Science.gov

Sample records for 40-kiloton nuclear device

  1. Nuclear reactor safety device

    DOEpatents

    Hutter, Ernest

    1986-01-01

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  2. Nuclear reactor safety device

    DOEpatents

    Hutter, E.

    1983-08-15

    A safety device is described for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of a thermal excursion. It comprises a laminated strip helically configured to form a tube, said tube being in operative relation to said control rod. The laminated strip is formed of at least two materials having different thermal coefficients of expansion, and is helically configured such that the material forming the outer lamina of the tube has a greater thermal coefficient of expansion than the material forming the inner lamina of said tube. In the event of a thermal excursion the laminated strip will tend to curl inwardly so that said tube will increase in length, whereby as said tube increases in length it exerts a force on said control rod to axially reposition said control rod with respect to said core.

  3. The history of nuclear weapon safety devices

    SciTech Connect

    Plummer, D.W.; Greenwood, W.H.

    1998-06-01

    The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

  4. Special nuclear material simulation device

    DOEpatents

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  5. Fast-acting nuclear reactor control device

    DOEpatents

    Kotlyar, Oleg M.; West, Phillip B.

    1993-01-01

    A fast-acting nuclear reactor control device for moving and positioning a fety control rod to desired positions within the core of the reactor between a run position in which the safety control rod is outside the reactor core, and a shutdown position in which the rod is fully inserted in the reactor core. The device employs a hydraulic pump/motor, an electric gear motor, and solenoid valve to drive the safety control rod into the reactor core through the entire stroke of the safety control rod. An overrunning clutch allows the safety control rod to freely travel toward a safe position in the event of a partial drive system failure.

  6. Nuclear reactor melt arrest and coolability device

    DOEpatents

    Theofanous, Theo G.; Dinh, Nam Truc; Wachowiak, Richard M.

    2016-06-14

    Example embodiments provide a Basemat-Internal Melt Arrest and Coolability device (BiMAC) that offers improved spatial and mechanical characteristics for use in damage prevention and risk mitigation in accident scenarios. Example embodiments may include a BiMAC having an inclination of less than 10-degrees from the basemat floor and/or coolant channels of less than 4 inches in diameter, while maintaining minimum safety margins required by the Nuclear Regulatory Commission.

  7. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    SciTech Connect

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient.

  8. A Nuclear Microbattery for MEMS Devices

    SciTech Connect

    Blanchard, James; Henderson, Douglass; Lal, Amit

    2002-08-20

    This project was designed to demonstrate the feasibility of producing on-board power for MEMS devices using radioisotopes. MEMS is a fast growing field, with hopes for producing a wide variety of revolutionary applications, including ''labs on a chip,'' micromachined scanning tunneling microscopes, microscopic detectors for biological agents, microsystems for DNA identification, etc. Currently, these applications are limited by the lack of an on-board power source. Research is ongoing to study approaches such as fuel cells, fossil fuels, and chemical batteries, but all these concepts have limitations. For long-lived, high energy density applications, on-board radioisotope power offers the best choice. We have succeeded in producing such devices using a variety of isotopes, incorporation methods, and device geometries. These experiments have demonstrated the feasibility of using radioisotope power and that there are a variety of options available for MEMS designers. As an example of an integrated, self-powered application, we have created an oscillating cantilever beam that is capable of consistent, periodic oscillations over very long time periods without the need for refueling. Ongoing work will demonstrate that this cantilever is capable of radio frequency transmission, allowing MEMS devices to communicate with one another wirelessly. Thus, this will be the first self-powered wireless transmitter available for use in MEMS devices, permitting such applications as sensors embedded in buildings for continuous monitoring of the building performance and integrity.

  9. Automatic coolant flow control device for a nuclear reactor assembly

    DOEpatents

    Hutter, E.

    1984-01-27

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  10. SUPPORT DEVICE FOR USE IN A NUCLEAR REACTOR

    DOEpatents

    Greenhalgh, F.G.; Long, E.

    1959-03-10

    A shock absorbing support device for fuel elements in a nuclear reactor is described. The device is adapted to support a column of moderator material on a lower support plate of a reactor structure and to axially locate the column of moderator with respect to the coolant fluid entry port in the support plate. Located centrally of the device is a vestically extending shaft member telescopingly engaged at its lower end with a tubular member and connected to the tubular member by a shear pin. Below the shear pin embedded in the end of the shaft member are blade members which are adapted to cut into the side of the tubular member in the went the shear pin is destroyed by the impact or a falling fuel element. The cutting action of the blades in the tube absorbes the shock of the fallen element.

  11. Interface requirements in nuclear medicine devices and systems

    SciTech Connect

    Maguire, G.Q. Jr.; Brill, A.B.; Noz, M.E.

    1982-01-01

    Interface designs for three nuclear medicine imaging systems, and computer networking strategies proposed for medical imaging departments are presented. Configurations for two positron-emission-tomography devices (PET III and ECAT) and a general-purpose tomography instrument (the UNICON) are analyzed in terms of specific performance parameters. Interface designs for these machines are contrasted in terms of utilization of standard versus custom modules, cost, and ease of modification, upgrade, and support. The requirements of general purpose systems for medical image analysis, display, and archiving, are considered, and a realizable state-of-the-art system is specfied, including a suggested timetable.

  12. Nuclear magnetic resonance imaging in patients with cardiac pacing devices.

    PubMed

    Buendía, Francisco; Sánchez-Gómez, Juan M; Sancho-Tello, María J; Olagüe, José; Osca, Joaquín; Cano, Oscar; Arnau, Miguel A; Igual, Begoña

    2010-06-01

    Currently, nuclear magnetic resonance imaging is contraindicated in patients with a pacemaker or implantable cardioverter-defibrillator. This study was carried out because the potential risks in this situation need to be clearly defined. This prospective study evaluated clinical and electrical parameters before and after magnetic resonance imaging was performed in 33 patients (five with implantable cardioverter-defibrillators and 28 with pacemakers). In these patients, magnetic resonance imaging was considered clinically essential. There were no clinical complications. There was a temporary communication failure in two cases, sensing errors during imaging in two cases, and a safety signal was generated in one pacemaker at the maximum magnetic resonance frequency and output level. There were no technical restrictions on imaging nor were there any permanent changes in the performance of the cardiac pacing device. PMID:20515632

  13. Aging assessment of surge protective devices in nuclear power plants

    SciTech Connect

    Davis, J.F.; Subudhi, M.; Carroll, D.P.

    1996-01-01

    An assessment was performed to determine the effects of aging on the performance and availability of surge protective devices (SPDs), used in electrical power and control systems in nuclear power plants. Although SPDs have not been classified as safety-related, they are risk-important because they can minimize the initiating event frequencies associated with loss of offsite power and reactor trips. Conversely, their failure due to age might cause some of those initiating events, e.g., through short circuit failure modes, or by allowing deterioration of the safety-related component(s) they are protecting from overvoltages, perhaps preventing a reactor trip, from an open circuit failure mode. From the data evaluated during 1980--1994, it was found that failures of surge arresters and suppressers by short circuits were neither a significant risk nor safety concern, and there were no failures of surge suppressers preventing a reactor trip. Simulations, using the ElectroMagnetic Transients Program (EMTP) were performed to determine the adequacy of high voltage surge arresters.

  14. Designing a Nuclear Device as a Learning Exercise

    NASA Astrophysics Data System (ADS)

    Kahl, David

    2005-03-01

    The goal of this project was to examine in detail the difficulties involved in designing and constructing a nuclear weapon. The research was initiated as a class project in a course on nuclear physics. The workload was divided into three primary sections: Acquisition and Enrichment of Fissile Materials; Bomb Physics; and Bomb Effects. Using only publicly available materials, we were able to successfully devise a step-by-step design for building a 20 KT uranium bomb, as well as detailing the processes for uranium refinement and the results of its detonation. Our work is relevant to the broader scientific community because it demonstrates that the major difficulty encountered in building an atomic weapon is acquiring fissile material.

  15. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    SciTech Connect

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-06

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as {approx} 16 We/kg and {approx} 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is {approx} 640 m2 and {approx} 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is {approx} 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is {approx} 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  16. Advanced Thermophotovoltaic Devices for Space Nuclear Power Systems

    NASA Astrophysics Data System (ADS)

    Wernsman, Bernard; Mahorter, Robert G.; Siergiej, Richard; Link, Samuel D.; Wehrer, Rebecca J.; Belanger, Sean J.; Fourspring, Patrick; Murray, Susan; Newman, Fred; Taylor, Dan; Rahmlow, Tom

    2005-02-01

    Advanced thermophotovoltaic (TPV) modules capable of producing > 0.3 W/cm2 at an efficiency > 22% while operating at a converter radiator and module temperature of 1228 K and 325 K, respectively, have been made. These advanced TPV modules are projected to produce > 0.9 W/cm2 at an efficiency > 24% while operating at a converter radiator and module temperature of 1373 K and 325 K, respectively. Radioisotope and nuclear (fission) powered space systems utilizing these advanced TPV modules have been evaluated. For a 100 We radioisotope TPV system, systems utilizing as low as 2 general purpose heat source (GPHS) units are feasible, where the specific power for the 2 and 3 GPHS unit systems operating in a 200 K environment is as large as ˜ 16 We/kg and ˜ 14 We/kg, respectively. For a 100 kWe nuclear powered (as was entertained for the thermoelectric SP-100 program) TPV system, the minimum system radiator area and mass is ˜ 640 m2 and ˜ 1150 kg, respectively, for a converter radiator, system radiator and environment temperature of 1373 K, 435 K and 200 K, respectively. Also, for a converter radiator temperature of 1373 K, the converter volume and mass remains less than 0.36 m3 and 640 kg, respectively. Thus, the minimum system radiator + converter (reactor and shield not included) specific mass is ˜ 16 kg/kWe for a converter radiator, system radiator and environment temperature of 1373 K, 425 K and 200 K, respectively. Under this operating condition, the reactor thermal rating is ˜ 1110 kWt. Due to the large radiator area, the added complexity and mission risk needs to be weighed against reducing the reactor thermal rating to determine the feasibility of using TPV for space nuclear (fission) power systems.

  17. Mini-fission fusion explosive devices (mini-nukes) for nuclear pulse propulsion

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2005-11-01

    Nuclear pulse propulsion demands low-yield nuclear explosive devices. Because the critical mass of a fission explosive is rather large, this leads to extravagant fission devices with a very low fuel burn-up. For non-fission ignited pure fusion microexplosions the problem is the large ignition apparatus (laser, particle beam, etc.). Fission ignited large fusion explosive devices are for obvious reasons even less desirable. A third category (mini-nukes) are devices where the critical mass of the fission explosive is substantially reduced by its coupling to a DT fusion reaction, with the DT fusion neutrons increasing the fission rate. Whereas in pure fission devices a reduction of the critical mass is achieved by the implosive compression of the fissile core with a chemical high explosive, in the third category the implosion must at the same time heat the DT surrounding the fissile core to a temperature of ⩾107K, at which enough fusion neutrons are generated to increase the fission rate which in turn further increases the temperature and fusion neutron production rate. As has been shown by the author many years ago, such mini-nukes lead to astonishingly small critical masses. In their application to nuclear pulse propulsion the combustion products from the chemical high explosive are further heated by the neutrons and are becoming part of the propellant.

  18. Isotopic fingerprinting of the world's first nuclear device using post-detonation materials.

    PubMed

    Bellucci, Jeremy J; Simonetti, Antonio; Wallace, Christine; Koeman, Elizabeth C; Burns, Peter C

    2013-04-16

    In the event of a rogue nuclear attack or interception of illicit nuclear materials, timely forensic investigations are critical for accurate source attribution. Uranium (U) and plutonium (Pu) isotopic ratios of intercepted materials or postdetonation samples are, perhaps, the most valuable evidence in modern nuclear forensics. These ratios simultaneously provide information regarding the material's ''age'' (i.e., time elapsed since last purification), actinide concentrations, and relevant isotopic ratios/enrichment values. Consequently, these isotope signatures are invaluable in determining the origin, processing history, and intended purpose of any nuclear material. Here we show, for the first time, that it is feasible to determine the U and Pu isotopic compositions of historic nuclear devices from their postdetonation materials utilizing in situ U isotopic measurements. The U isotopic compositions of trinitite glass, produced subsequent to the world's first atomic explosion, indicate two sources: the device's tamper, composed of natural U that underwent fission during detonation, and natural U from the geological background. Enrichments in (234,235,236)U reflect the in situ decay of (238,239,240)Pu, the fuel used in the device. Time-integrated U isotopic modeling yields "supergrade" compositions, where (240)Pu/(239)Pu ≈ 0.01-0.03 and (238)Pu/(239)Pu ≈ 0.00011-0.00017, which are consistent with the Pu originating from the Hanford reactor. Spatially resolved U isotopic data of postdetonation debris reveal important details of the device in a relatively short time frame (hours). This capacity serves as an important deterrent to future nuclear threats and/or terrorist activities and is critical for source attribution and international security.

  19. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  20. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOEpatents

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  1. Selected fault testing of electronic isolation devices used in nuclear power plant operation

    SciTech Connect

    Villaran, M.; Hillman, K.; Taylor, J.; Lara, J.; Wilhelm, W.

    1994-05-01

    Electronic isolation devices are used in nuclear power plants to provide electrical separation between safety and non-safety circuits and systems. Major fault testing in an earlier program indicated that some energy may pass through an isolation device when a fault at the maximum credible potential is applied in the transverse mode to its output terminals. During subsequent field qualification testing of isolators, concerns were raised that the worst case fault, that is, the maximum credible fault (MCF), may not occur with a fault at the maximum credible potential, but rather at some lower potential. The present test program investigates whether problems can arise when fault levels up to the MCF potential are applied to the output terminals of an isolator. The fault energy passed through an isolated device during a fault was measured to determine whether the levels are great enough to potentially damage or degrade performance of equipment on the input (Class 1E) side of the isolator.

  2. Planning for the worst in Washington State: initial response planning for improvised nuclear device explosions.

    PubMed

    Poeton, Richard W; Glines, Wayne M; McBaugh, Debra

    2009-01-01

    Since 11 September 2001, improvised nuclear devices have become recognized as an important radiological threat requiring emergency response planning. Although Protective Action Guidance is well established for fixed nuclear facilities, correspondingly well-developed guidance does not exist for nuclear explosions. The Washington State Department of Health has developed preplanned Protective Action Recommendations for improvised nuclear device explosions. These recommendations recognize the need for advice to the public soon after such an event, before significant data are available. They can be used before significant outside support is available locally, and reference observable effects so people can use them if communications were disabled. The recommendations focus on early actions (24-48 h) and place priority on actions to avoid deterministic health effects due to residual fallout. Specific emphasis is placed on determining recommendations for evacuation, as well as the extent of the area for sheltering. The key recommendations developed for an initial public response are: (1) if there is ready access to robust shelter such as an underground basement or interior spaces in a multi-story structure, immediate sheltering in these areas is the best action, regardless of location; (2) if robust shelter is not available, and if fallout is observed in the area, then evacuation is the best general recommendation for locations within 16 km (10 miles) of the explosion; and (3) beyond 16 km (10 miles), the generally recommended protective action is to shelter in the best-protected location which is readily available. PMID:19066483

  3. Recent advances in medical device triage technologies for chemical, biological, radiological, and nuclear events.

    PubMed

    Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G

    2015-06-01

    In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events.

  4. Recent advances in medical device triage technologies for chemical, biological, radiological, and nuclear events.

    PubMed

    Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G

    2015-06-01

    In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events. PMID:25868677

  5. Scientists use GEANIE to Study Isotopes of Iridium and Europium to Improve Radiochemical Diagnostics in Nuclear Devices

    SciTech Connect

    Becker, J A; Nelson, R

    2002-11-21

    Radiochemical diagnostics play an important role in helping scientists understand the detonation of a nuclear device. Sometimes some elements or isotopes are inserted as radiochemical detectors at various locations in the nuclear device. During the detonation of the device, these detectors are subjected for a short time to the intense flux of neutrons emitted through fission and possibly through fusion of light elements (usually deuterium and tritium). After the detonation, the radiochemical detectors and their long-lived activation products are retrieved from the area where the underground explosion took place. These radiochemical samples are analyzed to extract information about how the device operated. A large amount of such radiochemical data exist from past nuclear-device tests.

  6. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications

    SciTech Connect

    Vinante, A. Falferi, P.; Mezzena, R.

    2014-10-15

    Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from {sup 1}H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.

  7. Superconducting quantum interference device microsusceptometer balanced over a wide bandwidth for nuclear magnetic resonance applications.

    PubMed

    Vinante, A; Mezzena, R; Falferi, P

    2014-10-01

    Superconducting Quantum Interference Device (SQUID) microsusceptometers have been widely used to study magnetic properties of materials at microscale. As intrinsically balanced devices, they could also be exploited for direct SQUID-detection of nuclear magnetic resonance (NMR) from micron sized samples, or for SQUID readout of mechanically detected NMR from submicron sized samples. Here, we demonstrate a double balancing technique that enables achievement of very low residual imbalance of a SQUID microsusceptometer over a wide bandwidth. In particular, we can generate ac magnetic fields within the SQUID loop as large as 1 mT, for frequencies ranging from dc up to a few MHz. As an application, we demonstrate direct detection of NMR from (1)H spins in a glycerol droplet placed directly on top of the 20 μm SQUID loops.

  8. Device for removing heat of decomposition in a steam power plant heated by nuclear energy

    SciTech Connect

    Emsperger, W.; Werker, E.

    1980-12-02

    Device for removing heat of decomposition in a steam power plant heated by nuclear energy and having a steam generator with a water-steam separating tank connected downstream of the steam generator in travel direction of the steam generated thereby includes a start-up circulatory loop for the steam power plant connected to the steam generator and including the water-steam separating tank therein, the start-up circulatory loop being formed of a feed water line and an outlet line from the water-steam separating tank and further including an externally cooled heat exchanger connected therein for removing after-heat.

  9. Device for fracturing silicon-carbide coatings on nuclear-fuel particles

    DOEpatents

    Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.

    This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  10. The MaPLE device of Saha Institute of Nuclear Physics: Construction and its plasma aspects

    SciTech Connect

    Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis

    2010-07-15

    The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density {approx}3-5x10{sup 10} cm{sup -3} and temperature {approx}7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.

  11. Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment

    SciTech Connect

    Bos, Randall J.; Dey, Thomas N.; Runnels, Scott R.

    2012-07-03

    Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed

  12. Tissue kerma vs distance relationships for initial nuclear radiation from the atomic devices detonated over Hiroshima and Nagasaki

    SciTech Connect

    Kerr, G.D.; Pace, J.V. III; Scott, W.H. Jr.

    1983-06-01

    Initial nuclear radiation is comprised of prompt neutrons and prompt primary gammas from an exploding nuclear device, prompt secondary gammas produced by neutron interactions in the environment, and delayed neutrons and delayed fission-product gammas from the fireball formed after the nuclear device explodes. These various components must all be considered in establishing tissue kerma vs distance relationships which describe the decrease of initial nuclear radiation with distance in Hiroshima and in Nagasaki. The tissue kerma at ground evel from delayed fission-product gammas and delayed neutrons was investigated using the NUIDEA code developed by Science Applications, Inc. This code incorporates very detailed models which can take into account such features as the rise of the fireball, the rapid radioactive decay of fission products in it, and the perturbation of the atmosphere by the explosion. Tissue kerma vs distance relationships obtained by summing results of these current state-of-the-art calculations will be discussed. Our results clearly show that the prompt secondary gammas and delayed fission-product gammas are the dominant components of total tissue kerma from initial nuclear radiation in the cases of the atomic (or pure-fission) devices detonated over Hiroshima and Nagasaki.

  13. A Review of the Research on Response to Improvised Nuclear Device Events

    SciTech Connect

    Bentz, A; Buddemeier, B; Dombroski, M

    2008-07-01

    Following the events of September 11, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. Understanding the state of knowledge, identifying gaps, and making recommendations for how to fill those gaps, this paper will provide a framework under which past findings can be understood and future research can fit. The risk of an improvised nuclear device (IND) detonation may seem unlikely; and while this is hopefully true, due to its destructive capability, IND events must be prepared for. Many people still live under the Cold War mentality that if a city is attacked with a nuclear weapon, there is little chance of survival. This assumption, while perhaps true in the case of multiple, thermonuclear weapons exchanges, does not hold for the current threat. If a single IND were detonated in the United States, there would be many casualties at the point of impact; however, there would also be many survivors and the initial response by two major groups will mean the difference between life and death for many people. These groups are the first responders and the public. Understanding how these two groups prepare, react and interact will improve response to nuclear terrorism. Figure 1 provides a visualization of the response timeline of an IND event. For the purposes of this assessment, it is assumed that to accurately inform the public, three functions need to be fulfilled by

  14. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments

    PubMed Central

    Davidson, Patricia M.; Sliz, Josiah; Isermann, Philipp; Denais, Celine; Lammerding, Jan

    2015-01-01

    The ability of cells to migrate through tissues and interstitial space is an essential factor during development and tissue homeostasis, immune cell mobility, and in various human diseases. Deformation of the nucleus and its associated lamina during 3-D migration is gathering increasing interest in the context of cancer metastasis, with the underlying hypothesis that a softer nucleus, resulting from reduced levels of lamin A/C, may aid tumour spreading. However, current methods to study the migration of cells in confining three dimensional (3-D) environments are limited by their imprecise control over the confinement, physiological relevance, and/or compatibility with high resolution imaging techniques. We describe the design of a polydimethylsiloxane (PDMS) microfluidic device composed of channels with precisely-defined constrictions mimicking physiological environments that enable high resolution imaging of live and fixed cells. The device promotes easy cell loading and rapid, yet long-lasting (>24 hours) chemotactic gradient formation without the need for continuous perfusion. Using this device, we obtained detailed, quantitative measurements of dynamic nuclear deformation as cells migrate through tight spaces, revealing distinct phases of nuclear translocation through the constriction, buckling of the nuclear lamina, and severe intranuclear strain. Furthermore, we found that lamin A/C-deficient cells exhibited increased and more plastic nuclear deformations compared to wild-type cells but only minimal changes in nuclear volume, implying that low lamin A/C levels facilitate migration through constrictions by increasing nuclear deformability rather than compressibility. The integration of our migration devices with high resolution time-lapse imaging provides a powerful new approach to study intracellular mechanics and dynamics in a variety of physiologically-relevant applications, ranging from cancer cell invasion to immune cell recruitment. PMID:26549481

  15. Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments.

    PubMed

    Davidson, Patricia M; Sliz, Josiah; Isermann, Philipp; Denais, Celine; Lammerding, Jan

    2015-12-01

    The ability of cells to migrate through tissues and interstitial spaces is an essential factor during development and tissue homeostasis, immune cell mobility, and in various human diseases. Deformation of the nucleus and its associated lamina during 3-D migration is gathering increasing interest in the context of cancer metastasis, with the underlying hypothesis that a softer nucleus, resulting from reduced levels of lamin A/C, may aid tumour spreading. However, current methods to study the migration of cells in confining three dimensional (3-D) environments are limited by their imprecise control over the confinement, physiological relevance, and/or compatibility with high resolution imaging techniques. We describe the design of a polydimethylsiloxane (PDMS) microfluidic device composed of channels with precisely-defined constrictions mimicking physiological environments that enable high resolution imaging of live and fixed cells. The device promotes easy cell loading and rapid, yet long-lasting (>24 hours) chemotactic gradient formation without the need for continuous perfusion. Using this device, we obtained detailed, quantitative measurements of dynamic nuclear deformation as cells migrate through tight spaces, revealing distinct phases of nuclear translocation through the constriction, buckling of the nuclear lamina, and severe intranuclear strain. Furthermore, we found that lamin A/C-deficient cells exhibited increased and more plastic nuclear deformations compared to wild-type cells but only minimal changes in nuclear volume, implying that low lamin A/C levels facilitate migration through constrictions by increasing nuclear deformability rather than compressibility. The integration of our migration devices with high resolution time-lapse imaging provides a powerful new approach to study intracellular mechanics and dynamics in a variety of physiologically-relevant applications, ranging from cancer cell invasion to immune cell recruitment. PMID:26549481

  16. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device

    PubMed Central

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C.; Marino, Stephen A.; Geard, Charles R.; Brenner, David J.; Garty, Guy

    2015-01-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  17. Planning and Response to the Detonation of an Improvised Nuclear Device: Past, Present, and Future Research

    SciTech Connect

    Bentz, A

    2008-07-31

    While the reality of an improvised nuclear device (IND) being detonated in an American city is unlikely, its destructive power is such that the scenario must be planned for. Upon reviewing the academic literature on the effects of and response to IND events, this report looks to actual responders from around the country. The results from the meetings of public officials in the cities show where gaps exist between theoretical knowledge and actual practice. In addition to the literature, the meetings reveal areas where future research needs to be conducted. This paper recommends that local response planners: meet to discuss the challenges of IND events; offer education to officials, the public, and responders on IND events; incorporate 'shelter-first' into response plans; provide information to the public and responders using the 3 Cs; and engage the private sector (including media) in response plans. In addition to these recommendations for the response planners, the paper provides research questions that once answered will improve response plans around the country. By following the recommendations, both groups, response planners and researchers, can help the country better prepare for and mitigate the effects of an IND detonation.

  18. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields. PMID:26414507

  19. Accelerator-Based Biological Irradiation Facility Simulating Neutron Exposure from an Improvised Nuclear Device.

    PubMed

    Xu, Yanping; Randers-Pehrson, Gerhard; Turner, Helen C; Marino, Stephen A; Geard, Charles R; Brenner, David J; Garty, Guy

    2015-10-01

    We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.

  20. Devices and methods for managing noncombustible gasses in nuclear power plants

    SciTech Connect

    Marquino, Wayne; Moen, Stephan C; Wachowiak, Richard M; Gels, John L; Diaz-Quiroz, Jesus; Burns, Jr., John C

    2014-12-23

    Systems passively eliminate noncondensable gasses from facilities susceptible to damage from combustion of built-up noncondensable gasses, such as H2 and O2 in nuclear power plants, without the need for external power and/or moving parts. Systems include catalyst plates installed in a lower header of the Passive Containment Cooling System (PCCS) condenser, a catalyst packing member, and/or a catalyst coating on an interior surface of a condensation tube of the PCCS condenser or an annular outlet of the PCCS condenser. Structures may have surfaces or hydrophobic elements that inhibit water formation and promote contact with the noncondensable gas. Noncondensable gasses in a nuclear power plant are eliminated by installing and using the systems individually or in combination. An operating pressure of the PCCS condenser may be increased to facilitate recombination of noncondensable gasses therein.

