.7-m-diameter tanks at the 336 building facility in Richland, Washington to evaluate candidate scaling relationships for Flygt mixers used for sludge mobilization and particle suspension. These tests constituted the second phase of a three-phase test program involving representatives from ITT Flygt Corporation, the Savannah River Site (SRS), the Oak Ridge National Laboratory (ORNL), and PNNL. The results of the first phase of tests, which were conducted at ITT Flygt's facility in a 0.45-m-diameter tank, are documented in Powell et al. (1999). Although some of the Phase B tests were geometrically similar to selected Phase A tests (0.45-m tank), none of the Phase B tests were geometrically, cinematically, and/or dynamically similar to the planned Tank 19 mixing system. Therefore, the mixing observed during the Phase B tests is not directly indicative of the mixing expected in Tank 19 and some extrapolation of the data is required to make predictions for Tank 19 mixing. Of particular concern is the size of the mixer propellers used for the 5.7-m tank tests. These propellers were more than three times larger than required by geometric scaling of the Tank 19 mixers. The implications of the lack of geometric similarity, as well as other factors that complicate interpretation of the test results, are discussed in Section 5.4.

  18. Comparing results of an exact vs. an approximate (Bayesian) measurement invariance test: a cross-country illustration with a scale to measure 19 human values.

    PubMed

    Cieciuch, Jan; Davidov, Eldad; Schmidt, Peter; Algesheimer, René; Schwartz, Shalom H

    2014-01-01

    One of the most frequently used procedures for measurement invariance testing is the multigroup confirmatory factor analysis (MGCFA). Muthén and Asparouhov recently proposed a new approach to test for approximate rather than exact measurement invariance using Bayesian MGCFA. Approximate measurement invariance permits small differences between parameters otherwise constrained to be equal in the classical exact approach. However, extant knowledge about how results of approximate measurement invariance tests compare to the results of the exact measurement invariance test is missing. We address this gap by comparing the results of exact and approximate cross-country measurement invariance tests of a revised scale to measure human values. Several studies that measured basic human values with the Portrait Values Questionnaire (PVQ) reported problems of measurement noninvariance (especially scalar noninvariance) across countries. Recently Schwartz et al. proposed a refined value theory and an instrument (PVQ-5X) to measure 19 more narrowly defined values. Cieciuch et al. tested its measurement invariance properties across eight countries and established exact scalar measurement invariance for 10 of the 19 values. The current study applied the approximate measurement invariance procedure on the same data and established approximate scalar measurement invariance even for all 19 values. Thus, the first conclusion is that the approximate approach provides more encouraging results for the usefulness of the scale for cross-cultural research, although this finding needs to be generalized and validated in future research using population data. The second conclusion is that the approximate measurement invariance is more likely than the exact approach to establish measurement invariance, although further simulation studies are needed to determine more precise recommendations about how large the permissible variance of the priors may be.

  19. Comparing results of an exact vs. an approximate (Bayesian) measurement invariance test: a cross-country illustration with a scale to measure 19 human values

    PubMed Central

    Cieciuch, Jan; Davidov, Eldad; Schmidt, Peter; Algesheimer, René; Schwartz, Shalom H.

    2014-01-01

    One of the most frequently used procedures for measurement invariance testing is the multigroup confirmatory factor analysis (MGCFA). Muthén and Asparouhov recently proposed a new approach to test for approximate rather than exact measurement invariance using Bayesian MGCFA. Approximate measurement invariance permits small differences between parameters otherwise constrained to be equal in the classical exact approach. However, extant knowledge about how results of approximate measurement invariance tests compare to the results of the exact measurement invariance test is missing. We address this gap by comparing the results of exact and approximate cross-country measurement invariance tests of a revised scale to measure human values. Several studies that measured basic human values with the Portrait Values Questionnaire (PVQ) reported problems of measurement noninvariance (especially scalar noninvariance) across countries. Recently Schwartz et al. proposed a refined value theory and an instrument (PVQ-5X) to measure 19 more narrowly defined values. Cieciuch et al. tested its measurement invariance properties across eight countries and established exact scalar measurement invariance for 10 of the 19 values. The current study applied the approximate measurement invariance procedure on the same data and established approximate scalar measurement invariance even for all 19 values. Thus, the first conclusion is that the approximate approach provides more encouraging results for the usefulness of the scale for cross-cultural research, although this finding needs to be generalized and validated in future research using population data. The second conclusion is that the approximate measurement invariance is more likely than the exact approach to establish measurement invariance, although further simulation studies are needed to determine more precise recommendations about how large the permissible variance of the priors may be. PMID:25249996

  20. Comparing results of an exact vs. an approximate (Bayesian) measurement invariance test: a cross-country illustration with a scale to measure 19 human values.

    PubMed

    Cieciuch, Jan; Davidov, Eldad; Schmidt, Peter; Algesheimer, René; Schwartz, Shalom H

    2014-01-01

    One of the most frequently used procedures for measurement invariance testing is the multigroup confirmatory factor analysis (MGCFA). Muthén and Asparouhov recently proposed a new approach to test for approximate rather than exact measurement invariance using Bayesian MGCFA. Approximate measurement invariance permits small differences between parameters otherwise constrained to be equal in the classical exact approach. However, extant knowledge about how results of approximate measurement invariance tests compare to the results of the exact measurement invariance test is missing. We address this gap by comparing the results of exact and approximate cross-country measurement invariance tests of a revised scale to measure human values. Several studies that measured basic human values with the Portrait Values Questionnaire (PVQ) reported problems of measurement noninvariance (especially scalar noninvariance) across countries. Recently Schwartz et al. proposed a refined value theory and an instrument (PVQ-5X) to measure 19 more narrowly defined values. Cieciuch et al. tested its measurement invariance properties across eight countries and established exact scalar measurement invariance for 10 of the 19 values. The current study applied the approximate measurement invariance procedure on the same data and established approximate scalar measurement invariance even for all 19 values. Thus, the first conclusion is that the approximate approach provides more encouraging results for the usefulness of the scale for cross-cultural research, although this finding needs to be generalized and validated in future research using population data. The second conclusion is that the approximate measurement invariance is more likely than the exact approach to establish measurement invariance, although further simulation studies are needed to determine more precise recommendations about how large the permissible variance of the priors may be. PMID:25249996

  1. Preliminary Results of a Free-Flight Investigation of the Static Stability and Aileron Control Characteristics of 1/6 Scale Models of the Bell MX-776

    NASA Technical Reports Server (NTRS)

    Michal, David H.; Mitcham, Grady L.

    1949-01-01

    An investigation of the static longitudinal stability, static directional stability, and aileron control characteristics at transonic and supersonic speeds is being made of 1/6 scale rocket-propelled model of the Bell MX-776. A stability investigation has been made of two symmetrical models with controls undeflected and centers of gravity one-half and one-body diameter, respectively, ahead of the equivalent design center-of-gravity location of the full-scale version. Both models developed large normal-force coefficients in both the subsonic and supersonic ranges which indicated longitudinal instability at low angles of attack. The side-force coefficients were small for both models and indicated that the models were directionally stable. A possible tendency toward dynamic directional instability in the transonic region was indicated by short-period oscillations of the side forces. The results showed a partial-span inboard aileron to be ineffective or to cause negative control in the the transonic region when deflected approximately 5 deg but not when deflected 10 deg. An investigation of drag showed it to increase with a rearward movement of the center of gravity. This indicates an increase in the trim angle of attack as could be caused by a decrease in static stability.

  2. Subducting slab structure and seismicity in the region of the 2010 M8.8 Maule earthquake: results from multi-scale P-wave tomography and relocation

    NASA Astrophysics Data System (ADS)

    Pesicek, J. D.; Zhang, H.; Thurber, C. H.; Lange, D.; Engdahl, E.; DeShon, H. R.

    2012-12-01

    We present a new tomographic model of the mantle in the area of the 2010 M8.8 Maule earthquake and surrounding region. Increased ray coverage provided by the aftershock data allows us to image the detailed subducting slab structure in the mantle, from the region of flat slab subduction north of the Maule rupture to the area of overlapping rupture between the 1960 M9.5 and the 2010 M8.8 events to the south. We have combined teleseismic primary and depth phase arrivals in the region with local arrivals to better constrain the locations of the teleseismically-recorded earthquakes in the region occurring since 1960. The updated locations are used to conduct multi-scale tomography employing a linear inversion method with a nested model design. The model reveals the detailed structure of the flat slab and its transition to a more moderately dipping slab in the Maule region. South of the Maule region, a steeply dipping relic slab is imaged from ~200-1000 km depth that is distinct from the moderately dipping slab above it and from the more northerly slab at similar depths. We interpret the images as revealing both horizontal and vertical tearing of the slab at ~38°S in order to explain the imaged pattern of slab anomalies in the southern portion of the model. In contrast, the transition from a horizontal to moderately subducting slab in the northern portion of the model is imaged as a continuous slab bend. We speculate that the tearing was most likely facilitated by a fracture zone in the downgoing plate or alternatively by a continental-scale terrane boundary in the overriding plate. Using this model as a reference model, we also present results from iterative multi-scale double-difference relocation and tomography. Preliminary relocations of teleseismically-recorded aftershocks show improved clustering and the results agree well with results from local studies in areas of overlap. Finally, inclusion of differential times for upgoing local and teleseismic depth phases

  3. Three-dimensional mixed-wet random pore-scale network modeling of two- and three-phase flow in porous media. II. Results.

    PubMed

    Piri, Mohammad; Blunt, Martin J

    2005-02-01

    We use the model described in Piri and Blunt [Phys. Rev. E 71, 026301 (2005)] to predict two- and three-phase relative permeabilities of Berea sandstone using a random network to represent the pore space. We predict measured relative permeabilities for two-phase flow in a water-wet system. We then successfully predict the steady-state oil, water, and gas three-phase relative permeabilities measured by Oak (Proceedings of the SPE/DOE Seventh Symposium on Enhanced Oil Recovery, Tulsa, OK, 1990). We also study secondary and tertiary gas injection into media of different wettability and initial oil saturation and interpret the results in terms of pore-scale displacement processes.

  4. Results of investigations on a 0.0405 scale model PRR version of the NR-SSV orbiter in the North American Aeronautical Laboratory low speed wind tunnel

    NASA Technical Reports Server (NTRS)

    Kingsland, R. B.; Vaughn, J. E.; Singellton, R.

    1973-01-01

    Experimental aerodynamic investigations were conducted in a low speed wind tunnel on a scale model space shuttle vehicle (SSV) orbiter. The purpose of the test was to investigate the longitudinal and lateral-directional aerodynamic characteristics of the space shuttle orbiter. Emphasis was placed on model component, wing-glove, and wing-body fairing effects, as well as elevon, aileron, and rudder control effectiveness. Angles of attack from - 5 deg to + 30 deg and angles of sideslip of - 5 deg, 0 deg, and + 5 deg were tested. Static pressures were recorded on base, fuselage, and wing surfaces. Tufts and talc-kerosene flow visualization techniques were also utilized. The aerodynamic force balance results are presented in plotted and tabular form.

  5. Matrix diffusion and sorption of Cs+, Na+, I- and HTO in granodiorite: Laboratory-scale results and their extrapolation to the in situ condition.

    PubMed

    Tachi, Yukio; Ebina, Takanori; Takeda, Chizuko; Saito, Toshihiko; Takahashi, Hiroaki; Ohuchi, Yuji; Martin, Andrew James

    2015-08-01

    Matrix diffusion and sorption are important processes controlling radionuclide transport in crystalline rocks. Such processes are typically studied in the laboratory using borehole core samples however there is still much uncertainty on the changes to rock transport properties during coring and decompression. It is therefore important to show how such laboratory-based results compare with in situ conditions. This paper focuses on laboratory-scale mechanistic understanding and how this can be extrapolated to in situ conditions as part of the Long Term Diffusion (LTD) project at the Grimsel Test Site, Switzerland. Diffusion and sorption of (137)Cs(+), (22)Na(+), (125)I(-) and tritiated water (HTO) in Grimsel granodiorite were studied using through-diffusion and batch sorption experiments. Effective diffusivities (De) of these tracers showed typical cation excess and anion exclusion effects and their salinity dependence, although the extent of these effects varied due to the heterogeneous pore networks in the crystalline rock samples. Rock capacity factors (α) and distribution coefficients (Kd) for Cs(+) and Na(+) were found to be sensitive to porewater salinity. Through-diffusion experiments indicated dual depth profiles for Cs(+) and Na(+) which could be explained by a near-surface Kd increment. A microscopic analysis indicated that this is caused by high porosity and sorption capacities in disturbed biotite minerals on the surface of the samples. The Kd values derived from the dual profiles are likely to correspond to Kd dependence on the grain sizes of crushed samples in the batch sorption experiments. The results of the in situ LTD experiments were interpreted reasonably well by using transport parameters derived from laboratory data and extrapolating them to in situ conditions. These comparative experimental and modelling studies provided a way to extrapolate from laboratory scale to in situ condition. It is well known that the difference in porosity between

  6. Matrix diffusion and sorption of Cs+, Na+, I- and HTO in granodiorite: Laboratory-scale results and their extrapolation to the in situ condition.

    PubMed

    Tachi, Yukio; Ebina, Takanori; Takeda, Chizuko; Saito, Toshihiko; Takahashi, Hiroaki; Ohuchi, Yuji; Martin, Andrew James

    2015-08-01

    Matrix diffusion and sorption are important processes controlling radionuclide transport in crystalline rocks. Such processes are typically studied in the laboratory using borehole core samples however there is still much uncertainty on the changes to rock transport properties during coring and decompression. It is therefore important to show how such laboratory-based results compare with in situ conditions. This paper focuses on laboratory-scale mechanistic understanding and how this can be extrapolated to in situ conditions as part of the Long Term Diffusion (LTD) project at the Grimsel Test Site, Switzerland. Diffusion and sorption of (137)Cs(+), (22)Na(+), (125)I(-) and tritiated water (HTO) in Grimsel granodiorite were studied using through-diffusion and batch sorption experiments. Effective diffusivities (De) of these tracers showed typical cation excess and anion exclusion effects and their salinity dependence, although the extent of these effects varied due to the heterogeneous pore networks in the crystalline rock samples. Rock capacity factors (α) and distribution coefficients (Kd) for Cs(+) and Na(+) were found to be sensitive to porewater salinity. Through-diffusion experiments indicated dual depth profiles for Cs(+) and Na(+) which could be explained by a near-surface Kd increment. A microscopic analysis indicated that this is caused by high porosity and sorption capacities in disturbed biotite minerals on the surface of the samples. The Kd values derived from the dual profiles are likely to correspond to Kd dependence on the grain sizes of crushed samples in the batch sorption experiments. The results of the in situ LTD experiments were interpreted reasonably well by using transport parameters derived from laboratory data and extrapolating them to in situ conditions. These comparative experimental and modelling studies provided a way to extrapolate from laboratory scale to in situ condition. It is well known that the difference in porosity between

  7. The effects of the built environment, traffic patterns, and micrometeorology on street level ultrafine particle concentrations at a block scale: Results from multiple urban sites.

    PubMed

    Choi, Wonsik; Ranasinghe, Dilhara; Bunavage, Karen; DeShazo, J R; Wu, Lisa; Seguel, Rodrigo; Winer, Arthur M; Paulson, Suzanne E

    2016-05-15

    This study attempts to explain explicitly the direct and quantitative effects of complicated urban built-environment on near-road dispersion and levels of vehicular emissions at the scale of several city blocks, based on ultrafine particle concentrations ([UFP]). On short timescales, ultrafine particles are an excellent proxy for other roadway emissions. Five measurement sites in the greater Los Angeles with different built environments but similar mesoscale meteorology were explored. After controlling for traffic, for most sampling days and sites, morning [UFP] were higher than those in the afternoon due to limited dispersion capacity combined with a relatively stable surface layer. [UFP] at the intersection corners were also higher than those over the sampling sites, implying that accelerating vehicles around the intersections contributed to [UFP] elevation. In the calm morning, the areal aspect ratio (Ararea), developed in this study for real urban configurations, showed a strong relationship with block-scale [UFP]. Ararea includes the building area-weighted building height, the amount of open space, and the building footprint. In the afternoon, however, when wind speeds were generally higher and turbulence was stronger, vertical turbulence intensity σw was the most effective factor controlling [UFP]. The surrounding built environment appears to play an indirect role in observed [UFP], by affecting surface level micrometeorology. The effects are substantial; controlling for traffic, differences in Ararea and building heterogeneity were related to differences in [UFP] of factors of two to three among our five study sites. These results have significant implications for pedestrian exposure as well as transit-oriented urban planning.

  8. Results from a high-speed imaging system for the observation of transient features in OH-Airglow with focus on small-scale structures

    NASA Astrophysics Data System (ADS)

    Hannawald, Patrick; Kazlova, Aliaksandra; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2016-04-01

    The OH-airglow layer in about 87 km altitude is suited to investigate atmospheric dynamics in a unique way, allowing continuous observations of the night-sky throughout the year. Especially, atmospheric gravity waves are prominent features in the data of airglow imaging systems. In the year 2014 the imaging system FAIM (Fast Airglow IMager) for the study of small-scale features (both in space and time) was operational at the NDMC (Network for the detection of mesospheric change) station Oberpfaffenhofen. The instrument covers many of the brightest OH vibrational bands between 1.0 μm and 1.7 μm and acquires images with a temporal resolution of 2 frames per second. It measures the night sky with an aperture angle of about 20° and a zenith angle of 45° oriented to the Southern Germany Alpine region. Hence, the field of view (FOV) is about 50 km times 60 km in the height of the mesopause (87 km) with a mean spatial resolution of about 200 m. With this resolution, the focus of the instrument is on small-scale wave structures ranging from about 1 km to 30 km and instability structures like so-called ripples or Kelvin-Helmholtz-Instabilities. Case studies will be presented showing dissipating gravity waves and the results of spectral analyses will give an overview of the prominent directions of propagation and the horizontal wavelengths within the year 2014. This work is funded by the Bavarian State Ministry of the Environment and Consumer Protection by grant no. TUS01UFS-67093. The project aims to analyse the influence of the Alpine region on the generation of atmospheric waves.

  9. The effects of the built environment, traffic patterns, and micrometeorology on street level ultrafine particle concentrations at a block scale: Results from multiple urban sites.

    PubMed

    Choi, Wonsik; Ranasinghe, Dilhara; Bunavage, Karen; DeShazo, J R; Wu, Lisa; Seguel, Rodrigo; Winer, Arthur M; Paulson, Suzanne E

    2016-05-15

    This study attempts to explain explicitly the direct and quantitative effects of complicated urban built-environment on near-road dispersion and levels of vehicular emissions at the scale of several city blocks, based on ultrafine particle concentrations ([UFP]). On short timescales, ultrafine particles are an excellent proxy for other roadway emissions. Five measurement sites in the greater Los Angeles with different built environments but similar mesoscale meteorology were explored. After controlling for traffic, for most sampling days and sites, morning [UFP] were higher than those in the afternoon due to limited dispersion capacity combined with a relatively stable surface layer. [UFP] at the intersection corners were also higher than those over the sampling sites, implying that accelerating vehicles around the intersections contributed to [UFP] elevation. In the calm morning, the areal aspect ratio (Ararea), developed in this study for real urban configurations, showed a strong relationship with block-scale [UFP]. Ararea includes the building area-weighted building height, the amount of open space, and the building footprint. In the afternoon, however, when wind speeds were generally higher and turbulence was stronger, vertical turbulence intensity σw was the most effective factor controlling [UFP]. The surrounding built environment appears to play an indirect role in observed [UFP], by affecting surface level micrometeorology. The effects are substantial; controlling for traffic, differences in Ararea and building heterogeneity were related to differences in [UFP] of factors of two to three among our five study sites. These results have significant implications for pedestrian exposure as well as transit-oriented urban planning. PMID:26938315

  10. Wind Tunnel Results of the Aerodynamic Performance of a 1/8-Scale Model of a Twin-Engine Transport with Multi-Element Wing

    NASA Technical Reports Server (NTRS)

    Laflin, Brenda E. Gile; Applin, Zachary T.; Jones, Kenneth M.

    1997-01-01

    A wind tunnel investigation was performed in the 14- by 22-Foot Subsonic Tunnel on a pressure instrumented 1/8-scale twin-engine subsonic transport to better understand the flow physics on a multi-element wing section. The wing consisted of a part-span, triple-slotted trailing edge flap, inboard leading-edge Krueger flap and an outboard leading-edge slat. The model was instrumented with flush pressure ports at the fuselage centerline and seven spanwise wing locations. The model was tested in cruise, take-off and landing configurations at dynamic pressures and Mach numbers from 10 lbf/ft(exp 2) to 50 lbf/ft(exp 2) and 0.08 to 0.17, respectively. This resulted in corresponding Reynolds numbers of 0.8 x 10(exp 5) to 1.8 x 10(exp 6). Pressure data were collected using electronically scanned pressure devices and force and moment data were collected with a six component strain gauge balance. Results are presented for various control surface deflections over an angle-of-attack range from -4 degrees to 16 degrees and sideslip angle range from -10 degrees to 10 degrees. Longitudinal and lateral directional aerodynamic data are presented as well as chordwise pressure distributions at the seven spanwise wing locations and the fuselage centerline.

  11. New Evidence on the Validity of the Arnett Caregiver Interaction Scale: Results from the Early Childhood Longitudinal Study-Birth Cohort

    ERIC Educational Resources Information Center

    Colwell, Nicole; Gordon, Rachel A.; Fujimoto, Ken; Kaestner, Robert; Korenman, Sanders

    2013-01-01

    The Arnett Caregiver Interaction Scale (CIS) has been widely used in research studies to measure the quality of caregiver-child interactions. The scale was modeled on a well-established theory of parenting, but there are few psychometric studies of its validity. We applied factor analyses and item response theory methods to assess the psychometric…

  12. Results and harmonization guidelines from two large-scale international Elispot proficiency panels conducted by the Cancer Vaccine Consortium (CVC/SVI)

    PubMed Central

    Panageas, Katherine S.; Ben-Porat, Leah; Boyer, Jean; Britten, Cedrik M.; Clay, Timothy M.; Kalos, Michael; Maecker, Holden T.; Romero, Pedro; Yuan, Jianda; Martin Kast, W.; Hoos, Axel

    2007-01-01

    The Cancer Vaccine Consortium of the Sabin Vaccine Institute (CVC/SVI) is conducting an ongoing large-scale immune monitoring harmonization program through its members and affiliated associations. This effort was brought to life as an external validation program by conducting an international Elispot proficiency panel with 36 laboratories in 2005, and was followed by a second panel with 29 participating laboratories in 2006 allowing for application of learnings from the first panel. Critical protocol choices, as well as standardization and validation practices among laboratories were assessed through detailed surveys. Although panel participants had to follow general guidelines in order to allow comparison of results, each laboratory was able to use its own protocols, materials and reagents. The second panel recorded an overall significantly improved performance, as measured by the ability to detect all predefined responses correctly. Protocol choices and laboratory practices, which can have a dramatic effect on the overall assay outcome, were identified and lead to the following recommendations: (A) Establish a laboratory SOP for Elispot testing procedures including (A1) a counting method for apoptotic cells for determining adequate cell dilution for plating, and (A2) overnight rest of cells prior to plating and incubation, (B) Use only pre-tested serum optimized for low background: high signal ratio, (C) Establish a laboratory SOP for plate reading including (C1) human auditing during the reading process and (C2) adequate adjustments for technical artifacts, and (D) Only allow trained personnel, which is certified per laboratory SOPs to conduct assays. Recommendations described under (A) were found to make a statistically significant difference in assay performance, while the remaining recommendations are based on practical experiences confirmed by the panel results, which could not be statistically tested. These results provide initial harmonization guidelines

  13. Decision aid on breast cancer screening reduces attendance rate: results of a large-scale, randomized, controlled study by the DECIDEO group.

    PubMed

    Bourmaud, Aurelie; Soler-Michel, Patricia; Oriol, Mathieu; Regnier, Véronique; Tinquaut, Fabien; Nourissat, Alice; Bremond, Alain; Moumjid, Nora; Chauvin, Franck

    2016-03-15

    Controversies regarding the benefits of breast cancer screening programs have led to the promotion of new strategies taking into account individual preferences, such as decision aid. The aim of this study was to assess the impact of a decision aid leaflet on the participation of women invited to participate in a national breast cancer screening program. This Randomized, multicentre, controlled trial. Women aged 50 to 74 years, were randomly assigned to receive either a decision aid or the usual invitation letter. Primary outcome was the participation rate 12 months after the invitation. 16 000 women were randomized and 15 844 included in the modified intention-to-treat analysis. The participation rate in the intervention group was 40.25% (3174/7885 women) compared with 42.13% (3353/7959) in the control group (p = 0.02). Previous attendance for screening (RR = 6.24; [95%IC: 5.75-6.77]; p < 0.0001) and medium household income (RR = 1.05; [95%IC: 1.01-1.09]; p = 0.0074) were independently associated with attendance for screening. This large-scale study demonstrates that the decision aid reduced the participation rate. The decision aid activate the decision making process of women toward non-attendance to screening. These results show the importance of promoting informed patient choices, especially when those choices cannot be anticipated.

  14. Feasibility of labile Zn phytoextraction using enhanced tobacco and sunflower: results of five- and one-year field-scale experiments in Switzerland.

    PubMed

    Herzig, Rolf; Nehnevajova, Erika; Pfistner, Charlotte; Schwitzguebel, Jean-Paul; Ricci, Arturo; Keller, Charles

    2014-01-01

    Phytoextraction with somaclonal variants of tobacco and sunflower mutant lines (non-GMs) with enhanced metal uptake and tolerance can be a sustainable alternative to conventional destructive decontamination methods, especially for stripping bioavailable zinc excess in topsoil. The overall results of a 5-year time series experiment at field scale in north-eastern Switzerland confirm that the labile Zn pool in soil can be lowered by 45-70%, whereas subplots without phytoextraction treatment maintained labile Zn concentrations. In 2011, the phytoextraction experiment site was enlarged by a factor of 3, and the labile 0.1 M NaNO3 extractable Zn concentration in the soil was reduced up to 58% one period after harvest. A Mass Balance Analysis confirmed soil Zn decontamination in line with plant Zn uptake. The plants partially take Zn from the non-labile pool of the totaL The sustainability of Zn phytoextraction in subplots that no longer exceed the Swiss trigger value is now assessed over time. In contrary to the phytoextraction of total soil Zn which needs a long cleaning up time, the bioavailable Zn stripping is feasible within a few years period. PMID:24933882

  15. Minor physical anomalies are more common among the first-degree unaffected relatives of schizophrenia patients - Results with the Méhes Scale.

    PubMed

    Hajnal, András; Csábi, Györgyi; Herold, Róbert; Jeges, Sára; Halmai, Tamás; Trixler, Dániel; Simon, Maria; Tóth, Ákos Levente; Tényi, Tamás

    2016-03-30

    Minor physical anomalies are external markers of abnormal brain development,so the more common appearance of these signs among the relatives of schizophrenia patients can confirm minor physical anomalies as intermediate phenotypes. The aim of the present study was to investigate the rate and topological profile of minor physical anomalies in the first-degree unaffected relatives of patients with schizophrenia compared to matched normal control subjects. Using a list of 57 minor physical anomalies (the Méhes Scale), 20 relatives of patients with the diagnosis of schizophrenia and as a comparison 20 matched normal control subjects were examined. Minor physical anomalies were more common in the head and mouth regions among the relatives of schizophrenia patients compared to normal controls. By the differentiation of minor malformations and phenogenetic variants, we have found that only phenogenetic variants were more common in the relatives of schizophrenia patients compared to the control group, however individual analyses showed, that one minor malformation (flat forehead) was more prevalent in the relative group. The results can promote the concept, that minor physical anomalies can be endophenotypic markers of the illness.

