Science.gov

Sample records for 4-reductase dfr anthocyanidin

  1. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Yang, Tae-Jin; Hur, Yoonkang; Nou, Ill-Sup

    2014-10-15

    Flavonoids including anthocyanins provide flower and leaf colors, as well as other derivatives that play diverse roles in plant development and interactions with the environment. Dihydroflavonol 4-reductase (DFR) is part of an important step in the flavonoid biosynthetic pathway of anthocyanins. This study characterized 12 DFR genes of Brassica rapa and investigated their association with anthocyanin coloration, as well as cold and freezing stress in several genotypes of B. rapa. Comparison of sequences of these genes with DFR gene sequences from other species revealed a high degree of homology. Constitutive expression of the genes in several pigmented and non-pigmented lines of B. rapa demonstrated correlation with anthocyanin accumulation for BrDFR8 and 9. Conversely, BrDFR2, 4, 8 and 9 only showed very high responses to cold stress in pigmented B. rapa samples. BrDFR1, 3, 5, 6 and 10 responded to cold and freezing stress treatments, regardless of pigmentation. BrDFRs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold and freezing stress. Thus, the above results suggest that these genes are associated with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold and/or freezing stress resistant Brassica crops with desirable colors as well. These findings may also facilitate exploration of the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stresses. PMID:25108127

  2. Expression analysis of dihydroflavonol 4-reductase genes in Petunia hybrida.

    PubMed

    Chu, Y X; Chen, H R; Wu, A Z; Cai, R; Pan, J S

    2015-01-01

    Dihydroflavonol 4-reductase (DFR) genes from Rosa chinensis (Asn type) and Calibrachoa hybrida (Asp type), driven by a CaMV 35S promoter, were integrated into the petunia (Petunia hybrida) cultivar 9702. Exogenous DFR gene expression characteristics were similar to flower-color changes, and effects on anthocyanin concentration were observed in both types of DFR gene transformants. Expression analysis showed that exogenous DFR genes were expressed in all of the tissues, but the expression levels were significantly different. However, both of them exhibited a high expression level in petals that were starting to open. The introgression of DFR genes may significantly change DFR enzyme activity. Anthocyanin ultra-performance liquid chromatography results showed that anthocyanin concentrations changed according to DFR enzyme activity. Therefore, the change in flower color was probably the result of a DFR enzyme change. Pelargonidin 3-O-glucoside was found in two different transgenic petunias, indicating that both CaDFR and RoDFR could catalyze dihydrokaempferol. Our results also suggest that transgenic petunias with DFR gene of Asp type could biosynthesize pelargonidin 3-O-glucoside. PMID:25966276

  3. Characterization of three active transposable elements recently inserted in three independent DFR-A alleles and one high-copy DNA transposon isolated from the Pink allele of the ANS gene in onion (Allium cepa L.).

    PubMed

    Kim, Sunggil; Park, Jee Young; Yang, Tae-Jin

    2015-06-01

    Intact retrotransposon and DNA transposons inserted in a single gene were characterized in onions (Allium cepa) and their transcription and copy numbers were estimated in this study. While analyzing diverse onion germplasm, large insertions in the DFR-A gene encoding dihydroflavonol 4-reductase (DFR) involved in the anthocyanin biosynthesis pathway were found in two accessions. A 5,070-bp long terminal repeat (LTR) retrotransposon inserted in the active DFR-A (R4) allele was identified from one of the large insertions and designated AcCOPIA1. An intact ORF encoded typical domains of copia-like LTR retrotransposons. However, AcCOPIA1 contained atypical 'TG' and 'TA' dinucleotides at the ends of the LTRs. A 4,615-bp DNA transposon was identified in the other large insertion. This DNA transposon, designated AcCACTA1, contained an ORF coding for a transposase showing homology with the CACTA superfamily transposable elements (TEs). Another 5,073-bp DNA transposon was identified from the DFR-A (TRN) allele. This DNA transposon, designated AchAT1, belonged to the hAT superfamily with short 4-bp terminal inverted repeats (TIRs). Finally, a 6,258-bp non-autonomous DNA transposon, designated AcPINK, was identified in the ANS-p allele encoding anthocyanidin synthase, the next downstream enzyme to DFR in the anthocyanin biosynthesis pathway. AcPINK also possessed very short 3-bp TIRs. Active transcription of AcCOPIA1, AcCACTA1, and AchAT1 was observed through RNA-Seq analysis and RT-PCR. The copy numbers of AcPINK estimated by mapping the genomic DNA reads produced by NextSeq 500 were predominantly high compared with the other TEs. A series of evidence indicated that these TEs might have transposed in these onion genes very recently, providing a stepping stone for elucidation of enormously large-sized onion genome structure. PMID:25515665

  4. Molecular Cloning and Characterization of Two Genes Encoding Dihydroflavonol-4-Reductase from Populus trichocarpa

    PubMed Central

    Jia, Zhichun; Yang, Li; Sun, Yimin; Xiao, Xunyan; Song, Feng; Luo, Keming

    2012-01-01

    Dihydroflavonol 4-reductase (DFR, EC 1.1.1.219) is a rate-limited enzyme in the biosynthesis of anthocyanins and condensed tannins (proanthocyanidins) that catalyzes the reduction of dihydroflavonols to leucoanthocyanins. In this study, two full-length transcripts encoding for PtrDFR1 and PtrDFR2 were isolated from Populus trichocarpa. Sequence alignment of the two PtrDFRs with other known DFRs reveals the homology of these genes. The expression profile of PtrDFRs was investigated in various tissues of P. trichocarpa. To determine their functions, two PtrDFRs were overexpressed in tobacco (Nicotiana tabacum) via Agrobacterium-mediated transformation. The associated color change in the flowers was observed in all 35S:PtrDFR1 lines, but not in 35S:PtrDFR2 lines. Compared to the wild-type control, a significantly higher accumulation of anthocyanins was detected in transgenic plants harboring the PtrDFR1. Furthermore, overexpressing PtrDFR1 in Chinese white poplar (P. tomentosa Carr.) resulted in a higher accumulation of both anthocyanins and condensed tannins, whereas constitutively expressing PtrDFR2 only improved condensed tannin accumulation, indicating the potential regulation of condensed tannins by PtrDFR2 in the biosynthetic pathway in poplars. PMID:22363429

  5. Molecular Cloning and Characterization of Three Genes Encoding Dihydroflavonol-4-Reductase from Ginkgo biloba in Anthocyanin Biosynthetic Pathway

    PubMed Central

    Hua, Cheng; Linling, Li; Shuiyuan, Cheng; Fuliang, Cao; Feng, Xu; Honghui, Yuan; Conghua, Wu

    2013-01-01

    Dihydroflavonol-4-reductase (DFR, EC1.1.1.219) catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins), and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs) were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species. PMID:23991027

  6. Molecular and Biochemical Analysis of Two cDNA Clones Encoding Dihydroflavonol-4-Reductase from Medicago truncatula1

    PubMed Central

    Xie, De-Yu; Jackson, Lisa A.; Cooper, John D.; Ferreira, Daneel; Paiva, Nancy L.

    2004-01-01

    Dihydroflavonol-4-reductase (DFR; EC1.1.1.219) catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins), and other flavonoids important to plant survival and human nutrition. Two DFR cDNA clones (MtDFR1 and MtDFR2) were isolated from the model legume Medicago truncatula cv Jemalong. Both clones were functionally expressed in Escherichia coli, confirming that both encode active DFR proteins that readily reduce taxifolin (dihydroquercetin) to leucocyanidin. M. truncatula leaf anthocyanins were shown to be cyanidin-glucoside derivatives, and the seed coat proanthocyanidins are known catechin and epicatechin derivatives, all biosynthesized from leucocyanidin. Despite high amino acid similarity (79% identical), the recombinant DFR proteins exhibited differing pH and temperature profiles and differing relative substrate preferences. Although no pelargonidin derivatives were identified in M. truncatula, MtDFR1 readily reduced dihydrokaempferol, consistent with the presence of an asparagine residue at a location known to determine substrate specificity in other DFRs, whereas MtDFR2 contained an aspartate residue at the same site and was only marginally active on dihydrokaempferol. Both recombinant DFR proteins very efficiently reduced 5-deoxydihydroflavonol substrates fustin and dihydrorobinetin, substances not previously reported as constituents of M. truncatula. Transcript accumulation for both genes was highest in young seeds and flowers, consistent with accumulation of condensed tannins and leucoanthocyanidins in these tissues. MtDFR1 transcript levels in developing leaves closely paralleled leaf anthocyanin accumulation. Overexpression of MtDFR1 in transgenic tobacco (Nicotiana tabacum) resulted in visible increases in anthocyanin accumulation in flowers, whereas MtDFR2 did not. The data reveal unexpected properties and differences in two DFR proteins from a single species. PMID:14976232

  7. Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin

    PubMed Central

    Han, Yuepeng; Vimolmangkang, Sornkanok; Soria-Guerra, Ruth Elena; Korban, Schuyler S.

    2012-01-01

    Three genes encoding anthocyanidin reductase (ANR) in apple (Malus×domestica Borkh.), designated MdANR1, MdANR2a, and MdANR2b, have been cloned and characterized. MdANR1 shows 91% identity in coding DNA sequences with MdANR2a and MdANR2b, while MdANR2a and MdANR2b are allelic and share 99% nucleotide sequence identity in the coding region. MdANR1 and MdANR2 genes are located on linkage groups 10 and 5, respectively. Expression levels of both MdANR1 and MdANR2 genes are generally higher in yellow-skinned cv. Golden Delicious than in red-skinned cv. Red Delicious. Transcript accumulation of MdANR1 and MdANR2 genes in fruits gradually decreased throughout fruit development. Ectopic expression of apple MdANR genes in tobacco positively and negatively regulates the biosynthesis of proanthocyanidins (PAs) and anthocyanin, respectively, resulting in white, pale pink-coloured, and white/red variegated flowers. The accumulation of anthocyanin is significantly reduced in all tobacco transgenic flowers, while catechin and epicatechin contents in transgenic flowers are significantly higher than those in flowers of wild-type plants. The inhibition of anthocyanin synthesis in tobacco transgenic flowers overexpressing MdANR genes is probably attributed to down-regulation of CHALCONE ISOMERASE (CHI) and DIHYDROFLAVONOL-4-REDUCTASE (DFR) genes involved in the anthocyanin pathway. Interestingly, several transgenic lines show no detectable transcripts of the gene encoding leucoanthocyanidin reductase (LAR) in flowers, but accumulate higher levels of catechin in flowers of transgenic plants than those of wild-type plants. This finding suggests that the ANR gene may be capable of generating catechin via an alternative route, although this mechanism is yet to be further elucidated. PMID:22238451

  8. Molecular cloning and expression analysis of dihydroflavonol 4-reductase gene in flower organs of Forsythia x intermedia.

    PubMed

    Rosati, C; Cadic, A; Duron, M; Renou, J P; Simoneau, P

    1997-10-01

    The expression, during flower development, of the gene encoding the anthocyanin pathway key enzyme dihydroflavonol 4-reductase (DFR) was investigated in floral organs of Forsythia x intermedia cv. 'Spring Glory'. Full-length DFR and partial chalcone synthase (CHS) cDNAs, the gene of interest and a flavonoid pathway control gene respectively, were obtained from petal RNA by reverse transcription PCR. Whereas for CHS northern blot analysis enabled the study of its expression pattern, competitive PCR assays were necessary to quantify DFR mRNA levels in wild-type plants and in petals of 2 transgenic clones containing a CaMV 35S promoter-driven DFR gene of Antirrhinum majus. Results indicated a peak of CHS and DFR transcript levels in petals at the very early stages of anthesis, and different expression patterns in anthers and sepals. In comparison to wild-type plants, transformants showed a more intense anthocyanin pigmentation of some vegetative organs, and a dramatic increase in DFR transcript concentration and enzymatic activity in petals. However, petals of transformed plants did not accumulate any anthocyanins. These results indicate that other genes and/or regulatory factors should be considered responsible for the lack of anthocyanin production in Forsythia petals. PMID:9349254

  9. The Balance of Expression of Dihydroflavonol 4-reductase and Flavonol Synthase Regulates Flavonoid Biosynthesis and Red Foliage Coloration in Crabapples

    PubMed Central

    Tian, Ji; Han, Zhen-yun; Zhang, Jie; Hu, YuJing; Song, Tingting; Yao, Yuncong

    2015-01-01

    Red leaf color is an attractive trait of Malus families, including crabapple (Malus spp.); however, little is known about the molecular mechanisms that regulate the coloration. Dihydroflavonols are intermediates in the production of both colored anthocyanins and colorless flavonols, and this current study focused on the gene expression balance involved in the relative accumulation of these compounds in crabapple leaves. Levels of anthocyanins and the transcript abundances of the anthocyanin biosynthetic gene, dihydroflavonol 4-reductase (McDFR) and the flavonol biosynthetic gene, flavonol synthase (McFLS), were assessed during the leaf development in two crabapple cultivars, ‘Royalty’ and ‘Flame’. The concentrations of anthocyanins and flavonols correlated with leaf color and we propose that the expression of McDFR and McFLS influences their accumulation. Further studies showed that overexpression of McDFR, or silencing of McFLS, increased anthocyanin production, resulting in red-leaf and red fruit peel phenotypes. Conversely, elevated flavonol production and green phenotypes in crabapple leaves and apple peel were observed when McFLS was overexpressed or McDFR was silenced. These results suggest that the relative activities of McDFR and McFLS are important determinants of the red color of crabapple leaves, via the regulation of the metabolic fate of substrates that these enzymes have in common. PMID:26192267

  10. Disequilibrium of Flavonol Synthase and Dihydroflavonol-4-Reductase Expression Associated Tightly to White vs. Red Color Flower Formation in Plants

    PubMed Central

    Luo, Ping; Ning, Guogui; Wang, Zhen; Shen, Yuxiao; Jin, Huanan; Li, Penghui; Huang, Shasha; Zhao, Jian; Bao, Manzhu

    2016-01-01

    Flower color is the main character throughout the plant kingdom. Though substantial information exists regarding the structural and regulatory genes involved in anthocyanin and flavonol biosynthesis, little is known that what make a diverse white vs. red color flower in natural species. Here, the contents of pigments in seven species from varied phylogenetic location in plants with red and white flowers were determined. Flavonols could be detected in red and white flowers, but anthocyanins were almost undetectable in the white cultivar. Comparisons of expression patterns of gene related to the flavonoid biosynthesis indicated that disequilibrium expression of flavonol synthase (FLS) and dihydroflavonol-4-reductase (DFR) genes determined the accumulation of flavonols and anothcyanins in both red and white flowers of seven species. To further investigate the role of such common regulatory patterns in determining flower color, FLS genes were isolated from Rosa rugosa (RrFLS1), Prunus persica (PpFLS), and Petunia hybrida (PhFLS), and DFR genes were isolated from Rosa rugosa (RrDFR1) and Petunia hybrida (PhDFR). Heterologous expression of the FLS genes within tobacco host plants demonstrated conservation of function, with the transgenes promoting flavonol biosynthesis and inhibiting anthocyanin accumulation, so resulting in white flowers. Conversely, overexpression of DFR genes in tobacco displayed down-regulation of the endogenous NtFLS gene, and the promotion of anthocyanin synthesis. On this basis, we propose a model in which FLS and DFR gene-products compete for common substrates in order to direct the biosynthesis of flavonols and anthocyanins, respectively, thereby determining white vs. red coloration of flowers. PMID:26793227

  11. Dihydroflavonol 4-Reductase Genes Encode Enzymes with Contrasting Substrate Specificity and Show Divergent Gene Expression Profiles in Fragaria Species

    PubMed Central

    Miosic, Silvija; Thill, Jana; Milosevic, Malvina; Gosch, Christian; Pober, Sabrina; Molitor, Christian; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi

    2014-01-01

    During fruit ripening, strawberries show distinct changes in the flavonoid classes that accumulate, switching from the formation of flavan 3-ols and flavonols in unripe fruits to the accumulation of anthocyanins in the ripe fruits. In the common garden strawberry (Fragaria×ananassa) this is accompanied by a distinct switch in the pattern of hydroxylation demonstrated by the almost exclusive accumulation of pelargonidin based pigments. In Fragaria vesca the proportion of anthocyanins showing one (pelargonidin) and two (cyanidin) hydroxyl groups within the B-ring is almost equal. We isolated two dihydroflavonol 4-reductase (DFR) cDNA clones from strawberry fruits, which show 82% sequence similarity. The encoded enzymes revealed a high variability in substrate specificity. One enzyme variant did not accept DHK (with one hydroxyl group present in the B-ring), whereas the other strongly preferred DHK as a substrate. This appears to be an uncharacterized DFR variant with novel substrate specificity. Both DFRs were expressed in the receptacle and the achenes of both Fragaria species and the DFR2 expression profile showed a pronounced dependence on fruit development, whereas DFR1 expression remained relatively stable. There were, however, significant differences in their relative rates of expression. The DFR1/DFR2 expression ratio was much higher in the Fragaria×ananassa and enzyme preparations from F.×ananassa receptacles showed higher capability to convert DHK than preparations from F. vesca. Anthocyanin concentrations in the F.×ananassa cultivar were more than twofold higher and the cyanidin:pelargonidin ratio was only 0.05 compared to 0.51 in the F. vesca cultivar. The differences in the fruit colour of the two Fragaria species can be explained by the higher expression of DFR1 in F.×ananassa as compared to F. vesca, a higher enzyme efficiency (Kcat/Km values) of DFR1 combined with the loss of F3’H activity late in fruit development of F.×ananassa. PMID:25393679

  12. Isolation of Dihydroflavonol 4-Reductase cDNA Clones from Angelonia x angustifolia and Heterologous Expression as GST Fusion Protein in Escherichia coli

    PubMed Central

    Gosch, Christian; Nagesh, Karthik Mudigere; Thill, Jana; Miosic, Silvija; Plaschil, Sylvia; Milosevic, Malvina; Olbricht, Klaus; Ejaz, Shaghef; Rompel, Annette; Stich, Karl; Halbwirth, Heidi

    2014-01-01

    Blue Angelonia × angustifolia flowers can show spontaneous mutations resulting in white/blue and white flower colourations. In such a white line, a loss of dihydroflavonol 4-reductase (DFR) activity was observed whereas chalcone synthase and flavanone 3-hydroxylase activity remained unchanged. Thus, cloning and characterization of a DFR of Angelonia flowers was carried out for the first time. Two full length DFR cDNA clones, Ang.DFR1 and Ang.DFR2, were obtained from a diploid chimeral white/blue Angelonia × angustifolia which demonstrated a 99% identity in their translated amino acid sequence. In comparison to Ang.DFR2, Ang.DFR1 was shown to contain an extra proline in a proline-rich region at the N-terminus along with two exchanges at the amino acids 12 and 26 in the translated amino acid sequence. The recombinant Ang.DFR2 obtained by heterologous expression in yeast was functionally active catalyzing the NADPH dependent reduction of dihydroquercetin (DHQ) and dihydromyricetin (DHM) to leucocyanidin and leucomyricetin, respectively. Dihydrokaempferol (DHK) in contrast was not accepted as a substrate despite the presence of asparagine in a position assumed to determine DHK acceptance. We show that substrate acceptance testing of DFRs provides biased results for DHM conversion if products are extracted with ethyl acetate. Recombinant Ang.DFR1 was inactive and functional activity could only be restored via exchanges of the amino acids in position 12 and 26 as well as the deletion of the extra proline. E. coli transformation of the pGEX-6P-1 vector harbouring the Ang.DFR2 and heterologous expression in E. coli resulted in functionally active enzymes before and after GST tag removal. Both the GST fusion protein and purified DFR minus the GST tag could be stored at −80°C for several months without loss of enzyme activity and demonstrated identical substrate specificity as the recombinant enzyme obtained from heterologous expression in yeast. PMID:25238248

  13. Functional Characterization of Dihydroflavonol-4-Reductase in Anthocyanin Biosynthesis of Purple Sweet Potato Underlies the Direct Evidence of Anthocyanins Function against Abiotic Stresses

    PubMed Central

    Wang, Hongxia; Fan, Weijuan; Li, Hong; Yang, Jun; Huang, Jirong; Zhang, Peng

    2013-01-01

    Dihydroflavonol-4-reductase (DFR) is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam.) cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi) using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions. PMID:24223813

  14. The Gene Encoding Dihydroflavonol 4-Reductase Is a Candidate for the anthocyaninless Locus of Rapid Cycling Brassica rapa (Fast Plants Type)

    PubMed Central

    Wendell, Douglas L.; Vaziri, Anoumid; Shergill, Gurbaksh

    2016-01-01

    Rapid cycling Brassica rapa, also known as Wisconsin Fast Plants, are a widely used organism in both K-12 and college science education. They are an excellent system for genetics laboratory instruction because it is very easy to conduct genetic crosses with this organism, there are numerous seed stocks with variation in both Mendelian and quantitative traits, they have a short generation time, and there is a wealth of educational materials for instructors using them. Their main deficiency for genetics education is that none of the genetic variation in RCBr has yet been characterized at the molecular level. Here we present the first molecular characterization of a gene responsible for a trait in Fast Plants. The trait under study is purple/nonpurple variation due to the anthocyaninless locus, which is one of the Mendelian traits most frequently used for genetics education with this organism. We present evidence that the DFR gene, which encodes dihyroflavonol 4-reductase, is the candidate gene for the anthocyaninless (ANL) locus in RCBr. DFR shows complete linkage with ANL in genetic crosses with a total of 948 informative chromosomes, and strains with the recessive nonpurple phenotype have a transposon-related insertion in the DFR which is predicted to disrupt gene function. PMID:27548675

  15. The Gene Encoding Dihydroflavonol 4-Reductase Is a Candidate for the anthocyaninless Locus of Rapid Cycling Brassica rapa (Fast Plants Type).

    PubMed

    Wendell, Douglas L; Vaziri, Anoumid; Shergill, Gurbaksh

    2016-01-01

    Rapid cycling Brassica rapa, also known as Wisconsin Fast Plants, are a widely used organism in both K-12 and college science education. They are an excellent system for genetics laboratory instruction because it is very easy to conduct genetic crosses with this organism, there are numerous seed stocks with variation in both Mendelian and quantitative traits, they have a short generation time, and there is a wealth of educational materials for instructors using them. Their main deficiency for genetics education is that none of the genetic variation in RCBr has yet been characterized at the molecular level. Here we present the first molecular characterization of a gene responsible for a trait in Fast Plants. The trait under study is purple/nonpurple variation due to the anthocyaninless locus, which is one of the Mendelian traits most frequently used for genetics education with this organism. We present evidence that the DFR gene, which encodes dihyroflavonol 4-reductase, is the candidate gene for the anthocyaninless (ANL) locus in RCBr. DFR shows complete linkage with ANL in genetic crosses with a total of 948 informative chromosomes, and strains with the recessive nonpurple phenotype have a transposon-related insertion in the DFR which is predicted to disrupt gene function. PMID:27548675

  16. Surface-enhanced Raman scattering (SERS) study of anthocyanidins

    NASA Astrophysics Data System (ADS)

    Zaffino, Chiara; Russo, Bianca; Bruni, Silvia

    2015-10-01

    Anthocyanins are an important class of natural compounds responsible for the red, purple and blue colors in a large number of flowers, fruits and cereal grains. They are polyhydroxy- and polymethoxy-derivatives of 2-phenylbenzopyrylium (flavylium) salts, which are present in nature as glycosylated molecules. The aim of the present study is to assess the identification of anthocyanidins, i.e. anthocyanins without the glycosidic moiety, by means of surface-enhanced Raman spectroscopy (SERS), a very chemically-specific technique which is moreover sensitive to subtle changes in molecular structures. These features can lead to elect SERS, among the spectroscopic tools currently at disposal of scientists, as a technique of choice for the identification of anthocyanidins, since: (1) anthocyanidins structurally present the same benzopyrylium moiety and differentiate only for the substitution pattern on their phenyl ring, (2) different species are present in aqueous solution depending on the pH. It will be demonstrated that, while resonance Raman spectra of anthocyanidins are very similar to one another, SER spectra show greater differences, leading to a further step in the identification of such important compounds in diluted solutions by means of vibrational spectroscopy. Moreover, the dependence on the pH of the six most common anthocyanidins, i.e. cyanidin, delphinidin, pelargonidin, peonidin, malvidin and petunidin, is studied. To the best of the authors' knowledge, a complete SERS study of such important molecules is reported in the present work for the first time.

  17. Emergence of Plasmid-Borne dfrA14 Trimethoprim Resistance Gene in Shigella sonnei

    PubMed Central

    Miranda, Alfonso; Ávila, Bárbara; Díaz, Patricia; Rivas, Lina; Bravo, Karen; Astudillo, Javier; Bueno, Constanza; Ulloa, María T.; Hermosilla, Germán; Del Canto, Felipe; Salazar, Juan C.; Toro, Cecilia S.

    2016-01-01

    The most common mechanism of trimethoprim (TMP)-resistance is the acquisition of dihydrofolate reductase enzyme resistant to this drug. Previous molecular characterization of TMP-genes resistance in Chilean isolates of Shigella sonnei searching for dfrA1 and dfrA8, showed solely the presence of dfrA8 (formerly dhfrIIIc). However, these genetic markers were absent in S. sonnei strains further isolated during an outbreak in 2009. To identify the TMP-resistance gene in these strains, a genomic DNA library from a TMP-resistant (TMPR) S. sonnei representative strain for the outbreak was used to clone, select and identify a TMP-resistance marker. The TMPR clone was sequenced by primer walking, identifying the presence of the dfrA14 gene in the sul2-strA'-dfrA14-‘strA-strB gene arrangement, harbored in a native 6779-bp plasmid. The same plasmid was isolated by transforming with a ~4.2 MDa plasmid extracted from several TMPR S. sonnei strains into Escherichia coli. This plasmid, named pABC-3, was present only in dfrA14-positive strains and was homologous to a previously described pCERC-1, but different due to the absence of an 11-bp repetitive unit. The distribution of dfrA1, dfrA8, and dfrA14 TMP-resistance genes was determined in 126 TMPR S. sonnei isolates. Most of the strains (96%) carried only one of the three TMP-resistance genes assessed. Thus, all strains obtained during the 2009-outbreak harbored only dfrA14, whereas, dfrA8 was the most abundant gene marker before outbreak and, after the outbreak dfrA1 seems have appeared in circulating strains. According to PFGE, dfrA14-positive strains were clustered in a genetically related group including some dfrA1- and dfrA8-positive strains; meanwhile other genetic group included most of the dfrA8-positive strains. This distribution also correlated with the isolation period, showing a dynamics of trimethoprim genetic markers prevalent in Chilean S. sonnei strains. To our knowledge, dfrA14 gene associated to a small non

  18. Detection of Anthocyanins/Anthocyanidins in Animal Tissues

    PubMed Central

    2015-01-01

    Dietary polyphenols may contribute to the prevention of several degenerative diseases, including cancer. Anthocyanins have been shown to possess potential anticancer activity. The aim of this study was to determine anthocyanin bioavailability in lung tissue of mice fed a blueberry diet (5% w/w) for 10 days or a bolus dose (10 mg/mouse; po) of a native mixture of bilberry anthocyanidins. All five anthocyanidins present in the blueberry were detected in the lung tissue using improved methods. The effect of various solvents on the stability of anthocyanins and their recovery from the biomatrix was analyzed. Detection of anthocyanins and their metabolites was performed by UPLC and LC-MS. Although anthocyanins were not detected, cyanidin was detected by UPLC-PDA and other anthocyanidins were detected by LC-MS, following conversion to anthocyanidins and selective extraction in isoamyl alcohol. The results show that anthocyanins can be detected in lung tissue of blueberry-fed mice and thus are bioavailable beyond the gastrointestinal tract. PMID:24650213

  19. C∗-completions and the DFR-algebra

    NASA Astrophysics Data System (ADS)

    Forger, Michael; Paulino, Daniel V.

    2016-02-01

    The aim of this paper is to present the construction of a general family of C∗-algebras which includes, as a special case, the "quantum spacetime algebra" introduced by Doplicher, Fredenhagen, and Roberts. It is based on an extension of the notion of C∗-completion from algebras to bundles of algebras, compatible with the usual C∗-completion of the appropriate algebras of sections, combined with a novel definition for the algebra of the canonical commutation relations using Rieffel's theory of strict deformation quantization. Taking the C∗-algebra of continuous sections vanishing at infinity, we arrive at a functor associating a C∗-algebra to any Poisson vector bundle and recover the original DFR-algebra as a particular example.

  20. In vitro effects of anthocyanidins on sinonasal epithelial nitric oxide production and bacterial physiology

    PubMed Central

    Hariri, Benjamin M.; Payne, Sakeena J.; Chen, Bei; Mansfield, Corrine; Doghramji, Laurel J.; Adappa, Nithin D.; Palmer, James N.; Kennedy, David W.; Niv, Masha Y.

    2016-01-01

    Background: T2R bitter taste receptors play a crucial role in sinonasal innate immunity by upregulating mucociliary clearance and nitric oxide (NO) production in response to bitter gram-negative quorum-sensing molecules in the airway surface liquid. Previous studies showed that phytochemical flavonoid metabolites, known as anthocyanidins, taste bitter and have antibacterial effects. Our objectives were to examine the effects of anthocyanidins on NO production by human sinonasal epithelial cells and ciliary beat frequency, and their impact on common sinonasal pathogens Pseudomonas aeruginosa and Staphylococcus aureus. Methods: Ciliary beat frequency and NO production were measured by using digital imaging of differentiated air-liquid interface cultures prepared from primary human cells isolated from residual surgical material. Plate-based assays were used to determine the effects of anthocyanidins on bacterial swimming and swarming motility. Biofilm formation and planktonic growth were also assessed. Results: Anthocyanidin compounds triggered epithelial cells to produce NO but not through T2R receptors. However, anthocyanidins did not impact ciliary beat frequency. Furthermore, they did not reduce biofilm formation or planktonic growth of P. aeruginosa. In S. aureus, they did not reduce planktonic growth, and only one compound had minimal antibiofilm effects. The anthocyanidin delphinidin and anthocyanin keracyanin were found to promote bacterial swimming, whereas anthocyanidin cyanidin and flavonoid myricetin did not. No compounds that were tested inhibited bacterial swarming. Conclusion: Results of this study indicated that, although anthocyanidins may elicited an innate immune NO response from human cells, they do not cause an increase in ciliary beating and they may also cause a pathogenicity-enhancing effect in P. aeruginosa. Additional studies are necessary to understand how this would affect the use of anthocyanidins as therapeutics. This study emphasized the

  1. Protective effect of anthocyanidins against sodium dithionite-induced hypoxia injury in C6 glial cells.

    PubMed

    Lin, Yu-Chun; Tsai, Pei-Feng; Wu, James Swi-Bea

    2014-06-18

    The present study investigated the neuroprotective effect of anthocyanidins, including cyanidin, delphinidin, malvidin, pelargonidin, and peonidin, against hypoxia in C6 glial cells. The cells were first incubated with a medium containing anthocynidin in normoxia condition and then with a medium containing sodium dithionite (Na2S2O4) in an anaerobic incubator for the hypoxia treatment. Methylthiazole tetrazolium test and evaluation of antioxidant enzyme activities and glutathione concentration were performed on the treated cells. At least 74% of the C6 cells preincubated with 25 mg/L of any of the five anthocyanidins in serum-free Dulbecco's modified Eagle's medium at 37 °C for 24 h survived the hypoxia treatment as compared with a survival rate between 47 and 59% for the control that was preincubated without an anthocyanidin. The cells preincubated with any of the five anthocyanidins showed higher catalase activity and glutathione concentration after the hypoxia treatment as compared with the corresponding samples without the preincubation with anthocyanidin. The cells preincubated with malvidin, pelargonidin, or peonidin also showed higher superoxide dismutase activities. The results of this study justify further research for the development of anthocyanidins into neuroprotective food ingredients against hypoxia injury. PMID:24845373

  2. Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae

    PubMed Central

    Bossé, Janine T.; Li, Yanwen; Walker, Stephanie; Atherton, Tom; Fernandez Crespo, Roberto; Williamson, Susanna M.; Rogers, Jon; Chaudhuri, Roy R.; Weinert, Lucy A.; Oshota, Olusegun; Holden, Matt T. G.; Maskell, Duncan J.; Tucker, Alexander W.; Wren, Brendan W.; Rycroft, Andrew N.; Langford, Paul R.

    2015-01-01

    Objectives The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. Methods Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. Results A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. Conclusions This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial. PMID:25957382

  3. Effect of anthocyanidins on myogenic differentiation in induced and non-induced primary myoblasts from rainbow trout (Oncorhynchus mykiss).

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to test whether an anthocyanidin mixture (peonidin, cyanidin and pelargonidin chloride) modulates myogenesis in both induced and non-induced myogenic cells from juvenile rainbow trout (Oncorhynchus mykiss). We evaluated three different anthocyanidin concentrations (1X, 2.5X and...

  4. Effect of anthocyanidins on myogenic differentiation in induced and non-induced primary myoblasts from rainbow trout (Oncorhynchus mykiss).

    PubMed

    Villasante, Alejandro; Powell, Madison S; Murdoch, Gordon K; Overturf, Ken; Cain, Kenneth; Wacyk, Jurij; Hardy, Ronald W

    2016-01-01

    A study was conducted to test whether an anthocyanidin mixture (peonidin, cyanidin and pelargonidin chloride) modulates myogenesis in both induced and non-induced myogenic cells from juvenile rainbow trout (Oncorhynchus mykiss). We evaluated three different anthocyanidin concentrations (1×, 2.5× and 10×) at two sampling times (24 and 36h). To test for treatment effects, we analyzed the expression of myoD and pax7 as well as two target genes of the Notch signaling pathway, hey2 and her6. In induced myogenic cells, the lowest and middle anthocyanidin doses caused significantly greater expression of myoD after 24h of treatment compared to control. A significantly higher expression of pax7 in cells exposed to either anthocyanidin treatment during 36h compared was observed. Similarly, the pax7/myoD ratio was significantly lower in cells exposed to the lowest anthocyanidin doses during 24h compared to control. No significant effect of anthocyanidin treatments on the expression of hey2 and her6 at either sampling point was detected. In non-induced cells, we observed no effect of anthocyanidins on myoD expression and significant down-regulation on pax7 expression in cells exposed to either anthocyanidin mixture concentrations after 24 and 36h of treatment compared to control. Further, the pax7/myoD ratio was significantly lower in cells exposed to either anthocyanidin doses at both sampling time. In non-induced cells, the highest anthocyanidin dose provoked significantly greater expression of hey2 after 24h of treatment compared to control. We detected no such effect in non-induced cells exposed to the lowest and middle anthocyanidin doses during 24h of treatment. The expression of her6 was unaffected by anthocyanidin treatments at either sampling time or doses compared to control. Collectively, these findings provide evidence that anthocyanidins modulate specific components of the myogenic programming in fish, thereby potentially affecting somatic growth in fish fed

  5. Do anthocyanins and anthocyanidins, cancer chemopreventive pigments in the diet, merit development as potential drugs?

    PubMed

    Thomasset, Sarah; Teller, Nicole; Cai, Hong; Marko, Doris; Berry, David P; Steward, William P; Gescher, Andreas J

    2009-06-01

    Anthocyanins, plant pigments in fruits and berries, have been shown to delay cancer development in rodent models of carcinogenesis, especially those of the colorectal tract. Anthocyanins and anthocyanidins, their aglycons, especially cyanidin and delphinidin, have been subjected to extensive mechanistic studies. In cells in vitro, both glycosides and aglycons engage an array of anti-oncogenic mechanisms including anti-proliferation, induction of apoptosis and inhibition of activities of oncogenic transcription factors and protein tyrosine kinases. Anthocyanins and anthocyanidins exist as four isomers, interconversion between which depends on pH, temperature and access to light. Anthocyanidins are much more prone to avid chemical decomposition than the glycosides, and they only survive for minutes in the biophase. These pharmaceutical issues are very important determinants of the suitability of these flavonoids for potential development as cancer chemopreventive drugs, and they have hitherto not received adequate attention. In the light of their robust cancer chemopreventive efficacy in experimental models and their superior stability as compared to that of the aglycons, the anthocyanins seem much more suitable for further drug development than their anthocyanidin counterparts. PMID:19294386

  6. Volatile, anthocyanidin, quality and sensory changes in rabbiteye blueberry from whole fruit through pilot plant juice processing.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: High antioxidant content and keen marketing have increased blueberry demand and increased local production which in turn mandates new uses for abundant harvests. Pilot scale processes were employed to investigate the anthocyanidin profiles, qualitative volatile compositions, and sensori...

  7. Contribution of dfrA and inhA mutations to the detection of isoniazid-resistant Mycobacterium tuberculosis isolates.

    PubMed

    Ho, Yu Min; Sun, Yong-Jiang; Wong, Sin-Yew; Lee, Ann S G

    2009-09-01

    Screening of 127 isoniazid (INH)-resistant Mycobacterium tuberculosis isolates from Singapore for mutations within the dfrA and inhA genes revealed mutations in 0 and 5 (3.9%) isolates respectively, implying that mutations in dfrA do not contribute to the detection of INH-resistant M. tuberculosis and that mutations within inhA are rare. Thirty-seven (29%) of the 127 isolates had no mutations in any of the genes implicated in INH resistance (katG, kasA, and ndh; inhA and ahpC promoters), suggesting that there are new INH targets yet to be discovered. PMID:19581462

  8. Contribution of dfrA and inhA Mutations to the Detection of Isoniazid-Resistant Mycobacterium tuberculosis Isolates▿

    PubMed Central

    Ho, Yu Min; Sun, Yong-Jiang; Wong, Sin-Yew; Lee, Ann S. G.

    2009-01-01

    Screening of 127 isoniazid (INH)-resistant Mycobacterium tuberculosis isolates from Singapore for mutations within the dfrA and inhA genes revealed mutations in 0 and 5 (3.9%) isolates respectively, implying that mutations in dfrA do not contribute to the detection of INH-resistant M. tuberculosis and that mutations within inhA are rare. Thirty-seven (29%) of the 127 isolates had no mutations in any of the genes implicated in INH resistance (katG, kasA, and ndh; inhA and ahpC promoters), suggesting that there are new INH targets yet to be discovered. PMID:19581462

  9. Anthocyanidins modulate the activity of human DNA topoisomerases I and II and affect cellular DNA integrity.

    PubMed

    Habermeyer, Michael; Fritz, Jessica; Barthelmes, Hans U; Christensen, Morten O; Larsen, Morten K; Boege, Fritz; Marko, Doris

    2005-09-01

    In the present study, we investigated the effect of anthocyanidins on human topoisomerases I and II and its relevance for DNA integrity within human cells. Anthocyanidins bearing vicinal hydroxy groups at the B-ring (delphinidin, DEL; cyanidin, CY) were found to potently inhibit the catalytic activity of human topoisomerases I and II, without discriminating between the IIalpha and the IIbeta isoforms. However, in contrast to topoisomerase poisons, DEL and CY did not stabilize the covalent DNA-topoisomerase intermediates (cleavable complex) of topoisomerase I or II. Using recombinant topoisomerase I, the presence of CY or DEL (> or = 1 microM) effectively prohibited the stabilization of the cleavable complex by the topoisomerase I poison camptothecin. We furthermore investigated whether the potential protective effect vs topoisomerase I poisons is reflected also on the cellular level, affecting the DNA damaging properties of camptothecin. Indeed, in HT29 cells, low micromolar concentrations of DEL (1-10 microM) significantly diminished the DNA strand breaking effect of camptothecin (100 microM). However, at concentrations > or = 50 microM, all anthocyanidins tested (delphinidin, cyanidin, malvidin, pelargonidin, and paeonidin), including those not interfering with topoisomerases, were found to induce DNA strand breaks in the comet assay. All of these analogues were able to compete with ethidium bromide for the intercalation into calf thymus DNA and to replace the minor groove binder Hoechst 33258. These data indicate substantial affinity to double-stranded DNA, which might contribute at least to the DNA strand breaking effect of anthocyanidins at higher concentrations (> or = 50 microM). PMID:16167831

  10. Berry anthocyanins and anthocyanidins exhibit distinct affinities for the efflux transporters BCRP and MDR1

    PubMed Central

    Dreiseitel, A; Oosterhuis, B; Vukman, KV; Schreier, P; Oehme, A; Locher, S; Hajak, G; Sand, PG

    2009-01-01

    Background and purpose: Dietary anthocyanins hold great promise in the prevention of chronic disease but factors affecting their bioavailability remain poorly defined. Specifically, the role played by transport mechanisms at the intestinal and blood–brain barriers (BBB) is currently unknown. Experimental approach: In the present study, 16 anthocyanins and anthocyanidins were exposed to the human efflux transporters multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP), using dye efflux, ATPase and, for BCRP, vesicular transport assays. Key results: All test compounds interacted with the BCRP transporter in vitro. Of these, seven emerged as potential BCRP substrates (malvidin, petunidin, malvidin-3-galactoside, malvidin-3,5-diglucoside, cyanidin-3-galactoside, peonidin-3-glucoside, cyanidin-3-glucoside) and 12 as potential inhibitors of BCRP (cyanidin, peonidin, cyanidin-3,5-diglucoside, malvidin, pelargonidin, delphinidin, petunidin, delphinidin-3-glucoside, cyanidin-3-rutinoside, malvidin-3-glucoside, pelargonidin-3,5-diglucoside, malvidin-3-galactoside). Malvidin, malvidin-3-galactoside and petunidin exhibited bimodal activities serving as BCRP substrates at low concentrations and, at higher concentrations, as BCRP inhibitors. Effects on MDR1, in contrast, were weak. Only aglycones exerted mild inhibitory activity. Conclusions and implications: Although the anthocyanidins under study may alter pharmacokinetics of drugs that are BCRP substrates, they are less likely to interfere with activities of MDR1 substrates. The present data suggest that several anthocyanins and anthocyanidins may be actively transported out of intestinal tissues and endothelia, limiting their bioavailability in plasma and brain. PMID:19922539

  11. A Fruit-Specific Putative Dihydroflavonol 4-Reductase Gene Is Differentially Expressed in Strawberry during the Ripening Process1

    PubMed Central

    Moyano, Enriqueta; Portero-Robles, Ignacio; Medina-Escobar, Nieves; Valpuesta, Victoriano; Muñoz-Blanco, Juan; Luis Caballero, José

    1998-01-01

    A cDNA clone encoding a putative dihydroflavonol 4-reductase gene has been isolated from a strawberry (Fragaria × ananassa cv Chandler) DNA subtractive library. Northern analysis showed that the corresponding gene is predominantly expressed in fruit, where it is first detected during elongation (green stages) and then declines and sharply increases when the initial fruit ripening events occur, at the time of initiation of anthocyanin accumulation. The transcript can be induced in unripe green fruit by removing the achenes, and this induction can be partially inhibited by treatment of de-achened fruit with naphthylacetic acid, indicating that the expression of this gene is under hormonal control. We propose that the putative dihydroflavonol 4-reductase gene in strawberry plays a main role in the biosynthesis of anthocyanin during color development at the late stages of fruit ripening; during the first stages the expression of this gene could be related to the accumulation of condensed tannins. PMID:9625725

  12. Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea

    PubMed Central

    Hiromoto, Takeshi; Honjo, Eijiro; Noda, Naonobu; Tamada, Taro; Kazuma, Kohei; Suzuki, Masahiko; Blaber, Michael; Kuroki, Ryota

    2015-01-01

    UDP-glucose: anthocyanidin 3-O-glucosyltransferase (UGT78K6) from Clitoria ternatea catalyzes the transfer of glucose from UDP-glucose to anthocyanidins such as delphinidin. After the acylation of the 3-O-glucosyl residue, the 3′- and 5′-hydroxyl groups of the product are further glucosylated by a glucosyltransferase in the biosynthesis of ternatins, which are anthocyanin pigments. To understand the acceptor-recognition scheme of UGT78K6, the crystal structure of UGT78K6 and its complex forms with anthocyanidin delphinidin and petunidin, and flavonol kaempferol were determined to resolutions of 1.85 Å, 2.55 Å, 2.70 Å, and 1.75 Å, respectively. The enzyme recognition of unstable anthocyanidin aglycones was initially observed in this structural determination. The anthocyanidin- and flavonol-acceptor binding details are almost identical in each complex structure, although the glucosylation activities against each acceptor were significantly different. The 3-hydroxyl groups of the acceptor substrates were located at hydrogen-bonding distances to the Nε2 atom of the His17 catalytic residue, supporting a role for glucosyl transfer to the 3-hydroxyl groups of anthocyanidins and flavonols. However, the molecular orientations of these three acceptors are different from those of the known flavonoid glycosyltransferases, VvGT1 and UGT78G1. The acceptor substrates in UGT78K6 are reversely bound to its binding site by a 180° rotation about the O1–O3 axis of the flavonoid backbones observed in VvGT1 and UGT78G1; consequently, the 5- and 7-hydroxyl groups are protected from glucosylation. These substrate recognition schemes are useful to understand the unique reaction mechanism of UGT78K6 for the ternatin biosynthesis, and suggest the potential for controlled synthesis of natural pigments. PMID:25556637

  13. Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea.

    PubMed

    Hiromoto, Takeshi; Honjo, Eijiro; Noda, Naonobu; Tamada, Taro; Kazuma, Kohei; Suzuki, Masahiko; Blaber, Michael; Kuroki, Ryota

    2015-03-01

    UDP-glucose: anthocyanidin 3-O-glucosyltransferase (UGT78K6) from Clitoria ternatea catalyzes the transfer of glucose from UDP-glucose to anthocyanidins such as delphinidin. After the acylation of the 3-O-glucosyl residue, the 3'- and 5'-hydroxyl groups of the product are further glucosylated by a glucosyltransferase in the biosynthesis of ternatins, which are anthocyanin pigments. To understand the acceptor-recognition scheme of UGT78K6, the crystal structure of UGT78K6 and its complex forms with anthocyanidin delphinidin and petunidin, and flavonol kaempferol were determined to resolutions of 1.85 Å, 2.55 Å, 2.70 Å, and 1.75 Å, respectively. The enzyme recognition of unstable anthocyanidin aglycones was initially observed in this structural determination. The anthocyanidin- and flavonol-acceptor binding details are almost identical in each complex structure, although the glucosylation activities against each acceptor were significantly different. The 3-hydroxyl groups of the acceptor substrates were located at hydrogen-bonding distances to the Nε2 atom of the His17 catalytic residue, supporting a role for glucosyl transfer to the 3-hydroxyl groups of anthocyanidins and flavonols. However, the molecular orientations of these three acceptors are different from those of the known flavonoid glycosyltransferases, VvGT1 and UGT78G1. The acceptor substrates in UGT78K6 are reversely bound to its binding site by a 180° rotation about the O1-O3 axis of the flavonoid backbones observed in VvGT1 and UGT78G1; consequently, the 5- and 7-hydroxyl groups are protected from glucosylation. These substrate recognition schemes are useful to understand the unique reaction mechanism of UGT78K6 for the ternatin biosynthesis, and suggest the potential for controlled synthesis of natural pigments. PMID:25556637

  14. Crystal Structures of Trimethoprim-Resistant DfrA1 Rationalize Potent Inhibition by Propargyl-Linked Antifolates.

    PubMed

    Lombardo, Michael N; G-Dayanandan, Narendran; Wright, Dennis L; Anderson, Amy C

    2016-02-12

    Multidrug-resistant Enterobacteriaceae, notably Escherichia coli and Klebsiella pneumoniae, have become major health concerns worldwide. Resistance to effective therapeutics is often carried by class I and II integrons that can confer insensitivity to carbapenems, extended spectrum β-lactamases, the antifolate trimethoprim, fluoroquinolones, and aminoglycosides. Specifically of interest to the study here, a prevalent gene (dfrA1) coding for an insensitive dihydrofolate reductase (DHFR) confers 190- or 1000-fold resistance to trimethoprim for K. pneumoniae and E. coli, respectively. Attaining inhibition of both the wild-type and resistant forms of the enzyme is critical for new antifolates. For several years, we have been developing the propargyl-linked antifolates (PLAs) as effective inhibitors against trimethoprim-resistant DHFR enzymes. Here, we show that the PLAs are active against both the wild-type and DfrA1 DHFR proteins. We report two high-resolution crystal structures of DfrA1 bound to potent PLAs. The structure-activity relationships and crystal structures will be critical in driving the design of broadly active inhibitors against wild-type and resistant DHFR. PMID:27624966

  15. Characterization of anthocyanins and anthocyanidins in purple-fleshed sweetpotatoes by HPLC-DAD and LC-ESI/MS-MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purple-fleshed sweetpotatoes (PFSP) can be a healthy food choice for consumers and a potential source for natural food colorants. This study aimed to identify anthocyanins and anthocyanidins in PFSP, and to evaluate the effect of thermal processing on these polyphenolic compounds. Freeze-dried powde...

  16. Anthocyanidins and Flavonols, Major nod Gene Inducers from Seeds of a Black-Seeded Common Bean (Phaseolus vulgaris L.) 1

    PubMed Central

    Hungria, Mariangela; Joseph, Cecillia M.; Phillips, Donald A.

    1991-01-01

    Eleven compounds released from germinating seeds of a black-seeded bean (Phaseolus vulgaris L., cv PI165426CS) induce transcription of nod genes in Rhizobium leguminosarum biovar phaseoli. Aglycones from 10 of those compounds were identified by spectroscopic methods (ultraviolet/visible, proton nuclear magnetic resonance, and mass spectroscopy), and their biological activities were demonstrated by induction of β-galactosidase activity in R. leguminosarum strains containing nodA-lacZ or nodC-lacZ fusions controlled by R. leguminosarum biovar phaseoli nodD genes. By making comparisons with authentic standards, the chemical structures for aglycones from the 10 molecules were confirmed as being anthocyanidins (delphinidin, petunidin, and malvidin) and flavonols (myricetin, quercetin, and kaempferol). All anthocyanidins and flavonols had 3-O-glycosylation and free hydroxyl groups at the 4′, 5, and 7 positions. Hydrolysis experiments showed that the mean concentration required for half-maximum nod gene induction (I50) by the 10 glycosides was about half that of the corresponding aglycones. The mean I50 value for the three anthocyanidins (360 nanomolar) was less (P ≤ 0.05) than that of the three flavonol aglycones (980 nanomolar). Each seed released approximately 2500 nanomoles of anthocyanidin and 450 nanomoles of flavonol nod gene inducers in conjugated forms during the first 6 hours of imbibition. Based on amounts and activities of the compounds released, anthocyanins contributed approximately 10-fold more total nod-inducing activity than flavonol glycosides. These anthocyanidins from bean seeds represent the first nod-inducing compounds identified from that group of flavonoids. PMID:16668462

  17. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  18. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    PubMed Central

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, YeJi; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  19. Crystal structure of UDP-glucose:anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea.

    PubMed

    Hiromoto, Takeshi; Honjo, Eijiro; Tamada, Taro; Noda, Naonobu; Kazuma, Kohei; Suzuki, Masahiko; Kuroki, Ryota

    2013-11-01

    Flowers of the butterfly pea (Clitoria ternatea) accumulate a group of polyacylated anthocyanins, named ternatins, in their petals. The first step in ternatin biosynthesis is the transfer of glucose from UDP-glucose to anthocyanidins such as delphinidin, a reaction catalyzed in C. ternatea by UDP-glucose:anthocyanidin 3-O-glucosyltransferase (Ct3GT-A; AB185904). To elucidate the structure-function relationship of Ct3GT-A, recombinant Ct3GT-A was expressed in Escherichia coli and its tertiary structure was determined to 1.85 Å resolution by using X-ray crystallography. The structure of Ct3GT-A shows a common folding topology, the GT-B fold, comprised of two Rossmann-like β/α/β domains and a cleft located between the N- and C-domains containing two cavities that are used as binding sites for the donor (UDP-Glc) and acceptor substrates. By comparing the structure of Ct3GT-A with that of the flavonoid glycosyltransferase VvGT1 from red grape (Vitis vinifera) in complex with UDP-2-deoxy-2-fluoro glucose and kaempferol, locations of the catalytic His-Asp dyad and the residues involved in recognizing UDP-2-deoxy-2-fluoro glucose were essentially identical in Ct3GT-A, but certain residues of VvGT1 involved in binding kaempferol were found to be substituted in Ct3GT-A. These findings are important for understanding the differentiation of acceptor-substrate recognition in these two enzymes. PMID:24121335

  20. Cloning of an anthocyanidin synthase gene homolog from blackcurrant (Ribes nigrum L.) and its expression at different fruit stages.

    PubMed

    Li, X-G; Wang, J; Yu, Z-Y

    2015-01-01

    Anthocyanidin synthase (ANS), a 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase, catalyzes the penultimate step in anthocyanin biosynthesis, from leucoanthocyanidins to anthocyanidins, the first colored compound in the anthocyanin pathway. In this study, a full-length, 1427-bp long cDNA named RnANS1, which is homologous to the anthocyanidin synthase gene, was cloned from blackcurrant using a homologous cloning strategy. RnANS1 is highly homologous to other plant ANS genes at both the nucleotide and amino acid sequence levels. The deduced protein contains domains conserved in the 2OG and Fe(II)-dependent oxygenase, and is phylogenetically closely related to Paeonia suffruticosa and Paeonia lactiflora. The expression of RnANS1 was upregulated during fruit maturation, and correlated with the accumulation of anthocyanins and soluble carbohydrates in the fruit. Further characterization of the structure and expression patterns of RnANS1 will clarify our understanding of anthocyanin biosynthesis in blackcurrant, and support the development of molecular approaches to manipulate anthocyanin production in this plant. PMID:25867421

  1. Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions

    SciTech Connect

    Prima, Eka Cahya; Yuliarto, Brian; Suyatman; Dipojono, Hermawan Kresno

    2015-09-30

    The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.

  2. Thirteen-week oral toxicity study of carotenoid pigment from Rhodotorula glutinis DFR-PDY in rats.

    PubMed

    Latha, B V; Jeevaratanm, K

    2012-09-01

    Carotenoids from some of the coloured yeasts like Rhodotorula, Phaffia rhodozyma have attracted commercial interest as a natural pigment for foods. Red yeast isolated from contaminated Potato dextrose agar plate (PDA), designated as Rhodotorula glutinis DFR-PDY has been found to produce carotenoids. In the present study toxicological evaluation of carotenoid pigment has been reported. Experiment was conducted on 3 groups of albino rats. One group with vehicle control (palm oil) and 2 groups with two different doses of red yeast pigment (lower and higher dose) were fed to rats (both male and female) by gavages for 13 weeks. Gain in body weight of rats and food consumption were monitored at regular intervals. Hematological studies revealed that there is no much difference in erythrocytes, packed cell volume, Mean corpuscular volume (MCV), Mean corpuscular haemoglobin concentration (MCHC), platelets and differential counts. Total leucocyte count (TLC) is less in case of higher dose group than the lower and control groups. Whereas, hemoglobin is more in case of higher dose than the lower dose group and least in control group. Even clinico-chemical parameters and urine analysis of vehicle control group and pigment fed rats revealed that there were no major differences between them as well as between two different genders of rats and also interaction between different doses and the genders. Histopathology of these experimental animals revealed that there are no major histological changes found between the groups. It may be concluded that the whole pigment extract from R. glutinis DFR-PDY may be used safely in food preparations as food colourant with an added benefit of antioxidant activity. PMID:23140023

  3. Modeling degradation ratios and nutrient availability of anthocyanidin-accumulating Lc-alfalfa populations in dairy cows.

    PubMed

    Jonker, A; Gruber, M Y; Wang, Y; Coulman, B; Azarfar, A; McKinnon, J J; Christensen, D A; Yu, P

    2011-03-01

    Dairy cattle eating fresh or ensiled alfalfa as the main portion of their diet often have low protein efficiency because of the rapid initial rate of ruminal protein degradation of fresh and ensiled alfalfa. Ruminal protein degradation of alfalfa might be reduced by introducing a gene that stimulates the accumulation of mono- or polymeric anthocyanidins in alfalfa. The objectives of this study were to fractionate protein and carbohydrates by in situ and chemical approaches, to evaluate in situ ruminal degradation characteristics and synchronization ratios, to determine protein availability to dairy cattle using the 2007 digestible intestinal protein/rumen-degraded protein balance (DVE/OEB) protein system, and to determine net energy for lactation using the Dutch net energy for lactation (VEM) system for 3 newly developed transgenic winter hardy anthocyanidin-accumulating T(1)Lc-alfalfa populations. These T(1)Lc-alfalfa populations, called (T1)BeavLc1, (T1)RambLc3, and (T1)RangLc4, had an average anthocyanidin accumulation of 163.4 μg/g of DM, whereas AC Grazeland (selected for a low initial rate of degradation) did not accumulate anthocyanidin. The basic chemical composition of the original samples, soluble and potentially degradable fractions, and degradation characteristics of crude protein and carbohydrates were similar in T(1)Lc-alfalfa and AC Grazeland. The undegradable in situ crude protein and neutral detergent fiber fraction had 1.3% lower CP and 4.8% lower CHO, respectively, in T(1)Lc-alfalfa compared with the amounts in AC Grazeland. The T(1)Lc-alfalfa had a 0.34 MJ/kg of DM higher calculated net energy for lactation and 1.9% of CP higher buffer soluble protein compared with that in AC Grazeland. By the protein evaluation model, it was predicted that T(1)Lc-alfalfa tended to have 11.9, 6.9, and 8.4 g/kg of DM higher rumen degradable protein, OEB, and intestinal available protein, respectively, compared with the amounts in AC Grazeland. The hourly OEB

  4. Anthocyanins and anthocyanidins are poor inhibitors of CYP2D6.

    PubMed

    Dreiseitel, Andrea; Schreier, Peter; Oehme, Anett; Locher, Sanja; Rogler, Gerhard; Piberger, Heidi; Hajak, Goeran; Sand, Philipp G

    2009-01-01

    The cytochrome P450 CYP2D6 isoform is involved in the metabolism of about 50% of all psychoactive drugs, including neuroleptic agents, selective serotonin reuptake inhibitors, selective norepinephrine reuptake inhibitors and tricyclic antidepressants. Therefore, inhibition of cytochrome P450 activity by foodstuffs has implications for drug safety. The present study addresses inhibitory effects of polyphenolic anthocyanins and their aglycons that are found in many dietary fruits and vegetables. Using a chemiluminescent assay, we obtained IC(50) values ranging from 55 microM to > 800 microM for 17 individual compounds. According to earlier data on furanocoumarins from grapefruit extract, CYP2D6 inhibition is achieved in the range of 190-900 nM. As the tested anthocyanins and anthocyanidins were shown to be about 1,000-fold less potent, they are unlikely to interfere with drug metabolism by CYP2D6. Further studies are warranted to examine the effects of the above flavonoids on other CYP isoforms for more detailed toxicity profiles. PMID:19357792

  5. Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (Fragaria × ananassa).

    PubMed

    Fischer, Thilo C; Mirbeth, Beate; Rentsch, Judith; Sutter, Corina; Ring, Ludwig; Flachowsky, Henryk; Habegger, Ruth; Hoffmann, Thomas; Hanke, Magda-Viola; Schwab, Wilfried

    2014-01-01

    Strawberry (Fragaria × ananassa) is a fruit crop with a distinct biphasic flavonoid biosynthesis. Whereas, in the immature receptacle, high levels of proanthocyanidins accumulate, which are associated with herbivore deterrence and pathogen defense, the prominent color-giving anthocyanins are primarily produced in ripe 'fruits' helping to attract herbivores for seed dispersal. Here, constitutive experimental down-regulation of one branch of proanthocyanidin biosynthesis was performed. As a result, the proportion of epicatechin monomeric units within the proanthocyanidin polymer chains was reduced, but this was not the case for the epicatechin starter unit. Shortened chain lengths of proanthocyanidins were also observed. All enzymatic activities for the production of color-giving anthocyanins were already present in unripe fruits at levels allowing a striking red anthocyanin phenotype in unripe fruits of the RNAi silencing lines. An immediately recognizable phenotype was also observed for the stigmata of flowers, which is another epicatechin-forming tissue. Thus, the down-regulation of anthocyanidin reductase (ANR) induced a redirection of the proanthocyanidin pathway, leading to premature and ectopic anthocyanin biosynthesis via enzymatic glycosylation as the alternative pathway. This redirection is also seen in flavonol biosynthesis, which is paralleled by higher pollen viability in silencing lines. ANRi transgenic lines of strawberry provide a versatile tool for the study of the biological functions of proanthocyanidins. PMID:24117941

  6. Grape seed pro-anthocyanidins ameliorates radiation-induced lung injury

    PubMed Central

    Huang, Yijuan; Liu, Wen; Liu, Hu; Yang, Yanyong; Cui, Jianguo; Zhang, Pei; Zhao, Hainan; He, Feng; Cheng, Ying; Ni, Jin; Cai, Jianming; Li, Bailong; Gao, Fu

    2014-01-01

    Radiation-induced lung injury (RILI) is a potentially fatal and dose-limiting complication of thoracic radiotherapy. This study was to investigate the protective effects of grape seed pro-anthocyanidins (GSPs), an efficient antioxidant and anti-carcinogenic agent, on RILI. In our study, it was demonstrated that acute and late RILI was ameliorated after GSPs treatment possibly through suppressing TGF-β1/Smad3/Snail signalling pathway and modulating the levels of cytokines (interferon-γ, IL-4 and IL-13) derived from Th1/Th2 cells. In addition, a sustained high level of PGE2 was also maintained by GSPs treatment to limited fibroblast functions. As shown by electron spin resonance spectrometry, GSPs could scavenge hydroxyl radical (•OH) in a dose-dependent manner, which might account for the mitigation of lipid peroxidation and consequent apoptosis of lung cells. In vitro, GSPs radiosensitized lung cancer cell A549 while mitigating radiation injury on normal alveolar epithelial cell RLE-6TN. In conclusion, the results showed that GSPs protects mice from RILI through scavenging free radicals and modulating RILI-associated cytokines, suggesting GSPs as a novel protective agent in RILI. PMID:24758615

  7. Grape seed pro-anthocyanidins ameliorates radiation-induced lung injury.

    PubMed

    Huang, Yijuan; Liu, Wen; Liu, Hu; Yang, Yanyong; Cui, Jianguo; Zhang, Pei; Zhao, Hainan; He, Feng; Cheng, Ying; Ni, Jin; Cai, Jianming; Li, Bailong; Gao, Fu

    2014-07-01

    Radiation-induced lung injury (RILI) is a potentially fatal and dose-limiting complication of thoracic radiotherapy. This study was to investigate the protective effects of grape seed pro-anthocyanidins (GSPs), an efficient antioxidant and anti-carcinogenic agent, on RILI. In our study, it was demonstrated that acute and late RILI was ameliorated after GSPs treatment possibly through suppressing TGF-β1/Smad3/Snail signalling pathway and modulating the levels of cytokines (interferon-γ, IL-4 and IL-13) derived from Th1/Th2 cells. In addition, a sustained high level of PGE2 was also maintained by GSPs treatment to limited fibroblast functions. As shown by electron spin resonance spectrometry, GSPs could scavenge hydroxyl radical (•OH) in a dose-dependent manner, which might account for the mitigation of lipid peroxidation and consequent apoptosis of lung cells. In vitro, GSPs radiosensitized lung cancer cell A549 while mitigating radiation injury on normal alveolar epithelial cell RLE-6TN. In conclusion, the results showed that GSPs protects mice from RILI through scavenging free radicals and modulating RILI-associated cytokines, suggesting GSPs as a novel protective agent in RILI. PMID:24758615

  8. Isolation and Characterization of cDNAs Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase from Populus trichocarpa

    PubMed Central

    Lu, Wanxiang; Yang, Li; Karim, Abdul; Luo, Keming

    2013-01-01

    Proanthocyanidins (PAs) contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA) and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) are two key enzymes of the PA biosynthesis that produce the main subunits: (+)-catechin and (−)-epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05) in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus. PMID:23741362

  9. Direct and indirect inactivation of tumor cell protective catalase by salicylic acid and anthocyanidins reactivates intercellular ROS signaling and allows for synergistic effects.

    PubMed

    Scheit, Katrin; Bauer, Georg

    2015-03-01

    Salicylic acid and anthocyanidins are known as plant-derived antioxidants, but also can provoke paradoxically seeming prooxidant effects in vitro. These prooxidant effects are connected to the potential of salicylic acid and anthocyanidins to induce apoptosis selectively in tumor cells in vitro and to inhibit tumor growth in animal models. Several epidemiological studies have shown that salicylic acid and its prodrug acetylsalicylic acid are tumor-preventive for humans. The mechanism of salicylic acid- and anthocyanidin-dependent antitumor effects has remained enigmatic so far. Extracellular apoptosis-inducing reactive oxygen species signaling through the NO/peroxynitrite and the HOCl signaling pathway specifically induces apoptosis in transformed cells. Tumor cells have acquired resistance against intercellular reactive oxygen species signaling through expression of membrane-associated catalase. Here, we show that salicylic acid and anthocyanidins inactivate tumor cell protective catalase and thus reactive apoptosis-inducing intercellular reactive oxygen species signaling of tumor cells and the mitochondrial pathway of apoptosis Salicylic acid inhibits catalase directly through its potential to transform compound I of catalase into the inactive compound II. In contrast, anthocyanidins provoke a complex mechanism for catalase inactivation that is initiated by anthocyanidin-mediated inhibition of NO dioxygenase. This allows the formation of extracellular singlet oxygen through the reaction between H(2)O(2) and peroxynitrite, amplification through a caspase8-dependent step and subsequent singlet oxygen-mediated inactivation of catalase. The combination of salicylic acid and anthocyanidins allows for a remarkable synergistic effect in apoptosis induction. This effect may be potentially useful to elaborate novel therapeutic approaches and crucial for the interpretation of epidemiological results related to the antitumor effects of secondary plant compounds. PMID

  10. Crystal structure of UDP-glucose:anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea

    PubMed Central

    Hiromoto, Takeshi; Honjo, Eijiro; Tamada, Taro; Noda, Naonobu; Kazuma, Kohei; Suzuki, Masahiko; Kuroki, Ryota

    2013-01-01

    Flowers of the butterfly pea (Clitoria ternatea) accumulate a group of polyacylated anthocyanins, named ternatins, in their petals. The first step in ternatin biosynthesis is the transfer of glucose from UDP-glucose to antho­cyanidins such as delphinidin, a reaction catalyzed in C. ternatea by UDP-glucose:anthocyanidin 3-O-glucosyltransferase (Ct3GT-A; AB185904). To elucidate the structure–function relationship of Ct3GT-A, recombinant Ct3GT-A was expressed in Escherichia coli and its tertiary structure was determined to 1.85 Å resolution by using X-ray crystallography. The structure of Ct3GT-A shows a common folding topology, the GT-B fold, comprised of two Rossmann-like β/α/β domains and a cleft located between the N- and C-domains containing two cavities that are used as binding sites for the donor (UDP-Glc) and acceptor substrates. By comparing the structure of Ct3GT-A with that of the flavonoid glycosyltransferase VvGT1 from red grape (Vitis vinifera) in complex with UDP-2-deoxy-2-fluoro glucose and kaempferol, locations of the catalytic His-Asp dyad and the residues involved in recognizing UDP-2-deoxy-2-fluoro glucose were essentially identical in Ct3GT-A, but certain residues of VvGT1 involved in binding kaempferol were found to be substituted in Ct3GT-A. These findings are important for understanding the differentiation of acceptor-substrate recognition in these two enzymes. PMID:24121335

  11. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume.

    PubMed

    Li, Penghui; Dong, Qiang; Ge, Shujun; He, Xianzhi; Verdier, Jerome; Li, Dongqin; Zhao, Jian

    2016-07-01

    MtPAR is a proanthocyanidin (PA) biosynthesis regulator; the mechanism underlying its promotion of PA biosynthesis is not fully understood. Here, we showed that MtPAR promotes PA production by a direct repression of biosynthesis of isoflavones, the major flavonoids in legume, and by redirecting immediate precursors, such as anthocyanidins, flux into PA pathway. Ectopic expression of MtPAR repressed isoflavonoid production by directly binding and suppressing isoflavone biosynthetic genes such as isoflavone synthase (IFS). Meanwhile, MtPAR up-regulated PA-specific genes and decreased the anthocyanin levels without altering the expression of anthocyanin biosynthetic genes. MtPAR may shift the anthocyanidin precursor flux from anthocyanin pathway to PA biosynthesis. MtPAR complemented PA-deficient phenotype of Arabidopsis tt2 mutant seeds, demonstrating their similar action on PA production. We showed the direct interactions between MtPAR, MtTT8 and MtWD40-1 proteins from Medicago truncatula and Glycine max, to form a ternary complex to trans-activate PA-specific ANR gene. Finally, MtPAR expression in alfalfa (Medicago sativa) hairy roots and whole plants only promoted the production of small amount of PAs, which was significantly enhanced by co-expression of MtPAR and MtLAP1. Transcriptomic and metabolite profiling showed an additive effect between MtPAR and MtLAP1 on the production of PAs, supporting that efficient PA production requires more anthocyanidin precursors. This study provides new insights into the role and mechanism of MtPAR in partitioning precursors from isoflavone and anthocyanin pathways into PA pathways for a specific promotion of PA production. Based on this, a strategy by combining MtPAR and MtLAP1 co-expression to effectively improve metabolic engineering performance of PA production in legume forage was developed. PMID:26806316

  12. De Novo Transcriptome Analysis to Identify Anthocyanin Biosynthesis Genes Responsible for Tissue-Specific Pigmentation in Zoysiagrass (Zoysia japonica Steud.)

    PubMed Central

    Ahn, Jong Hwa; Kim, June-Sik; Kim, Seungill; Soh, Hye Yeon; Shin, Hosub; Jang, Hosung; Ryu, Ju Hyun; Kim, Ahyeong; Yun, Kil-Young; Kim, Shinje; Kim, Ki Sun; Choi, Doil; Huh, Jin Hoe

    2015-01-01

    Zoysiagrass (Zoysia japonica Steud.) is commonly found in temperate climate regions and widely used for lawns, in part, owing to its uniform green color. However, some zoysiagrass cultivars accumulate red to purple pigments in their spike and stolon tissues, thereby decreasing the aesthetic value. Here we analyzed the anthocyanin contents of two zoysiagrass cultivars ‘Anyang-jungji’ (AJ) and ‘Greenzoa’ (GZ) that produce spikes and stolons with purple and green colors, respectively, and revealed that cyanidin and petunidin were primarily accumulated in the pigmented tissues. In parallel, we performed a de novo transcriptome assembly and identified differentially expressed genes between the two cultivars. We found that two anthocyanin biosynthesis genes encoding anthocyanidin synthase (ANS) and dihydroflavonol 4-reductase (DFR) were preferentially upregulated in the purple AJ spike upon pigmentation. Both ANS and DFR genes were also highly expressed in other zoysiagrass cultivars with purple spikes and stolons, but their expression levels were significantly low in the cultivars with green tissues. We observed that recombinant ZjDFR1 and ZjANS1 proteins successfully catalyze the conversions of dihydroflavonols into leucoanthocyanidins and leucoanthocyanidins into anthocyanidins, respectively. These findings strongly suggest that upregulation of ANS and DFR is responsible for tissue-specific anthocyanin biosynthesis and differential pigmentation in zoysiagrass. The present study also demonstrates the feasibility of a de novo transcriptome analysis to identify the key genes associated with specific traits, even in the absence of reference genome information. PMID:25905914

  13. Stability of anthocyanins- and anthocyanidins-enriched extracts, and formulations of fruit pulp of Eugenia jambolana ('jamun').

    PubMed

    Sharma, Ram Jee; Gupta, Ramesh C; Singh, Saranjit; Bansal, Arvind Kumar; Singh, Inder Pal

    2016-01-01

    The fruit pulp of Eugenia jambolana (jamun) is a rich source of anthocyanins (ACs). The purpose of the present study was to assess the effect of various physical and chemical factors on the stability of ACs and anthocyanidins (ACdn) in the crude, anthocyanins-enriched extract (ACs-EEX), anthocyanins-enriched sephadex extract (ACs-EES) and anthocyanidins-enriched extract (ACdn-EEX). ACs and ACdn contents were analyzed using a stability indicating HPLC analytical method. The ACs content reduced to 86.4% (crude extract), 60.9% (ACs-EEX), 36.0% (ACs-EES), 64.8% (ACs-EEX tablet), and 71.7% (ACs-EEX capsules) after 1 year at 5 °C. The ACdn content reduced to 83.1% (ACdn-EEX), 90.1% (ACdn-EEX tablet) and 93.8% (ACdn-EEX capsules) after 1 year at 5 °C. ACs and ACdn showed lesser degradation at low pH and higher degradation at high H2O2 concentration. The thermal degradation products of ACs were identified and quantified. PMID:26213042

  14. Delphinidin, One of the Major Anthocyanidins, Prevents Bone Loss through the Inhibition of Excessive Osteoclastogenesis in Osteoporosis Model Mice

    PubMed Central

    Muramatsu, Masashi; Nomura, Atsushi; Inoue, Fumihide; Into, Takeshi; Yoshiko, Yuji; Niida, Shumpei

    2014-01-01

    Anthocyanins, one of the flavonoid subtypes, are a large family of water-soluble phytopigments and have a wide range of health-promoting benefits. Recently, an anthocyanin-rich compound from blueberries was reported to possess protective property against bone loss in ovariectomized (OVX) animal models. However, the active ingredients in the anthocyanin compound have not been identified. Here we show that delphinidin, one of the major anthocyanidins in berries, is a potent active ingredient in anti-osteoporotic bone resorption through the suppression of osteoclast formation. In vitro examinations revealed that delphinidin treatment markedly inhibited the differentiation of RAW264.7 cells into osteoclasts compared with other anthocyanidins, cyanidin and peonidin. Oral administration of delphinidin significantly prevented bone loss in both RANKL-induced osteoporosis model mice and OVX model mice. We further provide evidence that delphinidin suppressed the activity of NF-κB, c-fos, and Nfatc1, master transcriptional factors for osteoclastogenesis. These results strongly suggest that delphinidin is the most potent inhibitor of osteoclast differentiation and will be an effective agent for preventing bone loss in postmenopausal osteoporosis. PMID:24824988

  15. Anthocyanidins but not anthocyanins inhibit P-glycoprotein-mediated calcein extrusion - possible implication for orally administered drugs.

    PubMed

    Vrzal, Radim

    2016-06-01

    P-glycoprotein (P-gp) inhibition represents a promising therapeutic strategy for oncologic patients. The inhibition by naturally occurring anthocyans would bring certain benefits. Unfortunately, due to the low bioavailability and consequently low blood level, they cannot be used for cancer therapy. However, due to the food supplementation, significant concentration can raise up in the intestine, where P-gp is abundantly expressed. As many drugs are orally taken, simultaneous administration might affect the concentration of these drugs in the blood. Here, we found that anthocyanidins (aglycons) but not anthocyanins (glycosides) can significantly inhibit P-gp up to 60% of positive control, verapamil. This inhibitory activity was observed for 500 μm concentrations of malvidin and pelargonidin. We conclude that these compounds may be the source of food-drug interactions either for orally taken drugs or for intravenously administered drugs eliminated via biliary excretion which are the substrates of P-gp. PMID:26821071

  16. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential.

    PubMed

    Reddy, Ambavaram M; Reddy, Vaka S; Scheffler, Brian E; Wienand, Udo; Reddy, Arjula R

    2007-01-01

    In addition to their plant-associated functions, flavonoids act as antioxidants against harmful free radicals in animals. Genetic engineering of food crops for a mix of antioxidant flavonoids is highly beneficial in promoting human health. Anthocyanidin synthase (ANS) is one of the four dioxygenases (DOX) of the flavonoid biosynthetic pathway that catalyzes the formation of anthocyanidins from leucoanthocyanidins. To investigate whether ANS mediates different DOX reactions of the pathway and produces a mix of flavonoids, the rice ANS cDNA was cloned and overexpressed in a rice mutant Nootripathu (NP). This mutant accumulates proanthocyanidins exclusively in pericarp and absolutely no anthocyanins in any tissue. In silico sequence analysis revealed that ANS contains a double-stranded beta helix and shows high sequence similarity with other DOXs of the pathway including flavonol synthase, flavonone 3beta-hydroxylase and flavone synthase I. Bacterially expressed ANS protein converted dihydroquercetin to quercetin and Pro(35S):ANS complemented the maize a2 mutant in producing anthocyanins in aleurone, suggesting that ANS functions as a DOX with different flavonoid substrates. Similarly, transgenic NP plants overexpressing Pro(MAS):ANS channeled the proanthocaynidin precursors to the production of anthocyanins in pericarp. Transgenics showed approximately ten and four-fold increase in the ANS transcripts and enzyme activity, respectively. As a result, these plants showed an increased accumulation of a mixture of flavonoids and anthocyanins, with a concomitant decrease in proanthocyanidins, suggesting that ANS may act directly on different flavonoid substrates of DOX reactions. Thus, overexpression of ANS in a rice mutant resulted in novel transgenic rice with a mixture of flavonoids and an enhanced antioxidant potential. PMID:17157544

  17. Flavor of fresh blueberry juice and the comparison to amount of sugars, acids, anthocyanidins, and physicochemical measurements.

    PubMed

    Bett-Garber, Karen L; Lea, Jeanne M; Watson, Michael A; Grimm, Casey C; Lloyd, Steven W; Beaulieu, John C; Stein-Chisholm, Rebecca E; Andrzejewski, Brett P; Marshall, Donna A

    2015-04-01

    Six cultivars of southern highbush (SHB) and rabbiteye (RE) blueberry samples were harvested on 2 different dates. Each treatment combination was pressed 2 times for repeated measures. Fresh juice was characterized for 18 flavor/taste/feeling factor attributes by a descriptive flavor panel. Each sample was measured for sugars, acids, anthocyanidins, Folin-Ciocalteu, soluble solids (BRIX), titratable acidity (TA), and antioxidant capacity (ORACFL ). Flavors were correlated with the composition and physicochemical data. Blueberry flavor correlated with 3 parameters, and negatively correlated with 2. Strawberry correlated with oxalic acid and negatively correlated with sucrose and quinic acid. Sweet aroma correlated with oxalic and citric acid, but negatively correlated with sucrose, quinic, and total acids. Sweet taste correlated with 11 parameters, including the anthocyanidins; and negatively correlated with 3 parameters. Neither bitter nor astringent correlated with any of the antioxidant parameters, but both correlated with total acids. Sour correlated with total acids and TA, while negatively correlating with pH and BRIX:TA. Throat burn correlated with total acids and TA. Principal component analysis negatively related blueberry, sweet aroma, and sweet to sour, bitter, astringent, tongue tingle, and tongue numbness. The information in this component was related to pH, TA, and BRIX:TA ratio. Another principal component related the nonblueberry fruit flavors to BRIX. This PC, also divided the SHB berries from the RE. This work shows that the impact of juice composition on flavor is very complicated and that estimating flavor with physicochemical parameters is complicated by the composition of the juice. PMID:25816898

  18. ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3-O-Glucosides[W][OA

    PubMed Central

    Francisco, Rita Maria; Regalado, Ana; Ageorges, Agnès; Burla, Bo J.; Bassin, Barbara; Eisenach, Cornelia; Zarrouk, Olfa; Vialet, Sandrine; Marlin, Thérèse; Chaves, Maria Manuela; Martinoia, Enrico; Nagy, Réka

    2013-01-01

    Accumulation of anthocyanins in the exocarp of red grapevine (Vitis vinifera) cultivars is one of several events that characterize the onset of grape berry ripening (véraison). Despite our thorough understanding of anthocyanin biosynthesis and regulation, little is known about the molecular aspects of their transport. The participation of ATP binding cassette (ABC) proteins in vacuolar anthocyanin transport has long been a matter of debate. Here, we present biochemical evidence that an ABC protein, ABCC1, localizes to the tonoplast and is involved in the transport of glucosylated anthocyanidins. ABCC1 is expressed in the exocarp throughout berry development and ripening, with a significant increase at véraison (i.e., the onset of ripening). Transport experiments using microsomes isolated from ABCC1-expressing yeast cells showed that ABCC1 transports malvidin 3-O-glucoside. The transport strictly depends on the presence of GSH, which is cotransported with the anthocyanins and is sensitive to inhibitors of ABC proteins. By exposing anthocyanin-producing grapevine root cultures to buthionine sulphoximine, which reduced GSH levels, a decrease in anthocyanin concentration is observed. In conclusion, we provide evidence that ABCC1 acts as an anthocyanin transporter that depends on GSH without the formation of an anthocyanin-GSH conjugate. PMID:23723325

  19. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase

    PubMed Central

    Zhou, Hui; Lin-Wang, Kui; Liao, Liao; Gu, Chao; Lu, Ziqi; Allan, Andrew C.; Han, Yuepeng

    2015-01-01

    Proanthocyanidins (PAs) are a group of natural phenolic compounds that have a great effect on both flavor and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs) via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase and anthocyanidin reductase. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5) via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants. PMID:26579158

  20. MLW, TRU, LLW, MIXED, HAZARDOUS WASTES AND ENVIRONMENTAL RESTORATION. WASTE MANAGEMENT/ENERGY SECURITY AND A CLEAN ENVIRONMENT. DFR Decommissioning: the Breeder Fuel Processing

    SciTech Connect

    Bonnet, C.; Potier, P.; Ashton, Brian Morris

    2003-02-27

    The Dounreay site, in North Scotland, was opened in 1955 and a wide range of nuclear facilities have been built and operated there by UKAEA (The United Kingdom Atomic Energy Authority) for the development of atomic energy research. The Dounreay Fast Reactor (DFR) was built between 1955 and 1957, and operated until 1977 for demonstration purposes and for producing electricity. Today, its decommissioning is a key part of the whole Dounreay Site Restoration Plan that integrates the major decommissioning activities such as the fuel treatment and the waste management. The paper presents the contract strategy and provides an overview of the BFR project which consists in the removal of the breeder elements from the reactor and their further treatment. It mainly provides particular details of the Retrieval and Processing Facilities design.

  1. The Sorghum Gene for Leaf Color Changes upon Wounding (P) Encodes a Flavanone 4-Reductase in the 3-Deoxyanthocyanidin Biosynthesis Pathway

    PubMed Central

    Kawahigashi, Hiroyuki; Kasuga, Shigemitsu; Sawada, Yuji; Yonemaru, Jun-ichi; Ando, Tsuyu; Kanamori, Hiroyuki; Wu, Jianzhong; Mizuno, Hiroshi; Momma, Mitsuru; Fujimoto, Zui; Hirai, Masami Yokota; Matsumoto, Takashi

    2016-01-01

    Upon wounding or pathogen invasion, leaves of sorghum [Sorghum bicolor (L.) Moench] plants with the P gene turn purple, whereas leaves with the recessive allele turn brown or tan. This purple phenotype is determined by the production of two 3-deoxyanthocyanidins, apigeninidin and luteolinidin, which are not produced by the tan-phenotype plants. Using map-based cloning in progeny from a cross between purple Nakei-MS3B (PP) and tan Greenleaf (pp) cultivars, we isolated this gene, which was located in a 27-kb genomic region around the 58.1 Mb position on chromosome 6. Four candidate genes identified in this region were similar to the maize leucoanthocyanidin reductase gene. None of them was expressed before wounding, and only the Sb06g029550 gene was induced in both cultivars after wounding. The Sb06g029550 protein was detected in Nakei-MS3B, but only slightly in Greenleaf, in which it may be unstable because of a Cys252Tyr substitution. A recombinant Sb06g029550 protein had a specific flavanone 4-reductase activity, and converted flavanones (naringenin or eriodictyol) to flavan-4-ols (apiforol or luteoforol) in vitro. Our data indicate that the Sb06g029550 gene is involved in the 3-deoxyanthocyanidin synthesis pathway. PMID:26994288

  2. The Sorghum Gene for Leaf Color Changes upon Wounding (P) Encodes a Flavanone 4-Reductase in the 3-Deoxyanthocyanidin Biosynthesis Pathway.