  1. CALMOS: Innovative device for the measurement of nuclear heating in material testing reactors

    SciTech Connect

    Carcreff, H.

    2011-07-01

    An R and D program has been carried out since 2002 in order to improve gamma heating measurements in the 70 MWth OSIRIS Material Testing Reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. Throughout this program an innovative calorimetric probe associated to a specific handling system has been designed in order to make measurements both along the fissile height and on the upper part of the core, where nuclear heating rates still remain high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for the process validation, while a displacement system has been especially designed to move the probe axially. A final probe has been designed thanks to modeling results and to preliminary measurements obtained with mock-ups irradiated to a heating level of 2W/g, This paper gives an overview of the development, describes the calorimetric probe, and expected advantages such as the possibility to use complementary methods to get the nuclear heating measurement. Results obtained with mock-ups irradiated in ex-core area of the reactor are presented and discussed. (authors)

  2. Nuclear energy plant with improved device for removing after-heat and emergency heat

    SciTech Connect

    Buscher, E.; Vinzens, K.

    1980-01-29

    The nuclear energy installation includes a nuclear reactor core, a primary circulatory loop connected to the reactor core and a circulating liquid metal medium therein heated by the reactor core. A first heat exchanger has a primary side connected in the primary circulatory loop, and a secondary side, a secondary circulatory loop connected to the secondary side of the first heat exchanger and a circulating liquid metal medium therein heated by heat transfer in the first heat exchanger from the liquid metal medium of the primary circulatory loop. A second heat exchanger has a primary side connected in the secondary circulatory loop, and a secondary side, a tertiary circulatory loop connected to the secondary side of the second heat exchanger and a circulating water/steam medium therein heated by heat transfer in the second heat exchanger from the liquid metal medium of the secondary circulatory loop. A condenser has a vapor/condensate side thereof connected in the tertiary circulatory loop, and a coolant side thereof connectible to a heat sink outside the installation. A third heat exchanger has a primary side connected to the primary side of the first heat exchanger, and a secondary side, a quaternary coolant loop connected to the secondary side of the third heat exchanger and connectible through the condenser to the heat sink.

  3. Operation Dominic Christmas and Fish Bowl series. Project Officers report. Project 4. 1. Production of chorioretinal burns by nuclear detonations and tests of protective devices and phototropic materials

    SciTech Connect

    Allen, R.G.

    1985-04-01

    The two primary objectives of this project were: (1) to test and improve methods for predicting the threshold distances at which chorioretinal burns will be produced by nuclear detonations, and (2) to test the response of and protection afforded by various protective devices. Rabbits and primates were used to achieve the first objective. They were exposed, at different altitudes and various distances from ground zero, to the radiant energy from four high-altitude nuclear detonations and eight low-altitude detonations. The animals were then examined for chorioretinal lesions. To achieve the second objective, the devices to be tested were exposed at the same distances and altitudes as the animals. Thermal data were obtained which appear adequate to specify: (1) the thermal stimuli responsible for the retinal burns; (2) the performance of the eye-protective devices; and (3) atmospheric transmission factors.

  4. Experimental results on the irradiation of nuclear fusion relevant materials at the dense plasma focus ‘Bora’ device

    NASA Astrophysics Data System (ADS)

    Cicuttin, A.; Crespo, M. L.; Gribkov, V. A.; Niemela, J.; Tuniz, C.; Zanolli, C.; Chernyshova, M.; Demina, E. V.; Latyshev, S. V.; Pimenov, V. N.; Talab, A. A.

    2015-06-01

    Samples of materials counted as perspective ones for use in the first-wall and construction elements in nuclear fusion reactors (FRs) with magnetic and inertial plasma confinement (W, Ti, Al, low-activated ferritic steel ‘Eurofer’ and some alloys) were irradiated in the dense plasma focus (DPF) device ‘Bora’ having a bank energy of ⩽5 kJ. The device generates hot dense (T ˜ 1 keV, n ˜ 1019 cm-3) deuterium plasma, powerful plasma streams (v ˜ 3 × 107 cm s-1) and fast (E ˜ 0.1 … 1.0 MeV) deuterons of power flux densities q up to 1010 and 1012 W cm-2 correspondingly. ‘Damage factor’ F = q × τ0.5 ensures an opportunity to simulate radiation loads (predictable for both reactors types) by the plasma/ion streams, which have the same nature and namely those parameters as expected in the FR modules. Before and after irradiation we provided investigations of our samples by means of a number of analytical techniques. Among them we used optical and scanning electron microscopy to understand character and parameters of damageability of the surface layers of the samples. Atomic force microscopy was applied to measure roughness of the surface after irradiation. These characteristics are quite important for understanding mechanisms and values of dust production in FR that may relate to tritium retention and emergency situations in FR facilities. We also applied two new techniques. For the surface we elaborated the portable x-ray diffractometer that combines x-ray single photon detection with high spectroscopic and angular resolutions. For bulk damageability investigations we applied an x-ray microCT system where x-rays were produced by a Hamamatsu microfocus source (150 kV, 500 µA, 5 µm minimum focal spot size). The detector was a Hamamatsu CMOS flat panel coupled to a fibre optic plate under the GOS scintillator. The reconstruction of three-dimensional data was run with Cobra 7.4 and DIGIX CT software while VG Studio Max 2.1, and Amira 5.3 were used for

  5. Summary of a joint US-Japan study of potential approaches to reduce the attractiveness of various nuclear materials for use in a nuclear explosive device by a terrorist group

    SciTech Connect

    Bathke, C.G.; Inoue, N.; Kuno, Y.; Mihara, T.; Sagara, H.; Ebbinghaus, B.B.; Murphy, J.; Dalton, D.; Nagayama, Y.

    2013-07-01

    This paper summarizes the results of a joint US-Japan study to establish a mutual understanding, through scientific-based study, of potential approaches to reduce the attractiveness of various nuclear materials for use in a terrorist nuclear explosive device (NED). 4 approaches that can reduce materials attractiveness with a very high degree of effectiveness are: -) diluting HEU with natural or depleted U to an enrichment of less than 10% U-235; -) storing Pu in nuclear fuel that is not man portable and with a dose rate greater or equal to 10 Gy/h at 1 m; -) storing Pu or HEU in heavy items, i.e. not transportable, provided the removal of the Pu or HEU from the item requires a purification/processing capability; and -) converting Pu and HEU to very dilute forms (such as wastes) that, without any security barriers, would require very long acquisition times to acquire a Category I quantity of Pu or of HEU. 2 approaches that can reduce materials attractiveness with a high degree of effectiveness are: -) converting HEU-fueled research reactors into LEU-fueled research reactors or dilute HEU with natural or depleted U to an enrichment of less than 20% U-235; -) converting U/Al reactor fuel into U/Si reactor fuel. Other approaches have been assessed as moderately or totally inefficient to reduce the attractiveness of nuclear materials.

  6. Magnetic shield for turbomolecular pump of the Magnetized Plasma Linear Experimental device at Saha Institute of Nuclear Physics.

    PubMed

    Biswas, Subir; Chattopadhyay, Monobir; Pal, Rabindranath

    2011-01-01

    The turbo molecular pump of the Magnetized Plasma Linear Experimental device is protected from damage by a magnetic shield. As the pump runs continuously in a magnetic field environment during a plasma physics experiment, it may get damaged owing to eddy current effect. For design and testing of the shield, first we simulate in details various aspects of magnetic shield layouts using a readily available field design code. The performance of the shield made from two half cylinders of soft iron material, is experimentally observed to agree very well with the simulation results. PMID:21280830

  7. Nuclear magnetic resonance on room temperature samples in nanotesla fields using a two-stage dc superconducting quantum interference device sensor

    NASA Astrophysics Data System (ADS)

    Körber, R.; Casey, A.; Shibahara, A.; Piscitelli, M.; Cowan, B. P.; Lusher, C. P.; Saunders, J.; Drung, D.; Schurig, Th.

    2007-10-01

    We describe a compact system for pulsed nuclear magnetic resonance at ultralow magnetic fields on small liquid samples (˜0.14ml) at room temperature. The broadband spectrometer employs an integrated two-stage superconducting quantum interference device current sensor with a coupled energy sensitivity of 50h, in the white noise limit. Environmental noise is screened using a compact arrangement of mu-metal and a superconducting shield. Proton signals in water have been observed down to 93nT (a Larmor frequency of 4.0Hz), with a minimum linewidth of 0.16Hz measured at ˜40Hz. Two-component free induction decays were observed from oil/water mixtures between 275 and 300K.

  8. A novel device for automatic withdrawal and accurate calibration of 99m-technetium radiopharmaceuticals to minimise radiation exposure to nuclear medicine staff and patient.

    PubMed

    Nazififard, Mohammad; Mahdizadeh, Simin; Meigooni, A S; Alavi, M; Suh, Kune Y

    2012-09-01

    A Joint Automatic Dispenser Equipment (JADE) has been designed and fabricated for automatic withdrawal and calibration of radiopharmaceutical materials. The thermoluminescent dosemeter procedures have shown a reduction in dose to the technician's hand with this novel dose dispenser system JADE when compared with the manual withdrawal of (99m)Tc. This system helps to increase the precision of calibration and to minimise the radiation dose to the hands and body of the workers. This paper describes the structure of this device, its function and user-friendliness, and its efficacy. The efficacy of this device was determined by measuring the radiation dose delivered to the hands of the nuclear medicine laboratory technician. The user-friendliness of JADE has been examined. The automatic withdrawal and calibration offered by this system reduces the dose to the technician's hand to a level below the maximum permissible dose stipulated by the international protocols. This research will serve as a backbone for future study about the safe use of ionising radiation in medicine.

  9. Locating, quantifying and characterising radiation hazards in contaminated nuclear facilities using a novel passive non-electrical polymer based radiation imaging device.

    PubMed

    Stanley, S J; Lennox, K; Farfán, E B; Coleman, J R; Adamovics, J; Thomas, A; Oldham, M

    2012-06-01

    This paper provides a summary of recent trials which took place at the US Department of Energy Oak Ridge National Laboratory (ORNL) during December 2010. The overall objective for the trials was to demonstrate that a newly developed technology could be used to locate, quantify and characterise the radiological hazards within two separate ORNL hot cells (B and C). The technology used, known as RadBall(®), is a novel, passive, non-electrical polymer based radiation detection device which provides a 3D visualisation of radiation from areas where effective measurements have not been previously possible due to lack of access. This is particularly useful in the nuclear industry prior to the decommissioning of facilities where the quantity, location and type of contamination are often unknown. For hot cell B, the primary objective of demonstrating that the technology could be used to locate, quantify and characterise three radiological sources was met with 100% success. Despite more challenging conditions in hot cell C, two sources were detected and accurately located. To summarise, the technology performed extremely well with regards to detecting and locating radiation sources and, despite the challenging conditions, moderately well when assessing the relative energy and intensity of those sources. Due to the technology's unique deployability, non-electrical nature and its directional awareness the technology shows significant promise for the future characterisation of radiation hazards prior to and during the decommissioning of contaminated nuclear facilities.

  10. Locating, quantifying and characterising radiation hazards in contaminated nuclear facilities using a novel passive non-electrical polymer based radiation imaging device.

    PubMed

    Stanley, S J; Lennox, K; Farfán, E B; Coleman, J R; Adamovics, J; Thomas, A; Oldham, M

    2012-06-01

    This paper provides a summary of recent trials which took place at the US Department of Energy Oak Ridge National Laboratory (ORNL) during December 2010. The overall objective for the trials was to demonstrate that a newly developed technology could be used to locate, quantify and characterise the radiological hazards within two separate ORNL hot cells (B and C). The technology used, known as RadBall(®), is a novel, passive, non-electrical polymer based radiation detection device which provides a 3D visualisation of radiation from areas where effective measurements have not been previously possible due to lack of access. This is particularly useful in the nuclear industry prior to the decommissioning of facilities where the quantity, location and type of contamination are often unknown. For hot cell B, the primary objective of demonstrating that the technology could be used to locate, quantify and characterise three radiological sources was met with 100% success. Despite more challenging conditions in hot cell C, two sources were detected and accurately located. To summarise, the technology performed extremely well with regards to detecting and locating radiation sources and, despite the challenging conditions, moderately well when assessing the relative energy and intensity of those sources. Due to the technology's unique deployability, non-electrical nature and its directional awareness the technology shows significant promise for the future characterisation of radiation hazards prior to and during the decommissioning of contaminated nuclear facilities. PMID:22555190

  11. Publisher's Note: ''The MaPLE device of Saha Institute of Nuclear Physics: Construction and its plasma aspects'' [Rev. Sci. Instrum. 81, 073507 (2010)

    SciTech Connect

    Pal, Rabindranath; Biswas, Subir; Basu, Subhasis; Chattopadhyay, Monobir; Basu, Debjyoti; Chaudhuri, Manis

    2010-07-15

    The Magnetized Plasma Linear Experimental (MaPLE) device is a low cost laboratory plasma device at Saha Institute of Nuclear Physics fabricated in-house with the primary aim of studying basic plasma physics phenomena such as plasma instabilities, wave propagation, and their nonlinear behavior in magnetized plasma regime in a controlled manner. The machine is specially designed to be a versatile laboratory device that can provide a number of magnetic and electric scenario to facilitate such studies. A total of 36 number of 20-turn magnet coils, designed such as to allow easy handling, is capable of producing a uniform, dc magnetic field of about 0.35 T inside the plasma chamber of diameter 0.30 m. Support structure of the coils is planned in an innovative way facilitating straightforward fabrication and easy positioning of the coils. Further special feature lies in the arrangement of the spacers between the coils that can be maneuvered rather easily to create different magnetic configurations. Various methods of plasma production can be suitably utilized according to the experimental needs at either end of the vacuum vessel. In the present paper, characteristics of a steady state plasma generated by electron cyclotron resonance method using 2.45 GHz microwave power are presented. Scans using simple probe drives revealed that a uniform and long plasma column having electron density {approx} 3-5 Multiplication-Sign 1010 cm-3 and temperature {approx} 7-10 eV, is formed in the center of the plasma chamber which is suitable for wave launching experiments.

  12. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    SciTech Connect

    Claudio Filippone, Ph.D.

    1999-06-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency.

  13. Potential hazards and artifacts of ferromagnetic and nonferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging

    SciTech Connect

    New, P.F.J.; Rosen, B.R.; Brady, T.J.; Buonanno, F.S.; Kistler, J.P.; Burt, C.T.; Hinshaw, W.S.; Newhouse, J.H.; Pohost, G.M.; Taveras, J.M.

    1983-04-01

    The risks to patients with metal surgical implants who are undergoing nuclear magnetic resonance (NMR) imaging and the artifacts caused by such implants were studied. Twenty-one aneurysm and other hemostatic clips and a variety of other materials (e.g., dental amalgam, 14 karat gold) were used. Longitudinal forces and torques were found to be exerted upon 16 of the 21 clips. With five aneurysm clips, forces and torques sufficient to produce risk of hemorrhage from dislocation of the clip from the vessel or aneurysm, or cerebral injury by clip displacement without dislodgement were identified. The induced ferromagnetism was shown to be related to the composition of the alloys from which the clips were manufactured. Clips with 10-14% nickel are evidently without sufficient induced ferromagnetism to cause hazard. The extent of NMR imaging artifacts was greater for materials with measurable ferromagnetic properties, but metals without measurable ferromagnetism in our tests also resulted in significant artifacts. Dental amalgam and 14 karat gold produced no imaging artifacts, but stainless steels in dentures and orthodontic braces produced extensive artifacts in the facial region.

  14. An Assessment of the Detection of Highly Enriched Uranium and its Use in an Improvised Nuclear Device using the Monte Carlo Computer Code MCNP-5

    NASA Astrophysics Data System (ADS)

    Cochran, Thomas

    2007-04-01

    In 2002 and again in 2003, an investigative journalist unit at ABC News transported a 6.8 kilogram metallic slug of depleted uranium (DU) via shipping container from Istanbul, Turkey to Brooklyn, NY and from Jakarta, Indonesia to Long Beach, CA. Targeted inspection of these shipping containers by Department of Homeland Security (DHS) personnel, included the use of gamma-ray imaging, portal monitors and hand-held radiation detectors, did not uncover the hidden DU. Monte Carlo analysis of the gamma-ray intensity and spectrum of a DU slug and one consisting of highly-enriched uranium (HEU) showed that DU was a proper surrogate for testing the ability of DHS to detect the illicit transport of HEU. Our analysis using MCNP-5 illustrated the ease of fully shielding an HEU sample to avoid detection. The assembly of an Improvised Nuclear Device (IND) -- a crude atomic bomb -- from sub-critical pieces of HEU metal was then examined via Monte Carlo criticality calculations. Nuclear explosive yields of such an IND as a function of the speed of assembly of the sub-critical HEU components were derived. A comparison was made between the more rapid assembly of sub-critical pieces of HEU in the ``Little Boy'' (Hiroshima) weapon's gun barrel and gravity assembly (i.e., dropping one sub-critical piece of HEU on another from a specified height). Based on the difficulty of detection of HEU and the straightforward construction of an IND utilizing HEU, current U.S. government policy must be modified to more urgently prioritize elimination of and securing the global inventories of HEU.

  15. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device

    PubMed Central

    Randers-Pehrson, Gerhard; Marino, Stephen A.; Garty, Guy; Harken, Andrew; Brenner, David J.

    2015-01-01

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima. PMID:26273118

  16. Nuclear Fuel Cycle & Vulnerabilities

    SciTech Connect

    Boyer, Brian D.

    2012-06-18

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  17. REACTOR CONTROL DEVICE

    DOEpatents

    Kaufman, H.B.; Weiss, A.A.

    1959-08-18

    A shadow control device for controlling a nuclear reactor is described. The device comprises a series of hollow neutron-absorbing elements arranged in groups, each element having a cavity for substantially housing an adjoining element and a longitudinal member for commonly supporting the groups of elements. Longitudinal actuation of the longitudinal member distributes the elements along its entire length in which position maximum worth is achieved.

  18. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear tomography system. 892.1310 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1310 Nuclear tomography system. (a) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body...

  19. Report on Department of Homeland Security Sponsored Research Project at Lawrence Livermore National Laboratory on Preparation for an Improvised Nuclear Device Event

    SciTech Connect

    A., B

    2008-07-31

    Following the events of September 11th, a litany of imaginable horribles was trotted out before an anxious and concerned public. To date, government agencies and academics are still grappling with how to best respond to such catastrophes, and as Senator Lieberman's quote says above, now is the time to plan and prepare for such events. One of the nation's worst fears is that terrorists might detonate an improvised nuclear device (IND) in an American city. With 9/11 serving as the catalyst, the government and many NGOs have invested money into research and development of response capabilities throughout the country. Yet, there is still much to learn about how to best respond to an IND event. My summer 2008 internship at Lawrence Livermore National Laboratory afforded me the opportunity to look in depth at the preparedness process and the research that has been conducted on this issue. While at the laboratory I was tasked to collect, combine, and process research on how cities and the federal government can best prepare for the horrific prospect of an IND event. Specific projects that I was involved with were meeting reports, research reviews, and a full project report. Working directly with Brooke Buddemeier and his support team at the National Atmospheric Release Advisory Center, I was able to witness first hand, preparation for meetings with response planners to inform them of the challenges that an IND event would pose to the affected communities. In addition, I supported the Homeland Security Institute team (HSI), which was looking at IND preparation and preparing a Congressional report. I participated in meetings at which local responders expressed their concerns and contributed valuable information to the response plan. I specialized in the psycho-social aspects of an IND event and served as a technical advisor to some of the research groups. Alongside attending and supporting these meetings, I worked on an independent research project which collected

  20. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  1. Photovoltaic device

    DOEpatents

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  2. Robotics and teleoperator-controlled devices.

    PubMed

    Meieran, H B

    1988-08-01

    This paper presents a rationale for and a summary of tasks and missions to which mobile and stationary robots and other teleoperator-controlled devices could be assigned in response to the accidental release of radioactive and other hazardous/toxic materials to the environment. Many of these vehicles and devices currently support operation and maintenance of nuclear power plants and other nuclear industry facilities. This paper also discusses specific missions for these devices at the Three Mile Island and Chernobyl nuclear power plant sites at the time of the accidents. Also discussed is the status of devices under development for future applications, as well as research on robotics.

  3. Robotics and teleoperator-controlled devices.

    PubMed

    Meieran, H B

    1988-08-01

    This paper presents a rationale for and a summary of tasks and missions to which mobile and stationary robots and other teleoperator-controlled devices could be assigned in response to the accidental release of radioactive and other hazardous/toxic materials to the environment. Many of these vehicles and devices currently support operation and maintenance of nuclear power plants and other nuclear industry facilities. This paper also discusses specific missions for these devices at the Three Mile Island and Chernobyl nuclear power plant sites at the time of the accidents. Also discussed is the status of devices under development for future applications, as well as research on robotics. PMID:3410688

  4. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section...

  5. 21 CFR 892.1410 - Nuclear electrocardiograph synchronizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear electrocardiograph synchronizer. 892.1410... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1410 Nuclear electrocardiograph synchronizer. (a) Identification. A nuclear electrocardiograph synchronizer is a device intended for use...

  6. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  7. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with...

  8. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  9. 21 CFR 892.1320 - Nuclear uptake probe.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear uptake probe. 892.1320 Section 892.1320...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1320 Nuclear uptake probe. (a) Identification. A nuclear uptake probe is a device intended to measure the amount of radionuclide taken up by...

  10. 21 CFR 892.1410 - Nuclear electrocardiograph synchronizer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear electrocardiograph synchronizer. 892.1410... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1410 Nuclear electrocardiograph synchronizer. (a) Identification. A nuclear electrocardiograph synchronizer is a device intended for use...

  11. 21 CFR 892.1410 - Nuclear electrocardiograph synchronizer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear electrocardiograph synchronizer. 892.1410... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1410 Nuclear electrocardiograph synchronizer. (a) Identification. A nuclear electrocardiograph synchronizer is a device intended for use...

  12. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  13. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  14. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with...

  15. 21 CFR 892.1410 - Nuclear electrocardiograph synchronizer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear electrocardiograph synchronizer. 892.1410... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1410 Nuclear electrocardiograph synchronizer. (a) Identification. A nuclear electrocardiograph synchronizer is a device intended for use...

  16. 21 CFR 892.1320 - Nuclear uptake probe.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear uptake probe. 892.1320 Section 892.1320...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1320 Nuclear uptake probe. (a) Identification. A nuclear uptake probe is a device intended to measure the amount of radionuclide taken up by...

  17. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  18. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  19. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  20. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with...

  1. 21 CFR 892.1410 - Nuclear electrocardiograph synchronizer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear electrocardiograph synchronizer. 892.1410... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1410 Nuclear electrocardiograph synchronizer. (a) Identification. A nuclear electrocardiograph synchronizer is a device intended for use...

  2. 21 CFR 892.1320 - Nuclear uptake probe.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear uptake probe. 892.1320 Section 892.1320...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1320 Nuclear uptake probe. (a) Identification. A nuclear uptake probe is a device intended to measure the amount of radionuclide taken up by...

  3. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  4. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source. (a) Identification. A nuclear sealed calibration source is a device that consists of an...

  5. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source. (a) Identification. A nuclear sealed calibration source is a device that consists of an...

  6. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source. (a) Identification. A nuclear sealed calibration source is a device that consists of an...

  7. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  8. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  9. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  10. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  11. 21 CFR 892.1320 - Nuclear uptake probe.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear uptake probe. 892.1320 Section 892.1320...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1320 Nuclear uptake probe. (a) Identification. A nuclear uptake probe is a device intended to measure the amount of radionuclide taken up by...

  12. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source. (a) Identification. A nuclear sealed calibration source is a device that consists of an...

  13. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  14. 21 CFR 892.1400 - Nuclear sealed calibration source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear sealed calibration source. 892.1400... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1400 Nuclear sealed calibration source. (a) Identification. A nuclear sealed calibration source is a device that consists of an...

  15. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with...

  16. 21 CFR 892.1380 - Nuclear flood source phantom.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear flood source phantom. 892.1380 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1380 Nuclear flood source phantom. (a) Identification. A nuclear flood source phantom is a device that consists of a radiolucent container filled with...

  17. 21 CFR 892.1320 - Nuclear uptake probe.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear uptake probe. 892.1320 Section 892.1320...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1320 Nuclear uptake probe. (a) Identification. A nuclear uptake probe is a device intended to measure the amount of radionuclide taken up by...

  18. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear...

  19. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear...

  20. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear...

  1. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear...

  2. 21 CFR 892.1350 - Nuclear scanning bed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear scanning bed. 892.1350 Section 892.1350...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1350 Nuclear scanning bed. (a) Identification. A nuclear scanning bed is an adjustable bed intended to support a patient during a nuclear...

  3. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  4. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  5. Sealing device

    DOEpatents

    Garcia-Crespo, Andres Jose

    2013-12-10

    A sealing device for sealing a gap between a dovetail of a bucket assembly and a rotor wheel is disclosed. The sealing device includes a cover plate configured to cover the gap and a retention member protruding from the cover plate and configured to engage the dovetail. The sealing device provides a seal against the gap when the bucket assemply is subjected to a centrifugal force.

  6. Type-I superconductor pick-up coil in superconducting quantum interference device-based ultra-low field nuclear magnetic resonance

    SciTech Connect

    Hwang, Seong-min Kim, Kiwoong; Kyu Yu, Kwon; Lee, Seong-Joo; Hyun Shim, Jeong; Körber, Rainer; Burghoff, Martin

    2014-02-10

    In ultra-low field nuclear magnetic resonance (ULF-NMR) with strong prepolarization field (B{sub p}), type-II superconducting pick-up coils may be vulnerable to flux pinning from the strong B{sub p}. Pick-up coils made of NbTi, Nb, and Pb were evaluated in terms of acquired NMR signal quality. The type-II pick-up coils showed degraded signals above 61 mT maximum exposure, while the Pb pick-up coil exhibited no such degradation. Furthermore, a negative counter pulse following a strong B{sub p} was shown to follow magnetic hysteresis loop to unpin the trapped flux in the type-II pick-up coil and restore the NMR signal.