  16. PILOT-SCALE TEST RESULTS OF A THIN FILM EVAPORATOR SYSTEM FOR MANAGEMENT OF LIQUID HIGH-LEVEL WASTES AT THE HANFORD SITE WASHINGTON USA -11364

    SciTech Connect

    CORBETT JE; TEDESCH AR; WILSON RA; BECK TH; LARKIN J

    2011-02-14

    A modular, transportable evaporator system, using thin film evaporative technology, is planned for deployment at the Hanford radioactive waste storage tank complex. This technology, herein referred to as a wiped film evaporator (WFE), will be located at grade level above an underground storage tank to receive pumped liquids, concentrate the liquid stream from 1.1 specific gravity to approximately 1.4 and then return the concentrated solution back into the tank. Water is removed by evaporation at an internal heated drum surface exposed to high vacuum. The condensed water stream will be shipped to the site effluent treatment facility for final disposal. This operation provides significant risk mitigation to failure of the aging 242-A Evaporator facility; the only operating evaporative system at Hanford maximizing waste storage. This technology is being implemented through a development and deployment project by the tank farm operating contractor, Washington River Protection Solutions (WRPS), for the Office of River Protection/Department of Energy (ORPIDOE), through Columbia Energy and Environmental Services, Inc. (Columbia Energy). The project will finalize technology maturity and install a system at one of the double-shell tank farms. This paper summarizes results of a pilot-scale test program conducted during calendar year 2010 as part of the ongoing technology maturation development scope for the WFE.

  17. Animal Assisted Therapy (AAT) Program As a Useful Adjunct to Conventional Psychosocial Rehabilitation for Patients with Schizophrenia: Results of a Small-scale Randomized Controlled Trial

    PubMed Central

    Calvo, Paula; Fortuny, Joan R.; Guzmán, Sergio; Macías, Cristina; Bowen, Jonathan; García, María L.; Orejas, Olivia; Molins, Ferran; Tvarijonaviciute, Asta; Cerón, José J.; Bulbena, Antoni; Fatjó, Jaume

    2016-01-01

    . Adherence to the AAT-treatment was significantly higher than overall adherence to the control group’s functional rehabilitation activities. Cortisol level was significantly reduced after participating in an AAT session, which could indicate that interaction with the therapy dogs reduced stress. In conclusion, the results of this small-scale RCT suggest that AAT could be considered a useful adjunct to conventional psychosocial rehabilitation for people with schizophrenia. PMID:27199859

  18. Animal Assisted Therapy (AAT) Program As a Useful Adjunct to Conventional Psychosocial Rehabilitation for Patients with Schizophrenia: Results of a Small-scale Randomized Controlled Trial.

    PubMed

    Calvo, Paula; Fortuny, Joan R; Guzmán, Sergio; Macías, Cristina; Bowen, Jonathan; García, María L; Orejas, Olivia; Molins, Ferran; Tvarijonaviciute, Asta; Cerón, José J; Bulbena, Antoni; Fatjó, Jaume

    2016-01-01

    -treatment was significantly higher than overall adherence to the control group's functional rehabilitation activities. Cortisol level was significantly reduced after participating in an AAT session, which could indicate that interaction with the therapy dogs reduced stress. In conclusion, the results of this small-scale RCT suggest that AAT could be considered a useful adjunct to conventional psychosocial rehabilitation for people with schizophrenia. PMID:27199859

  19. Animal Assisted Therapy (AAT) Program As a Useful Adjunct to Conventional Psychosocial Rehabilitation for Patients with Schizophrenia: Results of a Small-scale Randomized Controlled Trial.

    PubMed

    Calvo, Paula; Fortuny, Joan R; Guzmán, Sergio; Macías, Cristina; Bowen, Jonathan; García, María L; Orejas, Olivia; Molins, Ferran; Tvarijonaviciute, Asta; Cerón, José J; Bulbena, Antoni; Fatjó, Jaume

    2016-01-01

    -treatment was significantly higher than overall adherence to the control group's functional rehabilitation activities. Cortisol level was significantly reduced after participating in an AAT session, which could indicate that interaction with the therapy dogs reduced stress. In conclusion, the results of this small-scale RCT suggest that AAT could be considered a useful adjunct to conventional psychosocial rehabilitation for people with schizophrenia.

  20. Evaluation of the geomorphometric results and residual values of a robust plane fitting method applied to different DTMs of various scales and accuracy

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Székely, Balázs; Dorninger, Peter; Kovács, Gábor

    2013-04-01

    Due to the need for quantitative analysis of various geomorphological landforms, the importance of fast and effective automatic processing of the different kind of digital terrain models (DTMs) is increasing. The robust plane fitting (segmentation) method, developed at the Institute of Photogrammetry and Remote Sensing at Vienna University of Technology, allows the processing of large 3D point clouds (containing millions of points), performs automatic detection of the planar elements of the surface via parameter estimation, and provides a considerable data reduction for the modeled area. Its geoscientific application allows the modeling of different landforms with the fitted planes as planar facets. In our study we aim to analyze the accuracy of the resulting set of fitted planes in terms of accuracy, model reliability and dependence on the input parameters. To this end we used DTMs of different scales and accuracy: (1) artificially generated 3D point cloud model with different magnitudes of error; (2) LiDAR data with 0.1 m error; (3) SRTM (Shuttle Radar Topography Mission) DTM database with 5 m accuracy; (4) DTM data from HRSC (High Resolution Stereo Camera) of the planet Mars with 10 m error. The analysis of the simulated 3D point cloud with normally distributed errors comprised different kinds of statistical tests (for example Chi-square and Kolmogorov-Smirnov tests) applied on the residual values and evaluation of dependence of the residual values on the input parameters. These tests have been repeated on the real data supplemented with the categorization of the segmentation result depending on the input parameters, model reliability and the geomorphological meaning of the fitted planes. The simulation results show that for the artificially generated data with normally distributed errors the null hypothesis can be accepted based on the residual value distribution being also normal, but in case of the test on the real data the residual value distribution is

  1. Development and Validation of a Falls Grading Scale

    PubMed Central

    Davalos-Bichara, Marcela; Lin, Frank R.; Carey, John P.; Walston, Jeremy D.; Fairman, Jennifer E.; Schubert, Michael C.; Barron, Jeremy S.; Hughes, Jennifer; Millar, Jennifer; Spar, Anne; Weber, Kristy L.; Ying, Howard S.; Zackowski, Kathleen M.; Zee, David

    2013-01-01

    Background and Purpose The recording of fall events is usually subjective and imprecise, which limits clinical practice and falls-related research. We sought to develop and validate a scale to grade near-fall and fall events based on their severity represented by the use of healthcare resources, with the goal of standardizing fall reporting in the clinical and research settings. Methods Qualitative instrument development was based on a literature review and semi-structured interviews to assess face and content validity. We queried older individuals and healthcare professionals with expertise in the care of patients at risk of falling about clinically important differences to detect and how to optimize the scale's ease of use. To assess the scale's inter-rater reliability, we created 30 video-vignettes of falls and compared how healthcare professionals and volunteers rated each of the falls according to our grading scale. Results We developed the illustrated 4-point Hopkins Falls Grading Scale (HFGS). The grades distinguish a near-fall (Grade 1) from a fall for which an individual did not receive medical attention (Grade 2), a fall associated with medical attention but not hospital admission (Grade 3), and a fall associated with hospital admission (Grade 4). Overall, the HFGS exhibited good face and content validity, and had an intraclass correlation coefficient of 0.998. Conclusion The 4-point HFGS demonstrates good face and content validity and high inter-rater reliability. We predict this tool will facilitate the standardization of falls reporting in both the clinical and research settings. PMID:22810170

  2. Soil acidification occurs under ambient conditions but is retarded by repeated drought: results of a field-scale climate manipulation experiment.

    PubMed

    Kopittke, G R; Tietema, A; Verstraten, J M

    2012-11-15

    Acid atmospheric emissions within Europe and North America have decreased strongly since 1985 and most recent acidification studies have focused on the changes occurring within ecosystems as a result of this decreased deposition. This current study documents a soil acidification trend under ambient N deposition conditions over a 13 year period, suggesting that acidification continues to be a process of concern at this Calluna vulgaris dominated heathland with an acidic sandy soil. The annual manipulation of climatic conditions on this heathland simulated the predicted summer rainfall reduction (drought) and resulted in a long term retardation of the soil acidification trend. The pH of the soil solution significantly decreased over the course of the trial for both treatments, however, in the final 2 years the decline continued only in the Control treatment. This retardation is primarily associated with the reduction in rainfall leading to lower drainage rates, reduced loss of cations and therefore reduced lowering of the soil acid neutralizing capacity (ANC). However, a change in the underlying mechanisms also indicated that N transformations became less important in the Drought treatment. This change corresponded to an increase in groundcover of an air-pollution tolerant moss species and it is hypothesized that this increasing moss cover filtered an increasing quantity of deposited N, thus reducing the N available for transformation. A soil acidification lag time is expected to increase between the two treatments due to the cumulative disparity in cation retention and rates of proton formation. To the authors' knowledge, this is the first study in which such acidification trends have been demonstrated in a field-scale climate manipulation experiment.

  3. Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: Observations and model results

    SciTech Connect

    Graham, N.E.

    1994-08-01

    An abrupt change in the large-scale boreal winter circulation pattern over the North Pacific was observed during the mid-1970s. This paper presents a variety of observed data and model results to describe the climate shift, and to understand some of the links within the coupled climate system that produced, it. Five main findings are emphasized: (1) evidence of abrupt, simultaneous, and apparently related changes can be found in many fields and in many model results; the climate shift is not an artifact, (2) over the tropical Pacific the climate change represents a shift in the state of the coupled ocean-atmosphere system, some aspects of which resemble features associated with El Nino episodes. However, the shift in state is not well characterized as due to a change in the frequency of intensity of El Nino episodes; it is better described as a change in background mean state, (3) When forced with observed SSTs, both a very simple atmospheric model and a full general circulation model (GCM) qualitatively simulate aspects of the decadalscale shift over the tropical Pacific, (4) when forced with observed surface wind stress, two ocean models of the tropical Pacific, in which surface heat fluxes are parameterized as Newtonian damping, reproduce some aspects of the near-equatorial decadal SST signal. However, the models do not reproduce the large changes in SST observed at higher latitudes of the tropical Pacific. suggesting that altered surface heat fluxes dominated in producing these changes, and (5) an important new finding of this study is the success of a GCM in reproducing important aspects of the observed mid-1970s shift in winter northern hemisphere circulation. Comparative analyses of the observed and GCM simulated circulation suggest the altered patterns of tropical Pacific SST and convection were important in forcing the changes in the mid-latitude circulation, a finding corroborated by recent GCM experiments. 70 refs., 18 figs.

  4. Soil acidification occurs under ambient conditions but is retarded by repeated drought: results of a field-scale climate manipulation experiment.

    PubMed

    Kopittke, G R; Tietema, A; Verstraten, J M

    2012-11-15

    Acid atmospheric emissions within Europe and North America have decreased strongly since 1985 and most recent acidification studies have focused on the changes occurring within ecosystems as a result of this decreased deposition. This current study documents a soil acidification trend under ambient N deposition conditions over a 13 year period, suggesting that acidification continues to be a process of concern at this Calluna vulgaris dominated heathland with an acidic sandy soil. The annual manipulation of climatic conditions on this heathland simulated the predicted summer rainfall reduction (drought) and resulted in a long term retardation of the soil acidification trend. The pH of the soil solution significantly decreased over the course of the trial for both treatments, however, in the final 2 years the decline continued only in the Control treatment. This retardation is primarily associated with the reduction in rainfall leading to lower drainage rates, reduced loss of cations and therefore reduced lowering of the soil acid neutralizing capacity (ANC). However, a change in the underlying mechanisms also indicated that N transformations became less important in the Drought treatment. This change corresponded to an increase in groundcover of an air-pollution tolerant moss species and it is hypothesized that this increasing moss cover filtered an increasing quantity of deposited N, thus reducing the N available for transformation. A soil acidification lag time is expected to increase between the two treatments due to the cumulative disparity in cation retention and rates of proton formation. To the authors' knowledge, this is the first study in which such acidification trends have been demonstrated in a field-scale climate manipulation experiment. PMID:23103759

  5. Low-calorie sweetener use and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans.

    PubMed

    Fowler, Sharon P G

    2016-10-01

    For more than a decade, pioneering animal studies conducted by investigators at Purdue University have provided evidence to support a central thesis: that the uncoupling of sweet taste and caloric intake by low-calorie sweeteners (LCS) can disrupt an animal's ability to predict the metabolic consequences of sweet taste, and thereby impair the animal's ability to respond appropriately to sweet-tasting foods. These investigators' work has been replicated and extended internationally. There now exists a body of evidence, from a number of investigators, that animals chronically exposed to any of a range of LCSs - including saccharin, sucralose, acesulfame potassium, aspartame, or the combination of erythritol+aspartame - have exhibited one or more of the following conditions: increased food consumption, lower post-prandial thermogenesis, increased weight gain, greater percent body fat, decreased GLP-1 release during glucose tolerance testing, and significantly greater fasting glucose, glucose area under the curve during glucose tolerance testing, and hyperinsulinemia, compared with animals exposed to plain water or - in many cases - even to calorically-sweetened foods or liquids. Adverse impacts of LCS have appeared diminished in animals on dietary restriction, but were pronounced among males, animals genetically predisposed to obesity, and animals with diet-induced obesity. Impacts have been especially striking in animals on high-energy diets: diets high in fats and sugars, and diets which resemble a highly-processed 'Western' diet, including trans-fatty acids and monosodium glutamate. These studies have offered both support for, and biologically plausible mechanisms to explain, the results from a series of large-scale, long-term prospective observational studies conducted in humans, in which longitudinal increases in weight, abdominal adiposity, and incidence of overweight and obesity have been observed among study participants who reported using diet sodas and other

  6. Low-calorie sweetener use and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans.

    PubMed

    Fowler, Sharon P G

    2016-10-01

    For more than a decade, pioneering animal studies conducted by investigators at Purdue University have provided evidence to support a central thesis: that the uncoupling of sweet taste and caloric intake by low-calorie sweeteners (LCS) can disrupt an animal's ability to predict the metabolic consequences of sweet taste, and thereby impair the animal's ability to respond appropriately to sweet-tasting foods. These investigators' work has been replicated and extended internationally. There now exists a body of evidence, from a number of investigators, that animals chronically exposed to any of a range of LCSs - including saccharin, sucralose, acesulfame potassium, aspartame, or the combination of erythritol+aspartame - have exhibited one or more of the following conditions: increased food consumption, lower post-prandial thermogenesis, increased weight gain, greater percent body fat, decreased GLP-1 release during glucose tolerance testing, and significantly greater fasting glucose, glucose area under the curve during glucose tolerance testing, and hyperinsulinemia, compared with animals exposed to plain water or - in many cases - even to calorically-sweetened foods or liquids. Adverse impacts of LCS have appeared diminished in animals on dietary restriction, but were pronounced among males, animals genetically predisposed to obesity, and animals with diet-induced obesity. Impacts have been especially striking in animals on high-energy diets: diets high in fats and sugars, and diets which resemble a highly-processed 'Western' diet, including trans-fatty acids and monosodium glutamate. These studies have offered both support for, and biologically plausible mechanisms to explain, the results from a series of large-scale, long-term prospective observational studies conducted in humans, in which longitudinal increases in weight, abdominal adiposity, and incidence of overweight and obesity have been observed among study participants who reported using diet sodas and other

  7. Using Likert-Type Scales in the Social Sciences

    ERIC Educational Resources Information Center

    Croasmun, James T.; Ostrom, Lee

    2011-01-01

    Likert scales are useful in social science and attitude research projects. The General Self-Efficacy Exam is a test used to determine whether factors in educational settings affect participant's learning self-efficacy. The original instrument had 10 efficacy items and used a 4-point Likert scale. The Cronbach's alphas for the original test ranged…

  8. Toward Real-Time Continuous, Automated Hydrogeophysical Monitoring of Aquifer Storage and Recovery: Results of a Pilot-Scale Experiment, Charleston, South Carolina

    NASA Astrophysics Data System (ADS)

    Day-Lewis, F. D.; Singha, K.; Versteeg, R. J.; Johnson, C. D.; Petkewich, M. D.; Richardson, A.; Rowe, T.; Lane, J. W.

    2005-12-01

    Aquifer storage and recovery (ASR) is used increasingly as a water-resources management tool, particularly in arid and coastal areas. ASR involves subsurface freshwater injection and storage during periods of water surplus and subsequent extraction during periods of water deficit or high demand. In coastal areas, injection into brackish-to-saline aquifers creates freshwater zones, the shapes and extents of which are controlled by aquifer heterogeneity and ground-water flow. ASR efficiency is limited by a lack of information about (1) the spatial and temporal distribution of injected freshwater and (2) possible degradation of aquifer properties resulting from injections. Without such knowledge, ASR managers cannot optimize injection and extraction schemes, nor can they predict or prevent breakthrough of brackish water at pumping wells. In this study, we examine the potential of hydrogeophysical monitoring as a management tool for ASR operations. In August-September 2005, time-lapse electrical resistivity tomography (ERT), combined with conventional chemical and hydraulic sampling, was conducted during a pilot-scale ASR experiment in an Atlantic Coastal Plain aquifer in Charleston, SC. The field site consists of 4 wells including three observation wells arranged symmetrically around a central injection/extraction well at radial distances of about 9 m. The wells are 140-155 m deep. Sand and limestone sections of the Santee Limestone/Black Mingo aquifer served as target zones for injection, storage, recovery, and ERT monitoring. We acquired time-lapse ERT data sets every 2.5 hours during 120 hours of injection, 48 hours of quiescent storage, and 96 hours of extraction. A key aspect of this work was the use of an autonomous remote monitoring system developed by Idaho National Laboratory (INL), which controls data collection, automated data upload to a central server, and parsing of the data into a relational database. In addition, this system provides a web interface

  9. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    NASA Astrophysics Data System (ADS)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.

    2013-12-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need

  10. Multiple scales of temporal variability in ecosystem metabolism rates: results from two years of continuous monitoring in a forested headwater stream

    SciTech Connect

    Roberts, Brian J; Mulholland, Patrick J; Hill, Walter

    2007-01-01

    Headwater streams are key sites of nutrient and organic matter processing and retention, but little is known about temporal variability in gross primary production (GPP) and ecosystem respiration (ER) rates as a result of the short duration of most ecosystem metabolism measurements in lotic ecosystems. We examined temporal variability and controls on ecosystem metabolism by measuring daily rates continuously for two years in Walker Branch, a first-order deciduous forest stream. Four important scales of temporal variability in ecosystem metabolism rates were identified: (1) seasonal, (2) day-to-day, (3) episodic (storm-related), and (4) inter-annual. Seasonal patterns were largely controlled by the leaf phenology and productivity of the deciduous riparian forest. Walker Branch was strongly net heterotrophic throughout the year with the exception of the open-canopy spring when GPP and ER rates were similar. Day-to-day variability in weather conditions influenced light reaching the streambed, resulting in high day-to-day variability in GPP particularly during spring (daily light levels explained 84% of the variance in daily GPP in April). Episodic storms depressed GPP for several days in spring, but increased GPP in autumn by removing leaves shading the streambed. Storms depressed ER initially, but then stimulated ER to 2-3 times pre-storm levels for several days. Walker Branch was strongly net heterotrophic in both years of the study (NEP = -1156 and -773 g O2 m-2 y-1), with annual GPP being similar (488 and 519 g O2 m-2 y-1) but annual ER being higher in 2004 than 2005 (-1645 vs. -1292 g O2 m-2 y-1). Inter-annual variability in ecosystem metabolism (assessed by comparing 2004 and 2005 rates with previous measurements) was the result of the storm frequency and timing and the size of the spring macroalgal bloom. Changes in local climate can have substantial impacts on stream ecosystem metabolism rates and ultimately influence the carbon source and sink properties of

  11. Does mycorrhizal inoculation benefit plant survival, plant development and small-scale soil fixation? Results from a perennial eco-engineering field experiment in the Swiss Alps.

    NASA Astrophysics Data System (ADS)

    Bast, Alexander; Grimm, Maria; Graf, Frank; Baumhauer, Roland; Gärtner, Holger

    2015-04-01

    In mountain environments superficial slope failures on coarse grained, vegetation-free slopes are common processes and entail a certain risk for humans and socio-economic structures. Eco-engineering measures can be applied to mitigate slope instabilities. In this regard, limited plant survival and growth can be supported by mycorrhizal inoculation, which was successfully tested in laboratory studies. However, related studies on a field scale are lacking. Furthermore, mycorrhizae are known to enhance soil aggregation, which is linked to soil physics such as shear strength, and hence it is a useful indicator for near-surface soil/slope stability. The overall objective of our contribution was to test whether mycorrhizal inoculation can be used to promote eco-engineering measures in steep alpine environments based on a five-year field experiment. We hypothesized that mycorrhizal inoculation (i) enhances soil aggregation, (ii) stimulate plant survival and fine root development, (iii) effects plant performance, (iv) the stimulated root development in turn influences aggregate stability, and (v) that climatic variations play a major role in fine-root development. We established mycorrhizal and non-mycorrhizal treated eco-engineered research plots (hedge layers mainly consisting of Alnus spp. and Salix spp.) on a field experimental scale. The experimental site is in the eastern Swiss Alps at an erosion-prone slope where many environmental conditions can be seen as homogeneous. Soil aggregation, fine root development and plant survival was quantified at the end of four growing seasons (2010, '11, '12, '14). Additionally, growth properties of Alnus spp. and Salix spp. were measured and their biomass estimated. Meteorological conditions, soil temperature and soil water content were recorded. (i) The introduced eco-engineering measures enhanced aggregate stability significantly. In contrast to published greenhouse and laboratory studies, mycorrhizal inoculation delayed soil

  12. Rheological variations across an active rift system -- results from lithosphere-scale 3D gravity and thermal models of the Kenya Rift

    NASA Astrophysics Data System (ADS)

    Meeßen, Christian; Sippel, Judith; Cacace, Mauro; Scheck-Wenderoth, Magdalena; Fishwick, Stewart; Heine, Christian; Strecker, Manfred R.

    2015-04-01

    Due to its tectono-volcanic activity and economic (geothermal and petroleum) potential, the eastern branch of the East African Rift System (EARS) is one of the best studied extensional systems worldwide and an important natural laboratory for the development of geodynamic concepts on rifting and nascent continental break-up. The Kenya Rift, an integral part of the eastern branch of the EARS, has formed in the area of weak Proterozoic crust of the Mozambique mobile belt adjacent to the rheologically stronger Archean Tanzania craton. To assess the variations in lithospheric strength between different tectonic domains and their influence on the tectonic evolution of the region, we developed a set of structural, density, thermal and rheological 3D models. For these models we integrated multi-disciplinary information, such as published geological field data, sediment thicknesses, well information, existing structural models, seismic refraction and reflection data, seismic tomography, gravity and heat-flow data. Our main approach focused on combined 3D isostatic and gravity modelling. The resulting lithosphere-scale 3D density model provides new insights into the depth distribution of the crust-mantle boundary and thickness variations of different crustal density domains. The latter further facilitate interpretations of variations of lithologies and related physical rock properties. By considering lithology-dependent heat production and thermal conductivity, we calculate the conductive thermal field across the region of the greater Kenya Rift. Finally, the assessed variations in lithology and temperature allow deriving differences in the integrated strength of the lithosphere across the different tectonic domains.

  13. Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.

    2012-04-01

    Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems

  14. Soil Carbon Sequestration and Greenhouse Gas Emissions Under a Changing Climate at the Foodshed Scale - Preliminary Results from Diverse Cropping Systems

    NASA Astrophysics Data System (ADS)

    Kong, A. Y.; Shukla, S. P.; Rosenzweig, C.

    2011-12-01

    The term 'foodshed' is an analog to the concept of a 'watershed' and describes "the flow of foodstuffs to consuming markets." Our main goals in identifying a foodshed are to: determine sustainable regional production and develop ideas for regional/local distribution systems that increase market access for producers and fresh food access for consumers, while reducing the carbon footprint of the food choices within the foodshed. The latter can be achieved by establishing policies that protect agricultural land from development, conserve water, and promote the adoption of agricultural management practices that decrease disturbance and/or increase carbon sequestration in soils, all of which can play a role in mitigating climate change. Because few studies relate climate change and agriculture at the regional-scale, we lack a good understanding of which elements of a foodshed are most vulnerable to changes in climate. With this foodshed analysis, our overall aims are to utilize the latest methods of climate and agricultural scenario generation to conduct multi-scale and transdisciplinary assessments of climate change impacts on the production, distribution and consumption of agricultural crops within a foodshed and to evaluate the potential for mitigation [soil carbon sequestration and greenhouse gas (GHG) emissions reduction)] and design the framework for adaptation (policy incentives) to climate change within a foodshed. Here, we present the methodology and preliminary results for an integrated climate/ecosystem modeling approach to look at how agricultural management practices can contribute to climate change mitigation within the Hudson Valley, a sub-region of the New York City foodshed. First, cutting-edge CMIP5 GCMs were validated against historical climatic data (1979-present) to identify which GCMs best simulate the climate of the Northeastern US (which includes the New York City foodshed). Subsequently, the selected GCMs were forced with the IPCC's four newly

  15. Technical Feasibility of Reporting YITS 2010 Skill Assessment Results on the PISA 2000 Reading Scale. OECD Education Working Papers, No. 69

    ERIC Educational Resources Information Center

    Cartwright, Fernando

    2012-01-01

    This study examines the feasibility of reporting scores of a test based on the Programme for International Student Assessment (PISA) 2000 instrument that was administered to a sample of 25-year-old Youth in Transition Survey (YITS) respondents on the PISA scale. Each of these respondents also participated in PISA 2000. The study examines the…

  16. Sensitivity of the Modified Children's Yale-Brown Obsessive Compulsive Scale to Detect Change: Results from Two Multi-Site Trials

    ERIC Educational Resources Information Center

    Scahill, Lawrence; Sukhodolsky, Denis G.; Anderberg, Emily; Dimitropoulos, Anastasia; Dziura, James; Aman, Michael G.; McCracken, James; Tierney, Elaine; Hallett, Victoria; Katz, Karol; Vitiello, Benedetto; McDougle, Christopher

    2016-01-01

    Repetitive behavior is a core feature of autism spectrum disorder. We used 8-week data from two federally funded, multi-site, randomized trials with risperidone conducted by the Research Units on Pediatric Psychopharmacology Autism Network to evaluate the sensitivity of the Children's Yale-Brown Obsessive Compulsive Scale modified for autism…

  17. OECD MMCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-2 test data report : thermal hydraulic results, Rev. 0 September 20, 2002.

    SciTech Connect

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the second water ingression test, designated SSWICS-2. The report includes a description of the test apparatus, the

  18. OECD MCCI project Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-1 test data report : thermal hydraulic results. Rev. 0 September 20, 2002.

    SciTech Connect

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the first water ingression test, designated SSWICS-1. The report includes a description of the test apparatus, the

  19. OECD MCCI Small-Scale Water Ingression and Crust Strength Tests (SSWICS) SSWICS-3 test data report : thermal Hydraulic results, Rev. 0 February 19, 2003.

    SciTech Connect

    Lomperski, S.; Farmer, M. T.; Kilsdonk, D.; Aeschlimann, B.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core/concrete interaction (MCCI) when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. However, due to the integral nature of these tests, several questions regarding the crust freezing behavior could not be adequately resolved. These questions include: (1) To what extent does water ingression into the crust increase the melt quench rate above the conduction-limited rate and how is this affected by melt composition and system pressure and (2) What is the fracture strength of the corium crust when subjected to a thermal-mechanical load and how does it depend upon the melt composition? A series of separate-effects experiments are being conducted to address these issues. The first employs an apparatus designed to measure the quench rate of a pool of corium ({approx}{phi}30 cm; up to 20 cm deep). The main parameter to be varied in these quench tests is the melt composition since it is thought to have a critical influence on the crust cracking behavior which, in turn, alters quench rate. The issue of crust strength will be addressed with a second apparatus designed to mechanically load the crust produced by the quench tests. This apparatus will measure the fracture strength of the crust while under a thermal load created by a heating element beneath the crust. The two apparatuses used to measure the melt quench rate and crust strength are jointly referred to as SSWICS (Small-Scale Water Ingression and Crust Strength). This report describes results of the third water ingression test, designated SSWICS-3. This test investigated the quenching behavior of a fully

  20. Economies of scale in federally-funded state-organized public health programs: results from the National Breast and Cervical Cancer Early Detection Programs.