    PubMed

    Kawahigashi, Hiroyuki; Kasuga, Shigemitsu; Sawada, Yuji; Yonemaru, Jun-Ichi; Ando, Tsuyu; Kanamori, Hiroyuki; Wu, Jianzhong; Mizuno, Hiroshi; Momma, Mitsuru; Fujimoto, Zui; Hirai, Masami Yokota; Matsumoto, Takashi

    2016-01-01

    Upon wounding or pathogen invasion, leaves of sorghum [Sorghum bicolor (L.) Moench] plants with the P gene turn purple, whereas leaves with the recessive allele turn brown or tan. This purple phenotype is determined by the production of two 3-deoxyanthocyanidins, apigeninidin and luteolinidin, which are not produced by the tan-phenotype plants. Using map-based cloning in progeny from a cross between purple Nakei-MS3B (PP) and tan Greenleaf (pp) cultivars, we isolated this gene, which was located in a 27-kb genomic region around the 58.1 Mb position on chromosome 6. Four candidate genes identified in this region were similar to the maize leucoanthocyanidin reductase gene. None of them was expressed before wounding, and only the Sb06g029550 gene was induced in both cultivars after wounding. The Sb06g029550 protein was detected in Nakei-MS3B, but only slightly in Greenleaf, in which it may be unstable because of a Cys252Tyr substitution. A recombinant Sb06g029550 protein had a specific flavanone 4-reductase activity, and converted flavanones (naringenin or eriodictyol) to flavan-4-ols (apiforol or luteoforol) in vitro Our data indicate that the Sb06g029550 gene is involved in the 3-deoxyanthocyanidin synthesis pathway. PMID:26994288

  3. In silico study for diversing the molecular pathway of pigment formation: an alternative to manual coloring in cotton fibers

    PubMed Central

    Ahad, Ammara; Ahmad, Aftab; Din, Salah ud; Rao, Abdul Q.; Shahid, Ahmad A.; Husnain, Tayyab

    2015-01-01

    Diversity of colors in flowers and fruits is largely due to anthocyanin pigments. The flavonoid/anthocyanin pathway has been most extensively studied. Dihydroflavonol 4-reductase (DFR) is a vital enzyme of the flavonoid pathway which displays major impact on the formation of anthocyanins, flavan 3-ols and flavonols. The substrate specificity of the DFR was found to play a crucial role in determination of type of anthocyanidins. Altering the flavonoid/anthocyanin pathway through genetic engineering to develop color of our own choice is an exciting subject of future research. In the present study, comparison among four DFR genes (Gossypium hirsutum, Iris × hollandica, Ang. DFRI and DFRII), sequence alignment for homology as well as protein modeling and docking is demonstrated. Estimation of catalytic sites, prediction of substrate preference and protein docking were the key features of this article. For specific substrate uptake, a proline rich region and positions 12 plus 26 along with other positions emphasizing the 26-amino acid residue region (132–157) was tested. Results showed that proline rich region position 12, 26, and 132–157 plays an important role in selective attachment of DFRs with respective substrates. Further, “Expasy ProtParam tool” results showed that Iris × hollandica DFR amino acids (Asn 9: Asp 23) are favorable for reducing DHQ and DHM thus accumulating delphinidin, while Gossypium hirsutum DFR has (Asn 13: Asp 21) hypothesized to consume DHK. Protein docking data showed that amino acid residues in above mentioned positions were just involved in attachment of DFR with substrate and had no role in specific substrate uptake. Advanced bioinformatics analysis has revealed that all above mentioned positions have role in substrate attachment. For substrate specificity, other residues region is involved. It will help in color manipulations in different plant species. PMID:26442064

  4. Delphinidin, an Anthocyanidin in Pigmented Fruits and Vegetables, Induces Apoptosis and Cell Cycle Arrest in Human Colon Cancer HCT116 Cells

    PubMed Central

    Yun, Jung-Mi; Afaq, Farrukh; Khan, Naghma; Mukhtar, Hasan

    2010-01-01

    Because of unsatisfactory treatment options for colon cancer, there is a need to develop novel preventive approaches for this malignancy. One such strategy is through chemoprevention by the use of non-toxic dietary substances and botanical products. Delphinidin, an anthocyanidin in pigmented fruits and vegetables, possesses strong antioxidant and anti-inflammatory properties. In the present study, we investigated the antiproliferative and proapoptotic properties of delphinidin in human colon cancer HCT116 cells. We found that treatment of cells with delphinidin (30–240 μM; 48 h) resulted in (i) decrease in cell viability (ii) induction of apoptosis, (iii) cleavage of PARP, (iv) activation of caspases-3, -8, and -9, (v) increase in Bax with a concomitant decrease in Bcl-2 protein, and (vi) G2/M phase cell cycle arrest. NF-κB provides a mechanistic link between inflammation and cancer, and is a major factor controlling the ability of both pre-neoplastic and malignant cells to resist apoptosis-based tumor surveillance mechanisms. We therefore, determined the effect of delphinidin on NF-κB signaling pathway. The immunoblot, ELISA and EMSA analysis demonstrated that the treatment of HCT116 cells with delphinidin resulted in the inhibition of (i) IKKα, (ii) phosphorylation and degradation of IκBα, (iii) phosphorylation of NF-κB/p65 at Ser536, (iv) nuclear translocation of NF-κB/p65, (v) NF-κB/p65 DNA binding activity, and (vi) transcriptional activation of NF-κB. Our results suggest that delphinidin treatment of HCT116 cells suppressed NF-κB pathway, resulting in G2/M phase arrest and apoptosis. We suggest that delphinidin could have potential in inhibiting colon cancer growth. PMID:18729103

  5. Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling.

    PubMed

    Luo, Ping; Shen, Yuxiao; Jin, Shuangxia; Huang, Shasha; Cheng, Xu; Wang, Zhen; Li, Penghui; Zhao, Jian; Bao, Manzhu; Ning, Guogui

    2016-04-01

    Anthocyanidin reductase (ANR) is a key enzyme involved in the biosynthesis of proanthocyanidins (PAs) and plays a role in the plant stress response. However, the mechanism by which ANR confers stress tolerance in plants is not understood. Here, we report the isolation of RrANR, the homologous gene from rose, and NtABF, an ABA-response related transcription factor gene from tobacco. These genes were characterized regarding their functions in stress responses through the use of transgenic, transcriptomic and physiological analyses. Over-expression of RrANR in tobacco resulted in an increased accumulation of both PAs and abscisic acid (ABA), and also enhanced stress tolerance. Transcriptomic analysis of these transgenic tobacco lines indicated that RrANR overexpression induced global transcriptomic changes, including these involved in oxidation/reduction, hormone response and secondary metabolism. Genes related to ABA biosynthesis and reactive oxygen species (ROS)-scavenging were up-regulated in RrANR transgenic lines, and these effects were phenocopied by the direct treatment of tobacco plants with PAs and ABA. Transcriptomic data from each of these treatments identified the upregulation of a putative NtABF. Furthermore, the up-regulation of NtABF in RrANR transformants or in PAs- and ABA-treated tobacco plants was associated with enhanced stress tolerance. Overexpression of NtABF in transgenic tobacco mimicked the effects of RrANR-transgenic plants with regard to the up-regulation of ROS-scavenging genes and an increase in oxidative tolerance. Taken together, our findings indicate that overexpression of RrANR results in an increase in plant tolerance to oxidative stress via increased scavenging of ROS and modulation of the ABA signaling pathway. PMID:26940490

  6. The Reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant.

    PubMed

    Zhang, Huirong; Du, Chao; Wang, Yan; Wang, Jia; Zheng, Linlin; Wang, Yingchun

    2016-09-01

    Reaumuria trigyna is a typical, native desert halophyte that grows under extreme conditions in Inner Mongolia. In a previous transcriptomic profiling analysis, flavonoid pathway-related genes in R. trigyna showed significant differences in transcript abundance under salt stress. Leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19) is one of three dioxygenases in the flavonoid pathway that catalyzes the formation of anthocyanidins from leucoanthocyanidins. In this study, we cloned the full-length cDNA of R. trigyna LDOX (RtLDOX), and found RtLDOX recombinant protein was able to replace flavanone-3-hydroxylase (F3H, EC 1.14.11.9), another dioxygenase in the flavonoid pathway, to convert naringenin to dihydrokaempferol in vitro. R. trigyna LDOX can complement the Arabidopsis LDOX mutant transparent testa11 (tt11-11), which has reduced proanthocyanin (PA) and anthocyanin levels in seeds, to accumulate these two compounds. Thus, RtLDOX acts as a multifunctional dioxygenase to effect the synthesis of PA and anthocyanins and can perform F3H dioxygenase activities in the flavonoid biosynthesis pathway. The RtLDOX promoter harbored many cis-acting elements that might be recognized and bound by transcription factors related to stress response. RtLDOX expression was strongly increased under salt stress, and RtLDOX transgenic Arabidopsis mutant under NaCl stress accumulated the content of flavonoids leading to an increased antioxidant activities and plant biomass. These results suggest that RtLDOX as a multifunctional dioxygenase in flavonoid biosynthesis involves in enhancing plant response to NaCl stress. PMID:27219053

  7. Differential expression of MYB gene (OgMYB1) determines color patterning in floral tissue of Oncidium Gower Ramsey.

    PubMed

    Chiou, Chung-Yi; Yeh, Kai-Wun

    2008-03-01

    The yellow coloration pattern in Oncidium floral lip associated with red sepal and petal tissues is an ideal model to study coordinate regulation of anthocyanin synthesis. In this study, chromatography analysis revealed that the red coloration in floral tissues was composed of malvidin-3-O-galactoside, peonidin-3-O-glucoside, delphinidin-3-O-glucoside and cyanidin-3-O-glucoside compounds. By contrary, these pigments were not detected in yellow lip tissue. Four key genes involved in anthocyanin biosynthetic pathway, i.e. chalcone synthase (OgCHS), chalcone isomerase (OgCHI), dihydroflavonol 4-reductase (OgDFR) and anthocyanidin synthase (OgANS) were isolated and their expression patterns were characterized. Northern blot analysis confirmed that although they are active during floral development, OgCHI and OgDFR genes are specifically down-regulated in yellow lip tissue. Bombardment with OgCHI and OgDFR genes into lip tissue driven by a flower-specific promoter, Pchrc (chromoplast-specific carotenoid-associated gene), demonstrated that transient expression of these two genes resulted in anthocyanin production in yellow lip. Further analysis of a R2R3 MYB transcription factor, OgMYB1, revealed that although it is actively expressed during floral development, it is not expressed in yellow lip tissue. Transient expression of OgMYB1 in lip tissues by bombardment can also induce formation of red pigments through the activation of OgCHI and OgDFR transcription. These results demonstrate that differential expression of OgMYB1 is critical to determine the color pattern of floral organ in Oncidium Gower Ramsey. PMID:18161007

  8. cDNA Cloning, Heterologous Expressions, and Functional Characterization of Malonyl-Coenzyme A:Anthocyanidin 3-O-Glucoside-6"-O-Malonyltransferase from Dahlia Flowers1

    PubMed Central

    Suzuki, Hirokazu; Nakayama, Toru; Yonekura-Sakakibara, Keiko; Fukui, Yuko; Nakamura, Noriko; Yamaguchi, Masa-atsu; Tanaka, Yoshikazu; Kusumi, Takaaki; Nishino, Tokuzo

    2002-01-01

    In the flowers of important ornamental Compositae plants, anthocyanins generally carry malonyl group(s) at their 3-glucosyl moiety. In this study, for the first time to our knowledge, we have identified a cDNA coding for this 3-glucoside-specific malonyltransferase for anthocyanins, i.e. malonyl-coenzyme A:anthocyanidin 3-O-glucoside-6"-O-malonyltransferase, from dahlia (Dahlia variabilis) flowers. We isolated a full-length cDNA (Dv3MaT) on the basis of amino acid sequences specifically conserved among anthocyanin acyltransferases of the versatile plant acyltransferase family. Dv3MaT coded for a protein of 460 amino acids. Quantitative real-time PCR analyses of Dv3MaT showed that the transcript was present in accordance with the distribution of 3MaT activities and the anthocyanin accumulation pattern in the dahlia plant. The Dv3MaT cDNA was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity and characterized. The recombinant Dv3MaT catalyzed the regiospecific transfer of the malonyl group from malonyl-coenzyme A (Km, 18.8 μm) to pelargonidin 3-O-glucoside (Km, 46.7 μm) to produce pelargonidin 3-O-6"-O-malonylglucoside with a kcat value of 7.3 s−1. The other enzymatic profiles of the recombinant Dv3MaT were closely related to those of native anthocyanin malonyltransferase activity in the extracts of dahlia flowers. Dv3MaT cDNA was introduced into petunia (Petunia hybrida) plants whose red floral color is exclusively provided by cyanidin 3-O-glucoside and 3,5-O-diglucoside. Thirteen transgenic lines of petunia were found to produce malonylated products of these anthocyanins (11–63 mol % of total anthocyanins in the flower). The spectral stability of cyanidin 3-O-6"-O-malonylglucoside at the pHs of intracellular milieus of flowers was significantly higher than that of cyanidin 3-O-glucoside. Moreover, 6"-O-malonylation of cyanidin 3-O-glucoside effectively prevented the anthocyanin from attack of β-glucosidase. These results

  9. Red Anthocyanins and Yellow Carotenoids Form the Color of Orange-Flower Gentian (Gentiana lutea L. var. aurantiaca).

    PubMed

    Berman, Judit; Sheng, Yanmin; Gómez Gómez, Lourdes; Veiga, Tania; Ni, Xiuzhen; Farré, Gemma; Capell, Teresa; Guitián, Javier; Guitián, Pablo; Sandmann, Gerhard; Christou, Paul; Zhu, Changfu

    2016-01-01

    Flower color is an important characteristic that determines the commercial value of ornamental plants. Gentian flowers occur in a limited range of colors because this species is not widely cultivated as a cut flower. Gentiana lutea L. var. aurantiaca (abbr, aurantiaca) is characterized by its orange flowers, but the specific pigments responsible for this coloration are unknown. We therefore investigated the carotenoid and flavonoid composition of petals during flower development in the orange-flowered gentian variety of aurantiaca and the yellow-flowered variety of G. lutea L. var. lutea (abbr, lutea). We observed minor varietal differences in the concentration of carotenoids at the early and final stages, but only aurantiaca petals accumulated pelargonidin glycosides, whereas these compounds were not found in lutea petals. We cloned and sequenced the anthocyanin biosynthetic gene fragments from petals, and analyzed the expression of these genes in the petals of both varieties to determine the molecular mechanisms responsible for the differences in petal color. Comparisons of deduced amino acid sequences encoded by the isolated anthocyanin cDNA fragments indicated that chalcone synthase (CHS), chalcone isomerase (CHI), anthocyanidin synthase 1 (ANS1) and ANS2 are identical in both aurantiaca and lutea varieties whereas minor amino acid differences of the deduced flavonone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR) between both varieties were observed. The aurantiaca petals expressed substantially higher levels of transcripts representing CHS, F3H, DFR, ANS and UDP-glucose:flavonoid-3-O-glucosyltransferase genes, compared to lutea petals. Pelargonidin glycoside synthesis in aurantiaca petals therefore appears to reflect the higher steady-state levels of pelargonidin synthesis transcripts. Moreover, possible changes in the substrate specificity of DFR enzymes may represent additional mechanisms for producing red pelargonidin glycosides in petals of

  10. Transposon tagging of a male-sterility, female-sterility gene, St8, revealed that the meiotic MER3 DNA helicase activity is essential for fertility in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The W4 locus in soybean encodes a dihydroflavonol-4-reductase (DFR2) that regulates pigmentation patterns in flowers and hypocotyl. The mutable w4-m allele that governs variegated flowers has arisen through insertion of a CACTA-type transposable element, Tgm9, in DFR2. In the w4-m line, reversion fr...

  11. Relationship between gene expression and the accumulation of catechin during spring and autumn in tea plants (Camellia sinensis L.)

    PubMed Central

    Liu, Min; Tian, Heng-lu; Wu, Jian-Hua; Cang, Ren-Rong; Wang, Run-Xian; Qi, Xiao-Hua; Xu, Qiang; Chen, Xue-Hao

    2015-01-01

    The tea plant (Camellia sinensis L.) is an important commercial crop with remarkably high catechin concentrations. Tea is popular worldwide given the plant's health benefits. Catechins are the main astringent substance in tea and are synthesized mainly via the phenylpropanoid pathway. In this study, eight cultivars of tea plants harvested both in spring and autumn were used to investigate differences in catechin concentrations by using high-performance liquid chromatography. The expression levels of genes associated with catechin biosynthesis were investigated using reverse transcription-quantitative polymerase chain reaction. The results indicated that the total catechin (TC) concentrations were significantly higher in tea plants harvested in autumn than in those harvested in spring, based on higher concentrations of epigallocatechin (EGC) in autumn tea (P<0.01). The expression of the genes phenylalanine ammonia-lyase (PAL), flavanone 3-hydroxylase (F3H), flavonoid 3′,5′-hydroxylase (F3′5′H), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) is closely related to the TC content of tea plants in both spring and autumn. Positive correlations between PAL, cinnamate 4-hydroxylase (C4H), F3H, and DFR expression and EGC accumulation in autumn tea were identified, with correlation coefficients of 0.710, 0.763, 0.884, and 0.707, respectively. A negative correlation between ANS expression level and EGC concentrations in tea plants harvested in spring was noted (r=−0.732). Additionally, negative correlations between F3H and ANS expression levels and the catechin content were identified in spring tea, whereas the correlations were positive in autumn tea. Significant differences in the F3H and ANS expression levels between spring and autumn tea indicate that F3H and ANS are potentially key genes affecting catechin accumulation in tea plants. PMID:26504566

  12. Differential Expression of Anthocyanin Biosynthetic Genes in Relation to Anthocyanin Accumulation in the Pericarp of Litchi Chinensis Sonn

    PubMed Central

    Li, Xiao-Jing; Huang, Xu-Ming; Wang, Hui-Cong

    2011-01-01

    Litchi has diverse fruit color phenotypes, yet no research reflects the biochemical background of this diversity. In this study, we evaluated 12 litchi cultivars for chromatic parameters and pigments, and investigated the effects of abscisic acid, forchlorofenron (CPPU), bagging and debagging treatments on fruit coloration in cv. Feizixiao, an unevenly red cultivar. Six genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) were isolated from the pericarp of the fully red litchi cv. Nuomici, and their expression was analyzed in different cultivars and under the above mentioned treatments. Pericarp anthocyanin concentration varied from none to 734 mg m−2 among the 12 litchi cultivars, which were divided into three coloration types, i.e. non-red (‘Kuixingqingpitian’, ‘Xingqiumili’, ‘Yamulong’and ‘Yongxing No. 2′), unevenly red (‘Feizixiao’ and ‘Sanyuehong’) and fully red (‘Meiguili’, ‘Baila’, Baitangying’ ’Guiwei’, ‘Nuomici’ and ‘Guinuo’). The fully red type cultivars had different levels of anthocyanin but with the same composition. The expression of the six genes, especially LcF3H, LcDFR, LcANS and LcUFGT, in the pericarp of non-red cultivars was much weaker as compared to those red cultivars. Their expression, LcDFR and LcUFGT in particular, was positively correlated with anthocyanin concentrations in the pericarp. These results suggest the late genes in the anthocyanin biosynthetic pathway were coordinately expressed during red coloration of litchi fruits. Low expression of these genes resulted in absence or extremely low anthocyanin accumulation in non-red cultivars. Zero-red pericarp from either immature or CPPU treated fruits appeared to be lacking in anthocyanins due to the absence of UFGT expression. Among these six genes, only the expression of UFGT

  13. A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins "Switch-Off" in Olive (Olea europaea L.) Drupes at Different Stages of Maturation.

    PubMed

    Iaria, Domenico L; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2015-01-01

    Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits of the olive tree (Olea europaea L.) undergo a progressive chromatic change characterized by the formation of a red-brown "spot" which gradually extends on the epidermis and in the innermost part of the mesocarp. This event finds an exception in the Leucocarpa cultivar, in which we observe a destabilized equilibrium between the metabolisms of chlorophyll and other pigments, particularly the anthocyanins whose switch-off during maturation promotes the white coloration of fruits. Despite its importance, genomic information on the olive tree is still lacking. Different RNA-seq libraries were generated from drupes of "Leucocarpa" and "Cassanese" olive genotypes, sampled at 100 and 130 days after flowering (DAF), and were used in order to identify transcripts involved in the main phenotypic changes of fruits during maturation and their corresponding expression patterns. A total of 103,359 transcripts were obtained and 3792 and 3064 were differentially expressed in "Leucocarpa" and "Cassanese" genotypes, respectively, during 100-130 DAF transition. Among them flavonoid and anthocyanin related transcripts such as phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol 3'-hydrogenase (F3'H), flavonol 3'5 '-hydrogenase (F3'5'H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP-glucose:anthocianidin: flavonoid glucosyltransferase (UFGT) were identified. These results contribute to reducing the current gap in

  14. A bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis)

    PubMed Central

    Ohno, Sho; Hosokawa, Munetaka; Hoshino, Atsushi; Kitamura, Yoshikuni; Morita, Yasumasa; Park, Kyeung-II; Nakashima, Akiko; Deguchi, Ayumi; Tatsuzawa, Fumi; Doi, Motoaki; Iida, Shigeru; Yazawa, Susumu

    2011-01-01

    Dahlias (Dahlia variabilis) exhibit a wide range of flower colours because of accumulation of anthocyanin and other flavonoids in their ray florets. Two lateral mutants were used that spontaneously occurred in ‘Michael J’ (MJW) which has yellow ray florets with orange variegation. MJOr, a bud mutant producing completely orange ray florets, accumulates anthocyanins, flavones, and butein, and MJY, another mutant producing completely yellow ray florets, accumulates flavones and butein. Reverse transcription–PCR analysis showed that expression of chalcone synthase 1 (DvCHS1), flavanone 3-hydroxylase (DvF3H), dihydroflavonol 4-reductase (DvDFR), anthocyanidin synthase (DvANS), and DvIVS encoding a basic helix–loop–helix transcription factor were suppressed, whereas that of chalcone isomerase (DvCHI) and DvCHS2, another CHS with 69% nucleotide identity with DvCHS1, was not suppressed in the yellow ray florets of MJY. A 5.4 kb CACTA superfamily transposable element, transposable element of Dahlia variabilis 1 (Tdv1), was found in the fourth intron of the DvIVS gene of MJW and MJY, and footprints of Tdv1 were detected in the variegated flowers of MJW. It is shown that only one type of DvIVS gene was expressed in MJOr, whereas these plants are likely to have three types of the DvIVS gene. On the basis of these results, the mechanism regulating the formation of orange and yellow ray florets in dahlia is discussed. PMID:21765172

  15. Comparative Leaves Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis

    PubMed Central

    Mushtaq, Muhammad A.; Pan, Qi; Chen, Daozong; Zhang, Qinghua; Ge, Xianhong; Li, Zaiyun

    2016-01-01

    The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological, and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes (LBGs) of anthocyanin, especially Dihydroflavonol 4-Reductase (DFR), Anthocyanidin Synthase (ANS) and Transparent Testa 19 (TT19), were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8), was up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5) which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8), GLYCOLATE OXIDASE 1 (GOX1), and GLUTAMINE SYNTHETASE 1;4 (GLN1;4) related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future. PMID:27047501

  16. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation.

    PubMed

    Xu, Wenping; Peng, Hui; Yang, Tianbao; Whitaker, Bruce; Huang, Luhong; Sun, Jianghao; Chen, Pei

    2014-09-01

    Two diploid woodland strawberry (Fragaria vesca) inbred lines, Ruegen F7-4 (red fruit-bearing) and YW5AF7 (yellow fruit-bearing) were used to study the regulation of anthocyanin biosynthesis in fruit. Ruegen F7-4 fruit had similar total phenolics and anthocyanin contents to commercial octoploid (F. × ananassa) cultivar Seascape, while YW5AF7 exhibited relatively low total phenolics content and no anthocyanin accumulation. Foliar spray of CaCl2 boosted fruit total phenolics content, especially anthocyanins, by more than 20% in both Seascape and RF7-4. Expression levels of almost all the flavonoid pathway genes were comparable in Ruegen F7-4 and YW5AF7 green-stage fruit. However, at the turning and ripe stages, key anthocyanin structural genes, including flavanone 3-hydroxylase (F3H1), dihydroflavonol 4-reductase (DFR2), anthocyanidin synthase (ANS1), and UDP-glucosyltransferase (UGT1), were highly expressed in Ruegen F7-4 compared with YW5AF7 fruit. Calcium treatment further stimulated the expression of those genes in Ruegen F7-4 fruit. Anthocyanins isolated from petioles of YW5AF7 and Ruegen F-7 had the same HPLC-DAD profile, which differed from that of Ruegen F-7 fruit anthocyanins. All the anthocyanin structural genes except FvUGT1 were detected in petioles of YW5AF7 and Ruegen F-7. Taken together, these results indicate that the "yellow" gene in YW5AF7 is a fruit specific regulatory gene(s) for anthocyanin biosynthesis. Calcium can enhance accumulation of anthocyanins and total phenolics in fruit possibly via upregulation of anthocyanin structural genes. Our results also suggest that the anthocyanin biosynthesis machinery in petioles is different from that in fruit. PMID:25036468

  17. Ultraviolet A-specific induction of anthocyanin biosynthesis in the swollen hypocotyls of turnip (Brassica rapa).

    PubMed

    Zhou, Bo; Li, Yuhua; Xu, Zhiru; Yan, Haifang; Homma, Shinichiro; Kawabata, Saneyuki

    2007-01-01

    Ultraviolet A (UV-A)-mediated regulation of anthocyanin biosynthesis was investigated in swollen hypocotyls of the red turnip 'Tsuda'. The shaded swollen hypocotyls which contained negligible anthocyanin were exposed to artificial light sources including low fluence UV-B, UV-A, blue, red, far-red, red plus UV-A, far-red plus UV-A, and blue plus red. Among these lights, only UV-A induced anthocyanin biosynthesis and co-irradiation of red or far-red with UV-A did not affect the extent of UV-A-induced anthocyanin accumulation. The expression of phenylalanine ammonia lyase (PAL; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), flavanone 3-hydroxylase (F3H; EC 1.14.11.9), dihydroflavonol 4-reductase (DFR; EC 1.1.1.219), and anthocyanidin synthase (ANS; EC 1.14.11.19) genes was increased with time during a 24 h exposure to UV-A. In contrast, irradiation with red, blue, UV-B, and a combination of blue with red failed to induce CHS expression. Microarray analysis showed that only a few genes, including CHS and F3H, were induced significantly by UV-A, while a separate set of many genes was induced by low fluence UV-B. The UV-A-specific induction of anthocyanin biosynthesis and the unique gene expression profile upon UV-A irradiation as compared with blue and UV-B demonstrated that the observed induction of anthocyanin biosynthesis in red turnips was mediated by a distinct UV-A-specific photoreceptor, but not by phytochromes, UV-A/blue photoreceptors, or UV-B photoreceptors. PMID:17426056

  18. Comparative Leaves Transcriptome Analysis Emphasizing on Accumulation of Anthocyanins in Brassica: Molecular Regulation and Potential Interaction with Photosynthesis.

    PubMed

    Mushtaq, Muhammad A; Pan, Qi; Chen, Daozong; Zhang, Qinghua; Ge, Xianhong; Li, Zaiyun

    2016-01-01

    The purple leaf pigmentation mainly associated with anthocyanins accumulation is common in Brassica but the mechanisms of its production and its potential physiological functions are poorly understood. Here, we performed the phenotypic, cytological, physiological, and comparative leaves transcriptome analyses of 11 different varieties belonging to five Brassica species with purple or green leaves. We observed that the anthocyanin was accumulated in most of vegetative tissues in all species and also in reproduction organs of B. carinata. Anthocyanin accumulated in different part of purple leaves including adaxial and abaxial epidermal cells as well as palisade and spongy mesophyll cells. Leave transcriptome analysis showed that almost all late biosynthetic genes (LBGs) of anthocyanin, especially Dihydroflavonol 4-Reductase (DFR), Anthocyanidin Synthase (ANS) and Transparent Testa 19 (TT19), were highly up-regulated in all purple leaves. However, only one of transcript factors in anthocyanin biosynthesis pathway, Transparent Testa 8 (TT8), was up regulated along with those genes in all purple leaves, indicating its pivotal role for anthocyanin production in Brassica. Interestingly, with the up-regulation of genes for anthocyanin synthesis, Cytosolic 6-phosphogluconolactonase (PLG5) which involved in the oxidative pentose-phosphate pathway was up-regulated in all purple leaves and three genes FTSH PROTEASE 8 (FTS8), GLYCOLATE OXIDASE 1 (GOX1), and GLUTAMINE SYNTHETASE 1;4 (GLN1;4) related to degradation of photo-damaged proteins in photosystem II and light respiration were down-regulated. These results highlighted the potential physiological functions of anthocyanin accumulation related to photosynthesis which might be of great worth in future. PMID:27047501

  19. Identification of flavonoids and expression of flavonoid biosynthetic genes in two coloured tree peony flowers.

    PubMed

    Zhao, Daqiu; Tang, Wenhui; Hao, Zhaojun; Tao, Jun

    2015-04-10

    Tree peony (Paeonia suffruticosa Andr.) has been named the "king of flowers" because of its elegant and gorgeous flower colour. Among these colours, the molecular mechanisms of white formation and how white turned to red in P. suffruticosa is little known. In this study, flower colour variables, flavonoid accumulation and expression of flavonoid biosynthetic genes of white ('Xueta') and red ('Caihui') P. suffruticosa were investigated. The results showed that the flower colours of both cultivars were gradually deepened with the development of flowers. Moreover, two anthoxanthin compositions apigenin 7-O-glucoside together with apigenin deoxyheso-hexoside were identified in 'Xueta' and 'Caihui', but one main anthocyanin composition peonidin 3,5-di-O-glucoside (Pn3G5G) was only found in 'Caihui'. Total contents of anthocyanins in 'Caihui' was increased during flower development, and the same trend was presented in anthoxanthins and flavonoids of these two cultivars, but the contents of these two category flavonoid in 'Caihui' were always higher than those in 'Xueta'. Furthermore, nine structural genes in flavonoid biosynthetic pathway were isolated including the full-length cDNAs of phenylalanine ammonialyase gene (PAL), chalcone synthase gene (CHS) and chalcone isomerase gene (CHI), together with the partial-length cDNAs of flavanone 3-hydroxylase gene (F3H), flavonoid 3'-hydroxylase gene (F3'H), dihydroflavonol 4-reductase gene (DFR), anthocyanidin synthase gene (ANS), UDP-glucose: flavonoid 3-O-glucosyltransferase gene (UF3GT) and UDP-glucose: flavonoid 5-O-glucosyltransferase gene (UF5GT), and PAL, UF3GT and UF5GT were reported in P. suffruticosa for the first time. Their expression patterns showed that transcription levels of downstream genes in 'Caihui' were basically higher than those in 'Xueta', especially PsDFR and PsANS, suggesting that these two genes may play a key role in the anthocyanin biosynthesis which resulted in the shift from white to red in

  20. Comparative Transcriptome Analysis of Genes Involved in Anthocyanin Biosynthesis in the Red and Yellow Fruits of Sweet Cherry (Prunus avium L.)

    PubMed Central

    Wei, Hairong; Chen, Xin; Zong, Xiaojuan; Shu, Huairui; Gao, Dongsheng; Liu, Qingzhong

    2015-01-01

    Background Fruit color is one of the most important economic traits of the sweet cherry (Prunus avium L.). The red coloration of sweet cherry fruit is mainly attributed to anthocyanins. However, limited information is available regarding the molecular mechanisms underlying anthocyanin biosynthesis and its regulation in sweet cherry. Methodology/Principal Findings In this study, a reference transcriptome of P. avium L. was sequenced and annotated to identify the transcriptional determinants of fruit color. Normalized cDNA libraries from red and yellow fruits were sequenced using the next-generation Illumina/Solexa sequencing platform and de novo assembly. Over 66 million high-quality reads were assembled into 43,128 unigenes using a combined assembly strategy. Then a total of 22,452 unigenes were compared to public databases using homology searches, and 20,095 of these unigenes were annotated in the Nr protein database. Furthermore, transcriptome differences between the four stages of fruit ripening were analyzed using Illumina digital gene expression (DGE) profiling. Biological pathway analysis revealed that 72 unigenes were involved in anthocyanin biosynthesis. The expression patterns of unigenes encoding phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavanone 3’-hydroxylase (F3’H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and UDP glucose: flavonol 3-O-glucosyltransferase (UFGT) during fruit ripening differed between red and yellow fruit. In addition, we identified some transcription factor families (such as MYB, bHLH and WD40) that may control anthocyanin biosynthesis. We confirmed the altered expression levels of eighteen unigenes that encode anthocyanin biosynthetic enzymes and transcription factors using quantitative real-time PCR (qRT-PCR). Conclusions/Significance The obtained sweet cherry transcriptome and DGE profiling data

  1. A De novo Transcriptomic Approach to Identify Flavonoids and Anthocyanins “Switch-Off” in Olive (Olea europaea L.) Drupes at Different Stages of Maturation

    PubMed Central

    Iaria, Domenico L.; Chiappetta, Adriana; Muzzalupo, Innocenzo

    2016-01-01

    Highlights A de novo transcriptome reconstruction of olive drupes was performed in two genotypesGene expression was monitored during drupe development in two olive cultivarsTranscripts involved in flavonoid and anthocyanin pathways were analyzed in Cassanese and Leucocarpa cultivarsBoth cultivar and developmental stage impact gene expression in Olea europaea fruits. During ripening, the fruits of the olive tree (Olea europaea L.) undergo a progressive chromatic change characterized by the formation of a red-brown “spot” which gradually extends on the epidermis and in the innermost part of the mesocarp. This event finds an exception in the Leucocarpa cultivar, in which we observe a destabilized equilibrium between the metabolisms of chlorophyll and other pigments, particularly the anthocyanins whose switch-off during maturation promotes the white coloration of fruits. Despite its importance, genomic information on the olive tree is still lacking. Different RNA-seq libraries were generated from drupes of “Leucocarpa” and “Cassanese” olive genotypes, sampled at 100 and 130 days after flowering (DAF), and were used in order to identify transcripts involved in the main phenotypic changes of fruits during maturation and their corresponding expression patterns. A total of 103,359 transcripts were obtained and 3792 and 3064 were differentially expressed in “Leucocarpa” and “Cassanese” genotypes, respectively, during 100–130 DAF transition. Among them flavonoid and anthocyanin related transcripts such as phenylalanine ammonia lyase (PAL), cinnamate 4-hydroxylase (C4H), 4-coumarate-CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol 3′-hydrogenase (F3′H), flavonol 3′5 ′-hydrogenase (F3′5′H), flavonol synthase (FLS), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS), UDP-glucose:anthocianidin: flavonoid glucosyltransferase (UFGT) were identified. These results contribute

  2. A R2R3-MYB Transcription Factor from Epimedium sagittatum Regulates the Flavonoid Biosynthetic Pathway

    PubMed Central

    Lv, Haiyan; Luo, Ming; Zeng, Shaohua; Pattanaik, Sitakanta; Yuan, Ling; Wang, Ying

    2013-01-01

    Herba epimedii (Epimedium), a traditional Chinese medicine, has been widely used as a kidney tonic and antirheumatic medicine for thousands of years. The bioactive components in herba epimedii are mainly prenylated flavonol glycosides, end-products of the flavonoid pathway. Epimedium species are also used as garden plants due to the colorful flowers and leaves. Many R2R3-MYB transcription factors (TFs) have been identified to regulate the flavonoid and anthocyanin biosynthetic pathways. However, little is known about the R2R3-MYB TFs involved in regulation of the flavonoid pathway in Epimedium. Here, we reported the isolation and functional characterization of the first R2R3-MYB TF (EsMYBA1) from Epimedium sagittatum (Sieb. Et Zucc.) Maxim. Conserved domains and phylogenetic analysis showed that EsMYBA1 belonged to the subgroup 6 clade (anthocyanin-related MYB clade) of R2R3-MYB family, which includes Arabidopsis AtPAP1, apple MdMYB10 and legume MtLAP1. EsMYBA1 was preferentially expressed in leaves, especially in red leaves that contain higher content of anthocyanin. Alternative splicing of EsMYBA1 resulted in three transcripts and two of them encoded a MYB-related protein. Yeast two-hybrid and transient luciferase expression assay showed that EsMYBA1 can interact with several bHLH regulators of the flavonoid pathway and activate the promoters of dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS). In both transgenic tobacco and Arabidopsis, overexpression of EsMYBA1 induced strong anthocyanin accumulation in reproductive and/or vegetative tissues via up-regulation of the main flavonoid-related genes. Furthermore, transient expression of EsMYBA1 in E. sagittatum leaves by Agrobacterium infiltration also induced anthocyanin accumulation in the wounded area. This first functional characterization of R2R3-MYB TFs in Epimedium species will promote further studies of the flavonoid biosynthesis and regulation in medicinal plants. PMID:23936468

  3. A R2R3-MYB Transcription Factor Regulates the Flavonol Biosynthetic Pathway in a Traditional Chinese Medicinal Plant, Epimedium sagittatum

    PubMed Central

    Huang, Wenjun; Khaldun, A. B. M.; Chen, Jianjun; Zhang, Chanjuan; Lv, Haiyan; Yuan, Ling; Wang, Ying

    2016-01-01

    Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from Epimedium sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase) and EsFLS (flavonol synthase), but not the promoters of EsDFRs (dihydroflavonol 4-reductase) and EsANS (anthocyanidin synthase) in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase), NtCHI (chalcone isomerase), NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS) were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived BCs in E. sagittatum. Thus

  4. A R2R3-MYB Transcription Factor Regulates the Flavonol Biosynthetic Pathway in a Traditional Chinese Medicinal Plant, Epimedium sagittatum.

    PubMed

    Huang, Wenjun; Khaldun, A B M; Chen, Jianjun; Zhang, Chanjuan; Lv, Haiyan; Yuan, Ling; Wang, Ying

    2016-01-01

    Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from Epimedium sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase) and EsFLS (flavonol synthase), but not the promoters of EsDFRs (dihydroflavonol 4-reductase) and EsANS (anthocyanidin synthase) in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase), NtCHI (chalcone isomerase), NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS) were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived BCs in E. sagittatum. Thus

  5. Design-for-reliability (DfR) of aerospace electronics: Attributes and challenges

    NASA Astrophysics Data System (ADS)

    Bensoussan, A.; Suhir, E.

    The next generation of multi-beam satellite systems that would be able to provide effective interactive communication services will have to operate within a highly flexible architecture. One option to develop such flexibility is to employ microwaves and/or optoelectronic components and to make them reliable. The use of optoelectronic devices, equipments and systems will result indeed in significant improvement in the state-of-the-art only provided that the new designs will suggest a novel and effective architecture that will combine the merits of good functional performance, satisfactory mechanical (structural) reliability and high cost effectiveness. The obvious challenge is the ability to design and fabricate equipment based on EEE components that would be able to successfully withstand harsh space environments for the entire duration of the mission. It is imperative that the major players in the space industry, such as manufacturers, industrial users, and space agencies, understand the importance and the limits of the achievable quality and reliability of optoelectronic devices operated in harsh environments. It is equally imperative that the physics of possible failures is well understood and, if necessary, minimized, and that adequate Quality Standards are developed and employed. The space community has to identify and to develop the strategic approach for validating optoelectronic products. This should be done with consideration of numerous intrinsic and extrinsic requirements for the systems' performance. When considering a particular next generation optoelectronic space system, the space community needs to address the following major issues: proof of concept for this system, proof of reliability and proof of performance. This should be done with taking into account the specifics of the anticipated application. High operational reliability cannot be left to the prognostics and health monitoring/management (PHM) effort and stage, no matter how important and - ffective such an effort might be. Reliability should be pursued at all the stages of the equipment lifetime: design, product development, manufacturing, burn-in testing and, of course, subsequent PHM after the space apparatus is launched and operated.

  6. Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy.

    PubMed

    Seitz, Christian; Vitten, Matthias; Steinbach, Peter; Hartl, Sabrina; Hirsche, Jörg; Rathje, Wiebke; Treutter, Dieter; Forkmann, Gert

    2007-03-01

    Modern biotechnology has developed powerful tools for genetic engineering and flower colours are an excellent object to study possibilities and limitations of engineering strategies. Osteospermum hybrida became a popular ornamental plant within the last 20 years. Many cultivars display rose to lilac flower colours mainly based on delphinidin-derived anthocyanins. The predominant synthesis of delphinidin derivatives is referred to a strong endogenous flavonoid 3',5'-hydroxylase (F3'5'H) activity. Furthermore, since dihydroflavonol 4-reductase (DFR) of Osteospermum does not convert dihydrokaempferol (DHK) to leucopelargonidin, synthesis of pelargonidin-based anthocyanins is naturally not realised. In order to redirect anthocyanin biosynthesis in Osteospermum towards pelargonidin derivatives, we introduced cDNAs coding for DFRs which efficiently convert DHK to LPg. But neither the expression of Gerbera hybrida DFR nor of Fragaria x ananassa DFR - the latter is characterised by an unusual high substrate preference for DHK - altered anthocyanin composition in flowers of transgenic plants. However, chemical inhibition of F3'5'H activity in ray florets of dfr transgenic plants resulted in the accumulation of pelargonidin derivatives. Accordingly, retransformation of a transgenic plant expressing Gerbera DFR with a construct for RNAi-mediated suppression of F3'5'H activity resulted in double transgenic plants accumulating predominantly pelargonidin derivatives in flowers. PMID:17286993

  7. Glycosyltransferase efficiently controls phenylpropanoid pathway

    PubMed Central

    Aksamit-Stachurska, Anna; Korobczak-Sosna, Alina; Kulma, Anna; Szopa, Jan

    2008-01-01

    Background In a previous study, anthocyanin levels in potato plants were increased by manipulating genes connected with the flavonoid biosynthesis pathway. However, starch content and tuber yield were dramatically reduced in the transgenic plants, which over-expressed dihydroflavonol reductase (DFR). Results Transgenic plants over-expressing dihydroflavonol reductase (DFR) were subsequently transformed with the cDNA coding for the glycosyltransferase (UGT) of Solanum sogarandinum in order to obtain plants with a high anthocyanin content without reducing tuber yield and quality. Based on enzyme studies, the recombinant UGT is a 7-O-glycosyltransferase whose natural substrates include both anthocyanidins and flavonols such as kaempferol and quercetin. In the super-transformed plants, tuber production was much higher than in the original transgenic plants bearing only the transgene coding for DFR, and was almost the same as in the control plants. The anthocyanin level was lower than in the initial plants, but still higher than in the control plants. Unexpectedly, the super-transformed plants also produced large amounts of kaempferol, chlorogenic acid, isochlorogenic acid, sinapic acid and proanthocyanins. Conclusion In plants over-expressing both the transgene for DFR and the transgene for UGT, the synthesis of phenolic acids was diverted away from the anthocyanin branch. This represents a novel approach to manipulating phenolic acids synthesis in plants. PMID:18321380

  8. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression.

    PubMed Central

    van der Krol, A R; Mur, L A; Beld, M; Mol, J N; Stuitje, A R

    1990-01-01

    To evaluate the effect of increased expression of genes involved in flower pigmentation, additional dihydroflavonol-4-reductase (DFR) or chalcone synthase (CHS) genes were transferred to petunia. In most transformants, the increased expression had no measurable effect on floral pigmentation. Surprisingly, however, in up to 25% of the transformants, a reduced floral pigmentation, accompanied by a dramatic reduction of DFR or CHS gene expression, respectively, was observed. This phenomenon was obtained with both chimeric gene constructs and intact CHS genomic clones. The reduction in gene expression was independent of the promoter driving transcription of the transgene and involved both the endogenous gene and the homologous transgene. The gene-specific collapse in expression was obtained even after introduction of only a single gene copy. The similarity between the sense transformants and regulatory CHS mutants suggests that this mechanism of gene silencing may operate in naturally occurring regulatory circuits. PMID:2152117

  9. Characterization of hemiacetal forms of anthocyanidin 3-O-beta-glycopyranosides.

    PubMed

    Jordheim, Monica; Fossen, Torgils; Andersen, Øyvind M

    2006-12-13

    The 3-O-beta-glucopyranosides of delphinidin, petunidin, and malvidin (1-3) and cyanidin 3-O-beta-galactopyranoside (4) dissolved in deuterated methanolic solutions without and with acid (5%, CF3COOD) were identified by homo- and heteronuclear NMR techniques. The hemiacetal forms of all the four anthocyanins were characterized as two epimeric 2-hydroxy-hemiacetals on the basis of assignments of both proton and carbon NMR signals together with chemical shift considerations. This is the first report of 13C NMR assignments of two epimeric anthocyanin hemiacetal forms. No 4-hydroxy-hemiacetal form was detected for any of the pigments. For each anthocyanin dissolved in deuterated methanol, the equilibrium between each of the two epimeric hemiacetals and the corresponding flavylium cation was confirmed by the observed positive exchange cross-peaks in the 2D 1H NOESY spectra. The molar proportions of the flavylium cation and the two hemiacetals of 1-4 in deuterated methanol were very similar for all pigments, even during storage for weeks. The majority of the anthocyanins reported to occur in fruits have the same or similar structures as 1-4. These pigments have been proposed to exist predominantly as hemiacetals in slightly acidic to neutral solvents, which is a relevant pH range in plants and in the human gastrointestinal tract. PMID:17147416

  10. Anthocyanidins and polyphenols in five brassica species microgreens: analysis by UHPLC-PDA-ESI/HRMS/MSn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassica vegetables are known to contain relatively high concentrations of bioactive compounds associated with human health. A comprehensive profiling of polyphenols from five Brassica species microgreens was conducted using ultra high-performance liquid chromatography photo diode array high-resolu...

  11. Elucidation of Molecular Identity of the W3 Locus and Its Implication in Determination of Flower Colors in Soybean

    PubMed Central

    Park, Gyu Tae; Sundaramoorthy, Jagadeesh; Lee, Jeong-Dong; Kim, Jeong Hoe; Seo, Hak Soo; Song, Jong Tae

    2015-01-01

    The wide range of flower colors in soybean is controlled by six independent loci (W1, W2, W3, W4, Wm, and Wp). Among these loci, mutations in the W3 locus under the w4 allelic background (i.e., w3w4) produce near-white flowers, while the W3w4 genotype produces purple throat flowers. Although a gene encoding dihydroflavonol 4-reductase, DFR1, has been known to be closely associated with the W3 locus, its molecular identity has not yet been characterized. In the present study, we aimed to determine whether DFR1 is responsible for allelic variations in the W3 locus. On the basis of the sequence of a DFR probe, Glyma.14G072700 was identified as a candidate gene for DFR1, and nucleotide sequences of Glyma.14G072700 from cultivars with previously validated genotypes for the W3 locus were determined. As a result, a number of nucleotide polymorphisms, mainly single-base substitutions, between both coding and 5′-upstream region sequences of the W3 and w3 alleles were identified. Among them, an indel of 311-bp in the 5′-upstream region was noteworthy, since the Glyma.14G072700 in all the w3 alleles examined contained the indel, whereas that in all the W3 alleles did not; the former was barely expressed, but the latter was well expressed. These results suggest that Glyma.14G072700 is likely to correspond to DFR1 for the W3 locus and that its expression patterns may lead to allelic color phenotypes of W3 and w3 alleles under the w4 allelic background. PMID:26555888

  12. Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering.

    PubMed

    Zhao, Shujuan; Jones, J Andrew; Lachance, Daniel M; Bhan, Namita; Khalidi, Omar; Venkataraman, Sylesh; Wang, Zhengtao; Koffas, Mattheos A G

    2015-03-01

    Reconstruction of highly efficient biosynthesis pathways is essential for the production of valuable plant secondary metabolites in recombinant microorganisms. In order to improve the titer of green tea catechins in Escherichia coli, combinatorial strategies were employed using the ePathBrick vectors to express the committed catechin pathway: flavanone 3β-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), and leucoanthocyanidin reductase (LAR). Three F3H, three DFR, and two LAR genes originating from different plant species were selected and synthesized, to create 18 pathway variants to be screened in E. coli. Constructs containing F3H(syn) originally from Camellia sinensis, DFR(syn) from Anthurium andraeanum, C. sinensis, or Fragaria ananass, and LAR(syn) from Desmodium uncinatum (p148, p158 and p168) demonstrated high conversion efficiency with either eriodictyol or naringenin as substrate. A highly efficient construct was created by assembling additional copies of DFR(syn) and LAR(syn) enabling a titer of 374.6 ± 43.6 mg/L of (+)-catechin. Improving the NADPH availability via the ΔpgiΔppc mutation, BLΔpgiΔppc-p148 produced the highest titer of catechin at 760.9 ± 84.3 mg/L. After utilizing a library of scaffolding proteins, the strain BLΔpgiΔppc-p168-759 reached the highest titer of (+)-catechin of 910.9 ± 61.3 mg/L from 1.0 g/L of eriodictyol in batch culture with M9 minimal media. The impact of oxygen availability on the biosynthesis of catechin was also investigated. PMID:25527438

  13. Delphinidin, a dietary anthocyanidin, inhibits platelet-derived growth factor ligand/receptor (PDGF/PDGFR) signaling.

    PubMed

    Lamy, Sylvie; Beaulieu, Edith; Labbé, David; Bédard, Valérie; Moghrabi, Albert; Barrette, Stéphane; Gingras, Denis; Béliveau, Richard

    2008-05-01

    Most cancers are dependent on the growth of tumor blood vessels and inhibition of tumor angiogenesis may thus provide an efficient strategy to retard or block tumor growth. Recently, tumor vascular targeting has expanded to include not only endothelial cells (ECs) but also smooth muscle cells (SMCs), which contribute to a mature and functional vasculature. We have reported previously that delphinidin, a major biologically active constituent of berries, inhibits the vascular endothelial growth factor-induced phosphorylation of vascular endothelial growth factor receptor-2 and blocks angiogenesis in vitro and in vivo. In the present study, we show that delphinidin also inhibits activation of the platelet-derived growth factor (PDGF)-BB receptor-beta [platelet-derived growth factor receptor-beta (PDGFR-beta)] in SMC and that this inhibition may contribute to its antitumor effect. The inhibitory effect of delphinidin on PDGFR-beta was very rapid and led to the inhibition of PDGF-BB-induced activation of extracellular signal-regulated kinase (ERK)-1/2 signaling and of the chemotactic motility of SMC, as well as the differentiation and stabilization of EC and SMC into capillary-like tubular structures in a three-dimensional coculture system. Using an anthocyan-rich extract of berries, we show that berry extracts were able to suppress the synergistic induction of vessel formation by basic fibroblast growth factor-2 and PDGF-BB in the mouse Matrigel plug assay. Oral administration of the berry extract also significantly retarded tumor growth in a lung carcinoma xenograft model. Taken together, these results provide new insight into the molecular mechanisms underlying the antiangiogenic activity of delphinidin that will be helpful for the development of dietary-based chemopreventive strategies. PMID:18339683

  14. Flavor of fresh blueberry juice and the comparison to amount of sugars, acids, anthocyanidins, and physicochemical measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Six cultivars of southern highbush (SHB) and rabbiteye (RE) blueberry samples were harvested twice. Each treatment combination was pressed two times for repeated measures. Fresh juice was characterized for eighteen flavor/taste/feeling factor attributes by a descriptive flavor panel. Each sample ...

  15. Complete assignment of structural genes involved in flavonoid biosynthesis influencing bulb color to individual chromosomes of the shallot (Allium cepa L.).

    PubMed

    Masuzaki, Shin-ichi; Shigyo, Masayoshi; Yamauchi, Naoki

    2006-08-01

    We analyzed Japanese bunching onion (Allium fistulosum L.) - shallot (Allium cepa L. Aggregatum group) alien chromosome addition lines in order to assign the genes involved in the flavonoid biosynthesis pathway to chromosomes of the shallot. Two complete sets of alien monosomic additions (2n = 2x + 1 = 17) were used for determining the chromosomal locations of several partial sequences of candidate genes, CHS, CHI, F3H, DFR, and ANS via analyses of PCR-based markers. The results of DNA marker analyses showed that the CHS-A, CHS-B, CHI, F3H, DFR, and ANS genes should be assigned to chromosomes 2A, 4A, 3A, 3A, 7A, and 4A, respectively. HPLC analyses of 14 A. fistulosum - shallot multiple alien additions (2n = 2x + 2 - 2x + 7 = 18 - 23) were conducted to identify the anthocyanin compounds produced in the scaly leaves. A direct comparison between the genomic constitution and the anthocyanin compositions of the multiple additions revealed that a 3GT gene for glucosylation of anthocyanidin was located on 4A. Thus, we were able to assign all structural genes involved in flavonoid biosynthesis influencing bulb color to individual chromosomes of A. cepa. PMID:17038797

  16. Arabidopsis CAPRICE (MYB) and GLABRA3 (bHLH) Control Tomato (Solanum lycopersicum) Anthocyanin Biosynthesis

    PubMed Central

    Wada, Takuji; Kunihiro, Asuka; Tominaga-Wada, Rumi

    2014-01-01

    In Arabidopsis thaliana the MYB transcription factor CAPRICE (CPC) and the bHLH transcription factor GLABRA3 (GL3) are central regulators of root-hair differentiation and trichome initiation. By transforming the orthologous tomato genes SlTRY (CPC) and SlGL3 (GL3) into Arabidopsis, we demonstrated that these genes influence epidermal cell differentiation in Arabidopsis, suggesting that tomato and Arabidopsis partially use similar transcription factors for epidermal cell differentiation. CPC and GL3 are also known to be involved in anthocyanin biosynthesis. After transformation into tomato, 35S::CPC inhibited anthocyanin accumulation, whereas GL3::GL3 enhanced anthocyanin accumulation. Real-time reverse transcription PCR analyses showed that the expression of anthocyanin biosynthetic genes including Phe-ammonia lyase (PAL), the flavonoid pathway genes chalcone synthase (CHS), dihydroflavonol reductase (DFR), and anthocyanidin synthase (ANS) were repressed in 35S::CPC tomato. In contrast, the expression levels of PAL, CHS, DFR, and ANS were significantly higher in GL3::GL3 tomato compared with control plants. These results suggest that CPC and GL3 also influence anthocyanin pigment synthesis in tomato. PMID:25268379

  17. Excision of an Active CACTA-Like Transposable Element from DFR2 Causes Variegated Flowers in Soybean [Glycine max (L.) Merr.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In soybean, the W4 locus is one of the loci that control anthocyanin biosynthesis of soybean flowers and hypocotyls. A putative transposable element was suggested to reside within or adjacent to this locus in the mutable line T322 (w4-m). In present study, the immature flower petals of six samples ...

  18. Transposon Tagging of a Male-Sterility, Female-Sterility Gene, St8, Revealed that the Meiotic MER3 DNA Helicase Activity Is Essential for Fertility in Soybean

    PubMed Central

    Baumbach, Jordan; Pudake, Ramesh N.; Johnson, Callie; Kleinhans, Kaylin; Ollhoff, Alexandrea; Palmer, Reid G.; Bhattacharyya, Madan K.; Sandhu, Devinder

    2016-01-01

    The W4 locus in soybean encodes a dihydroflavonol-4-reductase (DFR2) that regulates pigmentation patterns in flowers and hypocotyl. The mutable w4-m allele that governs variegated flowers has arisen through insertion of a CACTA-type transposable element, Tgm9, in DFR2. In the w4-m line, reversion from variegated to purple flower indicates excision of Tgm9, and its insertion at a new locus. Previously, we have identified a male-sterile, female-sterile mutant among the selfed progenies of a revertant plant carrying only purple flowers. Co-segregation between Tgm9 and the sterility phenotype suggested that the mutant was generated by insertion of Tgm9 at the St8 locus. The transposon was localized to exon 10 of Glyma.16G072300 that shows high identity to the MER3 DNA helicase involved in crossing over. Molecular analysis of fertile branches from two independent revertant plants confirmed precise excision of Tgm9 from the st8 allele, which restored fertility. In soybean, the gene is expressed in flower-buds, trifoliate leaves and stem. Phylogenetic analysis placed St8 in a clade with the Arabidopsis and rice MER3 suggesting that St8 is most likely the orthologous MER3 soybean gene. This study established the utility of Tgm9 in gene identification as well as in forward and reverse genetics studies. PMID:26930200

  19. Effect of BTH on anthocyanin content and activities of related enzymes in Strawberry after harvest.

    PubMed

    Cao, Shifeng; Hu, Zhichao; Zheng, Yonghua; Lu, Binhong

    2010-05-12

    The effect of benzo-thiadiazole-7-carbothioic acid S-methyl ester (BTH) at 0.2 g L(-1) on anthocyanin content and the enzymes involved in its metabolism such as glucose-6-phosphate dehydrogenase (G6PDH), shikimate dehydrogenase (SKDH), tyrosine ammonia lyase (TAL), phenylalanine ammonia lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate/coenzyme A ligase (4-CL), and dihydroflavonol 4-reductase (DFR) in strawberry (Fragaria x ananassa Duch.) fruit was investigated in this study. The result showed that BTH treatment gave higher levels of anthocyanin in strawberries during 10 days of storage at 1 degrees C. Meanwhile, the treatment also increased the activities of G6PDH, SKDH, TAL, PAL, C4H, and DFR. These results indicated that the increase in anthocyanin content by BTH might result from the activation of its related enzymes. These data are the first evidence that BTH induces enzyme activities related to anthocyanin metabolism in strawberry fruit after harvest. PMID:20377227

  20. Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes.

    PubMed

    Nakatsuka, Takashi; Abe, Yoshiko; Kakizaki, Yuko; Yamamura, Saburo; Nishihara, Masahiro

    2007-11-01

    Orange- to red-colored flowers are difficult to produce by conventional breeding techniques in some floricultural plants. This is due to the deficiency in the formation of pelargonidin, which confers orange to red colors, in their flowers. Previous researchers have reported that brick-red colored flowers can be produced by introducing a foreign dihydroflavonol 4-reductase (DFR) with different substrate specificity in Petunia hybrida, which does not accumulate pelargonidin pigments naturally. However, because these experiments used dihydrokaempferol (DHK)-accumulated mutants as transformation hosts, this strategy cannot be applied directly to other floricultural plants. Thus in this study, we attempted to produce red-flowered plants by suppressing two endogenous genes and expressing one foreign gene using tobacco as a model plant. We used a chimeric RNAi construct for suppression of two genes (flavonol synthase [FLS] and flavonoid 3'-hydroxylase [F3'H]) and expression of the gerbera DFR gene in order to accumulate pelargonidin pigments in tobacco flowers. We successfully produced red-flowered tobacco plants containing high amounts of additional pelargonidin as confirmed by HPLC analysis. The flavonol content was reduced in the transgenic plants as expected, although complete inhibition was not achieved. Expression analysis also showed that reduction of the two-targeted genes and expression of the foreign gene occurred simultaneously. These results demonstrate that flower color modification can be achieved by multiple gene regulation without use of mutants if the vector constructs are designed resourcefully. PMID:17639403

  1. Molecular characterization of a nonautonomous transposable element (dTph1) of petunia.

    PubMed Central

    Gerats, A G; Huits, H; Vrijlandt, E; Maraña, C; Souer, E; Beld, M

    1990-01-01

    An insertion sequence of 283 base pairs has been isolated from the DFR-C gene (dihydroflavonol-4-reductase) of petunia. This insert was found only in a line unstable for the An1 locus (anthocyanin 1, located on chromosome VI) and not in fully pigmented progenitor and revertant lines or in stable white derivative lines. This implies that the An1 locus encodes the DFR-C gene. The unstable An1 system in the line W138 is known to be a two-element system, the autonomous element being located on chromosome I. In the presence of the autonomous element, W138 flowers exhibit a characteristic pattern of red revertant spots and sectors on a white background. In the absence of the autonomous element, the W138 allele gives rise to a stable recessive (white) phenotype. Sequence analysis of progenitor, unstable, and revertant alleles revealed dTph1 to contain perfect terminal inverted repeats of 12 base pairs. In DFR-C, it is flanked by an 8-base pair target site duplication. Sequences homologous to dTph1 are present in at least 50 copies in the line W138. Sequence analysis of An1 revertant alleles indicated that excision, including removal of the target site duplication, is required for reversion to the wild-type phenotype. Derivative stable recessive alleles showed excision of dTph1 and a rearrangement of the target site duplication. dTph1 is the smallest transposable element described to date that is still capable of transposition. The use of dTph1 in tagging experiments and subsequent gene isolation is discussed. PMID:1967052

  2. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco.

    PubMed

    Pérez-Díaz, J Ricardo; Pérez-Díaz, Jorge; Madrid-Espinoza, José; González-Villanueva, Enrique; Moreno, Yerko; Ruiz-Lara, Simón

    2016-01-01

    In grapevine, anthocyanins and proanthocyanidins are the main flavonoids in berries, which are associated to organoleptic properties in red wine such as color and astringency. Flavonoid pathway is specifically regulated at transcriptional level and several R2R3-MYB proteins have shown to act as positive regulators. However, some members of this family have shown to repress the flavonoid biosynthesis. In this work, we present the characterization of VvMYB4-like gene, which encodes a putative transcriptional factor highly expressed in the skin of berries at the pre veraison stage in grapevine. Its over-expression in tobacco resulted in the loss of pigmentation in flowers due a decrease in anthocyanin accumulation. Severity in anthocyanin suppression observed in petals could be associated with the expression level of the VvMYB4-like transgene. Expression analysis of flavonoid structural genes revealed the strong down-regulation of the flavonoid-related genes anthocyanidin synthase (ANS) and dihydroflavonol reductase (DFR) genes and also the reduction of the anthocyanin-related gene UDP glucose:flavonoid 3-O-glucosyl transferase (UFGT), which was dependent of the transgene expression. In addition, expression of VvMYB4-like in the model plant Arabidopsis showed similar results, with the higher down-regulation observed in the AtDFR and AtLDOX genes. These results suggest that VvMYB4-like may play an important role in regulation of anthocyanin biosynthesis in grapevine acting as a transcriptional repressor of flavonoid structural genes. PMID:26497001

  3. Novel drought-inducible genes in the highly drought-tolerant cowpea: cloning of cDNAs and analysis of the expression of the corresponding genes.

    PubMed

    Iuchi, S; Yamaguchi-Shinozaki, K; Urao, T; Terao, T; Shinozaki, K

    1996-12-01

    Ten cDNAs of genes that were induced by dehydration stress were cloned by differential screening from the highly drought-tolerant legume, cowpea (Vigna unguiculata), a major crop in West Africa. The clones were collectively named CPRD (cowpea clones responsive to dehydration). Northern blot analysis revealed that nine of the CPRD genes were induced by dehydration stress, but the timing of induction of mRNA synthesis varied among the CPRD genes. We analyzed the effects of other environmental stresses on the expression of the CPRD8, CPRD14 and CPRD22 genes, and we found that these genes were strongly induced by high-salinity stress but not by cold or heat stress. Drought-stressed cowpea plants accumulated abscisic acid (ABA) to a level that was 160 times higher than that in unstressed plants. The CPRD8 and CPRD22 genes were induced to a significant extent by the application of exogenous ABA but the CPRD14 gene was not. These results indicate the existence of at least two signal-transduction pathways between the detection of water stress and the expression of CPRD genes in cowpea. Sequence analysis of CPRD8 and CPRD22 cDNAs revealed that they encoded putative proteins that were related to old yellow enzyme and group 2 LEA proteins, respectively. The protein encoded by CPRD14 exhibited sequence homology to dihydroflavonol-4-reductase (DFR) and vestitone reductase (VR). Old yellow enzyme, DFR and VR have not been identified as drought-inducible proteins in other plants, whereas LEA genes have been well characterized as drought-inducible genes. The various gene products might function to protect cells from environmental stress. PMID:9032963

  4. Site-selected insertional mutagenesis of tomato with maize Ac and Ds elements.

    PubMed

    Cooley, M B; Goldsbrough, A P; Still, D W; Yoder, J I

    1996-08-27

    Site-selected insertion (SSI) is a PCR-based technique which uses primers located within the transposon and a target gene for detection of transposon insertions into cloned genes. We screened tomato plants bearing single or multiple copies of maize Ac or Ds transposable elements for somatic insertions at one close-range target and two long-range targets. Eight close-range Ds insertions near the right border of the T-DNA were recovered. Sequence analysis showed a precise junction between the transposon and the target for all insertions. Two insertions in separate plants occurred at the same site, but others appeared dispersed in the region of the right T-DNA border with no target specificity. However, insertions showed a preference for one orientation of the transposon. Use of plants with multiple Ac (HiAc) or Ds (HiDs) elements allowed detection of somatic insertions at two single-copy genes, PG (polygalacturonase) and DFR (dihydroflavonol 4-reductase). Certain HiDs plants showed much higher rates of insertion into PG than others. Insertions in PG and DFR were found throughout the gene regions monitored and, with the exception of one insertion in PG, the junctions between transposon and target were exact. SSI analysis of progeny from the HiDs parents revealed that in some cases the tendency to incur high levels of somatic insertions in PG was inherited. Inheritance of this character is an indication that SSI could be used to direct a search for germinal PG insertions in tomato. PMID:8804392

  5. Identification and Molecular Analysis of Four New Alleles at the W1 Locus Associated with Flower Color in Soybean

    PubMed Central

    Sundaramoorthy, Jagadeesh; Park, Gyu Tae; Chang, Jeong Ho; Lee, Jeong-Dong; Kim, Jeong Hoe; Seo, Hak Soo; Chung, Gyuhwa; Song, Jong Tae

    2016-01-01

    In soybean, flavonoid 3′5′-hydroxylase (F3′5′H) and dihydroflavonol-4-reductase (DFR) play a crucial role in the production of anthocyanin pigments. Loss-of-function of the W1 locus, which encodes the former, or W3 and W4, which encode the latter, always produces white flowers. In this study, we searched for new genetic components responsible for the production of white flowers in soybean and isolated four white-flowered mutant lines, i.e., two Glycine soja accessions (CW12700 and CW13381) and two EMS-induced mutants of Glycine max (PE1837 and PE636). F3′5′H expression in CW12700, PE1837, and PE636 was normal, whereas that in CW13381 was aberrant and missing the third exon. Sequence analysis of F3′5′H of CW13381 revealed the presence of an indel (~90-bp AT-repeat) in the second intron. In addition, the F3′5′H of CW12700, PE1837, and PE636 harbored unique single-nucleotide substitutions. The single nucleotide polymorphisms resulted in substitutions of amino acid residues located in or near the SRS4 domain of F3′5′H, which is essential for substrate recognition. 3D structure modeling of F3′5′H indicated that the substitutions could interfere with an interaction between the substrate and heme group and compromise the conformation of the active site of F3′5′H. Recombination analysis revealed a tight correlation between all of the mutant alleles at the W1 locus and white flower color. On the basis of the characterization of the new mutant alleles, we discussed the biological implications of F3′5′H and DFR in the determination of flower colors in soybean. PMID:27442124

  6. High-Throughput Sequencing and De Novo Assembly of Red and Green Forms of the Perilla frutescens var. crispa Transcriptome

    PubMed Central

    Fukushima, Atsushi; Nakamura, Michimi; Suzuki, Hideyuki; Saito, Kazuki; Yamazaki, Mami

    2015-01-01

    Perilla frutescens var. crispa (Labiatae) has two chemo-varietal forms, i.e. red and green forms of perilla, that differ in the production of anthocyanins. To facilitate molecular biological and biochemical studies in perilla-specialized metabolism we used Illumina RNA-sequencing technology in our comprehensive comparison of the transcriptome map of the leaves of red and green forms of perilla. Sequencing generated over 1.2 billion short reads with an average length of 101 nt. De novo transcriptome assembly yielded 47,788 and 47,840 unigenes in the red and green forms of perilla plants, respectively. Comparison of the assembled unigenes and existing perilla cDNA sequences showed highly reliable alignment. All unigenes were annotated with gene ontology (GO) and Enzyme Commission numbers and entered into the Kyoto Encyclopedia of Genes and Genomes. We identified 68 differentially expressed genes (DEGs) in red and green forms of perilla. GO enrichment analysis of the DEGs showed that genes involved in the anthocyanin metabolic process were enriched. Differential expression analysis revealed that the transcript level of anthocyanin biosynthetic unigenes encoding flavonoid 3’-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase was significantly higher in red perilla, while the transcript level of unigenes encoding limonene synthase was significantly higher in green perilla. Our data serve as a basis for future research on perilla bio-engineering and provide a shortcut for the characterization of new functional genes in P. frutescens. PMID:26070213

  7. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth

    PubMed Central

    Lou, Qian; Liu, Yali; Qi, Yinyan; Jiao, Shuzhen; Tian, Feifei; Jiang, Ling; Wang, Yuejin

    2014-01-01

    Grape hyacinth (Muscari) is an important ornamental bulbous plant with an extraordinary blue colour. Muscari armeniacum, whose flowers can be naturally white, provides an opportunity to unravel the complex metabolic networks underlying certain biochemical traits, especially colour. A blue flower cDNA library of M. armeniacum and a white flower library of M. armeniacum f. album were used for transcriptome sequencing. A total of 89 926 uni-transcripts were isolated, 143 of which could be identified as putative homologues of colour-related genes in other species. Based on a comprehensive analysis relating colour compounds to gene expression profiles, the mechanism of colour biosynthesis was studied in M. armeniacum. Furthermore, a new hypothesis explaining the lack of colour phenotype of the grape hyacinth flower is proposed. Alteration of the substrate competition between flavonol synthase (FLS) and dihydroflavonol 4-reductase (DFR) may lead to elimination of blue pigmentation while the multishunt from the limited flux in the cyanidin (Cy) synthesis pathway seems to be the most likely reason for the colour change in the white flowers of M. armeniacum. Moreover, mass sequence data obtained by the deep sequencing of M. armeniacum and its white variant provided a platform for future function and molecular biological research on M. armeniacum. PMID:24790110

  8. The use of relative quantitative RT-PCR for expression analysis in azalea flower color sports.

    PubMed

    De Keyser, E; De Riek, J; Van Bockstaele, E

    2003-01-01

    The fastest way to create new azalea (Rhododendron simsii hybrids) cultivars is by making use of flower colour sports, which appear spontaneously on azalea plants. Unfortunately, there is still very little known on how bud sport induction occurs. Therefore, genes coding for two key enzymes of the azalea flavonoid biosynthesis pathway, chalcon synthase (chs) and dihydroflavonol 4-reductase (dfr) that were reported before to be apt for modification by the action of bud sporting, were isolated and characterized. The expression of these two flower colour genes in the petals of azalea flowers will be compared between all 'Hellmut Vogel' flower colour sports. To measure the expression levels of both genes, relative quantitative RT-PCR analysis will be worked out on a real-time PCR machine. The expression of housekeeping genes, which is expected to be the same for all sports, will be used to calculate the relative expression level of the two genes of interest. The optimisation of this technique will be discussed. PMID:24757769

  9. [Effect of bagging with different colors on the fruit coloration of 'yunhongli No.2' pear].

    PubMed

    Ma, Ce; Xiao, Chang-Cheng; Hu, Hong-Ju; Huang, Xiao-San; Zhang, Shao-Ling; Wu, Jun

    2014-03-01

    The present study was conducted to reveal the effect of bags with different colors on the fruit coloration of 'Yunhongli No. 2'. The differences in fruit skin color, chlorophyll, flavonoids, total phenol, anthocyanin contents and the activities of related enzymes involved in anthocyanin synthesis among different bagging treatments were evaluated. The results showed that dark treatment at the fruit development stage was beneficial to skin coloration after bag removing. After removing bags, the anthocyanin content in the treatment of natural light was highest and the red coloration of the fruit skin were best, followed by the treatment of white bags. The different bagging treatments significantly affected the contents of chlorophyll, flavonoids, total phenol, anthocyanin in the fruit skin, thereby affected the skin coloration. The activities of related enzymes for anthocyanin synthesis showed significant differences among the different bagging treatments. The correlation analysis suggested that the anthocyanin content was significantly positively related with the activities of dihydroflavonol 4-reductase (DFR) and UDP-glucose flavonoid-3-O-glucosyltransf-erase (UFGT), however, it had no significant correlation with the activity of phenylalanin ammo-nialyase (PAL). PMID:24984501

  10. Growth inhibition in Chinese cabbage (Brassica rapa var. chinensis) growth exposed to di-n-butyl phthalate.

    PubMed

    Liao, Chien-Sen; Yen, Jui-Hung; Wang, Yei-Shung

    2009-04-30

    The toxicity and effects of di-n-butyl phthalate (DBP), an endocrine disruptor, on the growth of Chinese cabbage (Brassica rapa var. chinensis) were studied. Etiolation occurred on leaves of Chinese cabbage plant treated with 50mg/L of DBP for 42 d. DBP even below 1mg/L had a significant effect on the concentration of chlorophyll in Chinese cabbage and the biomass showed a severe decrease under treatment with more than 30 mg/L of DBP. At a concentration below 1mg/L of DBP, no significant difference in accumulation was found, but treatments with concentration exceeding 10, 30, 50 and 100mg/L all resulted in significant accumulation of DBP. Six protein spots extracted from leaf tissue of DBP-treated Chinese cabbage displaying a differential expression are shown in 2-DE maps. According to proteome level studies, three protein spots were found to increase and were identified, respectively, as acyl-[acyl-carrier-protein] desaturase (acyl-ACP desaturase), root phototropism protein 3 (RPT3) and ferredoxin-nitrite reductase (Fd-NiR). The other three protein spots were found to decrease and were identified respectively as dihydroflavonol-4-reductase (DFR), aminoacyl-tRNA synthetase (aaRS) and ATP synthase subunit beta. The key finding is that the other closely related plant, Bok choy (Brassica rapa subsp. chinensis), the subspecies of Chinese cabbage, respond differently to the same chemicals. PMID:18678443

  11. Characterization of two tartary buckwheat R2R3-MYB transcription factors and their regulation of proanthocyanidin biosynthesis.

    PubMed

    Bai, Yue-Chen; Li, Cheng-Lei; Zhang, Jin-Wen; Li, Shuang-Jiang; Luo, Xiao-Peng; Yao, Hui-Peng; Chen, Hui; Zhao, Hai-Xia; Park, Sang-Un; Wu, Qi

    2014-11-01

    Tartary buckwheat (Fagopyrum tataricum Gaertn.) contains high concentrations of flavonoids. The flavonoids are mainly represented by rutin, anthocyanins and proanthocyanins in tartary buckwheat. R2R3-type MYB transcription factors (TFs) play key roles in the transcriptional regulation of the flavonoid biosynthetic pathway. In this study, two TF genes, FtMYB1 and FtMYB2, were isolated from F. tataricum and characterized. The results of bioinformatic analysis indicated that the putative FtMYB1 and FtMYB2 proteins belonged to the R2R3-MYB family and displayed a high degree of similarity with TaMYB14 and AtMYB123/TT2. In vitro and in vivo evidence both showed the two proteins were located in the nucleus and exhibited transcriptional activation activities. During florescence, both FtMYB1 and FtMYB2 were more highly expressed in the flowers than any other organ. The overexpression of FtMYB1 and FtMYB2 significantly enhanced the accumulation of proanthocyanidins (PAs) and showed a strong effect on the target genes' expression in Nicotiana tabacum. The expression of dihydroflavonol-4-reductase (DFR) was upregulated to 5.6-fold higher than that of control, and the expression level was lower for flavonol synthase (FLS). To our knowledge, this is the first functional characterization of two MYB TFs from F. tataricum that control the PA pathway. PMID:24730512

  12. Flower colour and cytochromes P450†

    PubMed Central

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-01-01

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role in the determination of flower colour. F3′H and F3′5′H mostly belong to CYP75B and CYP75A, respectively, except for the F3′5′Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3′5′H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3′5′H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3′5′H and F3′H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones. PMID:23297355

  13. Three R2R3-MYB transcription factors regulate distinct floral pigmentation patterning in Phalaenopsis spp.

    PubMed

    Hsu, Chia-Chi; Chen, You-Yi; Tsai, Wen-Chieh; Chen, Wen-Huei; Chen, Hong-Hwa

    2015-05-01

    Orchidaceae are well known for their fascinating floral morphologic features, specialized pollination, and distinctive ecological strategies. With their long-lasting flowers of various colors and pigmentation patterning, Phalaenopsis spp. have become important ornamental plants worldwide. In this study, we identified three R2R3-MYB transcription factors PeMYB2, PeMYB11, and PeMYB12. Their expression profiles were concomitant with red color formation in Phalaenopsis spp. flowers. Transient assay of overexpression of three PeMYBs verified that PeMYB2 resulted in anthocyanin accumulation, and these PeMYBs could activate the expression of three downstream structural genes Phalaenopsis spp. Flavanone 3-hydroxylase5, Phalaenopsis spp. Dihydroflavonol 4-reductase1, and Phalaenopsis spp. Anthocyanidin synthase3. In addition, these three PeMYBs participated in the distinct pigmentation patterning in a single flower, which was revealed by virus-induced gene silencing. In the sepals/petals, silencing of PeMYB2, PeMYB11, and PeMYB12 resulted in the loss of the full-red pigmentation, red spots, and venation patterns, respectively. Moreover, different pigmentation patterning was regulated by PeMYBs in the sepals/petals and lip. PeMYB11 was responsive to the red spots in the callus of the lip, and PeMYB12 participated in the full pigmentation in the central lobe of the lip. The differential pigmentation patterning was validated by RNA in situ hybridization. Additional assessment was performed in six Phalaenopsis spp. cultivars with different color patterns. The combined expression of these three PeMYBs in different ratios leads to a wealth of complicated floral pigmentation patterning in Phalaenopsis spp. PMID:25739699

  14. Expression of Genes Involved in Anthocyanin Biosynthesis in Relation to Anthocyanin, Proanthocyanidin, and Flavonol Levels during Bilberry Fruit Development1

    PubMed Central

    Jaakola, Laura; Määttä, Kaisu; Pirttilä, Anna Maria; Törrönen, Riitta; Kärenlampi, Sirpa; Hohtola, Anja

    2002-01-01

    The production of anthocyanins in fruit tissues is highly controlled at the developmental level. We have studied the expression of flavonoid biosynthesis genes during the development of bilberry (Vaccinium myrtillus) fruit in relation to the accumulation of anthocyanins, proanthocyanidins, and flavonols in wild berries and in color mutants of bilberry. The cDNA fragments of five genes from the flavonoid pathway, phenylalanine ammonia-lyase, chalcone synthase, flavanone 3-hydroxylase, dihydroflavonol 4-reductase, and anthocyanidin synthase, were isolated from bilberry using the polymerase chain reaction technique, sequenced, and labeled with a digoxigenin-dUTP label. These homologous probes were used for determining the expression of the flavonoid pathway genes in bilberries. The contents of anthocyanins, proanthocyanidins, and flavonols in ripening bilberries were analyzed with high-performance liquid chromatography-diode array detector and were identified using a mass spectrometry interface. Our results demonstrate a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of berries. At the early stages of berry development, procyanidins and quercetin were the major flavonoids, but the levels decreased dramatically during the progress of ripening. During the later stages of ripening, the content of anthocyanins increased strongly and they were the major flavonoids in the ripe berry. The expression of flavonoid pathway genes in the color mutants of bilberry was reduced. A connection between flavonol and anthocyanin synthesis in bilberry was detected in this study and also in previous data collected from flavonol and anthocyanin analyses from other fruits. In accordance with this, models for the connection between flavonol and anthocyanin syntheses in fruit tissues are presented. PMID:12376640

  15. Three R2R3-MYB Transcription Factors Regulate Distinct Floral Pigmentation Patterning in Phalaenopsis spp.1[OPEN

    PubMed Central

    Hsu, Chia-Chi; Chen, You-Yi; Tsai, Wen-Chieh; Chen, Wen-Huei; Chen, Hong-Hwa

    2015-01-01

    Orchidaceae are well known for their fascinating floral morphologic features, specialized pollination, and distinctive ecological strategies. With their long-lasting flowers of various colors and pigmentation patterning, Phalaenopsis spp. have become important ornamental plants worldwide. In this study, we identified three R2R3-MYB transcription factors PeMYB2, PeMYB11, and PeMYB12. Their expression profiles were concomitant with red color formation in Phalaenopsis spp. flowers. Transient assay of overexpression of three PeMYBs verified that PeMYB2 resulted in anthocyanin accumulation, and these PeMYBs could activate the expression of three downstream structural genes Phalaenopsis spp. Flavanone 3-hydroxylase5, Phalaenopsis spp. Dihydroflavonol 4-reductase1, and Phalaenopsis spp. Anthocyanidin synthase3. In addition, these three PeMYBs participated in the distinct pigmentation patterning in a single flower, which was revealed by virus-induced gene silencing. In the sepals/petals, silencing of PeMYB2, PeMYB11, and PeMYB12 resulted in the loss of the full-red pigmentation, red spots, and venation patterns, respectively. Moreover, different pigmentation patterning was regulated by PeMYBs in the sepals/petals and lip. PeMYB11 was responsive to the red spots in the callus of the lip, and PeMYB12 participated in the full pigmentation in the central lobe of the lip. The differential pigmentation patterning was validated by RNA in situ hybridization. Additional assessment was performed in six Phalaenopsis spp. cultivars with different color patterns. The combined expression of these three PeMYBs in different ratios leads to a wealth of complicated floral pigmentation patterning in Phalaenopsis spp. PMID:25739699

  16. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco

    PubMed Central

    Bharti, Poonam; Mahajan, Monika; Vishwakarma, Ajay K.; Bhardwaj, Jyoti; Yadav, Sudesh Kumar

    2015-01-01

    In plants, epigenetic changes have been identified as regulators of developmental events during normal growth as well as environmental stress exposures. Flavonoid biosynthetic and antioxidant pathways play a significant role in plant defence during their exposure to environmental cues. The aim of this study was to unravel whether genes encoding enzymes of flavonoid biosynthetic and antioxidant pathways are under epigenetic regulation, particularly DNA methylation, during salt stress. For this, a repressor of silencing from Arabidopsis, AtROS1, was overexpressed in transgenic tobacco. Generated transgenics were evaluated to examine the influence of AtROS1 on methylation status of promoters as well as on coding regions of genes encoding enzymes of flavonoids biosynthesis and antioxidant pathways. Overexpression of AtROS1 increases the demethylation levels of both promoters as well as coding regions of genes encoding chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, dihydroflavonol 4-reductase, and anthocyanidin synthase of the flavonoid biosynthetic pathway, and glutathione S-transferase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase of the antioxidant pathway during control conditions. The level of demethylation was further increased at promoters as well as coding regions of these genes during salt-stress conditions. Transgenic tobacco overexpressing AtROS1 showed tolerance to salt stress that could have been due to the higher expression levels of the genes encoding enzymes of the flavonoid biosynthetic and antioxidant pathways. This is the first comprehensive study documenting the epigenetic regulation of flavonoid biosynthetic and antioxidant pathways during salt-stress exposure of plants. PMID:26116024

  17. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco.