  7. BRAKE DEVICE

    DOEpatents

    O'Donnell, T.J.

    1959-03-10

    A brake device is described for utilization in connection with a control rod. The device comprises a pair of parallelogram link mechanisms, a control rod moveable rectilinearly therebetween in opposite directions, and shoes resiliently supported by the mechanism for frictional engagement with the control rod.

  8. Electrochromic devices

    DOEpatents

    Allemand, Pierre M.; Grimes, Randall F.; Ingle, Andrew R.; Cronin, John P.; Kennedy, Steve R.; Agrawal, Anoop; Boulton, Jonathan M.

    2001-01-01

    An electrochromic device is disclosed having a selective ion transport layer which separates an electrochemically active material from an electrolyte containing a redox active material. The devices are particularly useful as large area architectural and automotive glazings due to there reduced back reaction.

  9. PLASMA DEVICE

    DOEpatents

    Gow, J.D.; Wilcox, J.M.

    1961-12-26

    A device is designed for producing and confining highenergy plasma from which neutrons are generated in copious quantities. A rotating sheath of electrons is established in a radial electric field and axial magnetic field produced within the device. The electron sheath serves as a strong ionizing medium to gas introdueed thereto and also functions as an extremely effective heating mechanism to the resulting plasma. In addition, improved confinement of the plasma is obtained by ring magnetic mirror fields produced at the ends of the device. Such ring mirror fields are defined by the magnetic field lines at the ends of the device diverging radially outward from the axis of the device and thereafter converging at spatial annular surfaces disposed concentrically thereabout. (AFC)

  10. Effects of exposure to gradient magnetic fields emitted by nuclear magnetic resonance devices on clonogenic potential and proliferation of human hematopoietic stem cells.

    PubMed

    Iachininoto, Maria Grazia; Camisa, Vincenzo; Leone, Lucia; Pinto, Rosanna; Lopresto, Vanni; Merla, Caterina; Giorda, Ezio; Carsetti, Rita; Zaffina, Salvatore; Podda, Maria Vittoria; Teofili, Luciana; Grassi, Claudio

    2016-05-01

    This study investigates effects of gradient magnetic fields (GMFs) emitted by magnetic resonance imaging (MRI) devices on hematopoietic stem cells. Field measurements were performed to assess exposure to GMFs of staff working at 1.5 T and 3 T MRI units. Then an exposure system reproducing measured signals was realized to expose in vitro CD34+ cells to GMFs (1.5 T-protocol and 3 T-protocol). CD34+ cells were obtained by Fluorescence Activated Cell Sorting from six blood donors and three MRI-exposed workers. Blood donor CD34+ cells were exposed in vitro for 72 h to 1.5 T or 3 T-protocol and to sham procedure. Cells were then cultured and evaluated in colony forming unit (CFU)-assay up to 4 weeks after exposure. Results showed that in vitro GMF exposure did not affect cell proliferation but instead induced expansion of erythroid and monocytes progenitors soon after exposure and for the subsequent 3 weeks. No decrease of other clonogenic cell output (i.e., CFU-granulocyte/erythroid/macrophage/megakaryocyte and CFU-granulocyte/macrophage) was noticed, nor exposed CD34+ cells underwent the premature exhaustion of their clonogenic potential compared to sham-exposed controls. On the other hand, pilot experiments showed that CD34+ cells exposed in vivo to GMFs (i.e., samples from MRI workers) behaved in culture similarly to sham-exposed CD34+ cells, suggesting that other cells and/or microenvironment factors might prevent GMF effects on hematopoietic stem cells in vivo. Accordingly, GMFs did not affect the clonogenic potential of umbilical cord blood CD34+ cells exposed in vitro together with the whole mononuclear cell fraction. PMID:26992028

  11. Effects of exposure to gradient magnetic fields emitted by nuclear magnetic resonance devices on clonogenic potential and proliferation of human hematopoietic stem cells.

    PubMed

    Iachininoto, Maria Grazia; Camisa, Vincenzo; Leone, Lucia; Pinto, Rosanna; Lopresto, Vanni; Merla, Caterina; Giorda, Ezio; Carsetti, Rita; Zaffina, Salvatore; Podda, Maria Vittoria; Teofili, Luciana; Grassi, Claudio

    2016-05-01

    This study investigates effects of gradient magnetic fields (GMFs) emitted by magnetic resonance imaging (MRI) devices on hematopoietic stem cells. Field measurements were performed to assess exposure to GMFs of staff working at 1.5 T and 3 T MRI units. Then an exposure system reproducing measured signals was realized to expose in vitro CD34+ cells to GMFs (1.5 T-protocol and 3 T-protocol). CD34+ cells were obtained by Fluorescence Activated Cell Sorting from six blood donors and three MRI-exposed workers. Blood donor CD34+ cells were exposed in vitro for 72 h to 1.5 T or 3 T-protocol and to sham procedure. Cells were then cultured and evaluated in colony forming unit (CFU)-assay up to 4 weeks after exposure. Results showed that in vitro GMF exposure did not affect cell proliferation but instead induced expansion of erythroid and monocytes progenitors soon after exposure and for the subsequent 3 weeks. No decrease of other clonogenic cell output (i.e., CFU-granulocyte/erythroid/macrophage/megakaryocyte and CFU-granulocyte/macrophage) was noticed, nor exposed CD34+ cells underwent the premature exhaustion of their clonogenic potential compared to sham-exposed controls. On the other hand, pilot experiments showed that CD34+ cells exposed in vivo to GMFs (i.e., samples from MRI workers) behaved in culture similarly to sham-exposed CD34+ cells, suggesting that other cells and/or microenvironment factors might prevent GMF effects on hematopoietic stem cells in vivo. Accordingly, GMFs did not affect the clonogenic potential of umbilical cord blood CD34+ cells exposed in vitro together with the whole mononuclear cell fraction.

  12. PLASMA DEVICE

    DOEpatents

    Baker, W.R.; Brathenahl, A.; Furth, H.P.

    1962-04-10

    A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

  13. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear anthropomorphic phantom. 892.1370...

  14. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear anthropomorphic phantom. 892.1370...

  15. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains...

  16. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains...

  17. 21 CFR 892.1370 - Nuclear anthropomorphic phantom.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear anthropomorphic phantom. 892.1370 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1370 Nuclear anthropomorphic phantom. (a) Identification. A nuclear anthropomorphic phantom is a human tissue facsimile that contains...

  18. Optimization of the detection coil of high-Tc superconducting quantum interference device-based nuclear magnetic resonance for discriminating a minimum amount of liver tumor of rats in microtesla fields

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Hsien; Huang, Kai-Wen; Yang, Hong-Chang; Horng, Herng-Er; Liao, Shu-Hsien

    2013-08-01

    This study presents an optimization of the detection coil of high-Tc superconducting quantum interference device (SQUID)-based nuclear magnetic resonance (NMR) in microtesla fields for discriminating a minimum amount of liver tumor in rats by characterizing the longitudinal relaxation rate, T1-1, of tested samples. The detection coil, which was coupled to the SQUID through a flux transformer, was optimized by varying the copper wires' winding turns and diameters. When comparing the measured NMR signals, we found that the simulated NMR signal agrees with simulated signals. When discriminating liver tumors in rats, the averaged longitudinal relaxation rate was observed to be T1-1 = 3.3 s-1 for cancerous liver tissue and T1-1 = 6.6 s-1 for normal liver tissue. The results suggest that it can be used to successfully discriminate cancerous liver tissue from normal liver tissues in rats. The minimum amount of samples that can be detected is 0.2 g for liver tumor and 0.4 g for normal liver tissue in 100 μT fields. The specimen was not damaged; it can be used for other pathological analyses. The proposed method provides more possibilities for examining undersized specimens.

  19. Medical Device Safety

    MedlinePlus

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Medical Devices Home Medical Devices Medical Device Safety Medical Device Safety Share Tweet Linkedin Pin it More sharing ...

  20. Ventricular assist device

    MedlinePlus

    VAD; RVAD; LVAD; BVAD; Right ventricular assist device; Left ventricular assist device; Biventricular assist device; Heart pump; Left ventricular assist system; LVAS; Implantable ventricular assist device

  1. Detection device

    DOEpatents

    Smith, Jay E.

    1984-01-01

    The present invention is directed to a detection device comprising: (1) an entrance chamber, (2) a central chamber, and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  2. Detection device

    DOEpatents

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  3. Electrochemical device

    DOEpatents

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  4. 78 FR 33447 - Draft Applications for Sealed Source and Device Evaluation and Registration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... COMMISSION Draft Applications for Sealed Source and Device Evaluation and Registration AGENCY: Nuclear... Commission (NRC) is revising its licensing guidance for applications for sealed source and device evaluation..., ``Consolidated Guidance about Materials Licenses: Applications for Sealed Source and Device Evaluation...

  5. Nuclear Medicine

    MedlinePlus

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  6. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  7. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2008-08-19

    A laser device includes a virtual source configured to aim laser energy that originates from a true source. The virtual source has a vertical rotational axis during vertical motion of the virtual source and the vertical axis passes through an exit point from which the laser energy emanates independent of virtual source position. The emanating laser energy is collinear with an orientation line. The laser device includes a virtual source manipulation mechanism that positions the virtual source. The manipulation mechanism has a center of lateral pivot approximately coincident with a lateral index and a center of vertical pivot approximately coincident with a vertical index. The vertical index and lateral index intersect at an index origin. The virtual source and manipulation mechanism auto align the orientation line through the index origin during virtual source motion.

  8. [Devic disease].

    PubMed

    Papeix, Caroline

    2006-11-01

    Devic disease, also known as neuromyelitis optica, is a severe rare condition characterized clinically by one or more episodes of optical neuritis and myelitis. Pathologically, it is characterized by extensive demyelination associated with axon loss and deposits of complement and immunoglobulins (IgM) within the lesions. Specific antibodies for this disease (IgG NMO) were recently identified. Immunosuppressive treatment is currently the best option for preventing relapse. PMID:17086129

  9. POSITIONING DEVICE

    DOEpatents

    McCorkle, W.H.

    1959-07-14

    A positioner for a control rod for a nuclear reactor is described. The positioner includes a spur gear and rack for adjusting the control rod slowly and in small ainounts as well as a piston and cylinder for moving the control rod rapidly thrcugh larger distances. The positioner also has associsted with it a worm wheel and gear for rotating it out of engagement with the control rod.

  10. System for remote control of underground device

    DOEpatents

    Brumleve, T.D.; Hicks, M.G.; Jones, M.O.

    1975-10-21

    A system is described for remote control of an underground device, particularly a nuclear explosive. The system includes means at the surface of the ground for transmitting a seismic signal sequence through the earth having controlled and predetermined signal characteristics for initiating a selected action in the device. Additional apparatus, located with or adjacent to the underground device, produces electrical signals in response to the seismic signals received and compares these electrical signals with the predetermined signal characteristics.

  11. History of Nuclear India

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Ram

    2000-04-01

    India emerged as a free and democratic country in 1947, and entered into the nuclear age in 1948 by establishing the Atomic Energy Commission (AEC), with Homi Bhabha as the chairman. Later on the Department of Atomic Energy (DAE) was created under the Office of the Prime Minister Jawahar Lal Nehru. Initially the AEC and DAE received international cooperation, and by 1963 India had two research reactors and four nuclear power reactors. In spite of the humiliating defeat in the border war by China in 1962 and China's nuclear testing in 1964, India continued to adhere to the peaceful uses of nuclear energy. On May 18, 1974 India performed a 15 kt Peaceful Nuclear Explosion (PNE). The western powers considered it nuclear weapons proliferation and cut off all financial and technical help, even for the production of nuclear power. However, India used existing infrastructure to build nuclear power reactors and exploded both fission and fusion devices on May 11 and 13, 1998. The international community viewed the later activity as a serious road block for the Non-Proliferation Treaty and the Comprehensive Test Ban Treaty; both deemed essential to stop the spread of nuclear weapons. India considers these treaties favoring nuclear states and is prepared to sign if genuine nuclear disarmament is included as an integral part of these treaties.

  12. Portable source identification device

    NASA Astrophysics Data System (ADS)

    Andersen, Eric S.; Samuel, Todd J.; Gervais, Kevin L.

    2005-05-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation"s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. As the deployment of radiation detection systems proceeds, there is a need to adapt the baseline radiation portal monitor (RPM) system technology to operations at these diverse ports of entry. When screening produces an alarm in the primary inspection RPM, the alarming vehicle is removed from the flow of commerce and the alarm is typically confirmed in a secondary inspection RPM. The portable source identification device (PSID) is a radiation sensor panel (RSP), based on thallium-doped sodium iodide (NaI(Tl)) scintillation detector and gamma spectroscopic analysis hardware and software, mounted on a scissor lift on a small truck. The lift supports a box containing a commercial off-the-shelf (COTS) sodium iodide detector that provides real-time isotopic identification, including neutron detectors to interdict Weapons of Mass Destruction (WMD) and radiation dispersion devices (RDD). The scissor lift will lower the detectors to within a foot off the ground and raise them to approximately 24 feet (7.3 m) in the air, allowing a wide vertical scanning range.

  13. Portable Source Identification Device

    SciTech Connect

    Andersen, Eric S.; Samuel, Todd J.; Gervais, Kevin L.

    2005-08-01

    U.S. Customs and Border Protection (CBP) is the primary enforcement agency protecting the nation’s ports of entry. CBP is enhancing its capability to interdict the illicit import of nuclear and radiological materials and devices that may be used by terrorists. Pacific Northwest National Laboratory (PNNL) is providing scientific and technical support to CBP in their goal to enable rapid deployment of nuclear and radiation detection systems at U. S. ports of entry to monitor 100% of the incoming international traffic and cargo while not adversely impacting the operations or throughput of the ports. As the deployment of radiation detection systems proceeds, there is a need to adapt the baseline radiation portal monitor (RPM) system technology to operations at these diverse ports of entry. When screening produces an alarm in the primary inspection RPM, the alarming vehicle is removed from the flow of commerce and the alarm is typically confirmed in a secondary inspection RPM. The portable source identification device (PSID) is a radiation sensor panel (RSP), based on thallium-doped sodium iodide (NaI(Tl)) scintillation detector and gamma spectroscopic analysis hardware and software, mounted on a scissor lift on a small truck. The lift supports a box containing a commercial off-the-shelf (COTS) sodium iodide detector that provides real-time isotopic identification, including neutron detectors to interdict Weapons of Mass Destruction (WMD) and radiation dispersion devices (RDD). The scissor lift will lower the detectors to within a foot off the ground and raise them to approximately 24 feet in the air, allowing a wide vertical scanning range.

  14. Electrooptical devices

    NASA Astrophysics Data System (ADS)

    Hurwitz, C. E.

    1980-03-01

    This report covers work carried out with support of the Department of the Air Force during the period 1 October 1979 through 31 March 1980. A part of this support was provided by the Rome Air Development Center. CW operation at temperatures up to 55 C has been achieved for GaInAsP/InP double-heterostructure (DH) lasers emitting at 1.5 micrometers, which were grown without a GaInAsP buffer layer. These devices are of interest for use as sources in fiber-optics communications systems, since the lowest transmission loss reported for fused-silica optical fibers occurs at 1.55 micrometers. Surface passivation techniques developed for InP and GaInAsP avalanche photodiodes have resulted in reductions of dark current as large as four orders of magnitude, to values as low as .0000016 A/sq cm at 0.9 V(b) where V(b) is the breakdown voltage. Devices consisting entirely of InP have been passivated with plasma-deposited Si3N4, and those with a GaInAsP layer but with the p-n junction in InP have been passivated with polyimide. Neither of these techniques successfully reduces dark currents in devices with the p-n junction in the GaInAsP, but a film of photoresist sprayed with SF6 as the propellant has given excellent results. The electrical characteristics in InP ion implanted with Sn, Ge, Si, and C have been investigated. All of these column IV elements yielded n-type conductivity and Sn, Ge, and Si showed high electrical activation; however, implanted C was found to have a net electrical activation of only about 5 percent.

  15. OLED devices

    DOEpatents

    Sapochak, Linda Susan [Arlington, VA; Burrows, Paul Edward [Kennewick, WA; Bimalchandra, Asanga [Richland, WA

    2011-02-22

    An OLED device having an emission layer formed of an ambipolar phosphine oxide host material and a dopant, a hole transport layer in electrical communication with an anode, an electron transport layer in communication with a cathode, wherein the HOMO energy of the hole transport layer is substantially the same as the HOMO energy of the ambipolar host in the emission layer, and the LUMO energy of the electron transport layer is substantially the same as the LUMO energy of the ambipolar host in the emission layer.

  16. Device Connectivity

    PubMed Central

    Walsh, John; Roberts, Ruth; Morris, Richard

    2015-01-01

    Patients with diabetes have to take numerous factors/data into their therapeutic decisions in daily life. Connecting the devices they are using by feeding the data generated into a database/app is supposed to help patients to optimize their glycemic control. As this is not established in practice, the different roadblocks have to be discussed to open the road. That large telecommunication companies are now entering this market might be a big help in pushing this forward. Smartphones offer an ideal platform for connectivity solutions. PMID:25614015

  17. Electrospray device

    NASA Technical Reports Server (NTRS)

    Demmons, Nathaniel (Inventor); Martin, Roy (Inventor); Hruby, Vladimir (Inventor); Roy, Thomas (Inventor); Spence, Douglas (Inventor); Ehrbar, Eric (Inventor); Zwahlen, Jurg (Inventor)

    2011-01-01

    An electrospray device includes an electrospray emitter adapted to receive electrospray fluid; an extractor plate spaced from the electrospray emitter and having at least one aperture; and a power supply for applying a first voltage between the extractor plate and emitter for generating at least one Taylor cone emission through the aperture to create an electrospray plume from the electrospray fluid, the extractor plate as well as accelerator and shaping plates may include a porous, conductive medium for transporting and storing excess, accumulated electrospray fluid away from the aperture.

  18. Electrochromic device

    SciTech Connect

    Schwendemanm, Irina G.; Polcyn, Adam D.; Finley, James J.; Boykin, Cheri M.; Knowles, Julianna M.

    2011-03-15

    An electrochromic device includes a first substrate spaced from a second substrate. A first conductive member is formed over at least a portion of the first substrate. A first electrochromic material is formed over at least a portion of the first conductive member. The first electrochromic material includes an organic material. A second conductive member is formed over at least a portion of the second substrate. A second electrochromic material is formed over at least a portion of the second conductive member. The second electrochromic material includes an inorganic material. An ionic liquid is positioned between the first electrochromic material and the second electrochromic material.

  19. Diversionary device

    DOEpatents

    Grubelich, Mark C.

    2001-01-01

    A diversionary device has a housing having at least one opening and containing a non-explosive propellant and a quantity of fine powder packed within the housing, with the powder being located between the propellant and the opening. When the propellant is activated, it has sufficient energy to propel the powder through the opening to produce a cloud of powder outside the housing. An igniter is also provided for igniting the cloud of powder to create a diversionary flash and bang, but at a low enough pressure to avoid injuring nearby people.

  20. Electroexplosive device

    NASA Technical Reports Server (NTRS)

    Menichelli, V. J. (Inventor)

    1978-01-01

    An electroexplosive device is presented which employs a header having contact pins hermetically sealed with glass passing through from a connector end of the header to a cavity filled with a shunt layer of a new nonlinear resistive composition and a heat-sink layer of a new dielectric composition having good thermal conductivity and capacity. The nonlinear resistive layer and the heat-sink layer are prepared from materials by mixing with a low temperature polymerizing resin. The resin is dissolved in a suitable solvent and later evaporated. The resultant solid composite is ground into a powder, press formed into the header and cured (polymerized) at about 250 to 300 F.

  1. Rulison Site corrective action report

    SciTech Connect

    1996-09-01

    Project Rulison was a joint US Atomic Energy Commission (AEC) and Austral Oil Company (Austral) experiment, conducted under the AEC`s Plowshare Program, to evaluate the feasibility of using a nuclear device to stimulate natural gas production in low-permeability gas-producing geologic formations. The experiment was conducted on September 10, 1969, and consisted of detonating a 40-kiloton nuclear device at a depth of 2,568 m below ground surface (BGS). This Corrective Action Report describes the cleanup of petroleum hydrocarbon- and heavy-metal-contaminated sediments from an old drilling effluent pond and characterization of the mud pits used during drilling of the R-EX well at the Rulison Site. The Rulison Site is located approximately 65 kilometers (40 miles) northeast of Grand Junction, Colorado. The effluent pond was used for the storage of drilling mud during drilling of the emplacement hole for the 1969 gas stimulation test conducted by the AEC. This report also describes the activities performed to determine whether contamination is present in mud pits used during the drilling of well R-EX, the gas production well drilled at the site to evaluate the effectiveness of the detonation in stimulating gas production. The investigation activities described in this report were conducted during the autumn of 1995, concurrent with the cleanup of the drilling effluent pond. This report describes the activities performed during the soil investigation and provides the analytical results for the samples collected during that investigation.

  2. Beta ray flux measuring device

    DOEpatents

    Impink, Jr., Albert J.; Goldstein, Norman P.

    1990-01-01

    A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.

  3. Optoelectronic device

    DOEpatents

    Bonekamp, Jeffrey E.; Boven, Michelle L.; Gaston, Ryan S.

    2014-09-09

    The invention is an optoelectronic device comprising an active portion which converts light to electricity or converts electricity to light, the active portion having a front side for the transmittal of the light and a back side opposite from the front side, at least two electrical leads to the active portion to convey electricity to or from the active portion, an enclosure surrounding the active portion and through which the at least two electrical leads pass wherein the hermetically sealed enclosure comprises at the front side of the active portion a barrier material which allows for transmittal of light, one or more getter materials disposed so as to not impede the transmission of light to or from the active portion, and a contiguous gap pathway to the getter material which pathway is disposed between the active portion and the barrier material.

  4. CLOSURE DEVICE

    DOEpatents

    Linzell, S.M.; Dorcy, D.J.

    1958-08-26

    A quick opening type of stuffing box employing two banks of rotatable shoes, each of which has a caraming action that forces a neoprene sealing surface against a pipe or rod where it passes through a wall is presented. A ring having a handle or wrench attached is placed eccentric to and between the two banks of shoes. Head bolts from the shoes fit into slots in this ring, which are so arranged that when the ring is rotated a quarter turn in one direction the shoes are thrust inwardly to cramp the neopnrene about the pipe, malting a tight seal. Moving the ring in the reverse direction moves the shoes outwardly and frees the pipe which then may be readily removed from the stuffing box. This device has particular application as a closure for the end of a coolant tube of a neutronic reactor.

  5. PLASMA DEVICE

    DOEpatents

    Baker, W.R.

    1961-08-22

    A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

  6. Electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  7. 10 CFR 31.3 - Certain devices and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Certain devices and equipment. 31.3 Section 31.3 Energy NUCLEAR REGULATORY COMMISSION GENERAL DOMESTIC LICENSES FOR BYPRODUCT MATERIAL § 31.3 Certain devices and... of hydrogen 3 (tritium) per device....

  8. 10 CFR 31.3 - Certain devices and equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Certain devices and equipment. 31.3 Section 31.3 Energy NUCLEAR REGULATORY COMMISSION GENERAL DOMESTIC LICENSES FOR BYPRODUCT MATERIAL § 31.3 Certain devices and... of hydrogen 3 (tritium) per device....

  9. 10 CFR 31.3 - Certain devices and equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Certain devices and equipment. 31.3 Section 31.3 Energy NUCLEAR REGULATORY COMMISSION GENERAL DOMESTIC LICENSES FOR BYPRODUCT MATERIAL § 31.3 Certain devices and... of hydrogen 3 (tritium) per device....

  10. Void detecting device

    DOEpatents

    Nakamoto, Koichiro; Ohyama, Nobumi; Adachi, Kiyoshi; Kuwahara, Hajime

    1979-01-01

    A detector to be inserted into a flowing conductive fluid, e.g. sodium coolant in a nuclear reactor, comprising at least one exciting coil to receive an a-c signal applied thereto and two detecting coils located in the proximity of the exciting coil. The difference and/or the sum of the output signals of the detecting coils is computed to produce a flow velocity signal and/or a temperature-responsive signal for the fluid. Such flow velocity signal or temperature signal is rectified synchronously by a signal the phase of which is shifted substantially .+-. 90.degree. with respect to the flow velocity signal or temperature signal, thereby enabling the device to detect voids in the flowing fluid without adverse effects from flow velocity variations or flow disturbances occurring in the fluid.

  11. Children's (Pediatric) Nuclear Medicine

    MedlinePlus

    ... like? Special camera or imaging devices used in nuclear medicine include the gamma camera and single-photon emission-computed tomography (SPECT). The gamma camera, also called a scintillation camera, detects radioactive energy that is emitted from the patient's body and ...

  12. Integrated device architectures for electrochromic devices

    SciTech Connect

    Frey, Jonathan Mack; Berland, Brian Spencer

    2015-04-21

    This disclosure describes systems and methods for creating monolithically integrated electrochromic devices which may be a flexible electrochromic device. Monolithic integration of thin film electrochromic devices may involve the electrical interconnection of multiple individual electrochromic devices through the creation of specific structures such as conductive pathway or insulating isolation trenches.

  13. Solid-State Nuclear Power

    NASA Technical Reports Server (NTRS)

    George, Jeffrey A.

    2012-01-01

    A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.

  14. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2004-11-23

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  15. Laser device

    DOEpatents

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  16. Survey of hydrogen monitoring devices

    SciTech Connect

    Lai, W.