    PubMed

    Trogdon, Justin G; Ekwueme, Donatus U; Subramanian, Sujha; Crouse, Wesley

    2014-12-01

    This study investigates the existence of economies of scale in the provision of breast and cervical cancer screening and diagnostic services by state National Breast and Cervical Cancer Early Detection Program (NBCCEDP) grantees. A translog cost function is estimated as a system with input factor share equations. The estimated cost function is then used to determine output levels for which average costs are decreasing (i.e., economies of scale exist). Data were collected from all state NBCCEDP programs and District of Columbia for program years 2006-2007, 2008-2009 and 2009-2010 (N = 147). Costs included all programmatic and in-kind contributions from federal and non-federal sources, allocated to breast and cervical cancer screening activities. Output was measured by women served, women screened and cancers detected, separately by breast and cervical services for each measure. Inputs included labor, rent and utilities, clinical services, and quasi-fixed factors (e.g., percent of women eligible for screening by the NBCCEDP). 144 out of 147 program-years demonstrated significant economies of scale for women served and women screened; 136 out of 145 program-years displayed significant economies of scale for cancers detected. The cost data were self-reported by the NBCCEDP State programs. Quasi-fixed inputs were allowed to affect costs but not economies of scale or the share equations. The main analysis accounted for clustering of observations within State programs, but it did not make full use of the panel data. The average cost of providing breast and cervical cancer screening services decreases as the number of women screened and served increases.

  1. Economies of scale in federally-funded state-organized public health programs: results from the National Breast and Cervical Cancer Early Detection Programs.

    PubMed

    Trogdon, Justin G; Ekwueme, Donatus U; Subramanian, Sujha; Crouse, Wesley

    2014-12-01

    This study investigates the existence of economies of scale in the provision of breast and cervical cancer screening and diagnostic services by state National Breast and Cervical Cancer Early Detection Program (NBCCEDP) grantees. A translog cost function is estimated as a system with input factor share equations. The estimated cost function is then used to determine output levels for which average costs are decreasing (i.e., economies of scale exist). Data were collected from all state NBCCEDP programs and District of Columbia for program years 2006-2007, 2008-2009 and 2009-2010 (N = 147). Costs included all programmatic and in-kind contributions from federal and non-federal sources, allocated to breast and cervical cancer screening activities. Output was measured by women served, women screened and cancers detected, separately by breast and cervical services for each measure. Inputs included labor, rent and utilities, clinical services, and quasi-fixed factors (e.g., percent of women eligible for screening by the NBCCEDP). 144 out of 147 program-years demonstrated significant economies of scale for women served and women screened; 136 out of 145 program-years displayed significant economies of scale for cancers detected. The cost data were self-reported by the NBCCEDP State programs. Quasi-fixed inputs were allowed to affect costs but not economies of scale or the share equations. The main analysis accounted for clustering of observations within State programs, but it did not make full use of the panel data. The average cost of providing breast and cervical cancer screening services decreases as the number of women screened and served increases. PMID:24326873

  2. Numerical friction experiments of heterogeneous fault with controlling shear stress by means of earthquake sequence simulations: Preliminary results on the relation between cm-scale and km-scale friction laws

    NASA Astrophysics Data System (ADS)

    Noda, H.; Hori, T.

    2014-12-01

    The scale effect of the friction law is crucial in connecting field observations, laboratory experiments, and natural fault behaviors. Here we present our recent study towards understanding of the scale effect of the friction law. The fault friction law is usually studied in laboratory experiments for cm-scale specimens, and one of the prominent problems is its direct applicability to the large-scale behavior. Small repeating earthquakes (repeaters) may be a realization of heterogeneous frictional property on faults, which were modeled by rate-weakening patches embedded in a rate-strengthening fault [e.g., Chen and Lapusta, 2009]. After the 2011 Tohoku-oki earthquake, so many repeaters were found in the Tohoku subduction zone [e.g., Kato and Igarashi, 2012]. But it is quite difficult to numerically resolve them in a large-scale simulation of the whole subduction zone, which is demanded for potential disaster mitigation. Then, it is important to investigate a spatiotemporally coarse-grained friction law of a fault region including unstable inclusions. We hypothesized that each point on a fault obeys the cm-scale friction law (the rate-state friction law in the aging law formulation) with sub-mm state evolution distance L, and assumed a rate-weakening circular patch (80 m diameter) which generates repeating events. We set 256 m periodicity along the fault, and conducted dynamic earthquake sequence simulations [e.g., Liu and Lapusta, 2009] by driving the system by far field stress τ0. We did not prescribe the long term slip rate by setting a region of constant slip rate as is done in previous studies. Those simulations can be seen as numerical friction experiments with controlling the shear stress and observing the slip rate. The macroscopic steady-state can be explained by a logarithmic law, with the frictional resistance slightly smaller and the rate-dependency slightly more rate-strengthening than the spatial average. The transient behavior on a step in τ0 can be

  3. Scaling and Exponent Equalities in Island Nucleation: Novel Results and Application to Organic Films Alberto Pimpinelli, Levent Tumbek, and Adolf Winkler

    NASA Astrophysics Data System (ADS)

    Pimpinelli, Alberto; Tumbek, Levent; Winkler, Adolf

    2015-03-01

    As discussed in the first talk, the scaling of the island density with the flux F and/or the capture zone distribution (CZD) can be used to determine the size of the critical nucleus i, but so far an analytic function for CZD exists only for diffusion-limited aggregation (DLA). For CZD the scaling function is Pβ (s) =aβsβ exp (-bβs2) , with β = i + 2 . We have extended the analytic description of the CZD in terms of Pβ also to attachment-limited aggregation (ALA); in this case we obtain β = (i + 3) / 2 . Furthermore, we could demonstrate that the general relationship αβ = i holds, independent of the aggregation mechanism. This important exponent equality should help to better characterize nucleation and growth of thin films. Work at Graz supported by Austrian Science Fund (FWF), Project No. P 23530.

  4. Effects of surface roughness with two scales on light scattering by hexagonal ice crystals large compared to the wavelength: DDA results

    NASA Astrophysics Data System (ADS)

    Collier, C. T.; Hesse, E.; Taylor, L.; Ulanowski, Z.; Penttilä, A.; Nousiainen, T.

    2016-10-01

    The effect of ice crystal surface roughness on light scattering by ice crystals which are large compared to the wavelength was studied, in particular changes to the 2D scattering patterns, azimuthally averaged phase functions, degree of linear polarisation patterns and asymmetry parameters for a range of orientations and roughness scales. It was found that roughness has an effect on light scattering by hexagonal prisms, particularly when the roughness features are of comparable size to the wavelength. The roughness model that has the most effect on light scattering takes account of more than one roughness scale. Rough geometry was implemented by a Gaussian roughness method that took roughness parameters derived from sand grains, which have been reported to be suitable proxies for rough ice crystals. Light scattering data for these geometries was computed using the ADDA discrete dipole approximation method.

  5. Genomic rearrangements of the CDKN2A locus are infrequent in Italian malignant melanoma families without evidence of CDKN2A/CDK4 point mutations.

    PubMed

    Vignoli, Marina; Scaini, Maria Chiara; Ghiorzo, Paola; Sestini, Roberta; Bruno, William; Menin, Chiara; Gensini, Francesca; Piazzini, Mauro; Testori, Alessandro; Manoukian, Siranoush; Orlando, Claudio; D'Andrea, Emma; Bianchi-Scarrà, Giovanna; Genuardi, Maurizio

    2008-12-01

    Predisposition to familial cutaneous malignant melanoma has been associated with mutations in the CDKN2A and CDK4 genes. However, only a small subgroup of melanoma pedigrees harbour CDKN2A or CDK4 germline mutations. It is possible that other types of CDKN2A rearrangements, not detectable by routine PCR-based approaches, are involved in a fraction of melanoma cases negative for point sequence changes. In order to gain insights on the possible role of CDKN2A large deletions or duplications in melanoma susceptibility in the Italian population, we screened a series of 124 cutaneous malignant melanoma families referred to five national medical/cancer genetics centres. All probands were negative for point mutations in CDKN2A and CDK4. All samples were tested by MLPA (multiplex ligation-dependent probe amplification), and the results were confirmed by real-time quantitative PCR in a subset of 53 cases. No genomic rearrangements were detected in this series, one of the largest so far investigated. These data suggest that large deletions/duplications in the CDKN2A locus are infrequently involved in the development of familial melanoma in the Italian population. Based on these results, routine search for these rearrangements in CDKN2A- and CDK4-mutation negative melanoma families is not warranted, although it would be reasonable to pursue it in selected cases with very strong family history and/or showing linkage to 9p21.

  6. Results of flutter test OS7 obtained using the 0.14-scale space shuttle orbiter fin/rudder model number 55-0 in the NASA LaRC 16-foot transonic dynamics wind tunnel

    NASA Technical Reports Server (NTRS)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter vertical tail was tested in a 16-foot transonic dynamic wind tunnel to determine flutter, buffet, and rudder buzz boundaries. Mach numbers between .5 and 1.11 were investigated. Rockwell shuttle model 55-0 was used for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  7. Results of flutter test OS6 obtained using the 0.14-scale wing/elevon model (54-0) in the NASA LaRC 16-foot transonic dynamics wind tunnel

    NASA Technical Reports Server (NTRS)

    Berthold, C. L.

    1977-01-01

    A 0.14-scale dynamically scaled model of the space shuttle orbiter wing was tested in the Langley Research Center 16-Foot Transonic Dynamics Wind Tunnel to determine flutter, buffet, and elevon buzz boundaries. Mach numbers between 0.3 and 1.1 were investigated. Rockwell shuttle model 54-0 was utilized for this investigation. A description of the test procedure, hardware, and results of this test is presented.

  8. Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules: Final Subcontract Report, 7 August 2003--30 September 2004

    SciTech Connect

    Keshner, M. S.; Arya, R.

    2004-10-01

    Hewlett Packard has created a design for a ''Solar City'' factory that will process 30 million sq. meters of glass panels per year and produce 2.1-3.6 GW of solar panels per year-100x the volume of a typical, thin-film, solar panel manufacturer in 2004. We have shown that with a reasonable selection of materials, and conservative assumptions, this ''Solar City'' can produce solar panels and hit the price target of $1.00 per peak watt (6.5x-8.5x lower than prices in 2004) as the total price for a complete and installed rooftop (or ground mounted) solar energy system. This breakthrough in the price of solar energy comes without the need for any significant new invention. It comes entirely from the manufacturing scale of a large plant and the cost savings inherent in operating at such a large manufacturing scale. We expect that further optimizations from these simple designs will lead to further improvements in cost. The manufacturing process and cost depend on the choice for the active layer that converts sunlight into electricity. The efficiency by which sunlight is converted into electricity can range from 7% to 15%. This parameter has a large effect on the overall price per watt. There are other impacts, as well, and we have attempted to capture them without creating undue distractions. Our primary purpose is to demonstrate the impact of large-scale manufacturing. This impact is largely independent of the choice of active layer. It is not our purpose to compare the pro's and con's for various types of active layers. Significant improvements in cost per watt can also come from scientific advances in active layers that lead to higher efficiency. But, again, our focus is on manufacturing gains and not on the potential advances in the basic technology.

  9. large-scale structural pattern as the result of the interplay between compression and extension during chain building: the case of the Sicily Belt (Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Nigro, Fabrizio; Renda, Pietro; Favara, Rocco; Salvaggio, Gaetano

    2010-05-01

    Sicily Belt, including folding-and-thrusting and extension interactions. Sicily, located in the Central Mediterranean, is considered as part of the Tertiary Alpine-Himalayan suture zone. The Sicilian Thrust System (STS) is a south-verging fold-and-thrust belt and represents the South-eastern arcuate portion of the Apennine-Maghrebides thin-skinned fold-and-thrust belt. The STS is made of a lot of thrust sheets, including Mesozoic-Lower Tertiary pre-orogenic multilayered sedimentary sequence and occupies the larger part of the island. The thrust stack owes its origin to the deformation of pre-orogenic strata deposited in different palaeogeographic domains belonging to the Northern Africa passive margin. The belt developed during the Neogene, following the closure of the Tethys Ocean and the continental collision between the Sardo-Corso Block and the Africa margin. The thrust pile was detached from the underlying basement during Miocene-Pliocene time interval and experienced both faulting, folding and stretching. A general hinterland-to-foreland thrust propagation is recorded in the syn-orogenic deposits. The recognised regional-scale structural setting allow us to reconstruct tectonic evolution: I) piggy-back thrusting from the early Oligocene to the Langhian, inducing the building of the Inner Sicilian Chain (ISC) that migrated progressively forelandwards. Extensional deformations were active only in the foredeep-foreland system; II) piggy-back thrusting from the Langhian to the Tortonian, inducing the building of the Middle Sicilian Chain (MSC) that migrated progressively forelandwards. Extensional deformations were active both in the foredeep-foreland system and in the ISC as the result of incipient supercritical wedge taper conditions; III) wedge failure (ISC+MSC) from the Tortonian to the earliermost Pliocene, inducing generalised extensional deformations in the chain-foredeep-foreland system; IV) new onset of piggy-back thrusting since the early Pliocene for renewed

  10. Quality assurance of specialised treatment of eating disorders using large-scale Internet-based collection systems: methods, results and lessons learned from designing the Stepwise database.

    PubMed

    Birgegård, Andreas; Björck, Caroline; Clinton, David

    2010-01-01

    Computer-based quality assurance of specialist eating disorder (ED) care is a possible way of meeting demands for evaluating the real-life effectiveness of treatment, in a large-scale, cost-effective and highly structured way. The Internet-based Stepwise system combines clinical utility for patients and practitioners, and provides research-quality naturalistic data. Stepwise was designed to capture relevant variables concerning EDs and general psychiatric status, and the database can be used for both clinical and research purposes. The system comprises semi-structured diagnostic interviews, clinical ratings and self-ratings, automated follow-up schedules, as well as administrative functions to facilitate registration compliance. As of June 2009, the system is in use at 20 treatment units and comprises 2776 patients. Diagnostic distribution (including subcategories of eating disorder not otherwise specified) and clinical characteristics are presented, as well as data on registration compliance. Obstacles and keys to successful implementation of the Stepwise system are discussed, including possible gains and on-going challenges inherent in large-scale, Internet-based quality assurance.

  11. Quality assurance of specialised treatment of eating disorders using large-scale Internet-based collection systems: methods, results and lessons learned from designing the Stepwise database.

    PubMed

    Birgegård, Andreas; Björck, Caroline; Clinton, David

    2010-01-01

    Computer-based quality assurance of specialist eating disorder (ED) care is a possible way of meeting demands for evaluating the real-life effectiveness of treatment, in a large-scale, cost-effective and highly structured way. The Internet-based Stepwise system combines clinical utility for patients and practitioners, and provides research-quality naturalistic data. Stepwise was designed to capture relevant variables concerning EDs and general psychiatric status, and the database can be used for both clinical and research purposes. The system comprises semi-structured diagnostic interviews, clinical ratings and self-ratings, automated follow-up schedules, as well as administrative functions to facilitate registration compliance. As of June 2009, the system is in use at 20 treatment units and comprises 2776 patients. Diagnostic distribution (including subcategories of eating disorder not otherwise specified) and clinical characteristics are presented, as well as data on registration compliance. Obstacles and keys to successful implementation of the Stepwise system are discussed, including possible gains and on-going challenges inherent in large-scale, Internet-based quality assurance. PMID:20589767

  12. Liquid Oxygen Propellant Densification Production and Performance Test Results With a Large-Scale Flight-Weight Propellant Tank for the X33 RLV

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.; Meyer, Michael L.

    2010-01-01

    This paper describes in-detail a test program that was initiated at the Glenn Research Center (GRC) involving the cryogenic densification of liquid oxygen (LO2). A large scale LO2 propellant densification system rated for 200 gpm and sized for the X-33 LO2 propellant tank, was designed, fabricated and tested at the GRC. Multiple objectives of the test program included validation of LO2 production unit hardware and characterization of densifier performance at design and transient conditions. First, performance data is presented for an initial series of LO2 densifier screening and check-out tests using densified liquid nitrogen. The second series of tests show performance data collected during LO2 densifier test operations with liquid oxygen as the densified product fluid. An overview of LO2 X-33 tanking operations and load tests with the 20,000 gallon Structural Test Article (STA) are described. Tank loading testing and the thermal stratification that occurs inside of a flight-weight launch vehicle propellant tank were investigated. These operations involved a closed-loop recirculation process of LO2 flow through the densifier and then back into the STA. Finally, in excess of 200,000 gallons of densified LO2 at 120 oR was produced with the propellant densification unit during the demonstration program, an achievement that s never been done before in the realm of large-scale cryogenic tests.

  13. Results of a wind tunnel/flight test program to compare afterbody/nozzle pressures on a 1/12 scale model and an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Pendergraft, O. C., Jr.; Nugent, J.

    1984-01-01

    In 1975 NASA Dryden Flight Research Facility received the No. 2 prototype F-15 aircraft from the USAF to conduct the F-15 Propulsion/Airframe Interactions Program. About the same time, NASA Langley Research Center acquired a 1/12 scale F-15 propulsion model, whose size made it suitable for detailed afterbody/nozzle static pressure distribution studies. Close coordination between Langley and Dryden assured identical orifice locations and nozzle geometries on the model and aircraft. This paper discusses the sequence of the test programs and how retesting the model after completion of the flight tests greatly increased the ability to match hardware and test conditions. The experience gained over the past decade from involvement in the program should prove valuable to any future programs attempting to match wind tunnel and flight test conditions and hardware.

  14. A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage.

    PubMed

    Holtman, Kevin M; Bozzi, David V; Franqui-Villanueva, Diana; Offeman, Richard D; Orts, William J

    2016-05-01

    A pilot-scale (1800 kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organic content can be recovered at nearly 90% efficiency and the trommel rejects are also much easier to sort for recovery. This study provides the evaluation of autoclave operation, including mass and energy balances for the purpose of integration into organic diversion systems. Several methods of cooking municipal solid waste were explored from indirect oil heating only, a combination of oil and direct steam during the same cooking cycle, and steam only. Gross energy requirements averaged 1290 kJ kg(-1) material in vessel, including the weight of free water and steam added during heating. On average, steam recovery can recoup 43% of the water added and 30% of the energy, supplying on average 40% of steam requirements for the next cook. Steam recycle from one vessel to the next can reduce gross energy requirements to an average of 790 kJ kg(-1).

  15. Results of tests using a 0.0125-scale model (70-QT) of the space shuttle vehicle orbiter in the AEDC VKF tunnel B (IA22), volume 2

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.

    1977-01-01

    Tabulated data of an experimental investigation are presented which was conducted in the AEDC/VKF Tunnel B to obtain interaction effects of RCS thruster jet plumes on SSV aerodynamics during staging to simulate RTLS abort. Interaction effects of the orbiter RCS thruster jet plumes on the orbiter and ET aerodynamics were investigated. RCS thruster jet plumes were simulated using both air and a 15 percent argon 85 percent helium gas mixture. The ET angle of attack range was -40 to +25 deg at sideslip angles of 0, 3, and 6 degrees. Orbiter angle of attack was varied from -15 to +10 degrees at sideslip angles of 0 and 3 deg. External tank full scale separation distances simulated were 0 to 1400 in. axially; 0 to 54 in. laterally; and a range of -100 to 1000 in. vertically. Data were also obtained on the ET in the interference-free flow field. Quiescent (no tunnel flow) thruster plume interaction data were obtained on the orbiter and orbiter-ET combination. Tests were conducted at Mach number 6 and a Reynolds number of 0.86 million per foot.

  16. A pilot-scale steam autoclave system for treating municipal solid waste for recovery of renewable organic content: Operational results and energy usage.

    PubMed

    Holtman, Kevin M; Bozzi, David V; Franqui-Villanueva, Diana; Offeman, Richard D; Orts, William J

    2016-05-01

    A pilot-scale (1800 kg per batch capacity) autoclave used in this study reduces municipal solid waste to a debris contaminated pulp product that is efficiently separated into its renewable organic content and non-renewable organic content fractions using a rotary trommel screen. The renewable organic content can be recovered at nearly 90% efficiency and the trommel rejects are also much easier to sort for recovery. This study provides the evaluation of autoclave operation, including mass and energy balances for the purpose of integration into organic diversion systems. Several methods of cooking municipal solid waste were explored from indirect oil heating only, a combination of oil and direct steam during the same cooking cycle, and steam only. Gross energy requirements averaged 1290 kJ kg(-1) material in vessel, including the weight of free water and steam added during heating. On average, steam recovery can recoup 43% of the water added and 30% of the energy, supplying on average 40% of steam requirements for the next cook. Steam recycle from one vessel to the next can reduce gross energy requirements to an average of 790 kJ kg(-1). PMID:26987737

  17. Results of tests in the MSFC 14 x 14 inch trisonic wind tunnel on a .004 scale model of the Rockwell International Space Shuttle Vehicle 3, (integrated configuration)

    NASA Technical Reports Server (NTRS)

    Allen, E. C.; Hamiliton, T.

    1973-01-01

    Experimental aerodynamic investigations were conducted during mid-July, 1973 on a .004 scale model of the Rockwell International integrated configuration Space Shuttle Vehicle 3. The purpose of the tests was three fold: (1) to determine the static stability characteristics of the integrated vehicle, utilizing the Vehicle 3 orbiter configuration; (2) to determine the effect of interstage structure and tank external fuel lines on the integrated vehicle aerodynamic characteristics; (3) to determine the effects of the aft interstage structure on orbiter aerodynamic loads. Data were recorded on the integrated vehicle (test no. 579) at angles of attack and sideslip ranging from -10 deg to 10 deg over a Mach number schedule from 0.6 to 4.96. Data were obtained on the orbiter alone in the presence of the external tank with SRB attached (test no. 580) at angles of attack from -10 deg to 10 deg over a Mach number range from .6 to 1.96. Plotted data are presented in the body axis system.

  18. Disinfection of tertiary wastewater effluent prior to river discharge using peracetic acid; treatment efficiency and results on by-products formed in full scale tests.

    PubMed

    Pedersen, Per Overgaard; Brodersen, Erling; Cecil, David

    2013-01-01

    This is an investigation of chemical disinfection, with peracetic acid (PAA), in a tertiary sand filter at a full scale activated sludge plant with nitrification/denitrification and P-removal. The reduction efficiency of Escherichia coli and intestinal enterococci in the sand filter is reported. E. coli log reductions of between 0.4 and 2.2 were found with contact times from 6 to 37 min and with dosing from 0 to 4.8 mg L(-1). The average log reduction was 1.3. The decomposition products, bromophenols, chlorophenols and formaldehyde and residual H2O2 were measured before and after the sand filter. The residual H2O2 concentration in the effluent was critical at short contact times and high dosages of PAA due to the discharge limit of 25 μg L(-1). The other three products could not be detected at 0.1 μg L(-1) levels. The chemical cost of PAA dosing is estimated to be 0.039 US$ m(-3) treated wastewater.

  19. Anaerobic digestion as final step of a cellulosic ethanol biorefinery: Biogas production from fermentation effluent in a UASB reactor-pilot-scale results.

    PubMed

    Uellendahl, H; Ahring, B K

    2010-09-01

    In order to lower the costs for second generation bioethanol from lignocellulosic biomass anaerobic digestion of the effluent from ethanol fermentation was implemented using an upflow anaerobic sludge blanket (UASB) reactor system in a pilot-scale biorefinery plant. Both thermophilic (53 degrees C) and mesophilic (38 degrees C) operation of the UASB reactor was investigated. At an OLR of 3.5 kg-VS/(m(3) day) a methane yield of 340 L/kg-VS was achieved for thermophilic operation (53 degrees C) while 270 L/kg-VS was obtained under mesophilic conditions (38 degrees C). For loading rates higher than 5 kg-VS/(m(3) day) the methane yields were, however, higher under mesophilic conditions compared to thermophilic conditions. The conversion of dissolved organic matter (VS(diss)) was between 68% and 91%. The effluent from the ethanol fermentation showed no signs of toxicity to the anaerobic microorganisms. However, a high content of suspended matter reduced the degradation efficiency. The retention time of the anaerobic system could be reduced from 70 to 7 h by additional removal of suspended matter by clarification. Implementation of the biogas production from the fermentation effluent accounted for about 30% higher carbon utilization in the biorefinery compared to a system with only bioethanol production. PMID:20506521

  20. One-year clinical results of Er,Cr:YSGG laser application in addition to scaling and root planing in patients with early to moderate periodontitis.

    PubMed

    Kelbauskiene, Solveiga; Baseviciene, Nomeda; Goharkhay, Kawe; Moritz, Andreas; Machiulskiene, Vita

    2011-07-01

    In 30 patients with periodontitis, a total of 278 teeth exhibiting bleeding on probing, subgingival calculus, and a probing depth between 3-6 mm were examined. For each participant, two treatment types were alternatively applied on the contralateral quadrants: scaling and root planing (SRP) as control, and SRP followed by Er,Cr:YSGG laser application (SRP+laser), as a test method. Five clinical parameters: plaque level, bleeding on probing, probing depth, gingival recession and clinical attachment level were examined at baseline and at 2, 3, 6, 12 months after treatment. Of the total of 1,668 sites examined in all patients, 1,088 sites were found with a probing depth of 3-6 mm. In these sites, differences in clinical parameters between SRP and SRP+laser-treated quadrants were analyzed, assuming the level of p < 0.05 as significant. After 2 months from baseline, the mean probing depth reduction and the clinical attachment level gain were significantly greater in SRP+laser than in SRP quadrants, and remained so throughout the study (p < 0.001). A marked reduction of the bleeding scores occurred in all examined sites, irrespective of the treatment method. However, after 12 months, significantly less teeth exhibited bleeding on probing in SRP+laser quadrants than in SRP quadrants (p < 0.001). The mean plaque and gingival recession levels did not differ between the SRP and SRP+laser quadrants neither before nor after the treatment. The periodontal procedures either using Er,Cr:YSGG laser after SRP or SRP alone, lead to significant improvements in all clinical parameters investigated. However, laser application, as an adjunct to SRP, appeared to be more advantageous.

  1. Planktic Foraminiferal Response to the "Latest Danian Event" (62.15 Ma) on an almost Global Scale - results from Shatsky Rise, Walvis Ridge and Newfoundland

    NASA Astrophysics Data System (ADS)

    Jehle, S.; Bornemann, A.; Deprez, A.; Speijer, R. P.