    PubMed

    Bharti, Poonam; Mahajan, Monika; Vishwakarma, Ajay K; Bhardwaj, Jyoti; Yadav, Sudesh Kumar

    2015-09-01

    In plants, epigenetic changes have been identified as regulators of developmental events during normal growth as well as environmental stress exposures. Flavonoid biosynthetic and antioxidant pathways play a significant role in plant defence during their exposure to environmental cues. The aim of this study was to unravel whether genes encoding enzymes of flavonoid biosynthetic and antioxidant pathways are under epigenetic regulation, particularly DNA methylation, during salt stress. For this, a repressor of silencing from Arabidopsis, AtROS1, was overexpressed in transgenic tobacco. Generated transgenics were evaluated to examine the influence of AtROS1 on methylation status of promoters as well as on coding regions of genes encoding enzymes of flavonoids biosynthesis and antioxidant pathways. Overexpression of AtROS1 increases the demethylation levels of both promoters as well as coding regions of genes encoding chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonol synthase, dihydroflavonol 4-reductase, and anthocyanidin synthase of the flavonoid biosynthetic pathway, and glutathione S-transferase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase of the antioxidant pathway during control conditions. The level of demethylation was further increased at promoters as well as coding regions of these genes during salt-stress conditions. Transgenic tobacco overexpressing AtROS1 showed tolerance to salt stress that could have been due to the higher expression levels of the genes encoding enzymes of the flavonoid biosynthetic and antioxidant pathways. This is the first comprehensive study documenting the epigenetic regulation of flavonoid biosynthetic and antioxidant pathways during salt-stress exposure of plants. PMID:26116024

  18. Geobacter bremensis sp. nov. and Geobacter pelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria.

    PubMed

    Straub, K L; Buchholz-Cleven, B E

    2001-09-01

    Two strictly anaerobic, dissimilatory ferric-iron-reducing bacteria, strains Dfr1T and Dfr2T, were isolated from freshwater mud samples with ferrihydrite as electron acceptor. Both strains also grew by reducing Mn(IV), S0 and fumarate. Electron donors used by strains Dfr1T and Dfr2T for growth with ferric iron as electron acceptor included hydrogen, formate, acetate, pyruvate, succinate, fumarate and ethanol. An affiliation with the family Geobacteraceae was revealed by comparative analysis of 165 rRNA gene sequences. Strains Dfr1T and Dfr2T shared 92.5% sequence identity and their closest known relative was Geobacter sulfurreducens, with approximately 93% sequence identity. Cultures and colonies of strains Dfr1T and Dfr2T were intensely red in colour, due to the presence of c-type cytochromes. On the basis of physiological and phylogenetic data, strain Dfr1T (= DSM 12179T = OCM 796T) is described as Geobacter bremensis sp. nov. and strain Dfr2T (= DSM 12255T = OCM 797T) as Geobacter pelophilus sp. nov. PMID:11594612

  19. Relating genes in the biosynthesis of the polyphenol composition of Andean colored potato collection

    PubMed Central

    Tejeda, Leslie; Alvarado, Juan Antonio; Dębiec, Magdalena; Peñarrieta, José Mauricio; Cárdenas, Oscar; Alvarez, Maria Teresa; Chawade, Aakash; Nilsson, Lars; Bergenståhl, Björn

    2014-01-01

    The objective of this study was to evaluate total antioxidant capacity (TAC), total phenolic content (TPH), and the identification of anthocyanidin and polyphenolic compounds in 13 colored potatoes collected from the Andean region of Bolivia, and understand how the chemical composition correlated with the botanical classification and molecular characterization of genes, ans (anthocyanidin synthase) and stan1 (Solanum tuberosum anthocyanidin synthase), associated with the synthesis of anthocyanidins. The results show the existence of a limited correlation between botanical classification, based on morphological identification and polyphenol composition. No association between genetic grouping of the ans and stan genes and botanical classification was found. However, it was possible to identify a correlation between the ans gene clades and the levels of anthocyanidins as well as of other polyphenols. Thus, this result confirms the concept that potato color can be used in the search for high polyphenol potato cultivars. PMID:24804064

  20. A New Surgical Procedure "Dumbbell-Form Resection" for Selected Hilar Cholangiocarcinomas With Severe Jaundice: Comparison With Hemihepatectomy.

    PubMed

    Wang, Shuguang; Tian, Feng; Zhao, Xin; Li, Dajiang; He, Yu; Li, Zhihua; Chen, Jian

    2016-01-01

    The aim of the study is to evaluate the therapeutic effect of a new surgical procedure, dumbbell-form resection (DFR), for hilar cholangiocarcinoma (HCCA) with severe jaundice. In DFR, liver segments I, IVb, and partial V above the right hepatic pedicle are resected.Hemihepatectomy is recognized as the preferred procedure; however, its application is limited in HCCAs with severe jaundice.Thirty-eight HCCA patients with severe jaundice receiving DFR and 70 receiving hemihepatectomy from January 2008 to January 2013 were included. Perioperative parameters, operation-related morbidity and mortality, and post-operative survival were analyzed.A total of 21.1% patients (8/38) in the DFR group received percutaneous transhepatic biliary drainage (PTBD), which was significantly <81.4% (57/70) in the hemihepatectomy group. The TBIL was higher in the DFR group at operation (243.7 vs 125.6 μmol/L, respectively). The remnant liver volume was significantly higher after DFR. The operation-related morbidity was significantly lower after DFR than after hemihepatectomy (26.3% vs 48.6%, respectively). None of the patients died during the perioperative period after DFR, whereas 3 died after hemihepatectomy. There was no difference in margin status, histological grade, lymph-node involvement, and distant metastasis between the 2 groups. The 1-, 3-, and 5-year survival rates after DFR (68.4%, 32.1%, and 21.4%, respectively) showed no significant difference with those after hemihepatectomy (62.7%, 34.6%, and 23.3%, respectively). Kaplan-Meier analysis indicated that overall survival and recurrence after DFR demonstrated no significant difference compared with hemihepatectomy.DFR appears to be feasible for selected HCCA patients with severe jaundice. However, its indications should be restricted. PMID:26765439

  1. A New Surgical Procedure “Dumbbell-Form Resection” for Selected Hilar Cholangiocarcinomas With Severe Jaundice

    PubMed Central

    Wang, Shuguang; Tian, Feng; Zhao, Xin; Li, Dajiang; He, Yu; Li, Zhihua; Chen, Jian

    2016-01-01

    Abstract The aim of the study is to evaluate the therapeutic effect of a new surgical procedure, dumbbell-form resection (DFR), for hilar cholangiocarcinoma (HCCA) with severe jaundice. In DFR, liver segments I, IVb, and partial V above the right hepatic pedicle are resected. Hemihepatectomy is recognized as the preferred procedure; however, its application is limited in HCCAs with severe jaundice. Thirty-eight HCCA patients with severe jaundice receiving DFR and 70 receiving hemihepatectomy from January 2008 to January 2013 were included. Perioperative parameters, operation-related morbidity and mortality, and post-operative survival were analyzed. A total of 21.1% patients (8/38) in the DFR group received percutaneous transhepatic biliary drainage (PTBD), which was significantly <81.4% (57/70) in the hemihepatectomy group. The TBIL was higher in the DFR group at operation (243.7 vs 125.6 μmol/L, respectively). The remnant liver volume was significantly higher after DFR. The operation-related morbidity was significantly lower after DFR than after hemihepatectomy (26.3% vs 48.6%, respectively). None of the patients died during the perioperative period after DFR, whereas 3 died after hemihepatectomy. There was no difference in margin status, histological grade, lymph-node involvement, and distant metastasis between the 2 groups. The 1-, 3-, and 5-year survival rates after DFR (68.4%, 32.1%, and 21.4%, respectively) showed no significant difference with those after hemihepatectomy (62.7%, 34.6%, and 23.3%, respectively). Kaplan–Meier analysis indicated that overall survival and recurrence after DFR demonstrated no significant difference compared with hemihepatectomy. DFR appears to be feasible for selected HCCA patients with severe jaundice. However, its indications should be restricted. PMID:26765439

  2. 75 FR 27188 - Revising the Notification Requirements in the Exposure Determination Provisions of the Hexavalent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Notification Requirements in the Exposure Determination Provisions of the Hexavalent Chromium Standards AGENCY... March 17, 2010, OSHA published a DFR in the Federal Register (75 FR 12681) amending the employee... direct final rulemaking. OSHA noted as much in the DFR notice. (See 75 FR at 12683 (`` he number of...

  3. 77 FR 35878 - Establishment of User Fees for Filovirus Testing of Nonhuman Primate Liver Samples

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... (NPRM) (77 FR 7109) that proposed identical filovirus testing and user fee requirements. In both the DFR... HHS/CDC published a Direct Final Rule (DFR) (77 FR 6971) amending 42 CFR 71.53 by adding a new... February 10, 2012, HHS/CDC also published a companion Notice of Proposed Rulemaking (NPRM) (77 FR...

  4. 78 FR 53285 - Seagoing Barges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    .... Abbreviations CFR Code of Federal Regulations DFR Direct final rule E.O. Executive Order FR Federal Register... rule (DFR) entitled ``Seagoing Barges'' (76 FR 77712). Following the receipt of an adverse comment on... (77 FR 20727). On January 9, 2013, we published a notice of proposed rulemaking (NPRM)...

  5. Effect of hydrothermal processing on antioxidant contents and capacities in pigmented rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purple and red bran rice cultivars (Oryza sativa L.) are rich sources of antioxidants including lipophilic antioxidants (vitamin E homologues and '-oryzanol), soluble phenolics (including anthocyanidins and proanthocyanidins), and cell-wall-bound phenolics. This study investigated impacts of hydroth...

  6. Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides).

    PubMed

    Peters, Darren J; Constabel, C Peter

    2002-12-01

    In order to study condensed tannin synthesis and its induction by herbivory, a dihydroflavonol reductase (DFR) cDNA was isolated from trembling aspen (Populus tremuloides). Bacterial overexpression demonstrated that this cDNA encodes a functional DFR enzyme, and Southern analysis revealed that DFR likely is a single-copy gene in the aspen genome. Aspen plants that were mechanically wounded showed a dramatic increase in DFR expression after 24 h in both wounded leaves and unwounded leaves on wounded trees. Feeding by forest tent caterpillar (Malacosoma disstria) and satin moth (Leucoma salicis) larvae, and treatment with methyl jasmonate, all strongly induced DFR expression. DFR enzyme activity was also induced in wounded aspen leaves, and phytochemical assays revealed that condensed tannin concentrations significantly increased in wounded and systemic leaves. The expression of other genes involved in the phenylpropanoid pathway were also induced by wounding. Our findings suggest that the induction of condensed tannins, compounds known to be important for defense against herbivores, is mediated by increased expression of DFR and other phenylpropanoid genes. PMID:12472686

  7. Antimicrobial resistance in commensal Escherichia coli from pigs during metaphylactic trimethoprim and sulfamethoxazole treatment and in the post-exposure period.

    PubMed

    Mazurek, Justyna; Bok, Ewa; Stosik, Michał; Baldy-Chudzik, Katarzyna

    2015-02-01

    The prevalence of trimethoprim (TMP) and sulfamethoxazole (SMX) resistance in commensal E. coli from pigs was tested in this study. E. coli was derived from three groups of piglets in successive stages of metaphylactic therapy and from two groups of sows 10 and 18 weeks after the treatment. MIC values of TMP and SMX were determined for a total of 352 strains. The presence of resistance genes (dfrA1, dfrA5, dfrA7, dfrA12, dfrA17, sul1, sul2, sul3) and class 1 and 2 integron-associated dfrA gene cassettes was tested. Resistance to TMP was very high during the administration of the antimicrobial (from 97 to 100%) and amounted to 86% and 69% in the post-exposure period; MIC > 32 mg/L. The isolates from all groups of pigs were resistant to sulfamethoxazole, with MIC > 1028 mg/L. The dfrA1 and sul1 genes (as part of integrons) dominated in E. coli from piglets, but the dfrA12 and sul1 genes were prevalent in E. coli from sows. Coexistence of the different dfrA genes was detected in 71 isolates from all groups of swine. Transcription analysis revealed that most of these genes were not transcribed, particularly gene cassettes of class 1 integrons. The research revealed a high level of resistance associated with the metaphylactic treatment, persistence and circulation of resistance in bacterial populations. Diverse genetic background with multiple and not transcribed resistance genes was observed. PMID:25689993

  8. Dual-Wavelength Bad Cavity Laser as Potential Active Optical Frequency Standard

    NASA Astrophysics Data System (ADS)

    Xu, Zhi-Chao; Pan, Duo; Zhuang, Wei; Chen, Jing-Biao

    2015-09-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 10874009, 11074011 and 91436210, and the International Science and Technology Cooperation Program of China under Grant No 2010DFR10900.

  9. Experimental Scheme of 633 nm and 1359 nm Good-Bad Cavity Dual-Wavelength Active Optical Frequency Standard

    NASA Astrophysics Data System (ADS)

    Xu, Zhi-Chao; Pan, Duo; Zhuang, Wei; Chen, Jing-Biao

    2015-08-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 10874009, 11074011 and 91436210, and the International Science & Technology Cooperation Program of China under Grant No 2010DFR10900.

  10. 78 FR 47319 - Fee Schedule for Reference Biological Standards and Biological Preparations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Rule (DFR) titled ``Distribution of Reference Biological Standards and Biological Preparations (78 FR... HUMAN SERVICES Centers for Disease Control and Prevention Fee Schedule for Reference Biological Standards and Biological Preparations AGENCY: Centers for Disease Control and Prevention (CDC),...

  11. Molecular mechanism for cadmium-induced anthocyanin accumulation in Azolla imbricata.

    PubMed

    Dai, Ling-Peng; Dong, Xin-Jiao; Ma, Hai-Hu

    2012-04-01

    Anthocyanins inducibly synthesized by Cd treatment showed high antioxidant activity and might be involved in internal detoxification mechanisms of Azolla imbricata against Cd toxicity. In order to understand anthocyanin biosynthesis mechanism during Cd stress, the cDNAs encoding chalcone synthase (CHS) and dihydroflavonol reductase (DFR), two key enzymes in the anthocyanin synthesis pathway, were isolated from A. imbricata. Deduced amino acid sequences of the cDNAs showed high homology to the sequences from other plants. Expression of AiDFR, and to a lesser extent AiCHS, was significantly induced in Cd treatment plant in comparison with the control. CHS and DFR enzymatic activities showed similar pattern changes with these genes expression during Cd stress. These results strongly indicate that Cd induced anthocyanin accumulation is probably mediated by up-regulation of structural genes including CHS and DFR, which might further increase the activities of enzymes encoded by these structural genes that control the anthocyanin biosynthetic steps. PMID:22225708

  12. Determination of Flavonoids and Anthocyanins in Nitraria tangutorum by High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry.

    PubMed

    Zhe, Gao; Ying-Chun, Wang; Yan-Xu, Chang

    2016-01-01

    Using high-performance liquid chromatography coupled with diode array detection and electrospray ionization tandem mass spectrometry (HPLC-DAD-MSn) method, qualitative and quantitative analysis of flavonoids of stems, leaves, fruits and seeds, and anthocyanidin of fresh fruits in Nitraria tangutorum were performed. A total of 14 flavonoid components were identified from the seeds of N. tangutorum including three quercetin derivatives, three kaempferol derivatives, and eight isorhamnetin derivatives. A total of 12, 10, and 7 flavonoid components were identified from leaves, stems, and fruits of N. tangutorum, respectively; all were present in seeds also. The total content of flavonoids in leaves was the highest, up to 42.43 mg/g·dry weight. A total of 12 anthocyanidin components were identified from the fresh fruits of N. tangutorum, belonging to five anthocyanidin. The total content of anthocyanidin in fresh fruits was up to 45.83 mg/100 g· fresh weight, of which the acylated anthocyanidin accounted for 65.7%. The HPLC-DAD-MS(n) method can be operated easily, rapidly, and accurately, and is feasible for qualitative and quantitative analysis of flavone glycosides in N. tangutorum. PMID:26972973

  13. Diverse Gene Cassettes in Class 1 Integrons of Facultative Oligotrophic Bacteria of River Mahananda, West Bengal, India

    PubMed Central

    Chakraborty, Ranadhir; Kumar, Arvind; Bhowal, Suparna Saha; Mandal, Amit Kumar; Tiwary, Bipransh Kumar; Mukherjee, Shriparna

    2013-01-01

    Background In this study a large random collection (n = 2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (2007–2009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. Methodology/Principal Findings Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (χ2) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6′-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families

  14. Richard Willstätter and the 1915 Nobel Prize in chemistry.

    PubMed

    Trauner, Dirk

    2015-10-01

    One hundred years after his Nobel Prize, Richard Willstätter's achievements and the fascinating role he played in 20th century chemistry are discussed in this Essay. Several of his discoveries, such as the anthocyanidins, cyclooctatetraene, the ortho-quinones, and the structure of cocaine, will forever be associated with his name. PMID:26291186

  15. 7-O-methylpelargonidin glycosides from the pale red flowers of Catharanthus roseus.

    PubMed

    Tatsuzawa, Fumi

    2013-08-01

    Two new anthocyanidin glycosides were isolated from the pale red flowers of Catharanthus roseus 'Equator Apricot with Red Eye', and identified as 7-O-methylpelargonidin 3-O-[6-O-(alpha-rhamnopyranosyl)-beta-galactopyranoside] and 7-O-methylpelargonidin 3-O-(beta-galactopyranoside) by chemical and spectroscopic methods. PMID:24079176

  16. Correlation of antioxidants and antioxidant enzymes to oxygen radical scavenging activities in berries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Berry fruits contain high levels of antioxidant compounds. In addition to the usual nutrients such as vitamins and minerals, berry fruits are also rich in flavonols, anthocyanidins, proanthocyanidins, catechins, flavones, and their glycosides. These antioxidants are capable of performing a number of...

  17. Anthocyanin Interactions with DNA: Intercalation, Topoisomerase I Inhibition and Oxidative Reactions

    PubMed Central

    Webb, Michael R.; Min, Kyungmi; Ebeler, Susan E.

    2009-01-01

    Anthocyanins and their aglycone anthocyanidins are pigmented flavonoids found in significant amounts in many commonly consumed foods. They exhibit a complex chemistry in aqueous solution, which makes it difficult to study their chemistry under physiological conditions. Here we used a gel electrophoresis assay employing supercoiled DNA plasmid to examine the ability of these compounds (1) to intercalate DNA, (2) to inhibit human topoisomerase I through both inhibition of plasmid relaxation activity (catalytic inhibition) and stabilization of the cleavable DNA-topoisomerase complex (poisoning), and (3) to inhibit or enhance oxidative single-strand DNA nicking. We found no evidence of DNA intercalation by anthocyan(id)ins in the physiological pH range for any of the compounds used in this study—cyanidin chloride, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, malvidin 3-O-glucoside and luteolinidin chloride. The anthocyanins inhibited topoisomerase relaxation activity only at high concentrations (> 50 μM) and we could find no evidence of topoisomerase I cleavable complex stabilization by these compounds. However, we observed that all of the anthocyan(id)ins used in this study were capable of inducing significant oxidative DNA strand cleavage (nicking) in the presence of 1 mM DTT (dithiothreitol), while the free radical scavenger, DMSO, at concentrations typically used in similar studies, completely inhibited DNA nicking. Finally, we propose a mechanism to explain the anthocyan(id)in induced oxidative DNA cleavage observed under our experimental conditions. PMID:19924259

  18. Anthocyanin Interactions with DNA: Intercalation, Topoisomerase I Inhibition and Oxidative Reactions.

    PubMed

    Webb, Michael R; Min, Kyungmi; Ebeler, Susan E

    2008-09-23

    Anthocyanins and their aglycone anthocyanidins are pigmented flavonoids found in significant amounts in many commonly consumed foods. They exhibit a complex chemistry in aqueous solution, which makes it difficult to study their chemistry under physiological conditions. Here we used a gel electrophoresis assay employing supercoiled DNA plasmid to examine the ability of these compounds (1) to intercalate DNA, (2) to inhibit human topoisomerase I through both inhibition of plasmid relaxation activity (catalytic inhibition) and stabilization of the cleavable DNA-topoisomerase complex (poisoning), and (3) to inhibit or enhance oxidative single-strand DNA nicking. We found no evidence of DNA intercalation by anthocyan(id)ins in the physiological pH range for any of the compounds used in this study-cyanidin chloride, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, malvidin 3-O-glucoside and luteolinidin chloride. The anthocyanins inhibited topoisomerase relaxation activity only at high concentrations (> 50 muM) and we could find no evidence of topoisomerase I cleavable complex stabilization by these compounds. However, we observed that all of the anthocyan(id)ins used in this study were capable of inducing significant oxidative DNA strand cleavage (nicking) in the presence of 1 mM DTT (dithiothreitol), while the free radical scavenger, DMSO, at concentrations typically used in similar studies, completely inhibited DNA nicking. Finally, we propose a mechanism to explain the anthocyan(id)in induced oxidative DNA cleavage observed under our experimental conditions. PMID:19924259

  19. Increase in the Prevalence of Resistance Determinants to Trimethoprim/Sulfamethoxazole in Clinical Stenotrophomonas maltophilia Isolates in China

    PubMed Central

    Kong, Qin-Xiang; Gao, Li-Ping; Chen, Xi; Ye, Ying; Li, Jia-Bin

    2016-01-01

    Aims This study was carried to reveal the genetic mechanisms of trimethoprim/sulfamethoxazole (SXT) resistance. Methods Among 300 clinical Stenotrophomonas maltophilia isolates from China, resistance determinants such as sul and dfrA genes, integrons and transposase were examined using PCR, DNA sequencing and thermal asymmetric interlaced PCR (TAIL-PCR). Data were analyzed using SPSS 20.0. Results Of the 300 isolates, 116 (38.7%) were resistant to SXT. An alarming trend of increased resistance to SXT were found over the 10-year period. The positive rates of sul and class 1 integrase (intI1) increased gradually with the development of SXT resistance over the 10-year period. Multiple logistic regression analyses indicated that the genes of qacEΔ1-sul1 (81% vs 46.2%, p = 0.000), sul2 (50.9% vs 9.8%, p = 0.000), intI1 (83.6% vs 65.8%, p = 0.000), dfrA12 (25% vs 3.3%, p = 0.000), dfrA17 (15.5% vs 3.8%, p = 0.000) and dfrA27 (4.3% vs 1.6%, p = 0.01) were more prevalent in SXT-resistant isolates than SXT-susceptible isolates except dfrA1(p = 0.83) and dfrA5(p = 0.18). Sequencing data revealed 12 types of resistance gene cassettes (aar-3-dfrA27, dfrA12–aadA2, dfrA17–aadA5, cmlA1, aacA4, aadA5, arr-3-aacA4, aadA1, aadB–aadA4, aacA4–catB8–aadA1, aadB–aac(6′)-II–blaCARB-8 and aac(6′)-II–blaCARB-8) located in the class 1 integron in 163 isolates (87% SXT-resistant vs 33.7% SXT-susceptible isolates, p = 0.000). A novel finding was the aar-3-dfrA27 (KC748137) gene cassette. The gene of sul2 linked to transposase in 50 SXT- resistant and 7 SXT- susceptible isolates was detected by TAIL-PCR. Conclusions The findings demonstrated a higher prevalence of sul, dfrA, intI1 and resistance gene cassettes in class 1 integron in SXT-resistant clinical S. maltophilia isolates in China. The sul1 and dfrA genes located in integrons and the sul2 linked to transposase may imply wide and rapid dissemination of resistance gene in bacteria. PMID:27310255

  20. Sequence of pNL194, a 79.3-Kilobase IncN Plasmid Carrying the blaVIM-1 Metallo-β-Lactamase Gene in Klebsiella pneumoniae▿

    PubMed Central

    Miriagou, V.; Papagiannitsis, C. C.; Kotsakis, S. D.; Loli, A.; Tzelepi, E.; Legakis, N. J.; Tzouvelekis, L. S.

    2010-01-01

    The nucleotide sequence of pNL194, a VIM-1-encoding plasmid, is described in this study. pNL194 (79,307 bp) comprised an IncN-characteristic segment (38,940 bp) and a mosaic structure (40,367 bp) including blaVIM-1, aacA7, aadA1, aadA2, dfrA1, dfrA12, aphA1, strA, strB, and sul1. Tn1000 or Tn5501 insertion within fipA probably facilitated recruitment of additional mobile elements carrying resistance genes. PMID:20660690

  1. Sequence of pNL194, a 79.3-kilobase IncN plasmid carrying the blaVIM-1 metallo-beta-lactamase gene in Klebsiella pneumoniae.

    PubMed

    Miriagou, V; Papagiannitsis, C C; Kotsakis, S D; Loli, A; Tzelepi, E; Legakis, N J; Tzouvelekis, L S

    2010-10-01

    The nucleotide sequence of pNL194, a VIM-1-encoding plasmid, is described in this study. pNL194 (79,307 bp) comprised an IncN-characteristic segment (38,940 bp) and a mosaic structure (40,367 bp) including bla(VIM-1), aacA7, aadA1, aadA2, dfrA1, dfrA12, aphA1, strA, strB, and sul1. Tn1000 or Tn5501 insertion within fipA probably facilitated recruitment of additional mobile elements carrying resistance genes. PMID:20660690

  2. Deployable Fresnel Rings

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.

    2014-01-01

    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the

  3. 77 FR 65497 - Gross Combination Weight Rating (GCWR); Definition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... (77 FR 51706) is withdrawn effective October 26, 2012. ] FOR FURTHER INFORMATION CONTACT: Tom Kelly... Federal Register (73 FR 3316). II. Background On August 27, 2012, FMCSA published a DFR to amend the..., 2012 (77 FR 51706). Issued on: October 22, 2012. Larry W. Minor, Associate Administrator, Office...

  4. 76 FR 56339 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... furnaces. 76 FR 37408 (June 27, 2011). However, DOE makes this statement with two caveats: (1) The DFR only... link to the docket web page can be found at: http://www.regulations.gov/#!docketDetail ;dct=FR%252BPR... EISA 2007. 75 FR 64621 (Oct. 20, 2010). For a more detailed procedural history of the test...

  5. Diversity of antimicrobial resistance and virulence genes in methicillin-resistant non-Staphylococcus aureus staphylococci from veal calves.

    PubMed

    Argudín, M Angeles; Vanderhaeghen, Wannes; Butaye, Patrick

    2015-04-01

    In this study we determined whether methicillin-resistant non-Staphylococcus aureus (MRNAS) from veal calves may be a potential reservoir of antimicrobial-resistance and virulence genes. Fifty-eight MRNAS were studied by means of DNA-microarray and PCR for detection of antimicrobial resistance and virulence genes. The isolates carried a variety of antimicrobial-resistance genes [aacA-aphD, aadD, aph3, aadE, sat, spc, ampA, erm(A), erm(B), erm(C), erm(F), erm(T), lnu(A), msr(A)-msr(B), vga(A), mph(C), tet(K), tet(M), tet(L), cat, fexA, dfrA, dfrD, dfrG, dfrK, cfr, fusB, fosB, qacA, qacC, merA-merB]. Some isolates carried resistance genes without showing the corresponding resistance phenotype. Most MRNAS carried typical S. aureus virulence factors like proteases (sspP) and enterotoxins (seg) genes. Most Staphylococcus epidermidis isolates carried the arginine catabolic element, and nearly 40% of the Staphylococcus sciuri isolates carried leukocidins, and/or fibronectin-binding protein genes. MRNAS were highly multi-resistant and represent an important reservoir of antimicrobial resistance and virulence genes. PMID:25637268

  6. 76 FR 9656 - Approval and Promulgation of the Air Quality Implementation Plans; Maryland; Control of Volatile...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... rulemaking (NPR) (75 FR 60013) and a direct final rule (DFR) (75 FR 59973) for the State of Maryland. The NPR... action'' subject to review by the Office of Management and Budget under Executive Order 12866 (58 FR... as specified in Executive Order 13132 (64 FR 43255, August 10, 1999); Is not an...

  7. Characterization of integron-mediated antimicrobial resistance among Escherichia coli strains isolated from a captive population of Amur tigers in China.

    PubMed

    Xue, Yuan; Chen, Jianfei; Wang, Yulong; Zhang, Yanlong; Liu, Dan; Hua, Yuping

    2013-12-01

    The present study was undertaken to identify and characterize integrons and integrated resistance gene cassettes among multidrug resistant Escherichia coli isolates from a captive population of Amur tigers (Panthera tigris altaica) in China. In addition, the prevalence of antimicrobial resistance and class I integrons was assessed in E. coli strains (n = 61) isolated from a captive population of Amur tigers in Heilongjiang Amur Tiger Park, China. Among the isolates, 52.46% (32 of 61) were positive for intI1, but no isolates carried intI2 or intI3. Most isolates were susceptible to amoxicillin/clavulanic acid, aztreonam, and polymyxin B, while they also exhibited high incidence rates of resistance to ampicillin, doxycycline, chloramphenicol, tetracycline, and dihydrofolate reductase. Sequencing analysis revealed three gene cassettes, which encoded resistance to dihydrofolate reductase (dfrA15), dihydrofolate reductase (dfrA12), and adenyltransferase (aadA2). The gene cassette arrays dfrA15 (31%) and dfrA12-aadA2 (19%) were most prevalent among these isolates. PMID:24450054

  8. Diffusion Behavior of Cumulative He Doped in Cu/W Multilayer Nanofilms at Room Temperature

    NASA Astrophysics Data System (ADS)

    Ling, Wang; Wang, Liu; Yue, Li; Yun-Long, Shi; Yuan-Xia, Lao; Xiao-Bo, Lu; Ai-Hong, Deng; Yuan, Wang

    2016-06-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11275132, 51171124 and 11505121, the International Science and Technology Cooperation Program of China under Grant No 2014DFR50710, and the Scientific and Technical Supporting Programs Funded by the Science and Technology Department of Sichuan Province under Grant No 2014GZ0004.

  9. Anthocyanin regulatory/structural gene expression in Phalaenopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partial cDNA fragments of Myb, Myc, Wd, Chs and Dfr genes were generated by Reverse Transcription-PCR using total RNA isolated from flowers of P. amabilis (L.) Blume (anthocyanin-free) and P. schilleriana Rchb. f. (anthocyanin-containing) and cloned into a TOPO vector. RT-PCR revealed that the struc...

  10. 77 FR 13969 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... Association (GGA) acetylene standard (see 76 FR 75782). In the DFR, OSHA deleted reference to CGA G-1-2003 and... final rule published on December 5, 2011 (76 FR 75782), is effective on March 5, 2012. For the purposes....C. 553, Secretary of Labor's Order 1-2012 (77 FR 3912), and 29 CFR part 1911. Signed at...

  11. 76 FR 75840 - Revising Standards Referenced in the Acetylene Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-05

    ... language from outdated standards published by standards developing organizations (``SDO standards'') (69 FR... Association standard, CGA G-1-2003, in the Acetylene Standard. See 74 FR 40442 and 74 FR 40450, respectively. OSHA received no adverse comments on the DFR, and it became effective on November 9, 2009. See 74...

  12. Resistance and integron characterization of Acinetobacter baumannii in a teaching hospital in Chongqing, China

    PubMed Central

    Huang, C.; Long, Q.; Qian, K.; Fu, T.; Zhang, Z.; Liao, P.; Xie, J.

    2015-01-01

    A total of 189 Acinetobacter baumannii isolates were collected in 2011 from a teaching hospital in Chongqing, China. Susceptibility data showed strains carrying integrons were significantly more resistant to all tested antibiotics that strains lacking integrons. Five types of gene cassettes belonging to class I integrons were identified in this study, and for the first time two types of gene cassettes belonging to class II integrons are reported. Most of the cassettes belong to a class I integron (136/144) encoding arr3, aacA4, dfrA17, aadA5, aadB, cat, blaOXA10, aadA1, aadA2, dfrA and aacC1. Isolates contained a class I gene cassette; AadA2-HP-dfrA was the prevalent strain in this hospital. A class II integron was detected in eight strains, which contained the type IV fimbriae expression regulatory gene pilR and sulfate adenylyltransferase, suggesting a possible role in multidrug resistance. The major epidemic strains from intensive care unit patients belong to international clone 2. In conclusion, the presence of integrons was significantly associated with multiple drug resistance of A. baumannii in this hospital, and class I integron isolates bearing AadA2-HP-dfrA were the prevalent strain in this hospital. PMID:26649184

  13. 78 FR 2147 - Seagoing Barges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ... Act notice regarding our public dockets in the January 17, 2008, issue of the Federal Register (73 FR... order FR Federal Register NPRM Notice of proposed rulemaking OCMI Officer in Charge, Marine Inspection... December 14, 2011, the Coast Guard published a direct final rule (DFR) entitled ``Seagoing Barges.'' 76...

  14. 77 FR 42988 - Updating OSHA Construction Standards Based on National Consensus Standards; Head Protection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ... Occupational Safety and Health Administration 29 CFR Part 1926 RIN 1218-AC65 Updating OSHA Construction... DFR on June 22, 2012 (77 FR 37587). OSHA also is publishing a correction to the proposed rule that it published the same day in the Federal Register (77 FR 37617). DATES: This correction to the direct...

  15. Detection and characterization of class 1 integrons in Aeromonas spp. isolated from human diarrheic stool in Mexico.

    PubMed

    Pérez-Valdespino, Abigail; Fernández-Rendón, Elizabeth; Curiel-Quesada, Everardo

    2009-12-01

    We determined the presence of class 1 integrons related to the acquisition of resistance to antimicrobials in Aeromonas spp. isolated from individuals with diarrhea. Species were identified as A. caviae, A. hydrophila, A. veronii and A. media using PCR-RFLP of the 16S rDNA. Selected isolates were further characterized by ERIC-PCR. Resistance to chloramphenicol, aztreonam, tetracycline, trimethoprim/sulfamethoxazole, nalidixic acid and streptomycin, among others, was determined using the Kirby-Bauer method. Integrons were detected by PCR amplification of the 5' conserved, variable, and 3' conserved regions. Sequencing of the variable regions revealed class 1 integrons with cassettes encoding resistance to trimethoprim (dfrA12, dfrA15, dfrB4), streptomycin/spectinomycin (aadA2, aadA1), oxacillin (oxa2) and chloramphenicol (catB3, cmlA4). Others had an open reading frame (orfD) or no insert at all. To our knowledge, this is the first description of the occurrence of genes cmlA4 and dfrA15 in Aeromonas class 1 integrons. Not all the integron-linked cassettes conferred their associated resistances, which suggests the inactivity of some cassettes. Most integrons were chromosomally located. The presence of class 1 integrons similar to those found in a wide variety of bacterial genera from different origins, including environmental and fish-borne Aeromonas, confirms the stability and horizontal transfer of these genetic elements. PMID:19810047

  16. 78 FR 9828 - Establishment of User Fees for Filovirus Testing of Nonhuman Primate Liver Samples

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... Justice Reform (Executive Order 12988) G. Executive Order 13132 (Federalism) H. Plain Language Act of 2010... Federal Register (77 FR 7109) that provided the background, rationale, description of the services and... instructions. On the same date, we published a companion Direct Final Rule (DFR) (77 FR 6981). In both the...

  17. 78 FR 26575 - Gross Combination Weight Rating; Definition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... published in the Federal Register on January 17, 2008 (73 FR 3316), or you may visit http://edocket.access...) published on August 27, 2012 (77 FR 51706). The DFR was initiated in reply to a petition filed by the... definition of GCWR by removing the sentence mentioned above (77 FR 51706). The FMCSA received comments...

  18. Low antibiotic resistance rates and high genetic heterogeneity of Escherichia coli isolates from urinary tract infections of diabetic patients in Tunisia.

    PubMed

    Najwa, Debbichi; Salah, Abbassi Mohamed; Yolanda, Sáenz; Monia, Khemiri; Dorsaf, Majouri; Chiheb, Ben Rayena; Rakia, Ben Salem; Hajer, Kilani; Assia, Ben Hassen; Salah, Hammami

    2016-04-01

    Antimicrobial resistance phenotypes, tetracycline, sulphonamide resistance genes, and integrons were analysed in 48 Escherichia coli isolates recovered from urine cultures of diabetic patients in Tunisia. Twenty-one were susceptible to all antibiotics tested. High rates of resistance were observed for amoxicillin (39.5%), trimethoprim-sulphamethoxazole (33.3%), sulphonamide (33.3%), and tetracycline (31.2%). Resistance to imipenem was not detected, and ESBL producing isolates were not recovered. Our analysis assigned 26, 13, 3, and 5 isolates to phylogroups A, B1, B2, and D, respectively. It is worthy to note that all the resistant isolates belonged to phylogroups A (15 isolates) and B1 (12 isolates), while for the 21 susceptible isolates, phylogroups A, B1, B2, and D were found in 11, 2, 3, and 5 isolates, respectively. Among 15 tetracycline-resistant isolates, the tetA and tetB genes were detected in three and four isolates, respectively. Among 17 sulphonamide resistant isolates, 12, 3, and 1 isolates harboured sul1, sul2, and sul3, respectively. sul1 and sul2 genes occurred simultaneously in three isolates. Integrons were detected in 11 isolates. Ten isolates harboured the class 1 integron and three the class 2 integron. The variable regions (VRs) of the class 1 integrons were analysed in the 10 in1-positive isolates, and the following gene cassette arrangements were detected: dfrA12-orfF-aadA2-cmIA1-aadA1-qacH-IS440-sul3 (one isolate), dfrA15-aadA1 (three isolates), dfrA5 (one isolate), dfrA17- aadA5 (one isolate), dfrA1-aadA1 (one isolate), and dfrA14 (one isolate). The VR of class 2 integron was analysed in the in2-positive isolates, and only one gene cassette arrangement was detected, dfrA1-sat-aadA1. Pulsed-field gel electrophoresis (PFGE) analysis of resistant isolates showed that all were unrelated. Our results highlight the moderate antibiotic resistance in the clinical isolates as well as their heterogeneous genetic background. PMID:25495990

  19. An Escherichia coli Strain, PGB01, Isolated from Feral Pigeon Faeces, Thermally Fit to Survive in Pigeon, Shows High Level Resistance to Trimethoprim

    PubMed Central

    Kachhap, Sangita; Nanda, Ashis Kumar; Chakraborty, Ranadhir

    2015-01-01

    In this study, of the hundred Escherichia coli strains isolated from feral Pigeon faeces, eighty five strains were resistant to one or more antibiotics and fifteen sensitive to all the antibiotics tested. The only strain (among all antibiotic-resistant E. coli isolates) that possessed class 1 integron was PGB01. The dihydrofolate reductase gene of the said integron was cloned, sequenced and expressed in E. coli JM109. Since PGB01 was native to pigeon’s gut, we have compared the growth of PGB01 at two different temperatures, 42°C (normal body temperature of pigeon) and 37°C (optimal growth temperature of E. coli; also the human body temperature), with E. coli K12. It was found that PGB01 grew better than the laboratory strain E. coli K12 at 37°C as well as at 42°C. In the thermal fitness assay, it was observed that the cells of PGB01 were better adapted to 42°C, resembling the average body temperature of pigeon. The strain PGB01 also sustained more microwave mediated thermal stress than E. coli K12 cells. The NMR spectra of the whole cells of PGB01 varied from E. coli K12 in several spectral peaks relating some metabolic adaptation to thermotolerance. On elevating the growth temperature from 37°C to 42°C, susceptibility to kanamycin (both strains were sensitive to it) of E. coli K12 was increased, but in case of PGB01 no change in susceptibility took place. We have also attempted to reveal the basis of trimethoprim resistance phenotype conferred by the dfrA7 gene homologue of PGB01. Molecular Dynamics (MD) simulation study of docked complexes, PGB01-DfrA7 and E. coli TMP-sensitive-Dfr with trimethoprim (TMP) showed loss of some of the hydrogen and hydrophobic interaction between TMP and mutated residues in PGB01-DfrA7-TMP complex compared to TMP-sensitive-Dfr-TMP complex. This loss of interaction entails decrease in affinity of TMP for PGB01-DfrA7 compared to TMP-sensitive-Dfr. PMID:25750990

  20. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England

    PubMed Central

    2010-01-01

    Background Escherichia coli isolates of equine faecal origin were investigated for antibiotic resistance, resistance genes and their ability to perform horizontal transfer. Methods In total, 264 faecal samples were collected from 138 horses in hospital and community livery premises in northwest England, yielding 296 resistant E. coli isolates. Isolates were tested for susceptibility to antimicrobial drugs by disc diffusion and agar dilution methods in order to determine minimum inhibitory concentrations (MIC). PCR amplification was used to detect genes conferring resistance to: ampicillin (TEM and SHV beta-lactamase), chloramphenicol (catI, catII, catIII and cml), tetracycline (tetA, tetB, tetC, tetD, tet E and tetG), and trimethoprim (dfrA1, dfrA9, dfrA12, dfrA13, dfr7, and dfr17). Results The proportion of antibiotic resistant isolates, and multidrug resistant isolates (MDR) was significantly higher in hospital samples compared to livery samples (MDR: 48% of hospital isolates; 12% of livery isolates, p < 0.001). Resistance to ciprofloxacin and florfenicol were identified mostly within the MDR phenotypes. Resistance genes included dfr, TEM beta-lactamase, tet and cat, conferring resistance to trimethoprim, ampicillin, tetracycline and chloramphenicol, respectively. Within each antimicrobial resistance group, these genes occurred at frequencies of 93% (260/279), 91%, 86.8% and 73.5%, respectively; with 115/296 (38.8%) found to be MDR isolates. Conjugation experiments were performed on selected isolates and MDR phenotypes were readily transferred. Conclusions Our findings demonstrate that E. coli of equine faecal origin are commonly resistant to antibiotics used in human and veterinary medicine. Furthermore, our results suggest that most antibiotic resistance observed in equine E. coli is encoded by well-known and well-characterized resistant genes common to E. coli from man and domestic animals. These data support the ongoing concern about antimicrobial resistance

  1. Characterization of Multidrug-Resistant Escherichia coli Isolates from Animals Presenting at a University Veterinary Hospital▿†

    PubMed Central

    Karczmarczyk, Maria; Abbott, Yvonne; Walsh, Ciara; Leonard, Nola; Fanning, Séamus

    2011-01-01

    In this study, we examined molecular mechanisms associated with multidrug resistance (MDR) in a collection of Escherichia coli isolates recovered from hospitalized animals in Ireland. PCR and DNA sequencing were used to identify genes associated with resistance. Class 1 integrons were prevalent (94.6%) and contained gene cassettes recognized previously and implicated mainly in resistance to aminoglycosides, β-lactams, and trimethoprim (aadA1, dfrA1-aadA1, dfrA17-aadA5, dfrA12-orfF-aadA2, blaOXA-30-aadA1, aacC1-orf1-orf2-aadA1, dfr7). Class 2 integrons (13.5%) contained the dfrA1-sat1-aadA1 gene array. The most frequently occurring phenotypes included resistance to ampicillin (97.3%), chloramphenicol (75.4%), florfenicol (40.5%), gentamicin (54%), neomycin (43.2%), streptomycin (97.3%), sulfonamide (98.6%), and tetracycline (100%). The associated resistance determinants detected included blaTEM, cat, floR, aadB, aphA1, strA-strB, sul2, and tet(B), respectively. The blaCTX-M-2 gene, encoding an extended-spectrum β-lactamase (ESβL), and blaCMY-2, encoding an AmpC-like enzyme, were identified in 8 and 18 isolates, respectively. The mobility of the resistance genes was demonstrated using conjugation assays with a representative selection of isolates. High-molecular-weight plasmids were found to be responsible for resistance to multiple antimicrobial compounds. The study demonstrated that animal-associated commensal E. coli isolates possess a diverse repertoire of transferable genetic determinants. Emergence of ESβLs and AmpC-like enzymes is particularly significant. To our knowledge, the blaCTX-M-2 gene has not previously been reported in Ireland. PMID:21856835

  2. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    PubMed

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing. PMID:25926011

  3. Rapid profiling and identification of anthocyanins in fruits with Hadamard transform ion mobility mass spectrometry.

    PubMed

    Liu, Wenjie; Zhang, Xing; Siems, William F; Hill, Herbert H; Yin, Dulin

    2015-06-15

    The use of Hadamard transform ion mobility mass spectrometry (HT-IMMS) in the profiling of anthocyanins from different fruits is presented. Samples extracted with acidic methanol and purified with solid phase extraction were analyzed with direct IMMS infusion. The separation of various anthocyanins was achieved within 30s with resolving powers up to 110. The ion mobility drift times correlated with their mass-to-charge ratios with a correlation coefficient of 0.979 to produce a trend line that was characteristic for anthocyanins. Isomers with the same anthocyanidin but different hexoses were differentiated by ion mobility spectrometry. Furthermore, mobility separated ions underwent collision induced dissociation at the IMMS interface to provide MS/MS spectra. These fragmentation spectra aided in the identification of anthocyanidins via the loss of the saccharide groups. IMMS appears to be a rapid and efficient approach for profiling and identifying anthocyanins. PMID:25660880

  4. 6-Hydroxypelargonidin glycosides in the orange-red flowers of Alstroemeria.

    PubMed

    Tatsuzawa, Fumi; Saito, Norio; Murata, Naho; Shinoda, Koichi; Shigihara, Atsushi; Honda, Toshio

    2003-04-01

    Two 6-hydroxypelargonidin glycosides were isolated from the orange-red flowers of Alstroemeria cultivars, and determined to be 6-hydroxypelargonidin 3-O-(beta-D-glucopyranoside) and 3-O-[6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside], respectively, by chemical and spectroscopic methods. In addition, five known anthocyanidin glycosides, 6-hydroxycyanidin 3-malonylglucoside, 6-hydroxycyanidin 3-rutinoside, cyanidin 3-malonylglucoside, cyanidin 3-rutinoside and pelargonidin 3-rutinoside were identified in the flowers. PMID:12648544

  5. Anthocyanins are potent antioxidants in model systems but do not reduce endogenous oxidative DNA damage in human colon cells.

    PubMed

    Pool-Zobel, B L; Bub, A; Schröder, N; Rechkemmer, G

    1999-10-01

    Anthocyanins are common colored plant flavonoids, occurring as glycosides of the respective anthocyanidin-chromophores. Like other flavonoids, anthocyanidins are also expected to have antioxidative and anti-mutagenic properties in vivo, although only few data are available. To gain more knowledge on possible protective mechanisms in mammalian cells, we have compared their extracellular and intracellular antioxidative potential in vitro and in human colon tumor cells. We used Aronia melanocarpa Elliot anthocyanin (AA) concentrates, fractions thereof, concentrates from Elderberry, Macqui, and Tintorera fruits, as well as pure compounds. In vitro, antioxidative properties of the samples were studied with the ferric reducing ability assay (FRA assay). As a measure of intracellular oxidative/antioxidative effects, H2O2-induced strand breaks as well as oxidized DNA bases were determined in human tumor HT29 clone 19A cells using a microgelelectrophoresis assay (comet test). Major results were that isolated compounds (aglycons and glycosides) and complex plant samples are powerful antioxidants in vitro. In fact their activities by far exceeded those of Trolox and vitamin C in the FRA assay. Also, H2O2-induced DNA strand breaks were reduced in cells treated with the complex plant extracts. In contrast, endogenous generation of oxidized DNA bases was not prevented. In summary, the intracellular steady state of oxidized DNA bases is not altered by anthocyanins or anthocyanidins. This finding raises questions with respect to the cancer preventive potential of anthocyanidins within specific tissues, such as the colon. Extracellularly, however, the compounds are potent antioxidants. This points to their potential for providing systemic protection in vivo, e.g., by scavenging oxidants in the blood stream and in the colon. Notably, both aglycons and glycosides have equally strong antioxidant activity. PMID:10654159

  6. Delphinidin prevents disuse muscle atrophy and reduces stress-related gene expression.

    PubMed

    Murata, Motoki; Kosaka, Reia; Kurihara, Kana; Yamashita, Shuya; Tachibana, Hirofumi

    2016-08-01

    Delphinidin is a member of the anthocyanidin class of plant pigments. We examined the effects of delphinidin on muscle atrophy. Oral administration of delphinidin suppressed the muscle weight loss induced by mechanical unloading. Microarray analysis showed that delphinidin suppresses the upregulation of oxidative stress-related gene expression, including the expression of Cbl-b. Thus, delphinidin may prevent unloading-mediated muscle atrophy. PMID:27180787

  7. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing*

    PubMed Central

    Huang, Wu-yang; Zhang, Hong-cheng; Liu, Wen-xu; Li, Chun-yang

    2012-01-01

    Berries are a good source of natural antioxidants. In the present study, the total antioxidant capacity and phenolic composition of three berry fruits (blueberry, blackberry, and strawberry) cultivated in Nanjing were investigated. Blueberry, with a Trolox equivalent antioxidant capacity (TEAC) value of 14.98 mmol Trolox/100 g dry weight (DW), exhibited the strongest total antioxidant capacity using both the 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. Blueberry also had the highest total phenolic content (TPC, 9.44 mg gallic acid/g DW), total flavonoid content (TFC, 36.08 mg rutin/g DW), and total anthocyanidin content (TAC, 24.38 mg catechin/g DW). A preliminary analysis using high performance liquid chromatography (HPLC) showed that the blueberry, blackberry, and strawberry samples tested contained a range of phenolic acids (including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, ellagic acid, and cinnamic acid) and various types of flavonoids (flavone: luteolin; flavonols: rutin, myricetin, quercetrin, and quercetin; flavanols: gallocatechin, epigallocatechin, catechin, and catechin gallate; anthocyanidins: malvidin-3-galactoside, malvidin-3-glucoside, and cyanidin). In particular, the blueberries had high levels of proanthocyanidins and anthocyanidins, which might be responsible for their strong antioxidant activities. These results indicate a potential market role for berries (especially blueberries) as a functional food ingredient or nutraceutical. PMID:22302422

  8. Early Steps in Proanthocyanidin Biosynthesis in the Model Legume Medicago truncatula1[W][OA

    PubMed Central

    Pang, Yongzhen; Peel, Gregory J.; Wright, Elane; Wang, Zengyu; Dixon, Richard A.

    2007-01-01

    Oligomeric proanthocyanidins (PAs) composed primarily of epicatechin units accumulate in the seed coats of the model legume Medicago truncatula, reaching maximal levels at around 20 d after pollination. Genes encoding the single Medicago anthocyanidin synthase (ANS; EC 1.14.11.19) and leucoanthocyanidin reductase (LAR; EC 1.17.1.3) were cloned and the corresponding enzymes functionally identified. Recombinant MtANS converted leucocyanidin to cyanidin, and, more efficiently, dihydroquercetin to the flavonol quercetin. Levels of transcripts encoding dihydroflavonol reductase, ANS, and anthocyanidin reductase (ANR), the enzyme responsible for conversion of anthocyanidin to (−)-epicatechin, paralleled the accumulation of PAs in developing seeds, whereas LAR transcripts appeared to be more transiently expressed. LAR, ANS, and ANR proteins were localized to the cytosol in transfected tobacco (Nicotiana tabacum) leaves. Antisense down-regulation of ANS in M. truncatula resulted in reduced anthocyanin and PA levels, but had no impact on flavonol levels. Transgenic tobacco plants constitutively overexpressing MtLAR showed reduced anthocyanin content, but no catechin or increased levels of PAs were detected either in leaves or in flowers. Our results confirm previously ascribed in vivo functions for ANS and ANR. However, the apparent lack of catechin in M. truncatula PAs, the poor correlation between LAR expression and PA accumulation, and the lack of production of catechin monomers or oligomers in transgenic plants overexpressing MtLAR question the role of MtLAR in PA biosynthesis in Medicago. PMID:17885080

  9. Procyanidin, anthocyanin, and chlorogenic acid contents of highbush and lowbush blueberries.

    PubMed

    Rodriguez-Mateos, Ana; Cifuentes-Gomez, Tania; Tabatabaee, Setareh; Lecras, Caroline; Spencer, Jeremy P E

    2012-06-13

    The health benefits of blueberry consumption on the vascular system and brain are mediated in part by their flavonoid content. In light of this, six cultivated highbush blueberry varieties ( Vaccinium corymbosum L.) and one lowbush or wild blueberry ( Vaccinium angustifolium L.) were analyzed for their anthocyanin, flavanol oligomer, and chlorogenic acid contents. The highbush varieties Bluecrop, O'Neal, Bluejay, and Brigitta had significantly greater levels of anthocyanidins compared to the other varieties, whereas Bluejay and Brigitta organic had the highest amount of flavanol oligomers. The organically grown highbush blueberry had the highest flavanol oligomer and chlorogenic acid contents but a lower anthocyanidin content than its conventionally grown counterpart. The lowbush variety contained the highest chlorogenic acid concentration. Delphinidin and malvidin were the predominant anthocyanidins in the varieties tested, with concentrations ranging between 45.0 and 74.9 mg/100 g FW for delphinidin and between 37.1 and 62.2 mg/100 g FW for malvidin. Flavanol dimers were the most abundant flavanols, with a mean percentage of 24 ± 1.5% of the total, with flavanol monomers representing 11 ± 0.7%. PMID:22175691

  10. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing.

    PubMed

    Huang, Wu-yang; Zhang, Hong-cheng; Liu, Wen-xu; Li, Chun-yang

    2012-02-01

    Berries are a good source of natural antioxidants. In the present study, the total antioxidant capacity and phenolic composition of three berry fruits (blueberry, blackberry, and strawberry) cultivated in Nanjing were investigated. Blueberry, with a Trolox equivalent antioxidant capacity (TEAC) value of 14.98 mmol Trolox/100 g dry weight (DW), exhibited the strongest total antioxidant capacity using both the 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) methods. Blueberry also had the highest total phenolic content (TPC, 9.44 mg gallic acid/g DW), total flavonoid content (TFC, 36.08 mg rutin/g DW), and total anthocyanidin content (TAC, 24.38 mg catechin/g DW). A preliminary analysis using high performance liquid chromatography (HPLC) showed that the blueberry, blackberry, and strawberry samples tested contained a range of phenolic acids (including gallic acid, protocatechuic acid, p-hydroxybenzoic acid, vanillic acid, caffeic acid, p-coumaric acid, ferulic acid, ellagic acid, and cinnamic acid) and various types of flavonoids (flavone: luteolin; flavonols: rutin, myricetin, quercetrin, and quercetin; flavanols: gallocatechin, epigallocatechin, catechin, and catechin gallate; anthocyanidins: malvidin-3-galactoside, malvidin-3-glucoside, and cyanidin). In particular, the blueberries had high levels of proanthocyanidins and anthocyanidins, which might be responsible for their strong antioxidant activities. These results indicate a potential market role for berries (especially blueberries) as a functional food ingredient or nutraceutical. PMID:22302422

  11. A genomics investigation of partitioning into and among flavonoid-derived condensed tannins for carbon sequestration in Populus

    SciTech Connect

    Harding, Scott, A; Tsai, Chung-jui; Lindroth, Richard, L

    2013-03-24

    constituted a metabolic carbon drain in developing leaves that was not observed in the roots. We propose that PEA, in addition to other factors, including flavonoid pathway Myb transcription factors, is an important contributor to carbon management and plant defense in Populus. Objective 3: From work related to the first two objectives, it appeared that CT chemistry, at least in terms of the proportions of mono, di and tri hydroxylation at the phenylpropanoid-derived B-ring, changed little if at all when CT accrual per unit time was increased. A large number of transgenic Populus plants with alterations in the expression of flavonoid pathway genes and the potential to produce B-ring, chemically altered CT were generated during the project. Transgenic lines of Populus tremula Michx. Populus alba L. clone 717-1B4, a low CT producer, were produced that over- or under-express several mid and late flavonoid pathway genes including dihydroxyflavonol reductase (DFR-2 isoforms), leucoanthocyanidin reductase (LAR-3 isoforms), anthocyanidin reductase (ANR-2 isoforms), flavonol synthase (FLS-2 isoforms). A large number of additional transformation constructs (chalcone synthases, flavone synthases, and flavanol hydroxylases) were developed that failed to result in transgenic plants. We have purified CT from several of the successful lines and have obtained evidence from pyrolysis GC-MS that CT chemical composition was altered in transgenic lines harboring overexpression constructs for one of the two DFR isoforms. We have also observed increased CT levels in leaves of those lines, but the increases vary substantially in magnitude from experiment to experiment which has led to ongoing efforts to understand the variation before attempting to publish the findings. Preliminary results from some of the transgenic work were presented: An C*, Luo K, El Kayal W, Harding SA, Tsai C-J (2009) Transgenic manipulation of condensed tannins in Populus. IUFRO Tree Biotechnology Conference, Whistler, BC

  12. Basic Performance of the Standard Retrieval Algorithm for the Dual-frequency Precipitation Radar

    NASA Astrophysics Data System (ADS)

    Seto, S.; Iguchi, T.; Kubota, T.

    2013-12-01

    The core satellite of the Global Precipitation Measurement (GPM) mission, which is scheduled to be launched in 2014, will carry the Dual-frequency Precipitation Radar (DPR). DPR is a successor of the single-frequency Precipitation Radar (PR) currently working on the Tropical Rainfall Measuring Mission (TRMM) satellite. The authors are developing a precipitation retrieval algorithm for the DPR based on the standard algorithm of PR. Precipitation radar measurement depends on drop size distribution (DSD) rather than precipitation rates. Generally, DSD is assumed to follow an exponential or a Gamma distribution with two unknown parameters. Here, DSD can be represented on a 2-dimensional plane. For a single-frequency radar measurement, as two parameters cannot be determined, an empirical power law between radar reflectivity factor Z and rain rate R (Z-R relationship) is used. Assuming Z-R relationship is equivalent to constraining DSD on a 1-dimenisonal curve. In the standard algorithm of PR, an empirical power law between specific attenuation k and Z (k-Z relationship) is given to correct attenuation (Hitschfeld-Bordan method; HB method). Assuming k-Z relationship is also equivalent to constraining DSD on another 1-dimensional curve. Fortunately, space-borne or air-borne radars such as PR can measure surface backscattering cross section and surface reference technique (SRT) is applied to estimate path integrated attenuation (PIA). By referring to PIA estimates, k-Z relationship can be adjusted. In a developing algorithm for DPR, k-Z relation is assumed and the HB method is applied for each frequency. Once attenuation-corrected radar reflectivity factor Ze is given at both frequencies, the dual-frequency ratio (DFR) of Ze's is calculated, and DSD parameters are retrieved easily from the DFR (DFR method). However, the retrieved DSD generally does not agree with assumed k-Z relations. Then, k-Z relations are adjusted to fit the DSD. The HB method and DFR method can be

  13. Resistance gene pool to co-trimoxazole in non-susceptible Nocardia strains

    PubMed Central

    Valdezate, Sylvia; Garrido, Noelia; Carrasco, Gema; Villalón, Pilar; Medina-Pascual, María J.; Saéz-Nieto, Juan A.

    2015-01-01

    The soil-borne pathogen Nocardia sp. causes severe cutaneous, pulmonary, and central nervous system infections. Against them, co-trimoxazole (SXT) constitutes the mainstay of antimicrobial therapy. However, some Nocardia strains show resistance to SXT, but the underlying genetic basis is unknown. We investigated the presence of genetic resistance determinants and class 1–3 integrons in 76 SXT-resistant Nocardia strains by PCR and sequencing. By E test, these clinical strains showed SXT minimum inhibitory concentrations of ≥32:608 mg/L (ratio of 1:19 for trimethoprim: sulfamethoxazole). They belonged to 12 species, being the main representatives Nocardia farcinica (32%), followed by N. flavorosea (6.5%), N. nova (11.8%), N. carnea (10.5%), N. transvalensis (10.5%), and Nocardia sp. (6.5%). The prevalence of resistance genes in the SXT-resistant strains was as follows: sul1 and sul2 93.4 and 78.9%, respectively, dfrA(S1) 14.7%, blaTEM-1 and blaZ 2.6 and 2.6%, respectively, VIM-2 1.3%, aph(3′)-IIIa 40.8%, ermA, ermB, mefA, and msrD 2.6, 77.6, 14.4, and 5.2%, respectively, and tet(O), tet(M), and tet(L) 48.6, 25.0, and 3.9%, respectively. Detected amino acid changes in GyrA were not related to fluoroquinolone resistance, but probably linked to species polymorphism. Class 1 and 3 integrons were found in 93.42 and 56.57% strains, respectively. Class 2 integrons and sul3 genes were not detected. Other mechanisms, different than dfrA(S1), dfrD, dfrF, dfrG, and dfrK, could explain the strong trimethoprim resistance shown by the other 64 strains. For first time, resistance determinants commonly found in clinically important bacteria were detected in Nocardia sp. sul1, sul2, erm(B), and tet(O) were the most prevalent in the SXT-resistant strains. The similarity in their resistome could be due to a common genetic platform, in which these determinants are co-transferred. PMID:25972856

  14. A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor.

    PubMed

    Goeres, Darla M; Hamilton, Martin A; Beck, Nicholas A; Buckingham-Meyer, Kelli; Hilyard, Jackie D; Loetterle, Linda R; Lorenz, Lindsey A; Walker, Diane K; Stewart, Philip S

    2009-01-01

    This protocol describes how to grow a Pseudomonas aeruginosa biofilm under low fluid shear close to the air-liquid interface using the drip flow reactor (DFR). The DFR can model environments such as food-processing conveyor belts, catheters, lungs with cystic fibrosis and the oral cavity. The biofilm is established by operating the reactor in batch mode for 6 h. A mature biofilm forms as the reactor operates for an additional 48 h with a continuous flow of nutrients. During continuous flow, the biofilm experiences a low shear as the media drips onto a surface set at a 10 degrees angle. At the end of 54 h, biofilm accumulation is quantified by removing coupons from the reactor channels, rinsing the coupons to remove planktonic cells, scraping the biofilm from the coupon surface, disaggregating the clumps, then diluting and plating for viable cell enumeration. The entire procedure takes 13 h of active time that is distributed over 5 d. PMID:19528953

  15. Identification and Molecular Characterization of Class 1 Integrons in Multiresistant Escherichia coli Isolates from Poultry Litter

    PubMed Central

    Muñoz-Márquez, María-Enriqueta; Khan, Ashraf A.

    2012-01-01

    This study describes the prevalence of arrays of class 1 integron cassettes and Qnr determinants (A, B, and S) in 19 fluoroquinolone-resistant Escherichia coli isolates from chicken litter. qnrS and qnrA were the predominant genes in these fluoroquinolone-resistant isolates, and an uncommon array of aacA4-catB3-dfrA1 gene cassettes from a class1 integron was found. Additionally, aadA1 and dfrA1 gene cassettes, encoding resistance to streptomycin and trimethoprim, constituted the most common genes identified and was located on megaplasmids as well on the chromosome. Antibiotic resistance, pulsed-field gel electrophoresis (PFGE), and plasmid data suggest a genetically diverse origin of poultry E. coli isolates. PMID:22635994

  16. Assessing the benefits of design for recycling for plastics inelectronics: A case study of computer enclosures

    SciTech Connect

    Masanet, Eric; Horvath, Arpad

    2007-12-31

    With the emergence of extended producer responsibilityregulations for electronic devices, it is becoming increasingly importantfor electronics manufacturers to apply design for recycling (DFR) methodsin the design of plastic enclosures. This paper presents an analyticalframework for quantifying the environmental and economic benefits of DFRfor plastic computer enclosures during the design process, usingstraightforward metrics that can be aligned with corporate environmentaland financial performance goals. The analytical framework is demonstratedvia a case study of a generic desktop computer enclosure design, which isrecycled using a typical US "take-back" system for plastics from wasteelectronics. The case study illustrates how the analytical framework canbe used by the enclosure designer to quantify the environmental andeconomic benefits of two important DFR strategies: choosing high-valueresins and minimizing enclosure disassembly time. Uncertainty analysis isperformed to quantify the uncertainty surrounding economic conditions inthe future when the enclosure is ultimately recycled.

  17. Electroacupuncture improves gut barrier dysfunction in prolonged hemorrhagic shock rats through vagus anti-inflammatory mechanism

    PubMed Central

    Du, Ming-Hua; Luo, Hong-Min; Hu, Sen; Lv, Yi; Lin, Zhi-Long; Ma, Li

    2013-01-01

    AIM: To investigate whether electroacupuncture (EA) at Zusanli (ST36) prevents intestinal barrier and remote organ dysfunction following prolonged hemorrhagic shock through a vagus anti-inflammatory mechanism. METHODS: Sprague-Dawley rats were subjected to about 45% of total blood volume loss followed by delayed fluid replacement (DFR) with Ringer lactate 3h after hemorrhage. In a first study, rats were randomly divided into six groups: (1) EAN: EA at non-channel acupoints followed by DFR; (2) EA: EA at ST36 after hemorrhage followed by DFR; (3) VGX/EA: vagotomy (VGX) before EA at ST36 and DFR; (4) VGX/EAN: VGX before EAN and DFR; (5) α-bungarotoxin (α-BGT)/EA: intraperitoneal injection of α-BGT before hemorrhage, followed by EA at ST36 and DFR; and (6) α-BGT/EAN group: α-BGT injection before hemorrhage followed by EAN and DFR. Survival and mean arterial pressure (MAP) were monitored over the next 12 h. In a second study, with the same grouping and treatment, cytokine levels in plasma and intestine, organ parameters, gut injury score, gut permeability to 4 kDa FITC-dextran, and expression and distribution of tight junction protein ZO-1 were evaluated. RESULTS: MAP was significantly lowered after blood loss; EA at ST36 improved the blood pressure at corresponding time points 3 and 12 h after hemorrhage. EA at ST36 reduced tumor necrosis factor-α and interleukin (IL)-6 levels in both plasma and intestine homogenates after blood loss and DFR, while vagotomy or intraperitoneal injection of α-BGT before EA at ST36 reversed its anti-inflammatory effects, and EA at ST36 did not influence IL-10 levels in plasma and intestine. EA at ST36 alleviated the injury of intestinal villus, the gut injury score being significantly lower than that of EAN group (1.85 ± 0.33 vs 3.78 ± 0.59, P < 0.05). EA at ST36 decreased intestinal permeability to FITC-dextran compared with EAN group (856.95 ng/mL ± 90.65 ng/mL vs 2305.62 ng/mL ± 278.32 ng/mL, P < 0.05). EA at ST36

  18. Simulations of Dual-Frequency Radar Rainfall Retrievals

    NASA Astrophysics Data System (ADS)

    D'Adderio, Leo Pio; Tokay, Ali; Meneghini, Robert; Liao, Liang; Petersen, Walter A.; Porcù, Federico

    2016-04-01

    The retrieval of raindrop size distribution (DSD) is one of the key objectives of National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) Mission. The dual-frequency precipitation radar (DPR) on board GPM core satellite is the primary resource for the retrieval of DSD. The DPR operates at Ku- and Ka-band and these frequencies have different sensitivities to the precipitation at the surface. Both frequencies are subject to the attenuation but at different magnitude. The high sensitivity of Ka-band measurements intends to detect solid and/or light liquid precipitation, while Ku-band frequency will be able to measure relatively higher intensity precipitation. The data from simultaneous Ka- and Ku-band measurements will allow a more accurate estimation of the DSD. The DSD retrieval algorithm uses three-parameter gamma distribution where mass weighted diameter (Dmass), normalized intercept parameter with respect to the liquid water content, and the shape parameter will be derived from dual-frequency radar measurements. A key problem is the retrieval of three unknown with two measurements. The simulation of the dual frequency ratio (DFR), using disdrometric data collected in different field campaigns of Ground Validation (GV) program of GPM mission, can cast light on this retrieval problem. Furthermore, the use of a third and/or different wavelength in the satellite measurements can be an added value to correctly retrieve both light and heavy rain. This study seeks relationship between the DFR and Dmass in different rain regimes. The DFR based both on Ka-/Ku-band and on frequencies other than Ka-/Ku-band is investigated. The dependence on the gamma distribution shape parameter, which is set to three in the DPR DSD retrieval algorithm, of the DFR-Dmass relationship is also analyzed.

  19. Generalized fiber Fourier optics.

    PubMed

    Cincotti, Gabriella

    2011-06-15

    A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler. PMID:21686007

  20. Land cover controls on depression-focused recharge: an example from southern Ontario

    NASA Astrophysics Data System (ADS)

    Buttle, J. M.; Greenwood, W. J.

    2015-12-01

    The Oak Ridges Moraine (ORM) is a critical hydrogeologic feature in southern Ontario. Although previous research has highlighted the implications of spatially-focused recharge in closed topographic depressions for regional groundwater resources, such depression-focused recharge (DFR) has not been empirically demonstrated on the ORM. Permeable surficial sands and gravels mantling much of the ORM imply that water fluxes will largely be vertical recharge rather than lateral downslope transfer into depressions. Nevertheless, lateral fluxes may occur in winter and spring, when concrete frost development encourages surface runoff of rainfall and snowmelt. The potential for DFR was examined under forest and agricultural land cover with similar soils and surficial geology. Soil water contents, soil temperatures and ground frost thickness were measured at the crest and base of closed depressions in two agricultural fields and two forest stands on permeable ORM outcrops. Recharge from late-fall to the end of spring snowmelt was estimated via 1-d water balances and surface-applied bromide tracing. Both forest and agricultural sites experienced soil freezing; however, greater soil water contents prior to freeze-up at the latter led to concrete soil frost development. This resulted in lateral movement of snowmelt and rainfall into topographic depressions and surface ponding, which did not occur in forest depressions. Water balance recharge exceeded estimates from the bromide tracer approach at all locations; nevertheless, both methods indicated DRF exceeded recharge at the depression crest in agricultural areas with little difference in forest areas. Water balance estimates suggest winter-spring DFR (1300 - 2000 mm) is 3-5× recharge on level agricultural sites. Differences in the potential for DFR between agricultural and forest land covers have important implications for the spatial variability of recharge fluxes and the quality of recharging water on the ORM.

  1. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds.

    PubMed

    Lin, Mao; Wu, Xiaomei; Yan, Qingpi; Ma, Ying; Huang, Lixing; Qin, Yingxue; Xu, Xiaojin

    2016-07-01

    The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored. PMID:27409235

  2. Retrieval of Snow and Rain From Combined X- and W-B and Airborne Radar Measurements

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert; Tian, Lin; Heymsfield, Gerald M.

    2008-01-01

    Two independent airborne dual-wavelength techniques, based on nadir measurements of radar reflectivity factors and Doppler velocities, respectively, are investigated with respect to their capability of estimating microphysical properties of hydrometeors. The data used to investigate the methods are taken from the ER-2 Doppler radar (X-band) and Cloud Radar System (W-band) airborne Doppler radars during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment campaign in 2002. Validity is assessed by the degree to which the methods produce consistent retrievals of the microphysics. For deriving snow parameters, the reflectivity-based technique has a clear advantage over the Doppler-velocity-based approach because of the large dynamic range in the dual-frequency ratio (DFR) with respect to the median diameter Do and the fact that the difference in mean Doppler velocity at the two frequencies, i.e., the differential Doppler velocity (DDV), in snow is small relative to the measurement errors and is often not uniquely related to Do. The DFR and DDV can also be used to independently derive Do in rain. At W-band, the DFR-based algorithms are highly sensitive to attenuation from rain, cloud water, and water vapor. Thus, the retrieval algorithms depend on various assumptions regarding these components, whereas the DDV-based approach is unaffected by attenuation. In view of the difficulties and ambiguities associated with the attenuation correction at W-band, the DDV approach in rain is more straightforward and potentially more accurate than the DFR method.

  3. Implementation of weighted summation type fractional Fourier transform on FPGA

    NASA Astrophysics Data System (ADS)

    Zou, Qiming; Li, Longlong; Huang, Qian; Wang, Fei

    2015-07-01

    Recently Fractional Fourier transform (FrFT) has got a variety of applications in digital signal and image processing. This paper presents a novel hardware architecture for real-time computation of Discrete Fractional Fourier Transform (DFrFT), which can easily be extended to other fractional transforms. The proposed architecture has been verified on Xilinx FPGA(XC6VLX240T), which can run at a frequency up to 291MHz while with high accuracy.

  4. Class 1 integrons in Aeromonas hydrophila isolates from farmed Nile tilapia (Oreochromis nilotica).

    PubMed

    Lukkana, Mintra; Wongtavatchai, Janenuj; Chuanchuen, Rungtip

    2012-04-01

    The aim of this study was to determine antimicrobial resistance of Aeromonas hydrophila isolated from farmed Nile Tilapia. A total of 50 A. hydrophila isolates from clinical cases were screened for the presence of class 1, 2 and 3 integrons and all the strains resistant to enrofloxacin and/or ciprofloxacin (n=19) examined for mutation in the quinolone resistance-determining regions (QRDRs) of gyrA and parC. The intI1 gene was detected in 23 A. hydrophila strains (46%) but no intl2 and intl3 were detected. Among these, 14 isolates (60.8%) carried gene cassettes inserted in variable regions i.e., partial aadA2, aadA2, dfrA1-orfC and dfrA12-aadA2, of which the most common gene cassette array was dfrA12-aadA2 (26.09%). Conjugal transfer of class 1 integrons with resistance gene array was detected. All the A. hydrophila strains resistant to enrofloxacin and/or ciprofloxacin possessed mutations in the QRDRs of gyrA and parC. Only a Ser-83-Ile substitution was identified in GyrA and only a Ser-80-Ile amino change was found in ParC. The data confirms that A. hydrophila from farm-raised Nile Telapia serve as a reservoir for antimicrobial resistance determinants. PMID:22123307

  5. Characterization of the variable region in the class 1 integron of antimicrobial-resistant Escherichia coli isolated from surface water.

    PubMed

    Canal, Natália; Meneghetti, Karine Lena; de Almeida, Clara Ponzi; da Rosa Bastos, Marina; Otton, Letícia Muner; Corção, Gertrudes

    2016-01-01

    Fecal bacteria are considered to be a potential reservoir of antimicrobial resistance genes in the aquatic environment and could horizontally transfer these genes to autochthonous bacteria when carried on transferable and/or mobile genetic elements. Such circulation of resistance genes constitutes a latent public health hazard. The aim of this study was to characterize the variable region of the class 1 integron and relate its genetic content to resistance patterns observed in antimicrobial-resistant Escherichia coli isolated from the surface waters of Patos Lagoon, Southern Brazil. Genetic diversity of the isolates and presence of the qacEΔ1 gene, which confers resistance to quaternary ammonium compounds, were also investigated. A total of 27 isolates were analyzed. The variable region harbored dfrA17, dfrA1 and dfrA12 genes, which confer resistance to trimethoprim, and aadA1, aadA5 and aadA22 genes that encode resistance to streptomycin/spectinomycin. Most of the isolates were considered resistant to quaternary ammonium compounds and all of them carried the qacEΔ1 gene at the 3' conserved segment of the integron. ERIC-PCR analyses of E. coli isolates that presented the integrons showed great genetic diversity, indicating diverse sources of contamination in this environment. These results suggest that fecal bacteria with class 1 integrons in aquatic environments are potentially important reservoirs of antibiotic-resistance genes and may transfer these elements to other bacteria that are capable of infecting humans. PMID:26991286

  6. Class 1 Integron-Borne Gene Cassettes in Multidrug-Resistant Yersinia enterocolitica Strains of Different Phenotypic and Genetic Types

    PubMed Central

    Soto, S. M.; Lobato, M. J.; Mendoza, M. C.

    2003-01-01

    Seventy nine strains of Yersinia enterocolitica resistant to one or more antimicrobials were analyzed for integrons. Only class 1 sul1 integrons containing aadA1a (28 strains), aadA1a-dfr1-sat1 (2 strains), and dfr1-aadA1a (1 strain) gene cassettes were found. The first two types were found in clinical isolates belonging to serotype O:3, biotypes 2 to 4, and eight combined ribotypes, and the third was found in the reference strain, CECT4054 (O:8). All screened resistance markers were found in strains with and without integrons (except for chloramphenicol resistance, encoded by catA1 gene, which was only present in strains with integrons), but in different resistance profiles (R profiles). A profile (ampicillin, streptomycin, sulfadiazine, and trimethoprim resistance, encoded by the tem1, aadA1a, sul1, and dfr1 genes, respectively) was found in strains, with and without integrons. Integrons and some of the resistance genes are located on plasmids with sizes ranging between 65 and 140 kb. This is the first report of class 1 integrons in Y. enterocolitica. PMID:12499230

  7. Induction of Anthocyanin Accumulation by Cytokinins in Arabidopsis thaliana.

    PubMed Central

    Deikman, J.; Hammer, P. E.

    1995-01-01

    Arabidopsis thaliana plants treated with exogenous cytokinins accumulate anthocyanin pigments. We have characterized this response because it is potentially useful as a genetic marker for cytokinin responsiveness. Levels of mRNAs for four genes of the anthocyanin biosynthesis pathway, phenylalanine ammonia lyase 1 (PAL1), chalcone synthase (CHS), chalcone isomerase (CHI), and dihydroflavonol reductase (DFR) were shown to increase coordinately in response to benzyladenine (BA). However, nuclear run-on transcription experiments suggested that although CHS and DFR are controlled by BA at the transcriptional level, PAL1 and CHI are controlled by BA posttranscriptionally. CHS mRNA levels increased within 2 h of BA spray application, and peaked by 3 h. Levels of PAL1 mRNA did not increase within 6 h of BA spray. We also showed that PAL1, CHS, CHI, and DFR mRNA levels fluctuate during a 24-h period and appear to be controlled by a circadian clock. The relation between cytokinin regulation and light regulation of CHS gene transcription is discussed. PMID:12228453

  8. Phytochrome-interacting factors PIF4 and PIF5 negatively regulate anthocyanin biosynthesis under red light in Arabidopsis seedlings.

    PubMed

    Liu, Zhongjuan; Zhang, Yongqiang; Wang, Jianfeng; Li, Ping; Zhao, Chengzhou; Chen, Yadi; Bi, Yurong

    2015-09-01

    Light is an important environmental factor inducing anthocyanin accumulation in plants. Phytochrome-interacting factors (PIFs) have been shown to be a family of bHLH transcription factors involved in light signaling in Arabidopsis. Red light effectively increased anthocyanin accumulation in wild-type Col-0, whereas the effects were enhanced in pif4 and pif5 mutants but impaired in overexpression lines PIF4OX and PIF5OX, indicating that PIF4 and PIF5 are both negative regulators for red light-induced anthocyanin accumulation. Consistently, transcript levels of several genes involved in anthocyanin biosynthesis and regulatory pathway, including CHS, F3'H, DFR, LDOX, PAP1 and TT8, were significantly enhanced in mutants pif4 and pif5 but decreased in PIF4OX and PIF5OX compared to in Col-0, indicating that PIF4 and PIF5 are transcriptional repressor of these gene. Transient expression assays revealed that PIF4 and PIF5 could repress red light-induced promoter activities of F3'H and DFR in Arabidopsis protoplasts. Furthermore, chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) test and electrophoretic mobility shift assay (EMSA) showed that PIF5 could directly bind to G-box motifs present in the promoter of DFR. Taken together, these results suggest that PIF4 and PIF5 negatively regulate red light-induced anthocyanin accumulation through transcriptional repression of the anthocyanin biosynthetic genes in Arabidopsis. PMID:26259175

  9. [GENOTYPING OF THE BURKHOLDERIA MALLEI STRAINS BASED ON DIFFERENT REGION ANALYSIS].

    PubMed

    Bondareva, O S; Savchenko, S S; Tkachenko, G A; Ledeneva, M L; Lemasova, L V; Antonov, V A

    2016-01-01

    Development of the genotyping methods of glanders agent is urgent due to its high pathogenicity, lack of effective preventive measures and threat of the use of Burkholderia mallei as a biological weapon. In this work we proposed a scheme for the typing of the B. mallei strains based on different region analysis (DFR). The choice of variable loci differentially presented in various strains of glanders agents was performed by analyzing annotated whole-genome sequences of the B. mallei strains. Primers and fluorescence probes were designed for 9 selected loci. The amplification conditions for different regions were optimized in two variants: with electrophoretic detection and hybridization-fluorescence detection in the strip format. The possibility of applying the DFR analysis to genetic characterization of strains was assessed in 14 B. mallei strains. The genetic profiles of the studied B. mallei strains revealed that the developed DFR-typing scheme was characterized by high discrimination power (Hunter-Gaston index value was 0.92), reproducibility, rapidity, easy interpretation, and applicability for epidemiological surveillance of glanders. PMID:27183720

  10. Dietary intake of flavonoids and oesophageal and gastric cancer: incidence and survival in the United States of America (USA)

    PubMed Central

    Petrick, J L; Steck, S E; Bradshaw, P T; Trivers, K F; Abrahamson, P E; Engel, L S; He, K; Chow, W-H; Mayne, S T; Risch, H A; Vaughan, T L; Gammon, M D

    2015-01-01

    Background: Flavonoids, polyphenolic compounds concentrated in fruits and vegetables, have experimentally demonstrated chemopreventive effects against oesophageal and gastric cancer. Few epidemiologic studies have examined flavonoid intake and incidence of these cancers, and none have considered survival. Methods: In this USA multicentre population-based study, case participants (diagnosed during 1993–1995 with oesophageal adenocarcinoma (OEA, n=274), gastric cardia adenocarcinoma (GCA, n=248), oesophageal squamous cell carcinoma (OES, n=191), and other gastric adenocarcinoma (OGA, n=341)) and frequency-matched controls (n=662) were interviewed. Food frequency questionnaire responses were linked with USDA Flavonoid Databases and available literature for six flavonoid classes and lignans. Case participants were followed until 2000 for vital status. Multivariable-adjusted odds ratios (ORs) and hazard ratios (HRs) (95% confidence intervals (CIs)) were estimated, comparing highest with lowest intake quartiles, using polytomous logistic and proportional hazards regressions, respectively. Results: Little or no consistent association was found for total flavonoid intake (main population sources: black tea, orange/grapefruit juice, and wine) and incidence or survival for any tumour type. Intake of anthocyanidins, common in wine and fruit juice, was associated with a 57% reduction in the risk of incident OEA (OR=0.43, 95% CI=0.29–0.66) and OES (OR=0.43, 95% CI=0.26–0.70). The ORs for isoflavones, for which coffee was the main source, were increased for all tumours, except OES. Anthocyanidins were associated with decreased risk of mortality for GCA (HR=0.63, 95% CI=0.42–0.95) and modestly for OEA (HR=0.87, 95% CI=0.60–1.26), but CIs were wide. Conclusions: Our findings, if confirmed, suggest that increased dietary anthocyanidin intake may reduce incidence and improve survival for these cancers. PMID:25668011

  11. Analysis for prevalence and physical linkages amongst integrons, ISEcp1, ISCR1, Tn21 and Tn7 encountered in Escherichia coli strains from hospitalized and non-hospitalized patients in Kenya during a 19-year period (1992–2011)

    PubMed Central

    2013-01-01

    Background We determined the prevalence and evidence for physical linkage amongst integrons, insertion sequences, Tn21 and Tn7 transposons in a collection of 1327 E. coli obtained over a 19-year period from patients in Kenya. Results The prevalence of class 1 integrons was 35%, class 2 integrons were detected in 3 isolates but no isolate contained a class 3 integron. Integron lacking the 3’-CS or those linked to sul3 gene or IS26 or those containing the ISCR1 were only detected in multidrug resistant (MDR) strains. The dfrAs were the most common cassettes and their prevalence was: - dfrA1(28%), dfrA12(20%), dfA17(9%), dfrA7(9%), and dfrA16(5%). The aadA were the second most abundant cassettes and their prevalence was: - aadA1(25%), aadA2(21%), and aadA5(14%). Other cassettes occurred in lower prevalence of below 5%. Prevalence of Tn21, ISEcp1, ISCR1 and IS26 was 22%, 10%, 15%, and 7% respectively. Majority of Tn21 containing integrons carried a complete set of transposition genes while class 2 integrons were borne on Tn7 transposon. The qnrA genes were detected in 34(3%) isolates while 19(1%) carried qnrB. All qnr genes were in MDR strains carrying integrons containing the ISCR1. Close to 88% of blaTEM-52 were linked to IS26 while ≥ 80% of blaCTX-Ms and blaCMYs were linked to ISEcp1. Only a few studies have identified a blaCTX-M-9 containing an ISEcp1 element as reported in this study. Multiple genetic elements, especially those borne on incIl, incFII, and incL/M plasmids, and their associated resistance genes were transferrable en bloc to E. coli strain J53 in mating experiments. Conclusions This is the first detailed study on the prevalence of selected elements implicated in evolution of resistance determinants in a large collection of clinical E. coli in Africa. Proliferation of such strains carrying multiple resistance elements is likely to compromise the use of affordable and available treatment options for majority of poor patients in Africa. There is

  12. Antimicrobial Resources for Disinfection of Potable Water Systems for Future Spacecraft

    NASA Technical Reports Server (NTRS)

    Morford, Megan A.; Birmele, Michele; Roberts, Michael S.