    1981-01-01

    Presented are results of a survey of commercially available monitoring devices suitable for hydrogen detection in the secondary containment vessel of a nuclear power plant during the post postulated accident period. Available detectors were grouped into the following five classes: combustion, solid state, electrochemical, thermal conductivity, and absorption. The performance of most available sensors is likely to deteriorate when exposed to the postulated conditions which include moisture, which could be at high temperature, and radioactive noncondensibles. Of the commercial devices, those using metallic filament thermal conductivity detectors seem least susceptible to performance change. Absorption detectors are best suited for this monitoring task but the only available device is designed for pipeline corrosion assessment. Initiation of experimental study to assess apparent deficiencies of commercial detectors is recommended. Also recommended is an analytical/experimental effort to determine the optimum detector array for monitoring in the secondary containment vessels.

  17. Nuclear rights - nuclear wrongs

    SciTech Connect

    Paul, E.F.; Miller, F.D.; Paul, J.; Ahrens, J.

    1986-01-01

    This book contains 11 selections. The titles are: Three Ways to Kill Innocent Bystanders: Some Conundrums Concerning the Morality of War; The International Defense of Liberty; Two Concepts of Deterrence; Nuclear Deterrence and Arms Control; Ethical Issues for the 1980s; The Moral Status of Nuclear Deterrent Threats; Optimal Deterrence; Morality and Paradoxical Deterrence; Immoral Risks: A Deontological Critique of Nuclear Deterrence; No War Without Dictatorship, No Peace Without Democracy: Foreign Policy as Domestic Politics; Marxism-Leninism and its Strategic Implications for the United States; Tocqueveille War.

  18. Postdetonation nuclear debris for attribution.

    PubMed

    Fahey, A J; Zeissler, C J; Newbury, D E; Davis, J; Lindstrom, R M

    2010-11-23

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the "Nuclear Forensics and Attribution Act," scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material.

  19. Postdetonation nuclear debris for attribution

    PubMed Central

    Fahey, A. J.; Zeissler, C. J.; Newbury, D. E.; Davis, J.; Lindstrom, R. M.

    2010-01-01

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the “Nuclear Forensics and Attribution Act,” scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material. PMID:21059943

  20. Postdetonation nuclear debris for attribution.

    PubMed

    Fahey, A J; Zeissler, C J; Newbury, D E; Davis, J; Lindstrom, R M

    2010-11-23

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the "Nuclear Forensics and Attribution Act," scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material. PMID:21059943

  1. Luneburg lens approach to nuclear rainbow scattering.

    PubMed

    Michel, F; Reidemeister, G; Ohkubo, S

    2002-10-01

    The physical interpretation of nuclear rainbow scattering within the frame of the optical model is critically investigated. Starting from the properties of the Luneburg lens, a gradient index device that displays refractive features similar to those of the nuclear potential, important differences between the mechanisms producing the nuclear and optical rainbows are pointed out. PMID:12365983

  2. Medical devices: US medical device regulation.

    PubMed

    Jarow, Jonathan P; Baxley, John H

    2015-03-01

    Medical devices are regulated by the US Food and Drug Administration (FDA) within the Center for Devices and Radiological Health. Center for Devices and Radiological Health is responsible for protecting and promoting the public health by ensuring the safety, effectiveness, and quality of medical devices, ensuring the safety of radiation-emitting products, fostering innovation, and providing the public with accurate, science-based information about the products we oversee, throughout the total product life cycle. The FDA was granted the authority to regulate the manufacturing and marketing of medical devices in 1976. It does not regulate the practice of medicine. Devices are classified based on complexity and level of risk, and "pre-1976" devices were allowed to remain on the market after being classified without FDA review. Post-1976 devices of lower complexity and risk that are substantially equivalent to a marketed "predicate" device may be cleared through the 510(k) premarket notification process. Clinical data are typically not needed for 510(k) clearance. In contrast, higher-risk devices typically require premarket approval. Premarket approval applications must contain data demonstrating reasonable assurance of safety and efficacy, and this information typically includes clinical data. For novel devices that are not high risk, the de novo process allows FDA to simultaneously review and classify new devices. Devices that are not legally marketed are permitted to be used for clinical investigation purposes in the United States under the Investigational Device Exemptions regulation.

  3. Isolation Mounting for Charge-Coupled Devices

    NASA Technical Reports Server (NTRS)

    Goss, W. C.; Salomon, P. M.

    1985-01-01

    CCD's suspended by wires under tension. Remote thermoelectric cooling of charge coupled device allows vibration isolating mounting of CCD assembly alone, without having to suspend entire mass and bulk of thermoelectric module. Mounting hardware simple and light. Developed for charge-coupled devices (CCD's) in infrared telescope support adaptable to sensors in variety of environments, e.g., sensors in nuclear reactors, engine exhausts and plasma chambers.

  4. Nuclear hyperpolarization in solids and the prospects for nuclear spintronics.

    PubMed

    Reimer, Jeffrey A

    2010-01-01

    Nuclear hyperpolarization can be achieved in a number of ways. This article focuses on the use of coupling of nuclei to (nearly) pure quantum states, with particular emphasis on those states obtained by optical excitation in bulk semiconductors. I seek an answer to this question: "What is to prevent the design and analysis of nuclear spintronics devices that use the extremely long-lived hyperpolarized nuclear spin states, and their weak couplings to each other, to affect computation, memory, or informational technology schemes?" The answer, I argue, is in part because there remains a lack of fundamental understanding of how to generate and control nuclear polarization with schemes other than with rf coils.

  5. Nuclear ventriculography

    MedlinePlus

    ... ventriculography (RNV); Multiple gate acquisition scan (MUGA); Nuclear cardiology; Cardiomyopathy - nuclear ventriculography ... 56. Udelson JE, Dilsizian V, Bonow RO. Nuclear cardiology. In: Bonow RO, Mann DL, Zipes DP, Libby ...

  6. Nuclear Medicine.

    ERIC Educational Resources Information Center

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  7. Modeling nuclear explosion

    NASA Astrophysics Data System (ADS)

    Redd, Jeremy; Panin, Alexander

    2012-10-01

    As a result of the Nuclear Test Ban Treaty, no nuclear explosion tests have been performed by the US since 1992. This appreciably limits valuable experimental data needed for improvement of existing weapons and development of new ones, as well as for use of nuclear devices in non-military applications (such as making underground oil reservoirs or compressed air energy storages). This in turn increases the value of numerical modeling of nuclear explosions and of their effects on the environment. We develop numerical codes simulating fission chain reactions in a supercritical U and Pu core and the dynamics of the subsequent expansion of generated hot plasma in order to better understand the impact of such explosions on their surroundings. The results of our simulations (of both above ground and underground explosions) of various energy yields are presented.

  8. Connector device for building integrated photovoltaic device

    DOEpatents

    Keenihan, James R.; Langmaid, Joe A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleerman, Robert J.; Gaston, Ryan S.

    2015-11-10

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  9. Connector device for building integrated photovoltaic device

    DOEpatents

    Keenihan, James R.; Langmaid, Joseph A.; Eurich, Gerald K.; Lesniak, Michael J.; Mazor, Michael H.; Cleereman, Robert J.; Gaston, Ryan S.

    2014-06-03

    The present invention is premised upon a connector device and method that can more easily electrically connect a plurality of PV devices or photovoltaic system components and/or locate these devices/components upon a building structure. It also may optionally provide some additional sub-components (e.g. at least one bypass diode and/or an indicator means) and may enhance the serviceability of the device.

  10. Medical Device Safety

    MedlinePlus

    A medical device is any product used to diagnose, cure, or treat a condition, or to prevent disease. They range from ... need one in a hospital. To use medical devices safely Know how your device works. Keep instructions ...

  11. Infrared criminalistic devices

    NASA Astrophysics Data System (ADS)

    Gibin, Igor S.; Savkov, E. V.; Popov, Pavel G.

    1996-12-01

    We are presenting the devices of near-IR spectral range in this report. The devices may be used in criminalistics, in bank business, in restoration works, etc. the action principle of these devices is describing briefly.

  12. Chemical processing in geothermal nuclear chimney

    DOEpatents

    Krikorian, O.H.

    1973-10-01

    A closed rubble filled nuclear chimney is provided in a subterranean geothermal formation by detonation of a nuclear explosive device therein, with reagent input and product output conduits connecting the chimney cavity with appropriate surface facilities. Such facilities will usually comprise reagent preparation, product recovery and recycle facilities. Proccsses are then conducted in the nuclear chimney which processes are facilitated by temperature, pressure, catalytic and other conditions existent or which are otherwise provided in the nuclear chimney. (auth)

  13. Nuclear weapons and nuclear war

    SciTech Connect

    Cassel, C.; McCally, M.; Abraham, H.

    1984-01-01

    This book examines the potential radiation hazards and environmental impacts of nuclear weapons. Topics considered include medical responsibility and thermonuclear war, the threat of nuclear war, nuclear weaponry, biological effects, radiation injury, decontamination, long-term effects, ecological effects, psychological aspects, the economic implications of nuclear weapons and war, ethics, civil defense, arms control, nuclear winter, and long-term biological consequences of nuclear war.

  14. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and produce images of a specific cross-sectional plane of the body by blurring or eliminating detail...

  15. CONTROL LIMITER DEVICE

    DOEpatents

    DeShong, J.A.

    1960-03-01

    A control-limiting device for monltoring a control system is described. The system comprises a conditionsensing device, a condition-varying device exerting a control over the condition, and a control means to actuate the condition-varying device. A control-limiting device integrates the total movement or other change of the condition-varying device over any interval of time during a continuum of overlapping periods of time, and if the tothl movement or change of the condition-varying device exceeds a preset value, the control- limiting device will switch the control of the operated apparatus from automatic to manual control.

  16. Nuclear Theory - Nuclear Power

    NASA Astrophysics Data System (ADS)

    Svenne, J. P.; Canton, L.; Kozier, K. S.

    2008-01-01

    The results from modern nuclear theory are accurate and reliable enough to be used for practical applications, in particular for scattering that involves few-nucleon systems of importance to nuclear power. Using well-established nucleon-nucleon (NN) interactions that fit well the NN scattering data, and the AGS form of the three-body theory, we have performed precise calculations of low-energy neutron-deuteron (n+d) scattering. We show that three-nucleon force effects that have impact on the low-energy vector analyzing powers have no practical effects on the angular distribution of the n+d cross-section. There appear to be problems for this scattering in the evaluated nuclear data file (ENDF) libraries, at the incident neutron energies less than 3.2 MeV. Supporting experimental data in this energy region are rather old (>25 years), sparse and often inconsistent. Our three-body results at low energies, 50 keV to 10.0 MeV, are compared to the ENDF/B-VII.0 and JENDL (Japanese Evaluated Nuclear Data Library) -3.3 evaluated angular distributions. The impact of these results on the calculated reactivity for various critical systems involving heavy water is shown.

  17. Safeguards Issues at Nuclear Reactors and Enrichment Plants

    SciTech Connect

    Boyer, Brian D

    2012-08-15

    The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

  18. Nuclear choices

    SciTech Connect

    Wolfson, R.

    1991-01-01

    This book contains part of the series New Liberal Arts, which is intended to make science and technology more accessible to students of the liberal arts. Volume in hand provides a comprehensive, multifaceted examination of nuclear energy, in nontechnical terms. Wolfson explains the basics of nuclear energy and radiation, nuclear power..., and nuclear weapons..., and he invites readers to make their own judgments on controversial nuclear issues. Illustrated with photos and diagrams. Each chapter contains suggestions for additional reading and a glossary. For policy, science, and general collections in all libraries. (ES) Topics contained include Atoms and nuclei. Effects and uses of radiation. Energy and People. Reactor safety. Nuclear strategy. Defense in the nuclear age. Nuclear power, nuclear weapons, and nuclear futures.

  19. Radiation Effects in GMR Devices

    NASA Astrophysics Data System (ADS)

    Carroll, Turhan; Parks, S. C.; Hauser, A.; Robinette, C.; Lucy, J.; Pelekhov, D.; Hammel, P. C.; Yang, F. Y.; Johnston-Halperin, E.; Talnagi, J.; Blue, T.; Mathis, J. P.

    2010-03-01

    Current information technology relies heavily on magnetic materials via GMR read heads and magnetic random access memory (MRAM). The presumption is that these materials are radiation hard with respect to both photons and particles, potentially indicating utility for nuclear energy and space based applications. However, to date there are few detailed studies of magnetism in GMR devices in radioactive environments. This work explores the effects of gamma ray and neutron irradiation on GMR multilayers. The layer structure used in this experiment is Py/Cu/Py/FeMn/Ge. To study the effects of radiation three probes of magnetization, VSM, MR, and MOKE, are correlated pre and post radiation. We present characterization of the devices for multiple device geometries and doses up to 50Mrad for gamma rays and a minimum fast flux of (En>0.5MeV) of 6.3E12 nv for neutrons, both of which are well above the failure threshold for radiation-hard semiconducting devices.

  20. Electromagnetic compatibility of nuclear power plants

    SciTech Connect

    Cabayan, H.S.

    1983-01-01

    Lately, there has been a mounting concern about the electromagnetic compatibility of nuclear-power-plant systems mainly because of the effects due to the nuclear electromagnetic pulse, and also because of the introduction of more-sophisticated and, therefore, more-susceptible solid-state devices into the plants. Questions have been raised about the adequacy of solid-state-device protection against plant electromagnetic-interference sources and transients due to the nuclear electromagnetic pulse. In this paper, the author briefly reviews the environment, and the coupling, susceptibility, and vulnerability assessment issues of commercial nuclear power plants.

  1. Nuclear fragmentation studies for microelectronic application

    NASA Technical Reports Server (NTRS)

    Ngo, Duc M.; Wilson, John W.; Buck, Warren W.; Fogarty, Thomas N.

    1989-01-01

    A formalism for target fragment transport is presented with application to energy loss spectra in thin silicon devices. Predicted results are compared to experiments with the surface barrier detectors of McNulty et al. The intranuclear cascade nuclear reaction model does not predict the McNulty experimental data for the highest energy events. A semiempirical nuclear cross section gives an adequate explanation of McNulty's experiments. Application of the formalism to specific electronic devices is discussed.

  2. Nuclear Winter.

    ERIC Educational Resources Information Center

    Ehrlich, Anne

    1984-01-01

    "Nuclear Winter" was recently coined to describe the climatic and biological effects of a nuclear war. These effects are discussed based on models, simulations, scenarios, and projections. Effects on human populations are also considered. (JN)

  3. Nuclear Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Provides a brief review of the latest developments in nuclear chemistry. Nuclear research today is directed toward increased activity in radiopharmaceuticals and formation of new isotopes by high-energy, heavy-ion collisions. (Author/BB)

  4. Nuclear Scans

    MedlinePlus

    Nuclear scans use radioactive substances to see structures and functions inside your body. They use a special ... images. Most scans take 20 to 45 minutes. Nuclear scans can help doctors diagnose many conditions, including ...

  5. Nuclear Fuels.

    ERIC Educational Resources Information Center

    Nash, J. Thomas

    1983-01-01

    Trends in and factors related to the nuclear industry and nuclear fuel production are discussed. Topics addressed include nuclear reactors, survival of the U.S. uranium industry, production costs, budget cuts by the Department of Energy and U.S. Geological survey for resource studies, mining, and research/development activities. (JN)

  6. Nuclear weapons, nuclear effects, nuclear war

    SciTech Connect

    Bing, G.F.

    1991-08-20

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  7. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  8. Sealed container sampling device

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1969-01-01

    Sampling device, by means of a tapered needle, pierces a sealed container while maintaining the seal and either evacuates or pressurizes the container. This device has many applications in the chemical, preservative and battery-manufacturing industries.

  9. Pulse detecting device

    DOEpatents

    Riggan, W.C.

    1984-01-01

    A device for measuring particle flux comprises first and second photodiode detectors for receiving flux from a source and first and second outputs for producing first and second signals representing the flux incident to the detectors. The device is capable of reducing the first output signal by a portion of the second output signal, thereby enhancing the accuracy of the device. Devices in accordance with the invention may measure distinct components of flux from a single source or fluxes from several sources.

  10. Articulating feedstock delivery device

    DOEpatents

    Jordan, Kevin

    2013-11-05

    A fully articulable feedstock delivery device that is designed to operate at pressure and temperature extremes. The device incorporates an articulating ball assembly which allows for more accurate delivery of the feedstock to a target location. The device is suitable for a variety of applications including, but not limited to, delivery of feedstock to a high-pressure reaction chamber or process zone.

  11. Photovoltaic device and method

    DOEpatents

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  12. Photovoltaic device and method

    SciTech Connect

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  13. Organic photosensitive devices

    DOEpatents

    Rand, Barry P; Forrest, Stephen R

    2013-11-26

    The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.

  14. Amorphous silicon photovoltaic devices

    DOEpatents

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  15. Fuel handling apparatus for a nuclear reactor

    DOEpatents

    Hawke, Basil C.

    1987-01-01

    Fuel handling apparatus for transporting fuel elements into and out of a nuclear reactor and transporting them within the reactor vessel extends through a penetration in the side of the reactor vessel. A lateral transport device carries the fuel elements laterally within the vessel and through the opening in the side of the vessel, and a reversible lifting device raises and lowers the fuel elements. In the preferred embodiment, the lifting device is supported by a pair of pivot arms.

  16. Biomechanics of interspinous devices.

    PubMed

    Parchi, Paolo D; Evangelisti, Gisberto; Vertuccio, Antonella; Piolanti, Nicola; Andreani, Lorenzo; Cervi, Valentina; Giannetti, Christian; Calvosa, Giuseppe; Lisanti, Michele

    2014-01-01

    A number of interspinous devices (ISD) have been introduced in the lumbar spine implant market. Unfortunately, the use of these devices often is not associated with real comprehension of their biomechanical role. The aim of this paper is to review the biomechanical studies about interspinous devices available in the literature to allow the reader a better comprehension of the effects of these devices on the treated segment and on the adjacent segments of the spine. For this reason, our analysis will be limited to the interspinous devices that have biomechanical studies published in the literature. PMID:25114923

  17. Biomechanics of Interspinous Devices

    PubMed Central

    Parchi, Paolo D.; Evangelisti, Gisberto; Vertuccio, Antonella; Piolanti, Nicola; Andreani, Lorenzo; Cervi, Valentina; Giannetti, Christian; Calvosa, Giuseppe; Lisanti, Michele

    2014-01-01

    A number of interspinous devices (ISD) have been introduced in the lumbar spine implant market. Unfortunately, the use of these devices often is not associated with real comprehension of their biomechanical role. The aim of this paper is to review the biomechanical studies about interspinous devices available in the literature to allow the reader a better comprehension of the effects of these devices on the treated segment and on the adjacent segments of the spine. For this reason, our analysis will be limited to the interspinous devices that have biomechanical studies published in the literature. PMID:25114923

  18. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  19. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  20. Active cleaning technique device

    NASA Technical Reports Server (NTRS)

    Shannon, R. L.; Gillette, R. B.

    1973-01-01

    The objective of this program was to develop a laboratory demonstration model of an active cleaning technique (ACT) device. The principle of this device is based primarily on the technique for removing contaminants from optical surfaces. This active cleaning technique involves exposing contaminated surfaces to a plasma containing atomic oxygen or combinations of other reactive gases. The ACT device laboratory demonstration model incorporates, in addition to plasma cleaning, the means to operate the device as an ion source for sputtering experiments. The overall ACT device includes a plasma generation tube, an ion accelerator, a gas supply system, a RF power supply and a high voltage dc power supply.

  1. Portable data collection device

    DOEpatents

    French, Patrick D.

    1996-01-01

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time.

  2. Portable data collection device

    DOEpatents

    French, P.D.

    1996-06-11

    The present invention provides a portable data collection device that has a variety of sensors that are interchangeable with a variety of input ports in the device. The various sensors include a data identification feature that provides information to the device regarding the type of physical data produced by each sensor and therefore the type of sensor itself. The data identification feature enables the device to locate the input port where the sensor is connected and self adjust when a sensor is removed or replaced. The device is able to collect physical data, whether or not a function of a time. 7 figs.

  3. Solid state devices

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Solid State Device research program is directed toward developing innovative devices for space remote and in-situ sensing, and for data processing. Innovative devices can result from the standard structures in innovative materials such as low and high temperature superconductors, strained layer superlattices, or diamond films. Innovative devices can also result from innovative structures achieved using electron tunneling or nanolithography in standard materials. A final step is to use both innovative structures and innovative materials. A new area of emphasis is the miniaturization of sensors and instruments molded by using the techniques of electronic device fabrication to micromachine silicon into micromechanical and electromechanical sensors and actuators.

  4. Heat exchange device

    SciTech Connect

    Callison, G.

    1984-01-17

    A heat exchange device is adapted to recover heat from the fire box of a wood burning stove or the like for heating ambient air in a room or other enclosed space. The heat exchange device is adapted to mount in a recess in a stove top in place of a lid which is normally supplied with the stove. The device according to the invention includes heat exchange means which extend into the fire box of the stove below the top surface thereof. The heat from the heat exchange device is transmitted into a main cavity of the device where the heat is transferred to air forced through the main cavity by a blower mounted to an outside surface of the device. Air exit means are provided on a surface opposite to the surface on which the blower is mounted to provide a passage for heated air into the room or other enclosed space to be heated. The device may also include a top mounted isolated handle for ease in handling the device such as for moving from one area to another. In a second embodiment of the device, a high temperature heat exchange glass plate is mounted on the surface of the device which is in contact with the fire box. Heat is transmitted by heat exchange plate to the main cavity of the device where the air is heated and blown into the room as above.

  5. Electrochromic display device

    NASA Astrophysics Data System (ADS)

    Nicholson, M. M.

    1984-07-01

    This invention relates to electrochromic devices. In one aspect it relates to electrically controllable display devices. In another aspect it relates to electrically tunable optical or light filters. In yet another aspect it relates to a chemical sensor device which employs a color changing film. There are many uses for electrically controllable display devices. A number of such devices have been in commercial use for some time. These display devices include liquid crystal displays, light emitting diode displays, plasma displays, and the like. Light emitting diode displays and plasma display panels both suffer from the fact that they are active. Light emissive devices which require substantial power for their operation, In addition, it is difficult to fabricate light emitting diode displays in a manner which renders them easily distinguishable under bright ambient illumination. Liquid crystal displays suffer from the disadvantage that they are operative only over a limited temperature range and have substantially no memory within the liquid crystal material.

  6. Functional PLC devices

    NASA Astrophysics Data System (ADS)

    Takiguchi, Koichi

    2005-01-01

    This paper reports recent advances in photonic functional devices. These devices are being developed for advanced optical networks and are fabricated by using planar lightwave circuit technology. After briefly summarizing the fabrication, properties, and progress of silica based planar lightwave circuits, this work describes lattice-form dynamic devices designed to compensate for unwanted fiber characteristics with respect to high-speed wavelength division multiplexing transmissions. These dynamic devices include adaptive chromatic dispersion, polarization-mode dispersion, and gain non-uniformity compensators. The paper then describes optical signal processing devices for communications use, namely an optical label recognition device, an optical encoder/decoder for time-spreading/wavelength-hopping code division multiple access, and a spectrum synthesis device.

  7. Nuclear explosives testing readiness evaluation

    SciTech Connect

    Valk, T.C.

    1993-09-01

    This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

  8. Non-equilibrium radiation nuclear reactor

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T. (Inventor)

    1978-01-01

    An externally moderated thermal nuclear reactor is disclosed which is designed to provide output power in the form of electromagnetic radiation. The reactor is a gaseous fueled nuclear cavity reactor device which can operate over wide ranges of temperature and pressure, and which includes the capability of processing and recycling waste products such as long-lived transuranium actinides. The primary output of the device may be in the form of coherent radiation, so that the reactor may be utilized as a self-critical nuclear pumped laser.

  9. CDC Grand Rounds: radiological and nuclear preparedness.

    PubMed

    2010-09-17

    Radiological and nuclear disasters are infrequent, but when they occur, they result in large and demonstrable health burdens. Several scenarios can result in the public's exposure to radiation. For example, radiation sources used in health care or other industries can be lost or misused. Incidents in the nuclear power industry, such as those at Chernobyl and Three Mile Island, require significant public health response. In addition, radiological terrorism can involve the use of a radiological dispersal device (RDD) or an improvised nuclear device (IND). State and local health agencies are expected to perform essential public health functions in response to any of these emergencies. PMID:20847721

  10. Nuclear mortality

    SciTech Connect

    Krauthammer, C.

    1983-10-01

    The author notes that the anti-nuclear movement is shifting its focus from bodily harm to concern for the impact on our souls from building and threatening the use of nuclear weapons. Two aspects of nuclear deterrence receiving the most public attention are the freeze effort to halt weapons modernization and the no-first-use effort to take down the nuclear umbrella. Opponents attack both the countervalue and the counterforce approach, but the arguments of the Catholic bishops, Jonathan Schell, and others stop short of unilateral disarmament, which would be the greatest threat to our survival. Mr. Krauthammer observes that nuclear deterrence has worked, however, and will continue to be useful only if potential adversaries believe we have the will to use nuclear weapons. 2 references. (DCK)

  11. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-01-01

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  12. Nuclear astrophysics

    SciTech Connect

    Haxton, W.C.

    1992-12-31

    The problem of core-collapse supernovae is used to illustrate the many connections between nuclear astrophysics and the problems nuclear physicists study in terrestrial laboratories. Efforts to better understand the collapse and mantle ejection are also motivated by a variety of interdisciplinary issues in nuclear, particle, and astrophysics, including galactic chemical evolution, neutrino masses and mixing, and stellar cooling by the emission of new particles. The current status of theory and observations is summarized.