    2015-12-01

    The marine ecosystem of the Paleocene was disturbed by several transient warming events. One of these is the Latest Danian Event (LDE aka "Top C27n Event"). In deep-sea records the LDE is usually characterized by two distinctive XRF Fe peaks, paralleled by a ~0.7 ‰ negative δ13C excursion (prev. publ.). Here we present new stable isotope and faunal datasets from planktic foraminifera representing three ocean basins: The Pacific is covered by ODP Site 1210, the South Atlantic by ODP Site 1262 and the North Atlantic by IODP Site U1407. We compare the generated datasets in aspects of biotic response (planktic foraminifera), carbonate preservation as well as δ18O and δ13C signals of surface, subsurface and benthic taxa covering a time span of 900 kyr around the event to figure out to what extent the LDE influenced oceans and biota. At Site 1210 a drop in planktic and benthic δ18O record suggest a temperature rise of ~2.5°C within 100 ky which is on the same scale as the benthic δ18O shift at 1209 (prev. publ.) suggesting the LDE to be a further potential Paleocene hyperthermal. Multivariate statistics imply distinct faunal changes starting below the LDE. A different assemblage after the event was observed specifically in photosymbiont-bearing taxa including the disappearance of Praemurica spp. and the strong increase of Igorina albeari . Minor dissolution is considered to be present during the LDE according to enhanced test fragmentation and decreased CaCO3 and planktic foraminifera test abundance. A rising δ13C gradient between surface and subsurface dwelling foraminifera suggests sudden increased stratification of the upper water column ~100 ky below the LDE, strongly enhanced during it and less but still high above it. This might include a shallower thermocline and be linked to the development of a deep-chlorophyll maximum. Faunal assemblages of 1262 show a similar development with an overall higher abundance of subsurface dwellers. Multivariate statistisc

  2. Passive remote sensing of large-scale methane emissions from Oil Fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Thompson, David R.; Thorpe, Andrew K.; Kolyer, Richard W.; Jonsson, Haflidi; Krings, Thomas; Frankenberg, Christian; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Fladeland, Matthew; Schüttemeyer, Dirk; Burrows, John P.; Bovensmann, Heinrich

    2016-04-01

    The CO2 and MEthane EXperiment (COMEX) was a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities. As a part of this effort, seven flights were performed between June 3 and September 4, 2014 with the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) over the Kern River, Kern Front, and Poso Creek Oil Fields located in California's San Joaquin Valley. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with: a Picarro fast in-situ greenhouse gas (GHG) analyzer operated by the NASA Ames Research Center, ARC; a 5-hole turbulence probe; and an atmospheric measurement package operated by CIRPAS measuring aerosols, temperature, dew-point, and other atmospheric parameters. Three of the flights were accompanied by the Next Generation Airborne Visual InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft. Large-scale, high-concentration CH4 plumes were detected by the MAMAP instrument over the fields and tracked over several kilometers. The spatial distribution of the MAMAP observed plumes was compared to high spatial resolution CH4 anomaly maps derived by AVIRIS-NG imaging spectroscopy data. Remote sensing data collected by MAMAP was used to infer CH4 emission rates and their distributions over the three fields. Aggregated emission estimates for the three fields were compared to aggregated emissions inferred by subsequent airborne in-situ validation measurements collected by the Picarro instrument. Comparison of remote sensing and in-situ flux estimates will be presented, demonstrating the ability of airborne remote sensing data to provide accurate emission estimates for concentrations above the

  3. Initial results from flight testing a large, remotely piloted airplane model. [flight tests of remotely controlled scale model of F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Holleman, E. C. (Compiler)

    1974-01-01

    The first four flights of a remotely piloted airplane model showed that a flight envelope can be expanded rapidly and that hazardous flight tests can be conducted safely with good results. The flights also showed that aerodynamic data can be obtained quickly and effectively over a wide range of flight conditions, clear and useful impressions of handling and controllability of configurations can be obtained, and present computer and electronic technology provide the capability to close flight control loops on the ground, thus providing a new method of design and flight test for advanced aircraft.

  4. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  5. Genes galore: a summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones.

    PubMed Central

    Newman, T; de Bruijn, F J; Green, P; Keegstra, K; Kende, H; McIntosh, L; Ohlrogge, J; Raikhel, N; Somerville, S; Thomashow, M

    1994-01-01

    High-throughput automated partial sequencing of anonymous cDNA clones provides a method to survey the repertoire of expressed genes from an organism. Comparison of the coding capacity of these expressed sequence tags (ESTs) with the sequences in the public data bases results in assignment of putative function to a significant proportion of the ESTs. Thus, the more than 13,400 plant ESTs that are currently available provide a new resource that will facilitate progress in many areas of plant biology. These opportunities are illustrated by a description of the results obtained from analysis of 1500 Arabidopsis ESTs from a cDNA library prepared from equal portions of poly(A+) mRNA from etiolated seedlings, roots, leaves, and flowering inflorescences. More than 900 different sequences were represented, 32% of which showed significant nucleotide or deduced amino acid sequences similarity to previously characterized genes or proteins from a wide range of organisms. At least 165 of the clones had significant deduced amino acid sequence homology to proteins or gene products that have not been previously characterized from higher plants. A summary of methods for accessing the information and materials generated by the Arabidopsis cDNA sequencing project is provided. PMID:7846151

  6. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    NASA Astrophysics Data System (ADS)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  7. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests.

    PubMed

    Salinas, N; Malhi, Y; Meir, P; Silman, M; Roman Cuesta, R; Huaman, J; Salinas, D; Huaman, V; Gibaja, A; Mamani, M; Farfan, F

    2011-03-01

    • We present the results from a litter translocation experiment along a 2800-m elevation gradient in Peruvian tropical forests. The understanding of the environmental factors controlling litter decomposition is important in the description of the carbon and nutrient cycles of tropical ecosystems, and in predicting their response to long-term increases in temperature. • Samples of litter from 15 species were transplanted across all five sites in the study, and decomposition was tracked over 448 d. • Species' type had a large influence on the decomposition rate (k), most probably through its influence on leaf quality and morphology. When samples were pooled across species and elevations, soil temperature explained 95% of the variation in the decomposition rate, but no direct relationship was observed with either soil moisture or rainfall. The sensitivity of the decay rate to temperature (κ(T)) varied seven-fold across species, between 0.024 and 0.169 °C⁻¹, with a mean value of 0.118 ± 0.009 °C⁻¹ (SE). This is equivalent to a temperature sensitivity parameter (Q₁₀) for litter decay of 3.06 ± 0.28, higher than that frequently assumed for heterotrophic processes. • Our results suggest that the warming of approx. 0.9 °C experienced in the region in recent decades may have increased decomposition and nutrient mineralization rates by c. 10%. PMID:21077887

  8. Large-Scale Air Mass Characteristics Observed Over the Remote Tropical Pacific Ocean During March-April 1999: Results from PEM-Tropics B Field Experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Grant, William B.; Ismail, Syed; Ferrare, Richard A.; Kooi, Susan A.; Brackett, Vincent G.; Clayton, Marian B.; Avery, Melody A.

    2001-01-01

    Eighteen long-range flights over the Pacific Ocean between 38 S to 20 N and 166 E to 90 W were made by the NASA DC-8 aircraft during the NASA Pacific Exploratory Mission (PEM) Tropics B conducted from March 6 to April 18, 1999. Two lidar systems were flown on the DC-8 to remotely measure vertical profiles of ozone (O3), water vapor (H2O), aerosols, and clouds from near the surface to the upper troposphere along their flight track. In situ measurements of a wide range of gases and aerosols were made on the DC-8 for comprehensive characterization of the air and for correlation with the lidar remote measurements. The transition from northeasterly flow of Northern Hemispheric (NH) air on the northern side of the Intertropical Convergence Zone (ITCZ) to generally easterly flow of Southern Hemispheric (SH) air south of the ITCZ was accompanied by a significant decrease in O3, carbon monoxide, hydrocarbons, and aerosols and an increase in H2O. Trajectory analyses indicate that air north of the ITCZ came from Asia and/or the United States, while the air south of the ITCZ had a long residence time over the Pacific, perhaps originating over South America several weeks earlier. Air south of the South Pacific Convergence Zone (SPCZ) came rapidly from the west originating over Australia or Africa. This air had enhanced O3 and aerosols and an associated decrease in H2O. Average latitudinal and longitudinal distributions of O3 and H2O were constructed from the remote and in situ O3 and H2O data, and these distributions are compared with results from PEM-Tropics A conducted in August-October 1996. During PEM-Tropics B, low O3 air was found in the SH across the entire Pacific Basin at low latitudes. This was in strong contrast to the photochemically enhanced O3 levels found across the central and eastern Pacific low latitudes during PEM-Tropics A. Nine air mass types were identified for PEM-Tropics B based on their O3, aerosols, clouds, and potential vorticity characteristics. The

  9. Direct liquefaction of biomass: Results from operation of continuous bench scale unit in liquefaction of water slurries of Douglas fir wood

    NASA Astrophysics Data System (ADS)

    Schaleger, L. L.; Figueroa, C.; Davis, H. G.

    1982-05-01

    A continuous liquefaction unit (CLU) is discussed. The operation was single pass, feeding water slurries of prehydrolyzed Douglas fir wood (LBL process). Significant differences from results with the oil slurry, high oil, and water recycle process (PERC process) were found. The LBL process, at practicable temperatures and residence times, makes somewhat less wood oil and considerably more water-soluble product than does PERC. Consumption of carbon monoxide in LBL, other than by water gas shift reaction, is minimal, as opposed to several tenths of a mole per 100 grams of wood in PERC. Replacement of carbon monoxide with hydrogen as reactant gas makes little or no difference in yield distribution or product analysis. Progress in characterizing the oil and water-soluble product, the overall stoichiometry of the LBL and PERC processes, and the role of formate ion are described.

  10. Are we meeting the standards set for endoscopy? Results of a large‐scale prospective survey of endoscopic retrograde cholangio‐pancreatograph practice

    PubMed Central

    Williams, Earl J; Taylor, Steve; Fairclough, Peter; Hamlyn, Adrian; Logan, Richard F; Martin, Derrick; Riley, Stuart A; Veitch, Peter; Wilkinson, Mark; Williamson, Paula R; on behalf of participating units, Martin Lombard

    2007-01-01

    Objective To examine endoscopic retrograde cholangio‐pancreatography (ERCP) services and training in the UK. Design Prospective multicentre survey. Setting Five regions of England. Participants Hospitals with an ERCP unit. Outcome measures Adherence to published guidelines, technical success rates, complications and mortality. Results Organisation questionnaires were returned by 76 of 81 (94%) units. Personal questionnaires were returned by 190 of 213 (89%) ERCP endoscopists and 74 of 91 (81%) ERCP trainees, of whom 45 (61%) reported participation in <50 ERCPs per annum. In all, 66 of 81 (81%) units collected prospective data on 5264 ERCPs, over a mean period of 195 days. Oximetry was used by all units, blood pressure monitoring by 47 of 66 (71%) and ECG monitoring by 37 of 66 (56%) units; 1484 of 4521 (33%) patients were given >5 mg of midalozam. Prothrombin time was recorded in 4539 of 5264 (86%) procedures. Antibiotics were given in 1021 of 1412 (72%) cases, where indicated. Patients' American Society of Anesthesiology (ASA) scores were 3–5 in 670 of 5264 (12.7%) ERCPs, and 4932 of 5264 (94%) ERCPs were scheduled with therapeutic intent. In total, 140 of 182 (77%) trained endoscopists demonstrated a cannulation rate ⩾80%. The recorded cannulation rate among senior trainees (with an experience of >200 ERCPs) was 222/338 (66%). Completion of intended treatment was done in 3707 of 5264 (70.4%) ERCPs; 268 of 5264 (5.1%) procedures resulted in a complication. Procedure‐related mortality was 21/5264 (0.4%). Mortality correlated with ASA score. Conclusion Most ERCPs in the UK are performed on low‐risk patients with therapeutic intent. Complication rates compare favourably with those reported internationally. However, quality suffers because there are too many trainees in too many low‐volume ERCP centres. PMID:17145737

  11. Regional-scale geometry of the central Skellefte district, northern Sweden—results from 2.5D potential field modeling along three previously acquired seismic profiles

    NASA Astrophysics Data System (ADS)

    Tavakoli, Saman; Bauer, Tobias E.; Elming, Sten-Åke; Thunehed, Hans; Weihed, Pär

    2012-10-01

    The Skellefte district in northern Sweden is one of the most important mining districts in Europe hosting approximately 80 volcanic massive sulfide (VMS) deposits. Due to its economical importance, geological and geophysical studies were carried out in order to create an image of the geometry of the upper crustal structure and integral geological elements and to evaluate their relationship to mineral deposits. Consequently, seismic reflection data along three sub-parallel profiles were acquired during 2009-2010 to map the spatial relationships between the geological structures down to a depth of ~ 4.5 km. Although these seismic studies helped researchers understand the regional relationship between geologic units in the central Skellefte district (CSD), the seismic reflection data did not succeed entirely in mapping the lithological contacts in the area. In this study, the model derived from the seismic reflection data was examined by using 2.5D modeling of potential field data (down to a 5 km depth) constrained by physical properties of the rocks and surface geology. Moreover, we modeled gravity and magnetic data along the non-reflective or poorly reflective parts of the seismic profiles to identify major lithological contacts and shear zones in the CSD, which could not be modeled on the basis of the seismic reflection data. Gravity and magnetic data helped reveal the spatial relationship between the Skellefte volcanic rocks, Vargfors group meta-sedimentary rocks and two meta­intrusive complexes. Results suggest a maximum depth extent of 2.1 km for the tectonic contact at the southern border of the Jörn granitoid. Furthermore, this north-dipping Skellefte-Jörn contact coincides closely with magnetic lows and gravity highs, which implies that the Jörn intrusive rocks have a greater thickness than the underlying basalt. Further to the NW, gravity and magnetic data suggest a depth extent of 2 km for the Gallejaur complex, which coincides with a set of gently

  12. Early Results from the HexPak and GradPak Variable-Scale Dual-Head IFUs on the WIYN 3.5-meter Telescope

    NASA Astrophysics Data System (ADS)

    Hooper, Eric; Bershady, Matthew A.; Eigenbrot, Arthur; Wood, Corey M.; Buckley, Scott; Smith, Michael; Corson, Charles; Wolf, Marsha J.; Zhu, Guanying Y.; Vang, Andrea; Gallagher, John S.; Sheinis, Andrew; Washburn Astronomical Laboratories

    2015-01-01

    The WIYN Observatory recently installed two new integral field units (IFUs) on its 3.5-meter telescope on Kitt Peak, Arizona. Each IFU is unique in that it contains different sized fibers in the same head to optimize the tradeoff between spatial resolution and surface brightness sensitivity for observations of galaxies. These instruments were designed and constructed (M. Bershady, PI) at the University of Wisconsin's Washburn Astronomical Laboratory. HexPak, with a central core of 1 arcsec fibers surrounded by a halo of 3 arcsec fibers, was designed for early type, face-on disk, and quasar host galaxies. GradPak, with a series of rows of fibers of increasing diameter from 2 arcsec to 6 arcsec (5 different diameters total), was designed for edge-on galaxies, where the small fibers lie along the midplane and larger fibers sample the progressively lower surface brightnesses above the plane. The instruments were installed alongside the existing SparsePak IFU in late 2013 and have been used in several observing runs since. The different fiber sizes present additional data reduction challenges, particularly regarding flux calibration and sky subtraction. Early results on studies of the stellar populations of galaxies are quite promising and demonstrate the advantages of fiber sizes tailored to the objects under study. HexPak and GradPak were built with funds from NSF award ATI-0804576.

  13. RHUM-RUM, a Large-Scale Effort to Seismologically Image a Mantle Plume Under the Reunion Hotspot: Experiment Presentation and Initial Results

    NASA Astrophysics Data System (ADS)

    Sigloch, K.; Barruol, G.

    2014-12-01

    RHUM-RUM is a German-French geophysical experiment based on the seafloor and on islands surrounding the hotspot of La Réunion, western Indian Ocean. Its primary objective is to clarify the presence or absence of a mantle plume beneath the Reunion hotspot, which is thought to have first pierced the surface 65 million years ago with the eruption of the Deccan Traps on India. RHUM-RUM's central component is a one-year deployment (Oct 2012 - Nov 2013) of 57 broadband ocean-bottom seismometers (OBS) and hydrophones on an area of 2000x2000 km2 surrounding the hotspot. All OBS have been successfully recovered. We also have been operating 37 land seismometers on the islands of La Réunion, Mauritius, Rodrigues, southern Seychelles, îles Eparses, and on Madagascar between 2011 and 2014. As the data collection stage is drawing to a close, we discuss data yield and quality with respect to RHUM-RUM's primary purpose (passive seismological imaging through all depth levels of the mantle) and secondary applications ("environmental seismology" in a sparsely instrumented area, e.g., tracking of tropical cyclones). We give an overview of the research questions investigated by the RHUM-RUM group, and present preliminary results.

  14. Peak-Seeking Control For Reduced Fuel Consumption: Flight-Test Results For The Full-Scale Advanced Systems Testbed FA-18 Airplane

    NASA Technical Reports Server (NTRS)

    Brown, Nelson

    2013-01-01

    A peak-seeking control algorithm for real-time trim optimization for reduced fuel consumption has been developed by researchers at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center to address the goals of the NASA Environmentally Responsible Aviation project to reduce fuel burn and emissions. The peak-seeking control algorithm is based on a steepest-descent algorithm using a time-varying Kalman filter to estimate the gradient of a performance function of fuel flow versus control surface positions. In real-time operation, deflections of symmetric ailerons, trailing-edge flaps, and leading-edge flaps of an F/A-18 airplane are used for optimization of fuel flow. Results from six research flights are presented herein. The optimization algorithm found a trim configuration that required approximately 3 percent less fuel flow than the baseline trim at the same flight condition. This presentation also focuses on the design of the flight experiment and the practical challenges of conducting the experiment.

  15. Subclinical psychosis syndromes in the general population: results from a large-scale epidemiological survey among residents of the canton of Zurich, Switzerland.

    PubMed

    Rössler, W; Ajdacic-Gross, V; Haker, H; Rodgers, S; Müller, M; Hengartner, M P

    2015-02-01

    Aims. Prevalence and covariates of subclinical psychosis have gained increased interest in the context of early identification and treatment of persons at risk for psychosis. Methods. We analysed 9829 adults representative of the general population within the canton of Zurich, Switzerland. Two psychosis syndromes, derived from the SCL-90-R, were applied: 'schizotypal signs' and 'schizophrenia nuclear symptoms'. Results. Only a few subjects (13.2%) reported no schizotypal signs. While 33.2% of subjects indicated mild signs, only a small proportion (3.7%) reported severe signs. A very common outcome was no 'schizophrenia nuclear symptoms' (70.6%). Although 13.5% of the participants reported mild symptoms, severe nuclear symptoms were very rare (0.5%). Because these two syndromes were only moderately correlated (r = 0.43), we were able to establish sufficiently distinct symptom clusters. Schizotypal signs were more closely connected to distress than was schizophrenia nuclear symptoms, even though their distribution types were similar. Both syndromes were associated with several covariates, such as alcohol and tobacco use, being unmarried, low education level, psychopathological distress and low subjective well-being. Conclusions. Subclinical psychosis symptoms are quite frequent in the general population but, for the most part, are not very pronounced. In particular, our data support the notion of a continuous Wald distribution of psychotic symptoms in the general population. Our findings have enabled us to confirm the usefulness of these syndromes as previously assessed in other independent community samples. Both can appropriately be associated with well-known risk factors of schizophrenia. PMID:24280150

  16. Emotional and behavioural problems amongst Afghan unaccompanied asylum-seeking children: results from a large-scale cross-sectional study.

    PubMed

    Bronstein, Israel; Montgomery, Paul; Ott, Eleanor

    2013-05-01

    Unaccompanied asylum-seeking children (UASC) are considered at high risk for mental health problems, yet few studies focus on single ethnic populations. This study presents results from the largest Afghan UASC mental health survey in the U.K. Specifically, the study aims to estimate the prevalence of emotional and behavioural problems and to investigate the associations of these problems with demographic variables, cumulative traumatic events, and care and migration variables. A census sample of 222 Afghan UASC was interviewed using validated self-report screening measures. Emotional and behavioural problems were screened using the Hopkins Symptoms Checklist 37A (HSCL-37A). Pre-migration stressful life events were screened using the Stressful Life Events Questionnaire. Administrative data on care and asylum were provided by the local authority social services and the UK Border Agency. Approximately one-third (31.4%) scored above cut-offs for emotional and behavioural problems, 34.6% for anxiety and 23.4% for depression. Ordinary least squares regression indicated a significant dose-response relationship between total pre-migration traumatic events and distress as well as between increased time in the country and greater behavioural problems. Compound traumatic events in the pre-migration stages of forced migration have a deleterious association with UASC well-being. Increased time in country suggests a possible peer effect for these children. Consistent with other studies on refugee children, it should be stressed that the majority of UASC scored below suggested cut-offs, thus displaying a marked resilience despite the experience of adverse events. PMID:23229138

  17. Development, testing, and demonstration of an optimal fine coal cleaning circuit. Task 5: Evaluation of bench-scale test results and equipment selection for in-plant pilot tests

    SciTech Connect

    1995-12-14

    The overall objective of this research effort is to improve the efficiency of fine coal flotation in preparation plants above that of currently used conventional cells. In addition to evaluating single-stage operation of four selected advanced flotation devices, the project will also evaluate them in two-stage configurations. The project is being implemented in two phases. Phase 1 comprises bench-scale testing of the flotation units, and Phase 2 comprises in-plant, proof-of-concept (POC), pilot-scale testing of selected configurations at the Cyprus Emerald preparation plant. The Task 5 report presents the findings of the Phase 1 bench-scale test results and provides the basis for equipment selection for Phase 2. Four advanced flotation technologies selected for bench-scale testing are: Jameson cell; Outokumpu HG tank cell; packed column; and open column. In addition to testing all four of the cells in single-stage operation, the Jameson and Outokumpu cells were tested as candidate first-stage cells because of their propensity for rapid attachment of coal particles with air bubbles and low capital and operating costs. The column cells were selected as candidate second-stage cells because of their high-efficiency separation of low-ash products from high-ash feed coals. 32 figs., 72 tabs.

  18. Results of flow visualization studies in the NASA/MSFC 14 x 14 inch trisonic wind tunnel on a .004 scale model (34-0) space shuttle orbiter and integrated vehicle

    NASA Technical Reports Server (NTRS)

    Garton, W. P.

    1974-01-01

    Details are presented of flow visualization techniques developed during wind tunnel test IA-52 conducted in a 14 x 14 inch trisonic wind tunnel. Testing was conducted from Mach = 0.9 to 5.0 on the orbiter alone and integrated vehicle configurations. Thin film oil paint and ultraviolet light sensitive oil applications were used on a .004 scale model vehicle. Test results presented are in the form of black and white photographs taken after the completion of a test run.

  19. Results of experimental tests in the MSFC 14 x 14 inch trisonic wind tunnel on a .004 scale model space shuttle integrated vehicle 5 (model 77-O, 74-TS) to relieve wing loads during ascent (IA71)

    NASA Technical Reports Server (NTRS)

    Allen, E. C.

    1975-01-01

    Results are presented for the 0.004-scale orbiter, external tank, and solid rocket boosters combined as an integrated vehicle in a trisonic wind tunnel at mach numbers from 0.6 to 2.0. The primary test objective was to determine the effectiveness of several methods in relieving the Orbiter wing bending and torsion loads and moments during launch. Effects of several midwing spoilers, termed flipper doors, and Orbiter/external tank incidence were investigated. Photographs are included.

  20. Scaling satan.

    PubMed

    Wilson, K M; Huff, J L

    2001-05-01

    The influence on social behavior of beliefs in Satan and the nature of evil has received little empirical study. Elaine Pagels (1995) in her book, The Origin of Satan, argued that Christians' intolerance toward others is due to their belief in an active Satan. In this study, more than 200 college undergraduates completed the Manitoba Prejudice Scale and the Attitudes Toward Homosexuals Scale (B. Altemeyer, 1988), as well as the Belief in an Active Satan Scale, developed by the authors. The Belief in an Active Satan Scale demonstrated good internal consistency and temporal stability. Correlational analyses revealed that for the female participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men and intolerance toward ethnic minorities. For the male participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men but was not significantly related to intolerance toward ethnic minorities. Results of this research showed that it is possible to meaningfully measure belief in an active Satan and that such beliefs may encourage intolerance toward others.

  1. Scaling satan.

    PubMed

    Wilson, K M; Huff, J L

    2001-05-01

    The influence on social behavior of beliefs in Satan and the nature of evil has received little empirical study. Elaine Pagels (1995) in her book, The Origin of Satan, argued that Christians' intolerance toward others is due to their belief in an active Satan. In this study, more than 200 college undergraduates completed the Manitoba Prejudice Scale and the Attitudes Toward Homosexuals Scale (B. Altemeyer, 1988), as well as the Belief in an Active Satan Scale, developed by the authors. The Belief in an Active Satan Scale demonstrated good internal consistency and temporal stability. Correlational analyses revealed that for the female participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men and intolerance toward ethnic minorities. For the male participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men but was not significantly related to intolerance toward ethnic minorities. Results of this research showed that it is possible to meaningfully measure belief in an active Satan and that such beliefs may encourage intolerance toward others. PMID:11577971

  2. Nuclear scales

    SciTech Connect

    Friar, J.L.

    1998-12-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  3. Results of an air data probe investigation utilizing a 0.10 scale orbiter forebody (model 57-0) in the Ames Research Center 14-foot wind tunnel (OA220)

    NASA Technical Reports Server (NTRS)

    Esparza, V.; Thornton, D. E.

    1976-01-01

    Results are presented of a 0.10 scale orbiter forebody test with left and right mounted air data probes (ADP) as well as a flight test probe (nose boom). Left and right ADP data were obtained at Mach numbers of .3, .4, .5, .6, .7, .8, .85, .9, .95, .98, 1.05 and 1.1 through a Reynolds number range of 1.3 to 4.4 million. Nose boom data were obtained at Mach numbers of .3, .4, .5, .6, .7, .9 and .98.

  4. Results of oil flow visualization tests of an 0.010-scale model (52-OT) of the space shuttle orbiter-tank mated and orbiter configurations in the AEDC VKF tunnel B (IA17B)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.

    1975-01-01

    An 0.010-scale model of the space shuttle (orbiter-tank mated and orbiter configurations) was tested in the AEDC VKF Tunnel B to investigate aerodynamic flow patterns. The tests utilized oil flow techniques to visualize the flow patterns. Tunnel free stream Mach number was 7.95 and nominal unit Reynolds number was 3.7 million per foot. Model angle of attack was varied from -5 deg through 10 deg and angle of sideslip was 0 deg and 2 deg. Photographs of resulting oil flow patterns are presented.

  5. Results of tests of a Rockwell International space shuttle orbiter (-139 configuration) 0.0175-scale model (no. 29-0) in AEDC tunnel F to determine hypersonic heating effects (OH11)

    NASA Technical Reports Server (NTRS)

    Quan, M.

    1975-01-01

    Results from wind tunnel tests to determine hypersonic aerodynamic heating rates on a NASA/Rockwell Space Shuttle Orbiter are reported. The tests were to determine Mach number effects, if any, and to obtain overall heating rate data at high Mach numbers from 10.5 to 16. The model used was a 0.0175-scale model built to Rockwell Orbiter lines VL70-000139. The model identity number is 29-0. These tests, designated OH11, were conducted in the AEDC Tunnel F.

  6. Results of phase change paint thermal mapping test OH46 using the 0.006-scale model 90-0 in the NASA LaRC variable density tunnel

    NASA Technical Reports Server (NTRS)

    Cummings, J. W.; Dye, W. H.

    1977-01-01

    Results of a test conducted in the NASA LaRC Mach 8 variable density tunnel to obtain thermal contours on a 0.006 scale model of the configuration 140B Space Shuttle Orbiter are presented using the phase change paint technique. The model was tested at 25 deg, 30 deg, and 35 deg angle of attack at unit Reynolds numbers ranging from 1.0 through 8.0 million per foot. The model was tested with and without a ventral fin mounted on its bottom centerline. Elevon deflections of 0 deg and 10 deg and bodyflap deflections of 0 and 13.75 deg were investigated.

  7. Results of tests using a 0.030-scale model (45-0) of space shuttle vehicle orbiter in the NASA/ARC 12-foot pressure wind tunnel (OA159)

    NASA Technical Reports Server (NTRS)

    Marroquin, J.

    1975-01-01

    An experimental investigation (test OA159) was conducted in the NASA/ARC 12-foot Pressure Wind Tunnel from June 23 through July 8, 1975. The objective was to obtain detailed strut tare and interference effects of the support system used in the NASA/ARC 40 x 80-foot wind tunnel during 0.36-scale orbiter testing (OA100). Six-component force and moment data were obtained through an angle-of-attack range from -9 through +18 degrees with 0 deg angle of sideslip and a sideslip angle range from -9 through +18 degrees at 9 deg angle of attack results are presented.