    2012-01-01

    As human exploration adventures beyond low earth orbit, life support systems will require more innovation and research to become self-sustaining and durable. One major concern about future space travel is the ability to store and decontaminate water for consumption and hygiene. This project explores materials and technologies for possible use in future water systems without requiring point-of-use (POU) filtering or chemical additives such as iodine or silver that require multiple doses to remain effective. This experimentation tested the efficacy of a variety of antimicrobial materials against biofilm formation in a high shear CDC Biofilm Reactor (CBR) and some materials in a low shear Drip Flow Reactor (DFR) which(also utilizes ultra violet light emitting diodes (UVLEDs) as an antimicrobial resource. Most materials were tested in the CBR using the ASTM E 2562-07 1method involving the Pseudomonas aeruginosa and coupon samples that vary in their antimicrobial coatings and surface layer topographies. In a controlled environmental chamber (CEC), the CBR underwent a batch phase, continuous flow phase (CFP), and a harvest before analysis. The DFR portion of this experimentation was performed in order to assess the antimicrobial capabilities of ultraviolet-A LEDs (UV-A) in potable water systems. The ASTM E 2647-08 was modified in order to incorporate UV-A LEDs and to operate as a closed, re-circulating system. The modified DFR apparatus that was utilized contains 4 separate channels each of which contain 2 UV-A LEDs (1 chamber is masked off to serve as a control) and each channel is equipped with its own reservoir and peristaltic pump head. The 10 DFR runs discussed in this report include 4 initial experimental runs that contained blank microscope slides to test the UVA LEDs alone, 2 that incorporated solid silver coupons, 2 that utilized titanium dioxide (Ti02) coupons as a photocatalyst, and 2 runs that utilized silver coated acrylic slides. Both the CBR and DFR

  13. Gain of function mutation in tobacco MADS box promoter switch on the expression of flowering class B genes converting sepals to petals.

    PubMed

    Mahajan, Monika; Yadav, Sudesh Kumar

    2014-02-01

    One mutant transgenic line displaying homeotic conversion of sepals to petals with other phenotypic aberrations was selected and characterized at molecular level. The increased transcript level of gene encoding anthocyanidin synthase and petal specific class B genes, GLOBOSA and DEFECIENS in sepals of mutant line may be responsible for its homeotic conversion to petaloid organs. While characterizing this mutant line for locus identification, T-DNA was found to be inserted in 3' untranslated region of promoter of class B MADS box gene, GLOBOSA. Here, CaMV 35S promoter of T-DNA might be deriving the expression of class B genes. PMID:24362510

  14. Abrasive stripping square-wave voltammetry of blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes.

    PubMed

    Komorsky-Lovrić, Šebojka; Novak, Ivana

    2011-08-01

    Electro-oxidation potentials of 7 fruits and vegetables were determined by abrasive stripping voltammetry. The responses were characterized by 2 peaks with maxima at 0.45 and 0.55 V compared with Ag/AgCl, respectively. Both electrode reactions appear reversible at a frequency of 8 Hz. They can be ascribed to anthocyanidins and ellagic acid as electroactive compounds. By this method, an antioxidative capacity of a certain plant can be quickly estimated without extraction of active components. PMID:22417490

  15. Regularities of Anthocyanins Retention in RP HPLC for “Water–Acetonitrile–Phosphoric Acid” Mobile Phases

    PubMed Central

    Deineka, V. I.; Deineka, L. A.; Saenko, I. I.

    2015-01-01

    The influence of exchange of HCOOH (System 2) by phosphoric acid (System 1) for acidification of the “acetonitrile–water” mobile phases for reversed-phase HPLC of anthocyanins was investigated in the framework of relative retention analysis. The differences and similarities of anthocyanins separation were revealed. It has been shown that some common features of the quantitative relationships may be used for preliminary anthocyanins structure differentiation, according to the number of OH-groups in anthocyanidin backbone as well as to a number of saccharide molecules in glycoside radicals in position 3 of the anthocyanin without MS detection. PMID:25692073

  16. Anthocyan does not suppress transformation of aryl hydrocarbon receptor induced by dioxin.

    PubMed

    Mukai, Rie; Fukuda, Itsuko; Nishiumi, Shin; Hosokawa, Keizo; Kanazawa, Kazuki; Ashida, Hitoshi

    2004-01-01

    Dioxins cause a variety of toxic effects through transformation of a cytosolic aryl hydrocarbon receptor (AhR). We have previously demonstrated that certain natural flavones and flavonols at the dietary levels suppress AhR transformation. In this study, we investigated whether 5 anthocyanidins, 15 anthocyanins, and protocatechuic acid suppress AhR transformation in mouse hepatoma Hepa-1c1c7 cells. All the compounds tested here at 5 microM unexpectedly failed to suppress the transformation induced by 0.1 nM TCDD, indicating that anthocyan does not have a potential to prevent dioxin toxicity. PMID:15630228

  17. Characterisation by liquid chromatography-electrospray tandem mass spectrometry of anthocyanins in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur.

    PubMed

    Montoro, Paola; Tuberoso, Carlo I G; Perrone, Angela; Piacente, Sonia; Cabras, Paolo; Pizza, Cosimo

    2006-04-21

    Anthocyanins in extracts of berries of Myrtus communis, prepared following a typical Sardinia myrtle liqueur recipe, were identified and quantified by HPLC coupled with electrospray/tandem mass spectrometry using, respectively, an ion trap and a triple quadrupole mass analyser. The fragmentation patterns of the anthocyanidins were dependent on the MS technique employed, and differed considerably from those previously reported. The anthocyanin profile of five anthocyanin glucosides and four anthocyanin arabinosides, the latter not previously identified in this specie, was specific for myrtle berry extracts. The quantitative compositions of extracts of myrtle berries derived from different geographical areas in Italy were compared. PMID:16376912

  18. Blotting Assisted by Heating and Solvent Extraction for DESI-MS Imaging

    NASA Astrophysics Data System (ADS)

    Cabral, Elaine C.; Mirabelli, Mario F.; Perez, Consuelo J.; Ifa, Demian R.

    2013-06-01

    Imprints of potato sprout ( Solanum tuberosum L.), gingko leaves (Gingko biloba L. ) and strawberries (Fragaria x ananassa Duch. ) were successfully imaged by desorption electrospray ionization mass spectrometry (DESI-MS) on TLC plates through blotting assisted by heating and/or solvent extraction. Ion images showing the distribution of significant compounds such as glycoalkaloid toxins in potato sprout, ginkgolic acids and flavonoids in ginkgo leaves, and sugars and anthocyanidin in strawberry were obtained. Practical implications of this work include analysis of a wide range of irregular or soft materials by different imprinting conditions without requiring the addition of matrices or use of specific kinds of surfaces.

  19. Roles for glutathione transferases in antioxidant recycling

    PubMed Central

    Dixon, David P; Steel, Patrick G

    2011-01-01

    Uniquely among the plant glutathione transferases, two classes possess a catalytic cysteine capable of performing glutathione-dependent reductions. These are the dehydroascorbate reductases (DHARs) and the lambda-class glutathione transferases (GSTLs). Using immobilized GSTLs probed with crude plant extracts we have identified flavonols as high affinity ligands and subsequently demonstrated a novel glutathione-dependent role for these enzymes in recycling oxidized quercetin. By comparing the activities of DHARs and GSTLs we now propose a unified catalytic mechanism that suggests oxidized anthocyanidins and tocopherols may be alternative polyphenolic substrates of GSTLs. PMID:21778824

  20. Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells.

    PubMed

    Lim, Andery; Kumara, N T R N; Tan, Ai Ling; Mirza, Aminul Huq; Chandrakanthi, R L N; Petra, Mohammad Iskandar; Ming, Lim Chee; Senadeera, G K R; Ekanayake, Piyasiri

    2015-03-01

    Possibility of use of dye extract from skin samples of a seasonal, indigenous fruit from Borneo, namely Canarium odontophyllum, in dye sensitized solar cells (DSSCs) are explored. Three main groups of flavonoid pigments are detected and these pigments exhibit different UV-vis absorption properties, and hence showing different light harvesting capabilities. When applied in DSSCs. The detected pigment constituents of the extract consist of aurone (maritimein), anthocyanidin (pelargonidin) and anthocyanidin (cyanidin derivatives). When tested in DSSC, the highest conversion efficiency of 1.43% is exhibited by cyanidin derivatives, and this is followed by conversion efficiencies of 0.51% and 0.79% for aurone and pelargonidin, respectively. It is shown that individual pigments, like cyanidin derivatives and pelargonidin, exhibit higher power conversion efficiency when compared to that of C.odontophyllum skin pigment mixture (with a conversion efficiency of only 0.68%). The results indicate a possibility of masking effects of the pigments when used as a mixture. The acidification of C.odontophyllum skin pigments with concentrated hydrochloric acid improves the conversion efficiency of the mixture from 0.68% to 0.99%. The discussion in this paper will draw data and observations from the variation in absorption and adsorption properties, the HOMO-LUMO levels, the energy band gaps and the functional group compositions of the detected flavonoids. PMID:25541396

  1. Anthocyanins and their metabolites are weak inhibitors of cytochrome P450 3A4.

    PubMed

    Dreiseitel, Andrea; Schreier, Peter; Oehme, Anett; Locher, Sanja; Hajak, Goeran; Sand, Philipp G

    2008-12-01

    The cytochrome P450 enzyme cytochrome P450 3A4 (CYP3A4) controls the metabolism of about 60% of all drugs, and its inhibition may dramatically affect drug safety. Modulation of cytochrome P450 activity has been observed by constituents of fruit extracts including several flavonoids. The present investigation addresses CYP3A4 inhibition by anthocyanins, their aglycons, proanthocyanidins, and phenolic metabolites using a chemiluminescent assay. Test compounds inhibited CYP3A4 activity in a concentration-dependent manner featuring IC(50) values from 12.2 up to 7,842 microM. In the order of decreasing effect size, anthocyanidins were followed by anthocyanins, proanthocyanidins, and phenolic acids. When compared to earlier data on furanocoumarins from grapefruit extract, the inhibitory activity of tested anthocyanins, and anthocyanidins was shown to be about 10,000-fold weaker, and was negligible for phenolic acids (>100 000-fold weaker). Future studies are invited to address effects of the above flavonoids on other CYP isoforms for more detailed toxicity profiles. PMID:18727015

  2. Effects of commercial anthocyanin-rich extracts on colonic cancer and nontumorigenic colonic cell growth.

    PubMed

    Zhao, Cuiwei; Giusti, M Monica; Malik, Minnie; Moyer, Mary P; Magnuson, Bernadene A

    2004-10-01

    Commercially prepared grape (Vitis vinifera), bilberry (Vaccinium myrtillus L.), and chokeberry (Aronia meloncarpa E.) anthocyanin-rich extracts (AREs) were investigated for their potential chemopreventive activity against colon cancer. The growth of colon-cancer-derived HT-29 and nontumorigenic colonic NCM460 cells exposed to semipurified AREs (10-75 microg of monomeric anthocyanin/mL) was monitored for up to 72 h using a sulforhodamine B assay. All extracts inhibited the growth of HT-29 cells, with chokeberry ARE being the most potent inhibitor. HT-29 cell growth was inhibited approximately 50% after 48 h of exposure to 25 microg/mL chokeberry ARE. Most importantly, the growth of NCM460 cells was not inhibited at lower concentrations of all three AREs, illustrating greater growth inhibition of colon cancer, as compared to nontumorigenic colon cells. Extracts were semipurified and characterized by high-pressure liquid chromatography, spectrophotometry, and colorimetry. Grape anthocyanins were the glucosylated derivatives of five different anthocyanidin molecules, with or without p-coumaric acid acylation. Bilberry contained five different anthocyanidins glycosylated with galactose, glucose, and arabinose. Chokeberry anthocyanins were cyanidin derivatives, monoglycosylated mostly with galactose and arabinose. The varying compositions and degrees of growth inhibition suggest that the anthocyanin chemical structure may play an important role in the growth inhibitory activity of commercially available AREs. PMID:15453676

  3. Proteomic and Epigenetic Analyses of Lotus (Nelumbo nucifera) Petals Between Red and White cultivars.

    PubMed

    Deng, Jiao; Fu, Ziyang; Chen, Sha; Damaris, Rebecca Njeri; Wang, Kun; Li, Tingting; Yang, Pingfang

    2015-08-01

    Lotus is a vital aquatic ornamental plant with different flower colors. To explore the flower coloration mechanism in lotus, the constituents and contents of pigments in two lotus cultivars with red and white flowers were analyzed. Although flavones and flavonols were detected in both cultivars, anthocyanins could only be detected in the red cultivar. A comparative proteomics analysis on the flower petals between these two cultivars was conducted. A total of 88 differentially expressed proteins were identified with 36 more abundant and 52 less abundant in the red than in the white cultivar. Among them, four enzymes involved in the anthocyanin pathway were identified, i.e. flavanone 3-hydroxylase, anthocyanidin synthase, anthocyanidin 3-O-glucosyltransferase and glutathione S-transferase. Analysis of the expression patterns of anthocyanin biosynthetic genes indicated that the anthocyanindin synthase (ANS) gene might be the critical gene determining anthocyanin biosynthesis and accumulation in lotus flower. Further analysis showed that different methylation intensities on the promoter sequence of the ANS gene might result in the different flower coloration in the red and white cultivar. This study provides new insights into the mechanism of flower coloration in lotus, and may be helpful in its breeding and germplasm enhancement. PMID:26019267

  4. Anthocyans from fruits and vegetables--does bright colour signal cancer chemopreventive activity?

    PubMed

    Cooke, Darren; Steward, William P; Gescher, Andreas J; Marczylo, Tim

    2005-09-01

    Consumption of fruits and berries has been associated with decreased risk of developing cancer. The most abundant flavonoid constituents of fruits and berries are anthocyans (i.e. anthocyanins, glycosides, and their aglycons, anthocyanidins) that cause intense colouration. In this review, we describe epidemiological evidence hinting at the cancer preventive activity of anthocyan-containing foods in humans, results of chemoprevention studies in rodent models with anthocyans or anthocyan-containing fruit/vegetable extracts, and pharmacological properties of anthocyans. Anthocyanidins have been shown to inhibit malignant cell survival and confound many oncogenic signalling events in the 10(-6)-10(-4) M concentration range. Studies of the pharmacokinetics of anthocyanins after their consumption as single agents, anthocyanin mixtures or berry extracts suggest that anthocyanins reach levels of 10(-8)-10(-7) M in human blood. It is unclear whether such concentrations are sufficient to explain anticarcinogenic effects, and whether anthocyanins exert chemopreventive efficacy themselves, or if they need to undergo hydrolysis to their aglyconic counterparts. The currently available literature provides tantalising hints of the potential usefulness of anthocyans or anthocyan mixtures as cancer chemopreventive interventions. Nevertheless further studies are necessary to help adjudge the propitiousness of their clinical development. PMID:16084717

  5. Two glycosyltransferases involved in anthocyanin modification delineated by transcriptome independent component analysis in Arabidopsis thaliana

    PubMed Central

    Yonekura-Sakakibara, Keiko; Fukushima, Atsushi; Nakabayashi, Ryo; Hanada, Kousuke; Matsuda, Fumio; Sugawara, Satoko; Inoue, Eri; Kuromori, Takashi; Ito, Takuya; Shinozaki, Kazuo; Wangwattana, Bunyapa; Yamazaki, Mami; Saito, Kazuki

    2012-01-01

    To identify candidate genes involved in Arabidopsis flavonoid biosynthesis, we applied transcriptome coexpression analysis and independent component analyses with 1388 microarray data from publicly available databases. Two glycosyltransferases, UGT79B1 and UGT84A2 were found to cluster with anthocyanin biosynthetic genes. Anthocyanin was drastically reduced in ugt79b1 knockout mutants. Recombinant UGT79B1 protein converted cyanidin 3-O-glucoside to cyanidin 3-O-xylosyl(1→2)glucoside. UGT79B1 recognized 3-O-glucosylated anthocyanidins/flavonols and uridine diphosphate (UDP)-xylose, but not 3,5-O-diglucosylated anthocyanidins, indicating that UGT79B1 encodes anthocyanin 3-O-glucoside: 2′′-O-xylosyltransferase. UGT84A2 is known to encode sinapic acid: UDP-glucosyltransferase. In ugt84a2 knockout mutants, a major sinapoylated anthocyanin was drastically reduced. A comparison of anthocyanin profiles in ugt84a knockout mutants indicated that UGT84A2 plays a major role in sinapoylation of anthocyanin, and that other UGT84As contribute the production of 1-O-sinapoylglucose to a lesser extent. These data suggest major routes from cyanidin 3-O-glucoside to the most highly modified cyanidin in the potential intricate anthocyanin modification pathways in Arabidopsis. PMID:21899608

  6. Analysis of anthocyanins in powdered berry extracts by planar chromatography linked with bioassay and mass spectrometry.

    PubMed

    Cretu, Georgiana C; Morlock, Gertrud E

    2014-03-01

    Major anthocyanins were extracted with acidified methanol and characterised in powdered berry extracts of bilberry, blueberry, chokeberry, açai berry and cranberry by HPTLC-Vis-MS for the first time. A combined 2-step normal phase separation was applied, first for separation of anthocyanins and secondly of anthocyanidins. Documentation was performed under white light illumination (transmission mode). In the powdered berry extracts, especially the 3-glucosides of delphinidin, cyanidin, malvidin and peonidin, further cyanidin glycosides and respective anthocyanidins were found. Calibration data revealed a good correlation, with r between 0.9988 and 0.9999. The repeatability of the sample analysis (n=3) was ⩽3.6%. Based on the results obtained, this method can be used for rapid routine quality control of powdered berry extracts. For confirmation of the results or characterisation of unknown anthocyanin zones, mass spectra were recorded. Chromatography was directly linked to the effect using DPPH(∗) reagent and luminescent Aliivibrio fischeri bioassay. PMID:24176320

  7. Flavonoids, Flavonoid Subclasses, and Esophageal Cancer Risk: A Meta-Analysis of Epidemiologic Studies

    PubMed Central

    Cui, Lingling; Liu, Xinxin; Tian, Yalan; Xie, Chen; Li, Qianwen; Cui, Han; Sun, Changqing

    2016-01-01

    Flavonoids have been suggested to play a chemopreventive role in carcinogenesis. However, the epidemiologic studies assessing dietary intake of flavonoids and esophageal cancer risk have yielded inconsistent results. This study was designed to examine the association between flavonoids, each flavonoid subclass, and the risk of esophageal cancer with a meta-analysis approach. We searched for all relevant studies with a prospective cohort or case-control study design published from January 1990 to April 2016, using PUBMED, EMBASE, and Web of Science. Pooled odds ratios (ORs) were calculated using fixed or random-effect models. In total, seven articles including 2629 cases and 481,193 non-cases were selected for the meta-analysis. Comparing the highest-intake patients with the lowest-intake patients for total flavonoids and for each flavonoid subclass, we found that anthocyanidins (OR = 0.60, 95% CI: 0.49–0.74), flavanones (OR = 0.65, 95% CI: 0.49–0.86), and flavones (OR = 0.78, 95% CI 0.64–0.95) were inversely associated with the risk of esophageal cancer. However, total flavonoids showed marginal association with esophageal cancer risk (OR = 0.78, 95% CI: 0.59–1.04). In conclusion, our study suggested that dietary intake of total flavonoids, anthocyanidins, flavanones, and flavones might reduce the risk of esophageal cancer. PMID:27338463

  8. Possible effects of dietary polyphenols on sugar absorption and digestion.

    PubMed

    Williamson, Gary

    2013-01-01

    Excessive post-prandial glucose excursions are a risk factor for developing diabetes, associated with impaired glucose tolerance. One way to limit the excursion is to inhibit the activity of digestive enzymes for glucose production and of the transporters responsible for glucose absorption. Flavonols, theaflavins, gallate esters, 5-caffeoylqunic acid and proanthocyanidins inhibit α-amylase activity. Anthocyanidins and catechin oxidation products, such as theaflavins and theasinsensins, inhibit maltase; sucrase is less strongly inhibited but anthocyanidins seem somewhat effective. Lactase is inhibited by green tea catechins. Once produced in the gut by digestion, glucose is absorbed by SGLT1 and GLUT2 transporters, inhibited by flavonols and flavonol glycosides, phlorizin and green tea catechins. These in vitro data are supported by oral glucose tolerance tests on animals, and by a limited number of human intervention studies on polyphenol-rich foods. Acarbose is a drug whose mechanism of action is only through inhibition of α-amylases and α-glucosidases, and in intervention studies gives a 6% reduction in diabetes risk over 3 years. A lifetime intake of dietary polyphenols, assuming the same mechanism, has therefore a comparable potential to reduce diabetes risk, but more in vivo studies are required to fully test the effect of modulating post-prandial blood glucose in humans. PMID:23180627

  9. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable color in Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Hur, Yoonkang; Nou, Ill-Sup

    2015-07-01

    Flavonoids are divided into several structural classes, including anthocyanins, which provide flower and leaf colors and other derivatives that play diverse roles in plant development and interactions with the environment. This study characterized four anthocyanidin synthase (ANS) genes of Brassica rapa, a structural gene of the anthocyanin biosynthetic pathway, and investigated their association with pigment formation, cold and freezing tolerance in B. rapa. Sequences of these genes were analyzed and compared with similar gene sequences from other species, and a high degree of homology with their respective functions was found. Organ-specific expression analysis revealed that these genes were only expressed in the colored portion of leaves of different lines of B. rapa. Conversely, B. rapa anthocyanidin synthase (BrANS) genes also showed responses to cold and freezing stress treatment in B. rapa. BrANSs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold stress. Thus, the above results suggest the association of these genes with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold-resistant Brassica crops with desirable colors as well. PMID:25504198

  10. An assessment of dietary flavonoid intake in the UK and Ireland.

    PubMed

    Beking, Kristopher; Vieira, Amandio

    2011-02-01

    Accurate estimates of flavonoid intake are important for public health studies and potential policies related to these phytochemicals. As an alternative to studies involving population samples and individual food consumption surveys, the international FAO Food Balance Sheets (FBS) were used in the current study to estimate flavonoid consumption among the populations of the UK and Republic of Ireland. A supplemented USDA database was prepared for flavonoid analyses of the foods reported in the FBS. Twenty-three flavonoids from five groups (anthocyanidins, flavonols, flavanols, flavanones, and flavones) were analyzed. Estimated per-capita daily flavonoid intake (all five groups) was 182 mg and 177 mg for the UK and Ireland, respectively. In both cases, anthocyanidins and flavanols accounted for about 65% of total consumption. Combined intake of flavones, flavanones, and flavonols was 60 mg/day in the UK and 69 mg/day in Ireland. These flavonoid intake values are compared with those previously reported for the UK and other countries. Overall, these novel results contribute to establishing accurate reference points for national flavonoid intakes. PMID:20858155

  11. Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lim, Andery; Kumara, N. T. R. N.; Tan, Ai Ling; Mirza, Aminul Huq; Chandrakanthi, R. L. N.; Petra, Mohammad Iskandar; Ming, Lim Chee; Senadeera, G. K. R.; Ekanayake, Piyasiri

    2015-03-01

    Possibility of use of dye extract from skin samples of a seasonal, indigenous fruit from Borneo, namely Canarium odontophyllum, in dye sensitized solar cells (DSSCs) are explored. Three main groups of flavonoid pigments are detected and these pigments exhibit different UV-vis absorption properties, and hence showing different light harvesting capabilities. When applied in DSSCs. The detected pigment constituents of the extract consist of aurone (maritimein), anthocyanidin (pelargonidin) and anthocyanidin (cyanidin derivatives). When tested in DSSC, the highest conversion efficiency of 1.43% is exhibited by cyanidin derivatives, and this is followed by conversion efficiencies of 0.51% and 0.79% for aurone and pelargonidin, respectively. It is shown that individual pigments, like cyanidin derivatives and pelargonidin, exhibit higher power conversion efficiency when compared to that of C.odontophyllum skin pigment mixture (with a conversion efficiency of only 0.68%). The results indicate a possibility of masking effects of the pigments when used as a mixture. The acidification of C.odontophyllum skin pigments with concentrated hydrochloric acid improves the conversion efficiency of the mixture from 0.68% to 0.99%. The discussion in this paper will draw data and observations from the variation in absorption and adsorption properties, the HOMO-LUMO levels, the energy band gaps and the functional group compositions of the detected flavonoids.

  12. Exploring insights for virulent gene inhibition of multidrug resistant Salmonella typhi, Vibrio cholerae, and Staphylococcus areus by potential phytoligands via in silico screening.

    PubMed

    Skariyachan, Sinosh; Jayaprakash, Nisha; Bharadwaj, Navya; Narayanappa, Rajeswari

    2014-01-01

    In our recent studies on prevalence of multidrug resistant pathogens in Byramangala reservoir, Karnataka, India, we identified Salmonella typhi, Staphylococcus aureus, and Vibrio cholerae which had acquired multiple drug resistance (MDR) and emerged as superbugs. Hence, there is a pressing demand to identify alternative therapeutic remedies. Our study focused on the screening of herbal leads by structure-based virtual screening. The virulent gene products of these pathogens towards Kanamycin(aph), Trimethoprim(dfrA1), Methicillin (mecI), and Vancomycin (vanH) were identified as the probable drug targets and their 3D structures were predicted by homology modeling. The predicted models showed good stereochemical validity. By extensive literature survey, we selected 58 phytoligands and their drug likeliness and pharmacokinetic properties were computationally predicted. The inhibitory properties of these ligands against drug targets were studied by molecular docking. Our studies revealed that Baicalein from S. baicalensis (baikal skullcap) and Luteolin from Taraxacum officinale (dandelion) were identified as potential inhibitors against aph of S. typhi. Resveratrol from Vitis vinifera (grape vine) and Wogonin from S. baicalensis were identified as potential inhibitors against dfrA1 of S. typhi. Herniarin from Herniaria glabra (rupture worts) and Pyrocide from Daucus carota (Carrot) were identified as the best leads against dfrA1 of V. cholerae. Taraxacin of T. officinale (weber) and Luteolin were identified as potential inhibitors against Mec1. Apigenin from Coffee arabica (coffee) and Luteolin were identified as the best leads against vanH of S. aureus. Our findings pave crucial insights for exploring alternative therapeutics against MDR pathogens. PMID:23876154

  13. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture.

    PubMed

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik; Aarestrup, Frank M; Phu, Tran Minh; Dalsgaard, Anders

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened

  14. A Study on Feasibility of Dual-Wavelength Radar for Identification of Hydrometeor Phases

    NASA Technical Reports Server (NTRS)

    Liao, Liang; Meneghini, Robert

    2010-01-01

    An important objective for the Dual-wavelength Ku-/Ka-band Precipitation Radar (DPR) that will be on board the Global Precipitation Measuring (GPM) core satellite, is to identify the phase state of hydrometeors along the range direction. To assess this, radar signatures are simulated in snow and rain to explore the relation between the differential frequency ratio (DFR), defined as the difference of radar reflectivity factors between Ku- and Ka-bands, and the radar reflectivity factor at Ku-band, ZKu, for different hydrometeor types. Model simulations indicate that there is clear separation between snow and rain in the ZKu-DFR plane assuming that the snow follows the Gunn-Marshall size distribution (1958) and rain follows the Marshall-Palmer size distribution (1948). In an effort to verify the simulated results, the data collected by the Airborne Second Generation Precipitation Radar (APR-2) in the Wakasa Bay AMSR-E campaign are employed. Using the signatures of Linear Depolarization Ratio (LDR) at Ku-band, the APR-2 data can be easily divided into the regions of snow, mixed phase and rain for stratiform storms. These results are then superimposed onto the theoretical curves computed from the model in the ZKu-DFR plane. It has been found that in 90% of the cases, snow and rain can be distinguished if the Ku-band radar reflectivity exceeds 18 dBZ (the minimum detectable level of GPM DPR at Ku-band). This is also the case for snow and mixed-phase hydrometeors. Although snow can be easily distinguished from rain and melting hydrometeors by using Ku- and Ka-band radar, the rain and mixed-phase particles are not always separable. It is concluded that Ku- and Ka-band dual-wavelength radar might provide a potential means to identify the phase state of hydrometeors.

  15. The process-based stand growth model Formix 3-Q applied in a GIS environment for growth and yield analysis in a tropical rain forest.

    PubMed

    Ditzer, T.; Glauner, R.; Förster, M.; Köhler, P.; Huth, A.

    2000-03-01

    Managing tropical rain forests is difficult because few long-term field data on forest growth and the impact of harvesting disturbance are available. Growth models may provide a valuable tool for managers of tropical forests, particularly if applied to the extended forest areas of up to 100,000 ha that typically constitute the so-called forest management units (FMUs). We used a stand growth model in a geographic information system (GIS) environment to simulate tropical rain forest growth at the FMU level. We applied the process-based rain forest growth model Formix 3-Q to the 55,000 ha Deramakot Forest Reserve (DFR) in Sabah, Malaysia. The FMU was considered to be composed of single and independent small-scale stands differing in site conditions and forest structure. Field data, which were analyzed with a GIS, comprised a terrestrial forest inventory, site and soil analyses (water, nutrients, slope), the interpretation of aerial photographs of the present vegetation and topographic maps. Different stand types were determined based on a classification of site quality (three classes), slopes (four classes), and present forest structure (four strata). The effects of site quality on tree allometry (height-diameter curve, biomass allometry, leaf area) and growth (increment size) are incorporated into Formix 3-Q. We derived allometric relations and growth factors for different site conditions from the field data. Climax forest structure at the stand level was shown to depend strongly on site conditions. Simulated successional pattern and climax structure were compared with field observations. Based on the current management plan for the DFR, harvesting scenarios were simulated for stands on different sites. The effects of harvesting guidelines on forest structure and the implications for sustainable forest management at Deramakot were analyzed. Based on the stand types and GIS analysis, we also simulated undisturbed regeneration of the logged-over forest in the DFR at

  16. Molecular Characterization of Multidrug-Resistant Escherichia coli Isolates from Irish Cattle Farms▿†

    PubMed Central

    Karczmarczyk, Maria; Walsh, Ciara; Slowey, Rosemarie; Leonard, Nola; Fanning, Séamus

    2011-01-01

    This study describes the genotypic characteristics of a collection of 100 multidrug-resistant (MDR) Escherichia coli strains recovered from cattle and the farm environment in Ireland in 2007. The most prevalent antimicrobial resistance identified was to streptomycin (100%), followed by tetracycline (99%), sulfonamides (98%), ampicillin (82%), and neomycin (62%). Resistance was mediated predominantly by strA-strB (92%), tetA (67%), sul2 (90%), blaTEM (79%), and aphA1 (63%) gene markers, respectively. Twenty-seven isolates harbored a class 1 integrase (intI1), while qacEΔ1 and sul1 markers were identified in 25 and 26 isolates, respectively. The variable regions of these integrons contained aminoglycoside, trimethoprim, and β-lactam resistance determinants (aadA12, aadB-aadA1, blaOXA-30-aadA1, dfrA1-aadA1, dfrA7). Class 2 integrons were identified less frequently (4%) and contained the gene cassette array dfrA1-sat1-aadA1. Resistance to ampicillin, neomycin, streptomycin, sulfonamide, and tetracycline was associated with transferable high-molecular-weight plasmids, as demonstrated by conjugation assays. A panel of virulence markers was screened for by PCR, and genes identified included vt1, K5 in 2 isolates, papC in 10 isolates, and PAI IV536 in 37 isolates. MDR commensal E. coli isolates from Irish cattle displayed considerable diversity with respect to the genes identified. Our findings highlight the importance of the commensal microflora of food-producing animals as a reservoir of transferable MDR. PMID:21856840

  17. PyMYB10 and PyMYB10.1 Interact with bHLH to Enhance Anthocyanin Accumulation in Pears

    PubMed Central

    Feng, Shouqian; Sun, Shasha; Chen, Xiaoliu; Wu, Shujing; Wang, Deyun; Chen, Xuesen

    2015-01-01

    Color is an important agronomic trait of pears, and the anthocyanin content of fruit is immensely significant for pear coloring. In this study, an anthocyanin-activating R2R3-MYB transcription factor gene, PyMYB10.1, was isolated from fruits of red sand pear (Pyrus pyrifolia cv. Aoguan). Alignments of the nucleotide and amino acid sequences suggested that PyMYB10.1 was involved in anthocyanin regulation. Similar to PyMYB10, PyMYB10.1 was predominantly expressed in red tissues, including the skin, leaf and flower, but it was minimally expressed in non-red fruit flesh. The expression of this gene could be induced by light. Dual-luciferase assays indicated that both PyMYB10 and PyMYB10.1 activated the AtDFR promoter. The activation of AtDFR increased to a greater extent when combined with a bHLH co-factor, such as PybHLH, MrbHLH1, MrbHLH2, or AtbHLH2. However, the response of this activation depended on the protein complex formed. PyMYB10-AtbHLH2 activated the AtDFR promoter to a greater extent than other combinations of proteins. PyMYB10-AtbHLH2 also induced the highest anthocyanin accumulation in tobacco transient-expression assays. Moreover, PybHLH interacted with PyMYB10 and PyMYB10.1. These results suggest that both PyMYB10 and PyMYB10.1 are positive anthocyanin biosynthesis regulators in pears that act via the formation of a ternary complex with PybHLH. The functional characterization of PyMYB10 and PyMYB10.1 will aid further understanding of the anthocyanin regulation in pears. PMID:26536358

  18. Occurrence of antibiotic resistance and characterization of resistant genes and integrons in Enterobacteriaceae isolated from integrated fish farms south China

    USGS Publications Warehouse

    Su, Hao-Chang; Ying, Guang-Guo; Tao, Ran; Zhang, Rui-Quan; Fogarty, Lisa R.; Kolpin, Dana W.

    2011-01-01

    Antibiotics are still widely applied in animal husbandry to prevent diseases and used as feed additives to promote animal growth. This could result in antibiotic resistance to bacteria and antibiotic residues in animals. In this paper, Enterobacteriaceae isolated from four integrated fish farms in Zhongshan, South China were tested for antibiotic resistance, tetracycline resistance genes, sulfonamide resistance genes, and class 1 integrons. The Kirby-Bauer disk diffusion method and polymerase chain reaction (PCR) assays were carried out to test antibiotic susceptibility and resistance genes, respectively. Relatively high antibiotic resistance frequencies were found, especially for ampicillin (80%), tetracycline (52%), and trimethoprim (50%). Out of 203 Enterobacteriaceae isolates, 98.5% were resistant to one or more antibiotics tested. Multiple antibiotic resistance (MAR) was found highest in animal manures with a MAR index of 0.56. Tetracycline resistance genes (tet(A), tet(C)) and sulfonamide resistance genes (sul2) were detected in more than 50% of the isolates. The intI1 gene was found in 170 isolates (83.7%). Both classic and non-classic class 1 integrons were found. Four genes, aadA5, aadA22, dfr2, and dfrA17, were detected. To our knowledge, this is the first report for molecular characterization of antibiotic resistance genes in Enterobacteriaceae isolated from integrated fish farms in China and the first time that gene cassette array dfrA17-aadA5 has been detected in such fish farms. Results of this study indicated that fish farms may be a reservoir of highly diverse and abundant antibiotic resistant genes and gene cassettes. Integrons may play a key role in multiple antibiotic resistances posing potential health risks to the general public and aquaculture.

  19. Antimicrobial Resistance Determinants in Acinetobacter baumannii Isolates Taken from Military Treatment Facilities

    PubMed Central

    Leski, Tomasz A.; Stockelman, Michael G.; Craft, David W.; Zurawski, Daniel V.; Kirkup, Benjamin C.; Vora, Gary J.

    2014-01-01

    Multidrug-resistant (MDR) Acinetobacter baumannii infections are of particular concern within medical treatment facilities, yet the gene assemblages that give rise to this phenotype remain poorly characterized. In this study, we tested 97 clinical A. baumannii isolates collected from military treatment facilities (MTFs) from 2003 to 2009 by using a molecular epidemiological approach that enabled for the simultaneous screening of 236 antimicrobial resistance genes. Overall, 80% of the isolates were found to be MDR, each strain harbored between one and 17 resistant determinants, and a total of 52 unique resistance determinants or gene families were detected which are known to confer resistance to β-lactam (e.g., blaGES-11, blaTEM, blaOXA-58), aminoglycoside (e.g., aphA1, aacC1, armA), macrolide (msrA, msrB), tetracycline [e.g., tet(A), tet(B), tet(39)], phenicol (e.g., cmlA4, catA1, cat4), quaternary amine (qacE, qacEΔ1), streptothricin (sat2), sulfonamide (sul1, sul2), and diaminopyrimidine (dfrA1, dfrA7, dfrA19) antimicrobial compounds. Importantly, 91% of the isolates harbored blaOXA-51-like carbapenemase genes (including six new variants), 40% harbored the blaOXA-23 carbapenemase gene, and 89% contained a variety of aminoglycoside resistance determinants with up to six unique determinants identified per strain. Many of the resistance determinants were found in potentially mobile gene cassettes; 45% and 7% of the isolates contained class 1 and class 2 integrons, respectively. Combined, the results demonstrate a facile approach that supports a more complete understanding of the genetic underpinnings of antimicrobial resistance to better assess the load, transmission, and evolution of MDR in MTF-associated A. baumannii. PMID:24247131

  20. Capillary-driven microfluidic chips with evaporation-induced flow control and dielectrophoretic microbead trapping

    NASA Astrophysics Data System (ADS)

    Temiz, Yuksel; Skorucak, Jelena; Delamarche, Emmanuel

    2014-07-01

    This work reports our efforts on developing simple-to-use microfluidic devices for point-of-care diagnostic applications with recent extensions that include the trapping of microbeads using dielectrophoresis (DEP) and the modulation of the liquid flow using integrated microheaters. DEP serves the purpose of trapping microbeads coated with receptors and analytes for detection of a fluorescent signal. The microheater is actuated once the chip is filled by capillarity, creating an evaporation-induced flow tuned according to assay conditions. The chips are composed of a glass substrate patterned with 50-nm-thick Pd electrodes and microfluidic structures made using a 20-μm-thick dry-film resist (DFR). Chips are covered/sealed by low temperature (50°C) lamination of a 50-μm-thick DFR layer having excellent optical and mechanical properties. To separate cleaned and sealed chips from the wafer, we used an effective chip singulation technique which we informally call the "chip-olate" process. In the experimental section, we first studied dielectrophoretic trapping of 10-μm beads for flow rates ranging from 80 pL s-1 to 2.5 nL s-1 that are generated by an external syringe pump. Then, we characterized the embedded microheater in DFR-covered chips. Flow rates as high as 8 nL s-1 were generated by evaporation-induced flow when the heater was biased by 10 V, corresponding to 270-mW power. Finally, DEP-based trapping and fluorescent detection of functionalized beads were demonstrated as the flow was generated by evaporation-induced flow after the microfluidic structures were filled by capillarity.

  1. ‘Chip-olate’ and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips

    NASA Astrophysics Data System (ADS)

    Temiz, Yuksel; Delamarche, Emmanuel

    2014-09-01

    This paper describes a technique for high-throughput fabrication and efficient singulation of chips having closed microfluidic structures and takes advantage of dry-film resists (DFRs) for efficient sealing of capillary systems. The technique is illustrated using 4-inch Si/SiO2 wafers. Wafers carrying open microfluidic structures are partially diced to about half of their thickness. Treatments such as surface cleaning are done at wafer-level, then the structures are sealed using low-temperature (45 °C) lamination of a DFR that is pre-patterned using a craft cutter, and ready-to-use chips are finally separated manually like a chocolate bar by applying a small force (≤ 4 N). We further show that some DFRs have low auto-fluorescence at wavelengths typically used for common fluorescent dyes and that mechanical properties of some DFRs allow for the lamination of 200 μm wide microfluidic structures with negligible sagging (~1 μm). The hydrophilicity (advancing contact angle of ~60°) of the DFR supports autonomous capillary-driven flow without the need for additional surface treatment of the microfluidic chips. Flow rates from 1 to 5 µL min-1 are generated using different geometries of channels and capillary pumps. In addition, the ‘chip-olate’ technique is compatible with the patterning of capture antibodies on DFR for use in immunoassays. We believe this technique to be applicable to the fabrication of a wide range of microfluidic and lab-on-a-chip devices and to offer a viable alternative to many labor-intensive processes that are currently based on wafer bonding techniques or on the molding of poly(dimethylsiloxane) (PDMS) layers.

  2. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture

    PubMed Central

    Noor Uddin, Gazi Md.; Larsen, Marianne Halberg; Christensen, Henrik; Aarestrup, Frank M.; Phu, Tran Minh; Dalsgaard, Anders

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened

  3. Clonal dissemination of a single Shigella sonnei strain among Iranian children during Fall 2012 in Tehran, I.R. Iran.

    PubMed

    Alizadeh-Hesar, Mahsa; Bakhshi, Bita; Najar-Peerayeh, Shahin

    2015-08-01

    Shigella species are a common cause of bacterial diarrhea worldwide and the disease is characterized by seasonality. Shigella has been encountered by widespread resistance to commonly used antibiotics which is a serious concern. The aim of this study was to analyze the epidemiological relatedness of Shigella strains isolated from children during one year period by PFGE method and to investigate antimicrobial resistance determinants and cassettes among Shigella species. The occurrence of Shigella spp. in the present study was 1.32% during the study period and the majority of cases (56 (80%)) were occurred during autumn while Shigella sonnei was the most prevalent species identified. Multi-drug resistance phenotype was seen in 98.5% of total isolates with SXT(r)/TE(r)/TMP(r) resistance pattern. Among the 70 Shigella spp. analyzed in this study, 16 isolates were positive for class I integron (int1(+)) with two types of gene cassette arrays (dfrA17/aadA5 and dfrA7).The class 2 integron was more frequently detected among the isolates (85.71%) with dfrA1/sat1/aadA1 (10%) and dfrA1/sat1 (75.71%) gene cassettes. The tetA and tetB determinants were observed in 75.7% and 21.42% of Shigella isolates and tet(A) was the foremost in S. sonnei and Shigella flexneri population. In this study 5 tetracycline resistant isolates had no tetracycline resistance gene (A-D) and no association was recognized between the value of MIC against tetracycline and the tet genes content of isolates. Fifty three of total Shigella isolates (75.7%) showed an identical PFGE patterns. Seven PFGE clusters observed in our study were composed of members with one to three band variations, which is indicative of closely related isolates. The major cluster (cluster C) constituted 75.7% of total isolates, all of which (except eight isolates) consonantly showed identical class 2 integron of 1500 bp which strongly suggests the dissemination of a single S. sonnei clone among the pediatric population in 2012

  4. Continuous Time Random Walk and Migration-Proliferation Dichotomy of Brain Cancer

    NASA Astrophysics Data System (ADS)

    Iomin, A.

    2015-10-01

    A theory of fractional kinetics of glial cancer cells is presented. A role of the migration-proliferation dichotomy in the fractional cancer cell dynamics in the outer-invasive zone is discussed and explained in the framework of a continuous time random walk. The main suggested model is based on a construction of a 3D comb model, where the migration-proliferation dichotomy becomes naturally apparent and the outer-invasive zone of glioma cancer is considered as a fractal composite with a fractal dimension Dfr < 3.

  5. Continuous Time Random Walk and Migration-Proliferation Dichotomy of Brain Cancer

    NASA Astrophysics Data System (ADS)

    Iomin, A.

    A theory of fractional kinetics of glial cancer cells is presented. A role of the migration-proliferation dichotomy in the fractional cancer cell dynamics in the outer-invasive zone is discussed and explained in the framework of a continuous time random walk. The main suggested model is based on a construction of a 3D comb model, where the migration-proliferation dichotomy becomes naturally apparent and the outer-invasive zone of glioma cancer is considered as a fractal composite with a fractal dimension Dfr < 3.

  6. Novel ABC Transporter Gene, vga(C), Located on a Multiresistance Plasmid from a Porcine Methicillin-Resistant Staphylococcus aureus ST398 Strain ▿

    PubMed Central

    Kadlec, Kristina; Schwarz, Stefan

    2009-01-01

    A novel ABC transporter gene, vga(C), was identified on the 14,365-bp multiresistance plasmid pKKS825 in a porcine methicillin (meticillin)-resistant Staphylococcus aureus isolate of sequence type 398. The vga(C) gene encodes a 523-amino-acid protein which confers resistance not only to streptogramin A antibiotics but also to lincosamides and pleuromutilins. Plasmid pKKS825 also carries the resistance genes aadD, tet(L), and dfrK, which may enable the coselection of vga(C) under selective pressure by kanamycin/neomycin, tetracyclines, and trimethoprim. PMID:19470508

  7. Two novel Salmonella genomic island 1 variants in Proteus mirabilis isolates from swine farms in China.

    PubMed

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Wang, Hong-Ning; Yang, Li-Qin; Guan, Zhong-Bin; Xu, Chang-Wen; Zhang, Dong-Dong; Yang, Yong-Qiang

    2015-07-01

    Four different Salmonella genomic island 1 (SGI1) variants, including two novel variants, were characterized in one Salmonella enterica serovar Rissen sequence type ST1917 isolate and three Proteus mirabilis isolates from swine farms in China. One novel variant was derived from SGI1-B with the backbone gene S021 disrupted by a 12.72-kb IS26 composite transposon containing the dfrA17-aadA5 cassettes and macrolide inactivation gene cluster mphA-mrx-mphR. The other one was an integron-free SGI1 and contained a 183-bp truncated S025 next to IS6100 and S044. PMID:25918148

  8. Abdominal abscess due to NDM-1-producing Klebsiella pneumoniae in Spain.

    PubMed

    Oteo, Jesús; Domingo-García, Diego; Fernández-Romero, Sara; Saez, David; Guiu, Alba; Cuevas, Oscar; Lopez-Brea, Manuel; Campos, José

    2012-06-01

    We describe a clinical case of an abdominal abscess due to NDM-1-producing Klebsiella pneumoniae in a 35-year-old Spanish patient after hospitalization in India for perforated appendicitis and peritonitis. The strain belonged to the MLST type 231 and had multiple additional antibiotic resistance genes such as bla(CTX-M-15), armA methylase, aac(6')-Ib-cr, dfrA12, sul1 and qnrB and lack of porin genes ompK35 and ompK36. The patient was cured after abscess drainage. PMID:22383442

  9. Molecular Characteristics of Salmonella Genomic Island 1 in Proteus mirabilis Isolates from Poultry Farms in China

    PubMed Central

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Guan, Zhong-Bin; Xu, Chang-Wen; Xia, Qing-Qing; Cheng, Han; Zhang, Dong-Dong

    2014-01-01

    Six out of the 64 studied Proteus mirabilis isolates from 11 poultry farms in China contained Salmonella genomic island 1 (SGI1). PCR mapping showed that the complete nucleotide sequences of SGI1s ranged from 33.2 to 42.5 kb. Three novel variants, SGI1-W, SGI1-X, and SGI1-Y, have been characterized. Resistance genes lnuF, dfrA25, and qnrB2 were identified in SGI1 for the first time. PMID:25267683

  10. Two Novel Salmonella Genomic Island 1 Variants in Proteus mirabilis Isolates from Swine Farms in China

    PubMed Central

    Lei, Chang-Wei; Zhang, An-Yun; Liu, Bi-Hui; Yang, Li-Qin; Guan, Zhong-Bin; Xu, Chang-Wen; Zhang, Dong-Dong; Yang, Yong-Qiang

    2015-01-01

    Four different Salmonella genomic island 1 (SGI1) variants, including two novel variants, were characterized in one Salmonella enterica serovar Rissen sequence type ST1917 isolate and three Proteus mirabilis isolates from swine farms in China. One novel variant was derived from SGI1-B with the backbone gene S021 disrupted by a 12.72-kb IS26 composite transposon containing the dfrA17-aadA5 cassettes and macrolide inactivation gene cluster mphA-mrx-mphR. The other one was an integron-free SGI1 and contained a 183-bp truncated S025 next to IS6100 and S044. PMID:25918148

  11. Should antioxidant vitamin supplementation be applied in patients with metabolic syndrome? A case-control study

    PubMed Central

    Materek-Kuśmierkiewicz, Izabela; Moczulski, Dariusz; Szatko, Franciszek; Gaszyńska, Ewelina; Tokarski, Sławomir; Kowalski, Jan

    2016-01-01

    Introduction All cells in the human body are exposed to reactive oxygen species (ROS), which disturb the metabolic reactions in the organism. The antioxidant system in the human body consists of enzymatic and non-enzymatic mechanisms, among which vitamins A, C, and E play a major role. The aim of the study The aim of the study was to evaluate the supply of vitamins A, C, and E from daily food rations (DFR) in postmenopausal women with metabolic syndrome (MS) in relation to current nutrition standards. Material and methods The study involved 184 women with MS, aged 45-68 years (mean 57.38 ±8.17 years). The control group comprised 90 women, aged 41-65 years (mean 57.48 ±5.79 years) without MS. The food intake was assessed using 24-hour dietary recalls. Results The evaluation of intake of vitamins measured with daily food rations (DFR) demonstrated that the optimal level of 90-110% according to standards was achieved only in 3.62% of women with metabolic syndrome for vitamin A, in 8.88% for vitamin C, and in 11.41% for vitamin E, which was significantly less often found than in the control group (p < 0.001). Conclusions Women with MS are characterised by diversified intake of vitamins A, C and E, and a subgroup of this patients present low level of antioxidant vitamins intake. Supplementation with antioxidant vitamins should be prescribed individually to postmenopausal women with MS. PMID:27095956

  12. Free and Cued Selective Reminding Test: an Italian normative study.

    PubMed

    Frasson, P; Ghiretti, R; Catricalà, E; Pomati, S; Marcone, A; Parisi, L; Rossini, P M; Cappa, S F; Mariani, C; Vanacore, N; Clerici, F

    2011-12-01

    The presence of episodic memory impairment is required for the diagnosis of Alzheimer's dementia by all current diagnostic criteria. The new research criteria proposed by Dubois et al. (Lancet Neurol 6:734-746, 2007) require that the impairment should not improve significantly with cueing, recognition testing nor after the control of effective encoding. This is considered to be the core deficit of "prodromal Alzheimer's disease". The Free and Cued Selective Reminding Test (FCSRT) is a memory test that allows in assessing these specific features of memory impairment. Here, we report normative data for an Italian version of the FCSRT. The test is based on the 12 pictorial stimuli, 6 belonging to the living domain, and 6 to the non-living domain. Six scores were derived from the performance of 227 healthy Italian adults, with age, sex and education homogenously distributed across subgroups: immediate free recall (IFR), immediate total recall (ITR), delayed-free recall (DFR), delayed total recall (DTR), Index of Sensitivity of Cueing (ISC), number of intrusions. In multiple regression analyses, age emerged as an influencing factor for both IFR and DFR, with older people obtaining lower scores. Education and gender appear to influence only IFR, with better performance by more educated subjects and females. Adjusted scores were used to determine inferential cutoff scores and to compute equivalent scores. PMID:21594655

  13. Identification of antibiotic resistance cassettes in class 1 integrons in Aeromonas spp. strains isolated from fresh fish (Cyprinus carpio L.).

    PubMed

    Sarria-Guzmán, Yohanna; López-Ramírez, María Patricia; Chávez-Romero, Yosef; Ruiz-Romero, Erick; Dendooven, Luc; Bello-López, Juan Manuel

    2014-05-01

    Forty-six Aeromonas spp. strains were isolated from fresh fish and investigated for their antimicrobial susceptibility, detection of Class 1 integrons by PCR, and arrangement of gene cassettes. Selected isolates were further characterized by enterobacterial repetitive intergenic consensus-PCR. Twenty isolates were found to carry Class 1 integrons. Amplification of the variable regions of the integrons revealed diverse bands ranging in size from 150 to 1,958 pb. Sequence analysis of the variable regions revealed the presence of several gene cassettes, such as adenylyl transferases (aadA2 and aadA5), dihydrofolate reductases (dfrA17 and dfrA1), chloramphenicol acetyl transferase (catB3), β-lactamase (oxa2), lincosamide nucleotidil transferase (linF), aminoglycoside-modifying enzyme (apha15), and oxacillinase (bla OXA-10). Two open reading frames with an unknown function were identified as orfC and orfD. The aadA2 cassette was the most common integron found in this study. Interestingly, five integrons were detected in the plasmids that might be involved in the transfer of resistance genes to other bacteria. This is a first report of cassette encoding for lincosamides (linF) resistance in Aeromonas spp. Implications on the incidence of integrons in isolates of Aeromonas spp. from fresh fish for human consumption, and its possible consequences to human health are discussed. PMID:24370627

  14. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress.

    PubMed

    Ma, Dongyun; Sun, Dexiang; Wang, Chenyang; Li, Yaoguang; Guo, Tiancai

    2014-07-01

    Flavonoids are the low molecular weight polyphenolic secondary metabolic compounds, and have various functions in growth, development, reproduction, and stress defense. However, little is known about the roles of the key enzymes in the flavonoids biosynthesis pathway in response to drought stress in winter wheat. Here, we investigated the expression pattern of flavonoids biosynthesis genes and accumulation of flavonoids in wheat leaves under drought stress. Quantitative real-time PCR analysis showed that there were a rapid increase in expression levels of TaCHS, TaCHI, TaF3H, TaFNS, TaFLS, TaDFR, and TaANS under drought stress in two wheat cultivars Aikang 58 (AK) and Chinese Spring (CS). The cultivar CS exhibited higher genes expression levels of TaCHS, TaCHI, TaF3H, TaFLS, TaDFR, and TaANS, and the cultivar AK showed a higher expression level of TaFNS gene during drought treatment. The increase rates of genes expression were superior in AK compared to CS. Total phenolics content, total flavonoids content, anthocyanin content, and schaftoside content in wheat leaves were enhanced during drought treatment and cultivar CS had a relative higher accumulation. These results suggest that the flavonoids pathway genes expression and accumulation of flavonoids compounds may be closely related to drought tolerant in wheat. Further, flavonoids response mechanism may be different between wheat cultivars. PMID:24727789

  15. A Novel bHLH Transcription Factor Involved in Regulating Anthocyanin Biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.).

    PubMed

    Xiang, Li-li; Liu, Xiao-fen; Li, Xue; Yin, Xue-ren; Grierson, Donald; Li, Fang; Chen, Kun-song

    2015-01-01

    Chrysanthemums (Chrysanthemum morifolium Ramat.) exhibit a variety of flower colors due to their differing abilities to accumulate anthocyanins. One MYB member, CmMYB6, has been verified as a transcription regulator of chrysanthemum genes involved in anthocyanin biosynthesis; however, the co-regulators for CmMYB6 remain unclear in chrysanthemum. Here, the expression pattern of CmbHLH2, which is clustered in the IIIf bHLH subgroup, was shown to be positively correlated with the anthocyanin content of cultivars with red, pink and yellow flower colors, respectively. CmbHLH2 significantly upregulated the CmDFR promoter and triggered anthocyanin accumulation when co-expressed with CmMYB6. Yeast one-hybrid analyses indicated that CmbHLH2 was able to bind directly to the CmDFR promoter. Moreover, yeast two-hybrid assays indicated protein-protein interaction between CmbHLH2 and CmMYB6. These results suggest that CmbHLH2 is the essential partner for CmMYB6 in regulating anthocyanin biosynthesis in chrysanthemum. PMID:26619181

  16. [Do elderly individuals with a cognitive handicap have worse oral health?].

    PubMed

    Ferreira, Raquel Conceição; Vargas, Andréa Maria Duarte; Fernandes, Neuma Carla Neves; Souza, João Gabriel Silva; Sá, Maria Aparecida Barbosa de; Oliveira, Lorenna Fonseca Braga de; Martins, Andréa Maria Eleutério de Barros Lima

    2014-08-01

    A comparison of the oral health of elderly people with and without a cognitive handicap was assessed. The cognitive condition, the indices of decayed, missing, filled teeth (DMFT), decayed, filled roots (DFR), the need for dental treatment, the presence of plaque (P), calculus (C), the community periodontal index (CPI), the rate of periodontal attachment loss (PAL), edentulism, prosthetic use and the need for prosthetics were evaluated in a complex probabilistic sample by conglomerates of the elderly (65-74 years). PASW(r) 17.0 was used for the statistical analyses with correction for the design effect, applying the Mann Whitney and chi-square test with 95% reliability. A total of 736 elderly individuals were interviewed and examined. Those with cognitive impairment had higher average DMFT, DFR and lower average healthy sextant CPI, a lower prevalence of sextants without plaque/calculus, use of prosthetics and higher prevalence of edentulism and need for prosthetics. Elderly individuals with a cognitive handicap had poorer oral health. PMID:25119081

  17. Antimicrobial Drug Resistance and Molecular Typing of Salmonella enterica Serovar Rissen from Different Sources.

    PubMed

    García-Fierro, Raquel; Montero, Ignacio; Bances, Margarita; González-Hevia, Maria Ángeles; Rodicio, María Rosario

    2016-04-01

    Salmonella enterica serovar Rissen is one of the most common serovars found in pigs and pork products in different countries, including Spain. However, information on the molecular bases of antimicrobial drug resistance and the population structure of Salmonella Rissen from different sources in Spain is limited. The present study focused on 84 isolates collected in Spain from pig and beef carcasses, foods and clinical samples associated with sporadic cases of gastroenteritis, and one outbreak. The majority of the isolates were resistant to tetracycline (73.8%), mainly conferred by tet(A). Resistances to streptomycin (aadA1-like, aadA2, and strAB), sulfonamides (sul1, sul2, and sul3), trimethoprim (dfrA1-like and dfrA12), ampicillin (blaTEM-1-like), and chloramphenicol (cmlA1-like) were also detected, with frequencies ranging from 12% to 20.2%. Most of the identified genes were carried by integrons, including three class 1 integrons of the sul1 type, a class 1 integron of the sul3 type, and the class 2 integron of Tn7. Two sul1 integrons, the sul3 integron, and the class 2 integron are first reported in Salmonella Rissen. Typing of the isolates with XbaI pulsed-field gel electrophoresis detected a major clone, which was circulating in humans and animals during the past decade, and was responsible for the outbreak. The obtained results are relevant for food safety and public health. PMID:26295933

  18. Influence of two-phase anaerobic digestion on fate of selected antibiotic resistance genes and class I integrons in municipal wastewater sludge.

    PubMed

    Wu, Ying; Cui, Erping; Zuo, Yiru; Cheng, Weixiao; Rensing, Christopher; Chen, Hong

    2016-07-01

    The response of representative antibiotic resistance genes (ARGs) to lab-scale two-phase (acidogenic/methanogenic phase) anaerobic digestion processes under thermophilic and mesophilic conditions was explored. The associated microbial communities and bacterial pathogens were characterized by 16S rRNA gene sequencing. A two-phase thermophilic digestion reduced the presence of tetA, tetG, tetX, sul1, ermB, dfrA1, dfrA12 and intI1 exhibiting 0.1-0.72 log unit removal; in contrast, tetO, tetW, sul3, ermF and blaTEM even increased relative to the feed, and sul2 showed no significant decrease. The acidogenic phase of thermophilic digestion was primarily responsible for reducing the quantity of these genes, while the subsequent methanogenic phase caused a rebound in their quantity. In contrast, a two-phase mesophilic digestion process did not result in reducing the quantity of all ARGs and intI1 except for ermB and blaTEM. ARGs patterns were correlated with Proteobacteria and Actinobacteria during the two-phase anaerobic digestion. PMID:27035472

  19. Antimicrobial Resistance and Spread of Class 1 Integrons among Salmonella Serotypes

    PubMed Central

    Guerra, Beatriz; Soto, Sara; Cal, Santiago; Mendoza, M. Carmen

    2000-01-01

    The resistance profiles, for 15 antimicrobial agents, of 333 Salmonella strains representing the most frequent nontyphoidal serotypes, isolated between 1989 and 1998 in a Spanish region, and 9 reference strains were analyzed. All strains were susceptible to amikacin, ceftazidime, ciprofloxacin, and imipenem, and 31% were susceptible to all antimicrobials tested. The most frequent types of resistance were to sulfadiazine, tetracycline, streptomycin, spectinomycin, ampicillin, and chloramphenicol (ranging from 46 to 22%); 13% were resistant to these six drugs. This multidrug resistance pattern was found alone or together with other resistance types within serotypes Typhimurium (45%), Panama (23%), and Virchow (4%). Each isolate was also screened for the presence of class 1 integrons and selected resistance genes therein; seven variable regions which carried one (aadA1a, aadA2, or pse-1) or two (dfrA14-aadA1a, dfrA1-aadA1a, oxa1-aadA1a, or sat1-aadA1a) resistance genes were found in integrons. PMID:10898692

  20. Antimicrobial resistance, virulence, and phylogenetic characteristics of Escherichia coli isolates from clinically healthy swine.

    PubMed

    Lay, Khin Khin; Koowattananukul, Chailai; Chansong, Nisit; Chuanchuen, Rungtip

    2012-11-01

    A total of 344 commensal Escherichia coli isolates from clinically healthy pigs were examined for antimicrobial resistance phenotypes, class 1 integrons, resistance genes, virulence gene profile, and phylogenetic groups. The majority of E. coli isolates were resistant to tetracycline (96.2%) and ampicillin (91.6%). Up to 98% were multidrug resistant. Seventy-three percent of the isolates carried class 1 integrons. Inserted-gene cassette arrays in variable regions included incomplete sat, aadA22, aadA1, dfrA12-aadA2, and sat-psp-aadA2, of which the aadA2 gene cassette was most prevalent (42.9%). Horizontal transfer was detected in eight E. coli isolates carrying class 1 integrons with dfrA12-aadA2 gene cassette array. Sixteen resistance genes were identified among the E. coli isolates with corresponding resistance phenotype. Ten virulence genes (including elt, estA, estB, astA, faeG, fasA, fedA, eaeA, paa, and sepA) were detected, of which fasA was most commonly found (98.3%). Most of the E. coli isolates belonged to phylogenetic group B1. Significantly positive associations were observed between some virulence genes and some resistance phenotypes and genotypes (p < 0.05). The results support a finding that commensal E. coli have a role as reservoirs for antimicrobial resistance-encoding genes and virulence determinants. PMID:22953741

  1. [Characterization of class 1 and class 2 integron gene cassettes in Escherichia coli strains isolated from urine cultures: a multicenter study].

    PubMed

    Çopur Çiçek, Ayşegül; Sandallı, Cemal; Budak, Emine Esra; Yağmur, Gülhan; Çizmeci, Zeynep; Ak, Sibel; Balcı, Pervin Özlem; Şay Coşkun, Safiye Umut; Ay Altıntop, Yasemin; Fırat, Mehmet; Sarı, Fatma; Çalışkan, Ahmet; Yıldız, Nazan; Sancaktar, Metin; Özgümüş, Osman Birol

    2016-04-01

    %-3.2%), respectively. The frequency of positive IntI1 gene and class 1 integron gene cassettes were found as 25.8% (162/626) and 16.6% (104/626), respectively, whereas the frequency of positive intI2 gene II and class 2 integron gene cassettes were 5.1% (32/626) and 3% (19/626), respectively. The lowest intI1 gene frequency was detected in the isolates from Kayseri (16.6%) and the highest in the isolates from Kahramanmaraş (35.4%) provinces. While there was no intI2 gene in the isolates from Denizli and Kayseri, the highest frequency was 12.1% in the isolates from Şanlıurfa province. dfrA1 gene, the most frequent gene among integron gene cassettes was positive in 31 class 1 integron gene cassette alone, and positive with aadA1 gene in 18 class 1 integron gene cassettes. dfrA1 gene was positive with aadA1a just in one isolate. dfrA17 allele was positive in one isolate alone, in 28 isolates with aadA1, and in 15 isolates with aadA5. aadA1 gene was detected in four isolates. dfrA17-sat-aadA5 co-existence was detected among class 2 integron gene cassette in isolates from six provinces. dfrA1-sat-aadA1 was detected in one isolate from Ankara province and dfrA1 was detected in one isolate in Niğde province only. As a result, dfrA1 and aadA1 genes are the most common types of genes among class 1 and class 2 integron gene cassettes in E.coli isolated from urine cultures. It was concluded that high resistance against streptomycin (31.2%) and SXT (41.2%) supported the dissemination of integron-mediated genes dfr, sul1 and aad in the isolates. PMID:27175490

  2. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    PubMed Central

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  3. A Novel bHLH Transcription Factor Involved in Regulating Anthocyanin Biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.)

    PubMed Central

    Li, Xue; Yin, Xue-ren; Grierson, Donald; Li, Fang; Chen, Kun-song

    2015-01-01

    Chrysanthemums (Chrysanthemum morifolium Ramat.) exhibit a variety of flower colors due to their differing abilities to accumulate anthocyanins. One MYB member, CmMYB6, has been verified as a transcription regulator of chrysanthemum genes involved in anthocyanin biosynthesis; however, the co-regulators for CmMYB6 remain unclear in chrysanthemum. Here, the expression pattern of CmbHLH2, which is clustered in the IIIf bHLH subgroup, was shown to be positively correlated with the anthocyanin content of cultivars with red, pink and yellow flower colors, respectively. CmbHLH2 significantly upregulated the CmDFR promoter and triggered anthocyanin accumulation when co-expressed with CmMYB6. Yeast one-hybrid analyses indicated that CmbHLH2 was able to bind directly to the CmDFR promoter. Moreover, yeast two-hybrid assays indicated protein-protein interaction between CmbHLH2 and CmMYB6. These results suggest that CmbHLH2 is the essential partner for CmMYB6 in regulating anthocyanin biosynthesis in chrysanthemum. PMID:26619181

  4. The sul1 gene in Stenotrophomonas maltophilia with high-level resistance to trimethoprim/sulfamethoxazole.

    PubMed

    Chung, Hae-Sun; Kim, Kyeongmi; Hong, Sang Sook; Hong, Seong Geun; Lee, Kyungwon; Chong, Yunsop

    2015-03-01

    Emerging resistance to trimethoprim/sulfamethoxazole (SXT) poses a serious threat to the treatment of Stenotrophomonas maltophilia infections. We determined the prevalence and molecular characteristics of acquired SXT resistance in recent clinical S. maltophilia isolates obtained from Korea. A total of 252 clinical isolates of S. maltophilia were collected from 10 university hospitals in Korea between 2009 and 2010. Antimicrobial susceptibility was determined by using the CLSI agar dilution method. The sul1, sul2, and sul3 genes, integrons, insertion sequence common region (ISCR) elements, and dfrA genes were detected using PCR. The presence of the sul1 gene and integrons was confirmed through sequence analysis. Among the 32 SXT-resistant isolates, sul1 was detected in 23 isolates (72%), all of which demonstrated high-level resistance (≥64 mg/L) to SXT. The sul1 gene (varying in size and structure) was linked to class 1 integrons in 15 of the 23 isolates (65%) harboring this gene. None of the SXT-susceptible isolates or the SXT-resistant isolates with a minimum inhibitory concentration of 4 and 8 mg/L were positive for sul1. Moreover, the sul2, sul3, and dfrA genes or the ISCR elements were not detected. The sul1 gene may play an important role in the high-level SXT resistance observed in S. maltophilia. PMID:25729729

  5. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species.

    PubMed

    Sharma, S K; Gautam, N

    2015-01-01

    The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65-70%) over SFA (30-35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities. PMID:26199938

  6. In vitro inhibition of cytochrome P450 3A4 by Aronia melanocarpa constituents.

    PubMed

    Bräunlich, Marie; Christensen, Hege; Johannesen, Siri; Slimestad, Rune; Wangensteen, Helle; Malterud, Karl E; Barsett, Hilde

    2013-01-01

    Extracts, subfractions, isolated anthocyanins and procyanidins, and two phenolic acids from aronia [Aronia melanocarpa] were investigated for their CYP3A4 inhibitory effects, using midazolam as the probe substrate and recombinant insect cell microsomes expressing CYP3A4 as the enzyme source. Procyanidin B5 was a considerably stronger CYP3A4 inhibitor in vitro than the isomeric procyanidin B2 and comparable to bergamottin, a known CYP3A4 inhibitor from grapefruit juice. The inhibitory activity of proanthocyanidin-containing fractions was correlated to the degree of polymerization. Among the anthocyanins, cyanidin 3-arabinoside showed stronger CYP3A4 inhibition than cyanidin 3-galactoside and cyanidin 3-glucoside. Thus, the ability to inhibit CYP3A4 in vitro seems to be influenced by the sugar unit linked to the anthocyanidin. PMID:23250807

  7. Crystal Structures of Glycosyltransferase UGT78G1 Reveal the Molecular Basis for Glycosylation and Deglycosylation of (Iso)flavonoids

    SciTech Connect

    Modolo, Luzia V.; Li, Lenong; Pan, Haiyun; Blount, Jack W.; Dixon, Richard A.; Wang, Xiaoqiang

    2010-09-21

    The glycosyltransferase UGT78G1 from Medicago truncatula catalyzes the glycosylation of various (iso)flavonoids such as the flavonols kaempferol and myricetin, the isoflavone formononetin, and the anthocyanidins pelargonidin and cyanidin. It also catalyzes a reverse reaction to remove the sugar moiety from glycosides. The structures of UGT78G1 bound with uridine diphosphate or with both uridine diphosphate and myricetin were determined at 2.1 {angstrom} resolution, revealing detailed interactions between the enzyme and substrates/products and suggesting a distinct binding mode for the acceptor/product. Comparative structural analysis and mutagenesis identify glutamate 192 as a key amino acid for the reverse reaction. This information provides a basis for enzyme engineering to manipulate substrate specificity and to design effective biocatalysts with glycosylation and/or deglycosylation activity.

  8. Susceptibility of anthocyanins to ex vivo degradation in human saliva

    PubMed Central

    Kamonpatana, Kom; Giusti, M. Mónica; Chitchumroonchokchai, Chureeporn; MorenoCruz, Maria; Riedl, Ken M.; Kumar, Purnima; Failla, Mark L.

    2013-01-01

    Some fruits and their anthocyanin-rich extracts have been reported to exhibit chemopreventive activity in the oral cavity. Insights regarding oral metabolism of anthocyanins remain limited. Anthocyanin-rich extracts from blueberry, chokeberry, black raspberry, red grape, and strawberry were incubated ex vivo with human saliva from 14 healthy subjects. All anthocyanins were partially degraded in saliva. Degradation of chokeberry anthocyanins in saliva was temperature dependent and decreased by heating saliva to 80 °C and after removal of cells. Glycosides of delphinidin and petunidin were more susceptible to degradation than those of cyanidin, pelargonidin, peonidin and malvidin in both intact and artificial saliva. Stability of di- and tri-saccharide conjugates of anthocyanidins slightly, but significantly, exceeded that of monosaccharide compounds. Ex vivo degradation of anthocyanins in saliva was significantly decreased after oral rinsing with antibacterial chlorhexidine. These results suggest that anthocyanin degradation in the mouth is structure-dependent and largely mediated by oral microbiota. PMID:22868153

  9. Structural Insights into Substrate Specificity of Feruloyl-CoA 6’-Hydroxylase from Arabidopsis thaliana

    PubMed Central

    Sun, Xinxiao; Zhou, Dayong; Kandavelu, Palani; Zhang, Hua; Yuan, Qipeng; Wang, Bi-Cheng; Rose, John; Yan, Yajun

    2015-01-01

    Coumarins belong to an important class of plant secondary metabolites. Feruloyl-CoA 6’-hydroxylase (F6’H), a 2-oxoglutarate dependent dioxygenase (2OGD), catalyzes a pivotal step in the biosynthesis of a simple coumarin scopoletin. In this study, we determined the 3-dimensional structure of the F6’H1 apo enzyme by X-ray crystallography. It is the first reported structure of a 2OGD enzyme involved in coumarin biosynthesis and closely resembles the structure of Arabidopsis thaliana anthocyanidin synthase. To better understand the mechanism of enzyme catalysis and substrate specificity, we also generated a homology model of a related ortho-hydroxylase (C2’H) from sweet potato. By comparing these two structures, we targeted two amino acid residues and verified their roles in substrate binding and specificity by site-directed mutagenesis. PMID:25993561

  10. Interaction between gliadins and anthocyan derivatives.

    PubMed

    Mazzaracchio, Palmira; Tozzi, Silvia; Boga, Carla; Forlani, Luciano; Pifferi, Pier Giorgio; Barbiroli, Giancarlo

    2011-12-01

    The interaction of gliadins with some anthocyanins (e.g. myrtillin, malvin, keracyanin, callistephin) and anthocyanidins (e.g. delphinidin, pelargonidin, cyanidin) has been analysed in aqueous solution at pH condition of the stomach, in which these compounds are initially metabolized. NMR, FT-IR and UV-Vis spectroscopic methods have been employed to determine the anthocyanin binding mode. The spectroscopic data seem to indicate that anthocyans are located along the polypeptide chains of gliadins in a generical molecular interaction between the two moieties. Our data do not exclude that hydrogen bonding interaction too is operating. Anthocyan-gliadins complexes are very soluble in acidic conditions. The results provide new insights into anthocyan-protein interaction and may have relevance to human health. PMID:25212343

  11. Antimicrobial effects of the stem bark extracts of Parkia biglobosa (Jacq.) Benth. on Shigellae.

    PubMed

    Millogo-Kone, H; Guissou, Ip; Nacoulma, O; Traore, A S

    2007-01-01

    Total and hydroalcoholic extracts of the stem barks of Parkia biglobosa (Jacq) Benth. (Mimosaceae) were tested on strains belonging to three species of Shigellae: S. dysenteriae, S. flexneri and S. boydii collected from hospitals in Ouagadougou, Burkina Faso. The results showed that both extracts were active against Shigellae. The hydroalcoholic extract was more active than the decoction (aqueous one) prescribed by the traditional healer. Both extracts were particularly effective against S. dysenteriae, the most virulent of the three pathogenic species. The effects of the extracts have been compared to that of gentamicin. The phytochemical screening on the extracts revealed the presence of sterols, triterpenes, polyphenolic compounds including tannins, flavonoids, coumarins, anthocyanidins. Other components are saponosides and reducing sugars. PMID:20161907

  12. Chemical, Bioactive, and Antioxidant Potential of Twenty Wild Culinary Mushroom Species

    PubMed Central

    Sharma, S. K.; Gautam, N.

    2015-01-01

    The chemical, bioactive, and antioxidant potential of twenty wild culinary mushroom species being consumed by the people of northern Himalayan regions has been evaluated for the first time in the present study. Nutrients analyzed include protein, crude fat, fibres, carbohydrates, and monosaccharides. Besides, preliminary study on the detection of toxic compounds was done on these species. Bioactive compounds evaluated are fatty acids, amino acids, tocopherol content, carotenoids (β-carotene, lycopene), flavonoids, ascorbic acid, and anthocyanidins. Fruitbodies extract of all the species was tested for different types of antioxidant assays. Although differences were observed in the net values of individual species all the species were found to be rich in protein, and carbohydrates and low in fat. Glucose was found to be the major monosaccharide. Predominance of UFA (65–70%) over SFA (30–35%) was observed in all the species with considerable amounts of other bioactive compounds. All the species showed higher effectiveness for antioxidant capacities. PMID:26199938

  13. Improved high performance liquid chromatographic separation of anthocyanin compounds from grapes using a novel mixed-mode ion-exchange reversed-phase column.

    PubMed

    McCallum, Jason L; Yang, Raymond; Young, J Christopher; Strommer, Judith N; Tsao, Rong

    2007-04-27

    A novel mixed mode HPLC method using a column combining both ion-exchange and reversed-phase separation mechanisms has been developed to facilitate analysis of anthocyanins in grapes. Chromatographic performance and subsequent analysis of anthocyanidin diglucosides and acylated compounds are significantly improved using the new column, compared to those associated with conventional C18 reversed-phase methods. The mixed mode column produces a distinctive eluting pattern for the different anthocyanin subgroups, avoiding overlaps found with C18 columns. The enhanced chromatographic resolution provides nearly complete separation of 37 anthocyanin types, and permits detection of delphinidin 3-O-(6''-O-caffeoyl) beta-D-glucoside for the first time in extracts of skins from Concord grapes. PMID:17382950

  14. Functional analysis of differentially expressed proteins in Chinese bayberry (Myrica rubra Sieb. et Zucc.) fruits during ripening.

    PubMed

    Chen, Yi-Yong; Zhang, Ze-Huang; Zhong, Can-Yu; Song, Xiao-Min; Lin, Qi-Hua; Huang, Chun-Mei; Huang, Rong-Hui; Chen, Wei

    2016-01-01

    This study developed a proteome reference map of Myrica rubra fruits at the green, pink and red stages during ripening using two-dimensional gel electrophoresis (2-DE). Forty-six differentially expressed proteins were detected in the gel, of which 43 were successfully identified by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry and protein database searching. We found that malic enzyme related to the decrease of organic acid acidity was up-regulated. The high abundance of pyruvate decarboxylase and alcohol dehydrogenase may contribute to fruit peculiar fragrant characteristics. Phenylalanine ammonia-lyase, chalcone synthase 11, UDP-glucose:flavonoid 3-O-glucosyltransferase, and anthocyanidin synthase, enzymes involved in the anthocyanin metabolic pathway, were all up-regulated. The physiological data agree with fruit proteome results. These findings provided insights into the metabolic processes and regulatory mechanisms during Chinese bayberry fruit ripening. PMID:26213036

  15. Structural insights into substrate specificity of Feruloyl-CoA 6’-Hydroxylase from Arabidopsis thaliana

    DOE PAGESBeta

    Sun, Xinxiao; Zhou, Dayong; Kandavelu, Palani; Zhang, Hua; Yuan, Qipeng; Wang, Bi -Cheng; Rose, John; Yan, Yajun

    2015-05-20

    Coumarins belong to an important class of plant secondary metabolites. Feruloyl-CoA 6’-hydroxylase (F6’H), a 2-oxoglutarate dependent dioxygenase (2OGD), catalyzes a pivotal step in the biosynthesis of a simple coumarin scopoletin. In this study, we determined the 3-dimensional structure of the F6’H1 apo enzyme by X-ray crystallography. It is the first reported structure of a 2OGD enzyme involved in coumarin biosynthesis and closely resembles the structure of Arabidopsis thaliana anthocyanidin synthase. To better understand the mechanism of enzyme catalysis and substrate specificity, we also generated a homology model of a related ortho-hydroxylase (C2’H) from sweet potato. By comparing these two structures,more » we targeted two amino acid residues and verified their roles in substrate binding and specificity by site-directed mutagenesis.« less

  16. Structural insights into substrate specificity of Feruloyl-CoA 6’-Hydroxylase from Arabidopsis thaliana

    SciTech Connect

    Sun, Xinxiao; Zhou, Dayong; Kandavelu, Palani; Zhang, Hua; Yuan, Qipeng; Wang, Bi -Cheng; Rose, John; Yan, Yajun

    2015-05-20

    Coumarins belong to an important class of plant secondary metabolites. Feruloyl-CoA 6’-hydroxylase (F6’H), a 2-oxoglutarate dependent dioxygenase (2OGD), catalyzes a pivotal step in the biosynthesis of a simple coumarin scopoletin. In this study, we determined the 3-dimensional structure of the F6’H1 apo enzyme by X-ray crystallography. It is the first reported structure of a 2OGD enzyme involved in coumarin biosynthesis and closely resembles the structure of Arabidopsis thaliana anthocyanidin synthase. To better understand the mechanism of enzyme catalysis and substrate specificity, we also generated a homology model of a related ortho-hydroxylase (C2’H) from sweet potato. By comparing these two structures, we targeted two amino acid residues and verified their roles in substrate binding and specificity by site-directed mutagenesis.

  17. De Novo Sequencing and Analysis of the Safflower Transcriptome to Discover Putative Genes Associated with Safflor Yellow in Carthamus tinctorius L.

    PubMed Central

    Liu, Xiuming; Dong, Yuanyuan; Yao, Na; Zhang, Yu; Wang, Nan; Cui, Xiyan; Li, Xiaowei; Wang, Yanfang; Wang, Fawei; Yang, Jing; Guan, Lili; Du, Linna; Li, Haiyan; Li, Xiaokun

    2015-01-01

    Safflower (Carthamus tinctorius L.), an important traditional Chinese medicine, is cultured widely for its pharmacological effects, but little is known regarding the genes related to the metabolic regulation of the safflower’s yellow pigment. To investigate genes related to safflor yellow biosynthesis, 454 pyrosequencing of flower RNA at different developmental stages was performed, generating large databases.In this study, we analyzed 454 sequencing data from different flowering stages in safflower. In total, 1,151,324 raw reads and 1,140,594 clean reads were produced, which were assembled into 51,591 unigenes with an average length of 679 bp and a maximum length of 5109 bp. Among the unigenes, 40,139 were in the early group, 39,768 were obtained from the full group and 28,316 were detected in both samples. With the threshold of “log2 ratio ≥ 1”, there were 34,464 differentially expressed genes, of which 18,043 were up-regulated and 16,421 were down-regulated in the early flower library. Based on the annotations of the unigenes, 281 pathways were predicted. We selected 12 putative genes and analyzed their expression levels using quantitative real time-PCR. The results were consistent with the 454 sequencing results. In addition, the expression of chalcone synthase, chalcone isomerase and anthocyanidin synthase, which are involved in safflor yellow biosynthesis and safflower yellow pigment (SYP) content, were analyzed in different flowering periods, indicating that their expression levels were related to SYP synthesis. Moreover, to further confirm the results of the 454 pyrosequencing, full-length cDNA of chalcone isomerase (CHI) and anthocyanidin synthase (ANS) were cloned from safflower petal by RACE (Rapid-amplification of cDNA ends) method according to fragment of the transcriptome. PMID:26516840

  18. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat.

    PubMed

    Mizzotti, Chiara; Ezquer, Ignacio; Paolo, Dario; Rueda-Romero, Paloma; Guerra, Rosalinda Fiorella; Battaglia, Raffaella; Rogachev, Ilana; Aharoni, Asaph; Kater, Martin M; Caporali, Elisabetta; Colombo, Lucia

    2014-12-01

    The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites) in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK) is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR), which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites. PMID:25521508

  19. De Novo Sequencing and Analysis of the Safflower Transcriptome to Discover Putative Genes Associated with Safflor Yellow in Carthamus tinctorius L.