  13. DEVICE CONTROLLER, CAMERA CONTROL

    1998-07-20

    This is a C++ application that is the server for the cameral control system. Devserv drives serial devices, such as cameras and videoswitchers used in a videoconference, upon request from a client such as the camxfgbfbx ccint program. cc Deverv listens on UPD ports for clients to make network contractions. After a client connects and sends a request to control a device (such as to pan,tilt, or zooma camera or do picture-in-picture with a videoswitcher),more » devserv formats the request into an RS232 message appropriate for the device and sends this message over the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port and then formats and sends via multicast a status message. In addition, devserv periodically multicasts status or description messages so that all clients connected to the multicast channel know what devices are supported and their ranges of motion and the current position. The software design employs a class hierarchy such that an abstract base class for devices can be subclassed into classes for various device categories(e.g. sonyevid30, cononvco4, panasonicwjmx50, etc.). which are further subclassed into classes for various device categories. The devices currently supported are the Sony evi-D30, Canon, VCC1, Canon VCC3, and Canon VCC4 cameras and the Panasonic WJ-MX50 videoswitcher. However, developers can extend the class hierarchy to support other devices.« less

  14. DEVICE CONTROLLER, CAMERA CONTROL

    SciTech Connect

    Perry, Marcia

    1998-07-20

    This is a C++ application that is the server for the cameral control system. Devserv drives serial devices, such as cameras and videoswitchers used in a videoconference, upon request from a client such as the camxfgbfbx ccint program. cc Deverv listens on UPD ports for clients to make network contractions. After a client connects and sends a request to control a device (such as to pan,tilt, or zooma camera or do picture-in-picture with a videoswitcher), devserv formats the request into an RS232 message appropriate for the device and sends this message over the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port to which the device is connected. Devserv then reads the reply from the device from the serial port and then formats and sends via multicast a status message. In addition, devserv periodically multicasts status or description messages so that all clients connected to the multicast channel know what devices are supported and their ranges of motion and the current position. The software design employs a class hierarchy such that an abstract base class for devices can be subclassed into classes for various device categories(e.g. sonyevid30, cononvco4, panasonicwjmx50, etc.). which are further subclassed into classes for various device categories. The devices currently supported are the Sony evi-D30, Canon, VCC1, Canon VCC3, and Canon VCC4 cameras and the Panasonic WJ-MX50 videoswitcher. However, developers can extend the class hierarchy to support other devices.

  15. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear tomography system. 892.1310 Section 892.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  16. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear tomography system. 892.1310 Section 892.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  17. 21 CFR 892.1310 - Nuclear tomography system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identification. A nuclear tomography system is a device intended to detect nuclear radiation in the body and... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear tomography system. 892.1310 Section 892.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  18. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    DOEpatents

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  19. Combating medical device fouling.

    PubMed

    Harding, Jacqueline L; Reynolds, Melissa M

    2014-03-01

    When interfaced with the biological environment, biomedical devices are prone to surface biofouling due to adhesion of microbial or thrombotic agents as a result of the foreign body response. Surface biofouling of medical devices occurs as a result of nonspecific adhesion of noxious substrates to the surface. Approaches for biofouling-resistant surfaces can be categorized as either the manipulation of surface chemical functionalities or through the incorporation of regulatory biomolecules. This review summarizes current strategies for creating biofouling-resistant surfaces based on surface hydrophilicity and charge, biomolecule functionalization, and drug elution. Reducing the foreign body response and restoring the function of cells around the device minimizes the risk of device rejection and potentially integrates devices with surrounding tissues and fluids. In addition, we discuss the use of peptides and NO as biomolecules that not only inhibit surface fouling, but also promote the integration of medical devices with the biological environment.

  20. Device for detection and identification of carbon- and nitrogen-containing materials

    DOEpatents

    Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhilavyan, Leonid Zavenovich; Laptev, Valery Dmitrievich; Pakhomov, Nikolay Ivanovich; Shvedunov, Vasily Ivanovich; Rykalin, Vladimir Ivanovich; Brothers, Louis Joseph; Wilhide, Larry K

    2014-03-25

    A device for detection and identification of carbon- and nitrogen-containing materials is described. In particular, the device performs the detection and identification of carbon- and nitrogen-containing materials by photo-nuclear detection. The device may comprise a race-track microtron, a breaking target, and a water-filled Cherenkov radiation counter.

  1. Barrier breaching device

    DOEpatents

    Honodel, C.A.

    1983-06-01

    A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

  2. Barrier breaching device

    DOEpatents

    Honodel, Charles A.

    1985-01-01

    A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

  3. Sensor sentinel computing device

    DOEpatents

    Damico, Joseph P.

    2016-08-02

    Technologies pertaining to authenticating data output by sensors in an industrial environment are described herein. A sensor sentinel computing device receives time-series data from a sensor by way of a wireline connection. The sensor sentinel computing device generates a validation signal that is a function of the time-series signal. The sensor sentinel computing device then transmits the validation signal to a programmable logic controller in the industrial environment.

  4. Ion trap device

    DOEpatents

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  5. Active multistable twisting device

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R. (Inventor)

    2008-01-01

    Two similarly shaped, such as rectangular, shells are attached to one another such that they form a resulting thin airfoil-like structure. The resulting device has at least two stable equilibrium shapes. The device can be transformed from one shape to another with a snap-through action. One or more actuators can be used to effect the snap-through; i.e., transform the device from one stable shape to another. Power to the actuators is needed only to transform the device from one shape to another.

  6. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  7. EVA Exercise Device

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The EVA (Extra Vehicular Activity) Exercise Device for evaluation and effectiveness of weightlessness on astronauts during long duration spaceflights, at the NASA Ames Research Center, Mountain View, California

  8. Benchmarking emerging logic devices

    NASA Astrophysics Data System (ADS)

    Nikonov, Dmitri

    2014-03-01

    As complementary metal-oxide-semiconductor field-effect transistors (CMOS FET) are being scaled to ever smaller sizes by the semiconductor industry, the demand is growing for emerging logic devices to supplement CMOS in various special functions. Research directions and concepts of such devices are overviewed. They include tunneling, graphene based, spintronic devices etc. The methodology to estimate future performance of emerging (beyond CMOS) devices and simple logic circuits based on them is explained. Results of benchmarking are used to identify more promising concepts and to map pathways for improvement of beyond CMOS computing.

  9. High efficiency photovoltaic device

    DOEpatents

    Guha, Subhendu; Yang, Chi C.; Xu, Xi Xiang

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  10. Preloaded latching device

    NASA Technical Reports Server (NTRS)

    Wesselski, Clarence J. (Inventor); Nagy, Kornel (Inventor)

    1992-01-01

    A latching device is disclosed which is lever operated sequentially to actuate a set of collet fingers to provide a radial expansion and to actuate a force mechanism to provide a compressive gripping force for attaching first and second devices to one another. The latching device includes a body member having elongated collet fingers which, in a deactuated condition, is insertable through bores on the first and second devices so that gripping terminal portions on the collet fingers are proximate to the end of the bore of the first device while a spring assembly on the body member is located proximate to the outer surface of a second device. A lever is rotatable through 90 deg to move a latching rod to sequentially actuate and expand collet fingers and to actuate the spring assembly by compressing it. During the first 30 deg of movement of the lever, the collet fingers are actuated by the latching rod to provide a radial expansion and during the last 60 deg of movement of the lever, the spring assembly acts as a force mechanism and is actuated to develop a compressive latching force on the devices. The latching rod and lever are connected by a camming mechanism. The amount of spring force in the spring assembly can be adjusted; the body member can be permanently attached by a telescoping assembly to one of the devices; and the structure can be used as a pulling device for removing annular bearings or the like from blind bores.

  11. Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Drago, Alessandro

    2005-04-01

    The activity of the Italian nuclear physicists community in the field of Nuclear Astrophysics is reported. The researches here described have been performed within the project "Fisica teorica del nucleo e dei sistemi a multi corpi", supported by the Ministero dell'Istruzione, dell'Università e della Ricerca.

  12. Nuclear safety

    NASA Technical Reports Server (NTRS)

    Buden, D.

    1991-01-01

    Topics dealing with nuclear safety are addressed which include the following: general safety requirements; safety design requirements; terrestrial safety; SP-100 Flight System key safety requirements; potential mission accidents and hazards; key safety features; ground operations; launch operations; flight operations; disposal; safety concerns; licensing; the nuclear engine for rocket vehicle application (NERVA) design philosophy; the NERVA flight safety program; and the NERVA safety plan.

  13. Nuclear electric power sources

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    Measurements on radioactive commercial p-n junction silicon cells show that these units are capable of delivering several hundred microwatts per curie of Am-241 alpha source, indicating their usefulness in such electronic devices as hearing aids, heart pacemakers, electronic watches, delay timers and nuclear dosimeter chargers. It is concluded that the Am-241 sources are superior to the beta sources used previously, because of higher alpha specific ionization and simultaneous production of low energy photons which are easily converted into photoelectrons for additional power.

  14. Nuclear hostages

    SciTech Connect

    O'Keefe, B.J.

    1983-01-01

    Classical physics since Roentgen's discovery of X-rays led quickly to work on atomic structure and the Nuclear Age. The author traces the history of decisions to pursue nuclear fission, the organization of the Manhattan Project, the compromises of the 1963 test ban treaty, and the dilemma of nuclear weapons development and deployment that now hold mankind hostage. He reviews the rationale for limited nuclear war, first strike, massive retaliation, non-proliferation, and the Strategic Arms Limitation Talks (SALT) treaties. He argues that the concepts of mobile MX weapons, fratricide, and population dispersal for civil defense are unworkable, suggesting a program of unilaterally withdrawing tactical nuclear weapons from Europe and strengthening intelligence and law-enforcement powers to withstand terrorist activity. Economic cooperation and political reconciliation may take a generation to achieve, but should be our national goal.

  15. Advanced Electro-Optic Surety Devices

    SciTech Connect

    Watterson, C.E.

    1997-05-01

    The Advanced Electro-Optic Surety Devices project was initiated in march 1991 to support design laboratory guidance on electro-optic device packaging and evaluation. Sandia National Laboratory requested AlliedSignal Inc., Kansas City Division (KCD), to prepare for future packaging efforts in electro-optic integrated circuits. Los Alamos National Laboratory requested the evaluation of electro-optic waveguide devices for nuclear surety applications. New packaging techniques involving multiple fiber optic alignment and attachment, binary lens array development, silicon V-groove etching, and flip chip bonding were requested. Hermetic sealing of the electro-optic hybrid and submicron alignment of optical components present new challenges to be resolved. A 10-channel electro-optic modulator and laser amplifier were evaluated for potential surety applications.

  16. Nuclear weapons, a continuing threat to health.

    PubMed

    Holdstock, D; Waterston, L

    2000-04-29

    32,000 nuclear weapons, with a destructive force equivalent to several thousand megatons of conventional explosive, are still deployed. The risk of nuclear war by accident may have increased and new threats include war between newly declared nuclear-weapon-states and the construction by terrorist groups of crude but effective devices. Health workers have drawn attention in the past to the likely major health consequences of the use of nuclear weapons. An opportunity for their global elimination under a nuclear weapons convention arises with the current review conference in New York of the nuclear Non-Proliferation Treaty--a crucial event for efforts to bring about a world free of nuclear weapons.

  17. Emergency-escape device

    NASA Technical Reports Server (NTRS)

    Broussard, P. M.

    1973-01-01

    Relatively simple inexpensive device uses reeled steel cable, is controlled by automotive-type shock absorber, and allows safe descent from burning building. Device is cheap to manufacture and assemble and requires neither skill, special knowledge, or athletic ability to operate. It is reliable and fireproof and can be deployed instantly.

  18. Microfabricated particle focusing device

    DOEpatents

    Ravula, Surendra K.; Arrington, Christian L.; Sigman, Jennifer K.; Branch, Darren W.; Brener, Igal; Clem, Paul G.; James, Conrad D.; Hill, Martyn; Boltryk, Rosemary June

    2013-04-23

    A microfabricated particle focusing device comprises an acoustic portion to preconcentrate particles over large spatial dimensions into particle streams and a dielectrophoretic portion for finer particle focusing into single-file columns. The device can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.

  19. Device for removing blackheads

    DOEpatents

    Berkovich, Tamara

    1995-03-07

    A device for removing blackheads from pores in the skin having a elongated handle with a spoon shaped portion mounted on one end thereof, the spoon having multiple small holes piercing therethrough. Also covered is method for using the device to remove blackheads.

  20. STORM INLET FILTRATION DEVICE

    EPA Science Inventory

    Five field tests were conducted to evaluate the effectiveness of the Storm and Groundwater Enhancement Systems (SAGES) device for removing contaminants from stormwater. The SAGES device is a three-stage filtering system that could be used as a best management practices (BMP) retr...

  1. Microwave device investigations

    NASA Technical Reports Server (NTRS)

    Choudhury, K. K. D.; Haddad, G. I.; Kwok, S. P.; Masnari, N. A.; Trew, R. J.

    1972-01-01

    Materials, devices and novel schemes for generation, amplification and detection of microwave and millimeter wave energy are studied. Considered are: (1) Schottky-barrier microwave devices; (2) intermodulation products in IMPATT diode amplifiers; and (3) harmonic generation using Read diode varactors.

  2. Devices and Educational Change

    ERIC Educational Resources Information Center

    Nespor, Jan

    2011-01-01

    This paper uses Actor Network Theory to examine two cases of device-mediated educational change, one involving a computer-assisted interactive video module that provided a half-hour of instruction for a university course, the other an assistive communication device that proved a supposedly retarded pre-school child to be intelligent. The paper…

  3. Capillary interconnect device

    SciTech Connect

    Renzi, Ronald F

    2013-11-19

    An interconnecting device for connecting a plurality of first fluid-bearing conduits to a corresponding plurality of second fluid-bearing conduits thereby providing fluid communication between the first fluid-bearing conduits and the second fluid-bearing conduits. The device includes a manifold and one or two ferrule plates that are held by compressive axial forces.

  4. Assistive Listening Devices

    ERIC Educational Resources Information Center

    Warick, Ruth; Clark, Catherine; Dancer, Jesse; Sinclair, Stephen

    1997-01-01

    For most hard of hearing students, and for some who are deaf, hearing aids and related sound amplification devices are of great benefit in their communication and learning. Technology has more recently produced an additional array of electronic devices which benefit many hard of hearing students. This report will deal primarily with the relatively…

  5. Advanced resistive exercise device

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen L. (Inventor); Niebuhr, Jason (Inventor); Cruz, Santana F. (Inventor); Lamoreaux, Christopher D. (Inventor)

    2008-01-01

    The present invention relates to an exercise device, which includes a vacuum cylinder and a flywheel. The flywheel provides an inertial component to the load, which is particularly well suited for use in space as it simulates exercising under normal gravity conditions. Also, the present invention relates to an exercise device, which has a vacuum cylinder and a load adjusting armbase assembly.

  6. Planar electrochemical device assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2007-06-19

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  7. Planar electrochemical device assembly

    DOEpatents

    Jacobson; Craig P. , Visco; Steven J. , De Jonghe; Lutgard C.

    2010-11-09

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  8. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  9. Fluidic nanotubes and devices

    DOEpatents

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2010-01-10

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  10. Device for cutting protrusions

    DOEpatents

    Bzorgi, Fariborz M.

    2011-07-05

    An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

  11. Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Bombaci, Ignazio

    2003-04-01

    In this report I will try to illustrate some of the main research themes and "hot topics" in nuclear astrophysics. The particular aim of the present report is to briefly illustrate the research activities, in the field of nuclear astrophysics, performed by the Italian nuclear physicist community within the "Programma di Interesse Nazionale su Fisica Teorica del Nucleo e dei Sistemi a Molti Corpi" (National Research Program on Theoretical Physics of Nuclei and Many Body Systems) supported by the "Ministero dell'Istruzione dell'Università e della Ricerca".

  12. Nuclear Speckles

    PubMed Central

    Spector, David L.; Lamond, Angus I.

    2011-01-01

    Nuclear speckles, also known as interchromatin granule clusters, are nuclear domains enriched in pre-mRNA splicing factors, located in the interchromatin regions of the nucleoplasm of mammalian cells. When observed by immunofluorescence microscopy, they usually appear as 20–50 irregularly shaped structures that vary in size. Speckles are dynamic structures, and their constituents can exchange continuously with the nucleoplasm and other nuclear locations, including active transcription sites. Studies on the composition, structure, and dynamics of speckles have provided an important paradigm for understanding the functional organization of the nucleus and the dynamics of the gene expression machinery. PMID:20926517

  13. (Nuclear theory). [Research in nuclear physics

    SciTech Connect

    Haxton, W.

    1990-01-01

    This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion. (LSP)

  14. Nuclear forces

    SciTech Connect

    Machleidt, R.

    2013-06-10

    These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

  15. Nuclear Disarmament.

    ERIC Educational Resources Information Center

    Johnson, Christopher

    1982-01-01

    Material about nuclear disarmament and the arms race should be included in secondary school curricula. Teachers can present this technical, controversial, and frightening material in a balanced and comprehensible way. Resources for instructional materials are listed. (PP)

  16. Nuclear battlefields

    SciTech Connect

    Arkin, W.M.; Fieldhouse, R.W.

    1985-01-01

    This book provides complete data on the nuclear operations and research facilities in the U.S.A., the U.S.S.R., France, China and the U.K. It describes detailed estimates on the U.S.S.R.'s nuclear stockpile for over 500 locations. It shows how non-nuclear countries cooperate with the world-wide war machine. And it maps the U.S. nuclear facilities from Little America, WY, and Charleston, SC, to the battleships patroling the world's oceans and subs stalking under the sea. The data were gathered from unclassified sources through the Freedom of Information Act, from data supplied to military installations, and from weapons source books. It provides guidance for policymakers, government and corporate officials.

  17. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  18. NUCLEAR REACTORS

    DOEpatents

    Koch, L.J.; Rice, R.E. Jr.; Denst, A.A.; Rogers, A.J.; Novick, M.

    1961-12-01

    An active portion assembly for a fast neutron reactor is described wherein physical distortions resulting in adverse changes in the volume-to-mass ratio are minimized. A radially expandable locking device is disposed within a cylindrical tube within each fuel subassembly within the active portion assembly, and clamping devices expandable toward the center of the active portion assembly are disposed around the periphery thereof. (AEC)

  19. Nuclear material detection techniques

    NASA Astrophysics Data System (ADS)

    Christian, James F.; Sia, Radia; Dokhale, Purushottam; Shestakova, Irina; Nagarkar, Vivek; Shah, Kanai; Johnson, Erik B.; Stapels, Christopher J.; Ryan, James M.; Macri, John; Bravar, Ulisse; Leung, Ka-Ngo; Squillante, Michael R.

    2008-04-01

    Illicit nuclear materials represent a threat for the safety of the American citizens, and the detection and interdiction of a nuclear weapon is a national problem that has not been yet solved. Alleviating this threat represents an enormous challenge to current detection methods that have to be substantially improved to identify and discriminate threatening from benign incidents. Rugged, low-power and less-expensive radiation detectors and imagers are needed for large-scale wireless deployment. Detecting the gamma rays emitted by nuclear and fissionable materials, particularly special nuclear materials (SNM), is the most convenient way to identify and locate them. While there are detectors that have the necessary sensitivity, none are suitable to meet the present need, primarily because of the high occurrence of false alarms. The exploitation of neutron signatures represents a promising solution to detecting illicit nuclear materials. This work presents the development of several detector configurations such as a mobile active interrogation system based on a compact RF-Plasma neutron generator developed at LBNL and a fast neutron telescope that uses plastic scintillating-fibers developed at the University of New Hampshire. A human-portable improved Solid-State Neutron Detector (SSND) intended to replace pressurized 3He-tubes will be also presented. The SSND uses an ultra-compact CMOS-SSPM (Solid-State Photomultiplier) detector, developed at Radiation Monitoring devices Inc., coupled to a neutron sensitive scintillator. The detector is very fast and can provide time and spectroscopy information over a wide energy range including fast neutrons.

  20. Nuclear Data

    SciTech Connect

    White, Morgan C.

    2014-01-23

    PowerPoint presentation targeted for educational use. Nuclear data comes from a variety of sources and in many flavors. Understanding where the data you use comes from and what flavor it is can be essential to understand and interpret your results. This talk will discuss the nuclear data pipeline with particular emphasis on providing links to additional resources that can be used to explore the issues you will encounter.

  1. Nuclear Nonproliferation

    SciTech Connect

    Atkins-Duffin, C E

    2008-12-10

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  2. Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Gargano, Angela

    2003-04-01

    An account of recent studies in the field of theoretical nuclear structure is reported. These studies concern essentially research activities performed under the Italian project "Fisica Teorica del Nucleo e dei Sistemi a Molti Corpi". Special attention is addressed to results obtained during the last two years as regards the development of new many-body techniques as well as the interpretation of new experimental aspects of nuclear structure.

  3. Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Takahashi, K.

    1999-03-01

    Nuclear astrophysics is that branch of astrophysics which helps understanding of the Universe, or at least some of its many faces, through the knowledge of the microcosm of the atomic nucleus. It attempts to find as many nuclear physics imprints as possible in the macrocosm, and to decipher what those messages are telling us about the varied constituent objects in the Universe at present and in the past. In the last decades much advance has been made in nuclear astrophysics thanks to the sometimes spectacular progress made in the modelling of the structure and evolution of the stars, in the quality and diversity of the astronomical observations, as well as in the experimental and theoretical understanding of the atomic nucleus and of its spontaneous or induced transformations. Developments in other subfields of physics and chemistry have also contributed to that advance. Notwithstanding the accomplishment, many long-standing problems remain to be solved, and the theoretical understanding of a large variety of observational facts needs to be put on safer grounds. In addition, new questions are continuously emerging, and new facts endangering old ideas. This review shows that astrophysics has been, and still is, highly demanding to nuclear physics in both its experimental and theoretical components. On top of the fact that large varieties of nuclei have to be dealt with, these nuclei are immersed in highly unusual environments which may have a significant impact on their static properties, the diversity of their transmutation modes, and on the probabilities of these modes. In order to have a chance of solving some of the problems nuclear astrophysics is facing, the astrophysicists and nuclear physicists are obviously bound to put their competence in common, and have sometimes to benefit from the help of other fields of physics, like particle physics, plasma physics or solid-state physics. Given the highly varied and complex aspects, we pick here some specific nuclear

  4. Countering the Nuclear Terrorist Threat

    SciTech Connect

    Vantine, H C

    2002-10-04

    The nuclear/radioactive threat to homeland security posed by terrorists can be broken into four categories. Of highest concern is the use of an improvised nuclear device (IND). An IND, as its name implies, is a nuclear explosive device. It produces nuclear yield, and this nuclear yield has catastrophic effects. An IND is the ultimate terrorist weapon, and terrorist groups are actively attempting to acquire nuclear weapons. Detonation of an IND could dwarf the devastation of the September 11 attack on the World Trade Center. Dealing with the aftermath of an IND would be horrific. Rescue efforts and cleanup would be hazardous and difficult. Workers would have to wear full protection suits and self-contained breathing apparatus. Because of the residual radioactivity, in certain locations they could only work short times before acquiring their ''lifetime'' dose. As with the Chernobyl event, some rescue workers might well expose themselves to lethal doses of radiation, adding to the casualty toll. Enormous volumes of contaminated debris would have to be removed and disposed. If a terrorist group decides not to pursue an actual nuclear device, it might well turn to Radiological Dispersal Devices (RDDs) or ''dirty bombs'' as they are often called. RDDs spread radioactivity but they do not generate nuclear yield. The fabrication of an RDD requires radioactive material and a dispersal mechanism. Radioactive materials are used all over the world for medical, industrial, and research applications. Standards for safe handling and accountability of radioactive material vary around the world. Stories in the press suggest inadequate controls on radiological materials in parts of the world. The effects of an RDD vary widely, and are measured in terms of contamination area, health effects to the exposed population, and economic consequences. Even a negligible, but measurable, exposure would exploit the general public's fear of things radioactive and would have significant

  5. Emission rate measuring device

    NASA Astrophysics Data System (ADS)

    Luckat, S.

    1980-09-01

    The development and application of an emission rate measuring device for gaseous components is explored. The device contains absorption fluid from a supply container that moistens a cylindrical paper sleeve. A newer model is provided with a direct current motor requiring less electricity than an older model. The hose pump is modified to avoid changing it and the filter sleeve is fastened more securely to the distributor head. Application of the measuring devices is discussed, particularly at the Cologne Cathedral, where damage to the stone is observed.

  6. Power Switching Device

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The MOS-Controlled Thyristor is a new type of power switching device for faster and more efficient control and management of power electronics. It enables power electronic switching at frequencies of 50 to 100 thousand times a second with much lower power losses than other semiconductor devices. Advantages include electric power savings and smaller space. The device is used in motor and power controllers, AC & DC motor drives and induction heating. Early development was supported by Lewis Research Center (LEW) and other agencies. General Electric''s power semiconductor operation, the initial NASA contractor, was later purchased by Harris Semiconductor.

  7. Rain sampling device

    DOEpatents

    Nelson, Danny A.; Tomich, Stanley D.; Glover, Donald W.; Allen, Errol V.; Hales, Jeremy M.; Dana, Marshall T.

    1991-01-01

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of said precipitation from said chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device.

  8. Corrosion Detection Devices

    SciTech Connect

    Howard, B.

    2003-12-01

    Nondestructive Examination Systems' (NDE) specialists at the Department of Energy's Savannah River Site have unique, remotely controllable, corrosion detection capabilities. The corrosion detection devices most frequently used are automated ultrasonic mapping systems, digital radiography imaging devices, infrared imaging, and eddy current mapping systems. These devices have been successfully used in a variety of applications, some of which involve high levels of background radiation. Not only is corrosion located and mapped but other types of anomalies such as cracks have been detected and characterized. Examples of actual corrosion that has been detected will be discussed along with the NDE systems that were used.

  9. INTERNAL CUTTING DEVICE

    DOEpatents

    Russell, W.H. Jr.

    1959-06-30

    A device is described for removing material from the interior of a hollow workpiece so as to form a true spherical internal surface in a workpiece, or to cut radial slots of an adjustable constant depth in an already established spherical internal surface. This is accomplished by a spring loaded cutting tool adapted to move axially wherein the entire force urging the tool against the workpiece is derived from the spring. Further features of importance involve the provision of a seal between the workpiece and the cutting device and a suction device for carrying away particles of removed material.

  10. SLUG HANDLING DEVICES

    DOEpatents

    Gentry, J.R.

    1958-09-16

    A device is described for handling fuel elements of a neutronic reactor. The device consists of two concentric telescoped contalners that may fit about the fuel element. A number of ratchet members, equally spaced about the entrance to the containers, are pivoted on the inner container and spring biased to the outer container so thnt they are forced to hear against and hold the fuel element, the weight of which tends to force the ratchets tighter against the fuel element. The ratchets are released from their hold by raising the inner container relative to the outer memeber. This device reduces the radiation hazard to the personnel handling the fuel elements.