  8. Occupational Cohort Time Scales

    PubMed Central

    Roth, H. Daniel

    2015-01-01

    Purpose: This study explores how highly correlated time variables (occupational cohort time scales) contribute to confounding and ambiguity of interpretation. Methods: Occupational cohort time scales were identified and organized through simple equations of three time scales (relational triads) and the connections between these triads (time scale web). The behavior of the time scales was examined when constraints were imposed on variable ranges and interrelationships. Results: Constraints on a time scale in a triad create high correlations between the other two time scales. These correlations combine with the connections between relational triads to produce association paths. High correlation between time scales leads to ambiguity of interpretation. Conclusions: Understanding the properties of occupational cohort time scales, their relational triads, and the time scale web is helpful in understanding the origins of otherwise obscure confounding bias and ambiguity of interpretation. PMID:25647318

  9. Development of the perceptions of racism scale.

    PubMed

    Green, N L

    1995-01-01

    Racism may be a factor in low-birth-weight (LBW) and preterm delivery in African American childbearing women. Because no satisfactory measure of racism existed, the Perception of Racism Scale (PRS) was developed. The PRS was pilot tested on 109 participants from churches and community organizations. The scale was then used in a study of 136 childbearing women to investigate LBW and preterm delivery. Twenty items rated on a 4-point Likert-type scale were scored with 1 as the lowest and 4 as the highest perception of racism. Alpha reliabilities were .88 for the pilot and .91 for the study. Content validity was strengthened by expert panel critique. Reliability, content validity, and construct validity were demonstrated and no undue participant burden was observed. The scale is an effective instrument to measure perceptions of racism by African American women.

  10. Radionuclide migration in clayrock host formations for deep geological disposal of radioactive waste: advances in process understanding and up-scaling methods resulting from the EC integrated project `Funmig

    NASA Astrophysics Data System (ADS)

    Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.

    2009-04-01

    migration of most radionuclides in clayrocks, in particular the actinides, is limited by their strong sorption on rock mineral surfaces. Much effort was devoted in Funmig to improving understanding of this process on the clayrocks being studied in the Swiss, Belgian and French radwaste management programs. Specific attention was focused on (i) elucidating the effect of dissolved organic matter on Am(III), Th(IV), Eu(III) sorption on clayrock surfaces and (ii) determining the link between Kd measured on dispersed rock systems and the Kd operant in intact rock volumes, i.e. during diffusion. Regarding the latter question, results indicate that Kd values for ‘dispersed' and ‘intact' materials are quite similar for certain elements (Na, Sr, Cs, Co). On the other hand, Kd values obtained by modeling results of diffusion experiments involving strongly sorbing elements as Cs, Co and Eu were always significantly smaller than those predicted based on sorption data measured in corresponding batch systems. This is an area where additional research is being planned. A major effort was devoted to improving understanding of the effects of small-scale (m to cm) clayrock structure and large-scale (dm to hm) mineralogical composition on radionuclide diffusion-retention. The program focusing on the small-scale produced a method for simulating the results of tracer diffusion in an intact rock based on the actual rock microstructure of the rock sample to be used in the diffusion experiment. This model was used to predict / inverse model the spatial distribution of highly sorbing tracers (Eu, Cu). This overall approach is also being used to understand how changes in mineralogical composition can affect the values of macroscopic diffusion parameters (De, tortuosity, anisiotropy). At a much larger scale, the results of (i) a geostatistical analysis of clayrock mineralogical variability and (ii) measurements of De and Kd dependence on mineralogy for Cs and Cl, were combined to create models

  11. Results of phase change paint heat transfer tests utilizing 0.040 scale 50% forebody models (No. 82-0) of the Rockwell International space shuttle orbiter in AEDC VKF hypersonic tunnel B (test OH54A)

    NASA Technical Reports Server (NTRS)

    Dye, W. H.

    1976-01-01

    Results of aerodynamic heating tests conducted in October 1974 on a space shuttle orbiter model using the phase change paint technique are presented. The model was a 0.040 scale representation of the forward 50 percent of the orbiter. Surface roughness effects on boundary layer transition were investigated. Roughness was simulated by using steel balls varying in diameter from 0 (no balls) to 0.039 inch with 0.040 inch wide by 0.080 inch deep gaps. A nominal Mach number of 8 was tested with Reynolds number varying from 0.75 through 3.5 million per foot. Angle of attack was varied from 20 deg to 40 deg.

  12. Results of investigations on an 0.015-scale model (49-0) of the Rockwell International Space Shuttle orbiter in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (0A98)

    NASA Technical Reports Server (NTRS)

    Milam, M. D.; Dzuibala, T. J.

    1975-01-01

    The results of a wind tunnel test are presented; the model used for this test was 0.015-scale 140 A/B hybrid configuration of the space shuttle orbiter. The primary test objectives were to obtain incremental data on the effects of a sting mount on base pressures and force and moment data. The increments obtained included the addition of MPS nozzles as well as the deletion of the simulated sting mount. Six-component aerodynamic force and moment data were recorded over an angle of attack range from 12 to 42 degrees at 0 and 5 degrees angles of sideslip. The testing was accomplished at Mach 5.3 and Mach 10.3. The effects of various elevon, body flap, and speed brake settings were investigated, and static pressures were measured at the fuselage base for use in force-data reduction.

  13. Manual of Scaling Methods

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H. (Technical Monitor); Anderson, David N.

    2004-01-01

    This manual reviews the derivation of the similitude relationships believed to be important to ice accretion and examines ice-accretion data to evaluate their importance. Both size scaling and test-condition scaling methods employing the resulting similarity parameters are described, and experimental icing tests performed to evaluate scaling methods are reviewed with results. The material included applies primarily to unprotected, unswept geometries, but some discussion of how to approach other situations is included as well. The studies given here and scaling methods considered are applicable only to Appendix-C icing conditions. Nearly all of the experimental results presented have been obtained in sea-level tunnels. Recommendations are given regarding which scaling methods to use for both size scaling and test-condition scaling, and icing test results are described to support those recommendations. Facility limitations and size-scaling restrictions are discussed. Finally, appendices summarize the air, water and ice properties used in NASA scaling studies, give expressions for each of the similarity parameters used and provide sample calculations for the size-scaling and test-condition scaling methods advocated.

  14. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result

  15. Successful Up-Scaled Population Interventions to Reduce Risk Factors for Non-Communicable Disease in Adults: Results from the International Community Interventions for Health (CIH) Project in China, India and Mexico

    PubMed Central

    Dyson, Pamela A.; Anthony, Denis; Fenton, Brenda; Stevens, Denise E.; Champagne, Beatriz; Li, Li-Ming; Lv, Jun; Ramírez Hernández, Jorge; Thankappan, K. R.; Matthews, David R.

    2015-01-01

    Background Non-communicable disease (NCD) is increasing rapidly in low and middle-income countries (LMIC), and is associated with tobacco use, unhealthy diet and physical inactivity. There is little evidence for up-scaled interventions at the population level to reduce risk in LMIC. Methods The Community Interventions for Health (CIH) program was a population-scale community intervention study with comparator population group undertaken in communities in China, India, and Mexico, each with populations between 150,000-250,000. Culturally appropriate interventions were delivered over 18-24 months. Two independent cross-sectional surveys of a stratified sample of adults aged 18-64 years were conducted at baseline and follow-up. Results A total of 6,194 adults completed surveys at baseline, and 6,022 at follow-up. The proportion meeting physical activity recommendations decreased significantly in the control group (C) (44.1 to 30.2%), but not in the intervention group (I) (38.0 to 36.1%), p<0.001. Those eating ≥5 portions of fruit and vegetables daily decreased significantly in C (19.2 to 17.2%), but did not change in I (20.0 to 19.6%,), p=0.013. The proportion adding salt to food was unchanged in C (24.9 to 25.3%) and decreased in I (25.9 to 19.6%), p<0.001. Prevalence of obesity increased in C (8.3 to 11.2%), with no change in I (8.6 to 9.7%,) p=0.092. Concerning tobacco, for men the difference-in-difference analysis showed that the reduction in use was significantly greater in I compared to C (p=0.014) Conclusions Up-scaling known health promoting interventions designed to reduce the incidence of NCD in whole communities in LMIC is feasible, and has measurable beneficial outcomes on risk factors for NCD, namely tobacco use, diet, and physical inactivity. PMID:25875825

  16. Validity of the Children's Orientation to Book Reading Rating Scale

    ERIC Educational Resources Information Center

    Kaderavek, Joan N.; Guo, Ying; Justice, Laura M.

    2014-01-01

    The present study investigates the validity of a 4-point rating scale used to measure the level of preschool children's orientation to literacy during shared book reading. Validity was explored by (a) comparing the children's level of literacy orientation as measured with the "Children's Orientation to Book Reading Rating…

  17. What ethical issues are Japanese epidemiologists facing? Results of a questionnaire study for members of the Monbusho Research Committee on evaluation of risk factors for cancer by large-scale cohort study. Subcommittee of Ethical Issues.

    PubMed

    1996-08-01

    In 1993 questionnaires concerning ethical issues were mailed to 34 committee members of the Monbusho research committee of a large-scale cohort study which started in 1988 including 32 rural communities and 4 occupational groups. The questionnaire survey revealed the following results. 1. In all cohorts, "informed consent" for health questionnaires was carried out, though the methods varied. 2. Although the method varied, informed consent for collection of blood was obtained in 28 (77.8%) of the 34 cohorts. The committee decided that the collected specimens without consent is not used for study. 3. The protection of privacy was deliberately planned and has been carefully carried out in the cohort study. 4. The committee members' concerns for ethical issues has increased after joining the cohort study. 5. The attitudes of informed consent for collection of blood at mass screenings showed wide differences among research objects and researchers. These results suggested that the research members had a considerably high concern for ethical issues and that ethical considerations in epidemiological studies should be continued in Japan.

  18. Scale and scaling in soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scale is recognized as a central concept in the description of the hierarchical organization of our world. Pressing environmental and societal problems such require an understanding of how processes operate at different scales, and how they can be linked across scales. Soil science as many other dis...

  19. Comparative interrater reliability of Asian Stroke Disability Scale, modified Rankin Scale and Barthel Index in patients with brain infarction

    PubMed Central

    Ghandehari, Kavian; Ghandehari, Kosar; Saffarian-Toosi, Ghazaleh; Masoudinezhad, Shahram; Yazdani, Siamak; Nooraddin, Ali; Ebrahimzadeh, Saeed; Ahmadi, Fahimeh; Abrishamchi, Fatemeh

    2012-01-01

    BACKGROUND This study tried to develop an Asian Stroke Disability Scale (ASDS) and compared its interrater reliability with modified Rankin Scale (mRS) and Barthel Index (BI). METHODS Three items including self-care, mobility, and daily activities were selected as variables for development of the ASDS. The variables were provisionally graded on a 2- to 4-point scale based on the importance of each item. Each of the variables was categorized into 3 categories. Afterward, 125 rater-patient assessments for each scale (mRS, BI, and ASDS) were performed on 25 stroke patients by 5 raters. For categorization of functional impairment as minor or major, the scores of mRS, BI and ASDS were categorized as ≤ 2 and > 2, < 90 and ≥ 90, and < 3 and ≥ 3, respectively.125 rater-patient assessments for each of the mRS, BI, and ASDS were performed on 25 stroke patients by five raters. RESULTS The quantitative variability of BI, mRS, and ASDS scores was not significant (P = 0.379; P = 0.780; and P = 0.835, respectively). Interrater variability of mRS, BI, and ASDS scores based on qualitative categorization was not significant (P = 1.000; P = 0.978; and P = 0.901, respectively). Paired interrater variability of mRS, BI, and ASDS scores based on qualitative categorization was not significant (P > 0.05). CONCLUSION The ASDS is easy to use, requires less than 1 minute to complete and is as valid as mRS and BI in assessment of functional impairment of patients with stroke. PMID:23359790

  20. Beyond the Floor Effect on the Wechsler Intelligence Scale for Children-4th Ed. (WISC-IV): Calculating IQ and Indexes of Subjects Presenting a Floored Pattern of Results

    ERIC Educational Resources Information Center

    Orsini, A.; Pezzuti, L.; Hulbert, S.

    2015-01-01

    Background: It is now widely known that children with severe intellectual disability show a 'floor effect' on the Wechsler scales. This effect emerges because the practice of transforming raw scores into scaled scores eliminates any variability present in participants with low intellectual ability and because intelligence quotient (IQ) scores are…

  1. Heat-transfer test results for a .0275-scale space shuttle external tank with a 10 deg/40 deg double cone-ogive nose in the NASA/AMES 3.5-foot hypersonic wind tunnel (FH14), volume 2

    NASA Technical Reports Server (NTRS)

    Carroll, H. R.

    1977-01-01

    A .0275 scale forebody model of the new baseline configuration of the space shuttle external tank vent cap configuration was tested to determine the flow field due to the double cone configuration. The tests were conducted in a 3.5 foot hypersonic wind tunnel at alpha = -5 deg, -4.59 deg, 0 deg, 5 deg, and 10 deg; beta = 0 deg, -3 deg, -5.51 deg, -6 deg, -9 deg, and +6 deg; nominal freestream Reynolds numbers per foot of 1.5 x 1 million, 3.0 x 1 million, and 5.0 x 1 million; and a nominal Mach number of 5. Separation and reattached flow from thermocouple data, shadowgraphs, and oil flows indicate that separation begins about 80% from the tip of the 10 deg cone, then reattaches on the vent cap and produces fully turbulent flow over most of the model forebody. The hardware disturbs the flow over a much larger area than present TPS application has assumed. A correction to the flow disturbance was experimentally suggested from the results of an additional test run.

  2. Methods for evaluating temporal groundwater quality data and results of decadal-scale changes in chloride, dissolved solids, and nitrate concentrations in groundwater in the United States, 1988-2010

    USGS Publications Warehouse

    Lindsey, Bruce D.; Rupert, Michael G.

    2012-01-01

    Decadal-scale changes in groundwater quality were evaluated by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. Samples of groundwater collected from wells during 1988-2000 - a first sampling event representing the decade ending the 20th century - were compared on a pair-wise basis to samples from the same wells collected during 2001-2010 - a second sampling event representing the decade beginning the 21st century. The data set consists of samples from 1,236 wells in 56 well networks, representing major aquifers and urban and agricultural land-use areas, with analytical results for chloride, dissolved solids, and nitrate. Statistical analysis was done on a network basis rather than by individual wells. Although spanning slightly more or less than a 10-year period, the two-sample comparison between the first and second sampling events is referred to as an analysis of decadal-scale change based on a step-trend analysis. The 22 principal aquifers represented by these 56 networks account for nearly 80 percent of the estimated withdrawals of groundwater used for drinking-water supply in the Nation. Well networks where decadal-scale changes in concentrations were statistically significant were identified using the Wilcoxon-Pratt signed-rank test. For the statistical analysis of chloride, dissolved solids, and nitrate concentrations at the network level, more than half revealed no statistically significant change over the decadal period. However, for networks that had statistically significant changes, increased concentrations outnumbered decreased concentrations by a large margin. Statistically significant increases of chloride concentrations were identified for 43 percent of 56 networks. Dissolved solids concentrations increased significantly in 41 percent of the 54 networks with dissolved solids data, and nitrate concentrations increased significantly in 23 percent of 56 networks. At least one of the three - chloride, dissolved solids, or

  3. Belt scales user's guide

    SciTech Connect

    Rosenberg, N.I. )

    1993-02-01

    A conveyor-belt scale provides a means of obtaining accurate weights of dry bulk materials without delaying other plant operations. In addition, for many applications a belt scale is the most cost-effective alternative among many choices for a weighing system. But a number of users are not comfortable with the accuracy of their belt scales. In cases of unsatisfactory scale performance, it is often possible to correct problems and achieve the accuracy that was expected. To have a belt scale system that is accurate, precise, and cost effective, practical experience has shown that certain basic requisites must be satisfied. These requisites include matching the scale capability to the needs of the application, selecting durable scale equipment and conveyor idlers, adopting improved conveyor support methods, employing superior scale installation and alignment techniques, and establishing and practicing an effective scale testing and performance monitoring program. The goal of the Belt Scale Users' Guide is to enable utilities to reap the benefits of consistently accurate output from their new or upgraded belt scale installations. Such benefits include eliminating incorrect payments for coal receipts, improving coal pile inventory data, providing better heat rate results to enhance plant efficiency and yield more economical power dispatch, and satisfying regulatory agencies. All these benefits can reduce the cost of power generation.

  4. Millimeter Scale.

    ERIC Educational Resources Information Center

    Harvill, Leo M.

    This absolute scale contains nine times, each of which consists of a 100 millimeter vertical line with small division marks every 25 millimeters with the words "high" at the top and "low" at the bottom of the line. Above each of the vertical lines is a word or phrase. For the second grade scale these words are: arithmetic, counting, adding,…

  5. Activity Scale.

    ERIC Educational Resources Information Center

    Kerpelman, Larry C.; Weiner, Michael J.

    This twenty-four item scale assesses students' actual and desired political-social activism in terms of physical participation, communication activities, and information-gathering activities. About ten minutes are required to complete the instrument. The scale is divided into two subscales. The first twelve items (ACT-A) question respondents on…

  6. Psychometric properties of the Scale for Quality Evaluation of the Bachelor Degree in Nursing Version 2 (QBN 2).

    PubMed

    Macale, Loreana; Scialò, Gennaro; Di Sarra, Luca; De Marinis, Maria Grazia; Rocco, Gennaro; Vellone, Ercole; Alvaro, Rosaria

    2014-03-01

    To evaluate all the variables that affect nursing education is important for nursing educators to have valid and reliable instruments that can measure the perceived quality of the Bachelor Degree in Nursing. This study testing the Scale for Quality Evaluation of the Bachelor Degree in Nursing instrument and its psychometric properties with a descriptive design. Participant were first, second and third year students of the Bachelor Degree in Nursing Science from three Italian universities. The Scale for Quality Evaluation of Bachelor Degree in Nursing consists of 65 items that use a 4 point Likert scale ranging from "strongly disagree" to "strongly agree". The instrument comes from a prior version with 41 items that were modified and integrated with 24 items to improve reliability. Six hundred and fifty questionnaires were completed and considered for the present study. The mean age of the students was 24.63 years, 65.5% were females. Reliability of the scale resulted in a very high Cronbach's alpha (0.96). The construct validity was tested with factor analysis that showed 7 factors. The Scale for Quality Evaluation of the Bachelor Degree in Nursing, although requiring further studies, represents a useful instrument to measure the quality of the Bachelor Nursing Degree. PMID:23810577

  7. Parabolic scaling beams.

    PubMed

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  8. Scale-Up of Palladium Powder Production Process for Use in the Tritium Facility at Westinghouse, Savannah River, SC/Summary of FY99-FY01 Results for the Preparation of Palladium Using the Sandia/LANL Process

    SciTech Connect

    David P. Baldwin; Daniel S. Zamzow; R. Dennis Vigil; Jesse T. Pikturna

    2001-08-24

    Palladium used at Savannah River (SR) for process tritium storage is currently obtained from a commercial source. In order to understand the processes involved in preparing this material, SR is supporting investigations into the chemical reactions used to synthesize this material. The material specifications are shown in Table 1. An improved understanding of the chemical processes should help to guarantee a continued reliable source of Pd in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and Ames Laboratory (AL) was initiated. During FY98, the process for producing Pd powder developed in 1986 by Dan Grove of Mound Applied Technologies, USDOE (the Mound muddy water process) was studied to understand the processing conditions that lead to changes in morphology in the final product. During FY99 and FY00, the process for producing Pd powder that has been used previously at Sandia and Los Alamos National Laboratories (the Sandia/LANL process) was studied to understand the processing conditions that lead to changes in the morphology of the final Pd product. During FY01, scale-up of the process to batch sizes greater than 600 grams of Pd using a 20-gallon Pfaudler reactor was conducted by the Iowa State University (ISU) Chemical Engineering Department. This report summarizes the results of FY99-FY01 Pd processing work done at AL and ISU using the Sandia/LANL process. In the Sandia/LANL process, Pd is dissolved in a mixture of nitric and hydrochloric acids. A number of chemical processing steps are performed to yield an intermediate species, diamminedichloropalladium (Pd(NH{sub 3}){sub 2}Cl{sub 2}, or DADC-Pd), which is isolated. In the final step of the process, the Pd(NH{sub 3}){sub 2}Cl{sub 2} intermediate is subsequently redissolved, and Pd is precipitated by the addition of a reducing agent (RA) mixture of formic acid and sodium formate. It is at this point that the morphology of the Pd product is

  9. Trapezio-metacarpal arthrodesis: procedure and results.

    PubMed

    Galán, Adolfo; Arenas, Javier R; del Águila, Belén; Guerado, Enrique; Andrés-Cano, Pablo

    2015-04-01

    The high prevalence of trapezio-metacarpal joint (TMJ) osteoarthritis leads to develop techniques to improve surgical outcomes when conservative treatment has failed. We have evaluated 18 patients with Eaton III TMJ osteoarthritis, who underwent an arthrodesis. Using a dorsal-radial curved shaped skin incision the TMJ was exposed through the space between the abductor pollicis longus and the extensor pollicis brevis muscles. The articular capsule was divided and the TMJ was opened. Neat curettage was then performed in both joint surfaces by removing all the articular cartilage until some cancellous bone hints appeared underneath. The joint was then fixed in the optimal position by a 1.6 mm Kirschner wire and a 1.1 mm guide wire. A cannulated drill for the guide wire was used and matched to a cannulated lag screw. Then, a cylinder-shaped cancellous bone autograft harvested from the distal radius by a percutaneous approach was applied in the hole by drilling backwards in order to spread the bone about onto the hole walls. The joint was then definitively fixed by the cannulated lag screw. The K wires were removed by that time. DASH score changed from an average of 68 in the preoperative assessment to 39.4 at the end of the evolution time. The evolution of pain has decreased from 9.2 points preoperatively to 3.9 points in the postoperative using the visual analogue scale. In terms of mobility, it has decreased from 4 points preoperatively to 3.9 postoperatively, 14 patients got opposition of the thumb to the fifth finger, two of them to the head of the fifth metacarpal bone, one patient to the fourth finger, and one to the third. This slight decrease of mobility had no effect on performing activities of daily life, as expressed by the patients. The grip strength increased from 17 to 21.7 kg and the thumb opposition from 7.8 to 11.2 kg. All patients, except one, would have the operation again after knowing the final results. This patient said that results did not

  10. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 3

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat-transfer data for the 0.0175-scale space shuttle vehicle 3 are presented, and interference heating effects were investigated by a model build-up technique of the orbiter. The test program was conducted at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1,500,000 and 5,000,000.

  11. Results of tests in the AEDC VKF Tunnel B using the phase change paint technique on 0.04 scale 50 percent forebody models (82-0) of the Rockwell space shuttle orbiter (OH50A)

    NASA Technical Reports Server (NTRS)

    Quan, M.

    1976-01-01

    Model information and data from wind tunnel tests conducted on 0.04 scale 50 percent forebody models of the Space Shuttle Orbiter were presented. These tests were conducted using the phase change paint technique to determine aerodynamic heating rates due to various proturberances and recessions. Angles of attack from 20 deg through 45 deg were investigated at Mach 8.

  12. Scale interactions

    NASA Astrophysics Data System (ADS)

    Snow, John T.

    Since the time of the first world war, investigation of synoptic processes has been a major focus of atmospheric research. These are the physical processes that drive the continuously evolving pattern of high and low pressure centers and attendant frontal boundaries that are to be seen on continental-scale weather maps. This effort has been motivated both by a spirit of scientific inquiry and by a desire to improve operational weather forecasting by national meteorological services. These national services in turn have supported the development of a global observational network that provides the data required for both operational and research purposes. As a consequence of this research, there now exists a reasonable physical understanding of many of the phenomena found at this synoptic scale. This understanding is reflected in the numerical weather forecast models used by the national services. These have shown significant skill in predicting the evolution of synoptic-scale features for periods extending out to five days.

  13. Scaling Rules!

    NASA Astrophysics Data System (ADS)

    Malkinson, Dan; Wittenberg, Lea

    2015-04-01

    Scaling is a fundamental issue in any spatially or temporally hierarchical system. Defining domains and identifying the boundaries of the hierarchical levels may be a challenging task. Hierarchical systems may be broadly classified to two categories: compartmental and continuous ones. Examples of compartmental systems include: governments, companies, computerized networks, biological taxonomy and others. In such systems the compartments, and hence the various levels and their constituents are easily delineated. In contrast, in continuous systems, such as geomorphological, ecological or climatological ones, detecting the boundaries of the various levels may be difficult. We propose that in continuous hierarchical systems a transition from one functional scale to another is associated with increased system variance. Crossing from a domain of one scale to the domain of another is associated with a transition or substitution of the dominant drivers operating in the system. Accordingly we suggest that crossing this boundary is characterized by increased variance, or a "variance leap", which stabilizes, until crossing to the next domain or hierarchy level. To assess this we compiled sediment yield data from studies conducted at various spatial scales and from different environments. The studies were partitioned to ones conducted in undisturbed environments, and those conducted in disturbed environments, specifically by wildfires. The studies were conducted in plots as small as 1 m2, and watersheds larger than 555000 ha. Regressing sediment yield against plot size, and incrementally calculating the variance in the systems, enabled us to detect domains where variance values were exceedingly high. We propose that at these domains scale-crossing occurs, and the systems transition from one hierarchical level to another. Moreover, the degree of the "variance leaps" characterizes the degree of connectivity among the scales.

  14. Results of an experimental investigation to determine separation characteristics for the Orbiter/747 using a 0.0125-scale model (48-0 AX1318I-1 747) in the Ames Research Center 14-foot wind tunnel (CA23B)

    NASA Technical Reports Server (NTRS)

    Esparza, V.

    1976-01-01

    Aerodynamic separation data obtained from a wind tunnel test of an 0.0125-scale SSV Orbiter model of a VC70-000002 Configuration and a 0.0125-scale 747 model was presented. Separation data was obtained at a Mach number of 0.6 and three incidence angles of 4, 6, and 8 degrees. The orbiter angle of attack was varied from 0 to 14 degrees. Longitudinal, lateral and normal separation increments were obtained for fixed 747 angles of attack of 0, 2, and 4 degrees while varying the orbiter angle of attack. Control surface settings on the 747 carrier included rudder deflections of 0 and 10 degrees and horizontal stabilizer deflections of -1 and +5 degrees.

  15. Results of test IA137 in the NASA/ARC 14 foot transonic wind tunnel of the 0.07 scale external tank forebody (model 68-T) to determine auxiliary aerodynamic data system feasibility

    NASA Technical Reports Server (NTRS)

    Thornton, D. E.

    1976-01-01

    Tests were conducted in a 14 foot transonic wind tunnel to examine the feasibility of the auxiliary aerodynamic data system (AADS) for determining angles of attack and sideslip during boost flight. The model used was a 0.07 scale replica of the external tank forebody consisting of the nose portion and a 60 inch (full scale) cylindrical section of the ogive cylinder tangency point. The model terminated in a blunt base with a 320.0 inch diameter at external tank (ET) station 1120.37. Pressure data were obtained from five pressure orifices (one total and four statics) on the nose probe, and sixteen surface static pressure orifices along the ET forebody.

  16. Results of investigations with an 0.015-scale model (49-0) of the Rockwell International space shuttle vehicle 140A/B configuration with modified OMS pods and elevons in the AEDC VKF tunnel B (0A79)

    NASA Technical Reports Server (NTRS)

    Esparza, V.; Lindsay, A. I.

    1975-01-01

    Aerodynamic data obtained from wind tunnel tests of an 0.015-scale space shuttle vehicle Orbiter model of a 140A/B configuration with modified orbital manuevering system pods and elevons are documented. Force data was obtained at various control surface settings and Reynolds numbers in the angle of attack range of 15 deg to 45 deg and at angles of sideslip of -5 deg to +5 deg. Control surface variables included elevon, rudder, speed brake, and body flap configurations.

  17. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5 foot hypersonic wind tunnel (IH3), volume 1

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat transfer data for the 0.0175-scale space shuttle vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-foot hypersonic wind tunnel at Mach 5.3 for nominal free stream Reynolds number per foot values of 1.5, and 5.0 million.