    PubMed

    Liu, Xiuming; Dong, Yuanyuan; Yao, Na; Zhang, Yu; Wang, Nan; Cui, Xiyan; Li, Xiaowei; Wang, Yanfang; Wang, Fawei; Yang, Jing; Guan, Lili; Du, Linna; Li, Haiyan; Li, Xiaokun

    2015-01-01

    Safflower (Carthamus tinctorius L.), an important traditional Chinese medicine, is cultured widely for its pharmacological effects, but little is known regarding the genes related to the metabolic regulation of the safflower's yellow pigment. To investigate genes related to safflor yellow biosynthesis, 454 pyrosequencing of flower RNA at different developmental stages was performed, generating large databases.In this study, we analyzed 454 sequencing data from different flowering stages in safflower. In total, 1,151,324 raw reads and 1,140,594 clean reads were produced, which were assembled into 51,591 unigenes with an average length of 679 bp and a maximum length of 5109 bp. Among the unigenes, 40,139 were in the early group, 39,768 were obtained from the full group and 28,316 were detected in both samples. With the threshold of "log2 ratio ≥ 1", there were 34,464 differentially expressed genes, of which 18,043 were up-regulated and 16,421 were down-regulated in the early flower library. Based on the annotations of the unigenes, 281 pathways were predicted. We selected 12 putative genes and analyzed their expression levels using quantitative real time-PCR. The results were consistent with the 454 sequencing results. In addition, the expression of chalcone synthase, chalcone isomerase and anthocyanidin synthase, which are involved in safflor yellow biosynthesis and safflower yellow pigment (SYP) content, were analyzed in different flowering periods, indicating that their expression levels were related to SYP synthesis. Moreover, to further confirm the results of the 454 pyrosequencing, full-length cDNA of chalcone isomerase (CHI) and anthocyanidin synthase (ANS) were cloned from safflower petal by RACE (Rapid-amplification of cDNA ends) method according to fragment of the transcriptome. PMID:26516840

  20. SEEDSTICK is a Master Regulator of Development and Metabolism in the Arabidopsis Seed Coat

    PubMed Central

    Paolo, Dario; Rueda-Romero, Paloma; Guerra, Rosalinda Fiorella; Battaglia, Raffaella; Rogachev, Ilana; Aharoni, Asaph; Kater, Martin M.; Caporali, Elisabetta; Colombo, Lucia

    2014-01-01

    The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites) in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK) is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR), which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites. PMID:25521508

  1. Effects of methyl jasmonate on accumulation of flavonoids in seedlings of common buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Horbowicz, M; Wiczkowski, W; Koczkodaj, Danuta; Saniewski, M

    2011-09-01

    The jasmonates, which include jasmonic acid and its methyl ester (MJ), play a central role in regulating the biosynthesis of many secondary metabolites, including flavonoids, and also are signaling molecules in environmental stresses. Synthesis of anthocyanins pigments is a final part of flavonoids pathway route. Accumulation of the pigments in young seedlings is stimulated by various environmental stresses, such as high-intensity light, wounding, pathogen attack, drought, sugar and nutrient deficiency. The anthocyanins take part in defense system against excess of light and UV-B light, and therefore it is probably main reason why young plant tissues accumulate enlarged levels of the pigments. The effects of exogenously applied MJ on level of anthocyanins, glycosides of apigenin, luteolin, quercetin and proanthocyanidins in seedlings of common buckwheat (Fagopyrum esculentum Moench) were studied. MJ decreased contents of all the found cyanidin glycosides and its aglycone in hypocotyls of buckwheat seedlings. However contents of particular anthocyanins in cotyledons of buckwheat seedlings treated with the plant hormone were not significantly different from the control. Applied doses of MJ did not affect levels of quercetin, apigenin and luteolin glycosides in the analyzed parts of buckwheat seedlings: cotyledons and hypocotyls. On the other hand, treatment of buckwheat seedlings with MJ clearly stimulated of proanthocyanidins biosynthesis in hypocotyls. We suggest that methyl jasmonate induces in hypocotyls of buckwheat seedlings the leucocyanidin reductase or anthocyanidin reductase, possible enzymes in proanthocyanidins synthesis, and/or inhibits anthocyanidin synthase, which transforms leucocyanidin into cyanidin. According to our knowledge this is the first report regarding the effect of methyl jasmonate on enhancing the accumulation of proanthocyanidins in cultivated plants. PMID:21840829

  2. Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from Syzygium cumini L. (‘jamun’, the Indian Blackberry)

    PubMed Central

    Aqil, Farrukh; Gupta, Akash; Munagala, Radha; Jeyabalan, Jeyaprakash; Kausar, Hina; Sharma, Ramjee; Singh, Inder Pal; Gupta, Ramesh C.

    2012-01-01

    Colored fruits, particularly berries, are highly chemoprotective because of their antioxidant, anti-proliferative and anti-inflammatory activities. We report cancer chemoprotective potential of Syzygium cumini L., commonly known as ‘jamun’ or Indian blackberry. Anthocyanins and other polyphenolics were extracted with acidic ethanol, and enriched by amberlite XAD7/HP20 (1:1). The pulp powder was found to contain 0.54% anthocyanins, 0.17% ellagic acid/ellagitannins and 1.15% polyphenolics. Jamun seed contained no detectable anthocyanins, but had higher amounts of ellagic acid/ellagitannins (0.5%) and total polyphenolics (2.7%) than the pulp powder. Upon acid hydrolysis, the pulp extract yielded five anthocyanidins by HPLC: malvidin (44.4%), petunidin (24.2%), delphinidin (20.3%), cyanidin (6.6%), and peonidin (2.2%). Extracts of both jamun pulp (1,445±64 μmol of trolox equivalent (TE)/g) and seeds (3,379±151 μM of TE/g) showed high oxygen radical absorbance capacity (ORAC). Their high antioxidant potential was also reflected by 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS)- and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging, and ferrous ion-chelating activities. We also analyzed anti-proliferative activity of jamun extracts against human lung cancer A549 cells. The hydrolyzed pulp and seed extracts showed significant antiproliferative activity. However, unhydrolyzed extracts showed much less activity. These data showed that in addition to five anthocyanidins, jamun contains appreciable amounts of ellagic acid/ellagitannins, with high antioxidant and antiproliferative activities. PMID:22420901

  3. Chemical composition of Solanum nigrum linn extract and induction of autophagy by leaf water extract and its major flavonoids in AU565 breast cancer cells.

    PubMed

    Huang, Hsiu-Chen; Syu, Kai-Yang; Lin, Jen-Kun

    2010-08-11

    Solanum nigrum Linn (SN) belongs to the Solanaceae family, is a plant growing widely in south Asia, and has been used in traditional folk medicine. It is believed to have antipyretic, diuretic, anticancer, and hepatoprotective effects. During the summertime, this plant has been heavily used to supplement beverages to quench thirst on hot days in Taiwan and several southern Asian countries. In this study, the polyphenols and anthocyanidin in various parts of the SN plant were analyzed by HPLC. The leaves were found to be richer in polyphenols than stem and fruit. SN leaves contained the highest concentration of gentisic acid, luteolin, apigenin, kaempferol, and m-coumaric acid. However, the anthocyanidin existed only in the purple fruits. Additionally, the cytotoxicity of the leaf, stem, or fruit extract was evaluated against cancer cell lines and normal cells. The results showed that AU565 breast cancer cells were more sensitive to the extract. Furthermore, the results demonstrated a significant cytotoxic effect of SN leaf extract on AU565 cells that was mediated via two different mechanisms depending on the exposure concentrations. A low dose of SN leaf extract induced autophagy but not apoptosis. Higher doses (>100 microg/mL) of SN leaf extract could inhibit the level of p-Akt and cause cell death due to the induction of autophagy and apoptosis. However, these findings indicate that SN leaf extract induced cell death in breast cells via two distinct antineoplastic activities, the abilities to induce apoptosis and autophagy, therefore suggesting that it may provide a useful remedy to treat breast cancer. PMID:20681660

  4. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8.

    PubMed

    Li, Penghui; Chen, Beibei; Zhang, Gaoyang; Chen, Longxiang; Dong, Qiang; Wen, Jiangqi; Mysore, Kirankumar S; Zhao, Jian

    2016-05-01

    The MYB- basic helix-loop-helix (bHLH)-WD40 complexes regulating anthocyanin and proanthocyanidin (PA) biosynthesis in plants are not fully understood. Here Medicago truncatula bHLH MtTT8 was characterized as a central component of these ternary complexes that control anthocyanin and PA biosynthesis. Mttt8 mutant seeds have a transparent testa phenotype with reduced PAs and anthocyanins. MtTT8 restores PA and anthocyanin productions in Arabidopsis tt8 mutant. Ectopic expression of MtTT8 restores anthocyanins and PAs in mttt8 plant and hairy roots and further enhances both productions in wild-type hairy roots. Transcriptomic analyses and metabolite profiling of mttt8 mutant seeds and M. truncatula hairy roots (mttt8 mutant, mttt8 mutant complemented with MtTT8, or MtTT8 overexpression lines) indicate that MtTT8 regulates a subset of genes involved in PA and anthocyanin biosynthesis. MtTT8 is genetically regulated by MtLAP1, MtPAR and MtWD40-1. Combinations of MtPAR, MtLAP1, MtTT8 and MtWD40-1 activate MtTT8 promoter in yeast assay. MtTT8 interacts with these transcription factors to form regulatory complexes. MtTT8, MtWD40-1 and an MYB factor, MtPAR or MtLAP1, interacted and activated promoters of anthocyanidin reductase and anthocyanidin synthase to regulate PA and anthocyanin biosynthesis, respectively. Our results provide new insights into the complex regulation of PA and anthocyanin biosynthesis in M. truncatula. PMID:26725247

  5. Progesterone 5β-reductase genes of the Brassicaceae family as function-associated molecular markers.

    PubMed

    Munkert, J; Costa, C; Budeanu, O; Petersen, J; Bertolucci, S; Fischer, G; Müller-Uri, F; Kreis, W

    2015-11-01

    This study aimed to define progesterone 5β-reductases (P5βR, EC 1.3.99.6, enone 1,4-reductases) as function-associated molecular markers at the plant family level. Therefore cDNAs were isolated from 25 Brassicaceae species, including two species, Erysimum crepidifolium and Draba aizoides, known to produce cardiac glycosides. The sequences were used in a molecular phylogeny study. The cladogram created is congruent to the existing molecular analyses. Recombinant His-tagged forms of the P5βR cDNAs from Aethionema grandiflorum, Draba aizoides, Nasturtium officinale, Raphanus sativus and Sisymbrium officinale were expressed in E. coli. Enone 1,4-reductase activity was demonstrated in vitro using progesterone and 2-cyclohexen-1-one as substrates. Evidence is provided that functional P5βRs are ubiquitous in the Brassicaceae. The recombinant P5βR enzymes showed different substrate preferences towards progesterone and 2-cyclohexen-1-one. Sequence comparison of the catalytic pocket of the P5βR enzymes and homology modelling using Digitalis lanata P5βR (PDB ID: 2V6G) as template highlighted the importance of the hydrophobicity of the binding pocket for substrate discrimination. It is concluded that P5βR genes or P5βR proteins can be used as valuable function-associated molecular markers to infer taxonomic relationship and evolutionary diversification from a metabolic/catalytic perspective. PMID:26108256

  6. Prevalence and characteristics of extended-spectrum β-lactamase genes in Escherichia coli isolated from piglets with post-weaning diarrhea in Heilongjiang province, China

    PubMed Central

    Xu, Guofeng; An, Wei; Wang, Hongdong; Zhang, Xiuying

    2015-01-01

    Objectives: The purpose of this study was to investigate the prevalence of extended spectrum β-lactamase (ESBL) genes in Escherichia coli isolated from post-weaning diarrhea (PWD) piglets in Heilongjiang province, China. Methods: Of 458 E. coli isolated from 589 fecal samples from PWD piglets, a total of 198 isolates were confirmed as ESBL producers by the double-disk synergy test (DDST). Polymerase chain reaction (PCR) and sequencing were performed to identify genes for ESBL, plasmid-mediated quinolone resistance (PMQR), and integrons. Results: Of the 198 isolates, blaCTX−M and blaTEM were detected in 191 and 149 isolates, respectively. Sequencing revealed that 10 blaCTX−M subtypes were detected, and blaCTX−M−14 was the most prevalent, followed by blaCTX−M−55 and blaCTX−M−65. Of the 149 TEM-positive strains, four were blaTEM−52 and the rest were blaTEM−1. Among the 198 ESBL-positive isolates, 173 isolates were found to harbor at least one PMQR gene, with oqxAB, qnrS, qnrB, qepA, and aac(6′)-Ib-cr being detected alone or in combination in 125, 114, 26, 24, and 45 strains, respectively. One hundred and fifty-five ESBL-positive isolates were also positive for class I integron (int1), and eight different gene cassette arrays were confirmed in 110 isolates by restriction fragment length polymorphism (RFLP) and DNA sequencing analyses, with predominance of dfrA17-aadA5, dfrA12-orfF-aadA2, and dfrA1-aadA1 arrays. Conclusion: To the best of our knowledge, this is the first report of the blaTEM−52 gene in pig E. coli isolates in China and this is also the first description of the coexistence of the qnrB, qnrS, aac(6′)-Ib-cr, qepA, and oqxAB genes in one E. coli strain. PMID:26500640

  7. Identification of integrons and phylogenetic groups of drug-resistant Escherichia coli from broiler carcasses in China.

    PubMed

    Wu, Hao; Xia, Shibo; Bu, Fanyun; Qi, Jing; Liu, Yuqing; Xu, Hai

    2015-10-15

    The dissemination of drug-resistant Escherichia coli in poultry products is becoming a public concern, as it endangers food security and human health. It is very common for E. coli to exhibit drug resistance in the poultry industry in China due to the excessive use of antibiotics. However, few studies have examined the drug resistance endowed by integrons and integron-associated gene cassettes in different phylogenetic groups of E. coli isolated from broiler carcasses. In this study, 373 antibiotic-resistant E. coli strains were isolated from the surfaces or insides of broiler carcasses from a slaughterhouse in Shandong Province, China. According to phylogenetic assays of chuA, yjaA, and an anonymous DNA fragment, TSPE4-C2, these isolates belong to four phylogenetic groups (A, B1, B2, and D) and seven subgroups (A0, A1, B1, B21, B22, D1, and D2). Of the tested isolates, 95.71% (n=357) are multi-drug resistant, among which group B1 was predominant, accounting for 33.51% (n=125) of the tested isolates. A high percentage of the E. coli isolates were resistant to amoxicillin-clavulanic acid (99.20%, n=370), doxycycline (92.23%, n=344), sulfamethoxazole-trimethoprim (90.88%, n=339), ciprofloxacin, (64.61%, n=241), sulbactam-cefoperazone (51.21%, n=191), and amikacin (33.78%, n=126). Furthermore, among the 373 isolates, class 1 and 2 integrons were identified in 292 (78.28%) and 49 (13.14%) of the isolates, respectively, while no class 3 integrons were detected. The most prevalent gene cassette arrays were dfrA17-aadA5 and dfrA12-orfF-aadA2 in the variable region of class 1 integrons, while only one gene cassette array (dfrA1-sat2-aadA1) was detected in the variable region of class 2 integrons. Class 1 integrons were distributed in various physiological subtypes, whereas no predominant phylogenetic groups could be identified. The presence of class 2 integrons in the B21 subtype was significantly higher than in the other subtypes, and it coexisted with the class 1

  8. Static and Dynamic Postural Changes after a Mountain Ultra-Marathon of 80 km and 5500 D.

    PubMed

    Marcolin, Giuseppe; Grainer, Alessandro; Reggiani, Carlo; Bisiacchi, Patrizia; Cona, Giorgia; Petrone, Nicola; Paoli, Antonio

    2016-01-01

    The study aimed to investigate the effect of fatigue on static and dynamic postural stability after completing a mountain ultra-marathon. Twelve male athletes participated in the study. Postural stability was assessed before and immediately after the race. Static postural stability was evaluated on a dynamometric platform with eyes opened (OE) and closed (CE). Dynamic postural stability was assessed with OE on an instrumented plate which allowed medio-lateral oscillations. Stabilometric data were affected by fatigue in the OE condition, concerning sway path velocity (p = 0.0006), sway area velocity (p = 0.0006), area of the confidence ellipse (p = 0.0016), maximal anterior-posterior (AP) (p = 0.0017) and medio-lateral (ML) (p = 0.0039) oscillations. In the CE condition the sway path velocity (p = 0.0334), the maximal ML oscillations (p = 0.0161) and the area of the confident ellipse (p = 0.0180) were also negatively influenced. Stabilogram diffusion analysis showed in the OE condition an increase of short-term diffusion coefficients considering the anterior-posterior direction (Dfys; p = 0.0023) and the combination of the two (Dfr2s; p = 0.0032). Equally, long term diffusion coefficients increased considering the anterior-posterior direction (Dfyl; p = 0.0093) and the combination of the two (Dfr2l; p = 0.0086). In CE condition greater values were detected for medio-lateral direction (Dfxl; p = 0.033), anterior-posterior direction (Dfyl; p = 0.0459) and the combination of the two (Dfr2l; p = 0.0048). The dynamic postural stability test showed an increase of the time spent with the edges of the plate on the floor (p = 0.0152). Our results showed that mountain ultra-marathon altered static stability more than dynamic stability. An involvement of cognitive resources to monitor postural stability after fatiguing could be the explanation of the worsening in the automatic task (quiet standing) and of the positive compensation in the less automatic task (dynamic standing

  9. Two LcbHLH Transcription Factors Interacting with LcMYB1 in Regulating Late Structural Genes of Anthocyanin Biosynthesis in Nicotiana and Litchi chinensis During Anthocyanin Accumulation

    PubMed Central

    Lai, Biao; Du, Li-Na; Liu, Rui; Hu, Bing; Su, Wen-Bing; Qin, Yong-Hua; Zhao, Jie-Tang; Wang, Hui-Cong; Hu, Gui-Bing

    2016-01-01

    Anthocyanin biosynthesis requires the MYB-bHLH-WD40 protein complex to activate the late biosynthetic genes. LcMYB1 was thought to act as key regulator in anthocyanin biosynthesis of litchi. However, basic helix-loop-helix proteins (bHLHs) as partners have not been identified yet. The present study describes the functional characterization of three litchi bHLH candidate anthocyanin regulators, LcbHLH1, LcbHLH2, and LcbHLH3. Although these three litchi bHLHs phylogenetically clustered with bHLH proteins involved in anthcoyanin biosynthesis in other plant, only LcbHLH1 and LcbHLH3 were found to localize in the nucleus and physically interact with LcMYB1. The transcription levels of all these bHLHs were not coordinated with anthocyanin accumulation in different tissues and during development. However, when co-infiltrated with LcMYB1, both LcbHLH1 and LcbHLH3 enhanced anthocyanin accumulation in tobacco leaves with LcbHLH3 being the best inducer. Significant accumulation of anthocyanins in leaves transformed with the combination of LcMYB1 and LcbHLH3 were noticed, and this was associated with the up-regulation of two tobacco endogenous bHLH regulators, NtAn1a and NtAn1b, and late structural genes, like NtDFR and NtANS. Significant activity of the ANS promoter was observed in transient expression assays either with LcMYB1-LcbHLH1 or LcMYB1-LcbHLH3, while only minute activity was detected after transformation with only LcMYB1. In contrast, no activity was measured after induction with the combination of LcbHLH2 and LcMYB1. Higher DFR expression was also oberseved in paralleling with higher anthocyanins in co-transformed lines. LcbHLH1 and LcbHLH3 are essential partner of LcMYB1 in regulating the anthocyanin production in tobacco and probably also in litchi. The LcMYB1-LcbHLH complex enhanced anthocyanin accumulation may associate with activating the transcription of DFR and ANS. PMID:26925082

  10. A Genomic Score Prognostic of Outcome in Trauma Patients

    PubMed Central

    Warren, H Shaw; Elson, Constance M; Hayden, Douglas L; Schoenfeld, David A; Cobb, J Perren; Maier, Ronald V; Moldawer, Lyle L; Moore, Ernest E; Harbrecht, Brian G; Pelak, Kimberly; Cuschieri, Joseph; Herndon, David N; Jeschke, Marc G; Finnerty, Celeste C; Brownstein, Bernard H; Hennessy, Laura; Mason, Philip H; Tompkins, Ronald G

    2009-01-01

    Traumatic injuries frequently lead to infection, organ failure, and death. Health care providers rely on several injury scoring systems to quantify the extent of injury and to help predict clinical outcome. Physiological, anatomical, and clinical laboratory analytic scoring systems (Acute Physiology and Chronic Health Evaluation [APACHE], Injury Severity Score [ISS]) are utilized, with limited success, to predict outcome following injury. The recent development of techniques for measuring the expression level of all of a person’s genes simultaneously may make it possible to develop an injury scoring system based on the degree of gene activation. We hypothesized that a peripheral blood leukocyte gene expression score could predict outcome, including multiple organ failure, following severe blunt trauma. To test such a scoring system, we measured gene expression of peripheral blood leukocytes from patients within 12 h of traumatic injury. cRNA derived from whole blood leukocytes obtained within 12 h of injury provided gene expression data for the entire genome that were used to create a composite gene expression score for each patient. Total blood leukocytes were chosen because they are active during inflammation, which is reflective of poor outcome. The gene expression score combines the activation levels of all the genes into a single number which compares the patient’s gene expression to the average gene expression in uninjured volunteers. Expression profiles from healthy volunteers were averaged to create a reference gene expression profile which was used to compute a difference from reference (DFR) score for each patient. This score described the overall genomic response of patients within the first 12 h following severe blunt trauma. Regression models were used to compare the association of the DFR, APACHE, and ISS scores with outcome. We hypothesized that patients with a total gene response more different from uninjured volunteers would tend to have poorer

  11. Antimicrobial Resistance, Extended-Spectrum β-Lactamase Productivity, and Class 1 Integrons in Escherichia coli from Healthy Swine.

    PubMed

    Changkaew, Kanjana; Intarapuk, Apiradee; Utrarachkij, Fuangfa; Nakajima, Chie; Suthienkul, Orasa; Suzuki, Yasuhiko

    2015-08-01

    Administration of antimicrobials to food-producing animals increases the risk of higher antimicrobial resistance in the normal intestinal flora of these animals. The present cross-sectional study was conducted to investigate antimicrobial susceptibility and extended-spectrum β-lactamase (ESBL)-producing strains and to characterize class 1 integrons in Escherichia coli in healthy swine in Thailand. All 122 of the tested isolates had drug-resistant phenotypes. High resistance was found to ampicillin (98.4% of isolates), chloramphenicol (95.9%), gentamicin (78.7%), streptomycin (77.9%), tetracycline (74.6%), and cefotaxime (72.1%). Fifty-four (44.3%) of the E. coli isolates were confirmed as ESBL-producing strains. Among them, blaCTX-M (45 isolates) and blaTEM (41 isolates) were detected. Of the blaCTX-M-positive E. coli isolates, 37 carried the blaCTX-M-1 cluster, 12 carried the blaCTX-M-9 cluster, and 5 carried both clusters. Sequence analysis revealed blaTEM-1, blaTEM-135, and blaTEM-175 in 38, 2, and 1 isolate, respectively. Eighty-seven (71%) of the 122isolates carried class 1 integrons, and eight distinct drug-resistance gene cassettes with seven different integron profiles were identified in 43 of these isolates. Gene cassettes were associated with resistance to aminoglycosides (aadA1, aadA2, aadA22, or aadA23), trimethoprim (dfrA5, dfrA12, or dfrA17), and lincosamide (linF). Genes encoding β-lactamases were not found in class 1 integrons. This study is the first to report ESBL-producing E. coli with a class 1 integron carrying the linF gene cassette in swine in Thailand. Our findings confirm that swine can be a reservoir of ESBL-producing E. coli harboring class 1 integrons, which may become a potential health risk if these integrons are transmitted to humans. Intensive analyses of animal, human, and environmental isolates are needed to control the spread of ESBL-producing E. coli strains. PMID:26219356

  12. Static and Dynamic Postural Changes after a Mountain Ultra-Marathon of 80 km and 5500 D+

    PubMed Central

    Marcolin, Giuseppe; Grainer, Alessandro; Reggiani, Carlo; Bisiacchi, Patrizia; Cona, Giorgia; Petrone, Nicola

    2016-01-01

    The study aimed to investigate the effect of fatigue on static and dynamic postural stability after completing a mountain ultra-marathon. Twelve male athletes participated in the study. Postural stability was assessed before and immediately after the race. Static postural stability was evaluated on a dynamometric platform with eyes opened (OE) and closed (CE). Dynamic postural stability was assessed with OE on an instrumented plate which allowed medio-lateral oscillations. Stabilometric data were affected by fatigue in the OE condition, concerning sway path velocity (p = 0.0006), sway area velocity (p = 0.0006), area of the confidence ellipse (p = 0.0016), maximal anterior-posterior (AP) (p = 0.0017) and medio-lateral (ML) (p = 0.0039) oscillations. In the CE condition the sway path velocity (p = 0.0334), the maximal ML oscillations (p = 0.0161) and the area of the confident ellipse (p = 0.0180) were also negatively influenced. Stabilogram diffusion analysis showed in the OE condition an increase of short-term diffusion coefficients considering the anterior-posterior direction (Dfys; p = 0.0023) and the combination of the two (Dfr2s; p = 0.0032). Equally, long term diffusion coefficients increased considering the anterior-posterior direction (Dfyl; p = 0.0093) and the combination of the two (Dfr2l; p = 0.0086). In CE condition greater values were detected for medio-lateral direction (Dfxl; p = 0.033), anterior-posterior direction (Dfyl; p = 0.0459) and the combination of the two (Dfr2l; p = 0.0048). The dynamic postural stability test showed an increase of the time spent with the edges of the plate on the floor (p = 0.0152). Our results showed that mountain ultra-marathon altered static stability more than dynamic stability. An involvement of cognitive resources to monitor postural stability after fatiguing could be the explanation of the worsening in the automatic task (quiet standing) and of the positive compensation in the less automatic task (dynamic standing

  13. Characterisation of IncA/C2 plasmids carrying an In416-like integron with the blaVIM-19 gene from Klebsiella pneumoniae ST383 of Greek origin.

    PubMed

    Papagiannitsis, Costas C; Dolejska, Monika; Izdebski, Radosław; Giakkoupi, Panagiota; Skálová, Anna; Chudějová, Kateřina; Dobiasova, Hana; Vatopoulos, Alkiviadis C; Derde, Lennie P G; Bonten, Marc J M; Gniadkowski, Marek; Hrabák, Jaroslav

    2016-02-01

    The complete nucleotide sequences of three multidrug resistance (MDR) IncA/C-like plasmids from Enterobacteriaceae isolates carrying the VIM-type carbapenemase-encoding integrons In4863 (blaVIM-19-aacA7-dfrA1-ΔaadA1-smr2) or In4873 (blaVIM-1-aacA7-dfrA1-ΔaadA1-smr2) were determined, which are the first In416-like elements identified in Greece. Plasmids pKP-Gr642 and pKP-Gr8143 were from Klebsiella pneumoniae ST383 isolates, whereas plasmid pEcl-Gr4873 was from an Enterobacter cloacae ST88 isolate. Sequencing showed that pKP-Gr642 (162787bp) and pKP-Gr8143 (154395bp) consisted of the type 1 IncA/C2 conserved backbone, the blaCMY-2-like gene-containing region, and the ARI-B (with the sul2 gene) and ARI-A (with a class 1 integron) resistance islands, like the plasmid pUMNK88_161 from the USA. The third plasmid, pEcl-Gr4873 (153958bp), exhibited extensive similarity with the type 2 IncA/C2 plasmid pR55 from France. pEcl-Gr4873 carried only one resistance island of a hybrid transposon structure inserted in a different location to ARI-A in type 1 A/C2 plasmids. In all three plasmids, the In416-like integrons In4863 or In4873 were identified within non-identical class II transposon structures. All three In416-like-carrying regions presented significant similarities with the MDR region of the IncA/C2 plasmid pCC416 from Italy, carrying the prototype In416 integron (blaVIM-4-aacA7-dfrA1-ΔaadA1-smr2). These findings provided the basis for speculations regarding the evolution of IncA/C2 plasmids with In416-like integrons, and confirmed the rapid evolution of some IncA/C2 plasmid lineages. Considering the broad host range of IncA/C2 molecules, it seems that pKP-Gr642, pKP-Gr8143 and pEcl-Gr4873 plasmids might support the diffusion of In416-like integrons among Enterobacteriaceae. PMID:26795022

  14. Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis.

    PubMed

    Wiśniewska, A; Dąbrowska-Bronk, J; Szafrański, K; Fudali, S; Święcicka, M; Czarny, M; Wilkowska, A; Morgiewicz, K; Matusiak, J; Sobczak, M; Filipecki, M

    2013-06-01

    The potato cyst nematode (Globodera rostochiensis) induces feeding sites (syncytia) in tomato and potato roots. In a previous study, 135 tomato genes up-regulated during G. rostochiensis migration and syncytium development were identified. Five genes (CYP97A29, DFR, FLS, NIK and PMEI) were chosen for further study to examine their roles in plant-nematode interactions. The promoters of these genes were isolated and potential cis regulatory elements in their sequences were characterized using bioinformatics tools. Promoter fusions with the β-glucuronidase gene were constructed and introduced into tomato and potato genomes via transformation with Agrobacterium rhizogenes to produce hairy roots. The analysed promoters displayed different activity patterns in nematode-infected and uninfected transgenic hairy roots. PMID:23129482

  15. Pesticides re-entry dermal exposure of workers in greenhouses.

    PubMed

    Caffarelli, V; Conte, E; Correnti, A; Gatti, R; Musmeci, F; Morali, G; Spagnoli, G; Tranfo, G; Triolo, L; Vita, M; Zappa, G

    2004-01-01

    This research has the aim to evaluate the risk of pesticide dermal exposure for workers in greenhouses. We considered the following crops: tomato, cucumber and strawberry, largely spread in Bracciano lake district. The pesticides monitored were: tetradifon on strawberry: metalaxyl, azoxystrobin and fenarimol on cucumber; acrinathrin, azoxystrobin and chlorpyrifos ethyl on tomato. The dermal exposure was evaluated by Dislodgeable Foliar Residue (DFR) measurements employing transfer coefficients got from literature. For risk evaluation, we have compared the dermal exposures with Acceptable Operator Exposure Levels (AOEL). The re-entry time were obtained intercepting the dose decay curves with AOEL values. The re-entry times result higher than two days in the cases of chlorpyrifos on tomato (re-entry time: 3 days), azoxystrobin on tomato (4 days), and tetradifon on strawberry (8 days). The need of measuring specific transfer coefficients is pointed out. PMID:15756864

  16. Effective Route Maintenance and Restoration Schemes in Mobile Ad Hoc Networks

    PubMed Central

    Kang, Byung-Seok; Ko, In-Young

    2010-01-01

    This study proposes a location-based hybrid routing protocol to improve data packet delivery and to reduce control message overhead in mobile ad hoc networks. In mobile environments, where nodes move continuously at a high speed, it is generally difficult to maintain and restore route paths. Therefore, this study suggests a new flooding mechanism to control route paths. The essence of the proposed scheme is its effective tracking of the destination’s location based on the beacon messages of the main route nodes. Through experiments based on an NS-2 simulator, the proposed scheme shows improvements in the data packet delivery ratio and reduces the amount of routing control message overhead compared with existing routing protocols such as AODV, LAR, ZRP and AODV-DFR. PMID:22315570

  17. Integron, Plasmid and Host Strain Characteristics of Escherichia coli from Humans and Food Included in the Norwegian Antimicrobial Resistance Monitoring Programs

    PubMed Central

    Sunde, Marianne; Simonsen, Gunnar Skov; Slettemeås, Jannice Schau; Böckerman, Inger; Norström, Madelaine

    2015-01-01

    Antimicrobial resistant Escherichia coli (n=331) isolates from humans with bloodstream infections were investigated for the presence of class 1 and class 2 integrons. The integron cassettes arrays were characterized and the findings were compared with data from similar investigations on resistant E. coli from meat and meat products (n=241) produced during the same time period. All isolates were obtained from the Norwegian monitoring programs for antimicrobial resistance in human pathogens and in the veterinary sector. Methods used included PCR, sequencing, conjugation experiments, plasmid replicon typing and subtyping, pulsed-field-gel-electrophoresis and serotyping. Integrons of class 1 and 2 occurred significantly more frequently among human isolates; 45.4% (95% CI: 39.9-50.9) than among isolates from meat; 18% (95% CI: 13.2 -23.3), (p<0.01, Chi-square test). Identical cassette arrays including dfrA1-aadA1, aadA1, dfrA12-orfF-aadA2, oxa-30-aadA1 (class 1 integrons) and dfrA1-sat1-aadA1 (class 2 integrons) were detected from both humans and meat. However, the most prevalent cassette array in human isolates, dfrA17-aadA5, did not occur in isolates from meat, suggesting a possible linkage between this class 1 integron and a subpopulation of E. coli adapted to a human host. The drfA1-aadA1 and aadA1 class 1 integrons were found frequently in both human and meat isolates. These isolates were subjected to further studies to investigate similarities with regard to transferability, plasmid and host strain characteristics. We detected incF plasmids with pMLST profile F24:A-:B1 carrying drfA1-aadA1 integrons in isolates from pork and in a more distantly related E. coli strain from a human with septicaemia. Furthermore, we showed that most of the class 1 integrons with aadA1 were located on incF plasmids with pMLST profile F51:A-:B10 in human isolates. The plasmid was present in unrelated as well as closely related host strains, demonstrating that dissemination of this

  18. Diode laser using narrow bandwidth interference filter at 852 nm and its application in Faraday anomalous dispersion optical filter

    NASA Astrophysics Data System (ADS)

    Jiang, Zhaojie; Zhou, Qi; Tao, Zhiming; Zhang, Xiaogang; Zhang, Shengnan; Zhu, Chuanwen; Lin, Pingwei; Chen, Jingbiao

    2016-08-01

    We demonstrate an 852-nm external cavity diode laser (ECDL) system whose wavelength is mainly determined by an interference filter instead of other wavelength selective elements. The Lorentzian linewidth measured by the heterodyne beating between two identical lasers is 28.3 kHz. Moreover, we test the application of the ECDL in the Faraday atomic filter. Besides saturated absorption spectrum, the transmission spectrum of the Faraday atomic filter at 852 nm is measured by using the ECDL. This interference filter ECDL method can also be extended to other wavelengths and widen the application range of diode laser. Project supported by the National Natural Science Foundation of China (Grant No. 91436210) and the International Science and Technology Cooperation Program of China (Grant No. 2010DFR10900).

  19. Biofunctional properties of Eruca sativa Miller (rocket salad) hydroalcoholic extract.

    PubMed

    Sultan, Khushbakht; Zakir, Muhammad; Khan, Haroon; Rauf, Abdur; Akber, Noor Ul; Khan, Murad Ali

    2016-01-01

    Eruca sativa Miller is a worldwide common alimentary plant (rocket leaves). The aim of this study was to correlate the potential in vitro scavenging activity of the E. sativa hydroalcoholic extract (HAE) with its in vivo hypoglycaemic effect. In DDPH free radical (DFR) and ferric-reducing antioxidant power assays, HAE in a concentration dependent manner (25-100 μg/mL) displayed a strong scavenging activity with maximum effect of 88% and 75% at 100 μg/mL, respectively. Daily administration of HAE (50 mg/kg; p.o.) in the in vivo model of alloxan-induced diabetic rabbits for 28 days showed significant reduction in glycaemia, also supported by recovery of body weight. In conclusion, our results give preliminary information on the potential use of this plant as a nutraceutical, useful to control and/or prevent a hyperglycaemic status. PMID:26156861

  20. Enhancing the natural folate level in wine using bioengineering and stabilization strategies.

    PubMed

    Liu, Yazheng; Walkey, Christopher J; Green, Timothy J; van Vuuren, Hennie J J; Kitts, David D

    2016-03-01

    Folate deficiency is linked to many diseases, some of which may have higher probability in individuals with alcohol-induced alterations in one-carbon metabolism. Our study shows that folate content in commercial wine is not related to white or red varieties, but associated with the yeast that is used to produce the wine. The stability of folate in these wines, once opened for consumption, did not correlate with total phenolic or sulfite content. In addition, we employed yeast bioengineering to fortify wine with folate. We confirmed by overexpression that FOL2 was the key gene encoding the rate-limiting step of folate biosynthesis in wine yeast. In this study, we also show that overexpression of other folate biosynthesis genes, including ABZ1, ABZ2, DFR1, FOL1 and FOL3, had no effect on folate levels in wine. Ensuring stability of the increased natural folate in all wines was achieved by the addition of ascorbate. PMID:26471523

  1. Characterization of antimicrobial resistance in Klebsiella species isolated from chicken broilers.

    PubMed

    Wu, Hao; Wang, Mingyu; Liu, Yuqing; Wang, Xinhua; Wang, Yunkun; Lu, Jinxing; Xu, Hai

    2016-09-01

    The prevalence of antimicrobial resistant Klebsiella pneumoniae in poultry products has been a public concern, as it severely endangers food safety and human health. In this study, we investigated 90 antimicrobial resistant Klebsiella strains that were isolated from a commercial broiler slaughter plant in Shandong province of China. Nearly all (89/90) of the isolates were identified as infectious phylogenetic group KpI-type K. pneumoniae. Out of these 90 strains, 87 (96.7%) were multidrug-resistant isolates, and 87 (96.7%) were extended-spectrum beta-lactamase (ESBL)-producing isolates. An analysis of the prevalence of quinolone resistance genes showed that 7.8%, 77.8%, 26.7%, and 2.2% of the strains carried the qnrA, qnrB, qnrS, and qepA genes, respectively. An analysis of beta-lactam resistance genes showed that a high percentage of the strains contain the blaTEM (76.7%), blaSHV (88.9%), and blaCTX-M (75.6%) genes, among which three blaSHV subtypes (blaSHV-1, n=30; blaSHV-11, n=38; blaSHV-12, n=12) and three blaCTX-M subtypes (blaCTX-M-14, n=14; blaCTX-M-15, n=35; blaCTX-M-55, n=19) were found. A further investigation of mobile genetic elements involved in horizontal multidrug resistance gene transfer showed the presence of class 1 and 2 integrons in 77 (85.6%) and five (5.6%) isolates, respectively, while no class 3 integrons were detected. Four types of class 1 integrons containing specific gene cassette arrays (dfrA12-orfF-aadA2, dfrA17-aadA5, dfrA1-aadA1, and empty) were identified. Only one gene cassette array (dfrA1-sat2-aadA1) was detected in the class 2 integrons. Furthermore, four different types of insertion sequence common region 1 (ISCR1)-mediated downstream structures were successfully identified in 46 class 1 integron-positive isolates, among which ISCR1-sapA-like-qnrB2-qacEΔ1 was the most commonly observed structure. Chi-square tests revealed a significant association between ESBL genes, plasmid-mediated quinolone resistance (PMQR) genes, and

  2. Genetic and environmental effects influencing fruit colour and QTL analysis in raspberry.

    PubMed

    McCallum, Susan; Woodhead, Mary; Hackett, Christine A; Kassim, Angzzas; Paterson, Alistair; Graham, Julie

    2010-08-01

    Raspberry (Rubus idaeus) fruit colour was assessed in the Latham x Glen Moy mapping population using a colour meter and visual scores over three seasons and three environments. The colour measurements were found to be significantly associated with pigment content, have high heritability, and stable QTL were identified across environments and seasons. Anthocyanin content has previously been shown to be the major contributor to fruit colour in red raspberry. Major structural genes (F3'H, FLS, DFR, IFR, OMT and GST) and transcription factors (bZIP, bHLH and MYB) influencing flavonoid biosynthesis have been identified, mapped and shown to underlie QTL for quantitative and qualitative anthocyanin composition. Favourable alleles for the selected traits were identified for the aspects of fruit colour and partitioning of individual pigments. PMID:20419285

  3. [Expression of the genes involved in anthocyanin biosynthesis of 'Tsuda' turnip].

    PubMed

    Xu, Zhi-Ru; Li, Yu-Hua

    2006-10-01

    'Tsuda' turnip (Brassica campestris L. ssp. rapa), in which roots anthocyanin pigmentation is light-sensitive, was used as the material. 'Tsuda' plants were held in darkness or irradiated with sun light and constant light for different time. Anthocyanins in root peel of 'Tsuda' turnip exposed to constant light were identified and quantified with a UV-visual spectrophotometer. The results demonstrated that the anthocyanins accumulation in 'Tsuda' was related with light-exposure time (Fig.1 and Table 1). Fragments of genes selected from the subtraction library of 'Tsuda' turnip involved in anthocyanin biosynthesis were used as probes. The Northern blotting results showed that the expression of PAL, CHS, F3H, DFR and ANS could be induced by irradiation with light and the expression of these genes was related with light exposure time. The expression of MYB was basically the same whether in darkness or in light (Figs.2,3). PMID:17075183

  4. Transgenic potato plants with overexpression of dihydroflavonol reductase can serve as efficient nutrition sources.

    PubMed

    Kostyn, Kamil; Szatkowski, Michal; Kulma, Anna; Kosieradzka, Iwona; Szopa, Jan

    2013-07-10

    Potato (Solanum tuberosum) is considered to be one of the most important crops cultivated in Europe and the entire world. The tubers of the potato are characterized by rich starch and protein contents and high concentrations of antioxidants, such as vitamin C and flavonoids. Notably, the presence of the phenolic antioxidants is of high importance as they have health-related properties. They are known to reduce the incidence of atherosclerosis, prevent certain kinds of cancer, and aid with many other kinds of diseases. The aim of this study was to find the most efficient way to increase the content of phenolic antioxidants in potato tubers through transgenesis. The results showed that the most efficacious way to achieve this goal was the overexpression of the dihydroflavonol reductase gene (DFR). The produced transgenic potato plants served as a nutrition source for laboratory rats; the study has confirmed their nontoxicity and nutritional benefits on the tested animals. PMID:23692339

  5. Antimicrobial resistance of Escherichia coli isolates from canine urinary tract infections.

    PubMed

    Chang, Shao-Kuang; Lo, Dan-Yuan; Wei, Hen-Wei; Kuo, Hung-Chih

    2015-01-01

    This study determined the antimicrobial resistance profiles of Escherichia coli isolates from dogs with a presumptive diagnosis of urinary tract infection (UTI). Urine samples from 201 dogs with UTI diagnosed through clinical examination and urinalysis were processed for isolation of Escherichia coli. Colonies from pure cultures were identified by biochemical reactions (n=114) and were tested for susceptibility to 18 antimicrobials. The two most frequent antimicrobials showing resistance in Urinary E. coli isolates were oxytetracycline and ampicillin. Among the resistant isolates, 17 resistance patterns were observed, with 12 patterns involving multidrug resistance (MDR). Of the 69 tetracycline-resistant E. coli isolates, tet(B) was the predominant resistance determinant and was detected in 50.9% of the isolates, whereas the remaining 25.5% isolates carried the tet(A) determinant. Most ampicillin and/or amoxicillin-resistant E. coli isolates carried blaTEM-1 genes. Class 1 integrons were prevalent (28.9%) and contained previously described gene cassettes that are implicated primarily in resistance to aminoglycosides and trimethoprim (dfrA1, dfrA17-aadA5). Of the 44 quinolone-resistant E. coli isolates, 38 were resistant to nalidixic acid, and 6 were resistant to nalidixic acid, ciprofloxacin and enrofloxacin. Chromosomal point mutations were found in the GyrA (Ser83Leu) and ParC (Ser80Ile) genes. Furthermore, the aminoglycoside resistance gene aacC2, the chloramphenicol resistant gene cmlA and the florfenicol resistant gene floR were also identified. This study revealed an alarming rate of antimicrobial resistance among E. coli isolates from dogs with UTIs. PMID:25720807

  6. Antimicrobial resistance of Escherichia coli isolates from canine urinary tract infections.

    PubMed

    Chang, Shao-Kuang; Lo, Dan-Yuan; Wei, Hen-Wei; Kuo, Hung-Chih

    2014-10-28

    This study determined the antimicrobial resistance profiles of Escherichia coli isolates from dogs with a presumptive diagnosis of urinary tract infection (UTI). Urine samples from 201 dogs with UTI diagnosed through clinical examination and urinalysis were processed for isolation of Escherichia coli. Colonies from pure cultures were identified by biochemical reactions (n=114) and were tested for susceptibility to 18 antimicrobials. The two most frequent antimicrobials showing resistance in Urinary E. coli isolates were oxytetracycline and ampicillin. Among the resistant isolates, 17 resistance patterns were observed, with 12 patterns involving multidrug resistance (MDR). Of the 69 tetracycline-resistant E. coli isolates, tet(B) was the predominant resistance determinant and was detected in 50.9% of the isolates, whereas the remaining 25.5% isolates carried the tet(A) determinant. Most ampicillin and/or amoxicillin-resistant E. coli isolates carried blaTEM-1 genes. Class 1 integrons were prevalent (28.9%) and contained previously described gene cassettes that are implicated primarily in resistance to aminoglycosides and trimethoprim (dfrA1, dfrA17-aadA5). Of the 44 quinolone-resistant E. coli isolates, 38 were resistant to nalidixic acid, and 6 were resistant to nalidixic acid, ciprofloxacin and enrofloxacin. Chromosomal point mutations were found in the GyrA (Ser83Leu) and ParC (Ser80Ile) genes. Furthermore, the aminoglycoside resistance gene aacC2, the chloramphenicol resistant gene cmlA and the florfenicol resistant gene floR were also identified. This study revealed an alarming rate of antimicrobial resistance among E. coli isolates from dogs with UTIs. PMID:25354649

  7. Prevalence of antimicrobial resistance and resistance genes in faecal Escherichia coli isolates recovered from healthy pets.

    PubMed

    Costa, Daniela; Poeta, Patricia; Sáenz, Yolanda; Coelho, Ana Cláudia; Matos, Manuela; Vinué, Laura; Rodrigues, Jorge; Torres, Carmen

    2008-02-01

    Faecal samples of healthy dogs (n=39) and cats (n=36) obtained in Northern Portugal were seeded on Levine agar plates, and two Escherichia coli isolates per sample were recovered (78 of dogs and 66 of cats). The susceptibility to 16 antimicrobial agents was tested in this series of 144 E. coli isolates. Almost 20% of them showed tetracycline resistance and 12 and 15% presented ampicillin or streptomycin resistance, respectively. The percentage of resistance to the other antimicrobial agents was in all cases below 4%, and no resistant isolates were detected for ceftazidime, imipenem, cefoxitin or amikacin. Two isolates (from one dog) showed cefotaxime-resistance and harboured both the CTX-M-1 and OXA-30 beta-lactamases. A bla(TEM) gene was detected in 12 of 17 ampicillin-resistant isolates, the aac(3)-II gene in the three gentamicin-resistant isolates, aadA in 7 of 22 streptomycin-resistant isolates, and tet(A) and/or tet(B) gene in all 28 tetracycline-resistant isolates. The gene encoding class 1 integrase was detected in six E. coli isolates, including the four trimethoprim-sulfamethoxazole-resistant isolates and those two harbouring CTX-M-1 and OXA-30 beta-lactamases; different gene cassette arrangements were identified: dfrA1+aadA1 (two isolates), dfrA12+orfF+aadA2 (two isolates) and bla(OXA30)+aadA1 (two isolates). One amino acid change in GyrA protein (Ser83Leu or Asp87Tyr) was detected in four nalidixic acid-resistant and ciprofloxacin-susceptible isolates and two amino acid changes in GyrA (Ser83Leu+Asp87Asn) and one in ParC (Ser80Ile) were identified in one nalidixic acid- and ciprofloxacin-resistant isolate. Faecal E. coli isolates of healthy pets could be a reservoir of antimicrobial resistance genes. PMID:17870255

  8. Chemical stability of amorphous materials: specific and general media effects in the role of water in the degradation of freeze-dried zoniporide.

    PubMed

    Luthra, Suman A; Shalaev, Evgenyi Y; Medek, Ales; Hong, Jinyang; Pikal, Michael J

    2012-09-01

    The objective of the present work was to determine whether hydrolysis in a model lyophile was influenced by general media effects with water-changing properties of the medium or via a specific mechanism of water as a reactant. Four formulations of zoniporide and sucrose (1:10) were prepared with variable amounts of sorbitol [0%-25% (w/v) of total solids). These formulations were then equilibrated at 6% and 11% relative humidity using saturated salt solutions. The lyophile cakes were analyzed by differential scanning calorimetery (DSC), (isothermal microcalorimetry (IMC), solid- state nuclear magnetic resonance (ssNMR) spectroscopy, and ultraviolet-visible diffuse reflectance (DFR) spectroscopy. DSC and IMC were used to assess the global molecular mobility. ssNMR relaxation times were measured to access local mobility. The DFR was used to determine the solid-state acidity expressed as the Hammett acidity function. Stability of samples was evaluated at 40°C by monitoring potency and purity by high-performance liquid chromatography (HPLC). Results were interpreted in terms of the various roles of water: media effect, plasticization, polarity, and reactant. The kinetics of hydrolysis was observed to be correlated with either/both specific "chemical" effects, that is, water reactant as well as media effect, specifically global molecular mobility of the matrix. Increase in reaction rate with increase in water content is not linear and is a weaker dependence than in some hydrolytic reactions in organic solvents. A moderate amount of an inert plasticizer, sorbitol, conferred additional stabilization, possibly by restricting the amplitude and frequency of fast motions that are on a small length scale. PMID:22461087

  9. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae

    PubMed Central

    Al-Marzooq, Farah; Mohd Yusof, Mohd Yasim; Tay, Sun Tee

    2015-01-01

    Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6ˊ)-Ib, aac(6ˊ)-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings. PMID:26203651

  10. Antimicrobial resistance of Salmonella serovars isolated from beef at retail markets in the north Vietnam.

    PubMed

    Thai, Truong Ha; Hirai, Takuya; Lan, Nguyen Thi; Shimada, Akinori; Ngoc, Pham Thi; Yamaguchi, Ryoji

    2012-09-01

    Approximately 39.9% (63/158) of beef samples collected from retail markets in Hanoi from January to June 2009 were Salmonella-positive. Nine Salmonella serovars, Anatum (28.6%), Rissen (25.4%), Weltevreden (12.7%), Typhimurium (7.9%), Derby (7.9%), Lexington (7.9%), Dublin (4.6%), Newport (3.2%) and London (1.8%), were identified. Thirty-seven (58.7%) of the 63 Salmonella isolates were resistant to at least one antimicrobial tested, of which 29 (46%) isolates showed multidrug resistance (MDR). The isolates were commonly resistant to tetracycline (46.0%), sulphonamide (39.7%), ampicilline (31.7%), streptomycin (30.2%), trimethoprim (28.6%), kanamycin (28.6%) and chloramphenicol (22.2%). Fourteen (bla(TEMV), bla(OXA-1), aadA1, aadA2, sul1, tetA, tetB, tetG, cmlA1, floR, dfrA1, dfrA12, aac (3)-IV and aphA1-1AB) out of 22 antimicrobial resistance genes were detected by PCR from the resistant isolates. The catA1, Kn, blaPSE-1 genes and plasmid-mediated quinolones resistance (PMQR) genes such as qnrA, qnrB, qnrS, qepA and acc (6')-ib-cr were not detected. Mutations in the gyrA gene leading to the amino acid changes Ser83Phe and/or Asp87Asn were found in 6 out of the 11 quinolone-resistant isolates. The data revealed that multidrug resistant Salmonella strains were widely distributed in north Vietnam via the food chain and might contain multiple genes specifying identical resistant phenotypes. Thus, continuous studies are necessary to clarify the mechanisms of MDR in Salmonella and its spread in the livestock market. PMID:22673721

  11. Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing Salmonella Infantis Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014

    PubMed Central

    Franco, Alessia; Leekitcharoenphon, Pimlapas; Feltrin, Fabiola; Alba, Patricia; Cordaro, Gessica; Iurescia, Manuela; Tolli, Rita; D’Incau, Mario; Staffolani, Monica; Di Giannatale, Elisabetta; Hendriksen, Rene S.; Battisti, Antonio

    2015-01-01

    We report the spread of a clone of multidrug-resistant (MDR), ESBL-producing (blaCTX-M-1) Salmonella enterica subsp. enterica serovar Infantis, in the Italian broiler chicken industry and along the food-chain. This was first detected in Italy in 2011 and led to human infection in Italy in 2013–2014.A set (n = 49) of extended-spectrum cephalosporin (ESC)-resistant (R) isolates of S. Infantis (2011–2014) from humans, food-producing animals and meat thereof, were studied along with a selected set of earlier and more recent ESC-susceptible (ESC-S) isolates (n = 42, 2001–2014). They were characterized by macrorestriction-PFGE analysis and genetic environment of ESC-resistance. Isolates representative of PFGE-patterns and origin were submitted to Whole Genome Sequencing. The emerging ESC-R clone, detected mainly from broiler chickens, broiler meat and humans, showed a minimum pattern of clinical resistance to cefotaxime, tetracycline, sulfonamides, and trimethoprim, beside ciprofloxacin microbiological resistance (MIC 0.25 mg/L). All isolates of this clone harbored a conjugative megaplasmid (~ 280–320 Kb), similar to that described in ESC-susceptible S. Infantis in Israel (pESI-like) in 2014. This megaplasmid carried the ESBL gene blaCTX-M-1, and additional genes [tet(A), sul1, dfrA1 and dfrA14] mediating cefotaxime, tetracycline, sulfonamide, and trimethoprim resistance. It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness (qacE1, mer) in the intensive-farming environment. This emerging clone of S. Infantis has been causing infections in humans, most likely through the broiler industry. Since S. Infantis is among major serovars causing human infections in Europe and is an emerging non-typhoidal Salmonella globally, further spread of this lineage in primary productions deserves quick and thorough risk-management strategies. PMID:26716443

  12. Antimicrobial resistance of Escherichia coli isolates from canine urinary tract infections

    PubMed Central

    CHANG, Shao-Kuang; LO, Dan-Yuan; WEI, Hen-Wei; KUO, Hung-Chih

    2014-01-01

    This study determined the antimicrobial resistance profiles of Escherichia coli isolates from dogs with a presumptive diagnosis of urinary tract infection (UTI). Urine samples from 201 dogs with UTI diagnosed through clinical examination and urinalysis were processed for isolation of Escherichia coli. Colonies from pure cultures were identified by biochemical reactions (n=114) and were tested for susceptibility to 18 antimicrobials. The two most frequent antimicrobials showing resistance in Urinary E. coli isolates were oxytetracycline and ampicillin. Among the resistant isolates, 17 resistance patterns were observed, with 12 patterns involving multidrug resistance (MDR). Of the 69 tetracycline-resistant E. coli isolates, tet(B) was the predominant resistance determinant and was detected in 50.9% of the isolates, whereas the remaining 25.5% isolates carried the tet(A) determinant. Most ampicillin and/or amoxicillin-resistant E. coli isolates carried blaTEM-1 genes. Class 1 integrons were prevalent (28.9%) and contained previously described gene cassettes that are implicated primarily in resistance to aminoglycosides and trimethoprim (dfrA1, dfrA17-aadA5). Of the 44 quinolone-resistant E. coli isolates, 38 were resistant to nalidixic acid, and 6 were resistant to nalidixic acid, ciprofloxacin and enrofloxacin. Chromosomal point mutations were found in the GyrA (Ser83Leu) and ParC (Ser80Ile) genes. Furthermore, the aminoglycoside resistance gene aacC2, the chloramphenicol resistant gene cmlA and the florfenicol resistant gene floR were also identified. This study revealed an alarming rate of antimicrobial resistance among E. coli isolates from dogs with UTIs. PMID:25720807

  13. Characterization of Virulence-Associated Genes, Antimicrobial Resistance Genes, and Class 1 Integrons in Salmonella enterica serovar Typhimurium Isolates from Chicken Meat and Humans in Egypt.

    PubMed

    Ahmed, Heba A; El-Hofy, Fatma I; Shafik, Saleh M; Abdelrahman, Mahmoud A; Elsaid, Gamilat A

    2016-06-01

    Foodborne pathogens are leading causes of illness especially in developing countries. The current study aimed to characterize virulence-associated genes and antimicrobial resistance in 30 Salmonella Typhimurium isolates of chicken and human origin at Mansoura, Egypt. The results showed that invA, avrA, mgtC, stn, and bcfC genes were identified in all the examined isolates, while 96.7% and 6.7% were positive for sopB and pef genes, respectively. The highest resistance frequencies of the isolates were to chloramphenicol and trimethoprim-sulfamethoxazole (73.3%, each), followed by streptomycin (56.7%), tetracycline and ampicillin (53.3%, each), and gentamicin (30%). However, only 2.7% of the isolates were resistant to cefotaxime and ceftriaxone each. Different resistance-associated genes, including blaTEM, aadB, aadC, aadA1, aadA2, floR, tetA(A), tetA(B), and sul1, were identified in Salmonella Typhimurium isolates with the respective frequencies of 53.3%, 6.7%, 23.3%, 46.7%, 63.3%, 73.3%, 60%, 20%, and 96.7%. None of the isolates was positive for blaSHV, blaOXA, and blaCMY genes. The results showed that the intI1 gene was detected in 24 (80%) of the examined Salmonella Typhimurium isolates. Class 1 integrons were found in 19 (79.2%) isolates that were intI1 positive. Seven integron profiles (namely: P-I to P-VII) were identified with P-V (gene cassette dfrA15, aadA2), the most prevalent profile. To the best of our knowledge, this is the first study to characterize the unusual gene cassette array dfrA12-OrfF-aadA27 from Salmonella Typhimurium isolates in Egypt. PMID:26977940

  14. Antimicrobial Resistance of Escherichia fergusonii Isolated from Broiler Chickens.

    PubMed

    Simmons, Karen; Islam, M Rashedul; Rempel, Heidi; Block, Glenn; Topp, Edward; Diarra, Moussa S

    2016-06-01

    The objective of this study was to investigate the antibiotic resistance of Escherichia fergusonii isolated from commercial broiler chicken farms. A total of 245 isolates from cloacal and cecal samples of 28- to 36-day-old chickens were collected from 32 farms. Isolates were identified using PCR, and their susceptibility to 16 antibiotics was determined by disk diffusion assay. All isolates were susceptible to meropenem, amikacin, and ciprofloxacin. The most common resistances were against ampicillin (75.1%), streptomycin (62.9%), and tetracycline (57.1%). Of the 184 ampicillin-resistant isolates, 127 were investigated using a DNA microarray carrying 75 probes for antibiotic resistance genetic determinants. Of these 127 isolates, the β-lactamase blaCMY2, blaTEM, blaACT, blaSHV, and blaCTX-M-15 genes were detected in 120 (94.5%), 31 (24.4%), 8 (6.3%), 6 (4.7%), and 4 (3.2%) isolates, respectively. Other detected genes included those conferring resistance to aminoglycosides (aadA1, strA, strB), trimethoprims (dfrV, dfrA1), tetracyclines (tetA, tetB, tetC, tetE), and sulfonamides (sul1, sul2). Class 1 integron was found in 35 (27.6%) of the ampicillin-resistant isolates. However, our data showed that the tested E. fergusonii did not carry any carbapenemase blaOXA genes. Pulsed-field gel electrophoresis revealed that the selected ampicillin-resistant E. fergusonii isolates were genetically diverse. The present study indicates that the monitoring of antimicrobial-resistant bacteria should include enteric bacteria such as E. fergusonii, which could be a reservoir of antibiotic resistance genes. The detection of isolates harboring extended-spectrum β-lactamase genes, particularly blaCTX-M-15, in this work suggests that further investigations on the occurrence of such genes in broilers are warranted. PMID:27296596

  15. Empirical conversion of the vertical profile of reflectivity from Ku-band to S-band frequency

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Hong, Yang; Qi, Youcun; Wen, Yixin; Zhang, Jian; Gourley, Jonathan J.; Liao, Liang

    2013-02-01

    ABSTRACT This paper presents an empirical method for converting reflectivity from Ku-band (13.8 GHz) to S-band (2.8 GHz) for several hydrometeor species, which facilitates the incorporation of Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) measurements into quantitative precipitation estimation (QPE) products from the U.S. Next-Generation Radar (NEXRAD). The development of empirical dual-frequency relations is based on theoretical simulations, which have assumed appropriate scattering and microphysical models for liquid and solid hydrometeors (raindrops, snow, and ice/hail). Particle phase, shape, orientation, and density (especially for snow particles) have been considered in applying the T-matrix method to compute the scattering amplitudes. Gamma particle size distribution (PSD) is utilized to model the microphysical properties in the ice region, melting layer, and raining region of precipitating clouds. The variability of PSD parameters is considered to study the characteristics of dual-frequency reflectivity, especially the variations in radar dual-frequency ratio (DFR). The empirical relations between DFR and Ku-band reflectivity have been derived for particles in different regions within the vertical structure of precipitating clouds. The reflectivity conversion using the proposed empirical relations has been tested using real data collected by TRMM-PR and a prototype polarimetric WSR-88D (Weather Surveillance Radar 88 Doppler) radar, KOUN. The processing and analysis of collocated data demonstrate the validity of the proposed empirical relations and substantiate their practical significance for reflectivity conversion, which is essential to the TRMM-based vertical profile of reflectivity correction approach in improving NEXRAD-based QPE.

  16. Novel insight into the mechanism underlying light-controlled anthocyanin accumulation in eggplant (Solanum melongena L.).

    PubMed

    Jiang, Mingmin; Ren, Li; Lian, Hongli; Liu, Yang; Chen, Huoying

    2016-08-01

    Eggplant is rich in anthocyanins, which are the major secondary metabolites and beneficial to human health. We discovered that the anthocyanin biosynthesis of eggplant cultivar 'Lanshan Hexian' was regulated by light. In this study, we isolated two blue light receptor genes, SmCRY1 and SmCRY2, and negative/positive anthocyanin regulatory factors SmCOP1 and SmHY5 from eggplant. In terms of transcript levels, SmCRY1, SmCRY2 and SmHY5 were up-regulated by light, while SmCOP1 was down-regulated. Subsequently, the four genes were functionally complemented in phenotype of corresponding mutants, indicating that they act as counterparts of Arabidopsis genes. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that SmCRY1 and SmCRY2 interact with SmCOP1 in a blue-light-dependent manner. It also obtained the result that SmCOP1 interacts with SmHY5 and SmMYB1. Furthermore, using yeast one-hybrid assay, we found that SmHY5 and SmMYB1 both bind the promoters of anthocyanin biosynthesis structural genes (SmCHS and SmDFR). Taken together, blue-light-triggered CRY1/CRY2-COP1 interaction creates the condition that HY5 and MYB1 combine with the downstream anthocyanin synthesis genes (CHS and DFR) in eggplant. Our finding provides a new working model by which light controls anthocyanin accumulation in eggplant. PMID:27297989

  17. Molecular characterization of Salmonella enterica serovar Enteritidis on retail raw poultry in six provinces and two National cities in China.

    PubMed

    Wang, Yin; Yang, Baowei; Wu, Yun; Zhang, Zengfeng; Meng, Xiaofeng; Xi, Meili; Wang, Xin; Xia, Xiaodong; Shi, Xianming; Wang, Dapeng; Meng, Jianghong

    2015-04-01

    One hundred and twenty six Salmonella Enteritidis isolates recovered from 1152 retail raw poultries were characterized by antimicrobial susceptibility test, pulsed-field gel electrophoresis (PFGE), presence of quinolone resistance (Qnr) associated genes, Class I integron, extended spectrum beta-lactamases (ESBLs) encoding genes, and mutations in quinolone resistance-determining region (QRDR) of GyrA and ParC. Resistance was most frequently found to nalidixic acid (88.1%), followed by to tetracycline (65.9%), sulfisoxazole (65.1%), and ampicillin (61.9%), and a less extent to cefoxitin (8.7%), gatifloxacin (8.7%), levofloxacin (7.9%), ceftriaxone (7.1%), and ceftiofur (6.3%). One hundred and twenty three (98.4%) isolates were resistant to at least one antibiotic, and 93 (74.4%) to at least four antibiotics. aac(6')-Ib-cr, qnrB, qnrA and qnrS genes were detected in 15 (11.9%), 11 (8.7%), 6 (4.8%) and 1 (0.8%) isolates, respectively. Amino acid substitutions of Ser83Tyr, Asp87Asn, Asp87Tyr, Asp87Gly and Ser83Phe/Asp87Asn were detected in QRDR of GyrA, Arg80Ser was the unique mutation in ParC. Eight isolates were detected with amino acid substitution both in GyrA and ParC. Three isolates carried Class I integron that harboring dfrA17-aadA5, dhfR1-aadA1, and dfrA1, respectively. Five isolates were detected carrying bla(TEM)-bla(ACC) (n = 1), bla(TEM) (n = 1), bla(TEM)-bla(OxA) (n = 3), respectively. Genetic diversities (D = 0.9255) were found among isolates based on PFGE analysis. PMID:25475269

  18. Anatomical and biochemical analysis reveal the role of anthocyanins in flower coloration of herbaceous peony.

    PubMed

    Zhao, Da-Qiu; Wei, Meng-Ran; Liu, Ding; Tao, Jun

    2016-05-01

    Herbaceous peony (Paeonia lactiflora Pall.) is particularly appreciated because of its elegant and gorgeous flower color, but little is known about the underlying mechanisms of flower coloration. In this study, three P. lactiflora cultivars 'Xuefeng', 'Fenyulou' and 'Dahonglou' with white, pink and red flower were selected as the materials. Their anatomical structures, cell sap pH and metal elements were investigated, and the colored pigment mainly distributed in palisade mesophyll was only found in 'Fenyulou' and 'Dahonglou', and their shape of epidermal cells, cell sap pH and metal elements were not the key factors deciding phenotype color. Moreover, the qualitative and quantitative analysis of flavonoids were performed, their total anthocyanin, anthoxanthin and flavonoid contents were decreased during flower development, and only anthocyanin content in 'Dahonglou' was always higher than that in 'Xuefeng' and 'Fenyulou'. Subsequently, three anthocyanin compositions were found, and peonidin 3,5-di-O-glucoside (Pn3G5G) was identified as the main anthocyanin composition. In addition, the full-length of flavonol synthase gene (FLS) was isolated with the GenBank accession number KM259902, and the expression patterns of eight flavonoid biosynthetic genes showed that only PlDFR and PlANS basically had the highest levels in 'Dahonglou' and the lowest levels in 'Xuefeng', and they basically displayed a descended trend during flower development especially PlDFR, suggesting that these two genes might play a key role in the anthocyanin biosynthesis which resulted in the shift from white to pink and red in flowers. These results would contribute to understand the underlying molecular mechanisms of flower coloration in P. lactiflora. PMID:26922162

  19. Phenotypic and Genotypic Characterization of Salmonella enterica Recovered from Poultry Meat in Tunisia and Identification of New Genetic Traits

    PubMed Central

    Soufi, Leila; Sáenz, Yolanda; de Toro, María; Salah Abbassi, Mohamed; Rojo-Bezares, Beatriz; Vinué, Laura; Bouchami, Ons; Touati, Arabella; Ben Hassen, Assia; Hammami, Salah

    2012-01-01

    Abstract Thirty-seven Salmonella enterica isolates obtained from poultry meat in Tunisia were included in this study for characterization of antibiotic resistance mechanisms. High percentages of resistance were detected to ampicillin, sulfonamides, tetracycline, nalidixic acid, and streptomycin (32.4%–89.2%), and lower percentages to amoxicillin–clavulanic acid, kanamycin, amikacin, trimethoprim–sulfamethoxazol, and chloramphenicol (2.7%–18.9%). All strains showed susceptibility to ceftazidime, cefotaxime, gentamicin, and ciprofloxacin. Class 1 integrons were detected in 30% of Salmonella isolates, and four different gene cassette arrangements were detected, including genes implicated in resistance to aminoglycosides (aadA1 and aadA2) and trimethoprim (dfrA1). Four different Pc variants (PcW, PcH1, PcH1TTN-10, PcWTGN-10) with inactive P2 have been found among these isolates. Integron-positive isolates were ascribed to eight different serotypes. A Salmonella Schwarzengrund isolate harbored a new class 1 integron containing the qacH-dfrA1b-aadA1b-catB2 gene cassette arrangement, with the very unusual PcH1TTN-10 promoter, which has been registered in GenBank (accession no. HQ874651). Different plasmid replicon types were demonstrated among integron-positive isolates: IncI1 (8 isolates), IncN (8), IncP (2), IncFIB (2), and IncFII (2). Ten different pulsed-field gel electrophoresis profiles were detected among the 11 integron-positive isolates and 8 different sequence types were identified by multilocus sequence typing, one of them (registered as ST867) was new, detected in 3 Salmonella Zanzibar isolates. A high diversity of clones is observed among poultry Salmonella isolates and a high proportion of them show a multiresistant phenotype with very diverse mobile genetic structures that could be implicated in bacterial dissemination in different environments. PMID:21919733

  20. Regulation of anthocyanin biosynthesis in Arabidopsis thaliana red pap1-D cells metabolically programmed by auxins.

    PubMed

    Liu, Zhong; Shi, Ming-Zhu; Xie, De-Yu

    2014-04-01

    Red pap1-D cells of Arabidopsis thaliana have been cloned from production of anthocyanin pigmentation 1-Dominant (pap1-D) plants. The red cells are metabolically programmed to produce high levels of anthocyanins by a WD40-bHLH-MYB complex that is composed of the TTG1, TT8/GL3 and PAP1 transcription factors. Here, we report that indole 3-acetic acid (IAA), naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) regulate anthocyanin biosynthesis in these red cells. Seven concentrations (0, 0.2, 0.4, 2.2, 9, 18 and 27 μM) were tested for the three auxins. IAA and 2,4-D at 2.2-27 μM reduced anthocyanin levels. NAA at 0-0.2 μM or above 9 μM also decreased anthocyanin levels, but from 0.4 to 9 μM, it increased them. HPLC-ESI-MS analysis identified seven cyanin molecules that were produced in red pap1-D cells, and their levels were affected by auxins. The expression levels of ten genes, including six transcription factors (TTG1, EGL3, MYBL2, TT8, GL3 and PAP1) and four pathway genes (PAL1, CHS, DFR and ANS) involved in anthocyanin biosynthesis were analyzed upon various auxin treatments. The resulting data showed that 2,4-D, NAA and IAA control anthocyanin biosynthesis by regulating the expression of TT8, GL3 and PAP1 as well as genes in the anthocyanin biosynthetic pathway, such as DFR and ANS. In addition, the expression of MYBL2, PAL1 and CHS in red pap1-D and wild-type cells differentially respond to the three auxins. Our data demonstrate that the three auxins regulate anthocyanin biosynthesis in metabolically programmed red cells via altering the expression of transcription factor genes and pathway genes. PMID:24370633

  1. MOLECULAR DETECTION OF ANTIBIOTIC-RESISTANCE DETERMINANTS IN ESCHERICHIA COLI ISOLATED FROM THE ENDANGERED AUSTRALIAN SEA LION (NEOPHOCA CINEREA).

    PubMed

    Delport, Tiffany C; Harcourt, Robert G; Beaumont, Linda J; Webster, Koa N; Power, Michelle L

    2015-07-01

    Greater interaction between humans and wildlife populations poses significant risks of anthropogenic impact to natural ecosystems, especially in the marine environment. Understanding the spread of microorganisms at the marine interface is therefore important if we are to mitigate adverse effects on marine wildlife. We investigated the establishment of Escherichia coli in the endangered Australian sea lion (Neophoca cinerea) by comparing fecal isolation from wild and captive sea lion populations. Fecal samples were collected from wild colonies March 2009-September 2010 and from captive individuals March 2011-May 2013. Using molecular screening, we assigned a phylotype to E. coli isolates and determined the presence of integrons, mobile genetic elements that capture gene cassettes conferring resistance to antimicrobial agents common in fecal coliforms. Group B2 was the most abundant phylotype in all E. coli isolates (n = 37), with groups A, B1, and D also identified. Integrons were not observed in E. coli (n = 21) isolated from wild sea lions, but were identified in E. coli from captive animals (n = 16), from which class I integrases were detected in eight isolates. Sequencing of gene cassette arrays identified genes conferring resistance to streptomycin-spectinomycin (aadA1) and trimethoprim (dfrA17, dfrB4). Class II integrases were not detected in the E. coli isolates. The frequent detection in captive sea lions of E. coli with resistance genes commonly identified in human clinical cases suggests that conditions experienced in captivity may contribute to establishment. Identification of antibiotic resistance in the microbiota of Australian sea lions provides crucial information for disease management. Our data will inform conservation management strategies and provide a mechanism to monitor microorganism dissemination to sensitive pinniped populations. PMID:25919463

  2. Presence of New mecA and mph(C) Variants Conferring Antibiotic Resistance in Staphylococcus spp. Isolated from the Skin of Horses before and after Clinic Admission▿

    PubMed Central

    Schnellmann, Christina; Gerber, Vinzenz; Rossano, Alexandra; Jaquier, Valentine; Panchaud, Yann; Doherr, Marcus G.; Thomann, Andreas; Straub, Reto; Perreten, Vincent

    2006-01-01

    Because of the frequency of multiple antibiotic resistance, Staphylococcus species often represent a challenge in incisional infections of horses undergoing colic surgery. To investigate the evolution of antibiotic resistance patterns before and after preventative peri- and postoperative penicillin treatment, staphylococci were isolated from skin and wound samples at different times during hospitalization. Most staphylococci were normal skin commensals and belonged to the common coagulase-negative group. In some cases they turned out to be opportunistic pathogens present in wound infections. MICs were determined for 12 antibiotics, and antibiotic resistance genes were detected by microarray. At hospital admission, horses harbored staphylococci that were susceptible to antibiotics or resistant to one group of drugs, mainly due to the presence of new variants of the methicillin and macrolide resistance genes mecA and mph(C), respectively. After 3 days, the percentage of Staphylococcus isolates displaying antibiotic resistance, as well as the number of resistance genes per isolate, increased moderately in hospitalized horses without surgery or penicillin treatment but dramatically in hospitalized horses after colic surgery as well as penicillin treatment. Staphylococcus species displaying multiple resistance were found to harbor mainly genes conferring resistance to β-lactams (mecA and blaZ), aminoglycosides [str and aac(6′)-Ie-aph(2′)-Ia], and trimethoprim [dfr(A) and dfr(D)]. Additional genes conferring resistance to macrolides [mph(C), erm(C), and erm(B)], tetracycline [tet(K) and tet(M)], chloramphenicol [cat(pC221) and cat(pC223)], and streptothricin (sat4) appeared in several strains. Hospitalization and preventive penicillin use were shown to act as selection agents for multidrug-resistant commensal staphylococcal flora. PMID:17005735

  3. Exploiting synthetic aperture radar imagery for retrieving vibration signatures of concealed machinery

    NASA Astrophysics Data System (ADS)

    Pérez, Francisco; Campbell, Justin B.; Jaramillo, Monica; Dunkel, Ralf; Atwood, Thomas; Doerry, Armin; Gerstle, Walter H.; Santhanam, Balu; Hayat, Majeed M.

    2016-05-01

    It has been demonstrated that the instantaneous acceleration associated with vibrating objects that are directly imaged by synthetic aperture radar (SAR) can be estimated through the application of the discrete fractional Fourier transform (DFrFT) using the information contained in the complex SAR image. In general, vibration signatures may include, for example, the number of chirped sinusoids as well as their respective base frequencies and chirp rates. By further processing the DFrFT-processed data for clutter-noise rejection by means of pseudo- subspace methods, has been shown that the SAR-vibrometry method can be reliable as long as the signal-to-noise ratio (SNR) and the signal-to-clutter ratio (SCR) of the slow-time SAR signal at the range-line of interest exceeds 15dB. Meanwhile, the Nyquist theorem dictates that the maximum measurable vibration frequency is limited by half of the pulse-repetition frequency. This paper focuses on the detection and estimation of vibrations generated by machinery concealed within buildings and other structures. This is a challenging task in general because the vibration signatures of the source are typically altered by their housing structure; moreover, the SNR at the surface of the housing structure tends to be reduced. Here, experimental results for three different vibrating targets, including one concealed target, are reported using complex SAR images acquired by the General Atomics Lynx radar at resolutions of 1-ft and 4-in. The concealed vibrating target is actuated by a gear motor with an off-balance weight attached to it, which is enclosed by a wooden housing. The vibrations of the motor are transmitted to a chimney that extends above the housing structure. Using the SAR vibrometry approach, it is shown that it is possible to distinguish among the three vibrating objects based upon their vibration signatures.

  4. Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria.

    PubMed

    Ugwu, Clifford C; Gomez-Sanz, Elena; Agbo, Ifeoma C; Torres, Carmen; Chah, Kennedy F

    2015-01-01

    This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, cat pC221, and cat pC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern. PMID:26413075

  5. Characterization of Diarrheagenic Antimicrobial Resistant Escherichia coli Isolated From Pediatric Patients in Tehran, Iran

    PubMed Central

    Heidary, Maryam; Momtaz, Hassan; Madani, Mahboobeh

    2014-01-01

    Background: Acute infectious diarrhea is one of the most important causes of morbidity and mortality worldwide. Objectives: The objective of this study was to characterize antimicrobial resistant diarrheagenic Escherichia coli strains isolated from diarrheic children in Tehran, IR Iran. Patients and Methods: In total, 550 stool samples from diarrheic pediatric patients, aged less than 60 months, were collected and immediately transferred to the laboratory. Isolation and identification of E. coli strains was done using bacteriological methods. Antimicrobial susceptibility testing was performed using the disk diffusion technique. Multiplex PCR was used to detect aadA1, tetA, tetB, dfrA1, qnr, aac (3)-IV, sul1, blaSHV, CITM, cat1, and cmlA antibiotic resistance genes. Results: From the total of 550 fecal samples examined, 154 samples (28%) were positive for diarraheagenic E. coli. High rates of antibiotic resistance were seen against penicillin ﴾100%), ampicillin ﴾89.6%﴿ and tetracycline ﴾83.1%﴿. Resistance against ciprofloxacin was low ﴾28.6%﴿. The prevalence of different resistance genes in the studied strains varied from 96.10% for aadA1 gene to 40.25% for sul1 gene. The frequencies of aadA1, tetA, tetB, dfrA1, qnr, aac(3)-IV, sul1, blaSHV, CITM, cat1, and cmlA genes were 96.10%, 85.06%, 84.41%, 51.94%, 72.07%, 54.54%, 40.25%, 57.79%, 90.25%, 59.74% and 60.38%, respectively. Conclusions: Our results indicated that antibiotic resistance is increasing in diarraheagenic E. coli strains in Iran. It is imperative to develop strategies for prevention and control of resistant organisms. Changes in patterns of resistance against commonly used antibiotics in Iran indicate that an applied surveillance system and introduction of guidelines for appropriate antibiotic prescription are necessary. PMID:24910786

  6. Relevance of class 1 integrons and extended-spectrum β-lactamases in drug-resistant Escherichia coli.

    PubMed

    Liu, Li-Tao; Wan, Li-Hong; Song, Xiao-Hong; Xiong, Yao; Jin, Shao-Ju; Zhou, Li-Ming

    2013-10-01

    Escherichia coli is a common cause of community‑ and hospital‑acquired urinary tract infections, and class 1 integrons are the prior elements of gene transference in the capture and distribution of gene cassettes among clinical gram-negative bacillus. In the present study, the resistance of Escherichia coli to antimicrobial agents was investigated. A total of 97 isolates were found to be susceptible to 16 antimicrobial agents and were detected in the production of extended β‑lactamases (ESBLs), distribution of CTX‑M‑type β‑lactamases, presence and characterization of class 1 integrons and a variable region of integron‑positive isolates. Escherichia coli isolates possessing CTX‑M (31; 32%) were detected in 19 isolates (61.5%). The presence of ESBLs was associated with resistance to penicillins, third-generation cephalosporins, ciprofloxacin, aminoglycosides and monocyclic β‑lactam antibiotics. Escherichia coli isolates (69; 71.1%) possessed class 1 integrons associated with resistance to ciprofloxacin and numerous third-generation cephalosporins, penicillins, tobramycin and trimethoprim‑sulfamethoxazole. The four gene cassette arrangements were as follows: dfrA17‑aadA5, aadA1, aacC4‑cmlA1 and dfr2d, and 8 carried two disparate class 1 integrons. Five isolates presented class 1 integrons containing no gene cassettes. The distribution of ESBLs and class 1 integrons in Escherichia coli were prevalent with drug resistance in Chengdu. In addition, the resistance range of Escherichia coli isolates that harboured ESBLs and carried class 1 integrons were similar. The current study demonstrated the presence of class 1 integrons and ESBLs, which jointly mediate the resistance of Escherichia coli isolates to a number of antibacterial agents. PMID:23939784

  7. Characterization of integrons among Escherichia coli in a region at high incidence of ESBL-EC

    PubMed Central

    Li, Lu-Ming; Wang, Ming-Yi; Yuan, Xiao-Yan; Wang, Hong-Jun; Li, Qin; Zhu, YA-Mei

    2014-01-01

    Objective : The aim of study was to investigate the distribution of the integrons in Escherichia coli (E. coli) isolates, and analyze the possible relationship between the antimicrobial resistance profiles and the integrons. Methods : The antimicrobial profiles of 376 E. coli strains were analysed by disk diffusion test. The integron genes and variable regions were detected by PCR. Some amplicons were sequenced to determine the gene cassettes style. Results : Of 376 isolates, 223 isolates (59.3%) were confirmed as ESBL-EC. Comparison to ESBL-negative E. coli, the high rates of resistance to the third and fourth generation of cephalosporins, penicillins and amikacin were found in ESBL-EC. Only class 1 was integron detected in the isolates, and the prevalence of it was 66.5%. It was commonly found in ESBL-EC (77.6%, 173/223), which was higher than that of ESBL-negative E. coli (50.3%, 77/153) (p<0.001). Six different genes cassettes were detected in this study and were classified into three groups: dfr17-aadA5, dfrA12-aadA2 and aacA4-CmlA1. Additionally, more than one gene array harboured in 13.9% isolates of ESBL-EC, while in 9.1% isolates of ESBL-negative E.coli. Conclusion : The high incidence of ESBL-EC with resistance to multiple antibiotics were detected in the isolates from Blood stream infection (BSI). More resistant gene cassettes in ESBL-EC may partially underlie the high resistance to amikacin, while no relation exists between the high incidence of ESBL-EC and classes 1~ 3 integrons in this region. PMID:24639856

  8. Isolation and Characterization of Antimicrobial-Resistant Nontyphoidal Salmonella enterica Serovars from Imported Food Products.

    PubMed

    Bae, Dongryeoul; Kweon, Ohgew; Khan, Ashraf A

    2016-08-01

    The objective of this study was to determine antimicrobial resistance and elucidate the resistance mechanism in nontyphoidal Salmonella enterica serovars isolated from food products imported into the United States from 2011 to 2013. Food products contaminated with antimicrobial-resistant nontyphoidal S. enterica were mainly imported from Taiwan, Indonesia, Vietnam, and China. PCR, DNA sequencing, and plasmid analyses were used to characterize antimicrobial resistance determinants. Twentythree of 110 S. enterica isolates were resistant to various antimicrobial classes, including β-lactam, aminoglycoside, phenicol, glycopeptide, sulfonamide, trimethoprim, and/or fluoroquinolone antimicrobial agents. Twelve of the isolates were multidrug resistant strains. Antimicrobial resistance determinants blaTEM-1, blaCTX-M-9, blaOXA-1, tetA, tetB, tetD, dfrA1, dfrV, dhfrI, dhfrXII, drf17, aadA1, aadA2, aadA5, orfC, qnrS, and mutations of gyrA and parC were detected in one or more antimicrobial-resistant nontyphoidal S. enterica strains. Plasmid profiles revealed that 12 of the 23 antimicrobial-resistant strains harbored plasmids with incompatibility groups IncFIB, IncHI1, IncI1, IncN, IncW, and IncX. Epidemiologic and antimicrobial resistance monitoring data combined with molecular characterization of antimicrobial resistance determinants in Salmonella strains isolated from imported food products may provide information that can be used to establish or implement food safety programs to improve public health. PMID:27497122

  9. Polyphenol metabolism provides a screening tool for beneficial effects of Onobrychis viciifolia (sainfoin).

    PubMed

    Thill, Jana; Regos, Ionela; Farag, Mohamed A; Ahmad, Asma F; Kusek, Justyna; Castro, Ana; Schlangen, Karin; Carbonero, Christine Hayot; Gadjev, Ilya Z; Smith, Lydia M J; Halbwirth, Heidi; Treutter, Dieter; Stich, Karl

    2012-10-01

    Onobrychis viciifolia (sainfoin) is a traditional fodder legume showing multiple benefits for the environment, animal health and productivity but weaker agronomic performance in comparison to other legumes. Benefits can be mainly ascribed to the presence of polyphenols. The polyphenol metabolism in O. viciifolia was studied at the level of gene expression, enzyme activity, polyphenol accumulation and antioxidant activity. A screening of 37 accessions regarding each of these characters showed a huge variability between individual samples. Principal component analysis revealed that flavonols and flavan 3-ols are the most relevant variables for discrimination of the accessions. The determination of the activities of dihydroflavonol 4-reductase and flavonol synthase provides a suitable screening tool for the estimation of the ratio of flavonols to flavan 3-ols and can be used for the selection of samples from those varieties that have a specific optimal ratio of these compounds for further breeding. PMID:22818525

  10. Pigmented Soybean (Glycine max) Seed Coats Accumulate Proanthocyanidins during Development.

    PubMed Central

    Todd, J. J.; Vodkin, L. O.