  11. Introduction to Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Brennan, Kevin F.

    2005-03-01

    This volume offers a solid foundation for understanding the most important devices used in the hottest areas of electronic engineering today, from semiconductor fundamentals to state-of-the-art semiconductor devices in the telecommunications and computing industries. Kevin Brennan describes future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductor devices. In addition, he covers MODFETs and MOSFETs, short channel effects, and the challenges faced by continuing miniaturization. His book is both an excellent senior/graduate text and a valuable reference for practicing engineers and researchers.

  12. Optically detonated explosive device

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Menichelli, V. J. (Inventor)

    1974-01-01

    A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.

  13. Rain sampling device

    DOEpatents

    Nelson, D.A.; Tomich, S.D.; Glover, D.W.; Allen, E.V.; Hales, J.M.; Dana, M.T.

    1991-05-14

    The present invention constitutes a rain sampling device adapted for independent operation at locations remote from the user which allows rainfall to be sampled in accordance with any schedule desired by the user. The rain sampling device includes a mechanism for directing wet precipitation into a chamber, a chamber for temporarily holding the precipitation during the process of collection, a valve mechanism for controllably releasing samples of the precipitation from the chamber, a means for distributing the samples released from the holding chamber into vessels adapted for permanently retaining these samples, and an electrical mechanism for regulating the operation of the device. 11 figures.

  14. Corneal seal device

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1977-01-01

    A corneal seal device is provided which, when placed in an incision in the eye, permits the insertion of a surgical tool or instrument through the device into the eye. The device includes a seal chamber which opens into a tube which is adapted to be sutured to the eye and serves as an entry passage for a tool. A sealable aperture in the chamber permits passage of the tool through the chamber into the tube and hence into the eye. The chamber includes inlet ports adapted to be connected to a regulated source of irrigation fluid which provides a safe intraocular pressure.

  15. Wireless quantified reflex device

    NASA Astrophysics Data System (ADS)

    Lemoyne, Robert Charles

    The deep tendon reflex is a fundamental aspect of a neurological examination. The two major parameters of the tendon reflex are response and latency, which are presently evaluated qualitatively during a neurological examination. The reflex loop is capable of providing insight for the status and therapy response of both upper and lower motor neuron syndromes. Attempts have been made to ascertain reflex response and latency, however these systems are relatively complex, resource intensive, with issues of consistent and reliable accuracy. The solution presented is a wireless quantified reflex device using tandem three dimensional wireless accelerometers to obtain response based on acceleration waveform amplitude and latency derived from temporal acceleration waveform disparity. Three specific aims have been established for the proposed wireless quantified reflex device: 1. Demonstrate the wireless quantified reflex device is reliably capable of ascertaining quantified reflex response and latency using a quantified input. 2. Evaluate the precision of the device using an artificial reflex system. 3.Conduct a longitudinal study respective of subjects with healthy patellar tendon reflexes, using the wireless quantified reflex evaluation device to obtain quantified reflex response and latency. Aim 1 has led to the steady evolution of the wireless quantified reflex device from a singular two dimensional wireless accelerometer capable of measuring reflex response to a tandem three dimensional wireless accelerometer capable of reliably measuring reflex response and latency. The hypothesis for aim 1 is that a reflex quantification device can be established for reliably measuring reflex response and latency for the patellar tendon reflex, comprised of an integrated system of wireless three dimensional MEMS accelerometers. Aim 2 further emphasized the reliability of the wireless quantified reflex device by evaluating an artificial reflex system. The hypothesis for aim 2 is that

  16. Nuclear telemedicine

    NASA Astrophysics Data System (ADS)

    Morrison, R. T.; Szasz, I. J.

    1990-06-01

    Diagnostic nuclear medicine patient images have been transniitted for 8 years from a regional conununity hospital to a university teaching hospital 700 kiloinetres away employing slow scan TV and telephone. Transruission and interpretation were done at the end of each working day or as circumstances required in cases of emergencies. Referring physicians received the nuclear medicine procedure report at the end of the completion day or within few minutes of completion in case of emergency procedures. To date more than 25 patient studies have been transmitted for interpretation. Blinded reinterpretation of the original hard copy data of 350 patient studies resulted in 100 agreement with the interpretation of transmitted data. This technique provides high quality diagnostic and therapeutic nuclear medicine services in remote hospitals where the services of an on-site nuclear physician is not available. 2. HISTORY Eight years ago when the nuclear medicine physician at Trail Regional Hospital left the Trail area and an other could not be recruited we examined the feasibility of image transmission by phone for interpretation since closing the department would have imposed unacceptable physical and financial hardship and medical constraints on the patient population the nearest nuclear medicine facility was at some 8 hours drive away. In hospital patients would have to be treated either based purely on physical findings or flown to Vancouver at considerable cost to the health care system (estimated cost $1500.

  17. Measuring ionizing radiation with a mobile device

    NASA Astrophysics Data System (ADS)

    Michelsburg, Matthias; Fehrenbach, Thomas; Puente León, Fernando

    2012-02-01

    In cases of nuclear disasters it is desirable to know one's personal exposure to radioactivity and the related health risk. Usually, Geiger-Mueller tubes are used to assess the situation. Equipping everyone with such a device in a short period of time is very expensive. We propose a method to detect ionizing radiation using the integrated camera of a mobile consumer device, e.g., a cell phone. In emergency cases, millions of existing mobile devices could then be used to monitor the exposure of its owners. In combination with internet access and GPS, measured data can be collected by a central server to get an overview of the situation. During a measurement, the CMOS sensor of a mobile device is shielded from surrounding light by an attachment in front of the lens or an internal shutter. The high-energy radiation produces free electrons on the sensor chip resulting in an image signal. By image analysis by means of the mobile device, signal components due to incident ionizing radiation are separated from the sensor noise. With radioactive sources present significant increases in detected pixels can be seen. Furthermore, the cell phone application can make a preliminary estimate on the collected dose of an individual and the associated health risks.

  18. High-speed semiconductor devices

    NASA Astrophysics Data System (ADS)

    Sze, S. M.

    An introduction to the physical principles and operational characteristics of high-speed semiconductor devices is presented. Consideration is given to materials and technologies for high-speed devices, device building blocks, the submicron MOSFET, homogeneous field-effect transistors, and heterostructure field-effect transistors. Also considered are quantum-effect devices, microwave diodes, and high-speed photonic devices.

  19. Dielectrophoretically tunable optofluidic devices

    NASA Astrophysics Data System (ADS)

    Xu, Su; Ren, Hongwen; Wu, Shin-Tson

    2013-12-01

    Tunable optofluidic devices exhibit some unique characteristics that are not achievable in conventional solid-state photonic devices. They provide exciting opportunities for emerging applications in imaging, information processing, sensing, optical communication, lab-on-a-chip and biomedical engineering. A dielectrophoresis effect is an important physical mechanism to realize tunable optofluidic devices. Via balancing the voltage-induced dielectric force and interfacial tension, the liquid interface can be dynamically manipulated and the optical output reconfigured or adaptively tuned in real time. Dielectrophoretically tunable optofluidic devices offer several attractive features, such as rapid prototyping, miniaturization, easy integration and low power consumption. In this review paper, we first explain the underlying operation principles and then review some recent progress in this field, covering the topics of adaptive lens, beam steering, iris, grating, optical switch/attenuator and single pixel display. Finally, the future perspectives are discussed.

  20. Ferroelectric Light Control Device

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Elliott, Jr., James R. (Inventor)

    2008-01-01

    A light control device is formed by ferroelectric material and N electrodes positioned adjacent thereto to define an N-sided regular polygonal region or circular region there between where N is a multiple of four.

  1. Devices for Arrhythmia

    MedlinePlus

    ... the heart an electric shock (as with a defibrillator ). For people with recurrent arrhythmias, medical devices such as a pacemaker and implantable cardioverter defibrillator (ICD) can help by continuously monitoring the heart's ...

  2. Optical devices: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Technological developments in the field of optics devices which have potential utility outside the aerospace community are described. Optical instrumentation, light generation and transmission, and laser techniques are among the topics covered. Patent information is given.

  3. Geometry and Cloaking Devices

    NASA Astrophysics Data System (ADS)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    Recently, the application of geometry and conformal mappings to artificial materials (metamaterials) has attracted the attention in various research communities. These materials, characterized by a unique man-made structure, have unusual optical properties, which materials found in nature do not exhibit. By applying the geometry and conformal mappings theory to metamaterial science, it may be possible to realize so-called "Harry Potter cloaking device". Although such a device is still in the science fiction realm, several works have shown that by using such metamaterials it may be possible to control the direction of the electromagnetic field at will. We could then make an object hidden inside of a cloaking device. Here, we will explain how to design invisibility device using differential geometry and conformal mappings.

  4. Authenticated sensor interface device

    DOEpatents

    Coleman, Jody Rustyn; Poland, Richard W.

    2016-10-18

    A system and method for the secure storage and transmission of data is provided. A data aggregate device can be configured to receive secure data from a data source, such as a sensor, and encrypt the secure data using a suitable encryption technique, such as a shared private key technique, a public key encryption technique, a Diffie-Hellman key exchange technique, or other suitable encryption technique. The encrypted secure data can be provided from the data aggregate device to different remote devices over a plurality of segregated or isolated data paths. Each of the isolated data paths can include an optoisolator that is configured to provide one-way transmission of the encrypted secure data from the data aggregate device over the isolated data path. External data can be received through a secure data filter which, by validating the external data, allows for key exchange and other various adjustments from an external source.

  5. Slit injection device

    DOEpatents

    Alger, Terry W.; Schlitt, Leland G.; Bradley, Laird P.

    1976-06-15

    A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

  6. Halo traction device.

    PubMed

    Manthey, D E

    1994-08-01

    A thorough understanding of the underlying diseases and of the halo pin traction device will allow for appropriate treatment of complications. Consultation or referral to the neurosurgeon is advised to prevent serious sequelae. The following points should be remembered: 1. Pins should only be tightened during the first 24-hour period after application. 2. Pin infection is treated by local wound care in most cases. 3. CT scan cannot completely exclude the presence of an abscess secondary to artifact, but MRI may be compatible with the newer devices. 4. Pin penetration of the inner table of the skull requires admission. 5. Any suspected loss of alignment or reduction of the cervical spine requires C-spine immobilization. 5. Nasotracheal or fiberoptic intubation or emergent cricothyroidotomy should be used if orotracheal intubation proves difficult due to the device. 7. The anterior portion of the vest is removable for cardiopulmonary resuscitation without compromising the stability of the device. PMID:8062799

  7. Water-walking devices

    NASA Astrophysics Data System (ADS)

    Hu, David L.; Prakash, Manu; Chan, Brian; Bush, John W. M.

    2007-11-01

    We report recent efforts in the design and construction of water-walking machines inspired by insects and spiders. The fundamental physical constraints on the size, proportion and dynamics of natural water-walkers are enumerated and used as design criteria for analogous mechanical devices. We report devices capable of rowing along the surface, leaping off the surface and climbing menisci by deforming the free surface. The most critical design constraint is that the devices be lightweight and non-wetting. Microscale manufacturing techniques and new man-made materials such as hydrophobic coatings and thermally actuated wires are implemented. Using high-speed cinematography and flow visualization, we compare the functionality and dynamics of our devices with those of their natural counterparts.

  8. Water-walking devices

    NASA Astrophysics Data System (ADS)

    Hu, David L.; Prakash, Manu; Chan, Brian; Bush, John W. M.

    We report recent efforts in the design and construction of water-walking machines inspired by insects and spiders. The fundamental physical constraints on the size, proportion and dynamics of natural water-walkers are enumerated and used as design criteria for analogous mechanical devices. We report devices capable of rowing along the surface, leaping off the surface and climbing menisci by deforming the free surface. The most critical design constraint is that the devices be lightweight and non-wetting. Microscale manufacturing techniques and new man-made materials such as hydrophobic coatings and thermally actuated wires are implemented. Using highspeed cinematography and flow visualization, we compare the functionality and dynamics of our devices with those of their natural counterparts.

  9. Advanced underwater lift device

    NASA Technical Reports Server (NTRS)

    Flanagan, David T.; Hopkins, Robert C.

    1993-01-01

    Flexible underwater lift devices ('lift bags') are used in underwater operations to provide buoyancy to submerged objects. Commercially available designs are heavy, bulky, and awkward to handle, and thus are limited in size and useful lifting capacity. An underwater lift device having less than 20 percent of the bulk and less than 10 percent of the weight of commercially available models was developed. The design features a dual membrane envelope, a nearly homogeneous envelope membrane stress distribution, and a minimum surface-to-volume ratio. A proof-of-concept model of 50 kg capacity was built and tested. Originally designed to provide buoyancy to mock-ups submerged in NASA's weightlessness simulators, the device may have application to water-landed spacecraft which must deploy flotation upon impact, and where launch weight and volume penalties are significant. The device may also be useful for the automated recovery of ocean floor probes or in marine salvage applications.

  10. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  11. Thermoelectric materials and devices

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Talcott, Noel A. (Inventor)

    2011-01-01

    New thermoelectric materials comprise highly [111]-oriented twinned group IV alloys on the basal plane of trigonal substrates, which exhibit a high thermoelectric figure of merit and good material performance, and devices made with these materials.

  12. Microreactor Array Device

    PubMed Central

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; LaBaer, Joshua

    2015-01-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented. PMID:25736721

  13. Microreactor Array Device

    NASA Astrophysics Data System (ADS)

    Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua

    2015-03-01

    We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.

  14. External incontinence devices

    MedlinePlus

    ... the body. They protect the skin from constant leakage of stool or urine. Certain medical conditions can ... skin and apply a new pouch if any leakage has occurred. The device should be applied to ...

  15. Development of electrochromic devices.

    PubMed

    Pawlicka, A

    2009-01-01

    Electrochromic devices (ECD) are systems of considerable commercial interest due to their controllable transmission, absorption and/or reflectance. For instance, these devices are mainly applied to glare attenuation in automobile rearview mirrors and also in some smart windows that can regulate the solar gains of buildings. Other possible applications of ECDs include solar cells, small- and large-area flat panel displays, and frozen food monitoring and document authentication also are of great interest. Over the past 20 years almost 1000 patents and 1500 papers in journals and proceedings have been published with the key words "electrochromic windows". Most of these documents report on materials for electrochromic devices and only some of them about complete electrochromic devices. This paper describes the first patents and some of the recent ones on ECDs, whose development is possible due to the advances in nanotechnology. PMID:19958283

  16. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  17. Nanowire Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Borshchevsky, Alexander; Fleurial, Jean-Pierre; Herman, Jennifer; Ryan, Margaret

    2005-01-01

    Nanowire thermoelectric devices, now under development, are intended to take miniaturization a step beyond the prior state of the art to exploit the potential advantages afforded by shrinking some device features to approximately molecular dimensions (of the order of 10 nm). The development of nanowire-based thermoelectric devices could lead to novel power-generating, cooling, and sensing devices that operate at relatively low currents and high voltages. Recent work on the theory of thermoelectric devices has led to the expectation that the performance of such a device could be enhanced if the diameter of the wires could be reduced to a point where quantum confinement effects increase charge-carrier mobility (thereby increasing the Seebeck coefficient) and reduce thermal conductivity. In addition, even in the absence of these effects, the large aspect ratios (length of the order of tens of microns diameter of the order of tens of nanometers) of nanowires would be conducive to the maintenance of large temperature differences at small heat fluxes. The predicted net effect of reducing diameters to the order of tens of nanometers would be to increase its efficiency by a factor of .3. Nanowires made of thermoelectric materials and devices that comprise arrays of such nanowires can be fabricated by electrochemical growth of the thermoelectric materials in templates that contain suitably dimensioned pores (10 to 100 nm in diameter and 1 to 100 microns long). The nanowires can then be contacted in bundles to form devices that look similar to conventional thermoelectric devices, except that a production version may contain nearly a billion elements (wires) per square centimeter, instead of fewer than a hundred as in a conventional bulk thermoelectric device or fewer than 100,000 as in a microdevice. It is not yet possible to form contacts with individual nanowires. Therefore, in fabricating a nanowire thermoelectric device, one forms contacts on nanowires in bundles of the

  18. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  19. Atherectomy devices: technology update

    PubMed Central

    Akkus, Nuri I; Abdulbaki, Abdulrahman; Jimenez, Enrique; Tandon, Neeraj

    2015-01-01

    Atherectomy is a procedure which is performed to remove atherosclerotic plaque from diseased arteries. Atherosclerotic plaques are localized in either coronary or peripheral arterial vasculature and may have different characteristics depending on the texture of the plaque. Atherectomy has been used effectively in treatment of both coronary and peripheral arterial disease. Atherectomy devices are designed differently to either cut, shave, sand, or vaporize these plaques and have different indications. In this article, current atherectomy devices are reviewed. PMID:25565904

  20. Inverted organic photosensitive device

    SciTech Connect

    Forrest, Stephen R.; Tong, Xiaoran; Lee, Jun Yeob; Cho, Yong Joo

    2015-09-08

    There is disclosed a method for preparing the surface of a metal substrate. The present disclosure also relates to an organic photovoltaic device including a metal substrate made by such method. Also disclosed herein is an inverted photosensitive device including a stainless steel foil reflective electrode, an organic donor-acceptor heterojunction over the reflective electrode, and a transparent electrode over the donor-acceptor heterojunction.

  1. Exhaust gas purification device

    SciTech Connect

    Fujiwara, H.; Hibi, T.; Sayo, S.; Sugiura, Y.; Ueda, K.

    1980-02-19

    The exhaust gas purification device includes an exhaust manifold , a purification cylinder connected with the exhaust manifold through a first honey-comb shaped catalyst, and a second honeycomb shaped catalyst positioned at the rear portion of the purification cylinder. Each catalyst is supported by steel wool rings including coarse and dense portions of steel wool. The purification device further includes a secondary air supplying arrangement.

  2. Biomaterials and Biomedical Devices

    NASA Astrophysics Data System (ADS)

    Hanker, Jacob S.; Giammara, Beverly L.

    1988-11-01

    This review discusses the factors important in the incorporation or integration of biomaterials and devices by tissue. Methods for surface modification and surface-sensitive techniques for analysis are cited. In vitro methods to evaluate the biocompatibility or efficacy of certain biomaterials and devices are presented. Present and future directions in neural prostheses, cardiovascular materials, blood or bone substitutes, controlled drug delivery, orthopedic prostheses, dental materials, artificial organs, plasma- and cytapheresis, and dialysis are discussed.

  3. Wireless device monitoring systems and monitoring devices, and associated methods

    DOEpatents

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  4. Electronic security device

    DOEpatents

    Eschbach, Eugene A.; LeBlanc, Edward J.; Griffin, Jeffrey W.

    1992-01-01

    The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.

  5. Electronic security device

    DOEpatents

    Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.

    1992-03-17

    The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs.

  6. Contamination control device

    DOEpatents

    Clark, Robert M.; Cronin, John C.

    1977-01-01

    A contamination control device for use in a gas-insulated transmission bus consisting of a cylindrical center conductor coaxially mounted within a grounded cylindrical enclosure. The contamination control device is electrically connected to the interior surface of the grounded outer shell and positioned along an axial line at the lowest vertical position thereon. The contamination control device comprises an elongated metallic member having a generally curved cross-section in a first plane perpendicular to the axis of the bus and having an arcuate cross-section in a second plane lying along the axis of the bus. Each opposed end of the metallic member and its opposing sides are tapered to form a pair of generally converging and downward sloping surfaces to trap randomly moving conductive particles in the relatively field-free region between the metallic member and the interior surface of the grounded outer shell. The device may have projecting legs to enable the device to be spot welded to the interior of the grounded housing. The control device provides a high capture probability and prevents subsequent release of the charged particles after the capture thereof.

  7. A sampling device with a capped body and detachable handle

    SciTech Connect

    Jezek, Gerd-Rainer

    1997-12-01

    The present invention relates to a device for sampling radioactive waste and more particularly to a device for sampling radioactive waste which prevents contamination of a sampled material and the environment surrounding the sampled material. During vitrification of nuclear wastes, it is necessary to remove contamination from the surfaces of canisters filled with radioactive glass. After removal of contamination, a sampling device is used to test the surface of the canister. The one piece sampling device currently in use creates a potential for spreading contamination during vitrification operations. During operations, the one piece sampling device is transferred into and out of the vitrification cell through a transfer drawer. Inside the cell, a remote control device handles the sampling device to wipe the surface of the canister. A one piece sampling device can be contaminated by the remote control device prior to use. Further, the sample device can also contaminate the transfer drawer producing false readings for radioactive material. The present invention overcomes this problem by enclosing the sampling pad in a cap. The removable handle is reused which reduces the amount of waste material.

  8. Metabonomics for detection of nuclear materials processing.

    SciTech Connect

    Alam, Todd Michael; Luxon, Bruce A.; Neerathilingam, Muniasamy; Ansari, S.; Volk, David; Sarkar, S.; Alam, Mary Kathleen

    2010-08-01

    Tracking nuclear materials production and processing, particularly covert operations, is a key national security concern, given that nuclear materials processing can be a signature of nuclear weapons activities by US adversaries. Covert trafficking can also result in homeland security threats, most notably allowing terrorists to assemble devices such as dirty bombs. Existing methods depend on isotope analysis and do not necessarily detect chronic low-level exposure. In this project, indigenous organisms such as plants, small mammals, and bacteria are utilized as living sensors for the presence of chemicals used in nuclear materials processing. Such 'metabolic fingerprinting' (or 'metabonomics') employs nuclear magnetic resonance (NMR) spectroscopy to assess alterations in organismal metabolism provoked by the environmental presence of nuclear materials processing, for example the tributyl phosphate employed in the processing of spent reactor fuel rods to extract and purify uranium and plutonium for weaponization.

  9. Nuclear Science Symposium, 19th, and Nuclear Power Systems Symposium, 4th, Miami, Fla., December 6-8, 1972, Proceedings.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major topics covered include radiation monitoring instrumentation, nuclear circuits and systems, biomedical applications of nuclear radiation in diagnosis and therapy, plasma research for fusion power, reactor control and instrumentation, nuclear power standards, and applications of digital computers in nuclear power plants. Systems and devices for space applications are described, including the Apollo alpha spectrometer, a position sensitive detection system for UV and X-ray photons, a 4500-volt electron multiplier bias supply for satellite use, spark chamber systems, proportional counters, and other devices. Individual items are announced in this issue.

  10. Diamond Electronic Devices

    NASA Astrophysics Data System (ADS)

    Isberg, J.

    2010-11-01

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175° C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (˜1 nm) doped layers in order to achieve high RT activation.

  11. Nuclear waste

    SciTech Connect

    Not Available

    1988-05-01

    This paper discusses how, as part of the Department of Energy's implementation of the Nuclear Waste Policy Act of 1982, DOE is required to investigate a site at Yucca Mountain, Nevada and, if it determines that the site is suitable, recommend to the President its selection for a nuclear waste repository. The Nuclear Regulatory Commission, in considering development of the plan, issued five objections, one of which is DOE's failure to recognize the range of alternative conceptual models of the Yucca Mountain site that can be supported by the limited existing technical data. At the end of the quarter DOE directed its project offices in Washington and Texas to begin orderly phase-out of all site-specific repository activities. Costs for this phase-out are $53 million for the Deaf Smith site and $85 million for the Hanford site.

  12. Nuclear scales

    SciTech Connect

    Friar, J.L.

    1998-12-01

    Nuclear scales are discussed from the nuclear physics viewpoint. The conventional nuclear potential is characterized as a black box that interpolates nucleon-nucleon (NN) data, while being constrained by the best possible theoretical input. The latter consists of the longer-range parts of the NN force (e.g., OPEP, TPEP, the {pi}-{gamma} force), which can be calculated using chiral perturbation theory and gauged using modern phase-shift analyses. The shorter-range parts of the force are effectively parameterized by moments of the interaction that are independent of the details of the force model, in analogy to chiral perturbation theory. Results of GFMC calculations in light nuclei are interpreted in terms of fundamental scales, which are in good agreement with expectations from chiral effective field theories. Problems with spin-orbit-type observables are noted.

  13. The rectifying device for optical axis of sighting devices

    NASA Astrophysics Data System (ADS)

    Fu, RongGuo; Chang, BenKang; Qian, YunSheng; Zhan, QiHai; Qiu, YaFeng

    2005-02-01

    The combination photo electronic sighting device usually composed of different optical devices, including telescope and low light level night vision device or infrared thermal imaging system. Every optical axle of the optical device of the combination sighting device is needed to be parallel. When a target away enough from the sighting device is observed, if the images of the target locate on the center of the field of the vision of the different optical devices, it shows that the axis are parallel. According to this principle, a rectifying device for optical axis of sighting device is designed. It includes off-axle paraboloid reflector, the target of cross line, light sources, precision modifying devices and other devices. The target of cross line is put on the focus of the off-axle paraboloid reflector, thus it forms a parallel light beam through the off-axle paraboloid reflector, the sighting device is immerged in the parallel light beam. The observing effect is like a target of long distance. The target is connected with a precision modifying device, by moving modifying device, until the image of the target coincide with the center of the field of vision of every optical device, whose degree of deviation of the optical axle can be calculated. The paper gives the structure of the rectifying device and the way of testing. The parameters of the device is given too.

  14. Positioning and locking device for fuel pin to grid attachment

    DOEpatents

    Frick, Thomas M.; Wineman, Arthur L.

    1976-01-01

    A positioning and locking device for fuel pin to grid attachment provides an inexpensive means of positively positioning and locking the individual fuel pins which make up the driver fuel assemblies used in nuclear reactors. The device can be adapted for use with a currently used attachment grid assembly design and insures that the pins remain in their proper position throughout the in-reactor life of the assembly. This device also simplifies fuel bundle assembly in that a complete row of fuel pins can be added to the bundle during each step of assembly.

  15. Nuclear pursuits

    SciTech Connect

    Not Available

    1993-05-01

    This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.