  18. New scale factor measure

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael

    2012-07-01

    The computation of probabilities in an eternally inflating universe requires a regulator or “measure.” The scale factor time measure truncates the Universe when a congruence of timelike geodesics has expanded by a fixed volume factor. This definition breaks down if the generating congruence is contracting—a serious limitation that excludes from consideration gravitationally bound regions such as our own. Here we propose a closely related regulator which is well defined in the entire spacetime. The new scale factor cutoff restricts to events with a scale factor below a given value. Since the scale factor vanishes at caustics and crunches, this cutoff always includes an infinite number of disconnected future regions. We show that this does not lead to divergences. The resulting measure combines desirable features of the old scale factor cutoff and of the light-cone time cutoff, while eliminating some of the disadvantages of each.

  19. The inflationary energy scale

    NASA Astrophysics Data System (ADS)

    Liddle, Andrew R.

    1994-01-01

    The energy scale of inflation is of much interest, as it suggests the scale of grand unified physics, governs whether cosmological events such as topological defect formation can occur after inflation, and also determines the amplitude of gravitational waves which may be detectable using interferometers. The COBE results are used to limit the energy scale of inflation at the time large scale perturbations were imprinted. An exact dynamical treatment based on the Hamilton-Jacobi equations is then used to translate this into limits on the energy scale at the end of inflation. General constraints are given, and then tighter constraints based on physically motivated assumptions regarding the allowed forms of density perturbation and gravitational wave spectra. These are also compared with the values of familiar models.

  20. Research Results

    NASA Astrophysics Data System (ADS)

    2012-12-01

    Achievements in Sino-German Interdisciplinary Major Research Project Published by Small A Conserved Proline Switch on the Ribosome Facilitates the Recruitment and Binding of trGTPases Air Pollution Contributes in Sunshine Dimming in China Role of Lymphatic Trafficking and Biodistribution Soft Fibrin Gels Promote Selection and Growth of Tumorigenic Cells Targeted Therapy: The New Lease on Life for Acute Promyelocytic Leukemia, and Beyond The Structural Basis for the Sensing and Binding of Cyclic di-GMP by STING Research on Atomic-Scale Investigation of Li Storage Mechanism in Spinel Li4Ti5O12 NSFC Funded Project Made Significant Progress in Intelligent Nanomaterial and Device Palaeobotany and the Evolution of the Monsoon in China Non Heme System Asymmetric Epoxidation Reaction Made Progress Rapid Advancement of Immunology Study in China Chinese Experts Successfully Produced Transgenic Animals from Haploid Embryonic Stem Cells

  1. Results of phase change paint heat transfer test utilizing 0.040-scale 50% forebody models (no. 82-0) of the Rockwell International Space Shuttle Orbiter in AEDC VKF hypersonic tunnel B (test OH54B)

    NASA Technical Reports Server (NTRS)

    Dye, W. H.

    1977-01-01

    Aerodynamic heating phase change paint tests for the space shuttle orbiter are reported. The model was a 0.040 scale representation of the forward 50% of the orbiter. Surface roughness effects on boundary layer transition were investigated. The roughness was simulated by steel balls 0.020 and 0.025 inch in diameter and a 0.25 in. diameter hole simulating the forward ET attach socket. A nominal Mach number of was tested with unit Reynolds number varying from 0.75 x 1 million ft through 3.5x 1 million ft. Angle of attack was varied from 20 degrees to 40 degrees.

  2. Results of tests OA12 and IA9 in the Ames Research Center unitary plan wind tunnels on an 0.030-scale model of the space shuttle vehicle 2A to determine aerodynamic loads, volume 2

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.

    1973-01-01

    Tests were conducted in Unitary Plan wind tunnels on a 0.30 scale model of the space shuttle. Tests were conducted on the integrated configuration and on the isolated orbiter. The integrated vehicle was tested at angles of attack and sideslip from minus 8 degrees to plus 8 degrees. The isolated orbiter was tested at angles of attack from minus 15 degrees to plus 40 degrees and angles of sideslip from minus 10 degrees to plus 10 degrees as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were investigated.

  3. Results of an external tank separation test in AEDC/VKF tunnel B on 0.010-scale replica of space shuttle vehicle model 52-OT(IA17A), Volume 1

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.; Daileda, J. J.

    1975-01-01

    Tests were conducted on scale models of the space shuttle orbiter and external tank (ET) to determine the aerodynamic interactions during a return to launch site abort separation. The orbiter model was built to vehicle 3 configuration lines (139B) and the ET model approximated the vehicle 5 configurations with protuberances and attach hardware. For these investigations the orbiter was mounted on the primary support system and the external tank was mounted on the captive trajectory system. Six-component data were obtained for each vehicle at various orbiter angles of attack and sideslip for a range of relative angular and linear displacements of the ET from the orbiter.

  4. Results of investigations on an 0.004-scale 140A/B configuration space shuttle vehicle orbiter model (34-0) in the NASA/Langley Research Center hypersonic helium tunnel (OA88)

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1974-01-01

    Data obtained during a wind tunnel test of an 0.004-scale 140A/B configuration SSV Orbiter are reported. The test was conducted at a nominal Mach number of 20 and at Reynolds numbers of 0.7, 1.1, 2.0, and 4 x 10 to the 6th power per foot. The complete 140A/B model was tested with various elevon settings and additionally in wing off/bodyflap off configurations at angles of attack from 18 to 54 degrees at zero yaw. This test was performed to obtain high hypersonic longitudinal and lateral-directional stability and control characteristics of the SSV configuration.

  5. Results of heat transfer tests of an 0.0175-scale space shuttle vehicle model 22 OTS in the NASA-Ames 3.5-foot hypersonic wind tunnel (IH3), volume 4

    NASA Technical Reports Server (NTRS)

    Foster, T. F.; Lockman, W. K.

    1975-01-01

    Heat-transfer data for the 0.0175-scale Space Shuttle Vehicle 3 are presented. Interference heating effects were investigated by a model build-up technique of Orbiter alone, tank alone, second, and first stage configurations. The test program was conducted in the NASA-Ames 3.5-Foot Hypersonic Wind Tunnel at Mach 5.3 for nominal free-stream Reynolds number per foot values of 1.5 x 1,000,000 and 5.0 x 1,000,000.

  6. Results of heat transfer tests of a 0.0175-scale space shuttle vehicle 5 model (60-OTS) in the NASA-Ames Research Center 3.5-foot hypersonic wind tunnel (test IH48)

    NASA Technical Reports Server (NTRS)

    Dye, W. H.; Lockman, W. K.

    1976-01-01

    Heat transfer data are presented for a .0175-scale model of the Rockwell International Space Shuttle Vehicle 5. The primary purpose of these tests was to obtain aerodynamic interference heating data on the external tank in the tank alone, second-, and first-stage configurations. Data were also obtained on the Orbiter and solid rocket boosters. Nominal Mach Nos. of 5.2 and 5.3 at nominal freestream unit Reynolds numbers of 1.5 and 5.0 million per foot, respectively, were investigated. Photographs of the tested configurations and test equipment are shown.

  7. Scaled models, scaled frequencies, and model fitting

    NASA Astrophysics Data System (ADS)

    Roxburgh, Ian W.

    2015-12-01

    I show that given a model star of mass M, radius R, and density profile ρ(x) [x = r/R], there exists a two parameter family of models with masses Mk, radii Rk, density profile ρk(x) = λρ(x) and frequencies νknℓ = λ1/2νnℓ, where λ,Rk/RA are scaling factors. These models have different internal structures, but all have the same value of separation ratios calculated at given radial orders n, and all exactly satisfy a frequency matching algorithm with an offset function determined as part of the fitting procedure. But they do not satisfy ratio matching at given frequencies nor phase shift matching. This illustrates that erroneous results may be obtained when model fitting with ratios at given n values or frequency matching. I give examples from scaled models and from non scaled evolutionary models.

  8. Salzburger State Reactance Scale (SSR Scale)

    PubMed Central

    2015-01-01

    Abstract. This paper describes the construction and empirical evaluation of an instrument for measuring state reactance, the Salzburger State Reactance (SSR) Scale. The results of a confirmatory factor analysis supported a hypothesized three-factor structure: experience of reactance, aggressive behavioral intentions, and negative attitudes. Correlations with divergent and convergent measures support the validity of this structure. The SSR Subscales were strongly related to the other state reactance measures. Moreover, the SSR Subscales showed modest positive correlations with trait measures of reactance. The SSR Subscales correlated only slightly or not at all with neighboring constructs (e.g., autonomy, experience of control). The only exception was fairness scales, which showed moderate correlations with the SSR Subscales. Furthermore, a retest analysis confirmed the temporal stability of the scale. Suggestions for further validation of this questionnaire are discussed. PMID:27453806

  9. The Improbability scale

    SciTech Connect

    Ritchie, David J.; /Fermilab

    2005-03-01

    The Improbability Scale (IS) is proposed as a way of communicating to the general public the improbability (and by implication, the probability) of events predicted as the result of scientific research. Through the use of the Improbability Scale, the public will be able to evaluate more easily the relative risks of predicted events and draw proper conclusions when asked to support governmental and public policy decisions arising from that research.

  10. Integration of the Ultraviolet-Visible Spectral Clementine Data and the Gamma-Ray Lunar Prospector Data: Preliminary Results Concerning FeO, TiO2, and Th Abundances of the Lunar Surface at Global Scale

    NASA Astrophysics Data System (ADS)

    Chevrel, S. D.; Pinet, P. C.; Barreau, G.; Daydou, Y.; Richard, G.; Maurice, S.; Feldman, W. C.

    1999-01-01

    The Clementine mission (CLM) produced global multispectral data that resulted in a map of FeO and Ti02 concentrations of the lunar surface. The recent Lunar Prospector (LP) mission returned the first global data for the distribution of surface abundances of key elements in lunar rocks, using a gamma-ray spectrometer (GRS) and neutron spectrometer(NS). Integrating CLM mineralogical spectral reflectance and LP chemical data is important to enhance our view of lunar crust origin and evolution, lunar volcanism, and surface processes. Iron, Ti, and Th having relatively large compositional variation over the lunar surface, as well as strong isolated peaks in the GRS spectra, information concerning the distribution and concentration of these elements has been derived from maps of corrected (cosmic ray, nonsymmetric response of the instrument) counting rates only, without converting them into absolute abundances. Maps produced contain count rates in equal-area projection averaged into 5 x 5 degrees latitude/longitude bins, from -90 to +90 degrees latitude and -180 to +180 degrees longitude. In this work, we have used the CLM global FeO and Ti02 abundances (wt%) maps converted at the LP spatial resolution (about 150 km/pixel) to produce FeO and TiO2 GRS abundance maps, through a linear regression based on the analysis of the scatter distribution of both datasets. The regression coefficients have been determined from the data taken between -60 and +60 degrees latitude to avoid uncertainties in the CLM spectral data due to nonnominal conditions of observation at high latitudes. After a critical assessment of the validity of these coefficients for every class of absolute abundance, the LP data have been transformed into absolute abundances for the whole Moon. The Th LP data have been converted into abundances (ppm) using Th concentrations in average soils from the Apollo and Luna sites given. Values of Th abundances for these samples range between 0.5 and 13 ppm. A nonlinear

  11. Comparing the theoretical versions of the Beaufort scale, the T-Scale and the Fujita scale

    NASA Astrophysics Data System (ADS)

    Meaden, G. Terence; Kochev, S.; Kolendowicz, L.; Kosa-Kiss, A.; Marcinoniene, Izolda; Sioutas, Michalis; Tooming, Heino; Tyrrell, John

    2007-02-01

    2005 is the bicentenary of the Beaufort Scale and its wind-speed codes: the marine version in 1805 and the land version later. In the 1920s when anemometers had come into general use, the Beaufort Scale was quantified by a formula based on experiment. In the early 1970s two tornado wind-speed scales were proposed: (1) an International T-Scale based on the Beaufort Scale; and (2) Fujita's damage scale developed for North America. The International Beaufort Scale and the T-Scale share a common root in having an integral theoretical relationship with an established scientific basis, whereas Fujita's Scale introduces criteria that make its intensities non-integral with Beaufort. Forces on the T-Scale, where T stands for Tornado force, span the range 0 to 10 which is highly useful world wide. The shorter range of Fujita's Scale (0 to 5) is acceptable for American use but less convenient elsewhere. To illustrate the simplicity of the decimal T-Scale, mean hurricane wind speed of Beaufort 12 is T2 on the T-Scale but F1.121 on the F-Scale; while a tornado wind speed of T9 (= B26) becomes F4.761. However, the three wind scales can be uni-fied by either making F-Scale numbers exactly half the magnitude of T-Scale numbers [i.e. F'half = T / 2 = (B / 4) - 4] or by doubling the numbers of this revised version to give integral equivalence with the T-Scale. The result is a decimal formula F'double = T = (B / 2) - 4 named the TF-Scale where TF stands for Tornado Force. This harmonious 10-digit scale has all the criteria needed for world-wide practical effectiveness.

  12. Results of a landing gear loads test using a 0.0405-scale model (16-0) of the space shuttle orbiter in the Rockwell International NAAL wind tunnel (OA163), volume 1

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1976-01-01

    Experimental aerodynamic investigations were conducted on a sting mounted scale representation of the 140C outer mold line space shuttle orbiter configuration in the low speed wind tunnel. The primary test objectives were to define the orbiter landing gear system pressure loading and to record landing gear door and strut hingemoment levels. Secondary objectives included recording the aerodynamic influence of various landing gear configurations on orbiter force data as well as investigating 40 x 80 ft. Ames Wind Tunnel strut simulation effects on both orbiter landing gear loads and aerodynamic characteristics. Testing was conducted at a Mach number of 0.17, free stream dynamic pressure of 42.5 PSF, and Reynolds number per unit length of 1.2 million per foot. Angle of attack variation was 0 to 20 while yaw angles ranged from -10 to 10 deg.

  13. Results of investigations (OA20A) on a 0.015-scale 140A/B configuration space shuttle vehicle orbiter model in the NASA/Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1974-01-01

    Data obtained from a wind tunnel test of a 0.015-scale 140A/B configuration SSV orbiter model are presented. This test was conducted with runs at Mach numbers of 2.5, 3.9, and 4.6 for a constant Reynolds number of 2.5 x 1,000,000/foot. Only one model configuration, the complete 140A/B orbiter vehicle, was investigated; various control-surface settings were run through angles-of-attack from -4 to +42 degrees at 0 and +3 degrees of yaw and through angles-of-sideslip from -4 to +6 degrees at 0, +10, +20, and +30 degrees pitch. The purpose of this test was to establish and verify longitudinal and lateral-directional stability and control characteristics for the updated SSV configuration.

  14. Results of tests OA12 and IA9 in the Ames Research Center unitary plan wind tunnels on an 0.030-scale model of the space shuttle vehicle 2A to determine aerodynamic loads, volume 14

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.

    1974-01-01

    Tests were conducted in wind tunnels during April and May 1973, on a 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests on the integrated (launch) configuration and the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from -8 degrees to +8 degrees. The isolated orbiter was tested at angles of attack from -15 degrees to +40 degrees and angles of sideslip from -10 degrees to +10 degrees as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were also investigated. Tabulated pressure data were obtained for upper and lower wing surfaces and left and right vertical tail surfaces.

  15. Impacts on Breastfeeding Practices of At-Scale Strategies That Combine Intensive Interpersonal Counseling, Mass Media, and Community Mobilization: Results of Cluster-Randomized Program Evaluations in Bangladesh and Viet Nam

    PubMed Central

    Menon, Purnima; Nguyen, Phuong Hong; Saha, Kuntal Kumar; Tran, Lan Mai; Sanghvi, Tina; Hajeebhoy, Nemat; Afsana, Kaosar; Haque, Raisul; Frongillo, Edward A.; Ruel, Marie T.; Rawat, Rahul

    2016-01-01

    Background Despite recommendations supporting optimal breastfeeding, the number of women practicing exclusive breastfeeding (EBF) remains low, and few interventions have demonstrated implementation and impact at scale. Alive & Thrive was implemented over a period of 6 y (2009–2014) and aimed to improve breastfeeding practices through intensified interpersonal counseling (IPC), mass media (MM), and community mobilization (CM) intervention components delivered at scale in the context of policy advocacy (PA) in Bangladesh and Viet Nam. In Bangladesh, IPC was delivered through a large non-governmental health program; in Viet Nam, it was integrated into government health facilities. This study evaluated the population-level impact of intensified IPC, MM, CM, and PA (intensive) compared to standard nutrition counseling and less intensive MM, CM, and PA (non-intensive) on breastfeeding practices in these two countries. Methods and Findings A cluster-randomized evaluation design was employed in each country. For the evaluation sample, 20 sub-districts in Bangladesh and 40 communes in Viet Nam were randomized to either the intensive or the non-intensive group. Cross-sectional surveys (n ~ 500 children 0–5.9 mo old per group per country) were implemented at baseline (June 7–August 29, 2010, in Viet Nam; April 28–June 26, 2010, in Bangladesh) and endline (June 16–August 30, 2014, in Viet Nam; April 20–June 23, 2014, in Bangladesh). Difference-in-differences estimates (DDEs) of impact were calculated, adjusting for clustering. In Bangladesh, improvements were significantly greater in the intensive compared to the non-intensive group for the proportion of women who reported practicing EBF in the previous 24 h (DDE 36.2 percentage points [pp], 95% CI 21.0–51.5, p < 0.001; prevalence in intensive group rose from 48.5% to 87.6%) and engaging in early initiation of breastfeeding (EIBF) (16.7 pp, 95% CI 2.8–30.6, p = 0.021; 63.7% to 94.2%). In Viet Nam, EBF increases

  16. Results of tests OA12 and IA9 in the Ames Research Center Unitary Plan Wind Tunnels on an 0.030-scale model of the Space Shuttle Vehicle 2A to determine aerodynamic loads, volume 3

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.

    1973-01-01

    Tests were conducted in the NASA/ARC Unitary Plan Wind Tunnels during April and May 1973, on an 0.030-scale replica of the Space Shuttle Vehicle Configuration 2A. Aerodynamic loads data were obtained at Mach numbers from 0.6 to 3.5. The investigation included tests IA9A, B and C on the integrated (launch) configuration and tests OA12A and C on the isolated orbiter (entry configuration). The integrated vehicle was tested at angles of attack and sideslip from -8 degrees to +8 degrees. The isolated orbiter was tested at angles of attack from -15 degrees to +40 degrees and angles of sideslip from -10 degrees to +10 degrees to as dictated by trajectory considerations. The effects of orbiter/external tank incidence angle and deflected control surfaces on aerodynamic loads were also investigated.

  17. Results of tests OA63 and IA29 on an 0.015 scale model of the space shuttle configuration 140 A/B in the NASA/ARC 6- by 6-foot transonic wind tunnel, volume 1

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.; Thornton, D. E.

    1974-01-01

    Tests were conducted in the NASA/ARC 6- by 6-foot transonic wind tunnel from September 12 to September 28, 1973 on an 0.015-scale model of the space shuttle configuration 140 A/B. Surface pressure data were obtained for the orbiter for both launch and entry configuration at Mach numbers from 0.6 to 2.0. The surface pressures were obtained in the vicinity of the cargo bay door hinge and parting lines, the side of the fuselage at the crew compartment and below the OMS pods at the aft compartment. Data were obtained at angles of attack and sideslip consistent with the expected divergencies along the nominal trajectory. These tests were first in a series of tests supporting the orbiter venting analysis. The series will include tests in three facilities covering a total Mach number range from 0.6 to 10.4.

  18. Results of investigations on a 0.004-scale 140C modified configuration space shuttle vehicle orbiter model (74-0) in the NASA/Langley Research Center hypersonic helium tunnel

    NASA Technical Reports Server (NTRS)

    Hawthorne, P. J.

    1975-01-01

    Data obtained during a wind tunnel test of a 0.004-scale 140C modified configuration SSV orbiter are documented. The test was conducted during August 1974 with 80 occupancy hours charged, and all runs were conducted at a nominal Mach number of 20 and at Reynolds numbers of 0.7, 1.0, 1.8, and 1,100,000 based on body length. The complete -140C modified model was tested with various elevon settings at angles of attack from 10 to 50 degrees at zero yaw and from angles of sideslip of -10 to +10 at 35 deg angle of attack. The purpose of this test was to obtain high hypersonic longitudinal and lateral-directional stability and control characteristics of the updated SSV configuration.

  19. Aerodynamic results of a separation effects test on a 0.010-scale model (52-OTS) of the integrated SSV in the AEDC/VKF 40-by-40 inch supersonic wind tunnel A (IA111), volume 1

    NASA Technical Reports Server (NTRS)

    Chee, E.

    1976-01-01

    Graphical data obtained during experimental wind tunnel aerodynamic investigations of a 0.010 scale model (52-OTS) of the integrated space shuttle vehicle was presented. The purpose of this investigation was to obtain data with the solid rocket booster (SRB) in proximity to the orbiter/external tank (O/ET), over a large O/ET initial angle of attack and sideslip range, as well as data on the SRB alone (greatly separated from the O/ET). A captive trajectory system, which supported the SRB, was used with the tunnel primary sector (supporting the O/ET) to obtain grid type separation effects data. One symmetrical SRB model was used interchangeably to obtain right-hand and left-hand SRB data. The entire investigation was conducted at a free-stream Mach number of 4.5 at unit Reynolds number of 3.95 and 5.9 million per foot.

  20. Results of Aerothermodynamic and Boundary-Layer Transition Testing of 0.0362-Scale X-38 (Rev. 3.1) Vehicle in NASA Langley 20-Inch Mach 6 Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Roback, V. Eric; Williams, George B., Jr.

    1997-01-01

    The aeroheating characteristics of the X-38 Revision 3.1 lifting-body configuration have been experimentally examined in the Langley 20-inch Mach 6 Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on a 0.0362-scale model of a proposed Space Station Crew Return Vehicle at Mach 6 in air. Parametric variations include angles-of-attack of 20 deg, 30 deg, and 40 deg; Reynolds numbers based on model length of 0.9 to 3.7 million; and body-flap deflections of O deg, 20 deg, 25 deg, and 30 deg. The effects of discrete roughness elements, which included trip height, location, size, and orientation, as well as multiple-trip parametrics, were investigated. This document is intended to serve as a quick release of preliminary data to the X-38 program; analysis is limited to observations of the experimental trends in order to expedite dissemination.

  1. Results of an investigation elevon hinge moments and dual panel elevon effectiveness using an .0405-scale model (16-0) of the configuration 140C space shuttle orbiter in the Rockwell International NAAL low speed wind tunnel (OA119B)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1975-01-01

    Experimental aerodynamic investigations were conducted on a sting mounted .0405-scale representation of the 140C outer mold line space shuttle orbiter in a 7.75 x 11.00 foot low speed wind tunnel during the time period from August 22, 1974 to September 6, 1974. The primary test objectives were to define dual panel elevon/aileron effectiveness and to investigate elevon hinge-moments for the 140C orbiter configuration with wing/elevon upper hingeline sealing flapper doors. The elevon parametric variations, consisting of the basic elevons with 6 inch gaps and flapper doors, elevons with no flapper doors and completely open upper hingeline gap, and an entirely sealed solid elevon, were tested with elevon deflections from +20 to -35 deg at various aileron deflections. Aerodynamic force and moment data were measured in the body axis system by a 2.5 inch task type internal strain gage balance.

  2. Results of a landing gear loads test using a 0.0405-scale model (16-0) of the space shuttle orbiter in the Rockwell International NAAL wind tunnel (OA163B), volume 1

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1977-01-01

    Aerodynamic loads on a sting mounted 0.045-scale representation of the 140C outer mold line space shuttle orbiter configuration were measured to verify orbiter landing gear system pressure loading and hinge moment levels. Pressure, force, and hinge moment data, recorded over smaller increments of the landing gear deployment schedule to insure data accuracy and to investigate the effects of asymmetric gear deployment on all parameters, are presented. Tests were conducted at a Mach number of 0.17, and freestream dynamic pressure of 42.5 psf, and a Reynolds number per unit length of 1.2 million foot. Angle of attack variation was -2 to 10 degrees while angles of sideslip varied from -5 to 5 degrees.

  3. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 1

    NASA Technical Reports Server (NTRS)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Data is given in graphical and tabular form.

  4. Results of the space shuttle vehicle ascent air data system probe calibration test using a 0.07-scale external tank forebody model (68T) in the AEDC 16-foot transonic wind tunnel (IA-310), volume 2

    NASA Technical Reports Server (NTRS)

    Collette, J. G. R.

    1991-01-01

    A recalibration of the Space Shuttle Vehicle Ascent Air Data System probe was conducted in the Arnold Engineering and Development Center (AEDC) transonic wind tunnel. The purpose was to improve on the accuracy of the previous calibration in order to reduce the existing uncertainties in the system. A probe tip attached to a 0.07-scale External Tank Forebody model was tested at angles of attack of -8 to +4 degrees and sideslip angles of -4 to +4 degrees. High precision instrumentation was used to acquire pressure data at discrete Mach numbers ranging from 0.6 to 1.55. Pressure coefficient uncertainties were estimated at less than 0.0020. Additional information is given in tabular form.

  5. Results of an investigation of the space shuttle integrated vehicle aerodynamic heating characteristics obtained using the 0.0175-scale model 60-OTS in AEDC tunnel A during tests IH41 and IH41A

    NASA Technical Reports Server (NTRS)

    Cummings, J. W.; Dye, W. H.

    1977-01-01

    A thin skin thermocouple test was conducted to obtain heat-transfer data on the space shuttle integrated vehicle during the ascent phase of the flight profile. The test model was the 0.0175-scale thin skin thermocouple model (60-OTS) of the Rockwell International vehicle 5 configuration. The test was conducted at nominal Mach numbers of 2.5, 3.5, 4.5, and 5.5, and a free stream unit Reynolds number of 5 million per ft. Heat transfer data were obtained for angles of attack of 0, + or - 5, and 10 deg and yaw angles of 0, 3, and 6 deg. The integrated vehicle model was tested with the external tank configured with both a smooth ogive nose and an ogive nose with a spherical nose tip (nipple nose). The remainder of the test was conducted with the external tank installed alone in the tunnel.

  6. Aerodynamic results of a separation effects test on a 0.010-scale model (52-OTS) of the integrated SSV in the AEDC/VKF 40-by-40 inch supersonic wind tunnel A (IA111), volume 2

    NASA Technical Reports Server (NTRS)

    Chee, E.

    1976-01-01

    Tabular data obtained during experimental wind tunnel aerodynamic investigations of a 0.010 scale model (52-OTS) of the integrated space shuttle vehicle was presented. The purpose of this investigation was to obtain data with the solid rocket booster (SRB) in proximity to the orbiter/external tank (O/ET), over a large O/ET initial angle of attack and sideslip range, as well as data on the SRB alone (greatly separated from the O/ET). A captive trajectory system, which supported the SRB, was used with the tunnel primary sector (supporting the O/ET) to obtain grid type separation effects data. One symmetrical SRB model was used interchangeably to obtain right-hand and left-hand SRB data. The entire investigation was conducted at free-stream Mach number of 4.5 at unit Reynolds number of 3.95 and 5.9 million per foot.

  7. Latest results from Planck

    NASA Astrophysics Data System (ADS)

    Tauber, Jan; sSubmitted Planck Collaboration

    2016-01-01

    This talk will present an overview of the most recent Planck data and results, with emphasis on polarization.The use of CMB polarization data from Planck confirms the best-fit Lambda-CDM model obtained with Planck temperature-only data, and improves the accuracy with which cosmological parameters are determined. The most recent results based on polarized E-mode and B-mode CMB power spectra at large angular scales will be presented, and their implications for the epoch of reionization and primordial gravitational waves.In this talk I will also present the latest analysis of polarized diffuse galactic foreground emissions based on Planck data. Both the synchrotron and dust emission maps obtained from Planck reveal new facets of the galactic interstellar medium. In particular dust emission holds the promise of providing a model of the large-scale 3D shape of the Galactic magnetic field, as well as its small scale behavior.