    1993-01-01

    The dominant I gene inhibits accumulation of anthocyanin pigments in the epidermal layer of soybean (Glycine max) seed coats. Seed-coat color is also influenced by the R locus and by the pubescence color alleles (T, tawny; t, gray). Protein and RNA from cultivars with black (i,R,T) and brown (i,r,T) seed coats are difficult to extract. To determine the nature of the interfering plant products, we examined seed-coat extracts from Clark isogenic lines for flavonoids, anthocyanins, and possible proanthocyanidins by thin-layer chromatography. We show that yellow seed-coat varieties (I) do not accumulate anthocyanins (anthocyanidin glycosides) or proanthocyanidins (polymeric anthocyanidins). Mature, black (i,R,T) and imperfect-black (i,R,t) seed coats contained anthocyanins, whereas mature, brown (i,r,T) and buff (i,r,t) seed coats did not contain anthocyanins. In contrast, all colored (i) genotypes tested positive for the presence of proanthocyanidins by butanol/ HCl and 0.5% vanillin assays. Immature, black (i,R,T) and brown (i,r,T) seed coats contained significant amounts of procyanidin, a 3[prime],4[prime]-hydroxylated proanthocyanidin. Immature, black (i,R,T) or brown (i,r,T) seed-coat extracts also tested positive for the ability to precipitate proteins in a radial diffusion assay and to bind RNA in vitro. Imperfect-black (i,R,t) or buff (i,r,t) seed coats contained lesser amounts of propelargonidin, a 4[prime]-hydroxylated proanthocyanidin. Seed-coat extracts from these genotypes did not have the ability to precipitate protein or bind to RNA. In summary, the dominant I gene controls inhibition of not only anthocyanins but also proanthocyanidins in soybean seed coats. In homozygous recessive i genotypes, the T-t gene pair determines the types of proanthocyanidins present, which is consistent with the hypothesis that the T locus encodes a microsomal 3[prime]-flavonoid hydroxylase. PMID:12231856

  11. Preventive and Prophylactic Mechanisms of Action of Pomegranate Bioactive Constituents

    PubMed Central

    Viladomiu, Monica; Hontecillas, Raquel; Lu, Pinyi; Bassaganya-Riera, Josep

    2013-01-01

    Pomegranate fruit presents strong anti-inflammatory, antioxidant, antiobesity, and antitumoral properties, thus leading to an increased popularity as a functional food and nutraceutical source since ancient times. It can be divided into three parts: seeds, peel, and juice, all of which seem to have medicinal benefits. Several studies investigate its bioactive components as a means to associate them with a specific beneficial effect and develop future products and therapeutic applications. Many beneficial effects are related to the presence of ellagic acid, ellagitannins (including punicalagins), punicic acid and other fatty acids, flavonoids, anthocyanidins, anthocyanins, estrogenic flavonols, and flavones, which seem to be its most therapeutically beneficial components. However, the synergistic action of the pomegranate constituents appears to be superior when compared to individual constituents. Promising results have been obtained for the treatment of certain diseases including obesity, insulin resistance, intestinal inflammation, and cancer. Although moderate consumption of pomegranate does not result in adverse effects, future studies are needed to assess safety and potential interactions with drugs that may alter the bioavailability of bioactive constituents of pomegranate as well as drugs. The aim of this review is to summarize the health effects and mechanisms of action of pomegranate extracts in chronic inflammatory diseases. PMID:23737845

  12. Molecular and biochemical characterization of the UDP-glucose: Anthocyanin 5-O-glucosyltransferase from Vitis amurensis.

    PubMed

    He, Fei; Chen, Wei-Kai; Yu, Ke-Ji; Ji, Xiang-Nan; Duan, Chang-Qing; Reeves, Malcolm J; Wang, Jun

    2015-09-01

    Generally, red Vitis vinifera grapes only contain monoglucosidic anthocyanins, whereas most non-vinifera red grapes of the Vitis genus have both monoglucosidic and bis-glucosidic anthocyanins, the latter of which are believed to be more hydrophilic and more stable. Although previous studies have established the biosynthetic mechanism for formation of monoglucosidic anthocyanins, less attention has been paid to that of bis-glucosidic anthocyanins. In the present research, the full-length cDNA of UDP-glucose: anthocyanin 5-O-glucosyltransferase from Vitis amurensis Rupr. cv. 'Zuoshanyi' grape (Va5GT) was cloned. After acquisition and purification of recombinant Va5GT, its enzymatic parameters were systematically analyzed in vitro. Recombinant Va5GT used malvidin-3-O-glucoside as its optimum glycosidic acceptor when UDP-glucose was used as the glycosidic donor. Va5GT-GFP was found to be located in the cytoplasm by analyzing its subcellular localization with a laser-scanning confocal fluorescence microscope, and this result was coincident with its metabolic function of modifying anthocyanins in grape cells. Furthermore, the relationship between the transcriptional expression of Va5GT and the accumulation of anthocyanidin bis-glucosides during berry development suggested that Va5GT is a key enzyme in the biosynthesis of bis-glucosidic anthocyanins in V. amurensis grape berries. PMID:26159788

  13. Role of intestinal microbiota in the generation of polyphenol derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization

    PubMed Central

    Wang, Dongjie; Ho, Lap; Faith, Jeremiah; Ono, Kenjiro; Janle, Elsa M.; Lachcik, Pamela J.; Cooper, Bruce R.; Jannasch, Amber H.; D’Arcy, Bruce R.; Williams, Barbara A.; Ferruzzi, Mario G.; Levine, Samara; Zhao, Wei; Dubner, Lauren; Pasinetti, Giulio M.

    2015-01-01

    Scope Grape seed polyphenol extract (GSPE) is receiving increasing attention for its potential preventative and therapeutic roles in Alzheimer’s disease (AD) and other age-related neurodegenerative disorders. The intestinal microbiota is known to actively convert many dietary polyphenols, including GSPE, to phenolic acids. There is limited information on the bioavailability and bioactivity of GSPE-derived phenolic acid in the brain. Methods and Results We orally administered GSPE to rats and investigated the bioavailability of 12 phenolic acids known to be generated by microbiota metabolism of anthocyanidins. GSPE treatment significantly increased the content of 2 of the phenolic acids in the brain: 3-hydroxybenzoic acid (3-HBA) and 3-(3′-hydroxyphenyl) propionic acid (3-HPP), resulting in the brain accumulations of the two phenolic acids at μM concentrations. We also provided evidence that 3-HBA and 3-HPP potently interfere with the assembly of β-amyloid (Aβ) peptides into neurotoxic Aβ aggregates that play key roles in AD pathogenesis. Conclusion Our observation suggests important contribution of the intestinal microbiota to the protective activities of GSPE (as well as other polyphenol preparations) in AD. Outcomes from our studies support future preclinical and clinical investigations exploring the potential contributions of the intestinal microbiota in protecting against the onset/progression of AD and other neurodegenerative conditions. PMID:25689033

  14. Maqui berry (Aristotelia chilensis) and the constituent delphinidin glycoside inhibit photoreceptor cell death induced by visible light.

    PubMed

    Tanaka, Junji; Kadekaru, Takashi; Ogawa, Kenjirou; Hitoe, Shoketsu; Shimoda, Hiroshi; Hara, Hideaki

    2013-08-15

    The protective effects of maqui berry (Aristotelia chilensis) extract (MBE) and its major anthocyanins [delphinidin 3,5-O-diglucoside (D3G5G) and delphinidin 3-O-sambubioside-5-O-glucoside (D3S5G)] against light-induced murine photoreceptor cells (661W) death were evaluated. Viability of 661W after light treatment for 24 h, assessed by the tetrazolium salt (WST-8) assay and Hoechst 33342 nuclear staining, was improved by addition of MBE, D3G5G, and D3S5G. Intracellular radical activation in 661W, evaluated using the reactive oxygen species (ROS)-sensitive probe 5-(and-6)-chloromethyl-2,7-dichlorodihydro fluorescein diacetate acetyl ester (CM-H2DCFDA), was reduced by MBE and its anthocyanins. The anti-apoptosis mechanism of MBE was evaluated by light-induced phosphorylation of p38. MBE significantly suppressed the light-induced phosphorylation of p38. These findings indicate that MBE and its anthocyanidins suppress the light-induced photoreceptor cell death by inhibiting ROS production, suggesting that the inhibition of phosphorylated-p38 may be involved in the underlying mechanism. PMID:23561088

  15. Protective effect of red-stemmed type of Ipomoea aquatica Forsk against CCl4-induced oxidative damage in mice.

    PubMed

    Hirai, Shizuka; Ishibuchi, Toyohito; Watabe, Shinpei; Makita, Miki; Kishida, Chiaki; Takagaki, Michiko; Kurauchi, Nobuyuki; Egashira, Yukari

    2011-01-01

    Water spinach (Ipomoea aquatica Forsk; I. aquatica) of the green-stemmed type (green type) is widely consumed, but there also exists a red-stemmed variety (red type). In the present study, the antioxidant capacity of the red type was compared to that of the green type in carbon tetrachloride (CCl(4))-treated mice. CCl(4)-induced thiobarbituric acid reactive substrate (TBARS) formation in the liver was significantly suppressed in mice fed 5% red-type I. aquatica, while the green type showed no effect. Hydrophobic oxygen radical absorbance capacity (H-ORAC(FL)) in the red type showed a lower level than that in the green type; however, lipophilic ORAC (L-ORAC(FL)) and total-ORAC(FL) levels were significantly higher in the red type than in the green type. α-Tocopherol, anthocyanidin/proanthocyanidin, and β-carotene contents were all significantly higher in the red type than in the green type. These results suggest that the wild red-type I. aquatica contains certain lipophilic components that exert antioxidant capacities not only in vitro but also in vivo. Such effective components in the red type would be beneficial phytochemicals for suppressing several diseases related to oxidative stress. PMID:22041914

  16. Identification and Quantitation of Anthocyanins in Purple-Fleshed Sweet Potatoes Cultivated in China by UPLC-PDA and UPLC-QTOF-MS/MS.

    PubMed

    He, Wei; Zeng, Maomao; Chen, Jie; Jiao, Yuzhi; Niu, Fuxiang; Tao, Guanjun; Zhang, Shuang; Qin, Fang; He, Zhiyong

    2016-01-13

    The identification and quantitation of the anthocyanins in 12 purple-fleshed sweet potato (PFSP) cultivars ('Jihei 1', 'Xuzi 3', 'Xuzi 6', 'Zhezi 4', 'Ningzi 1', 'Ningzi 2', 'Ningzi 3', 'Ning 2-2', 'Ning 6-8', 'Guangzi 1', 'Ziluolan', and 'Qinzi 1') in China were carried out using a combination of ultraperformance liquid chromatography-photodiode array (UPLC-PDA), quadrupole-time-of-flight mass spectrometry (QTOF-MS), and tandem mass spectrometry (MS/MS) analyses. Thirteen acylated anthocyanins were tentatively characterized, including two new PFSP anthocyanins, cyanidin 3-caffeoyl-vanilloyl sophoroside-5-glucoside and peonidin 3-caffeoyl-vanilloyl sophoroside-5-glucoside. The quantitative analyses of these anthocyanins were conducted using cyanidin 3-O-glucoside as a standard. The total anthocyanin content of the PFSPs depended on the cultivar. The five PFSP cultivars with the highest content of anthocyanins were 'Jihei 1', 'Xuzi 3', 'Zhezi 4', 'Ziluolan', and 'Qinzi 1'. This is the first report of the 'Ningzi 2', 'Ningzi 3', and 'Ning 2-2' PFSP cultivars containing only diacylated anthocyanins and of the 'Xuzi 6' cultivar containing single anthocyanidin-based anthocyanins. PMID:26687974

  17. Contribution of Anthocyanin Composition to Total Antioxidant Capacity of Berries.

    PubMed

    Lee, Sang Gil; Vance, Terrence M; Nam, Tae-Gyu; Kim, Dae-Ok; Koo, Sung I; Chun, Ock K

    2015-12-01

    The present study aimed to evaluate the contribution of anthocyanin composition to the total antioxidant capacity (TAC) of berries having different anthocyanin composition; blackberry, black currant, and blueberry. Blackberry demonstrated the highest TAC, while it had the lowest total anthocyanin content among the three berries in both of the phenolic extract and anthocyanin fractions. On the other hand, black currant had the highest total anthocyanin content, but the lowest TAC. Cyanidin-3-O-glucoside (cya-3-glc) accounted for 94% of blackberry anthocyanins, and as one of the strongest antioxidants present in these three berries, it substantially contributed to the TAC of blackberry anthocyanin fraction (96.0%). Delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside in black currant had lower antioxidant capacities compared with delphinin-3-O-glucoside and cya-3-glc, resulting in its lowest TAC among berry anthocyanin fractions examined. Malvidin derivatives, major anthocyanins of blueberry, had considerably lower antioxidant capacity than other anthocyanidin derivatives, such as cyanidin or delphinidin, resulting in lower TAC of blueberry compared with blackberry. Our findings indicate that anthocyanin composition as well as the antioxidant capacity of individual anthocyanins contributes to the TAC of berries rich in distinct anthocyanins. PMID:26515081

  18. Intermolecular binding of blueberry pectin-rich fractions and anthocyanin.

    PubMed

    Lin, Z; Fischer, J; Wicker, L

    2016-03-01

    Pectin was extracted from blueberry powder into three fractions of water soluble (WSF), chelator soluble (CSF) and sodium carbonate soluble (NSF). The fractions were incubated with cyanidin-3-glucoside (C3G), a mixture of five anthocyanidins (cyanidin, pelargonidin, malvidin, petunidin and delphinidin) or blueberry juice at pH 2.0-4.5. Free anthocyanins and bound anthocyanin-pectin mixtures were separated by ultrafiltration. WSF bound the least amount of anthocyanin at all pH values. CSF had stronger anthocyanin binding ability at pH 2.0-3.6, while NSF had stronger anthocyanin binding ability at pH 3.6-4.5. The pectin and anthocyanin binding was lowest at pH 4.5 and higher at pH 2.0-3.6. Nearly doubling C3G pigment content increased bound anthocyanin percentage by 16-23% at pH 3.6, which favored anthocyanin aromatic stacking, compared to 3-9% increase at pH 2.0. Ionic interaction between anthocyanin flavylium cations and free pectic carboxyl groups, and anthocyanin stacking may be two major mechanisms for pectin and anthocyanin binding. PMID:26471644

  19. Flavonoid Intake in European Adults (18 to 64 Years)

    PubMed Central

    Vogiatzoglou, Anna; Mulligan, Angela A.; Lentjes, Marleen A. H.; Luben, Robert N.; Spencer, Jeremy P. E.; Schroeter, Hagen; Khaw, Kay-Tee; Kuhnle, Gunter G. C.

    2015-01-01

    Background Flavonoids are a group of phenolic secondary plant metabolites that are ubiquitous in plant-based diets. Data from anthropological, observational and intervention studies have shown that many flavonoids are bioactive. For this reason, there is an increasing interest in investigating the potential health effects of these compounds. The translation of these findings into the context of the health of the general public requires detailed information on habitual dietary intake. However, only limited data are currently available for European populations. Objective The objective of this study is to determine the habitual intake and main sources of anthocyanidins, flavanols, flavanones, flavones, flavonols, proanthocyanidins, theaflavins and thearubigins in the European Union. Design We use food consumption data from the European Food Safety Authority (EFSA) and the FLAVIOLA Food Composition Database to estimate intake of flavonoids. Results Mean (±SEM) intake of total flavonoids in Europe was 428±49 mg/d, of which 136±14 mg/d were monomeric compounds. Gallated flavan-3-ols (53±12 mg/d) were the main contributor. The lowest flavonoid intake was observed in Mediterranean countries (monomeric compounds: 95±11 mg/d). The distribution of intake was skewed in many countries, especially in Germany (monomeric flavonoids; mean intake: 181 mg/d; median intake: 3 mg/d). Conclusions The habitual intake of flavonoids in Europe is below the amounts found to have a significant health effect. PMID:26010916

  20. Development of a Recombinant Escherichia coli Strain for Overproduction of the Plant Pigment Anthocyanin.

    PubMed

    Lim, Chin Giaw; Wong, Lynn; Bhan, Namita; Dvora, Hila; Xu, Peng; Venkiteswaran, Sankaranarayanan; Koffas, Mattheos A G

    2015-09-01

    Anthocyanins are water-soluble colored pigments found in terrestrial plants and are responsible for the red, blue, and purple coloration of many flowers and fruits. In addition to the plethora of health benefits associated with anthocyanins (cardioprotective, anti-inflammatory, antioxidant, and antiaging properties), these compounds have attracted widespread attention due to their promising potential as natural food colorants. Previously, we reported the biotransformation of anthocyanin, specifically cyanidin 3-O-glucoside (C3G), from the substrate (+)-catechin in Escherichia coli. In the present work, we set out to systematically improve C3G titers by enhancing substrate and precursor availability, balancing gene expression level, and optimizing cultivation and induction parameters. We first identified E. coli transporter proteins that are responsible for the uptake of catechin and secretion of C3G. We then improved the expression of the heterologous pathway enzymes anthocyanidin synthase (ANS) and 3-O-glycosyltransferase (3GT) using a bicistronic expression cassette. Next, we augmented the intracellular availability of the critical precursor UDP-glucose, which has been known as the rate-limiting precursor to produce glucoside compounds. Further optimization of culture and induction conditions led to a final titer of 350 mg/liter of C3G. We also developed a convenient colorimetric assay for easy screening of C3G overproducers. The work reported here constitutes a promising foundation to develop a cost-effective process for large-scale production of plant-derived anthocyanin from recombinant microorganisms. PMID:26150456

  1. Studies on antioxidant properties of polyphenol-rich extract from berries of Aronia melanocarpa in blood platelets.

    PubMed

    Olas, B; Wachowicz, B; Nowak, P; Kedzierska, M; Tomczak, A; Stochmal, A; Oleszek, W; Jeziorski, A; Piekarski, J

    2008-12-01

    The antioxidant properties of extract from berries of Aronia melanocarpa (chokeberry) containing: anthocyanidines, phenolic acids and quercetine glycosides on oxidative/nitrative stress induced by peroxynitrite (ONOO(-), a powerful physiological oxidant, nitrating species and inflammatory mediator) in human blood platelets were studied in vitro. The extract from A. melanocarpa (5 - 50 microg/mL) significantly inhibited platelet protein carbonylation (measured by ELISA method) and thiol oxidation estimated with 5,5'-dithio-bis(2-nitro-benzoic acid) (DTNB) induced by peroxynitrite (0.1 mM) (IC(50)--35 microg/mL for protein carbonylation, and IC(50)--33 microg/mL for protein thiol oxidation). The tested extract only slightly reduced platelet protein nitration (measured by C- ELISA method). The extract also caused a distinct reduction of platelet lipid peroxidation induced by peroxynitrite. Moreover, in our preliminary experiments we observed that the extract (50 microg/mL) reduced oxidative/nitrative stress in blood platelets from patients with breast cancer. The obtained results indicate that in vitro the extract from A. melanocarpa has the protective effects against peroxynitrite-induced oxidative/nitrative damage to the human platelet proteins and lipids. The extract from A. melanocarpa seems to be also useful as an antioxidant in patients with breast cancer. PMID:19212014

  2. Anthocyanin degradation of blueberry-aronia nectar in glass compared with carton during storage.

    PubMed

    Trost, K; Golc-Wondra, A; Prosek, M; Milivojevic, L

    2008-10-01

    Blueberry-aronia nectar is known as a rich source of anthocyanins, which are mostly destroyed during commercial storage of the product. The factors influencing the rate of degradation are connected to the oxygen protection offered by the packaging, as well as the type of anthocyanidin and the amount of glycosylated sugar. The current study was aimed to compare the stability of total anthocyanin between glass and carton packaging as well as to determine the stability of individual anthocyanin with respect to aglycone and glycosylated sugar. The degradation rate of total anthocyanin degradation rate was 22% higher in carton packaging than glass bottle. The ranking order of the stability of individual anthocyanin with respect to aglycone was as follows (from the most to least stable): cyanindin > peonidin > petunidin > malvidin = delphinidin. The ranking order of the stability of anthocyanins with respect to glycosylated sugars was as follows (from the most to least stable): glucose > galactose > arabinose. As individual anthocyanins have different degradation rates this study can be used to determine the most stable natural colorant and the most sensitive antioxidant among the anthocyanins tested. PMID:19019128

  3. Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors.

    PubMed

    Bräunlich, Marie; Slimestad, Rune; Wangensteen, Helle; Brede, Cato; Malterud, Karl E; Barsett, Hilde

    2013-03-01

    Extracts, subfractions, isolated anthocyanins and isolated procyanidins B2, B5 and C1 from the berries and bark of Aronia melanocarpa were investigated for their antioxidant and enzyme inhibitory activities. Four different bioassays were used, namely scavenging of the diphenylpicrylhydrazyl (DPPH) radical, inhibition of 15-lipoxygenase (15-LO), inhibition of xanthine oxidase (XO) and inhibition of α-glucosidase. Among the anthocyanins, cyanidin 3-arabinoside possessed the strongest and cyanidin 3-xyloside the weakest radical scavenging and enzyme inhibitory activity. These effects seem to be influenced by the sugar units linked to the anthocyanidin. Subfractions enriched in procyanidins were found to be potent α-glucosidase inhibitors; they possessed high radical scavenging properties, strong inhibitory activity towards 15-LO and moderate inhibitory activity towards XO. Trimeric procyanidin C1 showed higher activity in the biological assays compared to the dimeric procyanidins B2 and B5. This study suggests that different polyphenolic compounds of A. melanocarpa can have beneficial effects in reducing blood glucose levels due to inhibition of α-glucosidase and may have a potential to alleviate oxidative stress. PMID:23459328

  4. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    PubMed

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05). PMID:26268964

  5. Effect of Methyl, Hydroxyl, and Chloro Substituents in Position 3 of 3',4',7-Trihydroxyflavylium: Stability, Kinetics, and Thermodynamics.

    PubMed

    Alejo-Armijo, Alfonso; Salido, Sofía; Altarejos, Joaquín; Parola, A Jorge; Gago, Sandra; Basílio, Nuno; Cabrita, Luis; Pina, Fernando

    2016-08-22

    The effect of methyl, hydroxyl, and chloride substituents in position 3 of the 3',4',7-trihydroxyflavylium core structure was studied. The stability, relative energy of each of chemical species (thermodynamics), and their rates of interconversion (kinetics) are very dependent on these substituents. By comparing the mole fraction distribution at equilibrium of the three multistate systems with the parent 3',4',7-trihydroxyflavylium, introduction of a methyl substituent in position 3 increases the mole fraction of hemiketal at the expense of the trans-chalcone and increases the hydration rate very significantly; a hydroxyl substituent in position 3 gives rise to a degradation process, as observed in anthocyanidins. In the case of 3-chloro-3',4',7-trihydroxyflavylium, a dramatic increase of the flavylium cation acidity was observed and a photochromic system can be operated upon irradiation of the respective trans-chalcone in 1 m HCl. According to the photochromic response of 3,3',4',7-tetrahydroxyflavylium and 3',4',7-trihydroxyflavylium, some requirements for a good photochromic performance are discussed. PMID:27465267

  6. Proanthocyanidins and other flavonoids in relation to endometrial cancer risk: a case–control study in Italy

    PubMed Central

    Rossi, M; Edefonti, V; Parpinel, M; Lagiou, P; Franchi, M; Ferraroni, M; Decarli, A; Zucchetto, A; Serraino, D; Dal Maso, L; Negri, E; La Vecchia, C

    2013-01-01

    Background: Because of their antioxidant and antimutagenic properties, flavonoids may reduce cancer risk. Some flavonoids have antiestrogenic effects that can inhibit the growth and proliferation of endometrial cancer cells. Methods: In order to examine the relation between dietary flavonoids and endometrial cancer, we analysed data from an Italian case–control study including 454 incident, histologically confirmed endometrial cancers and 908 hospital-based controls. Information was collected through a validated food-frequency questionnaire. We applied data on food and beverage composition to estimate the intake of flavanols, flavanones, flavonols, anthocyanidins, flavones, isoflavones, and proanthocyanidins. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated from multiple logistic regression models conditioned on age and study centre and adjusted for major confounding factors. Results: Women in the highest quartile category of proanthocyanidins with ⩾3 mers vs the first three quartile categories had an OR for endometrial cancer of 0.66 (95% CI=0.48–0.89). For no other class of flavonoids, a significant overall association was found. There was a suggestion of an inverse association for flavanones and isoflavones among women with body mass index <25 kg m−2, and, for flavanones, among parous or non-users of hormone-replacement therapy women. Conclusion: High consumption of selected proanthocyanidins may reduce endometrial cancer risk. PMID:23922105

  7. Flavonoid intake and the risk of age-related cataract in China's Heilongjiang Province

    PubMed Central

    Ma, Yingna; Gao, Weiqi; Wu, Kun; Bao, Yongping

    2015-01-01

    Background/objectives Epidemiological evidence suggests that diets rich in flavonoids may reduce the risk of developing age-related cataract (ARC). Flavonoids are widely distributed in foods of plant origin, and the objective of this study was to evaluate retrospectively the association between the intakes of the five flavonoid subclasses and the risk of ARC. Subjects/methods A population-based case-control study (249 cases and 66 controls) was carried out in Heilongjiang province, which is located in the northeast of China, and where intakes and availability of fresh vegetables and fruits can be limited. Dietary data gathered by food-frequency questionnaire (FFQ) were used to calculate flavonoid intake. Adjusted odds ratio (OR) and 95% confidence interval (CI) were estimated by logistic regression. Results No linear associations between risk of developing ARC and intakes of total dietary flavonoids, anthocyanidins, flavon-3-ol, flavanone, total flavones or total flavonols were found, but quercetin and isorhamnetin intake was inversely associated with ARC risk (OR 11.78, 95% CI: 1.62–85.84, p<0.05, and OR 6.99, 95% CI: 1.12–43.44, p<0.05, quartile 4 vs. quartile 1, respectively). Conclusion As quercetin is contained in many plant foods and isorhamnetin in very few foods, we concluded that higher quercetin intake may be an important dietary factor in the reduction of the risk of ARC. PMID:26652740

  8. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations.

    PubMed

    Goh, H-H; Khairudin, K; Sukiran, N A; Normah, M N; Baharum, S N

    2016-01-01

    Temperature is one of the key factors in limiting the distribution of plants and controlling major metabolic processes. A series of simulated reciprocal transplant experiments were performed to investigate the effect of temperature on plant chemical composition. Polygonum minus of different lowland and highland origin were grown under a controlled environment with different temperature regimes to study the effects on secondary metabolites. We applied gas chromatography-mass spectrometry and liquid chromatography time-of-flight mass spectrometry to identify the chemical compounds. A total of 37 volatile organic compounds and 85 flavonoids were detected, with the largest response observed in the compositional changes of aldehydes and terpenes in highland plants under higher temperature treatment. Significantly less anthocyanidin compounds and larger amounts of flavonols were detected under higher temperature treatment. We also studied natural variation in the different plant populations growing under the same environment and identified compounds unique to each population through metabolite fingerprinting. This study shows that the origin of different plant populations influences the effects of temperature on chemical composition. PMID:26417881

  9. Metabolite Fingerprinting of Eugenia jambolana Fruit Pulp Extracts using NMR, HPLC-PDA-MS, GC-MS, MALDI-TOF-MS and ESI-MS/MS Spectrometry.

    PubMed

    Sharma, Ram Jee; Gupta, Ramesh C; Bansal, Arvind Kumar; Singh, Inder Pal

    2015-06-01

    Eugenia jambolana, commonly known as 'jamun' or Indian blackberry, is an important source of bioactive compounds. All parts of the plant like stem bark, leaves, flower, fruit pulp and seeds are traditionally used for many diseases. Metabolite profiling in medicinally important plants is critical to resolve the problems associated with standardization and quality control. Metabolite profiling of the fruit pulp of Jamun was performed by NMR, HPLC, MS, GC-MS and MALDI-TOF mass spectrometry. These hyphenated techniques helped in the identification of 68 chemically-diverse metabolites of the fruit pulp. These include anthocyanins, anthocyanidins, sugars, phenolics and volatile compounds. Five extracts of fruit pulp were prepared i.e. hexane, chloroform, ethylacetate, butanol and aqueous methanolic. Twenty-five metabolites identified and quantified in the n-butanol and aqueous-methanolic extracts of ripe jamun fruit by qNMR. LC-PDA-MS and MALDI-TOF spectrometry helped in deciphering thirty-nine metabolites out of which thirteen were quantified. PMID:26197529

  10. Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).

    PubMed

    Cocetta, Giacomo; Rossoni, Mara; Gardana, Claudio; Mignani, Ilaria; Ferrante, Antonio; Spinardi, Anna

    2015-02-01

    Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars. PMID:24943920

  11. Chemistry of Secondary Polyphenols Produced during Processing of Tea and Selected Foods

    PubMed Central

    Tanaka, Takashi; Matsuo, Yosuke; Kouno, Isao

    2010-01-01

    This review will discuss recent progress in the chemistry of secondary polyphenols produced during food processing. The production mechanism of the secondary polyphenols in black tea, whisky, cinnamon, and persimmon fruits will be introduced. In the process of black tea production, tea leaf catechins are enzymatically oxidized to yield a complex mixture of oxidation products, including theaflavins and thearubigins. Despite the importance of the beverage, most of the chemical constituents have not yet been confirmed due to the complexity of the mixture. However, the reaction mechanisms at the initial stages of catechin oxidation are explained by simple quinone–phenol coupling reactions. In vitro model experiments indicated the presence of interesting regio- and stereoselective reactions. Recent results on the reaction mechanisms will be introduced. During the aging of whisky in oak wood barrels, ellagitannins originating from oak wood are oxidized and react with ethanol to give characteristic secondary ellagitannins. The major part of the cinnamon procyanidins is polymerized by copolymerization with cinnamaldehyde. In addition, anthocyanidin structural units are generated in the polymer molecules by oxidation which accounts for the reddish coloration of the cinnamon extract. This reaction is related to the insolubilization of proanthocyanidins in persimmon fruits by condensation with acetaldehyde. In addition to oxidation, the reaction of polyphenols with aldehydes may be important in food processing. PMID:20161999

  12. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    PubMed Central

    Liao, Liao; Vimolmangkang, Sornkanok; Wei, Guochao; Zhou, Hui; Korban, Schuyler S.; Han, Yuepeng

    2015-01-01

    Proanthocyanidins (PAs) are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis. PMID:25914714

  13. Analysis of TTG1 function in Arabis alpina

    PubMed Central

    2014-01-01

    Background In Arabidopsis thaliana (A. thaliana) the WD40 protein TRANSPARENT TESTA GLABRA1 (TTG1) controls five traits relevant for the adaptation of plants to environmental changes including the production of proanthocyanidin, anthocyanidin, seed coat mucilage, trichomes and root hairs. The analysis of different Brassicaceae species suggests that the function of TTG1 is conserved within the family. Results In this work, we studied the function of TTG1 in Arabis alpina (A. alpina). A comparison of wild type and two Aattg1 alleles revealed that AaTTG1 is involved in the regulation of all five traits. A detailed analysis of the five traits showed striking phenotypic differences between A. alpina and A. thaliana such that trichome formation occurs also at later stages of leaf development and that root hairs form at non-root hair positions. Conclusions The evolutionary conservation of the regulation of the five traits by TTG1 on the one hand and the striking phenotypic differences make A. alpina a very interesting genetic model system to study the evolution of TTG1-dependent gene regulatory networks at a functional level. PMID:24406039

  14. Complementary and alternative medical therapies in fibromyalgia.

    PubMed

    Sarac, Aysegul Jale; Gur, Ali

    2006-01-01

    This article describes the studies that have been performed evaluating complementary or alternative medical (CAM) therapies for efficacy and some adverse events fibromyalgia (FM). There is no permanent cure for FM; therefore, adequate symptom control should be goal of treatment. Clinicians can choose from a variety of pharmacologic and nonpharmacologic modalities. Unfortunately, controlled studies of most current treatments have failed to demonstrate sustained, clinically significant responses. CAM has gained increasing popularity, particularly among individuals with FM for which traditional medicine has generally been ineffective. Some herbal and nutritional supplements (magnesium, S- adenosylmethionine) and massage therapy have the best evidence for effectiveness with FM. Other CAM therapies such as chlorella, biofeedback, relaxation have either been evaluated in only one randomised controlled trials (RCT) with positive results, in multiple RCTs with mixed results (magnet therapies) or have positive results from studies with methodological flaws (homeopathy, botanical oils, balneotherapy, anthocyanidins and dietary modifications). Another CAM therapy such as chiropractic care has neither well-designed studies nor positive results and is not currently recommended for FM treatment. Once CAM therapies have been better evaluated for safety and long-term efficacy in randomised, placebo-controlled trials, they may prove to be beneficial in treatments for FM. It would then be important to assess studies assessing cost-benefit analyses comparing conventional therapies and CAM. PMID:16454724

  15. Inhibitive Effects of Mulberry Leaf-Related Extracts on Cell Adhesion and Inflammatory Response in Human Aortic Endothelial Cells

    PubMed Central

    Chao, P.-Y.; Lin, K.-H.; Chiu, C.-C.; Yang, Y.-Y.; Huang, M.-Y.; Yang, C.-M.

    2013-01-01

    Effects of mulberry leaf-related extracts (MLREs) on hydrogen peroxide-induced DNA damage in human lymphocytes and on inflammatory signaling pathways in human aortic endothelial cells (HAECs) were studied. The tested MLREs were rich in flavonols, especially bombyx faces tea (BT) in quercetin and kaempferol. Polyphenols, flavonoids, and anthocyanidin also abounded in BT. The best trolox equivalent antioxidant capacity (TEAC) was generated from the acidic methanolic extracts of BT. Acidic methanolic and water extracts of mulberry leaf tea (MT), mulberry leaf (M), and BT significantly inhibited DNA oxidative damage to lymphocytes based on the comet assay as compared to the H2O2-treated group. TNF-α-induced monocyte-endothelial cell adhesion was significantly suppressed by MLREs. Additionally, nuclear factor kappa B (NF-κB) expression was significantly reduced by BT and MT. Significant reductions were also observed in both NF-κB and activator protein (AP)-1 DNA binding by MLREs. Significant increases in peroxisome proliferator-activated receptor (PPAR) α and γ DNA binding by MLREs were also detected in M and MT extracts, but no evidence for PPAR α DNA binding in 50 μg/mL MT extract was found. Apparently, MLREs can provide distinct cytoprotective mechanisms that may contribute to its putative beneficial effects on suppressing endothelial responses to cytokines during inflammation. PMID:24371453

  16. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula.

    PubMed

    Jun, Ji Hyung; Liu, Chenggang; Xiao, Xirong; Dixon, Richard A

    2015-10-01

    Accumulation of anthocyanins and proanthocyanidins (PAs) is limited to specific cell types and developmental stages, but little is known about how antagonistically acting transcriptional regulators work together to determine temporal and spatial patterning of pigmentation at the cellular level, especially for PAs. Here, we characterize MYB2, a transcriptional repressor regulating both anthocyanin and PA biosynthesis in the model legume Medicago truncatula. MYB2 was strongly upregulated by MYB5, a major regulator of PA biosynthesis in M. truncatula and a component of MYB-basic helix loop helix-WD40 (MBW) activator complexes. Overexpression of MYB2 abolished anthocyanin and PA accumulation in M. truncatula hairy roots and Arabidopsis thaliana seeds, respectively. Anthocyanin deposition was expanded in myb2 mutant seedlings and flowers accompanied by increased anthocyanin content. PA mainly accumulated in the epidermal layer derived from the outer integument in the M. truncatula seed coat, starting from the hilum area. The area of PA accumulation and ANTHOCYANIDIN REDUCTASE expression was expanded into the seed body at the early stage of seed development in the myb2 mutant. Genetic, biochemical, and cell biological evidence suggests that MYB2 functions as part of a multidimensional regulatory network to define the temporal and spatial pattern of anthocyanin and PA accumulation linked to developmental processes. PMID:26410301

  17. An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants.

    PubMed

    Peng, Qing-Zhong; Zhu, Yue; Liu, Zhong; Du, Ci; Li, Ke-Gang; Xie, De-Yu

    2012-09-01

    Proanthocyanidins (PAs) are oligomers or polymers of plant flavan-3-ols and are important to plant adaptation in extreme environmental conditions. The characterization of anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) has demonstrated the different biogenesis of four stereo-configurations of flavan-3-ols. It is important to understand whether ANR and the ANR pathway widely occur in the plant kingdom. Here, we report an integrated approach to demonstrate the ANR pathway in plants. This includes different methods to extract native ANR from different tissues of eight angiosperm plants (Lotus corniculatus, Desmodium uncinatum, Medicago sativa, Hordeum vulgare, Vitis vinifera, Vitis bellula, Parthenocissus heterophylla, and Cerasus serrulata) and one fern plant (Dryopteris pycnopteroides), a general enzymatic analysis approach to demonstrate the ANR activity, high-performance liquid chromatography-based fingerprinting to demonstrate (-)-epicatechin and other flavan-3-ol molecules, and phytochemical analysis of PAs. Results demonstrate that in addition to leaves of M. sativa, tissues of other eight plants contain an active ANR pathway. Particularly, the leaves, flowers and pods of D. uncinatum, which is a model plant to study LAR and the LAR pathways, are demonstrated to express an active ANR pathway. This finding suggests that the ANR pathway involves PA biosynthesis in D. uncinatum. In addition, a sequence BLAST analysis reveals that ANR homologs have been sequenced in plants from both gymnosperms and angiosperms. These data show that the ANR pathway to PA biosynthesis occurs in both seed and seedless vascular plants. PMID:22678031

  18. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties.

    PubMed

    Marín, Laura; Miguélez, Elisa M; Villar, Claudio J; Lombó, Felipe

    2015-01-01

    Polyphenolic compounds are plant nutraceuticals showing a huge structural diversity, including chlorogenic acids, hydrolyzable tannins, and flavonoids (flavonols, flavanones, flavan-3-ols, anthocyanidins, isoflavones, and flavones). Most of them occur as glycosylated derivatives in plants and foods. In order to become bioactive at human body, these polyphenols must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. After elimination of sugar tailoring (generating the corresponding aglycons) and diverse hydroxyl moieties, as well as further backbone reorganizations, the final absorbed compounds enter the portal vein circulation towards liver (where other enzymatic transformations take place) and from there to other organs, including behind the digestive tract or via blood towards urine excretion. During this transit along diverse tissues and organs, they are able to carry out strong antiviral, antibacterial, and antiparasitic activities. This paper revises and discusses these antimicrobial activities of dietary polyphenols and their relevance for human health, shedding light on the importance of polyphenols structure recognition by specific enzymes produced by intestinal microbial taxa. PMID:25802870

  19. Classification of fruits based on anthocyanin types and relevance to their health effects.

    PubMed

    Fang, Jim

    2015-01-01

    Anthocyanins are a group of water-soluble pigments that confer the blue, purple, and red color to many fruits. Anthocyanin-rich fruits can be divided into three groups based on the types of aglycones of their anthocyanins: pelargonidin group, cyanidin/peonidin group, and multiple anthocyanidins group. Some fruits contain a major anthocyanin type and can serve as useful research tools. Cyanidin glycosides and peonidin glycosides can be metabolically converted to each other by methylation and demethylation. Both cyanidin and peonidin glycosides can be metabolized to protocatechuic acid and vanillic acid. Pelargonidin-3-glucoside is metabolized to 4-hydroxybenoic acid. On the other hand, phenolic acid metabolites of delphinidin, malvidin, and petunidin glycosides are unstable and can be further fragmented into smaller molecules. A literature review indicates berries with higher cyanidin content, such as black raspberries, chokeberries, and bilberries are more likely to produce an antiinflammatory effect. This observation seems to be consistent with the hypothesis that one or more stable phenolic acid metabolites contribute to the antiinflammatory effects of anthocyanin-rich fruits. More studies are needed before we can conclude that fruits rich in cyanidin, peonidin, or pelargonidin glycosides have better antiinflammatory effects. Additionally, fruit polyphenols other than anthocyanins could contribute to their antiinflammatory effects. Furthermore, blueberries could exert their health effects with other mechanisms such as improving intestinal microbiota composition. In summary, this classification system can facilitate our understanding of the absorption and metabolic processes of anthocyanins and the health effects of different fruits. PMID:26250485

  20. Antioxidant Activity in Extracts of 27 Indigenous Taiwanese Vegetables

    PubMed Central

    Chao, Pi-Yu; Lin, Su-Yi; Lin, Kuan-Hung; Liu, Yu-Fen; Hsu, Ju-Ing; Yang, Chi-Ming; Lai, Jun-You

    2014-01-01

    The objectives of this study were to identify the antioxidants and antioxidant axtivity in 27 of Taiwan’s indigenous vegetables. Lycium chinense (Lc), Lactuca indica (Li), and Perilla ocymoides (Po) contained abundant quercetin (Que), while Artemisia lactiflora (Al) and Gynura bicolor (Gb) were rich in morin and kaempferol, respectively. Additionally, Nymphoides cristata (Nc) and Sechium edule (Se)-yellow had significantly higher levels of myricetin (Myr) than other tested samples. Cyanidin (Cyan) and malvidin (Mal) were abundant in Gb, Abelmoschus esculentus Moench (Abe), Po, Anisogonium esculentum (Retz.) Presl (Ane), Ipomoea batatas (Ib)-purple, and Hemerocallis fulva (Hf)-bright orange. Relatively high levels of Trolox equivalent antioxidant capacity (TEAC), oxygen radical absorption capacity (ORAC), and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenger were generated from extracts of Toona sinensis (Ts) and Po. Significant and positive correlations between antioxidant activity and polyphenols, anthocyanidins, Que, Myr, and morin were observed, indicating that these phytochemicals were some of the main components responsible for the antioxidant activity of tested plants. The much higher antioxidant activity of Po, Ts, and Ib (purple leaf) may be related to their higher Cyan, Que, and polyphenol content. PMID:24858497

  1. Tuberculosis and nature's pharmacy of putative anti-tuberculosis agents.

    PubMed

    Chinsembu, Kazhila C

    2016-01-01

    Due to the growing problem of drug resistant Mycobacterium tuberculosis strains, coupled with the twinning of tuberculosis (TB) to human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), the burden of TB is now difficult to manage. Therefore, new antimycobacterial agents are being sought from natural sources. This review focuses on natural antimycobacterial agents from endophytes and medicinal plants of Africa, Europe, Asia, South America and Canada. In the countries mentioned in this review, numerous plant species display putative anti-TB activity. Several antimycobacterial chemical compounds have also been isolated, including: ellagitannin punicalagin, allicin, anthraquinone glycosides, iridoids, phenylpropanoids, beta-sitosterol, galanthimine, crinine, friedelin, gallic acid, ellagic acids, anthocyanidin, taraxerol, termilignan B, arjunic acid, glucopyranosides, 1-epicatechol, leucopelargonidol, hydroxybenzoic acids, benzophenanthridine alkaloids, neolignans, and decarine. These compounds may provide leads to novel and more efficacious drugs to lessen the global burden of TB and drug-resistant M. tuberculosis strains. If there is a long-term remedy for TB, it must lie in nature's pharmacy of putative antimycobacterial agents. PMID:26464047

  2. Evolutionary correlations in flavonoid production across flowers and leaves in the Iochrominae (Solanaceae).

    PubMed

    Berardi, Andrea E; Hildreth, Sherry B; Helm, Richard F; Winkel, Brenda S J; Smith, Stacey D

    2016-10-01

    Plant reproductive and vegetative tissues often use the same biochemical pathways to produce specialized metabolites. In such cases, selection acting on the synthesis of specific products in a particular tissue could result in correlated changes in other products of the pathway, both in the same tissue and in other tissues. This study examined how changes in floral anthocyanin pigmentation affect the production of other compounds of the flavonoid pathway in flowers and in leaves. Focusing on the Iochrominae, a clade of Solanaceae with a wide range of flower colors, liquid chromatography coupled with mass spectrometry and UV detection was used to profile and quantify the variation in two classes of flavonoids, anthocyanins and flavonols. Purple, red, orange and white-flowered Iochrominae produced all of the six common anthocyanidin types, as well as several classes of flavonols. Differences in anthocyanin and flavonol production were significantly correlated in flowers, particularly with respect to B ring hydroxylation pattern. However, these differences in floral flavonoids were not strongly related to differences in leaf chemistry. Specifically, most species made only flavonols (not anthocyanins) in leaves, and these comprised the two most common flavonols, quercetin and kaempferol, regardless of the color of the flower. These results suggest that shifts in flower color may occur without significant pleiotropic consequences for flavonoid production in vegetative tissues. Similar studies in other systems will be important for testing the generality of this pattern in other groups of flowering plants. PMID:27291343

  3. Oxygen Consumption by Red Wines. Part II: Differential Effects on Color and Chemical Composition Caused by Oxygen Taken in Different Sulfur Dioxide-Related Oxidation Contexts.

    PubMed

    Carrascon, Vanesa; Fernandez-Zurbano, Purificación; Bueno, Mónica; Ferreira, Vicente

    2015-12-30

    Chemical changes caused by oxidation of red wines during 5 consecutive air-saturation cycles have been assessed. In order to investigate the existing relationship between the effects caused by O2 and the levels and consumption rates of wine SO2, the total oxygen consumed by the wines (16-25 mg/L) was subdivided into different nonmutually exclusive categories. The ones found most influential on chemical changes were the O2 consumed in the first saturation without equivalent SO2 consumption (O2preSO2) and the O2 consumed when levels of free SO2 were below 5 mg/L (radical forming O2). Chromatic changes were strongly related to both O2 categories, even though anthocyanidin degradation was not related to any O2 category. Radical forming O2 prevented both formation of red pigments and reduction of epigallocatechin and other proanthocyanidins, induced accumulation of phenolic acids, and caused losses of β-damascenone and whiskylactone without evidence of acetaldehyde formation. O2preSO2 seemed to play a key role in the formation of blue pigments and in the decrease of Folin index and of many important aroma compounds. PMID:26646423

  4. Antioxidant activity in extracts of 27 indigenous Taiwanese vegetables.

    PubMed

    Chao, Pi-Yu; Lin, Su-Yi; Lin, Kuan-Hung; Liu, Yu-Fen; Hsu, Ju-Ing; Yang, Chi-Ming; Lai, Jun-You

    2014-05-01

    The objectives of this study were to identify the antioxidants and antioxidant axtivity in 27 of Taiwan's indigenous vegetables. Lycium chinense (Lc), Lactuca indica (Li), and Perilla ocymoides (Po) contained abundant quercetin (Que), while Artemisia lactiflora (Al) and Gynura bicolor (Gb) were rich in morin and kaempferol, respectively. Additionally, Nymphoides cristata (Nc) and Sechium edule (Se)-yellow had significantly higher levels of myricetin (Myr) than other tested samples. Cyanidin (Cyan) and malvidin (Mal) were abundant in Gb, Abelmoschus esculentus Moench (Abe), Po, Anisogonium esculentum (Retz.) Presl (Ane), Ipomoea batatas (Ib)-purple, and Hemerocallis fulva (Hf)-bright orange. Relatively high levels of Trolox equivalent antioxidant capacity (TEAC), oxygen radical absorption capacity (ORAC), and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenger were generated from extracts of Toona sinensis (Ts) and Po. Significant and positive correlations between antioxidant activity and polyphenols, anthocyanidins, Que, Myr, and morin were observed, indicating that these phytochemicals were some of the main components responsible for the antioxidant activity of tested plants. The much higher antioxidant activity of Po, Ts, and Ib (purple leaf) may be related to their higher Cyan, Que, and polyphenol content. PMID:24858497

  5. Extracts, Anthocyanins and Procyanidins from Aronia melanocarpa as Radical Scavengers and Enzyme Inhibitors

    PubMed Central

    Bräunlich, Marie; Slimestad, Rune; Wangensteen, Helle; Brede, Cato; Malterud, Karl E.; Barsett, Hilde

    2013-01-01

    Extracts, subfractions, isolated anthocyanins and isolated procyanidins B2, B5 and C1 from the berries and bark of Aronia melanocarpa were investigated for their antioxidant and enzyme inhibitory activities. Four different bioassays were used, namely scavenging of the diphenylpicrylhydrazyl (DPPH) radical, inhibition of 15-lipoxygenase (15-LO), inhibition of xanthine oxidase (XO) and inhibition of α-glucosidase. Among the anthocyanins, cyanidin 3-arabinoside possessed the strongest and cyanidin 3-xyloside the weakest radical scavenging and enzyme inhibitory activity. These effects seem to be influenced by the sugar units linked to the anthocyanidin. Subfractions enriched in procyanidins were found to be potent α-glucosidase inhibitors; they possessed high radical scavenging properties, strong inhibitory activity towards 15-LO and moderate inhibitory activity towards XO. Trimeric procyanidin C1 showed higher activity in the biological assays compared to the dimeric procyanidins B2 and B5. This study suggests that different polyphenolic compounds of A. melanocarpa can have beneficial effects in reducing blood glucose levels due to inhibition of α-glucosidase and may have a potential to alleviate oxidative stress. PMID:23459328

  6. The Transcriptional Repressor MYB2 Regulates Both Spatial and Temporal Patterns of Proanthocyandin and Anthocyanin Pigmentation in Medicago truncatula[OPEN

    PubMed Central

    2015-01-01

    Accumulation of anthocyanins and proanthocyanidins (PAs) is limited to specific cell types and developmental stages, but little is known about how antagonistically acting transcriptional regulators work together to determine temporal and spatial patterning of pigmentation at the cellular level, especially for PAs. Here, we characterize MYB2, a transcriptional repressor regulating both anthocyanin and PA biosynthesis in the model legume Medicago truncatula. MYB2 was strongly upregulated by MYB5, a major regulator of PA biosynthesis in M. truncatula and a component of MYB-basic helix loop helix-WD40 (MBW) activator complexes. Overexpression of MYB2 abolished anthocyanin and PA accumulation in M. truncatula hairy roots and Arabidopsis thaliana seeds, respectively. Anthocyanin deposition was expanded in myb2 mutant seedlings and flowers accompanied by increased anthocyanin content. PA mainly accumulated in the epidermal layer derived from the outer integument in the M. truncatula seed coat, starting from the hilum area. The area of PA accumulation and ANTHOCYANIDIN REDUCTASE expression was expanded into the seed body at the early stage of seed development in the myb2 mutant. Genetic, biochemical, and cell biological evidence suggests that MYB2 functions as part of a multidimensional regulatory network to define the temporal and spatial pattern of anthocyanin and PA accumulation linked to developmental processes. PMID:26410301

  7. Low Medium pH Value Enhances Anthocyanin Accumulation in Malus Crabapple Leaves

    PubMed Central

    Tian, Ji; Jin, Kaina; Yao, Yuncong

    2014-01-01

    Anthocyanin is a critical factor involved in coloration of plant tissues, but the mechanism how medium pH values affect anthocyanin accumulation in woody plants is unknown. We analyzed anthocyanin composition and the expression of elements encoding anthocyanin and flavonols biosynthesis underlying different medium pH values by using three different leave color type cultivars. HPLC analysis demonstrated that high medium pH values treatment induced a dramatic decrease in the concentration of cyaniding in crabapple leaves. Conversely, the high medium pH values induced up-regulation of the content of flavones and flavonols, suggesting that low pH treatment-induced anthocyanin accumulation. Quantitative real time PCR experiment showed the expression level of anthocyanidin synthase (McANS) and uridine diphosphate glucose flavonoid 3-O-glucosyltransferase (McUFGT) was up-regulated by low pH values treatment, and high medium pH value treatment up-regulate the transcription level of flavonol synthase (McFLS). Meanwhile, several MYB TFs have been suggested in the regulation of pH responses. These results strongly indicate that the low pH treatment-induced anthocyanin accumulation is mediated by the variation of mRNA transcription of the anthocyanin biosynthetic genes. PMID:24914811

  8. Anthocyanins as Functional Food Colors

    NASA Astrophysics Data System (ADS)

    Motohashi, Noboru; Sakagami, Hiroshi

    Anthocyanins, a proanthocyanidin-type of flavonoid, contain an abundance of functional phytochemicals and occur in fruits such as cranberry, blueberry, orange, apple and in vegetables such as tomato, sweet pepper, spinach, and radishes. Functional and essential diets have been ingested in daily life since the primitive era of history. When anthocyanins are coupled with some water-soluble sugar molecules, their color becomes red, yellow, violet, or blue. It is very intriguing that anthocyanins provide the colorful variety of pigments for pansies, petunias, plums, and other diverse flowers. Chlorophyll in various fruits and vegetables is the main green phyto-component, while anthocyanins are probably the most important visible plant pigments in the natural kingdom having specific colors. Anthocyanins have been clinically used in many folklore medicines worldwide. Anthocyanins could provide health benefits for age-related diseases as well as other diseases. Anthocyanins have higher antioxidant capacity against oxidative stress induced by excess reactive oxygen species (ROS) such as superoxide radicals, hydrogen peroxide, and thus the human body might be protected from oxidative injury by anthocyanins. On the basis of these facts, we review the synthesis of plant flavonoids and their ability to scavenge oxidants, inhibit or activate enzymes, and the safety of proanthocyanidins and anthocyanidins present in common foods.

  9. Recent advances in understanding the anti-diabetic actions of dietary flavonoids

    PubMed Central

    Babu, Pon Velayutham Anandh; Liu, Dongmin; Gilbert, Elizabeth R.

    2013-01-01

    Flavonoids are polyphenolic compounds that are abundant in fruits and vegetables and increasing evidence demonstrates a positive relationship between consumption of flavonoid-rich foods and disease prevention. Epidemiological, in vitro and animal studies support the beneficial effects of dietary flavonoids on glucose and lipid homeostasis. It is encouraging that the beneficial effects of some flavonoids are at physiological concentrations and comparable to clinically-used anti-diabetic drugs; however, clinical research in this field and studies on the anti-diabetic effects of flavonoid metabolites are limited. Flavonoids act on various molecular targets and regulate different signaling pathways in pancreatic β-cells, hepatocytes, adipocytes, and skeletal myofibers. Flavonoids may exert beneficial effects in diabetes by (i) enhancing insulin secretion and reducing apoptosis and promoting proliferation of pancreatic β-cells, (ii) improving hyperglycemia through regulation of glucose metabolism in hepatocytes, (iii) reducing insulin resistance, inflammation and oxidative stress in muscle and fat, and (iv) increasing glucose uptake in skeletal muscle and white adipose tissue. This review highlights recent findings on the anti-diabetic effects of dietary flavonoids, including flavan-3-ols, flavanones, flavonols, anthocyanidins, flavones, and isoflavones, with particular emphasis on the studies that investigated the cellular and molecular mechanisms involved in the beneficial effects of the compounds. PMID:24029069

  10. Cloning and characterization of a flavonol synthase gene from Scutellaria baicalensis.

    PubMed

    Kim, Yeon Bok; Kim, KwangSoo; Kim, Yeji; Tuan, Pham Anh; Kim, Haeng Hoon; Cho, Jin Woong; Park, Sang Un

    2014-01-01

    Flavonols are the most abundant of all the flavonoids and play pivotal roles in a variety of plants. We isolated a cDNA clone encoding flavonol synthase from Scutellaria baicalensis (SbFLS). The SbFLS cDNA is 1011 bp long, encodes 336 amino acid residues, and belongs to a family of 2-oxoglutarate-dependent dioxygenases. The overall structure of SbFLS is very similar to that of Arabidopsis thaliana anthocyanidin synthase (AtANS), with a β jelly-roll fold surrounded by tens of short and long α-helices. SbFLS was constitutively expressed in the roots, stems, leaves, and flowers, with particularly high expression in the roots and flowers. SbFLS transcript levels in the roots were 376-, 70-, and 2.5-fold higher than in the leaves, stems, and flowers. The myricetin content was significantly higher than that of kaempferol and quercetin. Therefore, we suggest that SbFLS mediates flavonol formation in the different organs of S. baicalensis. Our study may contribute to the knowledge of the role of FLS in S. baicalensis. PMID:24672406

  11. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties

    PubMed Central

    Miguélez, Elisa M.; Villar, Claudio J.

    2015-01-01

    Polyphenolic compounds are plant nutraceuticals showing a huge structural diversity, including chlorogenic acids, hydrolyzable tannins, and flavonoids (flavonols, flavanones, flavan-3-ols, anthocyanidins, isoflavones, and flavones). Most of them occur as glycosylated derivatives in plants and foods. In order to become bioactive at human body, these polyphenols must undergo diverse intestinal transformations, due to the action of digestive enzymes, but also by the action of microbiota metabolism. After elimination of sugar tailoring (generating the corresponding aglycons) and diverse hydroxyl moieties, as well as further backbone reorganizations, the final absorbed compounds enter the portal vein circulation towards liver (where other enzymatic transformations take place) and from there to other organs, including behind the digestive tract or via blood towards urine excretion. During this transit along diverse tissues and organs, they are able to carry out strong antiviral, antibacterial, and antiparasitic activities. This paper revises and discusses these antimicrobial activities of dietary polyphenols and their relevance for human health, shedding light on the importance of polyphenols structure recognition by specific enzymes produced by intestinal microbial taxa. PMID:25802870

  12. Antioxidant activity evaluation and HPLC-photodiode array/MS polyphenols analysis of pomegranate juice from selected italian cultivars: A comparative study.

    PubMed

    Fanali, Chiara; Belluomo, Maria Giovanna; Cirilli, Marco; Cristofori, Valerio; Zecchini, Maurizio; Cacciola, Francesco; Russo, Marina; Muleo, Rosario; Dugo, Laura

    2016-07-01

    Chemical composition of pomegranate juice can vary due to cultivar, area of cultivation, ripening, climate, and other variables. This study investigates the polyphenolic composition and antioxidant activity of juices obtained from six old Italian pomegranate cultivars. Fruit accessions physicochemical characteristics were determined. Total polyphenols content (TPC), anthocyanin content (TAC) and proanthocyanidin content (TPAC) were measured in the juice samples. Phenolic bioactive molecules were analyzed by HPLC-photodiode array (PDA)/ESI-MS in all the pomegranate juices. In total, seven nonanthocyanidinic and six anthocyanidinic compounds were identified. The six anthocyanins were found in all juices although at different amounts. These results were correlated with antioxidant activity measured by three different chemical assays: 2,2 diphenyl-1-picrylhydrazyl (DPPH(•) ) scavenging activity assay, Trolox equivalent antioxidant capacity (TEAC) method and ferric reducing-antioxidant power (FRAP) assay. Pomegranate juices obtained by six different varieties show variable polyphenolic content and antioxidant activity. The antioxidant capacity methods used have shown variable sensitivity, supporting the hypothesis that different methods for the assessment of antioxidant capacity of food compounds are indeed necessary, due to complexity of sample composition and assay chemical mechanism and sensitivity. Juices from Italian pomegranate show good levels of polyphenols content and antioxidant activity making them potential candidates for employment in the food industry. PMID:26814700

  13. Enzymic and protein character of tonoplast from Hippeastrum vacuoles

    SciTech Connect

    Wagner, G.J.

    1981-01-01

    The membrane of anthocyanin containing Hippeastrum petal vacuoles was examined for protein and enzyme content after purification by equilibrium density centrifugation. Light scattering, protein, and a Mg/sup 2 +/ -dependent nucleotide specific ATPase were associated with membrane having a density of 1.08 to 1.12 grams per cubic centimeter. A small amount of acid phosphatase was also present in this region of the gradient, but this activity peaked at about 1.12 grams per cubic centimeter. A component of yeast tonoplast, ..cap alpha..-mannosidase, was not significantly present. UDP-glucose, anthocyanidin-3-O-glucosyltransferase, thought to be a cytosol enzyme in Hippeastrum, was absent from tonoplast of vacuoles isolated by osmotic shock in 0.2 molar K/sub 2/HPO/sub 4/ or 0.35 molar mannitol. Vacuolar acid phosphatase was insensitive to ethylenediaminetetraacetate but was 80% inhibited by 10 millimolar KF, while ATPase was inactivated by 2 millimolar ethylenediaminetetraacetate and only 50% inhibited by 10 millimolar KF,. Five major and about 9 minor polypeptides were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane protein on 5 to 30 and 6 to 16% gradient gels.

  14. Cytoprotective Mechanism of Cyanidin and Delphinidin against Oxidative Stress-Induced Tenofibroblast Death.

    PubMed

    Nam, Dae Cheol; Hah, Young Sool; Nam, Jung Been; Kim, Ra Jeong; Park, Hyung Bin

    2016-07-01

    Age-related rotator cuff tendon degeneration is related to tenofibroblast apoptosis. Anthocyanins reduce oxidative stress-induced apoptotic cell death in tenofibroblasts. The current study investigated the presence of cell protective effects in cyanidin and delphinidin, the most common aglycon forms of anthocyanins. We determined whether these anthocyanidins have antiapoptotic and antinecrotic effects in tenofibroblasts exposed to H2O2, and evaluated their biomolecular mechanisms. Both cyanidin and delphinidin inhibited H2O2-induced apoptosis in a dose-dependent manner. However, at concentrations of 100 μg/ml or greater, delphinidin showed cytotoxicity against tenofibroblasts and a decreased antinecrotic effect. Cyanidin and delphinidin both showed inhibitory effects on the H2O2-induced increase in intracellular ROS formation and the activation of ERK1/2 and JNK. In conclusion, both cyanidin and delphinidin have cytoprotective effects on cultured tenofibroblasts exposed to H2O2. These results suggest that cyanidin and delphinidin are both beneficial for the treatment of oxidative stress-mediated tenofibroblast cell death, but their working concentrations are different. PMID:27098861

  15. Chemistry of secondary polyphenols produced during processing of tea and selected foods.

    PubMed

    Tanaka, Takashi; Matsuo, Yosuke; Kouno, Isao

    2009-01-01

    This review will discuss recent progress in the chemistry of secondary polyphenols produced during food processing. The production mechanism of the secondary polyphenols in black tea, whisky, cinnamon, and persimmon fruits will be introduced. In the process of black tea production, tea leaf catechins are enzymatically oxidized to yield a complex mixture of oxidation products, including theaflavins and thearubigins. Despite the importance of the beverage, most of the chemical constituents have not yet been confirmed due to the complexity of the mixture. However, the reaction mechanisms at the initial stages of catechin oxidation are explained by simple quinone-phenol coupling reactions. In vitro model experiments indicated the presence of interesting regio- and stereoselective reactions. Recent results on the reaction mechanisms will be introduced. During the aging of whisky in oak wood barrels, ellagitannins originating from oak wood are oxidized and react with ethanol to give characteristic secondary ellagitannins. The major part of the cinnamon procyanidins is polymerized by copolymerization with cinnamaldehyde. In addition, anthocyanidin structural units are generated in the polymer molecules by oxidation which accounts for the reddish coloration of the cinnamon extract. This reaction is related to the insolubilization of proanthocyanidins in persimmon fruits by condensation with acetaldehyde. In addition to oxidation, the reaction of polyphenols with aldehydes may be important in food processing. PMID:20161999

  16. Identification of flavonoid 3'-hydroxylase in the yellow flower of Delphinium zalil.

    PubMed

    Miyahara, Taira; Hamada, Arisa; Okamoto, Mitsutoshi; Hirose, Yukio; Sakaguchi, Kimitoshi; Hatano, Shoji; Ozeki, Yoshihiro

    2016-09-01

    The flowers of delphinium cultivars owe their coloration to anthocyanins such as delphinidin or pelargonidin derivatives. To date, no delphinium cultivars have been found with red flowers due to the presence of cyanidin derivatives. This suggests that delphiniums do not have cyanidin biosynthesis ability because of the loss of function of flavonoid 3' hydroxylase (F3'H). Here, we show that the wild delphinium species Delphinium zalil (synonym semibarbatum) can accumulate quercetin 3-glucosides in its sepals, presumably through F3'H activity. We isolated F3'H cDNA from D. zalil (DzF3'H) and produced a recombinant enzyme from a yeast transformant. The recombinant DzF3'H protein could convert naringenin, apigenin, dihydrokaempferol and kaempferol to eriodictyol, luteolin, dihydroquercetin and quercetin, respectively. An expression analysis confirmed that blue flowered D. grandiflorum does not express F3'H, and also showed that flavonoid 3',5'-hydroxylase and anthocyanidin synthase do not function in D. zalil sepals. DzF3'H can act as a flavonoid hydroxylase to produce cyanidin accumulation. The introduction of the DzF3'H gene into other delphinium species by conventional breeding may enable development of cultivars with novel flower colors. PMID:27478933

  17. Cytoprotective Mechanism of Cyanidin and Delphinidin against Oxidative Stress-Induced Tenofibroblast Death

    PubMed Central

    Nam, Dae Cheol; Hah, Young Sool; Nam, Jung Been; Kim, Ra Jeong; Park, Hyung Bin

    2016-01-01

    Age-related rotator cuff tendon degeneration is related to tenofibroblast apoptosis. Anthocyanins reduce oxidative stress-induced apoptotic cell death in tenofibroblasts. The current study investigated the presence of cell protective effects in cyanidin and delphinidin, the most common aglycon forms of anthocyanins. We determined whether these anthocyanidins have antiapoptotic and antinecrotic effects in tenofibroblasts exposed to H2O2, and evaluated their biomolecular mechanisms. Both cyanidin and delphinidin inhibited H2O2-induced apoptosis in a dose-dependent manner. However, at concentrations of 100 μg/ml or greater, delphinidin showed cytotoxicity against tenofibroblasts and a decreased antinecrotic effect. Cyanidin and delphinidin both showed inhibitory effects on the H2O2-induced increase in intracellular ROS formation and the activation of ERK1/2 and JNK. In conclusion, both cyanidin and delphinidin have cytoprotective effects on cultured tenofibroblasts exposed to H2O2. These results suggest that cyanidin and delphinidin are both beneficial for the treatment of oxidative stress-mediated tenofibroblast cell death, but their working concentrations are different. PMID:27098861

  18. Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-κB activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells.

    PubMed

    Im, Nam-Kyung; Jang, Won Jun; Jeong, Chul-Ho; Jeong, Gil-Saeng

    2014-08-01

    Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. The synthesis and secretion of MMP-9 can be stimulated by a variety of stimuli, including cytokines and phorbol 12-myristate 13-acetate (PMA), during various pathological processes, such as tumor invasion, atherosclerosis, inflammation, and rheumatoid arthritis, whereas MMP-2 is usually expressed constitutively. Delphinidin, an anthocyanidin present in pigmented fruits and vegetables, possesses potent antioxidant, anti-inflammatory, and antiangiogenic properties. In this study, we investigated the antiproliferative and antiinvasive effects of delphinidin on PMA-induced MMP-9 expression in MCF-7 human breast carcinoma cells using zymography, western blotting, reverse transcription-polymerase chain reaction, and Matrigel invasion assay. Delphinidin significantly suppressed PMA-induced MMP-9 protein expression in MCF-7 human breast carcinoma cells, and it also inhibited the MMP-9 gene transcriptional activity by blocking the activation of NFkappaB (NF-κB) through MAPK signaling pathways. Moreover, the Matrigel invasion assay showed that delphinidin reduces PMA-induced cancer cell invasion. These results suggest that delphinidin is a potential antimetastatic agent that suppresses PMA-induced cancer cell invasion through the specific inhibition of NF-κB-dependent MMP-9 gene expression. PMID:25000305

  19. Development of a Recombinant Escherichia coli Strain for Overproduction of the Plant Pigment Anthocyanin

    PubMed Central

    Lim, Chin Giaw; Wong, Lynn; Bhan, Namita; Dvora, Hila; Xu, Peng; Venkiteswaran, Sankaranarayanan

    2015-01-01

    Anthocyanins are water-soluble colored pigments found in terrestrial plants and are responsible for the red, blue, and purple coloration of many flowers and fruits. In addition to the plethora of health benefits associated with anthocyanins (cardioprotective, anti-inflammatory, antioxidant, and antiaging properties), these compounds have attracted widespread attention due to their promising potential as natural food colorants. Previously, we reported the biotransformation of anthocyanin, specifically cyanidin 3-O-glucoside (C3G), from the substrate (+)-catechin in Escherichia coli. In the present work, we set out to systematically improve C3G titers by enhancing substrate and precursor availability, balancing gene expression level, and optimizing cultivation and induction parameters. We first identified E. coli transporter proteins that are responsible for the uptake of catechin and secretion of C3G. We then improved the expression of the heterologous pathway enzymes anthocyanidin synthase (ANS) and 3-O-glycosyltransferase (3GT) using a bicistronic expression cassette. Next, we augmented the intracellular availability of the critical precursor UDP-glucose, which has been known as the rate-limiting precursor to produce glucoside compounds. Further optimization of culture and induction conditions led to a final titer of 350 mg/liter of C3G. We also developed a convenient colorimetric assay for easy screening of C3G overproducers. The work reported here constitutes a promising foundation to develop a cost-effective process for large-scale production of plant-derived anthocyanin from recombinant microorganisms. PMID:26150456

  20. Persimmon (Diospyros kaki) fruit: hidden phytochemicals and health claims

    PubMed Central

    Butt, Masood Sadiq; Sultan, M. Tauseef; Aziz, Mahwish; Naz, Ambreen; Ahmed, Waqas; Kumar, Naresh; Imran, Muhammad

    2015-01-01

    Currently, nutrition and health linkages focused on emerging strategy of diet based regimen to combat various physiological threats including cardiovascular disorders, oxidative stress, diabetes mellitus, etc. In this context, consumption of fruits and vegetables is gaining considerable importance as safeguard to maintain human health. Likewise, their phytochemicals and bioactive molecules are also becoming popular as promising demulcent against various ailments. The current review is an effort to sum up information regarding persimmon fruit with special reference to its phytochemistry and associated health claims. Accordingly, the role of its certain bioactive molecules like proanthocyanidin, carotenoids, tannins, flavonoids, anthocyanidin, catechin, etc. is highlighted. Owing to rich phytochemistry, persimmon and its products are considered effective in mitigating oxidative damage induced by reactive oxygen species (ROS). The antioxidant potential is too responsible for anti-malignant and anti-melanogenic perspectives of persimmon functional ingredients. Additionally, they are effectual in soothing lifestyle related disparities e.g. cardiovascular disorders and diabetes mellitus. There are proven facts that pharmacological application of persimmon or its functional ingredients like proanthocyanidin may helps against hyperlipidemia and hyperglycemia. Nevertheless, astringent taste and diospyrobezoars formation are creating lacuna to prop up its vitality. In toto, persimmon and its components hold potential as one of effective modules in diet based therapy; however, integrated research and meta-analysis are still required to enhance meticulousness. PMID:27047315

  1. Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, Efthymios I.; Borga, Marco; Crema, Stefano; Marchi, Lorenzo; Marra, Francesco; Guzzetti, Fausto

    2014-05-01

    Estimation of rainfall intensity-duration thresholds, used for the identification of debris flows/landslides triggering rainfall events, has been traditionally based on raingauge observations. The main drawback of using information from gauges is that rainfall estimates are available only over gauge locations, which are usually located far away from the debris flow/landslide initiation areas. Thus, successful implementation of gauge-based rainfall thresholds involves the intrinsic assumption that rainfall over gauge and actual initiation point is highly correlated. However, in complex terrain where this natural hazard takes place, spatial variability of rainfall can be very high even at very small scales due to orographic enhancement of precipitation and the development of highly localized convective systems. This work is focused on the assessment of the impact of rainfall estimation uncertainty on identification and use of rainfall thresholds for debris flow occurrence. The Upper Adige river basin, northern Italy, is the area of study. A detailed database of more than 400 identified debris flows during period 2000-2010 and a raingauge network of 95 stations, is used for this work. The methodology examines the intensity-duration thresholds derived from a set of raingauge locations that is assumed to be collocated with debris flow/landslide points (DFR) and an equivalent set of raingauges assumed to have the role of closest available measurement (MR). Comparison between the rainfall thresholds derived from DFR and MR, revealed that uncertainty in rainfall estimation has a major impact on estimated intensity-duration thresholds. Specifically, results showed that thresholds estimated from MR observations are consistently underestimated. Evaluation of the estimated thresholds for warning procedures showed that while detection is high, the main issue is the high false alarm ratio, which limits the overall accuracy of the procedure. Overall performance on debris flow

  2. Complete Nucleotide Sequences of blaKPC-4- and blaKPC-5-Harboring IncN and IncX Plasmids from Klebsiella pneumoniae Strains Isolated in New Jersey

    PubMed Central

    Chen, Liang; Chavda, Kalyan D.; Fraimow, Henry S.; Mediavilla, José R.; Melano, Roberto G.; Jacobs, Michael R.; Bonomo, Robert A.

    2013-01-01

    Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae have emerged as major nosocomial pathogens. blaKPC, commonly located on Tn4401, is found in Gram-negative bacterial strains, with the two most common variants, blaKPC-2 and blaKPC-3, identified in plasmids with diverse genetic backgrounds. In this study, we examined blaKPC-4- and blaKPC-5-bearing plasmids recovered from two K. pneumoniae strains, which were isolated from a single New Jersey hospital in 2005 and 2006, respectively. IncN plasmid pBK31551 is 84 kb in length and harbors blaKPC-4, blaTEM-1, qnrB2, aac(3)-Ib, aph(3′)-I, qacF, qacEΔ1, sul1, and dfrA14, which confer resistance to β-lactams, quinolones, aminoglycosides, quaternary ammonium compounds, and co-trimoxazole. The conserved regions within pBK31551 are similar to those of other IncN plasmids. Surprisingly, analysis of the Tn4401 sequence revealed a large IS110- and Tn6901-carrying element (8.3 kb) inserted into the istA gene, encoding glyoxalase/bleomycin resistance, alcohol dehydrogenase, and S-formylglutathione hydrolase. Plasmid pBK31567 is 47 kb in length and harbors blaKPC-5, dfrA5, qacEΔ1, and sul1. pBK31567 belongs to a novel IncX subgroup (IncX5) and possesses a highly syntenic plasmid backbone like other IncX plasmids; however, sequence similarity at the nucleotide level is divergent. The blaKPC-5 gene is carried on a Tn4401 element and differs from the genetic environment of blaKPC-5 described in Pseudomonas aeruginosa strain P28 from Puerto Rico. This study underscores the genetic diversity of multidrug-resistant plasmids involved in the spread of blaKPC genes and highlights the mobility and plasticity of Tn4401. Comparative genomic analysis provides new insights into the evolution and dissemination of KPC plasmids belonging to different incompatibility groups. PMID:23114770

  3. Microdepression-focused recharge in a coastal wetland, La Plata, Argentina

    NASA Astrophysics Data System (ADS)

    Logan, William S.; Rudolph, David L.

    1997-07-01

    Depression-focused recharge (DFR) has been well documented for the clay-till plains of western Canada, kettle lakes of southeastern Wisconsin, the Sandhills region of Nebraska, and elsewhere. In this study the importance of DFR in a fine-grained estuarine coastal plain environment with extremely low topographic relief is shown. The southwestern coastal plain of the Rio de La Plata near the city of La Plata, Argentina, extends 8-9 km inland from the river, and ranges in elevation from 0 to +3 m above sea level. The Holocene Postpampeano sediments, predominantly composed of silty clay in the study area, mantle the coastal plain and exert a major control on the hydrodynamics of groundwater of the region. The average hydraulic conductivity of the unit ranges from 1.0×10 -9 m s -1 when estimated on a small scale (single-well and oedometer tests) to approximately 1.0×10 -8 m s -1 when estimated on a larger scale (tritium profiles and seepage meters). A study of the groundwater flow system has established that recharge is occurring in the marshes of the central coastal plain, which are 0.5-1.0 m lower than the surrounding land. A broad, 50-cm-high groundwater mound (a significant feature in the context of a regional hydraulic gradient of 0.0005) was documented below the marshland using nests of monitoring wells. Recharge rates are further controlled by subtle, 10-40-cm elevation variations within the marsh. Four nests of six monitoring wells each were installed in the marsh and sampled for tritium. Recharge rates were then estimated through calibration simulations using a 1-D analytical solute transport model. In the two nests in the lower, wetter areas, recharge rates were estimated at 4-6 cm year -1, whereas estimated recharge rates in the higher, drier areas ranged from 0-3 cm year -1. These differences are consistent with: (1) near-neutral vertical hydraulic gradients in higher areas vs persistent downward gradients in lower areas, (2) chloride concentrations almost

  4. Estimating double tuned mass dampers for structures under ground acceleration using a novel optimum criterion

    NASA Astrophysics Data System (ADS)

    Li, Chunxiang; Zhu, Bilei

    2006-11-01

    The double tuned mass dampers (DTMD), consisting of one larger mass block (i.e. one larger tuned mass damper (TMD)) and one smaller mass block (i.e. one smaller TMD), have been proposed to seek for the mass dampers with high effectiveness and robustness for the reduction of the undesirable vibrations of structures under the ground acceleration. The structure is represented by the mode-generalized system corresponding to the specific vibration mode that needs to be controlled. In light of the developed dynamic magnification factors (DMF) of the DTMD structure system, the criterion used for assessing the optimum parameters and effectiveness of the DTMD is selected as the minimization of the minimum values of the maximum DMF of the structure with the DTMD. With resorting to the maximum DMF of both the larger and smaller TMDs in the DTMD, the stroke of the DTMD is simultaneously investigated too. It is highlighted that a novel optimum objective function has been proposed in order to acquire high robust control system. Consequently, the two types of optimum goal functions (including the optimum goal function commonly used) have been applied for the optimum searching of the DTMD. The numerical results indicate that the DTMD designed in terms of the second type of optimum objective functions (i.e. the novel optimum objective function) practically provides the same effectiveness and robustness to the changes in the drift frequency ratio (DFR) as the multiple tuned mass dampers (MTMD) with the distributed natural frequencies with the total number of the TMD units equal to five and with equal total mass ratio. Likewise, the DTMD designed with resort to the second type of optimum objective functions can practically attain the same effectiveness as the TMD with equal total mass ratio. More importantly, in the robustness to the changes in the DFR, the DTMD is significantly better than the TMD, whereas in the robustness to the natural frequency tuning (NFT), measured by the

  5. Nasal carriage of methicillin-resistant Staphylococcus aureus (MRSA) among Swiss veterinary health care providers: detection of livestock- and healthcare-associated clones.

    PubMed

    Wettstein Rosenkranz, K; Rothenanger, E; Brodard, I; Collaud, A; Overesch, G; Bigler, B; Marschall, J; Perreten, V

    2014-07-01

    We screened a total of 340 veterinarians (including general practitioners, small animal practitioners, large animal practitioners, veterinarians working in different veterinary services or industry), and 29 veterinary assistants for nasal carriage of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP) at the 2012 Swiss veterinary annual meeting. MRSA isolates (n = 14) were detected in 3.8 % (95 % CI 2.1 - 6.3 %) of the participants whereas MRSP was not detected. Large animal practitioners were carriers of livestock-associated MRSA (LA-MRSA) ST398-t011-V (n = 2), ST398-t011-IV (n = 4), and ST398-t034-V (n = 1). On the other hand, participants working with small animals harbored human healthcare-associated MRSA (HCA-MRSA) which belonged to epidemic lineages ST225-t003-II (n = 2), ST225-t014-II (n = 1), ST5-t002-II (n = 2), ST5-t283-IV (n = 1), and ST88-t186-IV (n = 1). HCA-MRSA harbored virulence factors such as enterotoxins, β-hemolysin converting phage and leukocidins. None of the MRSA isolates carried Panton-Valentine leukocidin (PVL). In addition to the methicillin resistance gene mecA, LA-MRSA ST398 isolates generally contained additional antibiotic resistance genes conferring resistance to tetracycline [tet(M) and tet(K)], trimethoprim [dfrK, dfrG], and the aminoglycosides gentamicin and kanamycin [aac(6')-Ie - aph(2')-Ia]. On the other hand, HCA-MRSA ST5 and ST225 mainly contained genes conferring resistance to the macrolide, lincosamide and streptogramin B antibiotics [erm(A)], to spectinomycin [ant(9)-Ia], amikacin and tobramycin [ant(4')-Ia], and to fluoroquinolones [amino acid substitutions in GrlA (S84L) and GyrA (S80F and S81P)]. MRSA carriage may represent an occupational risk and veterinarians should be aware of possible MRSA colonization and potential for developing infection or for transmitting these strains. Professional exposure to animals should be reported upon hospitalization and before medical

  6. Faecal Escherichia coli isolates from healthy dogs harbour CTX-M-15 and CMY-2 β-lactamases.

    PubMed

    Rocha-Gracia, R C; Cortés-Cortés, G; Lozano-Zarain, P; Bello, F; Martínez-Laguna, Y; Torres, C

    2015-03-01

    The presence of extended spectrum β-lactamase (ESBL) and plasmid-mediated AmpC β-lactamase (pAmpC) producing Escherichia coli, along with the mechanisms of antimicrobial resistance and the molecular types of isolates, was investigated in faecal samples from 53 healthy dogs in Mexico. Samples were inoculated on Levine agar plates with 2 µg/mL cefotaxime for recovery of cefotaxime-resistant (CTX(R)) E. coli. CTX(R)E. coli isolates were recovered from 9/53 (17%) samples; one isolate was characterised from each positive sample. ESBL producing E. coli isolates were detected in 3/53 (6%) samples; these isolates carried the blaCTX-M-15 gene and one isolate also carried blaSHV-2. These three ESBL-positive E. coli isolates belonged to phylogroup A and sequence types ST617, ST410 or ST3944. The remaining 6/53 (11%) samples contained pAmpC positive isolates; these isolates carried the blaCMY-2 gene, which encodes CMY-2 β-lactamase. These six isolates belonged to phylogroups A (n = 2), B1 (n = 1) and D (n = 3), and sequences types ST1431, ST57, ST93 and ST4565. One CMY-2 β-lactamase positive E. coli isolate of lineage ST93 had the -32 mutation in the chromosomal ampC promoter/attenuator region. Five ESBL/pAmpC positive E. coli isolates carried class 1 integrons (dfrA17-aadA5, aadA and aadA/aadB arrays were detected in three isolates) and one isolate carried a class 2 integron (dfrA12-sat2-aadA1). The aac(6')Ib-cr, aac(3)-II, qnrB19, tet(A), tet(B), cmlA, and sul3 genes were also detected. All studied isolates showed unrelated PFGE-patterns. To our knowledge, this is the first description of ESBL-producing E. coli and the second of pAmpC-producing E. coli from healthy dogs in America. Our results suggest the potential zoonotic role of dogs in the transmission to humans of ESBL and pAmpC E. coli in the household environment. PMID:25624187

  7. The Emergence and Spread of Multiple Livestock-Associated Clonal Complex 398 Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Strains among Animals and Humans in the Republic of Ireland, 2010–2014

    PubMed Central

    Brennan, Gráinne I.; Abbott, Yvonne; Burns, Aisling; Leonard, Finola; McManus, Brenda A.; O’Connell, Brian; Coleman, David C.; Shore, Anna C.