  16. The nuclear pacemaker: Is renewed interest warranted

    SciTech Connect

    Parsonnet, V.; Berstein, A.D.; Perry, G.Y. )

    1990-10-01

    From 1973 through 1987, 155 radioisotope-powered nuclear pacemakers were implanted in 132 patients at the Newark Beth Israel Medical Center. The longevity of the first 15 devices, all of which were fixed-rate (VOO) pacemakers, was significantly better than that of 15 lithium-chemistry demand (VVI) pacemakers used as control devices (p = 0.0002). Of the entire cohort of 155 nuclear pacemakers, 136 were VVI devices and 19 were VOO units. The patients with VOO pacemakers needed reoperations more often than did those with VVI pacemakers, chiefly for mode change (p less than 0.001). Power-source failure was observed in only 1 case, but 47 nuclear pacemakers were removed for other reasons, including component malfunction (15 units), mode change (12 units), high pacing thresholds (8 units) and lead or connector problems (5 units). The actuarial survival at 15 years was 99% for power sources and 82% for the entire pacing systems (pulse generators plus leads). The frequency of malignancy was similar to that of the population at large and primary tumor sites were randomly distributed. Deaths most commonly were due to cardiac causes (68%). Thus, nuclear pacemakers are safe and reliable and their greater initial cost appears to be offset by their longevity and the resulting decrease in the frequency of reoperations. It is reasonable to suggest that further use be made of long-lasting nuclear power sources for modern pacemakers and other implantable rhythm-management devices.

  17. Nuclear power: Fourth edition

    SciTech Connect

    Deutsch, R.W.

    1986-01-01

    This book describes the basics of nuclear power generation, explaining both the benefits and the real and imagined risks of nuclear power. It includes a discussion of the Three Mile Island accident and its effects. Nuclear Power has been used in the public information programs of more than 100 utilities. The contents discussed are: Nuclear Power and People; Why Nuclear Power. Electricity produced by coal; Electricity produced by nuclear fuel; Nuclear plant sites in the United States; Short History of Commercial Nuclear Power; U.S. nuclear submarines, Regulation of Nuclear Power Plants; Licensing process, Nuclear Power Plant Operator Training; Nuclear power plant simulator, Are Nuclear Plants Safe.; Containment structure, Nuclear Power Plant Insurance; Is Radiation Dangerous.; Man-made radiation, What is Nuclear Fuel.; Fuel cycle for commercial nuclear power plants; Warm Water Discharge; Cooling tower; Protection of Radioactive Materials; Plutonium and Proliferation; Disposal of Radioactive Wastes; Are Alternate Energy Sources Available.; Nuclear Opposition; and Nuclear Power in the Future.

  18. White organic electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Tsou, Chuan-Cheng; Lu, Huei-Tzong; Yokoyama, Meiso

    2006-04-01

    This study investigates energy transfer between N, N'-bis-(1-naphthyl)- N, N'-diphenyl-1,1-biphenyl-4-4'-diamine (NPB) host material and 4-dicyanomethylene-2-methyl-6-[2-(2,3,6,7-tetrahydro-1 H,5 H-benzo[ ij]quinolizin-8-yl) vinyl]-4 H-pyran (DCM2) fluorescent dye in organic electroluminescent (OEL) devices to produce white-color emission. Bathocuproine (BCP) was applied as a hole-blocking layer (HBL) due to its significantly large HOMO, while tris-(8-hydroxy-quinoline) aluminum (Alq 3) was employed in the electron transport layer (ETL). Two OEL device structures were investigated, ITO/NPB:DCM2 ( x%)/Alq 3/Al, and ITO/NPB:DCM2 ( y%)/BCP/Alq 3/Al. In this study, doping DCM2 into the NPB host material could not yield red emission in the case of ITO/NPB:DCM2 ( x%)/Alq 3/Al structure device, even when the DCM2 doping concentration was increased from x=1% to 10%. However, when BCP was inserted between the NPB:DCM2 layer and the Alq 3 layer, the color turned when the concentration of DCM2 doped into NPB was changed. Consequently, the white OEL device with CIE coordinates (0.34,0.34) was observed for the device containing 1% DCM2 doping into NPB host material.

  19. Electrical apparatus lockout device

    DOEpatents

    Gonzales, Rick

    1999-01-01

    A simple lockout device for electrical equipment equipped with recessed power blades is described. The device comprises a face-plate (12) having a threaded member (14) attached thereto and apertures suitable for accommodating the power blades of a piece of electrical equipment, an elastomeric nose (16) abutting the face-plate having a hole for passage of the threaded member therethrough and power blade apertures in registration with those of the face-plate, a block (20) having a recess (34) in its forward face for receiving at least a portion of the hose, a hole therein for receiving the threaded member and an integral extension (26) extending from its rear face. A thumb screw (22) suitable for turning with the hands and having internal threads suitable for engaging the threaded member attached to the face-plate is inserted into a passage in the integral extension to engage the threaded member in such a fashion that when the device is inserted over the recessed power blades of a piece of electrical equipment and the thumb screw (22) tightened, the elastomeric nose (16) is compressed between the face-plate (12) and the block (20) forcing it to expand laterally thereby securing the device in the recess and precluding the accidental or intentional energization of the piece of equipment by attachment of a power cord to the recessed power blades. Means are provided in the interval extension and the thumb screw for the attachment of a locking device (46) which will satisfy OSHA standards.

  20. Spectral tailoring device

    DOEpatents

    Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.

    1987-08-05

    A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.

  1. Nuclear physics in medicine, minefield and kitchen

    NASA Astrophysics Data System (ADS)

    Moskal, Paweł

    2011-01-01

    Plethora of phenomena discovered and investigated in the Maria Curie laboratories constitute nowadays basis of functioning of various advanced devices used in modern science, industry and medicine. In this article we briefly describe few examples of nuclear physics applications, such as: non-invasive imaging of living organisms by means of Positron Emission Tomography, remote identification of explosives and other dangerous substances, using the technique of atometry, and preservation of food by its exposure to nuclear radiation.

  2. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides in the body by means of a detector (or detectors) whose position moves in two directions with respect...

  3. Ion manipulation device

    DOEpatents

    Anderson, Gordon A; Smith, Richard D; Ibrahim, Yehia M; Baker, Erin M

    2014-09-16

    An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.

  4. Electrochromic optical switching device

    SciTech Connect

    Lampert, C.M.; Visco, S.J.

    1992-08-25

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

  5. Electrochromic optical switching device

    SciTech Connect

    Lampert, Carl M.; Visco, Steven J.

    1992-01-01

    An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

  6. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  7. Nonaqueous Electrical Storage Device

    DOEpatents

    McEwen, Alan B.; Evans, David A.; Blakley, Thomas J.; Goldman, Jay L.

    1999-10-26

    An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.

  8. Laser device and method

    SciTech Connect

    Myers, J. D.

    1985-06-25

    A simplified, relatively inexpensive laser device, wherein the laser elements are fixed in a body exoskeleton of electrical insulating material having a low coefficient of thermal expansion. The preferred embodiment includes a shotgun type laser filter having parallel bores which receive the laser flashlamp and laser rod in fixed relation in a body chamber. The reflector surrounds the laser filter and retains the filter within the body chamber. In the preferred method of this invention, several controlled lasing pulses are generated with each illumination pulse of the flashlamp, substantially increasing the efficiency of the laser device. The number of pulses is generally controlled by increasing the voltage to the flashlamp. The rapid multiple lasing pulses generate an elongated plasma in a fluid medium, such as the vitreous fluid body of an eye which makes the laser device extemely efficient for treating glaucoma and other medical treatments.

  9. Regenerative combustion device

    DOEpatents

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  10. Double face sealing device

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce C. (Inventor)

    1991-01-01

    A double face sealing device for mounting between two surfaces to provide an airtight and fluid-tight seal between a closure member bearing one of the surfaces and a structure or housing bearing the other surface which extends around the opening or hatchway to be closed. The double face sealing device includes a plurality of sections or segments mounted to one of the surfaces, each having a main body portion, a pair of outwardly extending and diverging, cantilever, spring arms, and a pair of inwardly extending and diverging, cantilever, spring arms, an elastomeric cover on the distal, free, ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free, ends of the inwardly extending and diverging spring arms. The double face sealing device has application or use in all environments requiring a seal, but is particularly useful to seal openings or hatchways between compartments of spacecraft or aircraft.

  11. Fragment capture device

    DOEpatents

    Payne, Lloyd R.; Cole, David L.

    2010-03-30

    A fragment capture device for use in explosive containment. The device comprises an assembly of at least two rows of bars positioned to eliminate line-of-sight trajectories between the generation point of fragments and a surrounding containment vessel or asset. The device comprises an array of at least two rows of bars, wherein each row is staggered with respect to the adjacent row, and wherein a lateral dimension of each bar and a relative position of each bar in combination provides blockage of a straight-line passage of a solid fragment through the adjacent rows of bars, wherein a generation point of the solid fragment is located within a cavity at least partially enclosed by the array of bars.

  12. Silicon Carbide Electronic Devices

    NASA Technical Reports Server (NTRS)

    Neudeck, P. G.

    2001-01-01

    The status of emerging silicon carbide (SiC) widebandgap semiconductor electronics technology is briefly surveyed. SiC-based electronic devices and circuits are being developed for use in high-temperature, high-power, and/or high-radiation conditions under which conventional semiconductors cannot function. Projected performance benefits of SiC electronics are briefly illustrated for several applications. However, most of these operational benefits of SiC have yet to be realized in actual systems, primarily owing to the fact that the growth techniques of SiC crystals are relatively immature and device fabrication technologies are not yet sufficiently developed to the degree required for widespread, reliable commercial use. Key crystal growth and device fabrication issues that limit the performance and capability of high-temperature and/or high-power SiC electronics are identified. The electrical and material quality differences between emerging SiC and mature silicon electronics technology are highlighted.

  13. Biochip scanner device

    DOEpatents

    Perov, Alexander; Belgovskiy, Alexander I.; Mirzabekov, Andrei D.

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  14. Spin Hall effect devices.

    PubMed

    Jungwirth, Tomas; Wunderlich, Jörg; Olejník, Kamil

    2012-05-01

    The spin Hall effect is a relativistic spin-orbit coupling phenomenon that can be used to electrically generate or detect spin currents in non-magnetic systems. Here we review the experimental results that, since the first experimental observation of the spin Hall effect less than 10 years ago, have established the basic physical understanding of the phenomenon, and the role that several of the spin Hall devices have had in the demonstration of spintronic functionalities and physical phenomena. We have attempted to organize the experiments in a chronological order, while simultaneously dividing the Review into sections on semiconductor or metal spin Hall devices, and on optical or electrical spin Hall experiments. The spin Hall device studies are placed in a broader context of the field of spin injection, manipulation, and detection in non-magnetic conductors.

  15. Nonimaging radiant energy device

    DOEpatents

    Winston, Roland; Ning, Xiaohui

    1996-01-01

    A nonimaging radiant energy device may include a hyperbolically shaped reflective element with a radiant energy inlet and a radiant energy outlet. A convex lens is provided at the radiant energy inlet and a concave lens is provided at the radiant energy outlet. Due to the provision of the lenses and the shape of the walls of the reflective element, the radiant energy incident at the radiant energy inlet within a predetermined angle of acceptance is emitted from the radiant energy outlet exclusively within an acute exit angle. In another embodiment, the radiant energy device may include two interconnected hyperbolically shaped reflective elements with a respective convex lens being provided at each aperture of the device.

  16. Nonimaging radiant energy device

    DOEpatents

    Winston, Roland; Ning, Xiaohui

    1993-01-01

    A nonimaging radiant energy device may include a hyperbolically shaped reflective element with a radiant energy inlet and a radiant energy outlet. A convex lens is provided at the radiant energy inlet and a concave lens is provided at the radiant energy outlet. Due to the provision of the lenses and the shape of the walls of the reflective element, the radiant energy incident at the radiant energy inlet within a predetermined angle of acceptance is emitted from the radiant energy outlet exclusively within an acute exit angle. In another embodiment, the radiant energy device may include two interconnected hyperbolically shaped reflective elements with a respective convex lens being provided at each aperture of the device.

  17. Graphene field emission devices

    SciTech Connect

    Kumar, S. Raghavan, S.; Duesberg, G. S.; Pratap, R.

    2014-09-08

    Graphene field emission devices are fabricated using a scalable process. The field enhancement factors, determined from the Fowler-Nordheim plots, are within few hundreds and match the theoretical predictions. The devices show high emission current density of ∼10 nA μm{sup −1} at modest voltages of tens of volts. The emission is stable with time and repeatable over long term, whereas the noise in the emission current is comparable to that from individual carbon nanotubes emitting under similar conditions. We demonstrate a power law dependence of emission current on pressure which can be utilized for sensing. The excellent characteristics and relative ease of making the devices promise their great potential for sensing and electronic applications.

  18. [Electoro-surgical device].

    PubMed

    Matsumura, Yuji

    2009-07-01

    Electro-surgical device is an essential instrument for bloodless surgery after the 1st introduction by Harvey Cushing in 1926. Basal mechanisms of electric scalpels (monopolar and bipolar), current waveforms (cut, coagulation and blend), high-frequency currents and electrical shocks were commented. After 1990s, several new electro-surgical devices such as argon beam coagulator, bipolar scissors and vessel sealing system (LigaSure) were developed and introduced in chest surgery. Argon beam coagulator is useful in sealing and hemostasis of bleeding from chest walls after extrapleural dissections. Bipolar scissors can seal small vessels less than diameter 2 mm and is useful in mediastinal lymphnode dissections. Vessel sealing system is able to seal and cut vessels up to diameter 7 mm. LigaSure V is the most suitable instrument for thymic vein handling in thoracoscopic thymectomy. Clinical applications of these new surgical devices in chest surgery are discussed. PMID:20715684

  19. Percutaneous connector device

    NASA Technical Reports Server (NTRS)

    Parsons, W. E. (Inventor)

    1976-01-01

    A device is reported for facilitating the passage of electrical signals from an external source through the skin of a patient to internal portions of the body such as muscles and nerves. The connector device includes a bio-compatible shell having an enlarged disk shaped portion for being implanted below the skin of the patient. The shell has a first and second electrically conductive post carried therein upon which a plug can be readily connected and disconnected. A modified form of the invention utilizes a unipolar connector that is adapted to be plugged into a shell implanted below the skin of a patient. Both of the connector devices are designed to be separated when a predetermined force is applied. This prevents excessive force from being applied to the implanted bio-compatible shell.

  20. Pendulum detector testing device

    DOEpatents

    Gonsalves, J.M.

    1997-09-30

    A detector testing device is described which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: (1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, (2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and (3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements. 5 figs.

  1. Pendulum detector testing device

    DOEpatents

    Gonsalves, John M.

    1997-01-01

    A detector testing device which provides consistent, cost-effective, repeatable results. The testing device is primarily constructed of PVC plastic and other non-metallic materials. Sensitivity of a walk-through detector system can be checked by: 1) providing a standard test object simulating the mass, size and material content of a weapon or other contraband, 2) suspending the test object in successive positions, such as head, waist and ankle levels, simulating where the contraband might be concealed on a person walking through the detector system; and 3) swinging the suspended object through each of the positions, while operating the detector system and observing its response. The test object is retained in a holder in which the orientation of the test device or target can be readily changed, to properly complete the testing requirements.

  2. Sterilisation of implantable devices.

    PubMed

    Matthews, I P; Gibson, C; Samuel, A H

    1994-01-01

    The pathogenesis and rates of infection associated with the use of a wide variety of implantable devices are described. The multi-factorial nature of post-operative periprosthetic infection is outlined and the role of sterilisation of devices is explained. The resistance of bacterial spores is highlighted as a problem and a full description is given of the processes of sterilisation by heat, steam, ethylene oxide, low temperature steam and formaldehyde, ionising radiation and liquid glutaraldehyde. Sterility assurance and validation are discussed in the context of biological indicators and physical/chemical indicators. Adverse effects upon the material composition of devices and problems of process control are listed. Finally, possible optimisations of the ethylene oxide process and their potential significance to the field of sterilisation of implants is explored. PMID:10172076

  3. REACTOR CONTROL DEVICE

    DOEpatents

    Graham, R.H.

    1962-09-01

    A wholly mechanical compact control device is designed for automatically rendering the core of a fission reactor subcritical in response to core temperatures in excess of the design operating temperature limit. The control device comprises an expansible bellows interposed between the base of a channel in a reactor core and the inner end of a fuel cylinder therein which is normally resiliently urged inwardly. The bellows contains a working fluid which undergoes a liquid to vapor phase change at a temperature substantially equal to the design temperature limit. Hence, the bellows abruptiy expands at this limiting temperature to force the fuel cylinder outward and render the core subcritical. The control device is particularly applicable to aircraft propulsion reactor service. (AEC)

  4. Optoelectronic devices by GSMBE

    NASA Astrophysics Data System (ADS)

    Goldstein, L.

    1990-10-01

    The growth of high quality InP and GaInAsP alloy by gas source molecular beam epitaxy (GSMBE) is of high interest for the realization of optoelectronic devices in the wavelength region of 1.3-1.55 μm. This epitaxial technique is also well adapted to the growth of quantum well structure with very sharp interfaces. Optical devices of high performances, i.e. semiconductor amplifier and distributed feedback multi-quantum well (DFB-MQW) lasers, are fabricated with a hybrid process with GSMBE for the active structure and liquid phase epitaxy (LPE) for the regrowth of lateral confinement layers. These devices show excellent electrical and optical characteristics.

  5. Nuclear medicine

    SciTech Connect

    Wagner, H.N. Jr.

    1986-10-17

    In 1985 and 1986 nuclear medicine became more and more oriented toward in vov chemistry, chiefly as a result of advances in positron emission tomography (PET). The most important trend was the extension of PET technology into the care of patients with brain tumors, epilepsy, and heart disease. A second trend was the increasing use of single-photon emission computed tomography (SPECT).

  6. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1961-09-01

    A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

  7. Nuclear Science.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  8. Nuclear Misinformation

    ERIC Educational Resources Information Center

    Ford, Daniel F.; Kendall, Henry W.

    1975-01-01

    Many scientists feel that research into nuclear safety has been diverted or distorted, and the results of the research concealed or inaccurately reported on a large number of occasions. Of particular concern have been the emergency cooling systems which have not, as yet, been adequately tested. (Author/MA)

  9. Nuclear explosions

    SciTech Connect

    Broyles, A.A.

    1982-07-01

    A summary of the physics of a nuclear bomb explosion and its effects on human beings is presented at the level of a sophomore general physics course without calculus. It is designed to supplement a standard text for such a course and problems are included.

  10. Nuclear energy.

    PubMed

    Wilson, Peter D

    2010-01-01

    The technical principles and practices of the civil nuclear industry are described with particular reference to fission and its products, natural and artificial radioactivity elements principally concerned and their relationships, main types of reactor, safety issues, the fuel cycle, waste management, issues related to weapon proliferation, environmental considerations and possible future developments.

  11. Nuclear Terrorism.

    SciTech Connect

    Hecker, Siegfried S.

    2001-01-01

    As pointed out by several speakers, the level of violence and destruction in terrorist attacks has increased significantly during the past decade. Fortunately, few have involved weapons of mass destruction, and none have achieved mass casualties. The Aum Shinrikyo release of lethal nerve agent, sarin, in the Tokyo subway on March 20, 1995 clearly broke new ground by crossing the threshold in attempting mass casualties with chemical weapons. However, of all weapons of mass destruction, nuclear weapons still represent the most frightening threat to humankind. Nuclear weapons possess an enormous destructive force. The immediacy and scale of destruction are unmatched. In addition to destruction, terrorism also aims to create fear among the public and governments. Here also, nuclear weapons are unmatched. The public's fear of nuclear weapons or, for that matter, of all radioactivity is intense. To some extent, this fear arises from a sense of unlimited vulnerability. That is, radioactivity is seen as unbounded in three dimensions - distance, it is viewed as having unlimited reach; quantity, it is viewed as having deadly consequences in the smallest doses (the public is often told - incorrectly, of course - that one atom of plutonium will kill); and time, if it does not kill you immediately, then it will cause cancer decades hence.

  12. Therapeutic Devices for Epilepsy

    PubMed Central

    Fisher, Robert S.

    2011-01-01

    Therapeutic devices provide new options for treating drug-resistant epilepsy. These devices act by a variety of mechanisms to modulate neuronal activity. Only vagus nerve stimulation, which continues to develop new technology, is approved for use in the United States. Deep brain stimulation (DBS) of anterior thalamus for partial epilepsy recently was approved in Europe and several other countries. Responsive neurostimulation, which delivers stimuli to one or two seizure foci in response to a detected seizure, recently completed a successful multicenter trial. Several other trials of brain stimulation are in planning or underway. Transcutaneous magnetic stimulation (TMS) may provide a noninvasive method to stimulate cortex. Controlled studies of TMS split on efficacy, and may depend on whether a seizure focus is near a possible region for stimulation. Seizure detection devices in the form of “shake” detectors via portable accelerometers can provide notification of an ongoing tonic-clonic seizure, or peace of mind in the absence of notification. Prediction of seizures from various aspects of EEG is in early stages. Prediction appears to be possible in a subpopulation of people with refractory seizures and a clinical trial of an implantable prediction device is underway. Cooling of neocortex or hippocampus reversibly can attenuate epileptiform EEG activity and seizures, but engineering problems remain in its implementation. Optogenetics is a new technique that can control excitability of specific populations of neurons with light. Inhibition of epileptiform activity has been demonstrated in hippocampal slices, but use in humans will require more work. In general, devices provide useful palliation for otherwise uncontrollable seizures, but with a different risk profile than with most drugs. Optimizing the place of devices in therapy for epilepsy will require further development and clinical experience. PMID:22367987

  13. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  14. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  15. EXPERIMENTAL ANIMAL WATERING DEVICE

    DOEpatents

    Finkel, M.P.

    1964-04-01

    A device for watering experimental animals confined in a battery of individual plastic enclosures is described. It consists of a rectangular plastic enclosure having a plurality of fluid-tight compartments, each with a drinking hole near the bottom and a filling hole on the top. The enclosure is immersed in water until filled, its drinking holes sealed with a strip of tape, and it is then placed in the battery. The tape sealing prevents the flow of water from the device, but permits animals to drink by licking the drinking holes. (AEC)

  16. ROTATING PLASMA DEVICE

    DOEpatents

    Boyer, K.; Hammel, J.E.; Longmire, C.L.; Nagle, D.E.; Ribe, F.L.; Tuck, J.L.

    1961-10-24

    ABS>A method and device are described for obtaining fusion reactions. The basic concept is that of using crossed electric and magnetic fields to induce a plasma rotation in which the ionized particles follow a circumferential drift orbit on wldch a cyclotron mode of motion is superimposed, the net result being a cycloidal motion about the axis of symmetry. The discharge tube has a radial electric field and a longitudinal magnetic field. Mirror machine geometry is utilized. The device avoids reliance on the pinch effect and its associated instability problems. (AEC)

  17. Microfluidic Cell Culture Device

    NASA Technical Reports Server (NTRS)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  18. Contaminate Control Device

    NASA Technical Reports Server (NTRS)

    Howe, Robert H. (Inventor); Flynn, Kenneth P. (Inventor); Stapleton, Thomas J. (Inventor)

    2014-01-01

    A contaminate control device for filtering contaminates from a gas such as air is provided. The device includes a housing having a first inlet and a first outlet. An axial flow filter is fluidly coupled between the first inlet and the first outlet, the axial flow filter has a second inlet and a second outlet. A second filter disposed about the axial flow filter and is fluidly coupled between the first inlet and the first outlet, the second filter having a third inlet on an inner diameter and a third outlet disposed on an outer diameter. A flow restrictor is fluidly coupled between the second inlet and the first inlet.

  19. Precision positioning device

    DOEpatents

    McInroy, John E.

    2005-01-18

    A precision positioning device is provided. The precision positioning device comprises a precision measuring/vibration isolation mechanism. A first plate is provided with the precision measuring mean secured to the first plate. A second plate is secured to the first plate. A third plate is secured to the second plate with the first plate being positioned between the second plate and the third plate. A fourth plate is secured to the third plate with the second plate being positioned between the third plate and the fourth plate. An adjusting mechanism for adjusting the position of the first plate, the second plate, the third plate, and the fourth plate relative to each other.

  20. REMOTE CONTROLLED SWITCHING DEVICE

    DOEpatents

    Hobbs, J.C.

    1959-02-01

    An electrical switching device which can be remotely controlled and in which one or more switches may be accurately operated at predetermined times or with predetermined intervening time intervals is described. The switching device consists essentially of a deck, a post projecting from the deck at right angles thereto, cam means mounted for rotation around said posts and a switch connected to said deck and actuated by said cam means. Means is provided for rotating the cam means at a constant speed and the switching apparatus is enclosed in a sealed container with external adjusting means and electrical connection elements.

  1. Biomedical materials and devices

    SciTech Connect

    Hanker, J. S. ); Giammara, B. L. )

    1989-01-01

    This conference reports on how biomedical materials and devices are undergoing important changes that require interdisciplinary approaches, innovation expertise, and access to sophisticated preparative and analytical equipment and methodologies. The interaction of materials scientists with biomedical, biotechnological, bioengineering and clinical scientists in the last decade has resulted in major advances in therapy. New therapeutic modalities and bioengineering methods and devices for the continuous removal of toxins or pathologic products present in arthritis, atherosclerosis and malignancy are presented. Novel monitoring and controlled drug delivery systems and discussions of materials such as blood or plasma substitutes, artificial organs, and bone graft substitutes are discussed.

  2. Asphaltene based photovoltaic devices

    DOEpatents

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  3. Phononic crystal devices

    DOEpatents

    El-Kady, Ihab F.; Olsson, Roy H.

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  4. Semiconductor structure and devices

    NASA Technical Reports Server (NTRS)

    Dinkel, Nancy A. (Inventor); Goldstein, Bernard (Inventor); Ettenberg, Michael (Inventor)

    1987-01-01

    Semiconductor devices such as lasers which include a substrate with a channel therein with a clad layer overlying the substrate and filling the channel exhibit irregularities such as terraces in the surface of the clad layer which are detrimental to device performance. These irregularities are substantially eliminated by forming the channel in a surface of a buffer layer greater than about 4 micrometers thick on the substrate and forming the clad layer over the buffer layer and the channel. CW lasers incorporating the principles of the invention exhibit the highest output power in a single spatial mode and maximum output power which have been observed to date.