  8. Validating the Rett Syndrome Gross Motor Scale.

    PubMed

    Downs, Jenny; Stahlhut, Michelle; Wong, Kingsley; Syhler, Birgit; Bisgaard, Anne-Marie; Jacoby, Peter; Leonard, Helen

    2016-01-01

    Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age and genotype were investigated. Clinical assessment scores for 38 girls and women with Rett syndrome who attended the Danish Center for Rett Syndrome were used to assess consistency of measurement. Principal components analysis enabled the calculation of three factor scores: Sitting, Standing and Walking, and Challenge. Motor scores were poorer with increasing age and those with the p.Arg133Cys, p.Arg294* or p.Arg306Cys mutation achieved higher scores than those with a large deletion. The repeatability of clinical assessment was excellent (intraclass correlation coefficient for total score 0.99, 95% CI 0.93-0.98). The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice and clinical trials.

  9. Global scale precipitation from monthly to centennial scales: empirical space-time scaling analysis, anthropogenic effects

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to

  10. QCD results from CDF

    SciTech Connect

    Plunkett, R.; The CDF Collaboration

    1991-10-01

    Results are presented for hadronic jet and direct photon production at {radical}{bar s} = 1800 GeV. The data are compared with next-to-leading QCD calculations. A new limit on the scale of possible composite structure of the quarks is also reported. 12 refs., 4 figs.

  11. Scaling in Columnar Joints

    NASA Astrophysics Data System (ADS)

    Morris, Stephen

    2007-03-01

    Columnar jointing is a fracture pattern common in igneous rocks in which cracks self-organize into a roughly hexagonal arrangement, leaving behind an ordered colonnade. We report observations of columnar jointing in a laboratory analog system, desiccated corn starch slurries. Using measurements of moisture density, evaporation rates, and fracture advance rates, we suggest an advective-diffusive system is responsible for the rough scaling behavior of columnar joints. This theory explains the order of magnitude difference in scales between jointing in lavas and in starches. We investigated the scaling of average columnar cross-sectional areas in experiments where the evaporation rate was fixed using feedback methods. Our results suggest that the column area at a particular depth is related to both the current conditions, and hysteretically to the geometry of the pattern at previous depths. We argue that there exists a range of stable column scales allowed for any particular evaporation rate.

  12. Research Results

    NASA Astrophysics Data System (ADS)

    2011-12-01

    Research on Global Carbon Emission and Sequestration NSFC Funded Project Made Significant Progress in Quantum Dynamics Functional Human Blood Protein Obtained from Rice How Giant Pandas Thrive on a Bamboo Diet New Evidence of Interpersonal Violence from 129,000 Years Ago Found in China Aptamer-Mediated Efficient Capture and Release of T Lymphocytes on Nanostructured Surfaces BGI Study Results on Resequencing 50 Accessions of Rice Cast New Light on Molecular Breeding BGI Reports Study Results on Frequent Mutation of Genes Encoding UMPP Components in Kidney Cancer Research on Habitat Shift Promoting Species Diversification

  13. Full-scale testing and early production results from horizontal air sparging and soil vapor extraction wells remediating jet fuel in soil and groundwater at JFK International Airport, New York

    SciTech Connect

    Roth, R.J.; Bianco, P.; Kirshner, M.; Pressly, N.C.

    1996-12-31

    Jet fuel contaminated soil and groundwater contaminated at the International Arrivals Building (IAB) of the JFK International Airport in Jamaica, New York, are being remediated using soil vapor extraction (SVE) and air sparging (AS). The areal extent of the contaminated soil is estimated to be 70 acres and the volume of contaminated groundwater is estimated to be 2.3 million gallons. The remediation uses approximately 13,000 feet of horizontal SVE (HSVE) wells and 7,000 feet of horizontal AS (HAS) wells. The design of the HSVE and HAS wells was based on a pilot study followed by a full-scale test. In addition to the horizontal wells, 28 vertical AS wells and 15 vertical SVE wells are used. Three areas are being remediated, thus, three separate treatment systems have been installed. The SVE and AS wells are operated continuously while groundwater will be intermittently extracted at each HAS well, treated by liquid phase activated carbon and discharged into stormwater collection sewerage. Vapors extracted by the SVE wells are treated by vapor phase activated carbon and discharged into ambient air. The duration of the remediation is anticipated to be between two and three years before soil and groundwater are remediated to New York State cleanup criteria for the site. Based on the monitoring data for the first two months of operation, approximately 14,600 lbs. of vapor phase VOCs have been extracted. Analyses show that the majority of the VOCs are branched alkanes, branched alkenes, cyclohexane and methylated cyclohexanes.

  14. Results of an investigation of Reynolds effects on integrated vehicle elevon hinge moments and wing panel loads obtained with 0.010 scale model 72 OTS in the Rockwell trisonic wind tunnel (IA141)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1976-01-01

    Wind tunnel investigations were conducted on an 0.010-scale representation of the VL70-000140C Integrated Space Shuttle Launch Vehicle. The primary test objective was to obtain Reynolds number effects on orbiter elevon hinge moments and wing bending/torsional moments. Launch vehicle aerodynamic force data were also recorded. The elevon hinge moments, wing bending/torsional moments, and vehicle force data were recorded over an angle of attack range of -6 deg to +6 deg, an angle of sideslip range of -6 deg to +6 deg, at Mach numbers of 0.6, 0.975, 1.05 and 1.25. The Reynolds number was varied from a minimum of 4.5 million/foot to a maximum of 11.5 million/foot. The complete integrated configuration was tested with the orbiter elevons set at 0 deg and deflected to 9 deg on the outboard elevon and 10 deg on the inboard elevon. Testing was conducted in the TWT 19.7% porous transonic test section with the model sting mounted through the orbiter base. All aerodynamic force data were obtained from internal strain gage balance located in the orbiter.

  15. Results of aeroheating DFI and ET design-data test on a 0.0175-scale model 60-OTS conducted in the Von Karman Gas Dynamics Facility (VKF) 40" supersonic and the 50" hypersonic wind tunnels A and C

    NASA Technical Reports Server (NTRS)

    Marroquin, J.; Leef, C. R.

    1985-01-01

    The 0.0175-scale thin-skin thermocouple Model 60-OTS was tested in the von Karman Gas Facility 40-inch continuous flow supersonic tunnel A and the VKF Tunnel C. Testing was conducted at Mach numbers 2.25 to 4.0, and Reynolds numbers from 0.4 x 10 to the 6th power/ft to 6.6 x 10 to the 6th power/ft. Angle of attack range was from -5.0 to +5.0 degrees, and angle of sideslip range was from -6 to +6 degrees. The primary objective of this test was to provide a valid base for the external tank (ET) and solid rocket booster (SRB) heating prediction methodology for ascent flight by taking heating data at Development Flight Instrumentation (DFI) locations for flight conditions simulating STS-1 through -4. A second objective was to obtain additional aeroheating data to support potential reduction of the thermal protection system (TPS) on the ET. The third phase of the test was funded and conducted by NASA/MSFC for the purpose of establishing confidence in the data base from the lower temperature tunnel A.

  16. Results of investigations of an 0.010-scale 140A/B configuration (model 72-OTS) of the Rockwell International space shuttle orbiter in the NASA/Langley Research Center unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Petrozzi, M. T.; Milam, M. D.

    1975-01-01

    Experimental aerodynamic investigations were conducted in the NASA/Langley unitary plan wind tunnel on a sting mounted 0.010-scale outer mold line model of the 140A/B configuration of the Rockwell International Space Shuttle Vehicle. The primary test objectives were to obtain: (1) six component force and moment data for the mated vehicle at subsonic and transonic conditions, (2) effects of configuration build-up, (3) effects of protuberances, ET/orbiter fairings and attach structures, and (4) elevon deflection effects on wing bending moment. Six component aerodynamic force and moment data and base and balance cavity pressures were recorded over Mach numbers of 1.6, 2.0, 2.5, 2.86, 3.9, and 4.63 at a nominal Reynolds number of 20 to the 6th power per foot. Selected configurations were tested at angles of attack and sideslip from -10 deg to +10 deg. For all configurations involving the orbiter, wing bending, and torsion coefficients were measured on the right wing.

  17. Aerodynamic results of a separation effects test on a 0.01-scale model (52-OTS) of integrated SSV in the AEDC/VKF 40-by-40 inch supersonic wind tunnel A, volume 1

    NASA Technical Reports Server (NTRS)

    Campbell, J. H., II

    1975-01-01

    Experimental aerodynamic investigations were conducted, during the period July 18-19, 1974, in the AEDC/VKF Tunnel A facility on a 0.01-scale model (52-OTS) of the integrated space shuttle vehicle, including only one SRB. The purpose of the investigation was to obtain data for close-in proximity (SRB to orbiter/tank) effects with the orbiter/tank combination at relatively high alpha and beta attitudes, and with the SRB separation motors off. The AEDC Captive Trajectory System (CTS), which supported the SRB, was used in conjunction with the tunnel primary sector (supporting the orbiter/tank) to obtain grid type separation effects data. The one symmetrical SRB model was used interchangeably to obtain both right-hand and left-hand SRB data. Free-stream data were also obtained for the orbiter/tank and for the SRB. This data was used to provide baselines for proximity effects. The entire investigation was conducted at a free-stream Mach number of 4.5 with unit Reynolds number ranging from 4.0 to 6.5 million per foot.

  18. Results of tests of advanced flexible insulation vortex and flow environments in the North American Aerodynamics Laboratory lowspeed wind tunnel using 0.0405-scale Space Shuttle Orbiter model 16-0 (test OA-309)

    NASA Technical Reports Server (NTRS)

    Marshall, B. A.; Nichols, M. E.

    1984-01-01

    An experimental investigation (Test OA-309) was conducted using 0.0405-scale Space Shuttle Orbiter Model 16-0 in the North American Aerodynamics Laboratory 7.75 x 11.00-foot Lowspeed Wind Tunnel. The primary purpose was to locate and study any flow conditions or vortices that might have caused damage to the Advanced Flexible Reusable Surface Insulation (AFRSI) during the Space Transportation System STS-6 mission. A secondary objective was to evaluate vortex generators to be used for Wind Tunnel Test OS-314. Flowfield visualization was obtained by means of smoke, tufts, and oil flow. The test was conducted at Mach numbers between 0.07 and 0.23 and at dynamic pressures between 7 and 35 pounds per square foot. The angle-of-attack range of the model was -5 degrees through 35 degrees at 0 or 2 degrees of sideslip, while roll angle was held constant at zero degrees. The vortex generators were studied at angles of 0, 5, 10, and 15 degrees.

  19. Results of transonic tests in the NASA/MSFC 14-inch trisonic wind tunnel on a 0.004-scale model (74-OTS) space shuttle launch vehicle (FA25)

    NASA Technical Reports Server (NTRS)

    Lundy, T. E.

    1979-01-01

    The primary objective of the test was to determine the aerodynamic increments due to the attach structure. Secondary objectives were to determine the effects of: (1) orbiter nose mold line changes; (2) wire bundle fairings on data measurements; and (3) flow angularity. The scale model was tested over the Mach range from 0.60 to 1.25 at angles of attack and sideslip from -8 to +8 deg. The total pressure was 22 psia for all runs. Six-component orbiter data were obtained from a balance in the orbiter which was sting supported. The external tank was attached to the solid rocket booster, each of which was sting supported. An alternate two sting/two balance arrangement was also tested with a single sting and balance in the external tank measuring combined ET/SRB aero data replacing the two stings in the SRB's. Two runs were also made at Mach number 4.96 with the two SRB's removed. The aerodynamic coefficients obtained are tabulated as a function of angle of attack or sideslip for each Mach number value.

  20. Results of investigations on an 0.015-scale 140A/B configuration of the Rockwell International space shuttle orbiter (model 49-O) in the NASA/Ames Research Center 3.5-foot hypersonic wind tunnel (OA36)

    NASA Technical Reports Server (NTRS)

    Milam, M. D.; Gillins, R. L.; Cleary, J. W.

    1974-01-01

    The results of wind tunnel tests of the 140A/B configuration components are reported for the fuselage, canopy, elevons, bodyflaps, pods, engine nozzles, rudder, vertical tail, and wing. The test facility, and data reduction procedures are described. Test results for each component are graphed, and tabulated source data are included.

  1. Absolute flux scale for radioastronomy

    SciTech Connect

    Ivanov, V.P.; Stankevich, K.S.

    1986-07-01

    The authors propose and provide support for a new absolute flux scale for radio astronomy, which is not encumbered with the inadequacies of the previous scales. In constructing it the method of relative spectra was used (a powerful tool for choosing reference spectra). A review is given of previous flux scales. The authors compare the AIS scale with the scale they propose. Both scales are based on absolute measurements by the ''artificial moon'' method, and they are practically coincident in the range from 0.96 to 6 GHz. At frequencies above 6 GHz, 0.96 GHz, the AIS scale is overestimated because of incorrect extrapolation of the spectra of the primary and secondary standards. The major results which have emerged from this review of absolute scales in radio astronomy are summarized.

  2. Evaluation of the Small-Tank Tetraphenylborate Process Using a Bench-Scale, 20-L Continuous Stirred Tank Reactor System at Oak Ridge National Laboratory: Results of Test 5

    SciTech Connect

    Lee, D.D.

    2001-08-30

    The goal of the Savannah River Salt Waste Processing Program (SPP) is to evaluate the presently available technologies and select the most effective approach for treatment of high-level waste salt solutions currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site in Aiken, South Carolina. One of the three technologies currently being developed for this application is the Small-Tank Tetraphenylborate Process (STTP). This process uses sodium tetraphenylborate (TPB) to precipitate and remove radioactive cesium from the waste and monosodium titanate (MST) to sorb and remove radioactive strontium and actinides. Oak Ridge National Laboratory is demonstrating this process at the 1:4000 scale using a 20-L-capacity continuous-flow stirred-tank reactor (CSTR) system. Since March 1999, five operating campaigns of the 20-L CSTR have been conducted. The ultimate goal is to verify that this process, under certain extremes of operating conditions, can meet the minimum treatment criteria necessary for processing and disposing of the salt waste at the Savannah River Saltstone Facility. The waste acceptance criteria (WAC) for {sup 137}Cs, {sup 90}Sr, and total alpha nuclides are <40 nCi/g, <40 nCi/g, and <18 nCi/g, respectively. However, to allow for changes in process conditions, the SPP is seeking a level of treatment that is about 50% of the WAC. The bounding separation goals for {sup 137}Cs and {sup 90}Sr are to obtain decontamination factors (DFs) of 40,000 (99.998% removal) and 26 (96.15% removal), respectively. (DF is mathematically defined as the concentration of contaminant in the waste feed divided by the concentration of contaminant in the effluent stream.)

  3. Airborne passive remote sensing of large-scale methane emissions from oil fields in California's San Joaquin Valley and validation by airborne in-situ measurements - Initial results from COMEX

    NASA Astrophysics Data System (ADS)

    Gerilowski, Konstantin; Krautwurst, Sven; Kolyer, Richard W.; Thompson, David R.; Jonsson, Haflidi; Krings, Thomas; Horstjann, Markus; Leifer, Ira; Eastwood, Michael; Green, Robert O.; Vigil, Sam; Schüttemeyer, Dirk; Fladeland, Matthew; Burrows, John P.; Bovensmann, Heinrich

    2015-04-01

    On several flights performed over the Kern River, Kern Front, and Poso Creek Oil Fields in California between June 3 and September 4, 2014, in the framework of the CO2 and MEthane Experiment (COMEX) - a NASA and ESA funded campaign in support of the HyspIRI and CarbonSat mission definition activities - the Methane Airborne MAPper (MAMAP) remote sensing instrument (operated by the University of Bremen in cooperation with the German Research Centre for Geosciences - GFZ) detected large-scale, high-concentration, methane plumes. MAMAP was installed for the flights aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft, together with a Picarro fast in-situ greenhouse gas (GHG) analyzer (operated by the NASA Ames Research Center, ARC), a 5-hole turbulence probe and an atmospheric measurement package (operated by CIRPAS), measuring aerosols, temperature, dew-point, and other atmospheric parameters. Some of the flights were accompanied by the next generation of the Airborne Visible InfraRed Imaging Spectrometer (AVIRIS-NG), operated by the Jet Propulsion Laboratory (JPL), California Institute of Technology, installed aboard a second Twin Otter aircraft (operated by Twin Otter International). Data collected with the in-situ GHG analyzer were used for validation of the MAMAP and AVIRIS-NG remotely sensed data. The in-situ measurements were acquired in vertical cross sections of the discovered plumes at fixed distances downwind of the sources. Emission rates are estimated from both the remote and in-situ data using wind information from the turbulence probe together with ground-based wind data from the nearby airport. Remote sensing and in-situ data as well as initial flux estimates for selected flights will be presented.

  4. Ensemble Pulsar Time Scale

    NASA Astrophysics Data System (ADS)

    Yin, D. S.; Gao, Y. P.; Zhao, S. H.

    2016-05-01

    Millisecond pulsars can generate another type of time scale that is totally independent of the atomic time scale, because the physical mechanisms of the pulsar time scale and the atomic time scale are quite different from each other. Usually the pulsar timing observational data are not evenly sampled, and the internals between data points range from several hours to more than half a month. What's more, these data sets are sparse. And all these make it difficult to generate an ensemble pulsar time scale. Hence, a new algorithm to calculate the ensemble pulsar time scale is proposed. Firstly, we use cubic spline interpolation to densify the data set, and make the intervals between data points even. Then, we employ the Vondrak filter to smooth the data set, and get rid of high-frequency noise, finally adopt the weighted average method to generate the ensemble pulsar time scale. The pulsar timing residuals represent clock difference between the pulsar time and atomic time, and the high precision pulsar timing data mean the clock difference measurement between the pulsar time and atomic time with a high signal to noise ratio, which is fundamental to generate pulsar time. We use the latest released NANOGRAV (North American Nanohertz Observatory for Gravitational Waves) 9-year data set to generate the ensemble pulsar time scale. This data set is from the newest NANOGRAV data release, which includes 9-year observational data of 37 millisecond pulsars using the 100-meter Green Bank telescope and 305-meter Arecibo telescope. We find that the algorithm used in this paper can lower the influence caused by noises in timing residuals, and improve long-term stability of pulsar time. Results show that the long-term (> 1 yr) frequency stability of the pulsar time is better than 3.4×10-15.

  5. Results of pressure distribution tests of a 0.010-scale space shuttle orbiter model (61-0) in the NASA/ARC 3.5-foot hypersonic wind tunnel (test OH38), volume 1

    NASA Technical Reports Server (NTRS)

    Dye, W. H.; Polek, T.

    1975-01-01

    Test results are presented of hypersonic pressure distributions at simulated atmospheric entry conditions. Pressure data were obtained at Mach numbers of 7.4 and 10.4 and Reynolds numbers of 3.0 and 6.5 million per foot. Data are presented in both plotted and tabulated data form. Photographs of wind tunnel apparatus and test configurations are provided.

  6. Results of the Low Speed Aeroelastic Buffet Test with a 0.046-scale Model (747-ax1322-d-3/orbiter 8-0) of the 747 Cam/orbiter in the University of Washington Wind Tunnel (CS 3)

    NASA Technical Reports Server (NTRS)

    Gillins, R. L.

    1976-01-01

    A series of wind tunnel studies designed to assess the potential buffet problems resulting from orbiter wake characteristics with its tailcone removed are presented to provide design loads and acceleration environments, and to develop data on buffet sensitivity to various aerodynamic configurations and flight parameters. Data are intended to support subsequent analyses of structural fatigue life, crew efficiency, and equipment vibrations.

  7. Scaling of Thermoacoustic Refrigerators

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zeegers, J. C. H.; ter Brake, H. J. M.

    2008-03-01

    The possibility of scaling-down thermoacoustic refrigerators is theoretically investigated. Standing-wave systems are considered as well as traveling-wave. In the former case, a reference system is taken that consists of a resonator tube (50 cm) with a closed end and a PVC stack (length 5 cm). Helium is used at a mean pressure of 10 bar and an amplitude of 1 bar. The resulting operating frequency is 1 kHz. The variation of the performance of the refrigerator when scaled down in size is computed under the prerequisites that the temperature drop over the stack or the energy flux or its density are fixed. The analytical results show that there is a limitation in scaling-down a standing-wave thermoacoustic refrigerator due to heat conduction. Similar scaling trends are considered in traveling-wave refrigerators. The traveling-wave reference system consists of a feedback inertance tube of 0.567 m long, inside diameter 78 mm, a compliance volume of 2830 cm3 and a 24 cm thermal buffer tube. The regenerator is sandwiched between two heat exchangers. The system is operated at 125 Hz and filled with 30 bar helium gas. Again, the thermal conductance forms a practical limitation in down-scaling.

  8. How crustal-scale strike-slip faults initiate and further develop: The Red River fault and the East Himalaya Syntaxis as a result of the two-stage

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz

    2014-05-01

    One major question of tectonics is how and where major intracontinental transcurrent strike-slip faults initiate. Models assume an important rheological contrast between rheologically weak and strong lithologies, e.g. at margins of a stiff craton and juxtaposed mobile belts (Molnar & Dayem, 2010 and references therein). Several models assume weakening of the lithosphere by uprise of magma, e.g., formed by subduction or break off of the previously subducted lithosphere or as K-granites at the bases of a metasomatized lithosphere. In the case of slab break-off following oblique convergence, orogen-parallel strike-slip accommodation has been documented. Especially, the spatiotemporal relationships between synkinematic plutons and crustal-scale strike-slip faults have been documented worldwide. It is a matter of continuous debate whether strike-slip faults nucleate where melts have previously weakened the crust/lithosphere or whether pre-existing faults represent the preferred pathways for the ascending melt. A few further models document the role of lateral boundaries of metamorphic core complexes. The significance of some of these processes could be studied along the Red River (RR) fault, SE, Asia. Here we propose a model, how the development of RR fault evolved in response to the two-stage India-Asia collision that recently was proposed by van Hinsbergen et al., (2012 and references therein) and the interaction of the northeastern corner of the East Himalayan Syntaxis with Himalayan-Burman/Indochina collision belt. We propose a four-phase tectonic evolution for the RR fault. During the Eocene accretion of the Tethyan block to Asia, the Sichuan foreland subducted and Eocene K-granites evolved, which started to vertically extrude and introduced, causing a zone of weakness within the crust (Phase 1) along the future RR fault. Another consequence of continuing shortening after the Tethyan block-Asia collision (Stage 1 collision) is lateral extrusion of blocks, and the

  9. Results of tests on a Rockwell International space shuttle orbiter (-139 configuration) 0.0175-scale model (no. 29-0) in AEDC tunnel B to determine boundary layer characteristics

    NASA Technical Reports Server (NTRS)

    Quan, M.

    1975-01-01

    Results of wind tunnel tests were conducted to determine boundary layer characteristics on the lower surface of a space shuttle orbiter. Total pressure and temperature profile data at various model stations were obtained using a movable, four-degree-of-freedom probe mechanism and static pressure taps on the model surface. During a typical run, the probe was located over a preselected model location, then driven down through the bondary layer until contact was made with the model surface.

  10. The posterior interosseous artery flap: clinical results with special emphasis on donor site morbidity.

    PubMed

    Neuwirth, Maximilian; Hubmer, Martin; Koch, Horst

    2013-05-01

    This study evaluated the clinical results, and especially the donor site morbidity of the posterior interosseous artery flap. A retrospective study included 40 patients with defects covered with posterior interosseous flaps. Twenty-one patients were available for a follow-up examination to assess donor site morbidity by evaluating the dimensions and quality of the donor site scar and the forearm contour as well as complaints and subjective satisfaction with the aesthetic result. The flaps and related donor sites healed uneventfully in 29 cases (72.5%); healing was delayed in 11 cases (27.5%), with total flap loss in two cases. Further surgery was required in six cases. The quality of the donor site scar rated with the Vancouver Scar Scale averaged 2.4 points. Eleven patients (55%) reported impaired sensibility around the donor site and four patients (20%) had physical complaints. Subjective and objective donor site evaluation revealed significantly lower donor site morbidity for directly closed as opposed to skin grafted donor sites, although subjectively, there was a high level of satisfaction in both groups. Our data indicated that the posterior interosseous flap is a valuable option for the management of soft-tissue defects on the dorsum of the hand, due to its anatomical reliability and soft and pliable tissue, its low donor site morbidity and high patient acceptance.

  11. Evaluation of Behavioral Expectation Scales.

    ERIC Educational Resources Information Center

    Zedeck, Sheldon; Baker, Henry T.

    Behavioral Expectation Scales developed by Smith and Kendall were evaluated. Results indicated slight interrater reliability between Head Nurses and Supervisors, moderate dependence among five performance dimensions, and correlation between two scales and tenure. Results are discussed in terms of procedural problems, critical incident problems,…

  12. Bench-scale testing of DOE/PETC`s GranuFlow Process for fine coal dewatering and handling. 1: Results using a high-gravity solid-bowl centrifuge

    SciTech Connect

    Wen, W.W.; Killmeyer, R.P.; Lowman, R.H.; Elstrodt, R.

    1995-12-31

    Most advanced fine-coal cleaning processes involve the use of water. Utility companies are concerned not only with the lower Btu content of the resulting wet, cleaned coal, but more importantly with its handleability problems. Solutions to these problems would enhance the utilization of fine-coal cleaning processes in the utility industry. This paper describes testing of the GranuFlow Process, developed and patented by the Pittsburgh Energy Technology Center (PETC) of the US Department of Energy, using a high-gravity solid bowl centrifuge for dewatering and reconstitution of fine-cleaned-coal slurry at 300 lb per hour in PETC`s Coal Preparation Process Research Facility. Fine-cleaned-coal slurry was treated with a bitumen emulsion before dewatering in a high-gravity solid-bowl centrifuge. The treated products appeared to be dry and in a free-flowing granular form, while the untreated products were wet, lumpy, sticky, and difficult to handle. Specifically, test results indicated that the moisture content, handleability, and dust reduction of the dewatered coal product improved as the addition of emulsion increased from 2% to 8%. The improvement in handleability was most visible for the 200 mesh (75 micron) x 0 coal, when compared with 150 mesh (106 micron) x 0, 65 mesh (212 micron) x 0 or 28 mesh (600 micron) x 0 coals. Test results also showed that the moisture content was dramatically reduced (26--37% reduction) for the four different sizes of coals at 6 or 8% emulsion addition. Because of the moisture reduction and the granular form of the product, the freezing problem was also alleviated.

  13. Composite Health Plan Quality Scales

    PubMed Central

    Caldis, Todd

    2007-01-01

    This study employs exploratory factor analysis and scale construction methods with commercial Health Plan Employers Data Information Set (HEDIS®) process of care and outcome measures from 1999 to uncover evidence for a unidimensional composite health maintenance organization (HMO) quality scale. Summated scales by categories of care are created and are then used in a factor analysis that has a single factor solution. The category of care scales were used to construct a summated composite scale which exhibits strong evidence of internal consistency (alpha= 0.90). External validity of the composite quality scale was checked by regressing the composite scale on Consumer Assessment of Healthcare Providers and Systems (CAHPS®) survey results for 1999. PMID:17645158

  14. Atomic Scale Plasmonic Switch.

    PubMed

    Emboras, Alexandros; Niegemann, Jens; Ma, Ping; Haffner, Christian; Pedersen, Andreas; Luisier, Mathieu; Hafner, Christian; Schimmel, Thomas; Leuthold, Juerg

    2016-01-13

    The atom sets an ultimate scaling limit to Moore's law in the electronics industry. While electronics research already explores atomic scales devices, photonics research still deals with devices at the micrometer scale. Here we demonstrate that photonic scaling, similar to electronics, is only limited by the atom. More precisely, we introduce an electrically controlled plasmonic switch operating at the atomic scale. The switch allows for fast and reproducible switching by means of the relocation of an individual or, at most, a few atoms in a plasmonic cavity. Depending on the location of the atom either of two distinct plasmonic cavity resonance states are supported. Experimental results show reversible digital optical switching with an extinction ratio of 9.2 dB and operation at room temperature up to MHz with femtojoule (fJ) power consumption for a single switch operation. This demonstration of an integrated quantum device allowing to control photons at the atomic level opens intriguing perspectives for a fully integrated and highly scalable chip platform, a platform where optics, electronics, and memory may be controlled at the single-atom level.