    2016-01-01

    Clonal complex (CC) 398 methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) are associated with carriage and infection among animals and humans but only a single case of CC398 MRSA has been reported in the Republic of Ireland (ROI). The present study investigated the molecular epidemiology of CC398 MRSA (n = 22) and MSSA (n = 10) from animals and humans in the ROI from 2010–2014. Isolates underwent antimicrobial susceptibility testing, spa typing, DNA microarray profiling and PCR for CC398-associated resistance genes. All MRSA underwent SCCmec IV or V subtyping. Four distinct CC398-MRSA incidents were identified from (i) a man in a nursing home (spa type t011-SCCmec IVa, immune evasion complex (IEC) negative), (ii) a horse and veterinarian who had recently travelled to Belgium (t011-IVa, IEC positive), (iii) pigs (n = 9) and farm workers (n = 9) on two farms, one which had been restocked with German gilts and the other which was a finisher farm (t034-VT, IEC negative, 3/9 pigs; t011- VT, IEC negative, 6/9 pigs & 9/9 farm workers), and (iv) a child who had worked on a pig farm in the UK (t034-VT, IEC negative). Isolates also carried different combinations of multiple resistance genes including erm(A), erm(B), tet(K), tet(M) & tet(L), fexA, spc, dfrG, dfrK aacA-aphD and aadD further highlighting the presence of multiple CC398-MRSA strains. CC398 MSSA were recovered from pigs (n = 8) and humans (n = 2). CC398 MSSA transmission was identified among pigs but zoonotic transmission was not detected with animal and human isolates exhibiting clade-specific traits. This study highlights the importation and zoonotic spread of CC398 MRSA in the ROI and the spread of CC398 MSSA among pigs. Increased surveillance is warranted to prevent further CC398 MRSA importation and spread in a country that was considered CC398 MRSA free. PMID:26886749

  8. Gender, low Kt/V, and mortality in Japanese hemodialysis patients: opportunities for improvement through modifiable practices.

    PubMed

    Kimata, Naoki; Karaboyas, Angelo; Bieber, Brian A; Pisoni, Ronald L; Morgenstern, Hal; Gillespie, Brenda W; Saito, Akira; Akizawa, Tadao; Fukuhara, Shunichi; Robinson, Bruce M; Port, Friedrich K; Akiba, Takashi

    2014-07-01

    Guidelines have recommended single pool Kt/V > 1.2 as the minimum dose for chronic hemodialysis (HD) patients on thrice weekly HD. The Dialysis Outcomes and Practice Patterns Study (DOPPS) has shown that "low Kt/V" (<1.2) is more prevalent in Japan than many other countries, though survival is longer in Japan. We examined trends in low Kt/V, dialysis practices associated with low Kt/V, and associations between Kt/V and mortality overall and by gender in Japanese dialysis patients. We analyzed 5784 HD patients from Japan DOPPS (1999-2011), restricted to patients dialyzing for >1 year and receiving thrice weekly dialysis. Logistic regression models estimated the relationships of patient characteristics with Kt/V. Logistic models also were used to estimate the proportion of low Kt/V cases attributable to various treatment practices. Multivariable Cox regression was used to estimate the associations of low Kt/V, blood flow rate (BFR), and treatment time (TT), with all-cause mortality. From 1999 to 2009, the prevalence of low Kt/V declined in men (37-27%) and women (15-10%). BFR <200 mL/min, TT <240 minutes, and dialyzate flow rate (DFR) < 500 mL/min were common (35, 13, and 19% of patients, respectively) and strongly associated with low Kt/V. Fifteen percent of low Kt/V cases were attributable to BFR <200 and 13% to TT <240, compared to only 3% for DFR <500. Lower Kt/V was associated with elevated mortality, more so among women (hazard ratio [HR] = 1.13 per 0.1 lower Kt/V, 95% CI: 1.07-1.20) than among men (HR = 1.06 per 0.1 lower Kt/V, 95% CI: 1.00-1.12). The relatively large proportion of low Kt/V cases in Japanese facilities may potentially be reduced 30% by increasing BFR to 200 mL/min and TT to 4 hours thrice weekly in HD patients. Associations of low Kt/V with elevated mortality suggest that modification of these practices may further improve survival for Japanese HD patients. PMID:24612374

  9. Ectopic Expression of the Coleus R2R3 MYB-Type Proanthocyanidin Regulator Gene SsMYB3 Alters the Flower Color in Transgenic Tobacco

    PubMed Central

    Zhu, Qinlong; Sui, Shunzhao; Lei, Xinghua; Yang, Zhongfang; Lu, Kun; Liu, Guangde; Liu, Yao-Guang; Li, Mingyang

    2015-01-01

    Proanthocyanidins (PAs) play an important role in plant disease defense and have beneficial effects on human health. We isolated and characterized a novel R2R3 MYB-type PA-regulator SsMYB3 from a well-known ornamental plant, coleus (Solenostemon scutellarioides), to study the molecular regulation of PAs and to engineer PAs biosynthesis. The expression level of SsMYB3 was correlated with condensed tannins contents in various coleus tissues and was induced by wounding and light. A complementation test in the Arabidopsis tt2 mutant showed that SsMYB3 could restore the PA-deficient seed coat phenotype and activated expression of the PA-specific gene ANR and two related genes, DFR and ANS. In yeast two-hybrid assays, SsMYB3 interacted with the Arabidopsis AtTT8 and AtTTG1 to reform the ternary transcriptional complex, and also interacted with two tobacco bHLH proteins (NtAn1a and NtJAF13-1) and a WD40 protein, NtAn11-1. Ectopic overexpression of SsMYB3 in transgenic tobacco led to almost-white flowers by greatly reducing anthocyanin levels and enhancing accumulation of condensed tannins. This overexpression of SsMYB3 upregulated the key PA genes (NtLAR and NtANR) and late anthocyanin structural genes (NtDFR and NtANS), but downregulated the expression of the final anthocyanin gene NtUFGT. The formative SsMYB3-complex represses anthocyanin accumulation by directly suppressing the expression of the final anthocyanin structural gene NtUFGT, through competitive inhibition or destabilization of the endogenous NtAn2-complex formation. These results suggested that SsMYB3 may form a transcription activation complex to regulate PA biosynthesis in the Arabidopsis tt2 mutant and transgenic tobacco. Our findings suggest that SsMYB3 is involved in the regulation of PA biosynthesis in coleus and has the potential as a molecular tool for manipulating biosynthesis of PAs in fruits and other crops using metabolic engineering. PMID:26448466

  10. Ectopic Expression of the Coleus R2R3 MYB-Type Proanthocyanidin Regulator Gene SsMYB3 Alters the Flower Color in Transgenic Tobacco.

    PubMed

    Zhu, Qinlong; Sui, Shunzhao; Lei, Xinghua; Yang, Zhongfang; Lu, Kun; Liu, Guangde; Liu, Yao-Guang; Li, Mingyang

    2015-01-01

    Proanthocyanidins (PAs) play an important role in plant disease defense and have beneficial effects on human health. We isolated and characterized a novel R2R3 MYB-type PA-regulator SsMYB3 from a well-known ornamental plant, coleus (Solenostemon scutellarioides), to study the molecular regulation of PAs and to engineer PAs biosynthesis. The expression level of SsMYB3 was correlated with condensed tannins contents in various coleus tissues and was induced by wounding and light. A complementation test in the Arabidopsis tt2 mutant showed that SsMYB3 could restore the PA-deficient seed coat phenotype and activated expression of the PA-specific gene ANR and two related genes, DFR and ANS. In yeast two-hybrid assays, SsMYB3 interacted with the Arabidopsis AtTT8 and AtTTG1 to reform the ternary transcriptional complex, and also interacted with two tobacco bHLH proteins (NtAn1a and NtJAF13-1) and a WD40 protein, NtAn11-1. Ectopic overexpression of SsMYB3 in transgenic tobacco led to almost-white flowers by greatly reducing anthocyanin levels and enhancing accumulation of condensed tannins. This overexpression of SsMYB3 upregulated the key PA genes (NtLAR and NtANR) and late anthocyanin structural genes (NtDFR and NtANS), but downregulated the expression of the final anthocyanin gene NtUFGT. The formative SsMYB3-complex represses anthocyanin accumulation by directly suppressing the expression of the final anthocyanin structural gene NtUFGT, through competitive inhibition or destabilization of the endogenous NtAn2-complex formation. These results suggested that SsMYB3 may form a transcription activation complex to regulate PA biosynthesis in the Arabidopsis tt2 mutant and transgenic tobacco. Our findings suggest that SsMYB3 is involved in the regulation of PA biosynthesis in coleus and has the potential as a molecular tool for manipulating biosynthesis of PAs in fruits and other crops using metabolic engineering. PMID:26448466

  11. Molecular Characterization of Enterotoxin-Producing Escherichia coli Collected in 2011–2012, Russia

    PubMed Central

    Kartsev, Nikolay N.; Fursova, Nadezhda K.; Pachkunov, Dmitry M.; Bannov, Vasiliy A.; Eruslanov, Boris V.; Svetoch, Edward A.; Dyatlov, Ivan A.

    2015-01-01

    sulphonamides dfrA17-aadA5 and dfrA12-orfF-aadA2. One isolate ETEC_Ef-6 was found to be a multidrug-resistant (MDR) pathogen that carried both the beta-lactamase gene and class 1 integron. These data suggest the circulation of ETEC in Russia. Further investigations are necessary to study the spread of the revealed ETEC sequence types (STs) and serotypes. Their role in the etiology of diarrhea should be also estimated. PMID:25923803

  12. Impact of rainfall estimation uncertainty on identification and use of precipitation thresholds for debris flow/landslide warning

    NASA Astrophysics Data System (ADS)

    Nikolopoulos, E. I.; Borga, M.; Marra, F.

    2013-12-01

    Derivation of rainfall intensity-duration (I-D) thresholds, used for the identification of rainfall events adequate to induce debris flows/landslides, has been traditionally based on raingauge observations. The main drawback of using information from gauges is that rainfall estimates are available only over gauge locations, which are usually located far away from the actual location that debris flow/landslide initiates. Thus, successful implementation of gauge-based rainfall thresholds involves the intrinsic assumption that rainfall over gauge and actual initiation point is highly correlated. However, in complex terrain where this natural hazard takes place, spatial variability of rainfall can be very high even at very small scales (~ 1km) due to orographic enhancement of precipitation and the development of highly localized convective systems. This work is focused on the assessment of the impact of rainfall estimation uncertainty on identification and use of I-D thresholds. The Alto Adige region, northern Italy, is the area of study. A detailed database of more that 400 identified debris flow initiation points during period 2000-2010 and a raingauge network of 118 stations, comprise the database used for this work. The methodology examines the storm characteristics and I-D thresholds derived form gauge locations that are assumed to be simulating debris flow/landslide points (DFR) and an equivalent set of gauges assumed to have the role of closest available measurement (MR). A set of theoretically 'true' power-law I-D relationships is assumed and used to identify the events at DFR that exceed the threshold. For these same events, a corresponding I-D relationship is derived from MR observations. Comparison of the two revealed that uncertainty in rainfall estimation has a major impact on both coefficients of estimated I-D relationship. Results showed that the I-D thresholds derived from MR are generally underestimating the triggering rainfall events. On the

  13. The sequence diversity and expression among genes of the folic acid biosynthesis pathway in industrial Saccharomyces strains.

    PubMed

    Goncerzewicz, Anna; Misiewicz, Anna

    2015-01-01

    Folic acid is an important vitamin in human nutrition and its deficiency in pregnant women's diets results in neural tube defects and other neurological damage to the fetus. Additionally, DNA synthesis, cell division and intestinal absorption are inhibited in case of adults. Since this discovery, governments and health organizations worldwide have made recommendations concerning folic acid supplementation of food for women planning to become pregnant. In many countries this has led to the introduction of fortifications, where synthetic folic acid is added to flour. It is known that Saccharomyces strains (brewing and bakers' yeast) are one of the main producers of folic acid and they can be used as a natural source of this vitamin. Proper selection of the most efficient strains may enhance the folate content in bread, fermented vegetables, dairy products and beer by 100% and may be used in the food industry. The objective of this study was to select the optimal producing yeast strain by determining the differences in nucleotide sequences in the FOL2, FOL3 and DFR1 genes of folic acid biosynthesis pathway. The Multitemperature Single Strand Conformation Polymorphism (MSSCP) method and further nucleotide sequencing for selected strains were applied to indicate SNPs in selected gene fragments. The RT qPCR technique was also applied to examine relative expression of the FOL3 gene. Furthermore, this is the first time ever that industrial yeast strains were analysed regarding genes of the folic acid biosynthesis pathway. It was observed that a correlation exists between the folic acid amount produced by industrial yeast strains and changes in the nucleotide sequence of adequate genes. The most significant changes occur in the DFR1 gene, mostly in the first part, which causes major protein structure modifications in KKP 232, KKP 222 and KKP 277 strains. Our study shows that the large amount of SNP contributes to impairment of the selected enzymes and S. cerevisiae and S

  14. International Spread and Persistence of TEM-24 Is Caused by the Confluence of Highly Penetrating Enterobacteriaceae Clones and an IncA/C2 Plasmid Containing Tn1696::Tn1 and IS5075-Tn21▿

    PubMed Central

    Novais, Ângela; Baquero, Fernando; Machado, Elisabete; Cantón, Rafael; Peixe, Luísa; Coque, Teresa M.

    2010-01-01

    TEM-24 remains one of the most widespread TEM-type extended-spectrum β-lactamases (ESBLs) among Enterobacteriaceae. To analyze the reasons influencing its spread and persistence, a multilevel population genetics study was carried out on 28 representative TEM-24 producers from Belgium, France, Portugal, and Spain (13 Enterobacter aerogenes isolates, 6 Escherichia coli isolates, 6 Klebsiella pneumoniae isolates, 2 Proteus mirabilis isolates, and 1 Klebsiella oxytoca isolate, from 1998 to 2004). Clonal relatedness (XbaI pulsed-field gel electrophoresis [PFGE] and E. coli phylogroups) and antibiotic susceptibility were determined by standard procedures. Plasmid analysis included determination of the incompatibility group (by PCR, hybridization, and/or sequencing) and comparison of restriction fragment length polymorphism (RFLP) patterns. Characterization of genetic elements conferring antibiotic resistance included integrons (classes 1, 2, and 3) and transposons (Tn3, Tn21, and Tn402). Similar PFGE patterns were identified among E. aerogenes, K. pneumoniae, and P. mirabilis isolates, while E. coli strains were diverse (phylogenetic groups A, B2, and D). Highly related 180-kb IncA/C2 plasmids conferring resistance to kanamycin, tobramycin, chloramphenicol, trimethoprim, and sulfonamides were identified. Each plasmid contained defective In0-Tn402 (dfrA1-aadA1, aacA4, or aacA4-aacC1-orfE-aadA2-cmlA1) and In4-Tn402 (aacA4 or dfrA1-aadA1) variants. These integrons were located within Tn21, Tn1696, or hybrids of these transposons, with IS5075 interrupting their IRtnp and IRmer. In all cases, blaTEM-24 was part of an IS5075-ΔTn1 transposon within tnp1696, mimicking other genetic elements containing blaTEM-2 and blaTEM-3 variants. The international dissemination of TEM-24 is fuelled by an IncA/C2 plasmid acquired by different enterobacterial clones which seem to evolve by gaining diverse genetic elements. This work highlights the risks of a confluence between highly

  15. Molecular Characterization of Enterotoxin-Producing Escherichia coli Collected in 2011-2012, Russia.

    PubMed

    Kartsev, Nikolay N; Fursova, Nadezhda K; Pachkunov, Dmitry M; Bannov, Vasiliy A; Eruslanov, Boris V; Svetoch, Edward A; Dyatlov, Ivan A

    2015-01-01

    sulphonamides dfrA17-aadA5 and dfrA12-orfF-aadA2. One isolate ETEC_Ef-6 was found to be a multidrug-resistant (MDR) pathogen that carried both the beta-lactamase gene and class 1 integron. These data suggest the circulation of ETEC in Russia. Further investigations are necessary to study the spread of the revealed ETEC sequence types (STs) and serotypes. Their role in the etiology of diarrhea should be also estimated. PMID:25923803

  16. High-intensity focused ultrasound (HIFU) using Sonablate{trade mark, serif} devices for the treatment of localized prostate cancer: 13-year experience

    NASA Astrophysics Data System (ADS)

    Uchida, Toyoaki; Tomonaga, Tetsuro; Shoji, Sunao; Kim, Hakushi; Nagata, Yoshihiro

    2012-11-01

    To report on the long-term results of high-intensity focused ultrasound (HIFU) in the treatment of localized prostate cancer. Eight hundred and eighty-four men with prostate cancer treated with Sonablate® (SB) devices were included. All patients were followed for more than 2 years. The patients were divided into three groups: in the first group, 419 patients were treated with SB200/500 from 1999 to 2006; in the second group, 263 patients were treated with SB 500 ver. 4 from 2005 to 2009: in the third group, 202 patients were treated with SB 500 TCM from 2007 up to present. Biochemical failure was defined according to the Phoenix definition (PSA nadir + 2 ng/ml). The mean age, PSA, Gleason score, operation time, and follow-up period in each group were 68, 66 and 67 years, 11.2, 9.7 and 9.3 ng/ml, 6.2, 6.6 and 6.7, 167, 101 and 106 min, and 56, 48 and 36 months, respectively. The biochemical disease-free rate (bDFR) in each group at 5 years was, respectively, 54%, 61% and 84%, and was 50% at 10 years in the SB200/500 group (p<0.0001). The bDFR in patients in the low-, intermediate-, and high-risk groups in all patients at 10 years were 72% and 58%, 44%, respectively (p<0.0001). The BDFR in patients in the low-, intermediate-, and high-risk groups in the SB500 TCM group at 5 years were 97%, 83%, and 74% (p=0.0056). The negative prostate biopsy rates in 3 groups were 81%, 92% and 88%, respectively. As post HIFU complications, urethral stricture, acute epididymitis and urinary incontinence were noted in 18.0%, 6.2% and 1.9%, respectively. Rectourethral fistula was occurred in 0.6% in the first HIFU cases, Postoperative erectile dysfunction was noted in 27% of patients at 2 years after HIFU. HIFU therapy appears to be minimally invasive, efficacious, and safe for patients with localized prostate cancer. Technological advances as well as cultural and economic vectors have caused a shift from to minimally invasive techniques.

  17. Dissemination of Novel Antimicrobial Resistance Mechanisms through the Insertion Sequence Mediated Spread of Metabolic Genes

    PubMed Central

    Furi, Leonardo; Haigh, Richard; Al Jabri, Zaaima J. H.; Morrissey, Ian; Ou, Hong-Yu; León-Sampedro, Ricardo; Martinez, Jose L.; Coque, Teresa M.; Oggioni, Marco R.

    2016-01-01

    The widely used biocide triclosan selectively targets FabI, the NADH-dependent trans-2-enoyl-acyl carrier protein (ACP) reductase, which is also an important target for the development of narrow spectrum antibiotics. The analysis of triclosan resistant Staphylococcus aureus isolates had previously shown that in about half of the strains, the mechanism of triclosan resistance consists on the heterologous duplication of the triclosan target gene due to the acquisition of an additional fabI allele derived from Staphylococcus haemolyticus (sh-fabI). In the current work, the genomic sequencing of 10 of these strains allowed the characterization of two novel composite transposons TnSha1 and TnSha2 involved in the spread of sh-fabI. TnSha1 harbors one copy of IS1272, whereas TnSha2 is a 11.7 kb plasmid carrying TnSha1 present either as plasmid or in an integrated form generally flanked by two IS1272 elements. The target and mechanism of integration for IS1272 and TnSha1 are novel and include targeting of DNA secondary structures, generation of blunt-end deletions of the stem-loop and absence of target duplication. Database analyses showed widespread occurrence of these two elements in chromosomes and plasmids, with TnSha1 mainly in S. aureus and with TnSha2 mainly in S. haemolyticus and S. epidermidis. The acquisition of resistance by means of an insertion sequence-based mobilization and consequent duplication of drug-target metabolic genes, as observed here for sh-fabI, is highly reminiscent of the situation with the ileS2 gene conferring mupirocin resistance, and the dfrA and dfrG genes conferring trimethoprim resistance both of which are mobilized by IS257. These three examples, which show similar mechanisms and levels of spread of metabolic genes linked to IS elements, highlight the importance of this genetic strategy for recruitment and rapid distribution of novel resistance mechanisms in staphylococci. PMID:27446047

  18. In Vitro Biosynthesis and Chemical Identification of UDP-N-acetyl-d-quinovosamine (UDP-d-QuiNAc)*

    PubMed Central

    Li, Tiezheng; Simonds, Laurie; Kovrigin, Evgenii L.; Noel, K. Dale

    2014-01-01

    N-acetyl-d-quinovosamine (2-acetamido-2,6-dideoxy-d-glucose, QuiNAc) occurs in the polysaccharide structures of many Gram-negative bacteria. In the biosynthesis of QuiNAc-containing polysaccharides, UDP-QuiNAc is the hypothetical donor of the QuiNAc residue. Biosynthesis of UDP-QuiNAc has been proposed to occur by 4,6-dehydration of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) to UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose followed by reduction of this 4-keto intermediate to UDP-QuiNAc. Several specific dehydratases are known to catalyze the first proposed step. A specific reductase for the last step has not been demonstrated in vitro, but previous mutant analysis suggested that Rhizobium etli gene wreQ might encode this reductase. Therefore, this gene was cloned and expressed in Escherichia coli, and the resulting His6-tagged WreQ protein was purified. It was tested for 4-reductase activity by adding it and NAD(P)H to reaction mixtures in which 4,6-dehydratase WbpM had acted on the precursor substrate UDP-GlcNAc. Thin layer chromatography of the nucleotide sugars in the mixture at various stages of the reaction showed that WbpM converted UDP-GlcNAc completely to what was shown to be its 4-keto-6-deoxy derivative by NMR and that addition of WreQ and NADH led to formation of a third compound. Combined gas chromatography-mass spectrometry analysis of acid hydrolysates of the final reaction mixture showed that a quinovosamine moiety had been synthesized after WreQ addition. The two-step reaction progress also was monitored in real time by NMR. The final UDP-sugar product after WreQ addition was purified and determined to be UDP-d-QuiNAc by one-dimensional and two-dimensional NMR experiments. These results confirmed that WreQ has UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose 4-reductase activity, completing a pathway for UDP-d-QuiNAc synthesis in vitro. PMID:24817117

  19. Methicillin-resistant coagulase-negative staphylococci from healthy dogs in Nsukka, Nigeria

    PubMed Central

    Chah, Kennedy F.; Gómez-Sanz, Elena; Nwanta, John A.; Asadu, Brendan; Agbo, Ifeoma C.; Lozano, Carmen; Zarazaga, Myriam; Torres, Carmen

    2014-01-01

    The occurrence, resistance phenotype and molecular mechanisms of resistance of methicillin-resistant staphylococci from groin swabs of 109 clinically healthy dogs in Nsukka, Nigeria were investigated. The groin swab samples were cultured on mannitol salt agar supplemented with 10 μg of cloxacillin. Sixteen methicillin-resistant coagulase negative staphylococci (MRCoNS), all harbouring the mecA gene were isolated from 14 (12.8%) of the 109 dogs studied. The MRCoNS isolated were: S. sciuri subspecies rodentium, S. lentus, S. haemolyticus, and S. simulans with S. sciuri subspecies rodentium (62.5%) being the predominant species. Thirteen (81.3%) of the MRCoNS were resistant to tetracycline while 12 (75%) and 10 (62.5%) were resistant to kanamycin and trimthoprim-sulphamethoxazole respectively. None of the isolates was resistant to fusidic acid, linezolid and vancomycin. Thirteen (81.3%) of the MRCoNS were multi-drug resistance (MDR). Other antimicrobial genes detected were: blaZ, tet(K), tet(M), tet(L), erm(B), lnu(A), aacA-aphD, aphA3, str, dfr(G), catpC221, and catpC223. Methicillin-resistant staphylococci are common colonizers of healthy dogs in Nigeria with a major species detected being S. sciuri subsp. rodentium. PMID:24948934

  20. Molecular characterization of carbapenem-resistant strains of Klebsiella pneumoniae isolated from Iranian patients: first identification of blaKPC gene in Iran.

    PubMed

    Nobari, Saman; Shahcheraghi, Fereshteh; Rahmati Ghezelgeh, Fatemeh; Valizadeh, Babak

    2014-08-01

    Multi-resistant Klebsiella pneumoniae has been considered a serious global threat. This study was initiated to investigate carbapenem resistance among K. pneumoniae isolates in Iran and to detect carbapenemases in resistant strains. From 2009 to 2012, 180 K. pneumoniae strains were collected from Tehran hospitals. Of the isolates, 42 isolates (23.3%) were resistant to meropenem, 29 isolates (16.1%) were resistant to ertapenem, and 14 isolates (7.7%) were resistant to imipenem. All of carbapenem-resistant isolates were also resistant to the third generation of cephalosporins. modified Hodge test was positive in 25 (59.5%) of carbapenem-resistant isolates showing carbapenemase production. bla(NDM) and bla(VIM) genes were identified in three and five carbapenem-resistant isolates, respectively. One isolate showed presence of bla(KPC) gene. Class 1 integrons were detected in 14 carbapenem-resistant isolates. The most important finding about class 1 integrons was identification of an integron containing metallo-β-lactamase gene VIM-1 that also harbored dfrA27 and arr3 genes. It is important to note that K. pneumoniae carbapenemase and New Delhi metallo-beta-lactamase-positive isolates identified in this study showed resistance to the majority of routine antimicrobial agents, including all β-lactams and other classes of antibiotics. To our knowledge, this is the first identification of bla(KPC) and bla(VIM-1) genes among isolates of K. pneumoniae in Iran. PMID:24428238

  1. A normative study of the Italian printed word version of the free and cued selective reminding test.

    PubMed

    Girtler, N; De Carli, F; Amore, M; Arnaldi, D; Bosia, L E; Bruzzaniti, C; Cappa, S F; Cocito, L; Colazzo, G; Ghio, L; Magi, E; Mancardi, G L; Nobili, F; Pardini, M; Picco, A; Rissotto, R; Serrati, C; Brugnolo, A

    2015-07-01

    According to the new research criteria for the diagnosis of Alzheimer's disease, episodic memory impairment, not significantly improved by cueing, is the core neuropsychological marker, even at a pre-dementia stage. The FCSRT assesses verbal learning and memory using semantic cues and is widely used in Europe. Standardization values for the Italian population are available for the colored picture version, but not for the 16-item printed word version. In this study, we present age- and education-adjusted normative data for FCSRT-16 obtained using linear regression techniques and generalized linear model, and critical values for classifying sub-test performance into equivalent scores. Six scores were derived from the performance of 194 normal subjects (MMSE score, range 27-30, mean 29.5 ± 0.5) divided per decade (from 20 to 90), per gender and per level of education (4 levels: 3-5, 6-8, 9-13, >13 years): immediate free recall (IFR), immediate total recall (ITR), recognition phase (RP), delayed free recall (DFR), delayed total recall (DTR), Index of Sensitivity of Cueing (ISC), number of intrusions. This study confirms the effect of age and education, but not of gender on immediate and delayed free and cued recall. The Italian version of the FCSRT-16 can be useful for both clinical and research purposes. PMID:25953151

  2. Molecular characterization of multiresistant Escherichia coli producing or not extended-spectrum β-lactamases

    PubMed Central

    2013-01-01

    Background The prevalence and type of plasmids, resistance genes and integrons carried by two collections of multiresistant E. coli producing or not extended-spectrum β-lactamases have been compared. Rep-PCR was used to determine the clonal relationship of the organisms. Plasmids were classified according to their incompatibility. Class 1 and Class 2 integrons and antibiotic resistance genes were analysed by PCR and sequencing. Results Both collections of organisms contained a large diversity of unrelated strains with some clones distributed in both groups of isolates. Large plasmids were identified in the two groups of organisms. Plasmids with replicons repK and repColE were more frequent among ESBL-producing isolates, while repFIA, repFII and repA/C replicons were more frequent in isolates lacking ESBL. Conjugative plasmids with repK and repA/C replicons coded for CTX-M-14 and CMY-2 β-lactamases, respectively. No significant differences were observed in the distribution of class 1 and class 2 integrons among multiresistant E. coli producing or not ESBL, and dfrA17-ant(3″)-Ie was the cassette arrangement most commonly found. Conclusions In the concrete temporal and geographical context of this study, multiresistant E. coli producing ESBL or other mechanisms of resistance were largely clonally diverse and present some differences in the types of harboured plasmids. Still, some clones were found in both ESBL-producing and –lacking isolates. PMID:23586437

  3. Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks

    NASA Astrophysics Data System (ADS)

    Niknam, Taher; Kavousifard, Abdollah; Tabatabaei, Sajad; Aghaei, Jamshid

    2011-10-01

    In this paper a new multiobjective modified honey bee mating optimization (MHBMO) algorithm is presented to investigate the distribution feeder reconfiguration (DFR) problem considering renewable energy sources (RESs) (photovoltaics, fuel cell and wind energy) connected to the distribution network. The objective functions of the problem to be minimized are the electrical active power losses, the voltage deviations, the total electrical energy costs and the total emissions of RESs and substations. During the optimization process, the proposed algorithm finds a set of non-dominated (Pareto) optimal solutions which are stored in an external memory called repository. Since the objective functions investigated are not the same, a fuzzy clustering algorithm is utilized to handle the size of the repository in the specified limits. Moreover, a fuzzy-based decision maker is adopted to select the 'best' compromised solution among the non-dominated optimal solutions of multiobjective optimization problem. In order to see the feasibility and effectiveness of the proposed algorithm, two standard distribution test systems are used as case studies.

  4. Salicylic acid-induced changes in physiological parameters and genes of the flavonoid biosynthesis pathway in Artemisia vulgaris and Dendranthema nankingense during aphid feeding.

    PubMed

    Sun, Y; Xia, X L; Jiang, J F; Chen, S M; Chen, F D; Lv, G S

    2016-01-01

    Phloem-feeding aphids cause serious damage to plants. The mechanisms of plant-aphid interactions are only partially understood and involve multiple pathways, including phytohormones. In order to investigate whether salicylic acid (SA) is involved and how it plays a part in the defense response to the aphid Macrosiphoniella sanbourni, physiological changes and gene expression profiles in response to aphid inoculation with or without SA pretreatment were compared between the aphid-resistant Artemisia vulgaris 'Variegata' and the susceptible chrysanthemum, Dendranthema nankingense. Changes in levels of reactive oxygen species, malondialdehyde (MDA), and flavonoids, and in the expression of genes involved in flavonoid biosynthesis, including PAL (phenylalanine ammonia-lyase), CHS (chalcone synthase), CHI (chalcone isomerase), F3H (flavanone 3-hydroxylase), F3'H (flavanone 3'-hydroxylase), and DFR (dihydroflavonol reductase), were investigated. Levels of hydrogen peroxide, superoxide anions, MDA, and flavonoids, and their related gene expression, increased after aphid infestation and SA pretreatment followed by aphid infestation; the aphid-resistant A. vulgaris exhibited a more rapid response than the aphid-susceptible D. nankingense to SA treatment and aphid infestation. Taken together, our results suggest that SA could be used to increase aphid resistance in the chrysanthemum. PMID:26909993

  5. Globally dispersed mobile drug-resistance genes in Gram-negative bacterial isolates from patients with bloodstream infections in a US urban general hospital

    PubMed Central

    Adams-Sapper, S.; Sergeevna-Selezneva, J.; Tartof, S.; Raphael, E.; Diep, B. An; Perdreau-Remington, F.

    2012-01-01

    Mobile drug-resistance genes with identical nucleic acid sequences carried by multidrug-resistant Escherichia coli strains that cause community-acquired infections are becomingly increasingly dispersed worldwide. Over a 2-year period, we analysed Gram-negative bacterial (GNB) pathogens from the blood of inpatients at an urban public hospital to determine what proportion of these isolates carried such globally dispersed drug-resistance genes. Of 376 GNB isolates, 167 (44 %) were Escherichia coli, 50 (13 %) were Klebsiella pneumoniae, 25 (7 %) were Pseudomonas aeruginosa, 25 (7 %) were Proteus mirabilis and 20 (5 %) were Enterobacter cloacae; the remainder (24 %) comprised 26 different GNB species. Among E. coli isolates, class 1 integrons were detected in 64 (38 %). The most common integron gene cassette configuration was dfrA17-aadA5, found in 30 (25 %) of 119 drug-resistant E. coli isolates and in one isolate of Moraxella morganii. Extended-spectrum β-lactamase (ESBL) genes were found in 16 E. coli isolates (10 %). These genes with identical sequences were found in nearly 40 % of bloodstream E. coli isolates in the study hospital, as well as in a variety of bacterial species from clinical and non-clinical sources worldwide. Thus, a substantial proportion of bloodstream infections among hospitalized patients were caused by E. coli strains carrying drug-resistance genes that are dispersed globally in a wide variety of bacterial species. PMID:22493279

  6. Metabolite profiling and expression analysis of flavonoid, vitamin C and tocopherol biosynthesis genes in the antioxidant-rich sea buckthorn (Hippophae rhamnoides L.).

    PubMed

    Fatima, Tahira; Kesari, Vigya; Watt, Ian; Wishart, David; Todd, James F; Schroeder, William R; Paliyath, Gopinadhan; Krishna, Priti

    2015-10-01

    In this study, phenolic compounds were analyzed in developing berries of four Canadian grown sea buckthorn (Hippophae rhamnoides L.) cultivars ('RC-4', 'E6590', 'Chuyskaya' and 'Golden Rain') and in leaves of two of these cultivars. Among phenolic acids, p-coumaric acid was the highest in berries, while gallic acid was predominant in leaves. In the flavonoid class of compounds, myricetin/rutin, kaempferol, quercetin and isorhamnetin were detected in berries and leaves. Berries of the 'RC-4' cultivar had approximately ⩾ 2-fold higher levels of myricetin and quercetin at 17.5mg and 17.2 mg/100 g FW, respectively, than the other cultivars. The flavonoid content in leaves was considerably more than in berries with rutin and quercetin levels up to 135 mg and 105 mg/100 g FW, respectively. Orthologs of 15 flavonoid biosynthesis pathway genes were identified within the transcriptome of sea buckthorn mature seeds. Semi-quantitative RT-PCR analysis of these genes in developing berries indicated relatively higher expression of genes such as CHS, F3'H, DFR and LDOX in the 'RC-4' cultivar than in the 'Chuyskaya' cultivar. Vitamin C levels in ripened berries of the Canadian cultivars were on the high end of the concentration range reported for most other sea buckthorn cultivars. Orthologs of genes involved in vitamins C and E biosynthesis were also identified, expanding the genomic resources for this nutritionally important plant. PMID:26318327

  7. Sulphonamide and Trimethoprim Resistance Genes Persist in Sediments at Baltic Sea Aquaculture Farms but Are Not Detected in the Surrounding Environment

    PubMed Central

    Muziasari, Windi Indra; Managaki, Satoshi; Pärnänen, Katariina; Karkman, Antti; Lyra, Christina; Tamminen, Manu; Suzuki, Satoru; Virta, Marko

    2014-01-01

    Persistence and dispersal of antibiotic resistance genes (ARGs) are important factors for assessing ARG risk in aquaculture environments. Here, we quantitatively detected ARGs for sulphonamides (sul1 and sul2) and trimethoprim (dfrA1) and an integrase gene for a class 1 integron (intI1) at aquaculture facilities in the northern Baltic Sea, Finland. The ARGs persisted in sediments below fish farms at very low antibiotic concentrations during the 6-year observation period from 2006 to 2012. Although the ARGs persisted in the farm sediments, they were less prevalent in the surrounding sediments. The copy numbers between the sul1 and intI1 genes were significantly correlated suggesting that class 1 integrons may play a role in the prevalence of sul1 in the farm sediments through horizontal gene transfer. In conclusion, the presence of ARGs may limit the effectiveness of antibiotics in treating fish illnesses, thereby causing a potential risk to the aquaculture industry. However, the restricted presence of ARGs at the farms is unlikely to cause serious effects in the northern Baltic Sea sediment environments around the farms. PMID:24651770

  8. Characterization of integrons and novel cassette arrays in bacteria from clinical isloates in China, 2000-2014

    PubMed Central

    Xia, Wenying; Xu, Ting; Qin, Tingting; Li, Pengpeng; Liu, Yun; Kang, Haiquan; Gu, Bing; Ma, Ping

    2016-01-01

    Abstract Rapid dissemination of antibiotic resistance genes among bacterial isolates is an increasing problem in China. Integron, a conserved DNA sequence, which is carried on episomal genetic structures, plays a very important role in development of antibiotic resistance. This systematic analysis was based on MEDLINE and EMBASE databases. We summarized the distribution and proportion of different types of gene cassette arrays of integrons (including class 1, 2, 3 and atypical class 1 integron) from clinical bacteria isolates in China. Fifty-six literatures were included in this study. Most of the strains were Gram-negative bacteria (94.1%, 7,364/7,822) while only 5.9% strains were Gram-positive bacteria. Class 1 integrons were detected in 54.2% (3956/7295) Gram-negative strains. aadA2 was the most popular gene cassette array detected from 60 Gram-positive bacteria while dfrA17-aadA5 were detected in 426 Gram-negative bacteria. This study identified 12 novel gene cassette arrays which have not been previously found in any species. All the novel gene cassette arrays were detected from Gram-negative bacteria. A regional characteristic of distribution of integrons was presented in this study. The results highlight a need for continuous surveillance of integrons and provide a guide for future research on integron-mediated bacteria resistance.

  9. Antimicrobial resistance in faecal Escherichia coli isolates from farmed red deer and wild small mammals. Detection of a multiresistant E. coli producing extended-spectrum beta-lactamase.

    PubMed

    Alonso, C A; González-Barrio, D; Tenorio, Carmen; Ruiz-Fons, F; Torres, C

    2016-04-01

    Eighty-nine Escherichia coli isolates recovered from faeces of red deer and small mammals, cohabiting the same area, were analyzed to determine the prevalence and mechanisms of antimicrobial resistance and molecular typing. Antimicrobial resistance was detected in 6.7% of isolates, with resistances to tetracycline and quinolones being the most common. An E. coli strain carrying blaCTX-M-1 as well as other antibiotic resistant genes included in an unusual class 1 integron (Intl1-dfrA16-blaPSE-1-aadA2-cmlA1-aadA1-qacH-IS440-sul3-orf1-mef(B)Δ-IS26) was isolated from a deer. The blaCTX-M-1 gene was transferred by conjugation and transconjugants also acquired an IncN plasmid. This strain was typed as ST224, which seems to be well adapted to both clinical and environmental settings. The phylogenetic distribution of the 89 strains varied depending on the animal host. This work reveals low antimicrobial resistance levels among faecal E. coli from wild mammals, which reflects a lower selective pressure affecting these bacteria, compared to livestock. However, it is remarkable the detection of a multi-resistant ESBL-E. coli with an integron carrying clinically relevant antibiotic-resistance genes, which can contribute to the dissemination of resistance determinants among different ecosystems. PMID:27012919

  10. Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks

    NASA Astrophysics Data System (ADS)

    Niknam, Taher; Kavousifard, Abdollah; Tabatabaei, Sajad; Aghaei, Jamshid

    2011-10-01

    In this paper a new multiobjective modified honey bee mating optimization (MHBMO) algorithm is presented to investigate the distribution feeder reconfiguration (DFR) problem considering renewable energy sources (RESs) (photovoltaics, fuel cell and wind energy) connected to the distribution network. The objective functions of the problem to be minimized are the electrical active power losses, the voltage deviations, the total electrical energy costs and the total emissions of RESs and substations. During the optimization process, the proposed algorithm finds a set of non-dominated (Pareto) optimal solutions which are stored in an external memory called repository. Since the objective functions investigated are not the same, a fuzzy clustering algorithm is utilized to handle the size of the repository in the specified limits. Moreover, a fuzzy-based decision maker is adopted to select the ‘best' compromised solution among the non-dominated optimal solutions of multiobjective optimization problem. In order to see the feasibility and effectiveness of the proposed algorithm, two standard distribution test systems are used as case studies.

  11. Novel cassette array in a class 1 integron in clinical isolates of Acinetobacter baumannii from central Iran.

    PubMed

    Japoni-Nejad, Alireza; Farshad, Shohreh; van Belkum, Alex; Ghaznavi-Rad, Ehsanollah

    2013-12-01

    Antibiotic resistance in Acinetobacter baumannii is a major problem in the hospital and outbreaks caused by this organism have been reported frequently. The present study aimed at determining the antibiotic susceptibility patterns, the prevalence of different classes of integrons and the characterization of integron class 1 gene cassettes in Iranian A. baumannii isolates. A total of 63 non-duplicate A. baumannii isolates were collected from clinical and environmental specimens in the Vali-Asr hospital in the central province of Iran (March to September, 2011). The antimicrobial susceptibility for 15 antibiotics which are used conventionally was determined by disk diffusion. The presence of different integron classes was investigated by PCR and the size of gene cassettes in class 1 integrons was then determined by PCR as well. Moreover, integron cassette arrays of isolates were delineated by RFLP and sequencing amplicons with different lengths. Of 63 isolates 62 (98.4%) carried a class 1 integron. The prevalence of IntI2 was 15.9% and the length of the amplicons ranged from 500 bp to 3 kb. Sequencing of integrons of class 1 revealed the presence of many resistance genes (aadA, aacA, aacC, dfrA, bla(GES) and bla(IMP)). We identified a completely new gene cassette which contained aacA7-qacF-aadA5-bla(IMP), this cassette has not been reported previously in A. baumannii. PMID:24161711

  12. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves

    PubMed Central

    Zhang, Zhen; Li, Da-Wei; Jin, Jing-Hao; Yin, Yan-Xu; Zhang, Huai-Xia; Chai, Wei-Guo; Gong, Zhen-Hui

    2015-01-01

    The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3′5′H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens. PMID:26217354

  13. Self-assembled magnetic bead chains for sensitivity enhancement of microfluidic electrochemical biosensor platforms.

    PubMed

    Armbrecht, L; Dincer, C; Kling, A; Horak, J; Kieninger, J; Urban, G

    2015-11-21

    In this paper, we present a novel approach to enhance the sensitivity of microfluidic biosensor platforms with self-assembled magnetic bead chains. An adjustable, more than 5-fold sensitivity enhancement is achieved by introducing a magnetic field gradient along a microfluidic channel by means of a soft-magnetic lattice with a 350 μm spacing. The alternating magnetic field induces the self-assembly of the magnetic beads in chains or clusters and thus improves the perfusion and active contact between the analyte and the beads. The soft-magnetic lattices can be applied independent of the channel geometry or chip material to any microfluidic biosensing platform. At the same time, the bead-based approach achieves chip reusability and shortened measurement times. The bead chain properties and the maximum flow velocity for bead retention were validated by optical microscopy in a glass capillary. The magnetic actuation system was successfully validated with a biotin-streptavidin model assay on a low-cost electrochemical microfluidic chip, fabricated by dry-film photoresist technology (DFR). Labelling with glucose oxidase (GOx) permits rapid electrochemical detection of enzymatically produced H2O2. PMID:26394820

  14. De-novo RNA Sequencing and Metabolite Profiling to Identify Genes Involved in Anthocyanin Biosynthesis in Korean Black Raspberry (Rubus coreanus Miquel)

    PubMed Central

    Rim, Yeonggil; Kumar, Ritesh; Han, Xiao; Lee, Sang Yeol; Lee, Choong Hwan; Kim, Jae-Yean

    2014-01-01

    The Korean black raspberry (Rubus coreanus Miquel, KB) on ripening is usually consumed as fresh fruit, whereas the unripe KB has been widely used as a source of traditional herbal medicine. Such a stage specific utilization of KB has been assumed due to the changing metabolite profile during fruit ripening process, but so far molecular and biochemical changes during its fruit maturation are poorly understood. To analyze biochemical changes during fruit ripening process at molecular level, firstly, we have sequenced, assembled, and annotated the transcriptome of KB fruits. Over 4.86 Gb of normalized cDNA prepared from fruits was sequenced using Illumina HiSeq™ 2000, and assembled into 43,723 unigenes. Secondly, we have reported that alterations in anthocyanins and proanthocyanidins are the major factors facilitating variations in these stages of fruits. In addition, up-regulation of F3′H1, DFR4 and LDOX1 resulted in the accumulation of cyanidin derivatives during the ripening process of KB, indicating the positive relationship between the expression of anthocyanin biosynthetic genes and the anthocyanin accumulation. Furthermore, the ability of RcMCHI2 (R. coreanus Miquel chalcone flavanone isomerase 2) gene to complement Arabidopsis transparent testa 5 mutant supported the feasibility of our transcriptome library to provide the gene resources for improving plant nutrition and pigmentation. Taken together, these datasets obtained from transcriptome library and metabolic profiling would be helpful to define the gene-metabolite relationships in this non-model plant. PMID:24505466

  15. Identification of an integron containing the quinolone resistance gene qnrA1 in Shewanella xiamenensis.

    PubMed

    Zhao, Jing-yi; Mu, Xiao-dong; Zhu, Yuan-qi; Xi, Lijun; Xiao, Zijun

    2015-09-01

    This study investigated multidrug resistance in Shewanella xiamenensis isolated from an estuarine water sample in China during 2014. This strain displayed resistance or decreased susceptibility to ampicillin, aztreonam, cefepime, cefotaxime, chloramphenicol, ciprofloxacin, erythromycin, kanamycin and trimethoprim-sulfamethoxazole. The antimicrobial resistance genes aacA3, blaOXA-199, qnrA1 and sul1 were identified by PCR amplification and by sequencing. Pulsed-field gel electrophoresis and DNA hybridization experiments showed that the quinolone resistance gene qnrA1 was chromosomally located. qnrA1 was located in a complex class 1 integron, downstream from an ISCR1, and bracketed by two copies of qacEΔ1-sul1 genes. This integron is similar to In825 with four gene cassettes aacA3, catB11c, dfrA1z and aadA2az. An IS26-mel-mph2-IS26 structure was also detected in the flanking sequences, conferring resistance to macrolides. This is the first identification of the class 1 integron in S. xiamenensis. This is also the first identification of the qnrA1 gene and IS26-mediated macrolide resistance genes in S. xiamenensis. Presence of a variety of resistance genetic determinants in environmental S. xiamenensis suggests the possibility that this species may serve as a potential vehicle of antimicrobial resistance genes in aquatic environments. PMID:26316545

  16. Molecular Analysis of Antibiotic Resistance Gene Clusters in Vibrio cholerae O139 and O1 SXT Constins

    PubMed Central

    Hochhut, Bianca; Lotfi, Yasmin; Mazel, Didier; Faruque, Shah M.; Woodgate, Roger; Waldor, Matthew K.

    2001-01-01

    Many recent Asian clinical Vibrio cholerae E1 Tor O1 and O139 isolates are resistant to the antibiotics sulfamethoxazole (Su), trimethoprim (Tm), chloramphenicol (Cm), and streptomycin (Sm). The corresponding resistance genes are located on large conjugative elements (SXT constins) that are integrated into prfC on the V. cholerae chromosome. We determined the DNA sequences of the antibiotic resistance genes in the SXT constin in MO10, an O139 isolate. In SXTMO10, these genes are clustered within a composite transposon-like structure found near the element's 5′ end. The genes conferring resistance to Cm (floR), Su (sulII), and Sm (strA and strB) correspond to previously described genes, whereas the gene conferring resistance to Tm, designated dfr18, is novel. In some other O139 isolates the antibiotic resistance gene cluster was found to be deleted from the SXT-related constin. The El Tor O1 SXT constin, SXTET, does not contain the same resistance genes as SXTMO10. In this constin, the Tm resistance determinant was located nearly 70 kbp away from the other resistance genes and found in a novel type of integron that constitutes a fourth class of resistance integrons. These studies indicate that there is considerable flux in the antibiotic resistance genes found in the SXT family of constins and point to a model for the evolution of these related mobile elements. PMID:11600347

  17. Metabolomic analysis and differential expression of anthocyanin biosynthetic genes in white- and red-flowered buckwheat cultivars (Fagopyrum esculentum).

    PubMed

    Kim, Yeon Bok; Park, Soo-Yun; Thwe, Aye Aye; Seo, Jeong Min; Suzuki, Tastsuro; Kim, Sun-Ju; Kim, Jae Kwang; Park, Sang Un

    2013-11-01

    Red-flowered buckwheat ( Fagopyrum esculentum ) is used in the production of tea, juice, and alcohols after the detoxification of fagopyrin. In order to investigate the metabolomics and regulatory of anthocyanin production in red-flowered (Gan-Chao) and white-flowered (Tanno) buckwheat cultivars, quantitative real-time RT-PCR (qRT-PCR), gas chromatography time-of-flight mass spectrometry (GC-TOFMS), and high performance liquid chromatography (HPLC) were conducted. The transcriptions of FePAL, FeC4H, Fe4CL1, FeF3H, FeANS, and FeDFR increased gradually from flowering stage 1 and reached their highest peaks at flowering stage 3 in Gan-Chao flower. In total 44 metabolites, 18 amino acids, 15 organic acids, 7 sugars, 3 sugar alcohols, and 1 amine were detected in Gan-Chao flowers. Two anthocyanins, cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside, were identified in Gan-Chao cultivar. The first component of the partial least-squares to latent structures-discriminate analysis (PLS-DA) indicated that high amounts of phenolic, shikimic, and pyruvic acids were present in Gan-Chao. We suggest that transcriptions of genes involved in anthocyanin biosynthesis, anthocyanin contents, and metabolites have correlation in the red-flowered buckwheat Gan-Chao flowers. Our results may be helpful to understand anthocyanin biosynthesis in red-flowered buckwheat. PMID:24083509

  18. Analysis of antimicrobial resistance and class 1 integrons among strains from upper respiratory tract of healthy adults

    PubMed Central

    Liu, Haiyan; Wang, Hai; Huang, Mao; Mei, Yaning; Wu, Rui; Huang, Yiling; Chen, Yi; Xu, Yanling

    2013-01-01

    Objective The distribution and characterization of integrons among opportunistic pathogens from nasopharynx of healthy adults. Methods A total of 1,019 nasopharyngeal samples from healthy adults were collected; bacteria were identified by API system; antibiotic susceptibility were tested by K-B method; class 1, 2 and 3 integrons were examined by degenerate primers of the genetic content of integrons were analyzed by PCR and DNA sequencing. Results Out of the 1,019 cases, 743 (72.9%) opportunistic pathogens were isolated. The top five commons organism identified were Coagulase-negative staphylococcus (n=404), Staphylococcus aureus (n=109), Haemophilus influenzae (n=74), Streptococcus pneumoniae (n=49) and Klebsiella pneumoniae (n=32). Eight (25.0%) isolates of K. pneumoniae produced the ESBLs. The isolated rates of S. aureus and H. influenzae were decreased with aging. 6.3% (2/32) K. pneumoniae isolates and 16.7% (1/8) Proteus isolates carried class 1 integrons. Among intI1-positive strains, sequencing analysis revealed that one of the integron positive K. pneumoniae isolates harbored gene cassette aadA5-dfrA17. Proteus isolates harbored gene cassette aadA2-dhfrXII. Conclusions The results stressed the need for continued surveillance of bacteria from the asymptomatic carriers. PMID:23585941

  19. Antibiofilm effect enhanced by modification of 1,2,3-triazole and palladium nanoparticles on polysulfone membranes

    PubMed Central

    Cheng, Hong; Xie, Yihui; Villalobos, Luis Francisco; Song, Liyan; Peinemann, Klaus-Viktor; Nunes, Suzana; Hong, Pei-Ying

    2016-01-01

    Biofouling impedes the performance of membrane bioreactors. In this study, we investigated the antifouling effects of polysulfone membranes that were modified by 1,2,3-triazole and palladium (Pd) nanoparticles. The modified membranes were evaluated for antibacterial and antifouling efficacy in a monoculture species biofilm (i.e., drip flow biofilm reactor, DFR) and mixed species biofilm experiment (i.e., aerobic membrane reactor, AeMBR). 1,2,3-triazole and Pd nanoparticles inhibited growth of Pseudomonas aeruginosa in both aerobic and anaerobic conditions. The decrease in bacterial growth was observed along with a decrease in the amount of total polysaccharide within the monoculture species biofilm matrix. When the modified membranes were connected to AeMBR, the increase in transmembrane pressure was lower than that of the non-modified membranes. This was accompanied by a decrease in protein and polysaccharide concentrations within the mixed species biofilm matrix. Biomass amount in the biofilm layer was also lower in the presence of modified membranes, and there was no detrimental effect on the performance of the reactor as evaluated from the nutrient removal rates. 16S rRNA analysis further attributed the delay in membrane fouling to the decrease in relative abundance of selected bacterial groups. These observations collectively point to a lower fouling occurrence achieved by the modified membranes. PMID:27068576

  20. Transcriptome sequencing of purple petal spot region in tree peony reveals differentially expressed anthocyanin structural genes

    PubMed Central

    Zhang, Yanzhao; Cheng, Yanwei; Ya, Huiyuan; Xu, Shuzhen; Han, Jianming

    2015-01-01

    The pigmented cells in defined region of a petal constitute the petal spots. Petal spots attract pollinators and are found in many angiosperm families. Several cultivars of tree peony contain a single red or purple spot at the base of petal that makes the flower more attractive for the ornamental market. So far, the understanding of the molecular mechanism of spot formation is inadequate. In this study, we sequenced the transcriptome of the purple spot and the white non-spot of tree peony flower. We assembled and annotated 67,892 unigenes. Comparative analyses of the two transcriptomes showed 1,573 differentially expressed genes, among which 933 were up-regulated, and 640 were down-regulated in the purple spot. Subsequently, we examined four anthocyanin structural genes, including PsCHS, PsF3′H, PsDFR, and PsANS, which expressed at a significantly higher level in the purple spot than in the white non-spot. We further validated the digital expression data using quantitative real-time PCR. Our result uncovered transcriptome variance between the spot and non-spot of tree peony flower, and revealed that the co-expression of four anthocyanin structural genes was responsible for spot pigment in tree peony. The data will further help to unravel the genetic mechanism of peony flower spot formation. PMID:26583029

  1. Mobility of gentamicin resistance genes from staphylococci isolated in the United States: identification of Tn4031, a gentamicin resistance transposon from Staphylococcus epidermidis.

    PubMed Central

    Thomas, W D; Archer, G L

    1989-01-01

    Homologous genes encoding resistance to gentamicin, tobramycin, and kanamycin through the bifunctional acetylating [AAC(6')] and phosphorylating [APH(2")] aminoglycoside-modifying enzyme were identified in staphylococci isolated from patients in the United States. The mobility of gentamicin resistance (Gmr) genes found on a prototype conjugative plasmid (pGO1) was compared with that of genes cloned from chromosomal sites. Plasmid-encoded Gmr genes and flanking sequences were introduced onto a temperature-sensitive plasmid (pRN3208) from pGO1 by homologous recombination between insertion sequence-like elements present on both replicons. Growth of Staphylococcus aureus strains containing the temperature-sensitive recombinant (pGO161) at the nonpermissive temperature for plasmid replication (42 degrees C) revealed no translocation of Gmr from its plasmid location. A transposon (Tn551) resident on the same replicon did translocate. Chromosomal Gmr determinants were cloned, together with the gene for trimethoprim resistance (dfrA), from three geographically distinct S. epidermidis isolates; two were subcloned onto temperature-sensitive Escherichia coli-S. aureus shuttle plasmids as 7.2-kilobase BglII fragments. Growth of both recombination-deficient and-proficient S. aureus strains containing the cloned genes at 42 degrees C allowed detection of transposition of Gmr sequences and identification of insertion into random chromosomal sites. We have designated this 5-kilobase transposon from S. epidermidis as Tn4031. Images PMID:2552907

  2. Flower Colour Modification of Chrysanthemum by Suppression of F3'H and Overexpression of the Exogenous Senecio cruentus F3'5'H Gene

    PubMed Central

    Keting, Han; Qiaoyan, Xiang; Silan, Dai

    2013-01-01

    Chrysanthemum (Chrysanthemum × morifolium) is one of the most important ornamental plants in the world. They are typically used as cut flowers or potted plants. Chrysanthemum can exhibit red, purple, pink, yellow and white flowers, but lack bright red and blue flowers. In this study, we identified two chrysanthemum cultivars, C × morifolium ‘LPi’ and C × morifolium ‘LPu’, that only accumulate flavonoids in their ligulate flowers. Next, we isolated seven anthocyanin biosynthesis genes, namely CmCHS, CmF3H, CmF3’H, CmDFR, CmANS, CmCHI and Cm3GT in these cultivars. RT-PCR and qRT-PCR analyses showed that CmF3′H was the most important enzyme required for cyanidin biosynthsis. To rebuild the delphinidin pathway, we downregulated CmF3’H using RNAi and overexpressed the Senecio cruentus F3′5′H (PCFH) gene in chrysanthemum. The resultant chrysanthemum demonstrated a significantly increased content of cyanidin and brighter red flower petals but did not accumulate delphinidin. These results indicated that CmF3′H in chrysanthemum is important for anthocyanin accumulation, and Senecio cruentus F3′5′H only exhibited F3′H activity in chrysanthemum but did not rebuild the delphinidin pathway to form blue flower chrysanthemum. PMID:24250783

  3. Flower colour modification of chrysanthemum by suppression of F3'H and overexpression of the exogenous Senecio cruentus F3'5'H gene.

    PubMed

    He, Huang; Ke, Hu; Keting, Han; Qiaoyan, Xiang; Silan, Dai

    2013-01-01

    Chrysanthemum (Chrysanthemum × morifolium) is one of the most important ornamental plants in the world. They are typically used as cut flowers or potted plants. Chrysanthemum can exhibit red, purple, pink, yellow and white flowers, but lack bright red and blue flowers. In this study, we identified two chrysanthemum cultivars, C × morifolium 'LPi' and C × morifolium 'LPu', that only accumulate flavonoids in their ligulate flowers. Next, we isolated seven anthocyanin biosynthesis genes, namely CmCHS, CmF3H, CmF3'H, CmDFR, CmANS, CmCHI and Cm3GT in these cultivars. RT-PCR and qRT-PCR analyses showed that CmF3'H was the most important enzyme required for cyanidin biosynthsis. To rebuild the delphinidin pathway, we downregulated CmF3'H using RNAi and overexpressed the Senecio cruentus F3'5'H (PCFH) gene in chrysanthemum. The resultant chrysanthemum demonstrated a significantly increased content of cyanidin and brighter red flower petals but did not accumulate delphinidin. These results indicated that CmF3'H in chrysanthemum is important for anthocyanin accumulation, and Senecio cruentus F3'5'H only exhibited F3'H activity in chrysanthemum but did not rebuild the delphinidin pathway to form blue flower chrysanthemum. PMID:24250783

  4. Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea.

    PubMed

    Jia, Haifeng; Zhang, Cheng; Pervaiz, Tariq; Zhao, Pengcheng; Liu, Zhongjie; Wang, Baoju; Wang, Chen; Zhang, Lin; Fang, Jinggui; Qian, Jianpu

    2016-01-01

    Fruit ripening is a complex process that is regulated by a signal network. Whereas the regulatory mechanism of abscisic acid has been studied extensively in non-climacteric fruit, little is know about other signaling pathways involved in this process. In this study, we performed that plant hormone jasmonic acid plays an important role in grape fruit coloring and softening by increasing the transcription levels of several ripening-related genes, such as the color-related genes PAL1, DFR, CHI, F3H, GST, CHS, and UFGT; softening-related genes PG, PL, PE, Cell, EG1, and XTH1; and aroma-related genes Ecar, QR, and EGS. Lastly, the fruit anthocyanin, phenol, aroma, and cell wall materials were changed. Jasmonic acid positively regulated its biosynthesis pathway genes LOS, AOS, and 12-oxophytodienoate reductase (OPR) and signal pathway genes COI1 and JMT. RNA interference of grape jasmonic acid pathway gene VvAOS in strawberry fruit appeared fruit un-coloring phenotypes; exogenous jasmonic acid rescued this phenotypes. On the contrary, overexpression of grape jasmonic acid receptor VvCOI1 in the strawberry fruit accelerated the fruit-ripening process and induced some plant defense-related gene expression level. Furthermore, jasmonic acid treatment or strong jasmonic acid signal pathway in strawberry fruit make the fruit resistance against Botrytis cinerea. PMID:26498957

  5. Effects of full-scale advanced water treatment on antibiotic resistance genes in the Yangtze Delta area in China.

    PubMed

    Zhang, Shuting; Lin, Wenfang; Yu, Xin

    2016-05-01

    As emerging microbial contaminants, antibiotic resistance genes (ARGs) are widespread in the aquatic environment, including source water, which might enter water supply systems and endanger public health by enhancing the resistance of opportunistic pathogens to some antibiotics. In the present study, we investigated how water treatments affect the levels of ARGs in a full-scale drinking water treatment plant for one year using real-time PCR. The 16s rRNA gene and eleven ARG families, including tetA, tetG, aacC1, strA, ermB, cmlA5, vanA, dfrA1, sulII, blaTEM-1 and blaoxa-1, in source water and the outlet of each treatment and tap water were monitored. The results showed that nine ARG families were detected at relatively high levels, for example, the sulII gene was detected at ∼10(4) copies mL(-1) compared with 10(5) copies mL(-1) in finished water and tap water in July, whose relative concentrations were consistently high. Treatments for the reduction of the absolute concentrations of ARGs included sand filtration, coagulation/sedimentation and two-stage O3-BAC filtration, while distribution could increase ARGs an average of 0.50 log. PMID:27020061

  6. Sewage treatment plant serves as a hot-spot reservoir of integrons and gene cassettes.

    PubMed

    Ma, Liping; Zhang, Xu-Xiang; Zhao, Fuzheng; Wu, Bing; Cheng, Shupei; Yang, Liuyan

    2013-04-01

    This study investigated the occurrence and abundance of class 1 integrons and related antibiotic resistance genes (ARGs) in a sewage treatment plant (STP) of China. Totally, 189 bacterial strains were isolated from influent, activated sludge and effluent, and 40 isolates contained the integons with a complete structure. The intl1-carrying isolates were found to harbor two types of gene cassettes: dfr17-aadA5 and aadA2, conferring resistances to trimethoprim and streptomycin, which were further confirmed by antimicrobial susceptibility analysis. Many other gene cassettes were carried on integron, including qnrVC1, catB-8-blaoxa-10-aadA1-aac(6'), aadB-aacA29b, aadA2, aac(6')-1b, aadA6 and aadA12, which were detected using DNA cloning. Quantitative real time PCR showed that over 99% of the integrons was eliminated in activated sludge process, but average copy number of integrons in given bacterial cells was increased by 56% in treated sewage. Besides integrons, other mobile gene elements (MGEs) were present in the STP with high abundance. MGEs and the associated ARGs may be wide-spread in STPs, which constitute a potential hot spot for selection of antibiotic resistant bacteria and horizontal transfer of ARGs. PMID:24620610

  7. Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal, an indigenous medicinal plant.

    PubMed

    Takshak, Swabha; Agrawal, S B

    2014-11-01

    The present study aims to investigate the effects of supplemental ultraviolet B (3.6 kJ m(-2)day(-1) above ambient) radiation on secondary metabolites and phenylpropanoid pathway enzymes of Withania somnifera under field conditions at 40, 70, and 100 days after transplantation. Secondary metabolites' (alkaloids, anthocyanins, carotenoids, flavonoids, lignin, phytosterols, saponins, and tannins) concentrations were analysed at the end of the treatments. Activities of phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumarate-CoA ligase (4CL), chalcone-flavanone isomerase (CHI), and dihydroflavonol reductase (DFR) were also determined. In treated plants, secondary metabolite-concentrations generally increased (higher concentrations being recorded in roots compared to leaves). Anomalies were recorded for lycopene in roots and phytosterols in leaves (all sampling ages); β-carotene declined in leaves at third sampling age. s-UV-B-treated plants depicted decrease in withanolide A content with concomitant increase in withaferin A (two major alkaloids analysed by HPLC) compared to their respective controls. Phenylpropanoid pathway enzyme-activities increased in leaves and roots under s-UV-B treatment, the latter showing greater increase. The study concludes that s-UV-B is a potent factor in increasing the concentrations of secondary metabolites and their biosynthetic pathway enzymes in W. somnifera. PMID:25226342

  8. Defence strategies adopted by the medicinal plant Coleus forskohlii against supplemental ultraviolet-B radiation: Augmentation of secondary metabolites and antioxidants.

    PubMed

    Takshak, Swabha; Agrawal, S B

    2015-12-01

    Supplementary ultraviolet-B (ambient+3.6  kJ m(-2) day(-1)) induced changes on morphological, physiological, and biochemical characteristics (specifically the defence strategies: UV-B protective compounds and antioxidants) of Coleus forskohlii were investigated under field conditions at 30, 60, and 90 days after transplantation. Levels of secondary metabolites increased under s-UV-B stress; flavonoids and phenolics (primary UV-B screening agents) were recorded to be higher in leaves which are directly exposed to s-UV-B. This was also verified by enhanced activities of phenylpropanoid pathway enzymes: phenylalanine ammonia lyase (PAL), cinnamyl alcohol dehydrogenase (CAD), 4-coumarate-CoA ligase (4CL), chalcone-flavanone isomerase (CHI), and dihydroflavonol reductase (DFR). Antioxidants, both enzymatic (ascorbate peroxidase, catalase, glutathione reductase, peroxidase, polyphenol oxidase, and superoxide dismutase) and non-enzymatic (ascorbic acid and α-tocopherol) also increased in the treated organs of the test plant, higher contents being recorded in roots except for ascorbic acid. On the contrary, protein and chlorophyll content (directly implicated in regulating plant growth and development) declined under s-UV-B. These alterations in plant biochemistry led the plant to compromise on its photosynthate allocation towards growth and biomass production as evidenced by a reduction in its height and biomass. The study concludes that s-UV-B is a potent stimulating factor in increasing the concentrations of defense compounds and antioxidants in C. forskohlii to optimize its performance under stress. PMID:26461242

  9. Characteristics of the vertical profiles of dual-frequency, dual-polarization radar data in stratiform rain

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Kumagai, H.

    1994-01-01

    Airborne dual-wavelength and dual-polarization radar data are analyzed for measurements taken in stratiform rain in the western Pacific during September 1990. The focus of the paper is on the vertical profiles of the linear depolarization ratio, LDR (10 GHz); the reflectivity factor, dBZ (10 GHz); and the dual-frequency ratio, DFR (10, 34.45 GHz). Statistical characterizations of the maxima of these quantities and the relative locations at which they occur suggest that the eccentricity of the melting particles is fairly large and that the shape and size of the particles are correlated. To try to explain these features, two types of simulation are presented. In the first, a set of measured drop size distributions is used in the context of a standard model of the melting layer. Variations in snow density, as well as shape, size, and orientation distributions are used to study the relationship between these parameters and the radar measurements. To reduce the amount of ambiguity in the estimation, a second type of simulation is described in which the size distribution of the snow is estimated. Comparisons between the simulated and measured profiles indicate that radar measurements can be used to derive certain characteristics of the particle size and shape distributions in the melting layer.

  10. Development and Application of a Polymicrobial in vitro Wound Biofilm Model

    PubMed Central

    Woods, Jeremy; Boegli, Laura; Kirker, Kelly R.; Agostinho, Alessandra M.; Durch, Amanda M.; Pulcini, Elinor deLancey; Stewart, Philip S.; James, Garth A.

    2012-01-01

    Aims The goal of this investigation was to develop an in vitro, polymicrobial, wound biofilm capable of supporting the growth of bacteria with variable oxygen requirements. Methods and Results The strict anaerobe Clostridium perfringens was isolated by cultivating wound homogenates using the drip-flow reactor, and a three-species biofilm model was established using methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and C. perfringens in the colony-drip-flow reactor model. Plate counts revealed that MRSA, P. aeruginosa, and C. perfringens grew to 7.39±0.45, 10.22±0.22, and 7.13±0.77 log CFU per membrane, respectively. The three-species model was employed to evaluate the efficacy of two antimicrobial dressings, Curity™ AMD and Acticoat™, compared to sterile gauze controls. Microbial growth on Curity™ AMD and gauze were not significantly different, for any species, whereas Acticoat™ was found to significantly reduce growth for all three species. Conclusions Using the Colony-DFR, a three-species biofilm was successfully grown, and the biofilms displayed a unique structure consisting of distinct layers that appeared to be inhabited exclusively or predominantly by a single species. Significance and Impact of Study The primary accomplishment of this study was the isolation and growth of an obligate anaerobe in an in vitro model without establishing an artificially anaerobic environment. PMID:22353049

  11. Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Noh, B.; Spalding, E. P.; Evans, M. H. (Principal Investigator)

    1998-01-01

    Activation of anion channels by blue light begins within seconds of irradiation in seedlings and is related to the ensuing growth inhibition. 5-Nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) is a potent, selective, and reversible blocker of these anion channels in Arabidopsis thaliana. Here we show that 20 microM NPPB blocked 72% of the blue-light-induced accumulation of anthocyanin pigments in seedlings. Feeding biosynthetic intermediates to wild-type and tt5 seedlings provided evidence that NPPB prevented blue light from up-regulating one or more steps between and including phenylalanine ammonia lyase and chalcone isomerase. NPPB was found to have no significant effect on the blue-light-induced increase in transcript levels of PAL1, CHS, CHI, or DFR, which are genes that encode anthocyanin-biosynthetic enzymes. Immunoblots revealed that NPPB also did not inhibit the accumulation of the chalcone synthase, chalcone isomerase, or flavanone-3-hydroxylase proteins. This is in contrast to the reduced anthocyanin accumulation displayed by a mutant lacking the HY4 blue-light receptor, as hy4 displayed reduced expression of the above enzymes. Taken together, the data indicate that blue light acting through HY4 leads to an increase in the amount of biosynthetic enzymes but blue light must also act through a separate, anion-channel-dependent system to create a fully functional biosynthetic pathway.

  12. Anthocyanins and flavonols are responsible for purple color of Lablab purpureus (L.) sweet pods.

    PubMed

    Cui, Baolu; Hu, Zongli; Zhang, Yanjie; Hu, Jingtao; Yin, Wencheng; Feng, Ye; Xie, Qiaoli; Chen, Guoping

    2016-06-01

    Lablab pods, as dietary vegetable, have high nutritional values similar to most of edible legumes. Moreover, our studies confirmed that purple lablab pods contain the natural pigments of anthocyanins and flavonols. Compared to green pods, five kinds of anthocyanins (malvidin, delphinidin and petunidin derivatives) were found in purple pods by HPLC-ESI-MS/MS and the major contents were delphinidin derivatives. Besides, nine kinds of polyphenol derivatives (quercetin, myricetin, kaempferol and apigenin derivatives) were detected by UPLC-ESI-MS/MS and the major components were quercetin and myricetin derivatives. In order to discover their molecular mechanism, expression patterns of biosynthesis and regulatory gens of anthocyanins and flavonols were investigated. Experimental results showed that LpPAL, LpF3H, LpF3'H, LpDFR, LpANS and LpPAP1 expressions were significantly induced in purple pods compared to green ones. Meanwhile, transcripts of LpFLS were more abundant in purple pods than green or yellow ones, suggestind that co-pigments of anthocyanins and flavonols are accumulated in purple pods. Under continuously dark condition, no anthocyanin accumulation was detected in purple pods and transcripts of LpCHS, LpANS, LpFLS and LpPAP1 were remarkably repressed, indicating that anthocyanins and flavonols biosynthesis in purple pods was regulated in light-dependent manner. These results indicate that co-pigments of anthocyanins and flavonols contribute to purple pigmentations of pods. PMID:26995313

  13. Design and optimization of terahertz directional coupler based on hybrid-cladding hollow waveguide with low confinement loss

    NASA Astrophysics Data System (ADS)

    Yu, Ying-Ying; Li, Xu-You; Sun, Bo; He, Kun-Peng

    2015-06-01

    We propose a design and optimization for directional coupling in terahertz hybrid-cladding hollow waveguide. It is composed of two square hollow waveguides which touch each other and are surrounded by a metallic layer. By employing the finite element method, the coupling performance and loss property are numerically investigated. Numerical results indicate that this directional coupler with hybrid-cladding can realize ultra-narrow-band coupling; it provides a low confinement loss performance: the confinement loss can reach as low as 6.27 × 10-5 cm-1. Moreover, the further analyses of configuration and performance show that confinement loss and frequency range shift for the low-confinement-loss frequency regime can be realized and optimized by appropriately tuning the thickness values of the metallic and dielectric layer. In addition, through the further analysis of coupling performance, the possibilities of realizing ultra-narrow-band couplings in different frequency ranges are demonstrated. It is a powerful candidate for high precision optical fiber sensing, and communication in terahertz splitting fields. Project supported by the Specific Scientific and Technological Cooperation between China and Russia (Grant No. 2010DFR80140) and the National Natural Science Foundation of China (Grant No. 51309059).

  14. Molecular characterization of integrons in clinical isolates of betalactamase-producing Escherichia coli and Klebsiella pneumoniae in Iran.

    PubMed

    Zeighami, Habib; Haghi, Fakhri; Hajiahmadi, Fahimeh

    2015-06-01

    Integrons are considered to play a significant role in the evolution and spread of antibiotic resistance genes. A total of 349 clinical isolates of Escherichia coli and Klebsiella pneumoniae were investigated for molecular characterization of integrons and betalactamases. Antimicrobial susceptibility testing was also performed as the Clinical and Laboratory Standards Institute (CLSI) guidelines. The frequency of extended spectrum betalactamases (ESBL) or metallo-betalactamases (MBL)-producing isolates, patient demographics, and the susceptibility to various antimicrobial agents were described. BlaCTX-M was the most frequently detected betalactamase in all isolates. Moreover, MBL producing K. pneumoniae carried blaIMP and blaVIM at 100 and 41·6%, respectively but no MBL-positive E. coli was detected. Class 1 integrons were more frequent among E. coli and K. pneumoniae isolates in comparison with class 2 integrons and the frequency of intI2 in K. pneumoniae was significantly higher than E. coli isolates. Five different resistance gene arrays were identified among class 1 integrons. Dihydrofolate reductase (dfrA) and aminoglycoside adenyltransferase (aad) gene cassettes were found to be predominant in the class 1 integrons. These results indicate that class 1 integrons are widespread among ESBL-producing isolates of K. pneumoniae and E. coli and appropriate surveillance and control measures are essential to prevent further dissemination of these elements among Enterobacteriaceae in our country. PMID:24571248

  15. Seed coat phenolics and the developing silique transcriptome of Brassica carinata.

    PubMed

    Li, Xiang; Westcott, Neil; Links, Matthew; Gruber, Margaret Y

    2010-10-27

    Structures for nine compounds were elucidated in seed coats of two genetically related Brassica carinata lines. The yellow-seeded line accumulated monomeric kaempferols, phenylpropanoids, and lignans, while extractable and unextractable proanthocyanidins and a high-performance liquid chromatography peak containing polymeric-like quercetin/lignan structures were strongly reduced. The brown-seeded line accumulated large amounts of both types of proanthocyanidins (extractable and unextractable), as well as phenylpropanoids and lignans equivalent to the amounts in the yellow-seeded seed coats, but the brown-seeded seed coats lacked kaempferols. A Brassica napus 15K oligoarray experiment indicated that yellow-seeded siliques had more extreme gene expression changes and a 2.4-fold higher number of upregulated genes than brown-seeded siliques, including a host of transcription factors and genes with unknown function. Transcripts for six flavonoid genes (CHS, F3H, FOMT, DFR, GST, and TTG1) were lower and two (F3'H and FLS) were higher in yellow-seeded siliques, but expression of CHI, PAP1, and phenylpropanoid genes was unchanged. PMID:20925379

  16. Phenylalanine and LED lights enhance phenolic compound production in Tartary buckwheat sprouts.

    PubMed

    Seo, Jeong-Min; Arasu, Mariadhas Valan; Kim, Yeon-Bok; Park, Sang Un; Kim, Sun-Ju

    2015-06-15

    The present study aimed to investigate the effects of different l-phenylalanine (l-Phe) concentrations and various light-emitting diodes (LEDs) on the accumulation of phenolic compounds (chlorogenic acid, vitexin, rutin, quercetin, cyanidin 3-O-glucoside, and cyanidin 3-O-rutinoside) in Tartary buckwheat sprouts. We found that 5mM was the optimum l-Phe concentration for the synthesis of total and individual phenolic compounds. The highest rutin (53.09 mg/g DW) and chlorogenic acid (5.62 mg/g DW) content was observed with Red+Blue and white lights. Comprehensive differences in total and individual anthocyanin content were observed between different lights; however, the total anthocyanin content (9.12 mg/g DW) was 1.5-fold higher in blue light. The expression levels of regulatory genes, such as FtDFR and FtANS, were 7.1-fold higher with l-Phe treatment. Gene expression results showed that the phenolic compounds in Tartary buckwheat sprouts increased with the use of l-Phe and LED lights. PMID:25660878

  17. Antibiofilm effect enhanced by modification of 1,2,3-triazole and palladium nanoparticles on polysulfone membranes.

    PubMed

    Cheng, Hong; Xie, Yihui; Villalobos, Luis Francisco; Song, Liyan; Peinemann, Klaus-Viktor; Nunes, Suzana; Hong, Pei-Ying

    2016-01-01

    Biofouling impedes the performance of membrane bioreactors. In this study, we investigated the antifouling effects of polysulfone membranes that were modified by 1,2,3-triazole and palladium (Pd) nanoparticles. The modified membranes were evaluated for antibacterial and antifouling efficacy in a monoculture species biofilm (i.e., drip flow biofilm reactor, DFR) and mixed species biofilm experiment (i.e., aerobic membrane reactor, AeMBR). 1,2,3-triazole and Pd nanoparticles inhibited growth of Pseudomonas aeruginosa in both aerobic and anaerobic conditions. The decrease in bacterial growth was observed along with a decrease in the amount of total polysaccharide within the monoculture species biofilm matrix. When the modified membranes were connected to AeMBR, the increase in transmembrane pressure was lower than that of the non-modified membranes. This was accompanied by a decrease in protein and polysaccharide concentrations within the mixed species biofilm matrix. Biomass amount in the biofilm layer was also lower in the presence of modified membranes, and there was no detrimental effect on the performance of the reactor as evaluated from the nutrient removal rates. 16S rRNA analysis further attributed the delay in membrane fouling to the decrease in relative abundance of selected bacterial groups. These observations collectively point to a lower fouling occurrence achieved by the modified membranes. PMID:27068576

  18. Analysis of biochemical compounds and differentially expressed genes of the anthocyanin biosynthetic pathway in variegated peach flowers.

    PubMed

    Hassani, D; Liu, H L; Chen, Y N; Wan, Z B; Zhuge, Q; Li, S X

    2015-01-01

    Variegated plants are highly valuable in the floricultural market, yet the genetic mechanism underlying this attractive phenomenon has not been completely elucidated. In this study, we identified and measured different compounds in pink and white flower petals of peach (Prunus persica) by high-performance liquid chromatography and liquid chromatography/mass spectrometry analyses. No cyanidin-based or pelargonidin-based compounds were detected in white petals, but high levels of these compounds were found in pink petals. Additionally, we sequenced and analyzed the expression of six key structural genes in the anthocyanin biosynthesis pathway (CHI, CHS, DFR, F3'H, ANS, and UFGT) in both white and pink petals. Quantitative real-time polymerase chain reaction revealed all six genes to be expressed at greatly reduced levels in white flower petals, relative to pink. No allelic variations were found in the transcribed sequences. However, alignment of transcribed and genomic sequences of the ANS gene detected alternative splicing, resulting in transcripts of 1.071 and 942 bp. Only the longer transcript was observed in white flower petals. Since ANS is the key intermediate enzyme catalyzing the colorless leucopelargonidin and leucocyanidin to substrates required for completion of anthocyanin biosynthesis, the ANS gene is implicated in flower color variegation and should be explored in future studies. This article, together with a previous transcriptome study, elucidates the mechanism underlying peach flower color variegation in terms of the key structural genes involved in anthocyanin biosynthesis. PMID:26535657

  19. VIGS approach reveals the modulation of anthocyanin biosynthetic genes by CaMYB in chili pepper leaves.

    PubMed

    Zhang, Zhen; Li, Da-Wei; Jin, Jing-Hao; Yin, Yan-Xu; Zhang, Huai-Xia; Chai, Wei-Guo; Gong, Zhen-Hui

    2015-01-01

    The purple coloration of pepper leaves arises from the accumulation of anthocyanin. Three regulatory and 12 structural genes have been characterized for their involvement in the anthocyanin biosynthesis. Examination of the abundance of these genes in leaves showed that the majority of them differed between anthocyanin pigmented line Z1 and non-pigmented line A3. Silencing of the R2R3-MYB transcription factor CaMYB in pepper leaves of Z1 resulted in the loss of anthocyanin accumulation. Moreover, the expression of multiple genes was altered in the silenced leaves. The expression of MYC was significantly lower in CaMYB-silenced leaves, whereas WD40 showed the opposite pattern. Most structural genes including CHS, CHI, F3H, F3'5'H, DFR, ANS, UFGT, ANP, and GST were repressed in CaMYB-silenced foliage with the exception of PAL, C4H, and 4CL. These results indicated that MYB plays an important role in the regulation of anthocyanin biosynthetic related genes. Besides CaMYB silenced leaves rendered more sporulation of Phytophthora capsici Leonian indicating that CaMYB might be involved in the defense response to pathogens. PMID:26217354

  20. Complete nucleotide sequence of plasmid pNA6 reveals the high plasticity of IncU family plasmids.

    PubMed

    Dang, Bingjun; Xu, Yan; Mao, Daqing; Luo, Yi

    2016-10-10

    Antibiotic resistance is a serious problem in health care and is of widespread public concern. Conjugative plasmids are the most important vectors in the dissemination of antibiotic resistance genes. In this study, we determined the complete sequence of plasmid pNA6, a plasmid which was isolated from the sediments of Haihe River. This plasmid confers reduced susceptibility to ampicillin, erythromycin and sulfamethoxazole. The complete sequence of plasmid pNA6 was 52,210bp in length with an average G+C content of 52.70%. Plasmid pNA6 belongs to the IncU group by sequence queries against the GenBank database. This plasmid has a typical IncU backbone and shows the highest similarities with plasmid RA3 and plasmid pFBAOT6. Plasmid pNA6 carries a class 1 integron consisting of aacA4, ereA and dfrA1 genes. Moreover, plasmid pNA6 also harbors a blaTEM-1-containing complex structure which inserted into the replication region and maintenance region. This insertion site has never been found on other IncU plasmids. The sequencing of plasmid pNA6 will add new sequence information to IncU family plasmids and enhance our understanding of the plasticity of IncU family plasmids. PMID:27374151

  1. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain.

    PubMed

    Sacristán, C; Esperón, F; Herrera-León, S; Iglesias, I; Neves, E; Nogal, V; Muñoz, M J; de la Torre, A

    2014-01-01

    The aim of this study was to determine the presence of virulence genes and antibiotic resistance profiles in 164 Escherichia coli strains isolated from birds (feral pigeons, hybrid ducks, house sparrows and spotless starlings) inhabiting urban and rural environments. A total of eight atypical enteropathogenic E. coli strains were identified: one in a house sparrow, four in feral pigeons and three in spotless starlings. Antibiotic resistance was present in 32.9% (54) of E. coli strains. The dominant type of resistance was to tetracycline (21.3%), ampicillin (19.5%) and sulfamethoxazole (18.9%). Five isolates had class 1 integrons containing gene cassettes encoding for dihydrofolate reductase A (dfrA) and aminoglycoside adenyltransferase A (aadA), one in a feral pigeon and four in spotless starlings. To our knowledge, the present study constitutes the first detection of virulence genes from E. coli in spotless starlings and house sparrows, and is also the first identification worldwide of integrons containing antibiotic resistance gene cassettes in E. coli strains from spotless starlings and pigeons. PMID:24689431

  2. Fabrication of a Based Fluidic Chip Equipped with Porous Silicon Filter and Micro-Channels

    NASA Astrophysics Data System (ADS)

    Eun, Duk-Soo; Kong, Dae-Young; Kong, Seong Ho; Choi, Pyung; Shin, Jang-Kyoo; Lee, Jong-Hyun

    2008-06-01

    In this paper, a new design and fabrication method for a micro electro mechanical system (MEMS)-based micro-fluidic system that includes an articulated filter with micro-channel is proposed. An anodic reaction that involves chemical etching is used to produce a porous silicon (PS) layer to be applied to a micro-fluidic filter. The micro-fluidic filter is fabricated with vertical micro-pores by an anodic reaction process using a (110) wafer. Physical etching based on a micro-sandblaster process, and wet chemical etching using either tetramethylammonium hydroxide (TMAH) or hydrofluoric, nitric, and acetic (HNA) acid solution are applied to form the micro-channels that function as an essential factor in the micro-fluidic system. These independently-fabricated filter and channel wafers are bonded using a dry film resist (DFR). The characteristics of the filter fabricated on a (100) wafer are analyzed. Moreover, the functional performances of the channels formed by different methods are compared. The proposed micro-fluidic system with porous silicon micro-filters might be applied to bio-material reaction chambers, such as polymerase chain reaction (PCR) chambers and DNA separation devices that require a filter.