  15. Scale adaptive compressive tracking.

    PubMed

    Zhao, Pengpeng; Cui, Shaohui; Gao, Min; Fang, Dan

    2016-01-01

    Recently, the compressive tracking (CT) method (Zhang et al. in Proceedings of European conference on computer vision, pp 864-877, 2012) has attracted much attention due to its high efficiency, but it cannot well deal with the scale changing objects due to its constant tracking box. To address this issue, in this paper we propose a scale adaptive CT approach, which adaptively adjusts the scale of tracking box with the size variation of the objects. Our method significantly improves CT in three aspects: Firstly, the scale of tracking box is adaptively adjusted according to the size of the objects. Secondly, in the CT method, all the compressive features are supposed independent and equal contribution to the classifier. Actually, different compressive features have different confidence coefficients. In our proposed method, the confidence coefficients of features are computed and used to achieve different contribution to the classifier. Finally, in the CT method, the learning parameter λ is constant, which will result in large tracking drift on the occasion of object occlusion or large scale appearance variation. In our proposed method, a variable learning parameter λ is adopted, which can be adjusted according to the object appearance variation rate. Extensive experiments on the CVPR2013 tracking benchmark demonstrate the superior performance of the proposed method compared to state-of-the-art tracking algorithms. PMID:27386298

  16. Risk of type 2 diabetes according to traditional and emerging anthropometric indices in Spain, a Mediterranean country with high prevalence of obesity: results from a large-scale prospective cohort study

    PubMed Central

    2013-01-01

    Background Obesity is a major risk factor for type 2 diabetes mellitus (T2DM). A proper anthropometric characterisation of T2DM risk is essential for disease prevention and clinical risk assessement. Methods Longitudinal study in 37 733 participants (63% women) of the Spanish EPIC (European Prospective Investigation into Cancer and Nutrition) cohort without prevalent diabetes. Detailed questionnaire information was collected at baseline and anthropometric data gathered following standard procedures. A total of 2513 verified incident T2DM cases occurred after 12.1 years of mean follow-up. Multivariable Cox regression was used to calculate hazard ratios of T2DM by levels of anthropometric variables. Results Overall and central obesity were independently associated with T2DM risk. BMI showed the strongest association with T2DM in men whereas waist-related indices were stronger independent predictors in women. Waist-to-height ratio revealed the largest area under the ROC curve in men and women, with optimal cut-offs at 0.60 and 0.58, respectively. The most discriminative waist circumference (WC) cut-off values were 99.4 cm in men and 90.4 cm in women. Absolute risk of T2DM was higher in men than women for any combination of age, BMI and WC categories, and remained low in normal-waist women. The population risk of T2DM attributable to obesity was 17% in men and 31% in women. Conclusions Diabetes risk was associated with higher overall and central obesity indices even at normal BMI and WC values. The measurement of waist circumference in the clinical setting is strongly recommended for the evaluation of future T2DM risk in women. PMID:23388074

  17. The Mayer Hashi Large-Scale Program to Increase Use of Long-Acting Reversible Contraceptives and Permanent Methods in Bangladesh: Explaining the Disappointing Results. An Outcome and Process Evaluation

    PubMed Central

    Rahman, Mizanur; Haider, M Moinuddin; Curtis, Sian L; Lance, Peter M

    2016-01-01

    ABSTRACT Background: Bangladesh has achieved a low total fertility rate of 2.3. Two-thirds of currently married women of reproductive age (CMWRA) want to limit fertility, and many women achieve their desired fertility before age 30. The incidence of unintended pregnancy and pregnancy termination is high, however. Long-acting reversible contraceptives (LARCs), consisting of the intrauterine device and implant, and permanent methods (PM), including female sterilization and vasectomy, offer several advantages in this situation, but only 8% of CMWRA or 13% of method users use these methods. Program: The Mayer Hashi (MH) program (2009–2013) aimed to improve access to and the quality of LARC/PM services in 21 of the 64 districts in Bangladesh. It was grounded in the SEED (supply–enabling environment–demand) Programming Model. Supply improvements addressed provider knowledge and skills, system strengthening, and logistics. Creating an enabling environment involved holding workshops with local and community leaders, including religious leaders, to encourage them to help promote demand for LARCs and PMs and overcome cultural barriers. Demand promotion encompassed training of providers in counseling, distribution of behavior change communication materials in the community and in facilities, and community mobilization. Methods: We selected 6 MH program districts and 3 nonprogram districts to evaluate the program. We used a before–after and intervention–comparison design to measure the changes in key contraceptive behavior outcomes, and we used a difference-in-differences (DID) specification with comparison to the nonprogram districts to capture the impact of the program. In addition to the outcome evaluation, we considered intermediate indicators that measured the processes through which the interventions were expected to affect the use of LARCs and PMs. Results: The use of LARCs/PMs among CMWRA increased between 2010 and 2013 in both program (from 5.3% to 7.5%) and

  18. Scaling up: Assessing social impacts at the macro-scale

    SciTech Connect

    Schirmer, Jacki

    2011-04-15

    Social impacts occur at various scales, from the micro-scale of the individual to the macro-scale of the community. Identifying the macro-scale social changes that results from an impacting event is a common goal of social impact assessment (SIA), but is challenging as multiple factors simultaneously influence social trends at any given time, and there are usually only a small number of cases available for examination. While some methods have been proposed for establishing the contribution of an impacting event to macro-scale social change, they remain relatively untested. This paper critically reviews methods recommended to assess macro-scale social impacts, and proposes and demonstrates a new approach. The 'scaling up' method involves developing a chain of logic linking change at the individual/site scale to the community scale. It enables a more problematised assessment of the likely contribution of an impacting event to macro-scale social change than previous approaches. The use of this approach in a recent study of change in dairy farming in south east Australia is described.

  19. Results of a jet plume effects test on Rockwell International integrated space shuttle vehicle using a vehicle 5 configuration 0.02-scale model (88-OTS) in the 11 by 11 foot leg of the NASA/Ames Research Center unitary plan wind tunnel (IA19), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1975-01-01

    Results are presented of jet plume effects test IA19 using a vehicle 5 configuration integrated space shuttle vehicle 0.02-scale model in the NASA/Ames Research Center 11 x 11-foot leg of the unitary plan wind tunnel. The jet plume power effects on the integrated vehicle static pressure distribution were determined along with elevon, main propulsion system nozzle, and solid rocket booster nozzle effectiveness and elevon hinge moments.

  20. An investigation of ride quality rating scales

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Coates, G. D.; Leatherwood, J. D.

    1977-01-01

    An experimental investigation was conducted for the combined purposes of determining the relative merits of various category scales for the prediction of human discomfort response to vibration and for determining the mathematical relationships whereby subjective data are transformed from one scale to other scales. There were 16 category scales analyzed representing various parametric combinations of polarity, that is, unipolar and bipolar, scale type, and number of scalar points. Results indicated that unipolar continuous-type scales containing either seven or nine scalar points provide the greatest reliability and discriminability. Transformations of subjective data between category scales were found to be feasible with unipolar scales of a larger number of scalar points providing the greatest accuracy of transformation. The results contain coefficients for transformation of subjective data between the category scales investigated. A result of particular interest was that the comfort half of a bipolar scale was seldom used by subjects to describe their subjective reaction to vibration.

  1. Recent Results from Phobos

    SciTech Connect

    Garcia, Edmundo; Betts, R. R.; Garcia, E.; Halliwell, C.; Hofman, D. J.; Hollis, R. S.; Iordanova, A.; Sagerer, J.; Smith, C. E.; Back, B. B.; Baker, M. D.; Barton, D. S.; Carroll, A.; Chai, Z.; George, N.; Hauer, M.; Holzman, B.; Pak, R.; Seals, H.; Sedykh, I.

    2007-02-12

    The PHOBOS detector is one of four heavy ion experiments at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. In this paper we will review some of the results of PHOBOS from the data collected in p+p, d+Au and Au+Au collisions at nucleon-nucleon center-of-mass energies up to 200 GeV. Evidence is found of the formation of a very high energy density and highly interactive system, which can not be described in terms of hadrons, and has a relatively low baryon density. There is evidence that the system formed is thermalized to a certain degree. Scaling with the number of participants and extended longitudinal scaling behavior are also observed in distributions of produced charged particles.

  2. Noncorticosteroid Combination Shampoo versus 1% Ketoconazole Shampoo for the Management of Mild-to-Moderate Seborrheic Dermatitis of the Scalp: Results from a Randomized, Investigator-Single-Blind Trial Using Clinical and Trichoscopic Evaluation

    PubMed Central

    Dall'Oglio, Federica; Lacarrubba, Francesco; Verzì, Anna Elisa; Micali, Giuseppe

    2016-01-01

    Purpose The aim of this study was to assess the efficacy and tolerability of a combination noncorticosteroid, antiinflammatory/antifungal shampoo versus 1% ketoconazole shampoo in the treatment of mild-to-moderate scalp seborrheic dermatitis (SD). Procedures Twenty patients were randomized to using the combination shampoo (group A, 10 patients) or the 1% ketoconazole shampoo (group B, 10 patients) 3 times a week every other day for 8 weeks. Efficacy was evaluated by measuring the degree of scaling and pruritus by clinical and trichoscopic examination using a 4-point scale. Additionally, a physician global assessment (PGA) was assessed at the end of the study. Results At 4 weeks, there was a significant reduction of scaling from baseline for both groups, while pruritus showed a significant reduction only for group A. After 8 weeks, there was a significant reduction of scaling and pruritus for both groups. PGA showed a complete response in 90% of the cases in both groups. Conclusions The results of our study demonstrate that the combination noncorticosteroid, antiinflammatory/antifungal shampoo represents an alternative approach to standard topical treatment for scalp SD. A noncorticosteroid shampoo may be equally safe and effective as ketoconazole shampoo for scalp SD, and trichoscopy provides accurate and reliable quantifiable data to assist in therapeutic monitoring. PMID:27171495

  3. Scales of rock permeability

    NASA Astrophysics Data System (ADS)

    Guéguen, Y.; Gavrilenko, P.; Le Ravalec, M.

    1996-05-01

    Permeability is a transport property which is currently measured in Darcy units. Although this unit is very convenient for most purposes, its use prevents from recognizing that permeability has units of length squared. Physically, the square root of permeability can thus be seen as a characteristic length or a characteristic pore size. At the laboratory scale, the identification of this characteristic length is a good example of how experimental measurements and theoretical modelling can be integrated. Three distinct identifications are of current use, relying on three different techniques: image analysis of thin sections, mercury porosimetry and nitrogen adsorption. In each case, one or several theoretical models allow us to derive permeability from the experimental data (equivalent channel models, statistical models, effective media models, percolation and network models). Permeability varies with pressure and temperature and this is a decisive point for any extrapolation to crustal conditions. As far as pressure is concerned, most of the effect is due to cracks and a model which does not incorporate this fact will miss its goal. Temperature induced modifications can be the result of several processes: thermal cracking (due to thermal expansion mismatch and anisotropy, or to fluid pressure build up), and pressure solution are the two main ones. Experimental data on pressure and temperature effects are difficult to obtain but they are urgently needed. Finally, an important issue is: up to which point are these small scale data and models relevant when considering formations at the oil reservoir scale, or at the crust scale? At larger scales the identification of the characteristic scale is also a major goal which is examined.

  4. Scaling Applications in hydrology

    NASA Astrophysics Data System (ADS)

    Gebremichael, Mekonnen

    2010-05-01

    Besides downscaling applications, scaling properties of hydrological fields can be used to address a variety of research questions. In this presentation, we will use scaling properties to address questions related to satellite evapotranspiration algorithms, precipitation-streamflow relationships, and hydrological model calibration. Most of the existing satellite-based evapotranspiration (ET) algorithms have been developed using fine-resolution Landsat TM and ASTER data. However, these algorithms are often applied to coarse-resolution MODIS data. Our results show that applying the satellite-based algorithms, which are developed at ASTER resolution, to MODIS resolution leads to ET estimates that (1) preserve the overall spatial pattern (spatial correlation in excess of 0.90), (2) increase the spatial standard deviation and maximum value, (3) have modest conditional bias: underestimate low ET rates (< 1 mm/day) and overestimate high ET rates; the overestimation is within 20%. The results emphasize the need for exploring alternatives for estimation of ET from MODIS. Understanding the relationship between the scaling properties of precipitation and streamflow is important in a number of applications. We present the results of a detailed river flow fluctuation analysis on daily records from 14 stations in the Flint River basin in Georgia in the United States with focus on effect of watershed area on long memory of river flow fluctuations. The areas of the watersheds draining to the stations range from 22 km2 to 19,606 km2. Results show that large watersheds have more persistent flow fluctuations and stronger long-term (time greater than scale break point) memory than small watersheds while precipitation time series shows weak long-term correlation. We conclude that a watershed acts as a 'filter' for a 'white noise' precipitation with more significant filtering in case of large watersheds. Finally, we compare the scaling properties of simulated and observed spatial soil

  5. Early LLNL Application Scaling Results on BlueGene/L

    SciTech Connect

    Cook, A W; Greenough, J A; Gygi, F; Streitz, F H; Kubota, A; Bulatov, V V; Louis, S

    2004-11-01

    Miranda is a high order hydrodynamics code for computing fluid instabilities and turbulent mixing. It employs FFTs and band-diagonal matrix solvers for computing spectrally-accurate derivatives, combined with high-order integration methods for time advancement; e.g., fourth-order Runge-Kutta. Fluid properties, i.e., viscosity, diffusivity and thermal conductivity, are computed from kinetic theory. The code contains solvers for both compressible and incompressible flows. It has been used primarily for studying Rayleigh-Taylor (R-T) and Richtmyer-Meshkov (R-M) instabilities, which occur in supernovae and Inertial Confinement Fusion (ICF).

  6. Paying for Scale: Results of a Symposium on CMO Finance

    ERIC Educational Resources Information Center

    Lake, Robin; Demeritt, Allison

    2011-01-01

    In April 2010, the Center on Reinventing Public Education (CRPE) and the Bill & Melinda Gates Foundation convened a group of researchers and financial analysts to discuss how to better understand the financing and sustainability of Charter Management Organizations (CMOs). The goals of the meeting were twofold: (1) to suggest a set of common ways…

  7. Mechanically reliable scales and coatings

    SciTech Connect

    Tortorelli, P.F.; Alexander, K.B.

    1995-07-01

    As the first stage in examining the mechanical reliability of protective surface oxides, the behavior of alumina scales formed on iron-aluminum alloys during high-temperature cyclic oxidation was characterized in terms of damage and spallation tendencies. Scales were thermally grown on specimens of three iron-aluminum composition using a series of exposures to air at 1000{degrees}C. Gravimetric data and microscopy revealed substantially better integrity and adhesion of the scales grown on an alloy containing zirconium. The use of polished (rather than just ground) specimens resulted in scales that were more suitable for subsequent characterization of mechanical reliability.

  8. A Scale of Mobbing Impacts

    ERIC Educational Resources Information Center

    Yaman, Erkan

    2012-01-01

    The aim of this research was to develop the Mobbing Impacts Scale and to examine its validity and reliability analyses. The sample of study consisted of 509 teachers from Sakarya. In this study construct validity, internal consistency, test-retest reliabilities and item analysis of the scale were examined. As a result of factor analysis for…

  9. Summary of Free-Flight Zero-Lift Drag Results from Tests of 1/5-Scale Models of the Convair YF-102 and F-102A Airplanes and Several Related Small Equivalent Bodies at Mach Numbers from 0.70 to 1.46

    NASA Technical Reports Server (NTRS)

    Wallskog, Harvey A.

    1954-01-01

    One-fifth-scale rocket-propelled models of the Convair YF-102 and F-102A airplanes were tested to determine free-flight zero-lift drag coefficients through the transonic speed range at Reynolds numbers near those to be encountered by the full-scale airplane. Trim and duct characteristics were obtained along with measurements of total-, internal-, and base-drag coefficients. Additional zero-lift drag tests involved a series of small equivalent-body-of-revolution models which were launched to low supersonic speeds by means of a helium gun. The several small models tested corresponded to the following full-scale airplanes: basic, YF-102, 2-foot (full-scale) fuselage extension, F-102A, F-102A (relocated inlets), F-102A (faired nose), and F-102A (parabolic nose) . Equivalent-body models corresponding to the normal area distribution (derived for Mach number 1.0) of each of these airplane shapes were flown and, in addition, equivalent-body models designed to represent the YF-102 and F-102A airplanes at Mach number 1.2 were tested. External-drag coefficients obtained from the 115-scale tests ranged from 0.0094 to 0.0273 for the YF-102 model and from 0.0100 to 0.0255 for the F-102A model. Forebody external-pressure-drag coefficients (drag rise) at Mach number 1.05 of 0.0183 and 0.0134 were obtained from the 115-scale models of the YF-102 and F-102A, respectively, a 16-percent reduction for the F-102A model. Values of drag rise at Mach number 1.05 from the small equivalent-body tests were nearly the same for the basic, YF-102, and 2-foot-fuselage-extension airplane shapes. Equivalent-body tests of the YF-102 and F-102A shapes showed the latter to have about 25 percent less drag rise as compared with a 16-percent reduction illustrated by the 1/5-scale tests. Additional equivalent-body tests illustrating effects of modifications to the F-102A airplane shape shared that relocating the inlets on the fuselage or altering the nose shape to provide a smoother cross-sectional area

  10. An elastica arm scale.

    PubMed

    Bosi, F; Misseroni, D; Dal Corso, F; Bigoni, D

    2014-09-01

    The concept of a 'deformable arm scale' (completely different from a traditional rigid arm balance) is theoretically introduced and experimentally validated. The idea is not intuitive, but is the result of nonlinear equilibrium kinematics of rods inducing configurational forces, so that deflection of the arms becomes necessary for equilibrium, which would be impossible for a rigid system. In particular, the rigid arms of usual scales are replaced by a flexible elastic lamina, free to slide in a frictionless and inclined sliding sleeve, which can reach a unique equilibrium configuration when two vertical dead loads are applied. Prototypes designed to demonstrate the feasibility of the system show a high accuracy in the measurement of load within a certain range of use. Finally, we show that the presented results are strongly related to snaking of confined beams, with implications for locomotion of serpents, plumbing and smart oil drilling. PMID:25197248

  11. Apolipoprotein E genotype predicts 24-month bayley scales infant development score.

    PubMed

    Wright, Robert O; Hu, Howard; Silverman, Edwin K; Tsaih, Shirng W; Schwartz, Joel; Bellinger, David; Palazuelos, Eduardo; Weiss, Scott T; Hernandez-Avila, Mauricio

    2003-12-01

    Apolipoprotein E (APOE) regulates cholesterol and fatty acid metabolism, and may mediate synaptogenesis during neurodevelopment. To our knowledge, the effects of APOE4 isoforms on infant development have not been studied. This study was nested within a cohort of mother-infant pairs living in and around Mexico City. A multiple linear regression model was constructed using the 24-mo Mental Development Index (MDI) of the Bayley Scale as the primary outcome and infant APOE genotype as the primary risk factor of interest. Regression models stratified on APOE genotype were constructed to explore effect modification. Of 311 subjects, 53 (17%) carried at least one copy of the APOE4 allele. Mean (SD) MDI scores among carriers with at least one copy of APOE4 were 94.1 (14.3) and among E3/E2 carriers were 91.2 (14.0). After adjustment for covariates, APOE4 carrier status was associated with a 4.4 point (95% confidence interval: 0.1-8.7; p = 0.04) higher 24-mo MDI. In the stratified regression models, the negative effects for umbilical cord blood lead level on 24-mo MDI score was approximately 4-fold greater among APOE3/APOE2 carriers than among APOE4 carriers. These results suggest that subjects with the E4 isoform of APOE may have advantages over those with the E2 or E3 isoforms with respect to early life neuronal/brain development.

  12. Results of an aerodynamic investigation of a space shuttle orbiter/747 carrier flight test configuration to determine separation characteristics utilizing 0.0125-scale models (48-0/AX1318I-1) in the LTV 4 x 4 foot high speed wind tunnel (CA26), volume 1

    NASA Technical Reports Server (NTRS)

    Gillins, R. L.

    1976-01-01

    Results of tests conducted on a 0.0125-scale model of the Space Shuttle Orbiter and a 0.0125-scale model of the 747 CAM configuration in a 4 x 4-foot High Speed Wind Tunnel were presented. Force and moment data were obtained for each vehicle separately at a Mach number of 0.6 and for each vehicle in proximity to the other at Mach numbers of 0.3, 0.5, 0.6 and 0.7. The proximity effects of each vehicle on the other at separation distances (from the mated configuration) ranging from 1.5 feet to 75 feet were presented; 747 Carrier angles of attack from 0 deg to 6 deg and angles of sideslip of 0 deg and -5 deg were tested. Model variables included orbiter elevon, aileron and body flap deflections, orbiter tailcone on and off, and 747 stabilizer and rudder deflections.

  13. Coupled length scales in eroding landscapes

    SciTech Connect

    Chan, Kelvin K.; Rothman, Daniel H.

    2001-05-01

    We report results from an empirical study of the anisotropic structure of eroding landscapes. By constructing a novel correlation function, we show quantitatively that small-scale channel-like features of landscapes are coupled to the large-scale structure of drainage basins. We show additionally that this two-scale interaction is scale-dependent. The latter observation suggests that a commonly applied effective equation for erosive transport may itself depend on scale.

  14. Mechanism for salt scaling

    NASA Astrophysics Data System (ADS)

    Valenza, John J., II

    Salt scaling is superficial damage caused by freezing a saline solution on the surface of a cementitious body. The damage consists of the removal of small chips or flakes of binder. The discovery of this phenomenon in the early 1950's prompted hundreds of experimental studies, which clearly elucidated the characteristics of this damage. In particular it was shown that a pessimum salt concentration exists, where a moderate salt concentration (˜3%) results in the most damage. Despite the numerous studies, the mechanism responsible for salt scaling has not been identified. In this work it is shown that salt scaling is a result of the large thermal expansion mismatch between ice and the cementitious body, and that the mechanism responsible for damage is analogous to glue-spalling. When ice forms on a cementitious body a bi-material composite is formed. The thermal expansion coefficient of the ice is ˜5 times that of the underlying body, so when the temperature of the composite is lowered below the melting point, the ice goes into tension. Once this stress exceeds the strength of the ice, cracks initiate in the ice and propagate into the surface of the cementitious body, removing a flake of material. The glue-spall mechanism accounts for all of the characteristics of salt scaling. In particular, a theoretical analysis is presented which shows that the pessimum concentration is a consequence of the effect of brine pockets on the mechanical properties of ice, and that the damage morphology is accounted for by fracture mechanics. Finally, empirical evidence is presented that proves that the glue-small mechanism is the primary cause of salt scaling. The primary experimental tool used in this study is a novel warping experiment, where a pool of liquid is formed on top of a thin (˜3 mm) plate of cement paste. Stresses in the plate, including thermal expansion mismatch, result in warping of the plate, which is easily detected. This technique revealed the existence of

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  16. Rating scales for musician's dystonia

    PubMed Central

    Berque, Patrice; Jabusch, Hans-Christian; Altenmüller, Eckart; Frucht, Steven J.

    2013-01-01

    Musician's dystonia (MD) is a focal adult-onset dystonia most commonly involving the hand. It has much greater relative prevalence than non-musician’s focal hand dystonias, exhibits task specificity at the level of specific musical passages, and is a particularly difficult form of dystonia to treat. For most MD patients, the diagnosis confirms the end of their music performance careers. Research on treatments and pathophysiology is contingent upon measures of motor function abnormalities. In this review, we comprehensively survey the literature to identify the rating scales used in MD and the distribution of their use. We also summarize the extent to which the scales have been evaluated for their clinical utility, including reliability, validity, sensitivity, specificity to MD, and practicality for a clinical setting. Out of 135 publications, almost half (62) included no quantitative measures of motor function. The remaining 73 studies used a variety of choices from among 10 major rating scales. Most used subjective scales involving either patient or clinician ratings. Only 25% (18) of the studies used objective scales. None of the scales has been completely and rigorously evaluated for clinical utility. Whether studies involved treatments or pathophysiologic assays, there was a heterogeneous choice of rating scales used with no clear standard. As a result, the collective interpretive value of those studies is limited because the results are confounded by measurement effects. We suggest that the development and widespread adoption of a new clinically useful rating scale is critical for accelerating basic and clinical research in MD. PMID:23884039

  17. Scaling macroscopic aquatic locomotion

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Argentina, Médéric; Mahadevan, L.

    2014-10-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimetres to 30 metres, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα, where Re = UL/ν >> 1 and Sw = ωAL/ν, with α = 4/3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1,000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  18. Scaling macroscopic aquatic locomotion

    NASA Astrophysics Data System (ADS)

    Gazzola, Mattia; Argentina, Mederic; Mahadevan, Lakshminarayanan

    2014-11-01

    Inertial aquatic swimmers that use undulatory gaits range in length L from a few millimeters to 30 meters, across a wide array of biological taxa. Using elementary hydrodynamic arguments, we uncover a unifying mechanistic principle characterizing their locomotion by deriving a scaling relation that links swimming speed U to body kinematics (tail beat amplitude A and frequency ω) and fluid properties (kinematic viscosity ν). This principle can be simply couched as the power law Re ~ Swα , where Re = UL / ν >> 1 and Sw = ωAL / ν , with α = 4 / 3 for laminar flows, and α = 1 for turbulent flows. Existing data from over 1000 measurements on fish, amphibians, larvae, reptiles, mammals and birds, as well as direct numerical simulations are consistent with our scaling. We interpret our results as the consequence of the convergence of aquatic gaits to the performance limits imposed by hydrodynamics.

  19. Results of an investigation to determine local flow characteristics at the air data probe locations using an 0.030-scale model (45-0) of the space shuttle vehicle orbiter configuration 140A/B (modified) in the NASA Ames Research Center unitary plan wind tunnel (OA161, A, B, C), volume 1

    NASA Technical Reports Server (NTRS)

    Nichols, M. E.

    1976-01-01

    Results are presented of wind tunnel test 0A161 of a 0.030-scale model 45-0 of the configuration 140A/B (modified) space shuttle vehicle orbiter in the NASA Ames Research Center Unitary Plan Wind Tunnel facilities. The purpose of this test was to determine local total and static pressure environments for the air data probe locations and relative effectiveness of alternate flight-test probe configurations. Testing was done in the Mach number range from 0.30 to 3.5. Angle of attack was varied from -8 to 25 degrees while sideslip varied between -8 and 8 degrees.

  20. Scales of mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Akber-Knutson, S.; Konter, J.; Kellogg, J.; Hart, S.; Kellogg, L. H.; Romanowicz, B.

    2004-12-01

    A long-standing question in mantle dynamics concerns the scale of heterogeneity in the mantle. Mantle convection tends to both destroy (through stirring) and create (through melt extraction and subduction) heterogeneity in bulk and trace element composition. Over time, these competing processes create variations in geochemical composition along mid-oceanic ridges and among oceanic islands, spanning a range of scales from extremely long wavelength (for example, the DUPAL anomaly) to very small scale (for example, variations amongst melt inclusions). While geochemical data and seismic observations can be used to constrain the length scales of mantle heterogeneity, dynamical mixing calculations can illustrate the processes and timescales involved in stirring and mixing. At the Summer 2004 CIDER workshop on Relating Geochemical and Seismological Heterogeneity in the Earth's Mantle, an interdisciplinary group evaluated scales of heterogeneity in the Earth's mantle using a combined analysis of geochemical data, seismological data and results of numerical models of mixing. We mined the PetDB database for isotopic data from glass and whole rock analyses for the Mid-Atlantic Ridge (MAR) and the East Pacific Rise (EPR), projecting them along the ridge length. We examined Sr isotope variability along the East Pacific rise by looking at the difference in Sr ratio between adjacent samples as a function of distance between the samples. The East Pacific Rise exhibits an overall bowl shape of normal MORB characteristics, with higher values in the higher latitudes (there is, however, an unfortunate gap in sampling, roughly 2000 km long). These background characteristics are punctuated with spikes in values at various locations, some, but not all of which are associated with off-axis volcanism. A Lomb-Scargle periodogram for unevenly spaced data was utilized to construct a power spectrum of the scale lengths of heterogeneity along both ridges. Using the same isotopic systems (Sr, Nd