  3. Salmonella enterica resistant to antimicrobials in wastewater effluents and black-headed gulls in the Czech Republic, 2012.

    PubMed

    Masarikova, Martina; Manga, Ivan; Cizek, Alois; Dolejska, Monika; Oravcova, Veronika; Myskova, Petra; Karpiskova, Renata; Literak, Ivan

    2016-01-15

    We investigated the presence and epidemiological relatedness of Salmonella isolates from a wastewater treatment plant (WWTP) in Brno, Czech Republic and from nestlings of black-headed gulls (Chroicocephalus ridibundus) at the Nove Mlyny waterworks, situated 35 km downstream from the WWTP. During 2012, we collected 37 wastewater samples and 284 gull cloacal swabs. From wastewater samples, we obtained 89 Salmonella isolates belonging to 19 serotypes. At least one resistant strain was contained in 89% of those samples. Ten different serotypes of Salmonella were detected in 38 young gulls, among which 14 (37%) were resistant to antimicrobials. Wastewater isolates were mostly resistant to sulphonamides and tetracycline, gull isolates to tetracycline and ampicillin. We detected the occurrence of blaTEM-1,tet(A), tet(B), tet(G), sul1, sul2, sul3, floR and strA resistance genes. For the first time, we identified a class 1 integron with the dfrA12-orfF-aadA2 gene cassette in S. Infantis. Using pulsed-field gel electrophoresis, we confirmed the presence of identical clusters of S. Agona, S. Enteritidis PT8, S. Infantis and S. Senftenberg in wastewater and black-headed gulls, thus indicating the possibility of resistant Salmonella isolates spreading over long distances in the environment. PMID:26519571

  4. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence

    SciTech Connect

    Tallis, M.J.; Rogers, A.; Lin, Y.; Zhang, J.; Street, N. R.; Miglietta, F.; Karnosky, D. F.; Angelis, P. D.; Calfapietra, C.; Taylor, G.

    2010-03-01

    The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO{sub 2} may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. Using a plantation of Populus x euramericana grown in elevated [CO{sub 2}] (e[CO{sub 2}]) with free-air CO{sub 2} enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO{sub 2}] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO{sub 2}] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO{sub 2}], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO{sub 2}]/ambient CO{sub 2} (a[CO{sub 2}])) expression ratios of 39.6 and 19.3, respectively. We showed that in e[CO{sub 2}] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence.

  5. Imprinted laminate wafer-level packaging for SAW ID-tags and SAW delay line sensors.

    PubMed

    Kuypers, Jan H; Tanaka, Shuji; Esashi, Masayoshi

    2011-02-01

    We have developed a wafer-level packaging solution for surface acoustic wave devices using imprinted dry film resist (DFR). The packaging process involves the preparation of an imprinted dry film resist that is aligned and laminated to the device wafer and requires one additional lithography step to define the package outline. Two commercial dry film solutions, SU-8 and TMMF, have been evaluated. Compared with traditional ceramic packages, no detectable RF parasitics are introduced by this packaging process. At the same time, the miniature package dimensions allow for wafer-level probing. The packaging process has the great advantage that the cavity formation does not require any sacrificial layer and no liquids, and therefore prevents contamination or stiction of the packaged device. This non-hermetic packaging process is ideal for passive antenna modules using polymer technology for low-cost SAW identification (ID)-tags or lidding in low-temperature cofired ceramic (LTCC) antenna substrates for high-performance wireless sensors. This technique is also applicable to SAW filters and duplexers for module integration in cellular phones using flip-chip mounting and hermetic overcoating. PMID:21342826

  6. [Synthesis of phenylpropanes during pollen development].

    PubMed

    Wiermann, R

    1970-06-01

    The synthesis and accumulation of several phenylpropanes in the anther content (pollen+tapetum fraction) during microsporogenesis has been investigated by chromatographic techniques in Narcissus pseudonarcissus, Lilium candidum, and in the Darwin tulip "Apeldoorn".In these species, the pigmentation process is initiated by the synthesis of several cinnamic acid derivates (mainly derivates of ferulic acid) during meiosis II. In Narcissus, and intense synthesis of kaempferol glycosides takes place during the separation of the tetrad which follows immediately upon its formation. In Tulipa and Lilium, however, chalcones are synthesized in an intermediate phase before flavonols and anthocyanins (in Tulipa) are produced in significant amounts.In Tulipa, the investigations revealed the following sequence in the pigmentation process: cinnamic acid derivatives-chalcone-flavonols-anthocyanins. The sequence is discussed in relation to flavonoid biosynthesis. Because of biogenetic considerations a special emphasis is laid on the "chalcone stage". Chromatographic and spectroscopic data show that the isomerization product of the chalcone is eriodictyol. Accordingly, this chalcone must be 2',3,4,4',6'-pentahydroxychalcone. Other chalcones could not be identified.During anthesis the following aglycones are accumulated in the pollen of Tulipa cv. "Apeldoorn": ferulic acid, p-coumaric acid, kaempferol, quercetin, isorhamnetin, delphinidin, and small traces of the pentahydroxy-chalcone, which is the main pigment in the intermediate stages of microsporogenesis.On the basis of histochemical findings, it is suggested that at least the final steps of synthesis leading to flavonol and anthocyanidin glycosides take place on the pollen wall in the loculus of the anthers, that is, in the extracellular space. PMID:24497063

  7. Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: studies in submerged and three-dimensional epidermal equivalent models.

    PubMed

    Chamcheu, Jean Christopher; Afaq, Farrukh; Syed, Deeba N; Siddiqui, Imtiaz A; Adhami, Vaqar M; Khan, Naghma; Singh, Sohinderjit; Boylan, Brendan T; Wood, Gary S; Mukhtar, Hasan

    2013-05-01

    Delphinidin (Del), [3,5,7,3'-,4'-,5'-hexahydroxyflavylium], an anthocyanidin and a potent antioxidant abundantly found in pigmented fruits and vegetables exhibits proapoptotic effects in many cancer cells. Here, we determined the effect of Del on growth, apoptosis and differentiation of normal human epidermal keratinocytes (NHEKs) in vitro in submerged cultures and examined its effects in a three-dimensional (3D) epidermal equivalent (EE) model that permits complete differentiation reminiscent of in vivo skin. Treatment of NHEKs with Del (10-40 μm; 24-48 h) significantly enhanced keratinocyte differentiation. In Del-treated cells, there was marked increase in human involucrin (hINV) promoter activity with simultaneous increase in the mRNA and protein expressions of involucrin and other epidermal differentiation markers including procaspase-14 and transglutaminase-1 (TGM1), but without any effect on TGM2. Del treatment of NHEKs was associated with minimal decrease in cell viability, which was not associated with apoptosis as evident by lack of modulation of caspases, apoptosis-related proteins including Bcl-2 family of proteins and poly(ADP-ribose) polymerase cleavage. To establish the in vivo relevance of our observations in submerged cultures, we then validated these effects in a 3D EE model, where Del was found to significantly enhance cornification and increase the protein expression of cornification markers including caspase-14 and keratin 1. For the first time, we show that Del induces epidermal differentiation using an experimental system that closely mimics in vivo human skin. These observations suggest that Del could be a useful agent for dermatoses associated with epidermal barrier defects including aberrant keratinization, hyperproliferation or inflammation observed in skin diseases like psoriasis and ichthyoses. PMID:23614741

  8. Comparative Proteomic and Biochemical Analyses Reveal Different Molecular Events Occurring in the Process of Fiber Initiation between Wild-Type Allotetraploid Cotton and Its Fuzzless-Lintless Mutant

    PubMed Central

    Yao, Yuan; Zhang, Bing; Dong, Chun-Juan; Du, Ying; Jiang, Lin; Liu, Jin-Yuan

    2015-01-01

    To explore lint fiber initiation-related proteins in allotetraploid cotton (Gossypium hirsutum L.), a comparative proteomic analysis was performed between wild-type cotton (Xu-142) and its fuzzless-lintless mutant (Xu-142-fl) at five developmental time points for lint fiber initiation from -3 to +3 days post-anthesis (dpa). Using two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS) analyses, 91 differentially accumulated protein (DAP) species that are related to fiber initiation were successfully identified, of which 58 preferentially accumulated in the wild-type and 33 species in the fl mutant. These DAPs are involved in various cellular and metabolic processes, mainly including important energy/carbohydrate metabolism, redox homeostasis, amino acid and fatty acid biosynthesis, protein quality control, cytoskeleton dynamics, and anthocyanidin metabolism. Further physiological and biochemical experiments revealed dynamic changes in the carbohydrate flux and H2O2 levels in the cotton fiber initiation process. Compared with those in the fl mutant, the contents of glucose and fructose in wild-type ovules sharply increased after anthesis with a relatively higher rate of amino acid biosynthesis. The relative sugar starvation and lower rate of amino acid biosynthesis in the fl mutant ovules may impede the carbohydrate/energy supply and cell wall synthesis, which is consistent with the proteomic results. However, the H2O2 burst was only observed in the wild-type ovules on the day of anthesis. Cotton boll injection experiments in combination with electron microscope observation collectively indicated that H2O2 burst, which is negatively regulated by ascorbate peroxidases (APx), plays an important role in the fiber initiation process. Taken together, our study demonstrates a putative network of DAP species related to fiber initiation in cotton ovules and provides a foundation for future studies on the specific functions of these proteins in fiber

  9. Functional Characterization of Proanthocyanidin Pathway Enzymes from Tea and Their Application for Metabolic Engineering1[W][OA

    PubMed Central

    Pang, Yongzhen; Abeysinghe, I. Sarath B.; He, Ji; He, Xianzhi; Huhman, David; Mewan, K. Mudith; Sumner, Lloyd W.; Yun, Jianfei; Dixon, Richard A.

    2013-01-01

    Tea (Camellia sinensis) is rich in specialized metabolites, especially polyphenolic proanthocyanidins (PAs) and their precursors. To better understand the PA pathway in tea, we generated a complementary DNA library from leaf tissue of the blister blight-resistant tea cultivar TRI2043 and functionally characterized key enzymes responsible for the biosynthesis of PA precursors. Structural genes encoding enzymes involved in the general phenylpropanoid/flavonoid pathway and the PA-specific branch pathway were well represented in the library. Recombinant tea leucoanthocyanidin reductase (CsLAR) expressed in Escherichia coli was active with leucocyanidin as substrate to produce the 2R,3S-trans-flavan-ol (+)-catechin in vitro. Two genes encoding anthocyanidin reductase, CsANR1 and CsANR2, were also expressed in E. coli, and the recombinant proteins exhibited similar kinetic properties. Both converted cyanidin to a mixture of (+)-epicatechin and (−)-catechin, although in different proportions, indicating that both enzymes possess epimerase activity. These epimers were unexpected based on the belief that tea PAs are made from (−)-epicatechin and (+)-catechin. Ectopic expression of CsANR2 or CsLAR led to the accumulation of low levels of PA precursors and their conjugates in Medicago truncatula hairy roots and anthocyanin-overproducing tobacco (Nicotiana tabacum), but levels of oligomeric PAs were very low. Surprisingly, the expression of CsLAR in tobacco overproducing anthocyanin led to the accumulation of higher levels of epicatechin and its glucoside than of catechin, again highlighting the potential importance of epimerization in flavan-3-ol biosynthesis. These data provide a resource for understanding tea PA biosynthesis and tools for the bioengineering of flavanols. PMID:23288883

  10. Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: studies in submerged and three-dimensional epidermal equivalent models

    PubMed Central

    Chamcheu, Jean Christopher; Afaq, Farrukh; Syed, Deeba N.; Siddiqui, Imtiaz A.; Adhami, Vaqar M.; Khan, Naghma; Singh, Sohinderjit; Boylan, Brendan T.; Wood, Gary S.; Mukhtar, Hasan

    2013-01-01

    Delphinidin (Del), [3,5,7,3′-,4′-,5′-hexahydroxyflavylium], an anthocyanidin and a potent antioxidant abundantly found in pigmented fruits and vegetables exhibits proapoptotic effects in many cancer cells. Here, we determined the effect of Del on growth, apoptosis and differentiation of normal human epidermal keratinocytes (NHEKs) in vitro in submerged cultures and examined its effects in a three-dimensional (3D) epidermal equivalent (EE) model that permits complete differentiation reminiscent of in vivo skin. Treatment of NHEKs with Del (10–40 μm; 24–48 h) significantly enhanced keratinocyte differentiation. In Del-treated cells, there was marked increase in human involucrin (hINV) promoter activity with simultaneous increase in the mRNA and protein expressions of involucrin and other epidermal differentiation markers including procaspase-14 and transglutaminase-1 (TGM1), but without any effect on TGM2. Del treatment of NHEKs was associated with minimal decrease in cell viability, which was not associated with apoptosis as evident by lack of modulation of caspases, apoptosis-related proteins including Bcl-2 family of proteins and poly(ADP-ribose) polymerase cleavage. To establish the in vivo relevance of our observations in submerged cultures, we then validated these effects in a 3D EE model, where Del was found to significantly enhance cornification and increase the protein expression of cornification markers including caspase-14 and keratin 1. For the first time, we show that Del induces epidermal differentiation using an experimental system that closely mimics in vivo human skin. These observations suggest that Del could be a useful agent for dermatoses associated with epidermal barrier defects including aberrant keratinization, hyperproliferation or inflammation observed in skin diseases like psoriasis and ichthyoses. PMID:23614741

  11. Quercetin inhibits a large panel of kinases implicated in cancer cell biology.

    PubMed

    Boly, Rainatou; Gras, Thierry; Lamkami, Touria; Guissou, Pierre; Serteyn, Didier; Kiss, Robert; Dubois, Jacques

    2011-03-01

    Flavonoids are polyphenolic secondary metabolites from plants that possess a common phenylbenzopyrone structure (C6-C3-C6). Depending upon variations in their heterocyclic C-ring, flavonoids are categorised into one of the following groups: flavones, flavonols, flavanones, flavanols, anthocyanidins, isoflavones or chalcones. Flavonols include, among others, the molecules quercetin, myricetin and kaempferol. The anticancer activity of flavonols was first attributed to their electron-donating ability, which comes from the presence of phenolic hydroxyl groups. However, an emerging view is that flavonoids, including quercetin, may also exert modulatory actions in cells by acting through the protein kinase and lipid kinase signalling pathways. Data from the current study showed that 2 μM quercetin, a low concentration that represents less than 10% of its IC50 growth-inhibitory concentration as calculated from the average of eight distinct cancer cell lines, decreased the activity of 16 kinases by more than 80%, including ABL1, Aurora-A, -B, -C, CLK1, FLT3, JAK3, MET, NEK4, NEK9, PAK3, PIM1, RET, FGF-R2, PDGF-Rα and -Rß. Many of these kinases are involved in the control of mitotic processes. Quantitative video microscopy analyses revealed that quercetin displayed strong anti-mitotic activity, leading to cell death. In conclusion, quercetin partly exerts its anticancer activity through the inhibition of the activity of a large set of kinases. Quercetin could be an interesting chemical scaffold from which to generate novel derivatives possessing various types of anti-kinase activities. PMID:21206969

  12. Delphinidin Reduces Cell Proliferation and Induces Apoptosis of Non-Small-Cell Lung Cancer Cells by Targeting EGFR/VEGFR2 Signaling Pathways

    PubMed Central

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Agarwal, Jyoti; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2013-01-01

    Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor 2 (VEGFR2) have emerged as two effective clinical targets for non-small-cell lung cancer (NSCLC). In the present study, we found that delphinidin, an anthocyanidin, present in pigmented fruits and vegetables, is a potent inhibitor of both EGFR and VEGFR2 in NSCLC cells that overexpress EGFR/VEGFR2. Using these cells, we next determined the effects of delphinidin on cell growth and apoptosis in vitro and on tumor growth and angiogenesis in vivo. Delphinidin (5-60 µM) treatment of NSCLC cells inhibited the activation of PI3K, and phosphorylation of AKT and MAPKs. Additionally, treatment of NSCLC cells with delphinidin resulted in inhibition of cell growth without having significant toxic effects on normal human bronchial epithelial cells. Specifically, treatment of NCI-H441 and SK-MES-1 cells with delphindin (5-60 µM) resulted in (i) cleavage of PARP protein, (ii) activation of caspase-3 and -9, (iii) downregulation of anti-apoptotic proteins (Bcl2, Bcl-xL and Mcl-1), (iv) upregulation of pro-apoptotic proteins (Bax and Bak), and (v) decreased expression of PCNA and cyclin D1. Furthermore, in athymic nude mice subcutaneously implanted with human NSCLC cells, delphinidin treatment caused a (i) significant inhibition of tumor growth, (ii) decrease in the expression of markers for cell proliferation (Ki67 and PCNA) and angiogenesis (CD31 and VEGF), and (iii) induction of apoptosis, when compared with control mice. Based on these observations, we suggest that delphinidin, alone or as an adjuvant to current therapies, could be used for the management of NSCLC, especially those that overexpress EGFR and VEGFR2. PMID:24124611

  13. Violet/blue chrysanthemums--metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors.

    PubMed

    Brugliera, Filippa; Tao, Guo-Qing; Tems, Ursula; Kalc, Gianna; Mouradova, Ekaterina; Price, Kym; Stevenson, Kim; Nakamura, Noriko; Stacey, Iolanda; Katsumoto, Yukihisa; Tanaka, Yoshikazu; Mason, John G

    2013-10-01

    Chrysanthemums (Chrysanthemum×morifolium Ramat.) are an important cut-flower and potted plant crop in the horticultural industry world wide. Chrysanthemums express the flavonoid 3'-hydroxylase (F3'H) gene and thus accumulate anthocyanins derived from cyanidin in their inflorescences which appear pink/red. Delphinidin-based anthocyanins are lacking due to the deficiency of a flavonoid 3', 5'-hydroxylase (F3'5'H), and so violet/blue chrysanthemum flower colors are not found. In this study, together with optimization of transgene expression and selection of the host cultivars and gene source, F3'5'H genes have been successfully utilized to produce transgenic bluish chrysanthemums that accumulate delphinidin-based anthocyanins. HPLC analysis and feeding experiments with a delphinidin precursor identified 16 cultivars of chrysanthemums out of 75 that were predicted to turn bluish upon delphinidin accumulation. A selection of eight cultivars were successfully transformed with F3'5'H genes under the control of different promoters. A pansy F3'5'H gene under the control of a chalcone synthase promoter fragment from rose resulted in the effective diversion of the anthocyanin pathway to produce delphinidin in transgenic chrysanthemum flower petals. The resultant petal color was bluish, with 40% of total anthocyanidins attributed to delphinidin. Increased delphinidin levels (up to 80%) were further achieved by hairpin RNA interference-mediated silencing of the endogenous F3'H gene. The resulting petal colors were novel bluish hues, not possible by hybridization breeding. This is the first report of the production of anthocyanins derived from delphinidin in chrysanthemum petals leading to novel flower color. PMID:23926066

  14. Dietary intake of phytonutrients in relation to fruit and vegetable consumption in Korea.

    PubMed

    Lee, Haeng-Shin; Cho, Yang-Hee; Park, Juyeon; Shin, Hye-Rim; Sung, Mi-Kyung

    2013-09-01

    The purpose of this study was to provide baseline data for health policy creation by estimating phytonutrient intake and identifying major food sources of phytonutrients. Dietary recall data collected in the 2008 Korea National Health and Nutrition Examination Survey and phytonutrient database of the Korea National Academy of Agricultural Science were used in this study. The proportions of the population satisfying recommended dietary guidelines for fruits and vegetables were estimated, and phytonutrient intake was compared between populations who consumed the recommended intake and those who did not. The study found that 5.3% of subjects satisfied the recommended fruit and vegetable intake. In particular, the proportions of adolescents (13 to 18 years of age) and young adults (19 to 39 years of age) meeting the recommended fruit and vegetable intake were lower than other age groups (P<0.001). Intakes of major carotenoids (alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein/zeaxanthin, and lycopene), flavonoids (anthocyanidins, hesperitin, quercetin, catechin, and isoflavones), and one phenolic compound (gallic acid) were significantly higher (P<0.001) among subjects who met the recommendations for fruit and vegetable consumption compared with those who did not. Carrots, sweet potatoes, squash, tomatoes, and watermelons were found to be major sources of carotenoids. Flavonoids were mainly obtained from persimmons, mandarins, apples, grapes, onions, soybeans, and chestnuts. However, one or two food items contributed to nearly all intake of each phytonutrient, suggesting a lack of variety. In conclusion, the Korean population needs to consume a larger quantity and variety of fruits and vegetables. PMID:23830325

  15. 1,25-Dihydroxyvitamin D and Klotho: A Tale of Two Renal Hormones Coming of Age.

    PubMed

    Haussler, Mark R; Whitfield, G Kerr; Haussler, Carol A; Sabir, Marya S; Khan, Zainab; Sandoval, Ruby; Jurutka, Peter W

    2016-01-01

    1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging. PMID:26827953

  16. Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity.

    PubMed

    Wu, Xianli; Gu, Liwei; Prior, Ronald L; McKay, Steve

    2004-12-29

    Anthocyanins and proanthocyanidins were characterized by HPLC-ESI-MS/MS coupled with a diode array and/or fluorescent detector in seven cultivars of Ribes nigrum (black currant) and Ribes rubrum (red currant, Red Lake), six cultivars of Ribes grossularia (gooseberries), Aronia melanocarpa(chokeberry), and Sambucus nigra (elderberry). Thirty-one different anthocyanins were detected in these berries, but not every anthocyanin was observed in each berry. A number of minor anthocyanins were identified from these berries for the first time. The concentrations of individual anthocyanins in all of the berries were quantified using relevant anthocyanidin 3-glucoside standards. Among the berries studied in this paper and in berries in general, chokeberry has the highest total anthocyanin concentrations [1480 mg/100 g of fresh weight (FW)], whereas the lowest total anthocyanin concentration in the berries studied was found in the gooseberry cv. Careless, which contained only 0.07 mg/100 g of FW. Two cultivars of gooseberries (Marigold and Leveller) did not contain any anthocyanins. Total proanthocyanidin concentrations in the berries studied ranged from 23 to 664 mg/100 g of FW in elderberry and chokeberry, respectively. Procyanidin or prodelphinidin polymers were the predominant components (>65% w/w) in most of the berries. The lipophilic and hydrophilic antioxidant capacities were measured by the oxygen radical absorbance capacity (ORAC(FL)) procedure. The total antioxidant capacity varied from 21 micromol of TE/g of FW in Careless gooseberry to 161 micromol of TE/g of FW in chokeberry. Total phenolics in the berries in general paralleled hydrophilic antioxidant capacity. PMID:15612766

  17. Eugenia jambolana Lam. Berry Extract Inhibits Growth and Induces Apoptosis of Human Breast Cancer but not Non-Tumorigenic Breast Cells

    PubMed Central

    Li, Liya; Adams, Lynn S.; Chen, Shiuan; Killian, Caroline; Ahmed, Aftab; Seeram, Navindra P.

    2009-01-01

    The ripe purple berries of the native Indian plant, Eugenia jambolana Lam., known as Jamun, are popularly consumed and available in the United States in Florida and Hawaii. Despite the growing body of data on the chemopreventive potential of edible berry extracts, there is paucity of such data for Jamun fruit. Therefore our laboratory initiated the current study with the following objectives:1) to prepare a standardized Jamun fruit extract (JFE) for biological studies and, 2) to investigate the anti-proliferative and pro-apoptotic effects of JFE in estrogen dependent/aromatase positive (MCF-7aro), and estrogen independent (MDA-MB-231) breast cancer cells, and in a normal/non-tumorigenic (MCF-10A) breast cell line. JFE was standardized to anthocyanin content using the pH differential method, and individual anthocyanins were identified by high performance liquid chromatography with ultraviolet (HPLC-UV) and tandem mass spectrometry (LC-MS/MS) methods. JFE contained 3.5% anthocyanins (as cyanidin-3-glucoside equivalents) which occur as diglucosides of five anthocyanidins/aglycons: delphinidin, cyanidin, petunidin, peonidin and malvidin. In the proliferation assay, JFE was most effective against MCF-7aro (IC50=27 µg/mL), followed by MDA-MB-231 (IC50=40 µg/mL) breast cancer cells. Importantly, JFE exhibited only mild antiproliferative effects against the normal MCF-10A (IC50>100 µg/mL) breast cells. Similarly, JFE (at 200 µg/mL) exhibited pro-apoptotic effects against the MCF-7aro (p≤0.05) and the MDA-MB-231 (p≤0.01) breast cancer cells, but not towards the normal MCF-10A breast cells. These studies suggest that JFE may have potential beneficial effects against breast cancer. PMID:19166352

  18. Eugenia jambolana Lam. berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells.

    PubMed

    Li, Liya; Adams, Lynn S; Chen, Shiuan; Killian, Caroline; Ahmed, Aftab; Seeram, Navindra P

    2009-02-11

    The ripe purple berries of the native Indian plant Eugenia jambolana Lam., known as Jamun, are popularly consumed and available in the United States in Florida and Hawaii. Despite the growing body of data on the chemopreventive potential of edible berry extracts, there is paucity of such data for Jamun fruit. Therefore our laboratory initiated the current study with the following objectives: (1) to prepare a standardized Jamun fruit extract (JFE) for biological studies and (2) to investigate the antiproliferative and pro-apoptotic effects of JFE in estrogen dependent/aromatase positive (MCF-7aro), and estrogen independent (MDA-MB-231) breast cancer cells, and in a normal/nontumorigenic (MCF-10A) breast cell line. JFE was standardized to anthocyanin content using the pH differential method, and individual anthocyanins were identified by high performance liquid chromatography with ultraviolet (HPLC-UV) and tandem mass spectrometry (LC-MS/MS) methods. JFE contained 3.5% anthocyanins (as cyanidin-3-glucoside equivalents) which occur as diglucosides of five anthocyanidins/aglycons: delphinidin, cyanidin, petunidin, peonidin and malvidin. In the proliferation assay, JFE was most effective against MCF-7aro (IC(50) = 27 microg/mL), followed by MDA-MB-231 (IC(50) = 40 microg/mL) breast cancer cells. Importantly, JFE exhibited only mild antiproliferative effects against the normal MCF-10A (IC(50) > 100 microg/mL) breast cells. Similarly, JFE (at 200 microg/mL) exhibited pro-apoptotic effects against the MCF-7aro (p

  19. A "White" Anthocyanin-less Pomegranate (Punica granatum L.) Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX; ANS) Gene.

    PubMed

    Ben-Simhon, Zohar; Judeinstein, Sylvie; Trainin, Taly; Harel-Beja, Rotem; Bar-Ya'akov, Irit; Borochov-Neori, Hamutal; Holland, Doron

    2015-01-01

    Color is an important determinant of pomegranate fruit quality and commercial value. To understand the genetic factors controlling color in pomegranate, chemical, molecular and genetic characterization of a "white" pomegranate was performed. This unique accession is lacking the typical pomegranate color rendered by anthocyanins in all tissues of the plant, including flowers, fruit (skin and arils) and leaves. Steady-state gene-expression analysis indicated that none of the analyzed "white" pomegranate tissues are able to synthesize mRNA corresponding to the PgLDOX gene (leucoanthocyanidin dioxygenase, also called ANS, anthocyanidin synthase), which is one of the central structural genes in the anthocyanin-biosynthesis pathway. HPLC analysis revealed that none of the "white" pomegranate tissues accumulate anthocyanins, whereas other flavonoids, corresponding to biochemical reactions upstream of LDOX, were present. Molecular analysis of the "white" pomegranate revealed the presence of an insertion and an SNP within the coding region of PgLDOX. It was found that the SNP does not change amino acid sequence and is not fully linked with the "white" phenotype in all pomegranate accessions from the collection. On the other hand, genotyping of pomegranate accessions from the collection and segregating populations for the "white" phenotype demonstrated its complete linkage with the insertion, inherited as a recessive single-gene trait. Taken together, the results indicate that the insertion in PgLDOX is responsible for the "white" anthocyanin-less phenotype. These data provide the first direct molecular, genetic and chemical evidence for the effect of a natural modification in the LDOX gene on color accumulation in a fruit-bearing woody perennial deciduous tree. This modification can be further utilized to elucidate the physiological role of anthocyanins in protecting the tree organs from harmful environmental conditions, such as temperature and UV radiation. PMID:26581077

  20. Bilberry extract, its major polyphenolic compounds, and the soy isoflavone genistein antagonize the cytostatic drug erlotinib in human epithelial cells.

    PubMed

    Aichinger, G; Pahlke, G; Nagel, L J; Berger, W; Marko, D

    2016-08-10

    Erlotinib (Tarceva®) is a chemotherapeutic drug approved for the treatment of pancreatic cancer and non-small cell lung cancer. Its primary mode of action is the inhibition of the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK). Recently, RTK-inhibiting polyphenols have been reported to interact synergistically with erlotinib. Furthermore some anthocyanidins and anthocyanin-rich berry extracts have been reported to inhibit tyrosine kinases, including the EGFR, which raises the question of potential interactions with erlotinib. Polyphenol-rich preparations such as berry- or soy-based products are commercially available as food supplements. In the present study we tested a bilberry extract, its major anthocyanin and potential intestinal degradation products, as well as genistein, with respect to possible interactions with erlotinib. Cell growth inhibition was assessed using the sulforhodamine B assay, while interactions with EGFR phosphorylation were analyzed by SDS-PAGE/western blotting with subsequent immunodetection. Genistein, bilberry extract, delphinidin-3-O-glucoside and delphinidin were found to antagonize erlotinib whereas phloroglucinol aldehyde was found to enhance cytostatic effects of the drug on human epithelial A431 cells. Genistein also antagonized the EGFR inhibitory effects of erlotinib, whereas bilberry anthocyanins showed no significant interactions in this regard. Our data indicate that different polyphenols are potentially able to impair the cytostatic effect of erlotinib in vitro. Genistein interacts via the modulation of erlotinib-mediated EGFR inhibition whereas bilberry anthocyanins modulated the growth-inhibitory effect of erlotinib without affecting EGFR phosphorylation, thus indicating a different mechanism of interference. PMID:27485636

  1. A "White" Anthocyanin-less Pomegranate (Punica granatum L.) Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX; ANS) Gene

    PubMed Central

    Ben-Simhon, Zohar; Judeinstein, Sylvie; Trainin, Taly; Harel-Beja, Rotem; Bar-Ya'akov, Irit; Borochov-Neori, Hamutal; Holland, Doron

    2015-01-01

    Color is an important determinant of pomegranate fruit quality and commercial value. To understand the genetic factors controlling color in pomegranate, chemical, molecular and genetic characterization of a "white" pomegranate was performed. This unique accession is lacking the typical pomegranate color rendered by anthocyanins in all tissues of the plant, including flowers, fruit (skin and arils) and leaves. Steady-state gene-expression analysis indicated that none of the analyzed "white" pomegranate tissues are able to synthesize mRNA corresponding to the PgLDOX gene (leucoanthocyanidin dioxygenase, also called ANS, anthocyanidin synthase), which is one of the central structural genes in the anthocyanin-biosynthesis pathway. HPLC analysis revealed that none of the "white" pomegranate tissues accumulate anthocyanins, whereas other flavonoids, corresponding to biochemical reactions upstream of LDOX, were present. Molecular analysis of the "white" pomegranate revealed the presence of an insertion and an SNP within the coding region of PgLDOX. It was found that the SNP does not change amino acid sequence and is not fully linked with the "white" phenotype in all pomegranate accessions from the collection. On the other hand, genotyping of pomegranate accessions from the collection and segregating populations for the "white" phenotype demonstrated its complete linkage with the insertion, inherited as a recessive single-gene trait. Taken together, the results indicate that the insertion in PgLDOX is responsible for the "white" anthocyanin-less phenotype. These data provide the first direct molecular, genetic and chemical evidence for the effect of a natural modification in the LDOX gene on color accumulation in a fruit-bearing woody perennial deciduous tree. This modification can be further utilized to elucidate the physiological role of anthocyanins in protecting the tree organs from harmful environmental conditions, such as temperature and UV radiation. PMID:26581077

  2. Putative Role of Red Wine Polyphenols against Brain Pathology in Alzheimer’s and Parkinson’s Disease

    PubMed Central

    Caruana, Mario; Cauchi, Ruben; Vassallo, Neville

    2016-01-01

    Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common age-related neurodegenerative disorders and hence pose remarkable socio-economical burdens to both families and state. Although AD and PD have different clinical and neuropathological features, they share common molecular mechanisms that appear to be triggered by multi-factorial events, such as protein aggregation, mitochondrial dysfunction, oxidative stress (OS), and neuroinflammation, ultimately leading to neuronal cell death. Currently, there are no established and validated disease-modifying strategies for either AD or PD. Among the various lifestyle factors that may prevent or slow age-related neurodegenerative diseases, epidemiological studies on moderate consumption of red wine, especially as part of a holistic Mediterranean diet, have attracted increasing interest. Red wine is particularly rich in specific polyphenolic compounds that appear to affect the biological processes of AD and PD, such as quercetin, myricetin, catechins, tannins, anthocyanidins, resveratrol, and ferulic acid. Indeed, there is now a consistent body of in vitro and in vivo data on the neuroprotective effects of red wine polyphenols (RWP) showing that they do not merely possess antioxidant properties, but may additionally act upon, in a multi-target manner, the underlying key mechanisms featuring in both AD and PD. Furthermore, it is important that bioavailability issues are addressed in order for neuroprotection to be relevant in a clinical study scenario. This review summarizes the current knowledge about the major classes of RWP and places into perspective their potential to be considered as nutraceuticals to target neuropathology in AD and PD. PMID:27570766

  3. The Flavonoid Pathway Regulates the Petal Colors of Cotton Flower

    PubMed Central

    Tan, Jiafu; Wang, Maojun; Tu, Lili; Nie, Yichun; Lin, Yongjun; Zhang, Xianlong

    2013-01-01

    Although biochemists and geneticists have studied the cotton flower for more than one century, little is known about the molecular mechanisms underlying the dramatic color change that occurs during its short developmental life following blooming. Through the analysis of world cotton germplasms, we found that all of the flowers underwent color changes post-anthesis, but there is a diverse array of petal colors among cotton species, with cream, yellow and red colors dominating the color scheme. Genetic and biochemical analyses indicated that both the original cream and red colors and the color changes post-anthesis were related to flavonoid content. The anthocyanin content and the expression of biosynthesis genes were both increased from blooming to one day post-anthesis (DPA) when the flower was withering and undergoing abscission. Our results indicated that the color changes and flavonoid biosynthesis of cotton flowers were precisely controlled and genetically regulated. In addition, flavonol synthase (FLS) genes involved in flavonol biosynthesis showed specific expression at 11 am when the flowers were fully opened. The anthocyanidin reductase (ANR) genes, which are responsible for proanthocyanidins biosynthesis, showed the highest expression at 6 pm on 0 DPA, when the flowers were withered. Light showed primary, moderate and little effects on flavonol, anthocyanin and proanthocyanidin biosynthesis, respectively. Flavonol biosynthesis was in response to light exposure, while anthocyanin biosynthesis was involved in flower color changes. Further expression analysis of flavonoid genes in flowers of wild type and a flavanone 3-hydroxylase (F3H) silenced line showed that the development of cotton flower color was controlled by a complex interaction between genes and light. These results present novel information regarding flavonoids metabolism and flower development. PMID:23951318

  4. Dietary flavonoid intake and risk of stomach and colorectal cancer

    PubMed Central

    Woo, Hae Dong; Kim, Jeongseon

    2013-01-01

    Stomach and colorectal cancers are common cancers and leading causes of cancer deaths. Because the alimentary tract can interact directly with dietary components, stomach and colorectal cancer may be closely related to dietary intake. We systematically searched published literature written in English via PubMed by searching for terms related to stomach and colorectal cancer risk and dietary flavonoids up to June 30, 2012. Twenty-three studies out of 209 identified articles were finally selected for the analysis. Log point effect estimates and the corresponding standard errors were calculated using covariate-adjusted point effect estimates and 95%CIs from the selected studies. Total dietary flavonoid intake was not associated with a reduced risk of colorectal or stomach cancer [odds ratio (OR) (95%CI) = 1.00 (0.90-1.11) and 1.07 (0.70-1.61), respectively]. Among flavonoid subclasses, the intake of flavonols, flavan-3-ols, anthocyanidins, and proanthocyanidins showed a significant inverse association with colorectal cancer risk [OR (95%CI) = 0.71 (0.63-0.81), 0.88 (0.79-0.97), 0.68 (0.56-0.82), and 0.72 (0.61-0.85), respectively]. A significant association was found only between flavonols and stomach cancer risk based on a limited number of selected studies [OR (95%CI) = 0.68 (0.46-0.99)]. In the summary estimates from case-control studies, all flavonoid subclasses except flavones and flavanones were inversely associated with colorectal cancer risk, whereas neither total flavonoids nor any subclasses of flavonoids were associated with colorectal cancer risk in the summary estimates based on the cohort studies. The significant association between flavonoid subclasses and cancer risk might be closely related to bias derived from the case-control design. There was no clear evidence that dietary flavonoids are associated with reduced risk of stomach and colorectal cancer. PMID:23467443

  5. MYB5 and MYB14 Play Pivotal Roles in Seed Coat Polymer Biosynthesis in Medicago truncatula1[W][OPEN

    PubMed Central

    Liu, Chenggang; Jun, Ji Hyung; Dixon, Richard A.

    2014-01-01

    In Arabidopsis (Arabidopsis thaliana), the major MYB protein regulating proanthocyanidin (PA) biosynthesis is TT2, named for the transparent testa phenotype of tt2 mutant seeds that lack PAs in their coats. In contrast, the MYB5 transcription factor mainly regulates seed mucilage biosynthesis and trichome branching, with only a minor role in PA biosynthesis. We here characterize MYB5 and MYB14 (a TT2 homolog) in the model legume Medicago truncatula. Overexpression of MtMYB5 or MtMYB14 strongly induces PA accumulation in M. truncatula hairy roots, and both myb5 and myb14 mutants of M. truncatula exhibit darker seed coat color than wild-type plants, with myb5 also showing deficiency in mucilage biosynthesis. myb5 mutant seeds have a much stronger seed color phenotype than myb14. The myb5 and myb14 mutants accumulate, respectively, about 30% and 50% of the PA content of wild-type plants, and PA levels are reduced further in myb5 myb14 double mutants. Transcriptome analyses of overexpressing hairy roots and knockout mutants of MtMYB5 and MtMYB14 indicate that MtMYB5 regulates a broader set of genes than MtMYB14. Moreover, we demonstrate that MtMYB5 and MtMYB14 physically interact and synergistically activate the promoters of anthocyanidin reductase and leucoanthocyanidin reductase, the key structural genes leading to PA biosynthesis, in the presence of MtTT8 and MtWD40-1. Our results provide new insights into the complex regulation of PA and mucilage biosynthesis in M. truncatula. PMID:24948832

  6. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits.

    PubMed

    Schaart, Jan G; Dubos, Christian; Romero De La Fuente, Irene; van Houwelingen, Adèle M M L; de Vos, Ric C H; Jonker, Harry H; Xu, Wenjia; Routaboul, Jean-Marc; Lepiniec, Loïc; Bovy, Arnaud G

    2013-01-01

    Strawberry (Fragaria × ananassa) fruits contain high concentrations of flavonoids. In unripe strawberries, the flavonoids are mainly represented by proanthocyanidins (PAs), while in ripe fruits the red-coloured anthocyanins also accumulate. Most of the structural genes leading to PA biosynthesis in strawberry have been characterized, but no information is available on their transcriptional regulation. In Arabidopsis thaliana the expression of the PA biosynthetic genes is specifically induced by a ternary protein complex, composed of AtTT2 (AtMYB123), AtTT8 (AtbHLH042) and AtTTG1 (WD40-repeat protein). A strategy combining yeast-two-hybrid screening and agglomerative hierarchical clustering of transcriptomic and metabolomic data was undertaken to identify strawberry PA regulators. Among the candidate genes isolated, four were similar to AtTT2, AtTT8 and AtTTG1 (FaMYB9/FaMYB11, FabHLH3 and FaTTG1, respectively) and two encode putative negative regulators (FaMYB5 and FabHLH3∆). Interestingly, FaMYB9/FaMYB11, FabHLH3 and FaTTG1 were found to complement the tt2-1, tt8-3 and ttg1-1 transparent testa mutants, respectively. In addition, they interacted in yeast and activated the Arabidopsis BANYULS (anthocyanidin reductase) gene promoter when coexpressed in Physcomitrella patens protoplasts. Taken together, these results demonstrated that FaMYB9/FaMYB11, FabHLH3 and FaTTG1 are the respective functional homologues of AtTT2, AtTT8 and AtTTG1, providing new tools for modifying PA content and strawberry fruit quality. PMID:23157553

  7. Novel phenotypes related to the breeding of purple-fruited tomatoes and effect of peel extracts on human cancer cell proliferation.

    PubMed

    Mazzucato, Andrea; Willems, Daniela; Bernini, Roberta; Picarella, Maurizio E; Santangelo, Enrico; Ruiu, Fabrizio; Tilesi, Francesca; Soressi, Gian Piero

    2013-11-01

    The production of anthocyanins in the tomato (Solanum lycopersicum L.) fruit is normally absent or poor, but a number of mutants or introgression lines are known to increase anthocyanin levels in vegetative and reproductive tissues. Through conventional breeding, a genetic combination was obtained with the remarkable phenotype of a deep purple fruit pigmentation, due to an accumulation of anthocyanins on the peel. Such a genotype was named Sun Black (SB) as a consequence of its sensitivity to light induction. When characterized for morpho-agronomic traits, SB plants showed increased fertility. Purple fruits displayed an arrangement of the epicarp cells different from normal tomatoes, a feature that could account for different mechanical properties and shelf-life potential. The SB genotype and, to a lesser extent, its single mutant parents showed the capacity to accumulate anthocyanins in the seedling root when grown under light. This phenotype, which was greatly improved by the addition of sucrose to the germination medium, proved to be useful as selection index and gave new insights for in vitro production of anthocyanin extracts. To assess the nutraceutical potential of purple tomatoes, we tested the activity of SB skin extracts on the proliferation of two human cancer cells lines. Cell proliferation was significantly inhibited by SB extract in a dose-dependent manner. When the bioactivity of SB extracts was compared with that of other anthocyanin-containing fruits or vegetables, a significant "Extract*Line" interaction was evidenced, suggesting a crucial role for the extract composition in terms of anthocyanidins and other eventual cell growth-inhibiting compounds. PMID:23769702

  8. Flavonoid composition related to petal color in different lines of Clitoria ternatea.

    PubMed

    Kazuma, Kohei; Noda, Naonobu; Suzuki, Masahiko

    2003-11-01

    Flavonoids in the petals of several C. ternatea lines with different petal colors were investigated with LC/MS/MS. Delphinidin 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside was newly isolated from the petals of a mauve line (wm) together with three known anthocyanins. They were identified structurally using UV, MS, and NMR spectroscopy. Although ternatins, a group of 15 (poly)acylated delphinidin glucosides, were identified in all the blue petal lines (WB, BM-1, 'Double Blue' and 'Albiflora'), WM accumulated delphinidin 3-O-(6"-O-malonyl)-beta-glucoside instead. The white petal line (WW) did not contain anthocyanins. Quantitative data showed that the total anthocyanin contents in WB and 'Double Blue' were ca. 8- and 10-fold higher than that in BM-1, a bud mutant of 'Double Blue', respectively. The total anthocyanin content in 'Albiflora' was less than 2 x 10(-3) times those in WB or 'Double Blue'. While all the lines contained the same set of 15 flavonol glycosides in similar relative ratios, the relative ratio of myricetin glycosides in ww and 'Albiflora' was ca. 30-70 times greater than those in the other lines. The change in flower color from blue to mauve was not due to a change in the structure of an anthocyanidin from delphinidin, but to the lack of (polyacylated) glucosyl group substitutions at both the 3'- and 5'-positions of ternatins. This implies that glucosylation at the 3'- and 5'-positions of anthocyanin is a critical step in producing blue petals in C. ternatea. PMID:14568080

  9. Identification of delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3'-O-beta-glucoside, a postulated intermediate in the biosynthesis of ternatin C5 in the blue petals of Clitoria ternatea (butterfly pea).

    PubMed

    Kazuma, Kohei; Kogawa, Koichiro; Noda, Naonobu; Kato, Naoki; Suzuki, Masahiko

    2004-11-01

    Ternatins are blue anthocyanins found in the petals of Clitoria ternata (butterfly pea). Among them, ternatin C5 (delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3',5'-di-O-beta-glucoside; 2) has the structure common to all the ternatins, which is characterized by its glucosylation pattern: a 3,3',5'-triglucosylated anthocyanidin. In the course of studying biosynthetic pathways of ternatins, the key enzymatic activities to produce ternatin C5 were discovered in a crude enzyme preparation from the petals of a blue petal line of C. ternatea. When this preparation was tested for activity against several delphinidin glycosides, delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3'-O-beta-glucoside (6), a postulated intermediate, was found in the reaction mixture, together with three known anthocyanins, which were spectroscopically structurally identified. As a result of structural identification, the following enzymatic activities were identified: UDP-glucose :delphinidin 3-O-(6''-O-malonyl)-beta-glucoside-3'-O-beta-glucoside 5'-O-glucosyltransferase (5'GT), UDP-glucose :delphinidin 3-O-(6''-O-malonyl)-beta-glucoside 3'-O-glucosyltransferase (3'GT), UDP-glucose :delphinidin 3-O-glucosyltransferase, and malonyl-CoA :delphinidin 3-O-beta-glucoside 6''-malonyltransferase. In a mauve petal line, which did not accumulate ternatins but delphinidin 3-O-(6''-O-malonyl)-beta-glucoside in its petal, there were neither 5'GT nor 3'GT activities. Thus, the early biosynthetic pathway of ternatins may be characterized by the stepwise transfer of two glucose residues to 3'- and 5'-position of delphinidin 3-O-(6''-O-malonyl)-beta-glucoside (1; Scheme) from UDP-glucose. PMID:17191814

  10. High concentrations of aromatic acylated anthocyanins found in cauline hairs in Plectranthus ciliatus.

    PubMed

    Jordheim, Monica; Calcott, Kate; Gould, Kevin S; Davies, Kevin M; Schwinn, Kathy E; Andersen, Øyvind M

    2016-08-01

    Vegetative shoots of a naturalized population of purple-leaved plectranthus (Plectranthus ciliatus, Lamiaceae) were found to contain four main anthocyanins: peonidin 3-(6″-caffeoyl-β-glucopyranoside)-5-β-glucopyranoside, peonidin 3-(6″-caffeoyl-β-glucopyranoside)-5-(6‴-malonyl-β-glucopyranoside), peonidin 3-(6″-E-p-coumaroyl-β-glucopyranoside)-5-(6‴-malonyl-β-glucopyranoside), and peonidin 3-(6″-E-p-coumaroyl-β-glucopyranoside)-5-β-glucopyranoside. The first three of these pigments have not been reported previously from any plant. They all follow the typical anthocyanin pattern of Lamiaceae, with universal occurrence of anthocyanidin 3,5-diglucosides and aromatic acylation with p-coumaric and sometimes caffeic acids; however, they differ by being based on peonidin. The four anthocyanins were present in the leaves (22.2 mg g(-1) DW), and in the xylem and interfascicular parenchyma of the stem. They were exceptionally abundant, among the highest reported for any plant organ, in epidermal hairs on some of the stem internodes (101 mg g(-1) DW). Anthocyanin content in these hairs increased more than three-fold from the youngest to the fourth-youngest internodes. In situ absorbances (λmax ≈ 545 nm) were bathochromic in comparison to absorbances of the isolated anthocyanins in their flavylium form in acidified aqueous solutions (λmax = 525 nm), suggesting that the anthocyanins occur both in quinoidal and flavylium forms in constant proportions in the anthocyanic hair cells. The most distinctive observation with respect to relative proportions of individual anthocyanins was found in de-haired internodes, for which anthocyanin caffeoyl-derivatives decreased, and anthocyanin coumaroyl-derivatives increased, from the youngest to the fourth-youngest internode. PMID:27165277

  11. Evolution of Flavone Synthase I from Parsley Flavanone 3β-Hydroxylase by Site-Directed Mutagenesis1[W][OA

    PubMed Central

    Gebhardt, Yvonne Helen; Witte, Simone; Steuber, Holger; Matern, Ulrich; Martens, Stefan

    2007-01-01

    Flavanone 3β-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the β-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction). PMID:17535823

  12. Screening of UV-B-induced genes from apple peels by SSH: possible involvement of MdCOP1-mediated signaling cascade genes in anthocyanin accumulation.

    PubMed

    Peng, Ting; Saito, Takanori; Honda, Chikako; Ban, Yusuke; Kondo, Satoru; Liu, Ji-Hong; Hatsuyama, Yoshimichi; Moriguchi, Takaya

    2013-07-01

    Suppression subtractive hybridization (SSH) was employed to identify candidate genes involved in red coloration in apple peel with the ultraviolet (UV)-B-treated 'Mutsu'. After reverse Northern blotting verification, nearly 80 clones were successfully sequenced. Large portions of the expressed sequence tags (ESTs) are well characterized anthocyanin biosynthesis-related genes, such as chalcone synthase (11A5), flavonol synthase (12F3), anthocyanidin synthase (11H5) and UDP-glycosyl transferase (14A12) whose presence proved the success of SSH. Eight ESTs were selected for quantitative real-time polymerase chain reaction analysis and their expressions were all elevated in 'Induction', further confirming the reliability of the SSH library. One EST, 11F4 (CONSTITUTIVE PHOTOMORPHOGENIC 1: COP1) with putative function in light signal relay was further analyzed in 'Mutsu' and 'Tsugaru', along with MdHY5 (ELONGATED HYPOCOTYL 5: the downstream target of COP1), MdMYB22 (a possible flavonol-specific activator under the regulation of HY5, belonging to the SG7/PRODUCTION OF FLAVONOL GLYCOSIDES family) and MdMYBA. Results showed that MdCOP1, MdHY5, MdMYB22 and MdMYBA were all UV-B inducible genes and anthocyanin accumulation occurred after their increased expressions. Moreover, their expressions and anthocyanin content were enhanced under UV-B plus 17°C treatment. The presence of G box, a known consensus binding site of HY5, in the MdMYBA promoter region implicated that it could be regulated by MdHY5, which was verified by the result of the yeast one-hybrid analysis. Our data suggested that UV-B irradiation would induce the utmost upstream light signaling factor, MdCOP1, which activates MdHY5 signaling by binding to the promoter regions of MdMYBs, and finally leads to the red coloration of apple peels. PMID:23171407

  13. Biochemical and Molecular Characterization of a Flavonoid 3-O-glycosyltransferase Responsible for Anthocyanins and Flavonols Biosynthesis in Freesia hybrida

    PubMed Central

    Sun, Wei; Liang, Lingjie; Meng, Xiangyu; Li, Yueqing; Gao, Fengzhan; Liu, Xingxue; Wang, Shucai; Gao, Xiang; Wang, Li

    2016-01-01

    The glycosylation of flavonoids increases their solubility and stability in plants. Flowers accumulate anthocyanidin and flavonol glycosides which are synthesized by UDP-sugar flavonoid glycosyltransferases (UFGTs). In our previous study, a cDNA clone (Fh3GT1) encoding UFGT was isolated from Freesia hybrida, which was preliminarily proved to be invovled in cyanidin 3-O-glucoside biosynthesis. Here, a variety of anthocyanin and flavonol glycosides were detected in flowers and other tissues of F. hybrida, implying the versatile roles of Fh3GT1 in flavonoids biosynthesis. To further unravel its multi-functional roles, integrative analysis between gene expression and metabolites was investigated. The results showed expression of Fh3GT1 was positively related to the accumulation of anthocyanins and flavonol glycosides, suggesting its potential roles in the biosynthesis of both flavonoid glycosides. Subsequently, biochemical analysis results revealed that a broad range of flavonoid substrates including flavonoid not naturally occurred in F. hybrida could be recognized by the recombinant Fh3GT1. Both UDP-glucose and UDP-galactose could be used as sugar donors by recombinant Fh3GT1, although UDP-galactose was transferred with relatively low activity. Furthermore, regiospecificity analysis demonstrated that Fh3GT1 was able to glycosylate delphinidin at the 3-, 4-′, and 7- positions in a sugar-dependent manner. And the introduction of Fh3GT1 into Arabidopsis UGT78D2 mutant successfully restored the anthocyanins and flavonols phenotypes caused by lost-of-function of the 3GT, indicating that Fh3GT1 functions as a flavonoid 3-O-glucosyltransferase in vivo. In summary, these results demonstrate that Fh3GT1 is a flavonoid 3-O-glycosyltransferase using UDP-glucose as the preferred sugar donor and may involve in flavonoid glycosylation in F. hybrida. PMID:27064818

  14. Gene Expression and Metabolite Profiling of Developing Highbush Blueberry Fruit Indicates Transcriptional Regulation of Flavonoid Metabolism and Activation of Abscisic Acid Metabolism1[W][OA

    PubMed Central

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A.; Zaharia, L. Irina; Schernthaner, Johann P.; Gesell, Andreas; Abrams, Suzanne R.; Kennedy, James A.; Constabel, C. Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3′-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3′5′-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation

  15. Estimation of dietary flavonoid intake and major food sources of Korean adults.

    PubMed

    Jun, Shinyoung; Shin, Sangah; Joung, Hyojee

    2016-02-14

    Epidemiological studies have suggested that flavonoids exhibit preventive effects on degenerative diseases. However, lack of sufficient data on flavonoid intake has limited evaluating the proposed effects in populations. Therefore, we aimed to estimate the total and individual flavonoid intakes among Korean adults and determine the major dietary sources of these flavonoids. We constructed a flavonoid database of common Korean foods, based on the food list reported in the 24-h recall of the Korea National Health and Nutrition Examination Survey (KNHANES) 2007-2012, using data from the Korea Functional Food Composition Table, US Department of Agriculture flavonoid database, Phenol-Explorer database and other analytical studies. This database, which covers 49 % of food items and 76 % of food intake, was linked with the 24-h recall data of 33 581 subjects aged ≥19 years in the KNHANES 2007-2012. The mean daily intake of total flavonoids in Korean adults was 318·0 mg/d, from proanthocyanidins (22·3%), flavonols (20·3%), isoflavones (18·1%), flavan-3-ols (16·2%), anthocyanidins (11·6%), flavanones (11·3%) and flavones (0·3%). The major contributing food groups to the flavonoid intake were fruits (54·4%), vegetables (20·5%), legumes and legume products (16·2%) and beverages and alcohols (3·1%), and the major contributing food items were apples (21·9%), mandarins (12·5%), tofu (11·5%), onions (9·6%) and grapes (9·0%). In the regression analysis, the consumption of legumes and legume products, vegetables and fruits predicted total flavonoid intake the most. The findings of this study could facilitate further investigation on the health benefits of flavonoids and provide the basic information for establishing recommended flavonoid intakes for Koreans. PMID:26489826

  16. Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.).

    PubMed

    Feng, Hongjie; Li, Yanjun; Wang, Shaofang; Zhang, Liangliang; Liu, Yongchuang; Xue, Fei; Sun, Yuqiang; Wang, Yongmei; Sun, Jie

    2014-11-01

    The structural characteristics and component differences of proanthocyanidins in brown and white cotton fibres were identified by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analyses. Proanthocyanidins in brown and white cotton fibres were found to contain mainly procyanidin (PC) and prodelphidin (PD) units with 2, 3-cis form (epigallocatechin and epicatechin). However, part of the proanthocyanidins in the white cotton fibres were modified by acylation and were constitutively different from the proanthocyanidins in brown cotton fibres. The relative amount of PD was similar to that of PC in white cotton fibres, while proanthocyanidins in brown cotton fibres consisted mainly of PD units with a relative ratio of 9:1. In brown cotton fibres, the proanthocyanidin monomeric composition was consistent with the expression profiles of proanthocyanidin synthase genes, suggesting that anthocyanidin reductase represented the major flow of the proanthocyanidin biosynthesis pathway. In addition, the structural characteristics and component differences of proanthocanidins in brown and white cotton fibres suggested that quinones, the oxidation products of proanthocyanidins, were the direct contributors to colour development in brown cotton fibre. This was demonstrated by vanillin-HCl staining and Borntrager's test. Collectively, these data demonstrated that the biosynthesis of proanthocyanidins is a crucial pigmentation process in brown cotton fibre, and that quinones may represent the main pigments contributing to formation of the the brown colour. This study revealed the molecular basis of pigmentation in brown cotton fibres, and provided important insights for genetic manipulation of pigment production in cotton fibres. PMID:25086591

  17. Phytochemical Characterization of Chinese Bayberry (Myrica rubra Sieb. et Zucc.) of 17 Cultivars and Their Antioxidant Properties

    PubMed Central

    Zhang, Xianan; Huang, Huizhong; Zhang, Qiaoli; Fan, Fangjuan; Xu, Changjie; Sun, Chongde; Li, Xian; Chen, Kunsong

    2015-01-01

    In order to fully understand the variations of fruit quality-related phytochemical composition in Chinese bayberry (Myrica rubra Sieb. et Zucc.), mature fruit of 17 cultivars from Zhejiang and Jiangsu provinces was used for the investigation of fruit quality attributes, including fruit color, soluble sugars, organic acids, total phenolics, flavonoids, antioxidant capacity, etc. Sucrose was the main soluble sugar, while citric acid was the main organic acid in bayberry fruit. The content of total phenolics and total flavonoids were positively correlated with 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) antioxidant activity and 2,2ʹ-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity. Five anthocyanidins, i.e., delphinidin–hexoside (Dp–Hex), cyanidin-3–O-galactoside (C-3–Gal), cyanidin-3–O-glucoside (C-3–Glu), pelargonidin-3–O-glucoside (Pg-3–Glu) and peonidin-3-O-glucoside (Pn-3–Glu), and seven flavonols compounds, i.e., myricetin-3-O-rhamnoside (M-3–Rha), myricetin deoxyhexoside–gallate (M-DH–G), quercetin-3-O-galactoside (Q-3–Gal), quercetin-3–O-glucoside (Q-3–Glu), quercetin-3–O-rhamnoside (Q-3–Rha), kaempferol-3–O-galactoside (K-3–Gal) and kaempferol-3–O-glucoside (K-3–Glu), were identified and characterized among the cultivars. The significant differences in phytochemical compositions among cultivars reflect the diversity in bayberry germplasm, and cultivars of good flavor and/or rich in various health-promoting phytochemicals are good candidates for future genetic breeding of bayberry fruit of high quality. In conclusion, our results may provide important information for further breeding or industrial utilization of different bayberry resources. PMID:26042467

  18. Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set.

    PubMed

    Mahajan, Monika; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2011-01-01

    Flavonoids are synthesized by phenylpropanoid pathway. They are known to participate in large number of physiological and biochemical processes in plants. Parthenocarpy and male sterility has earlier been reported by silencing chalcone synthase (CHS) encoding gene. Silencing of CHS has blocked the synthesis of most of useful flavonoids including flavan-3-ols and flavonols. Also, these studies could not identify whether parthenocarpy/male sterility were due to lack of flavan-3-ols or flavonols or both. Flavonol synthase (FLS) is an important enzyme of flavonoid pathway that catalyzes the formation of flavonols. In this article, we propose a novel strategy towards the generation of seedless or less-seeded fruits by downregulation of flavonol biosynthesis in tobacco (Nicotiana tabacum cv Xanthi) through post-transcriptional gene silencing (PTGS) of FLS encoding mRNA. The FLS silenced lines were observed for 20-80% reduction in FLS encoding gene expression and 25-93% reduction in flavonol (quercetin) content. Interestingly, these FLS silenced tobacco lines also showed reduction in their anthocyanidins content. While the content of flavan-3-ols (catechin, epi-catechin and epi-gallocatechin) was found to be increased in FLS silenced lines. The delayed flowering in FLS silenced lines could be due to decrease in level of indole acetic acid (IAA) at apical region of their shoots. Furthermore, the pollen germination was hampered and pollens were unable to produce functional pollen tube in FLS silenced tobacco lines. Pods of FLS silenced lines contained significantly less number of seeds. The in vitro and in vivo studies where 1 µM quercetin was supplied to germination media, documented the restoration of normal pollen germination and pollen tube growth. This finding identified the role of flavonols particularly quercetin in pollen germination as well as in the regulation of plant fertility. Results also suggest a novel approach towards generation of seedless

  19. Comparative Transcriptome Analysis of White and Purple Potato to Identify Genes Involved in Anthocyanin Biosynthesis

    PubMed Central

    Liu, Yuhui; Lin-Wang, Kui; Deng, Cecilia; Warran, Ben; Wang, Li; Yu, Bin; Yang, Hongyu; Wang, Jing; Espley, Richard V.; Zhang, Junlian; Wang, Di; Allan, Andrew C.

    2015-01-01

    Introduction The potato (Solanum tuberosum) cultivar ‘Xin Daping’ is tetraploid with white skin and white flesh, while the cultivar ‘Hei Meiren’ is also tetraploid with purple skin and purple flesh. Comparative transcriptome analysis of white and purple cultivars was carried out using high-throughput RNA sequencing in order to further understand the mechanism of anthocyanin biosynthesis in potato. Methods and Results By aligning transcript reads to the recently published diploid potato genome and de novo assembly, 209 million paired-end Illumina RNA-seq reads from these tetraploid cultivars were assembled on to 60,930 transcripts, of which 27,754 (45.55%) are novel transcripts and 9393 alternative transcripts. Using a comparison of the RNA-sequence datasets, multiple versions of the genes encoding anthocyanin biosynthetic steps and regulatory transcription factors were identified. Other novel genes potentially involved in anthocyanin biosynthesis in potato tubers were also discovered. Real-time qPCR validation of candidate genes revealed good correlation with the transcriptome data. SNPs (Single Nucleotide Polymorphism) and indels were predicted and validated for the transcription factors MYB AN1 and bHLH1 and the biosynthetic gene anthocyanidin 3-O-glucosyltransferase (UFGT). Conclusions These results contribute to our understanding of the molecular mechanism of white and purple potato development, by identifying differential responses of biosynthetic gene family members together with the variation in structural genes and transcription factors in this highly heterozygous crop. This provides an excellent platform and resource for future genetic and functional genomic research. PMID:26053878

  20. Intake and major sources of dietary flavonoid in Korean adults: Korean National Health and Nutrition Examination Survey 2010-2012.

    PubMed

    Kim, You Jin; Park, Min Young; Chang, Namsoo; Kwon, Oran

    2015-01-01

    With an effort to investigate possible relationship between flavonoids and health, an accurate estimation of flavonoid intake is valuable. We estimated dietary flavonoid intake and identified the major food sources. Subjects were healthy adults aged >=19 y (n=11,474) who completed the 24-h dietary recall of the Korean National Health and Nutritional Examination Survey (2010-2012). The US Department of Agriculture and newly estimated or published values for typical Korean foods were combined into a Korean-targeted flavonoid database. The mean intake of total flavonoid was 107±1.47 mg/d, with a higher intake in women than in men after energy-adjustment. Quercetin, cyanidin, genistein, daidzein, epigallocatechin 3-gallate, epicatechin, hesperetin, and luteolin were identified as major flavonoid compounds. Across the age range studied, flavonols and flavones showed a reversed U-shape curve; flavan-3-ol and flavanones showed a decreasing pattern; and anthocyanidins and isoflavones showed an increasing pattern. Forty-five food items were identified as contributing >2% of at least one flavonoid compound's intake. Kimchi was the major food source of total flavonoids, followed by green tea, persimmons, and soybeans. Single food items accounting for more than 50% of the intake of a specific flavonoid included persimmons (cyanidin), green tea (epigallocatechin, epicatechin-3-gallate, and epigallocatechin 3-gallate), black tea (thearubigin), tangerines (hesperetin and naringenin), and onions (isorhamnetin). This study provides information on Korean flavonoid intake to enable international comparisons, along with insight into how the sources and intake of various flavonoids vary according to age and gender. This work should facilitate future investigations of the association between flavonoid intake and health. PMID:26420187

  1. Promotion of flavonoid biosynthesis in leaves and calli of ornamental crabapple (Malus sp.) by high carbon to nitrogen ratios

    PubMed Central

    Wan, Huihua; Zhang, Jie; Song, Tingting; Tian, Ji; Yao, Yuncong

    2015-01-01

    Flavonoids are secondary metabolites that play important roles in plant physiology. Despite numerous studies examined the effects of available carbon (C) or nitrogen (N) on flavonoid biosynthesis, the mechanism of C/N interactive effects on flavonoid metabolism is still unclear. In this study, we analyzed the composition of flavonoids and the expression levels of flavonoid-related genes in leaves and calli of crabapple (Malus sp.) cultivars with different leaf colors grown on media with different C/N ratios. Our results show that high C/N ratios induce anthocyanin pigmentation in leaves of the ever-red cultivar ‘Royalty’ and the spring-red cultivar ‘Prairifire,’ as well as in three types of calli derived from the ever-green cultivar ‘Spring Snow,’ but not in the leaves of the ever-green cultivar ‘Flame.’ This phenomenon therefore correlated with anthocyanin content in these different samples. In addition, high C/N ratios in the growth media resulted in an increase in the concentration of flavones and flavonols in the leaves of the three crabapple cultivars. The transcript levels of the general flavonoid pathway genes [from chalcone synthase (CHS) to uridine diphosphat-glucose: flavonoid 3-O-glycosyltransferase (UFGT) and flavonol synthase (FLS)] increased in response to high C/N ratios, and this in turn was correlated with the concentration of anthocyanins, flavones and flavonols in the leaves and calli. Expression of the late flavonoid/anthocyanin biosynthetic genes, anthocyanidin synthase (ANS), UFGT and FLS in particular, was more strongly influenced by C/N ratios than other structural genes, and the increased expression of the structural genes under high C/N ratios coincided with a coordinated increase in transcript levels of a MYB transcription factor, MYB10. These results are likely to be useful for future generation of plants with an optimized flavonoid/anthocyanin content or desirable organ coloration. PMID:26388881

  2. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism.

    PubMed

    Zifkin, Michael; Jin, Alena; Ozga, Jocelyn A; Zaharia, L Irina; Schernthaner, Johann P; Gesell, Andreas; Abrams, Suzanne R; Kennedy, James A; Constabel, C Peter

    2012-01-01

    Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of

  3. Constitutive Activation of an Anthocyanin Regulatory Gene PcMYB10.6 Is Related to Red Coloration in Purple-Foliage Plum

    PubMed Central

    Zhou, Hui; Wang, Lu; Deng, Xianbao; Han, Yuepeng

    2015-01-01

    Cherry plum is a popular ornamental tree worldwide and most cultivars are selected for purple foliage. Here, we report the investigation of molecular mechanism underlying red pigmentation in purple-leaf plum ‘Ziyeli’ (Prunus cerasifera Ehrhar f. atropurpurea (Jacq.) Rehd.), which shows red color pigmentation in fruit (flesh and skin) and foliage. Six anthocyanin-activating MYB genes, designated PcMYB10.1 to PcMYB10.6, were isolated based on RNA-Seq data from leaves of cv. Ziyeli. Of these PcMYB10 genes, five (PcMYB10.1 through PcMYB10.5) show distinct spatial and temporal expression patterns, while the PcMYB10.6 gene is highly expressed in all the purple-coloured organs of cv. Ziyeli. Constitutive activation of PcMYB10.6 is closely related to red pigmentation in the leaf, fruit (flesh and skin), and sepal. However, the PcMYB10.6 activation cannot induce red pigmentation in the petal of cv. Ziyeli during late stages of flower development due to due to a lack of expression of PcUFGT. The inhibition of red pigmentation in the petal of cherry plum could be attributed to the high-level expression of PcANR that directs anthocyanidin flux to proanthocyanidin biosynthesis. In addition, PcMYB10.2 is highly expressed in fruit and sepal, but its expression cannot induce red pigmentation. This suggests the PcMYB10 gene family in cherry plum may have diverged in function and PcMYB10.2 plays little role in the regulation of red pigmentation. Our study provides for the first time an example of constitutive activation of an anthocyanin-activating MYB gene in Prunus although its underlying mechanism remains unclear. PMID:26247780

  4. Putative Role of Red Wine Polyphenols against Brain Pathology in Alzheimer's and Parkinson's Disease.

    PubMed

    Caruana, Mario; Cauchi, Ruben; Vassallo, Neville

    2016-01-01

    Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common age-related neurodegenerative disorders and hence pose remarkable socio-economical burdens to both families and state. Although AD and PD have different clinical and neuropathological features, they share common molecular mechanisms that appear to be triggered by multi-factorial events, such as protein aggregation, mitochondrial dysfunction, oxidative stress (OS), and neuroinflammation, ultimately leading to neuronal cell death. Currently, there are no established and validated disease-modifying strategies for either AD or PD. Among the various lifestyle factors that may prevent or slow age-related neurodegenerative diseases, epidemiological studies on moderate consumption of red wine, especially as part of a holistic Mediterranean diet, have attracted increasing interest. Red wine is particularly rich in specific polyphenolic compounds that appear to affect the biological processes of AD and PD, such as quercetin, myricetin, catechins, tannins, anthocyanidins, resveratrol, and ferulic acid. Indeed, there is now a consistent body of in vitro and in vivo data on the neuroprotective effects of red wine polyphenols (RWP) showing that they do not merely possess antioxidant properties, but may additionally act upon, in a multi-target manner, the underlying key mechanisms featuring in both AD and PD. Furthermore, it is important that bioavailability issues are addressed in order for neuroprotection to be relevant in a clinical study scenario. This review summarizes the current knowledge about the major classes of RWP and places into perspective their potential to be considered as nutraceuticals to target neuropathology in AD and PD. PMID:27570766

  5. Post-Transcriptional Silencing of Flavonol Synthase mRNA in Tobacco Leads to Fruits with Arrested Seed Set

    PubMed Central

    Mahajan, Monika; Ahuja, Paramvir Singh; Yadav, Sudesh Kumar

    2011-01-01

    Flavonoids are synthesized by phenylpropanoid pathway. They are known to participate in large number of physiological and biochemical processes in plants. Parthenocarpy and male sterility has earlier been reported by silencing chalcone synthase (CHS) encoding gene. Silencing of CHS has blocked the synthesis of most of useful flavonoids including flavan-3-ols and flavonols. Also, these studies could not identify whether parthenocarpy/male sterility were due to lack of flavan-3-ols or flavonols or both. Flavonol synthase (FLS) is an important enzyme of flavonoid pathway that catalyzes the formation of flavonols. In this article, we propose a novel strategy towards the generation of seedless or less-seeded fruits by downregulation of flavonol biosynthesis in tobacco (Nicotiana tabacum cv Xanthi) through post-transcriptional gene silencing (PTGS) of FLS encoding mRNA. The FLS silenced lines were observed for 20-80% reduction in FLS encoding gene expression and 25–93% reduction in flavonol (quercetin) content. Interestingly, these FLS silenced tobacco lines also showed reduction in their anthocyanidins content. While the content of flavan-3-ols (catechin, epi-catechin and epi-gallocatechin) was found to be increased in FLS silenced lines. The delayed flowering in FLS silenced lines could be due to decrease in level of indole acetic acid (IAA) at apical region of their shoots. Furthermore, the pollen germination was hampered and pollens were unable to produce functional pollen tube in FLS silenced tobacco lines. Pods of FLS silenced lines contained significantly less number of seeds. The in vitro and in vivo studies where 1 µM quercetin was supplied to germination media, documented the restoration of normal pollen germination and pollen tube growth. This finding identified the role of flavonols particularly quercetin in pollen germination as well as in the regulation of plant fertility. Results also suggest a novel approach towards generation of seedless

  6. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women.

    PubMed

    Wang, Ying; Yang, Meng; Lee, Sang-Gil; Davis, Catherine G; Kenny, Anne; Koo, Sung I; Chun, Ock K

    2012-12-01

    Increased plasma total antioxidant capacity (TAC) has been associated with a high consumption of fruits and vegetables. However, limited information is available on whether plasma TAC reflects the dietary intake of antioxidants and the levels of individual antioxidants in plasma. By using three different assays, the study aimed to determine if plasma TAC can effectively predict dietary intake of antioxidants and plasma antioxidant status. Forty overweight and apparently healthy postmenopausal women were recruited. Seven-day food records and 12-h fasting blood samples were collected for dietary and plasma antioxidant assessments. Plasma TAC was determined by vitamin C equivalent antioxidant capacity (VCEAC), ferric-reducing ability of plasma (FRAP) and oxygen radical absorbance capacity (ORAC) assays. TAC values determined by VCEAC were highly correlated with FRAP (r=0.79, P<.01) and moderately correlated with ORAC (r=0.34, P<.05). Pearson correlation analyses showed that plasma TAC values by VCEAC and ORAC had positive correlation with plasma uric acid (r=0.56 for VCEAC; r=0.49 for ORAC) and total phenolics (r=0.63 for VCEAC; r=0.36 for ORAC). However, TAC measured by FRAP was correlated only with uric acid (r=0.69). After multivariate adjustment, plasma TAC determined by VCEAC was positively associated with dietary intakes of γ-tocopherol (P<.001), β-carotene (P<.05), anthocyanidins (P<.05), flavones (P<.05), proanthocyanidins (P<.01) and TAC (P<.05), as well as with plasma total phenolics (P<.05), α-tocopherol (P<.001), β-cryptoxanthin (P<.05) and uric acid (P<.05). The findings indicate that plasma TAC measured by VCEAC reflects both dietary and plasma antioxidants and represents more closely the plasma antioxidant levels than ORAC and FRAP. PMID:22617460

  7. Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men: the Kuopio Ischaemic Heart Disease Risk Factor Study.

    PubMed

    Mursu, Jaakko; Voutilainen, Sari; Nurmi, Tarja; Tuomainen, Tomi-Pekka; Kurl, Sudhir; Salonen, Jukka T

    2008-10-01

    The role of flavonoids in CVD, especially in strokes, is unclear. Our aim was to study the role of flavonoids in CVD. We studied the association between the intakes of five subclasses (flavonols, flavones, flavanones, flavan-3-ols and anthocyanidins), a total of twenty-six flavonoids, on the risk of ischaemic stroke and CVD mortality. The study population consisted of 1950 eastern Finnish men aged 42-60 years free of prior CHD or stroke as part of the prospective population-based Kuopio Ischaemic Heart Disease Risk Factor Study. During an average follow-up time of 15.2 years, 102 ischaemic strokes and 153 CVD deaths occurred. In the Cox proportional hazards model adjusted for age and examination years, BMI,systolic blood pressure, hypertension medication, serum HDL- and LDL-cholesterol, serum TAG, maximal oxygen uptake, smoking, family history of CVD, diabetes, alcohol intake, energy-adjusted intake of folate, vitamin E, total fat and saturated fat intake (percentage of energy), men in the highest quartile of flavonol and flavan-3-ol intakes had a relative risk of 0.55 (95% CI 0.31, 0.99) and 0.59 (95% CI 0.30, 1.14) for ischaemic stroke, respectively, as compared with the lowest quartile. After multivariate adjustment, the relative risk for CVD death in the highest quartile of flavanone and flavone intakes were 0.54 (95% CI 0.32, 0.92) and 0.65 (95% CI 0.40, 1.05), respectively. The present results suggest that high intakes of flavonoids may be associated with decreased risk of ischaemic stroke and possibly with reduced CVD mortality. PMID:18377681

  8. Giant Virus Megavirus chilensis Encodes the Biosynthetic Pathway for Uncommon Acetamido Sugars*

    PubMed Central

    Piacente, Francesco; De Castro, Cristina; Jeudy, Sandra; Molinaro, Antonio; Salis, Annalisa; Damonte, Gianluca; Bernardi, Cinzia; Abergel, Chantal; Tonetti, Michela G.

    2014-01-01

    Giant viruses mimicking microbes, by the sizes of their particles and the heavily glycosylated fibrils surrounding their capsids, infect Acanthamoeba sp., which are ubiquitous unicellular eukaryotes. The glycans on fibrils are produced by virally encoded enzymes, organized in gene clusters. Like Mimivirus, Megavirus glycans are mainly composed of virally synthesized N-acetylglucosamine (GlcNAc). They also contain N-acetylrhamnosamine (RhaNAc), a rare sugar; the enzymes involved in its synthesis are encoded by a gene cluster specific to Megavirus close relatives. We combined activity assays on two enzymes of the pathway with mass spectrometry and NMR studies to characterize their specificities. Mg534 is a 4,6-dehydratase 5-epimerase; its three-dimensional structure suggests that it belongs to a third subfamily of inverting dehydratases. Mg535, next in the pathway, is a bifunctional 3-epimerase 4-reductase. The sequential activity of the two enzymes leads to the formation of UDP-l-RhaNAc. This study is another example of giant viruses performing their glycan synthesis using enzymes different from their cellular counterparts, raising again the question of the origin of these pathways. PMID:25035429

  9. Giant virus Megavirus chilensis encodes the biosynthetic pathway for uncommon acetamido sugars.

    PubMed

    Piacente, Francesco; De Castro, Cristina; Jeudy, Sandra; Molinaro, Antonio; Salis, Annalisa; Damonte, Gianluca; Bernardi, Cinzia; Abergel, Chantal; Tonetti, Michela G

    2014-08-29

    Giant viruses mimicking microbes, by the sizes of their particles and the heavily glycosylated fibrils surrounding their capsids, infect Acanthamoeba sp., which are ubiquitous unicellular eukaryotes. The glycans on fibrils are produced by virally encoded enzymes, organized in gene clusters. Like Mimivirus, Megavirus glycans are mainly composed of virally synthesized N-acetylglucosamine (GlcNAc). They also contain N-acetylrhamnosamine (RhaNAc), a rare sugar; the enzymes involved in its synthesis are encoded by a gene cluster specific to Megavirus close relatives. We combined activity assays on two enzymes of the pathway with mass spectrometry and NMR studies to characterize their specificities. Mg534 is a 4,6-dehydratase 5-epimerase; its three-dimensional structure suggests that it belongs to a third subfamily of inverting dehydratases. Mg535, next in the pathway, is a bifunctional 3-epimerase 4-reductase. The sequential activity of the two enzymes leads to the formation of UDP-l-RhaNAc. This study is another example of giant viruses performing their glycan synthesis using enzymes different from their cellular counterparts, raising again the question of the origin of these pathways. PMID:25035429

  10. Generation and analysis of expressed sequence tags from a normalized cDNA library of young leaf from Ma bamboo (Dendrocalamus latiflorus Munro).

    PubMed

    Gao, Z M; Li, C L; Peng, Z H

    2011-11-01

    Ma bamboo (Dendrocalamus latiflorus Munro) belongs to Dendrocalamus genus, Bambusease tribe, Bambusoideae subfamily, Poaceae family. It is a representative species of clumping bamboo, and a principal commercial species for various construction purposes using mature culms and for human consumption using young shoots. A normalized cDNA library was constructed from young leaves of Ma bamboo and 9,574 high-quality ESTs were generated, from which 5,317 unigenes including 1,502 contigs and 3,815 singletons were assembled. The unigenes were assigned into different gene ontology (GO) categories and summarized into 13 broad biologically functional groups according to similar functional characteristics or cellular roles by BLAST search against public databases. Eight hundred and ninety-one unigenes were assigned by KO identifiers and mapped to six KEGG biochemical pathways. The transcripts involved in biosynthesis of secondary metabolites such as cytochrome 450, flavonol synthase/flavanone 3-hydroxylase, and dihydroflavonol-4-reductase were well represented by 14 unigenes in the unigene set. The candidate genes involved in phytohormone metabolism, signal transduction and encoding cell wall-associated receptor kinases were also identified. Sixty-seven unigenes related to plant resistance (R) genes, including RPP genes, RGAs and RDL/RF genes, were discovered. These results will provide genome-wide knowledge about the molecular physiology of Ma bamboo young leaves and tools for advanced studies of molecular mechanism underlying leaf growth and development. PMID:21713530

  11. Negative Regulation of Anthocynanin Biosynthesis in Arabidopsis by a miR156-Targeted SPL Transcription Factor

    SciTech Connect

    Gou, J.Y.; Liu, C.; Felippes, F. F.; Weigel, D.; Wang, J.-W.

    2011-04-01

    Flavonoids are synthesized through an important metabolic pathway that leads to the production of diverse secondary metabolites, including anthocyanins, flavonols, flavones, and proanthocyanidins. Anthocyanins and flavonols are derived from Phe and share common precursors, dihydroflavonols, which are substrates for both flavonol synthase and dihydroflavonol 4-reductase. In the stems of Arabidopsis thaliana, anthocyanins accumulate in an acropetal manner, with the highest level at the junction between rosette and stem. We show here that this accumulation pattern is under the regulation of miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, which are deeply conserved and known to have important roles in regulating phase change and flowering. Increased miR156 activity promotes accumulation of anthocyanins, whereas reduced miR156 activity results in high levels of flavonols. We further provide evidence that at least one of the miR156 targets, SPL9, negatively regulates anthocyanin accumulation by directly preventing expression of anthocyanin biosynthetic genes through destabilization of a MYB-bHLH-WD40 transcriptional activation complex. Our results reveal a direct link between the transition to flowering and secondary metabolism and provide a potential target for manipulation of anthocyanin and flavonol content in plants.

  12. The Birth of a Black Rice Gene and Its Local Spread by Introgression

    PubMed Central

    Oikawa, Tetsuo; Maeda, Hiroaki; Oguchi, Taichi; Yamaguchi, Takuya; Tanabe, Noriko; Ebana, Kaworu; Yano, Masahiro; Izawa, Takeshi

    2015-01-01

    The origin and spread of novel agronomic traits during crop domestication are complex events in plant evolution. Wild rice (Oryza rufipogon) has red grains due to the accumulation of proanthocyanidins, whereas most cultivated rice (Oryza sativa) varieties have white grains induced by a defective allele in the Rc basic helix-loop-helix (bHLH) gene. Although the events surrounding the origin and spread of black rice traits remain unknown, varieties with black grains due to anthocyanin accumulation are distributed in various locations throughout Asia. Here, we show that the black grain trait originated from ectopic expression of the Kala4 bHLH gene due to rearrangement in the promoter region. Both the Rc and Kala4 genes activate upstream flavonol biosynthesis genes, such as chalcone synthase and dihydroflavonol-4-reductase, and downstream genes, such as leucoanthocyanidin reductase and leucoanthocyanidin dioxygenase, to produce the respective specific pigments. Genome analysis of 21 black rice varieties as well as red- and white-grained landraces demonstrated that black rice arose in tropical japonica and its subsequent spread to the indica subspecies can be attributed to the causal alleles of Kala4. The relatively small size of genomic fragments of tropical japonica origin in some indica varieties indicates that refined introgression must have occurred by natural crossbreeding in the course of evolution of the black trait in rice. PMID:26362607