  5. Portable emittance measurement device

    SciTech Connect

    Liakin, D.; Seleznev, D.; Orlov, A.; Kuibeda, R.; Kropachev, G.; Kulevoy, T.; Yakushin, P.

    2010-02-15

    In Institute for Theoretical and Experimental Physics (ITEP) the portable emittance measurements device is developed. It provides emittance measurements both with ''pepper-pot'' and ''two slits'' methods. Depending on the method of measurements, either slits or pepper-pot mask with scintillator are mounted on the two activators and are installed in two standard Balzer's cross chamber with CF-100 flanges. To match the angle resolution for measured beam, the length of the stainless steel pipe between two crosses changes is adjusted. The description of the device and results of emittance measurements at the ITEP ion source test bench are presented.

  6. Device and method for shortening reactor process tubes

    DOEpatents

    Frantz, Charles E.; Alexander, William K.; Lander, Walter E. B.

    1980-01-01

    This disclosure describes a device and method for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.

  7. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to present images which reflect the spatial distribution and/or magnetic resonance spectra which reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical parameters derived from the images and/or spectra may also be produced. The device includes...

  8. 21 CFR 892.1000 - Magnetic resonance diagnostic device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to present images which reflect the spatial distribution and/or magnetic resonance spectra which reflect frequency and distribution of nuclei exhibiting nuclear magnetic resonance. Other physical parameters derived from the images and/or spectra may also be produced. The device includes...

  9. Device and method for shortening reactor process tubes

    DOEpatents

    Frantz, C.E.; Alexander, W.K.; Lander, W.E.B.

    A device and method are described for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.

  10. Unified first wall - blanket structure for plasma device applications

    DOEpatents

    Gruen, D.M.

    A plasma device is described for use in controlling nuclear reactions within the plasma including a first wall and blanket formed in a one-piece structure composed of a solid solution containing copper and lithium and melting above about 500/sup 0/C.

  11. Device configuration-management system

    SciTech Connect

    Nowell, D.M.

    1981-01-01

    The Fusion Chamber System, a major component of the Magnetic Fusion Test Facility, contains several hundred devices which report status to the Supervisory Control and Diagnostic System for control and monitoring purposes. To manage the large number of diversity of devices represented, a device configuration management system was required and developed. Key components of this software tool include the MFTF Data Base; a configuration editor; and a tree structure defining the relationships between the subsystem devices. This paper will describe how the configuration system easily accomodates recognizing new devices, restructuring existing devices, and modifying device profile information.

  12. Solid-State Devices.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine Corps enlisted personnel with the principles of solid-state devices and their functions. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  13. RADIO RANGING DEVICE

    DOEpatents

    Bogle, R.W.

    1960-11-22

    A description is given of a super-regenerative oscillator ranging device provided with radiating and receiving means and being capable of indicating the occurrence of that distance between itself and a reflecting object which so phases the received echo of energy of a preceding emitted oscillation that the intervals between oscillations become uniform.

  14. RADIO RANGING DEVICE

    DOEpatents

    Nieset, R.T.

    1961-05-16

    A radio ranging device is described. It utilizes a super regenerative detector-oscillator in which echoes of transmitted pulses are received in proper phase to reduce noise energy at a selected range and also at multiples of the selected range.

  15. Superlattice optical device

    DOEpatents

    Biefeld, Robert M.; Fritz, Ian J.; Gourley, Paul L.; Osbourn, Gordon C.

    1986-01-01

    A semiconductor optical device which includes a superlattice having direct transitions between conduction band and valence band states with the same wave vector, the superlattice being formed from a plurality of alternating layers of two or more different materials, at least the material with the smallest bandgap being an indirect bandgap material.

  16. Superlattice optical device

    DOEpatents

    Biefeld, R.M.; Fritz, I.J.; Gourley, P.L.; Osbourn, G.C.

    A semiconductor optical device which includes a superlattice having direct transitions between conduction band and valence band states with the same wave vector, the superlattice being formed from a plurality of alternating layers of two or more different materials, at least the material with the smallest bandgap being an indirect bandgap material.

  17. Cascaded thermoacoustic devices

    SciTech Connect

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-12-09

    A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.

  18. Solar Innovator | Alta Devices

    ScienceCinema

    Mattos, Laila; Le, Minh

    2016-07-12

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  19. LOADING AND UNLOADING DEVICE

    DOEpatents

    Treshow, M.

    1960-08-16

    A device for loading and unloading fuel rods into and from a reactor tank through an access hole includes parallel links carrying a gripper. These links enable the gripper to go through the access hole and then to be moved laterally from the axis of the access hole to the various locations of the fuel rods in the reactor tank.

  20. Device Oriented Project Controller

    SciTech Connect

    Dalesio, Leo; Kraimer, Martin

    2013-11-20

    This proposal is directed at the issue of developing control systems for very large HEP projects. A de-facto standard in accelerator control is the Experimental Physics and Industrial Control System (EPICS), which has been applied successfully to many physics projects. EPICS is a channel based system that requires that each channel of each device be configured and controlled. In Phase I, the feasibility of a device oriented extension to the distributed channel database was demonstrated by prototyping a device aware version of an EPICS I/O controller that functions with the current version of the channel access communication protocol. Extensions have been made to the grammar to define the database. Only a multi-stage position controller with limit switches was developed in the demonstration, but the grammar should support a full range of functional record types. In phase II, a full set of record types will be developed to support all existing record types, a set of process control functions for closed loop control, and support for experimental beam line control. A tool to configure these records will be developed. A communication protocol will be developed or extensions will be made to Channel Access to support introspection of components of a device. Performance bench marks will be made on both communication protocol and the database. After these records and performance tests are under way, a second of the grammar will be undertaken.

  1. Condensate removal device

    DOEpatents

    Maddox, James W.; Berger, David D.

    1984-01-01

    A condensate removal device is disclosed which incorporates a strainer in unit with an orifice. The strainer is cylindrical with its longitudinal axis transverse to that of the vapor conduit in which it is mounted. The orifice is positioned inside the strainer proximate the end which is remoter from the vapor conduit.

  2. Road-Cleaning Device

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2014-01-01

    Roadways are literally soaked with petrochemical byproducts, oils, gasoline, and other volatile substances that eventually run off into sewers and end up in rivers, waterways, and other undesirable places. Can the roads be cleaned of these wastes, with their proper disposal? Can vehicles, robots, or other devices be designed that could be driven…

  3. Solar Innovator | Alta Devices

    SciTech Connect

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  4. Active terahertz metamaterial devices.

    PubMed

    Chen, Hou-Tong; Padilla, Willie J; Zide, Joshua M O; Gossard, Arthur C; Taylor, Antoinette J; Averitt, Richard D

    2006-11-30

    The development of artificially structured electromagnetic materials, termed metamaterials, has led to the realization of phenomena that cannot be obtained with natural materials. This is especially important for the technologically relevant terahertz (1 THz = 10(12) Hz) frequency regime; many materials inherently do not respond to THz radiation, and the tools that are necessary to construct devices operating within this range-sources, lenses, switches, modulators and detectors-largely do not exist. Considerable efforts are underway to fill this 'THz gap' in view of the useful potential applications of THz radiation. Moderate progress has been made in THz generation and detection; THz quantum cascade lasers are a recent example. However, techniques to control and manipulate THz waves are lagging behind. Here we demonstrate an active metamaterial device capable of efficient real-time control and manipulation of THz radiation. The device consists of an array of gold electric resonator elements (the metamaterial) fabricated on a semiconductor substrate. The metamaterial array and substrate together effectively form a Schottky diode, which enables modulation of THz transmission by 50 per cent, an order of magnitude improvement over existing devices. PMID:17136089

  5. Infections and intravascular devices.

    PubMed

    Elliott, T S; Faroqui, M H

    Complications associated with intravascular devices include infections mainly caused by Staphylococcus epidermis and S. aureus. The reported incidence of these infections varies. Several factors influence the propensity for catheter infections. We recommend strategies for the prevention and treatment of catheter-related sepsis. PMID:1422561

  6. Simulating nanoscale semiconductor devices.

    SciTech Connect

    Salinger, Andrew Gerhard; Zhao, P.; Woolard, D. L.; Kelley, C. Tim; Lasater, Matthew S.

    2005-03-01

    The next generation of electronic devices will be developed at the nanoscale and molecular level, where quantum mechanical effects are observed. These effects must be accounted for in the design process for such small devices. One prototypical nanoscale semiconductor device under investigation is a resonant tunneling diode (RTD). Scientists are hopeful the quantum tunneling effects present in an RTD can be exploited to induce and sustain THz frequency current oscillations. To simulate the electron transport within the RTD, the Wigner-Poisson equations are used. These equations describe the time evolution of the electrons distribution within the device. In this paper, this model and a parameter study using this model will be presented. The parameter study involves calculating the steady-state current output from the RTD as a function of an applied voltage drop across the RTD and also calculating the stability of that solution. To implement the parameter study, the computational model was connected to LOCA (Library of Continuation Algorithms), a part of Sandia National Laboratories parallel solver project, Trilinos. Numerical results will be presented.

  7. Color identification testing device

    NASA Technical Reports Server (NTRS)

    Brawner, E. L.; Martin, R.; Pate, W.

    1970-01-01

    Testing device, which determines ability of a technician to identify color-coded electric wires, is superior to standard color blindness tests. It tests speed of wire selection, detects partial color blindness, allows rapid testing, and may be administered by a color blind person.

  8. Multiple gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  9. Implantable electrical device

    NASA Technical Reports Server (NTRS)

    Jhabvala, M. D. (Inventor)

    1982-01-01

    A fully implantable and self contained device is disclosed composed of a flexible electrode array for surrounding damaged nerves and a signal generator for driving the electrode array with periodic electrical impulses of nanoampere magnitude to induce regeneration of the damaged nerves.

  10. Human performance measuring device

    NASA Technical Reports Server (NTRS)

    Michael, J.; Scow, J.

    1970-01-01

    Complex coordinator, consisting of operator control console, recorder, subject display panel, and limb controls, measures human performance by testing perceptual and motor skills. Device measures psychophysiological functions in drug and environmental studies, and is applicable to early detection of psychophysiological body changes.

  11. Devices for hearing loss

    MedlinePlus

    ... bring the sound from your TV, radio, or music player directly to your inner ear. Many listening devices now work through a wireless link and can connect directly to your hearing aid. There is also television closed-captioning, which shows ...

  12. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  13. ANNULAR IMPACTOR SAMPLING DEVICE

    DOEpatents

    Tait, G.W.C.

    1959-03-31

    A high-rate air sampler capable of sampling alphaemitting particles as small as 0.5 microns is described. The device is a cylindrical shaped cup that fits in front of a suction tube and which has sticky grease coating along its base. Suction forces contaminated air against the periodically monitored particle absorbing grease.

  14. Nuclear politics

    NASA Astrophysics Data System (ADS)

    Ranson, John

    2009-04-01

    The sentiments expressed by Sidney Drell in his forum article "The nuclear threat: a new start" (February pp16-17) are laudable, but it was disappointing to find this almost entirely political story in isolation. The article, which outlined the prospects for reducing weapons stockpiles under the new US administration, would have been more pertinent as an introduction to a series describing the technology used in detecting nuclear-testing activity. It would have been interesting to discuss the specific equipment and methods used, together with the analysis and correlation techniques - along with an indication of how sensitive and reliable they are (if the information is not classified). It is far easier to detect an explosive event than it is to detect and quantify weapons stores, which is a key factor for any negotiated solution. Apart from deductions based on actual inspection and satellite surveillance, are there other techniques that can be applied to this issue?

  15. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  16. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  17. Nuclear Chirality

    SciTech Connect

    Starosta, Krzysztof

    2005-04-05

    Nuclear chirality is a novel manifestation of spontaneous symmetry breaking resulting from an orthogonal coupling of angular momentum vectors in triaxial nuclei. Three perpendicular angular momenta can form two systems of opposite handedness; the time reversal operator, which reverses orientation of each of the angular momentum components, relates these two systems. The status of current experimental searches for chiral doubling of states, as well as recent progress on the theoretical side is reviewed.

  18. Nuclear waste

    SciTech Connect

    Not Available

    1991-09-01

    Radioactive waste is mounting at U.S. nuclear power plants at a rate of more than 2,000 metric tons a year. Pursuant to statute and anticipating that a geologic repository would be available in 1998, the Department of Energy (DOE) entered into disposal contracts with nuclear utilities. Now, however, DOE does not expect the repository to be ready before 2010. For this reason, DOE does not want to develop a facility for monitored retrievable storage (MRS) by 1998. This book is concerned about how best to store the waste until a repository is available, congressional requesters asked GAO to review the alternatives of continued storage at utilities' reactor sites or transferring waste to an MRS facility, GAO assessed the likelihood of an MRSA facility operating by 1998, legal implications if DOE is not able to take delivery of wastes in 1998, propriety of using the Nuclear Waste Fund-from which DOE's waste program costs are paid-to pay utilities for on-site storage capacity added after 1998, ability of utilities to store their waste on-site until a repository is operating, and relative costs and safety of the two storage alternatives.

  19. Nuclear terrorism.

    PubMed

    Hogan, David E; Kellison, Ted

    2002-06-01

    Recent events have heightened awareness of the potential for terrorist attacks employing nonconventional weaponry such as biological agents and radiation. Historically, the philosophy of nuclear risk has focused on global or strategic nuclear exchanges and the resulting damage from large-scale releases. Currently, nuclear accidents or terrorist attacks involving low-level or regional release of radiation are considered the most likely events. Thus far, there have been several regional radiation incidents exposing hundreds of thousands of people to radiation, but there have been only a limited number of significant contaminations resulting in death. There are several different types of radioactive particles that differ in mass, extent of radiation emitted, and the degree to which tissue penetration occurs. Radiation affects its toxicity on biological systems by ionization, which creates tissue damage by the generation of free radicals, disruption of chemical bonds, and directly damaging cellular DNA and enzymes. The extent of damage depends on the type of radioisotope and the radiation dose. Radiation doses exceeding 2 to 10 Gy are considered lethal. Optimal management of radiation casualties requires knowledge of the type and dose of radiation received, a recognition of the manifestations of radiation sickness, and the use of standard medical care, decontamination, and decorporation techniques. PMID:12074488

  20. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  1. Medical device regulation for manufacturers.

    PubMed

    McAllister, P; Jeswiet, J

    2003-01-01

    Manufacturers of medical devices are held to a higher standard than manufacturers of many other products due to the potential severity of the consequences of introducing inferior or unsafe products to the market-place. In Canada, the medical device industry is regulated by Health Canada under the Medical Device Regulations of the Food and Drug Act. The Medical Device Regulations define requirements of medical device design, development and manufacture to ensure that products reaching the public are safe and effective. Health Canada also requires that medical device manufacturers maintain distribution records to ensure that devices can be traced to the source and consumers can be contacted successfully in the event that a device is recalled. Medical devices exported from Canada must be compliant with the regulations of the country of import. The Canadian Medical Device Regulations were based on the Medical Device Directives of the European Union thus facilitating approval of Canadian devices for the European market. The United States Food and Drug Administration has separate and distinct requirements for safety and quality of medical devices. While effort has been made to facilitate approval and trade of Canadian medical devices in the United States and the European Union, obtaining approval from multiple regulatory bodies can result in increased device development time and cost. The Global Harmonization Task Force is an organization composed of members from Japanese, Australian, European, Canadian and American medical device regulatory bodies. This organization was formed with the objective of harmonizing medical device regulations in an effort to facilitate international trade and standardize the quality of medical devices available to all countries. This paper discusses the requirements that must be met by manufacturers when designing and manufacturing medical devices.

  2. United States nuclear tests, July 1945 through September 1992

    SciTech Connect

    Not Available

    1994-12-01

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

  3. Analysis of the transient response of nuclear spins in GaAs with/without nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Rasly, Mahmoud; Lin, Zhichao; Yamamoto, Masafumi; Uemura, Tetsuya

    2016-05-01

    As an alternative to studying the steady-state responses of nuclear spins in solid state systems, working within a transient-state framework can reveal interesting phenomena. The response of nuclear spins in GaAs to a changing magnetic field was analyzed based on the time evolution of nuclear spin temperature. Simulation results well reproduced our experimental results for the transient oblique Hanle signals observed in an all-electrical spin injection device. The analysis showed that the so called dynamic nuclear polarization can be treated as a cooling tool for the nuclear spins: It works as a provider to exchange spin angular momentum between polarized electron spins and nuclear spins through the hyperfine interaction, leading to an increase in the nuclear polarization. In addition, a time-delay of the nuclear spin temperature with a fast sweep of the external magnetic field produces a possible transient state for the nuclear spin polarization. On the other hand, the nuclear magnetic resonance acts as a heating tool for a nuclear spin system. This causes the nuclear spin temperature to jump to infinity: i.e., the average nuclear spins along with the nuclear field vanish at resonant fields of 75As, 69Ga and 71Ga, showing an interesting step-dip structure in the oblique Hanle signals. These analyses provide a quantitative understanding of nuclear spin dynamics in semiconductors for application in future computation processing.

  4. Nuclear photonics

    SciTech Connect

    Habs, D.; Guenther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-09

    With the planned new {gamma}-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 10{sup 13}{gamma}/s and a band width of {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -3}, a new era of {gamma} beams with energies up to 20MeV comes into operation, compared to the present world-leading HI{gamma}S facility at Duke University (USA) with 10{sup 8}{gamma}/s and {Delta}E{gamma}/E{gamma} Almost-Equal-To 3 Dot-Operator 10{sup -2}. In the long run even a seeded quantum FEL for {gamma} beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused {gamma} beams. Here we describe a new experiment at the {gamma} beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for {gamma} beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for {gamma} beams are being developed. Thus, we have to optimize the total system: the {gamma}-beam facility, the {gamma}-beam optics and {gamma} detectors. We can trade {gamma} intensity for band width, going down to {Delta}E{gamma}/E{gamma} Almost-Equal-To 10{sup -6} and address individual nuclear levels. The term 'nuclear photonics' stresses the importance of nuclear applications. We can address with {gamma}-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, {gamma} beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to {mu}m resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of

  5. Nuclear photonics

    NASA Astrophysics Data System (ADS)

    Habs, D.; Günther, M. M.; Jentschel, M.; Thirolf, P. G.

    2012-07-01

    With the planned new γ-beam facilities like MEGa-ray at LLNL (USA) or ELI-NP at Bucharest (Romania) with 1013 γ/s and a band width of ΔEγ/Eγ≈10-3, a new era of γ beams with energies up to 20MeV comes into operation, compared to the present world-leading HIγS facility at Duke University (USA) with 108 γ/s and ΔEγ/Eγ≈3ṡ10-2. In the long run even a seeded quantum FEL for γ beams may become possible, with much higher brilliance and spectral flux. At the same time new exciting possibilities open up for focused γ beams. Here we describe a new experiment at the γ beam of the ILL reactor (Grenoble, France), where we observed for the first time that the index of refraction for γ beams is determined by virtual pair creation. Using a combination of refractive and reflective optics, efficient monochromators for γ beams are being developed. Thus, we have to optimize the total system: the γ-beam facility, the γ-beam optics and γ detectors. We can trade γ intensity for band width, going down to ΔEγ/Eγ≈10-6 and address individual nuclear levels. The term "nuclear photonics" stresses the importance of nuclear applications. We can address with γ-beams individual nuclear isotopes and not just elements like with X-ray beams. Compared to X rays, γ beams can penetrate much deeper into big samples like radioactive waste barrels, motors or batteries. We can perform tomography and microscopy studies by focusing down to μm resolution using Nuclear Resonance Fluorescence (NRF) for detection with eV resolution and high spatial resolution at the same time. We discuss the dominating M1 and E1 excitations like the scissors mode, two-phonon quadrupole octupole excitations, pygmy dipole excitations or giant dipole excitations under the new facet of applications. We find many new applications in biomedicine, green energy, radioactive waste management or homeland security. Also more brilliant secondary beams of neutrons and positrons can be produced.

  6. Medical Devices; Ophthalmic Devices; Classification of Strabismus Detection Device. Final order.

    PubMed

    2016-09-22

    The Food and Drug Administration (FDA) is classifying the strabismus detection device into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the strabismus detection device's classification. The Agency is classifying the device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. PMID:27658316

  7. Nuclear cargo detector

    DOEpatents

    Christo, Steven Basil

    2006-12-19

    Apparatus for the inspection of cargo containers for nuclear materials comprising one or more arrays of modules comprising grounded, closed conductive tubes filled with an ionizing gas mixture such as, but not limited to, Argon:CO.sub.2. A wire is suspended along each tube axis and electrically connected at both ends of the tube. A positive, dc high voltage is supplied to one end of the wire and an amplifier is attached to the other end through a capacitance to decouple the amplifier from the high voltage. X-rays, gamma rays or neutrons produced by nuclear material and passing through the tube ionize the gas. The electrons from the gas ionization process are accelerated toward the wire surface due to the wire's electrical potential. The acceleration of the electrons near the wire's surface is sufficient to ionize more gas and produce an amplification of electrons/ions that create a surge of current large enough to be detectable by the amplifier. Means are also provided for a warning device coupled to the amplifier.

  8. Adult Public Education for Nuclear Terrorism: An Analysis of Cold War and War on Terror Preparedness Discourses

    ERIC Educational Resources Information Center

    Fisher, Debra A.

    2014-01-01

    The nuclear terrorist threat is far greater today than ever before, but the United States is unprepared to respond to the aftermath of a nuclear attack, whether perpetrated by rogue nuclear countries or the terrorist groups they support. Following the detonation of an improvised nuclear device (IND), citizens, not government personnel, become the…

  9. 10 CFR 34.23 - Locking of radiographic exposure devices, storage containers and source changers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Locking of radiographic exposure devices, storage containers and source changers. 34.23 Section 34.23 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR... § 34.23 Locking of radiographic exposure devices, storage containers and source changers. (a)...

  10. 10 CFR 34.23 - Locking of radiographic exposure devices, storage containers and source changers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Locking of radiographic exposure devices, storage containers and source changers. 34.23 Section 34.23 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR... § 34.23 Locking of radiographic exposure devices, storage containers and source changers. (a)...

  11. 10 CFR 32.31 - Certain industrial devices containing byproduct material: Safety criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Certain industrial devices containing byproduct material: Safety criteria. 32.31 Section 32.31 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO... Certain industrial devices containing byproduct material: Safety criteria. (a) An applicant for a...

  12. Light modulating device

    SciTech Connect

    Rauh, R.D.; Goldner, R.B.

    1989-12-26

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity are disclosed. 1 fig.

  13. Dielectrokinetic chromatography devices

    SciTech Connect

    Chirica, Gabriela S; Fiechtner, Gregory J; Singh, Anup K

    2014-12-16

    Disclosed herein are methods and devices for dielectrokinetic chromatography. As disclosed, the devices comprise microchannels having at least one perturber which produces a non-uniformity in a field spanning the width of the microchannel. The interaction of the field non-uniformity with a perturber produces a secondary flow which competes with a primary flow. By decreasing the size of the perturber the secondary flow becomes significant for particles/analytes in the nanometer-size range. Depending on the nature of a particle/analyte present in the fluid and its interaction with the primary flow and the secondary flow, the analyte may be retained or redirected. The composition of the primary flow can be varied to affect the magnitude of primary and/or secondary flows on the particles/analytes and thereby separate and concentrate it from other particles/analytes.

  14. Tire deflation device

    DOEpatents

    Barker, Stacey G [Idaho Falls, ID

    2010-01-05

    A tire deflation device includes (1) a component having a plurality of bores, (2) a plurality of spikes removably insertable into the plurality of bores and (3) a keeper within each among the plurality of bores, the keeper being configured to contact a sidewall surface of a spike among the plurality of spikes and to exert force upon the sidewall surface. In an embodiment, the tire deflation device includes (a) a component including a bore in a material, the bore including a receiving region, a sidewall surface and a base surface, (b) a channel extending from the sidewall surface into the material, (c) a keeper having a first section housed within the channel and a second section which extends past the sidewall surface into the receiving region, and (d) a spike removably insertable into the bore.

  15. GAS DISCHARGE DEVICES

    DOEpatents

    Jefferson, S.

    1958-11-11

    An apparatus utilized in introducing tritium gas into envelope of a gas discharge device for the purpose f maintaining the discharge path in ionized condition is described. ln addition to the cathode and anode, the ischarge device contains a zirconium or tantalum ilament arranged for external excitation and a metallic seed containing tritium, and also arranged to have a current passed through it. Initially, the zirconium or tantalum filament is vaporized to deposit its material adjacent the main discharge region. Then the tritium gas is released and, due to its affinity for the first released material, it deposits in the region of the main discharge where it is most effective in maintaining the discharge path in an ionized condition.

  16. Micro-Organ Devices

    NASA Technical Reports Server (NTRS)

    Gonda, Steven R.; Leslie, Julia; Chang, Robert C.; Starly, Binil; Sun, Wei; Culbertson, Christopher; Holtorf, Heidi

    2009-01-01

    Micro-organ devices (MODs) are being developed to satisfy an emerging need for small, lightweight, reproducible, biological-experimentati on apparatuses that are amenable to automated operation and that imp ose minimal demands for resources (principally, power and fluids). I n simplest terms, a MOD is a microfluidic device containing a variety of microstructures and assemblies of cells, all designed to mimic a complex in vivo microenvironment by replicating one or more in vivo micro-organ structures, the architectures and composition of the extr acellular matrices in the organs of interest, and the in vivo fluid flows. In addition to microscopic flow channels, a MOD contains one or more micro-organ wells containing cells residing in microscopic e xtracellular matrices and/or scaffolds, the shapes and compositions o f which enable replication of the corresponding in vivo cell assembl ies and flows.

  17. Inertial energy storage device

    DOEpatents

    Knight, Jr., Charles E.; Kelly, James J.; Pollard, Roy E.

    1978-01-01

    The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

  18. Cable shield connecting device

    DOEpatents

    Silva, Frank A.

    1979-01-01

    A cable shield connecting device for installation on a high voltage cable of the type having a metallic shield, the device including a relatively conformable, looped metal bar for placement around a bared portion of the metallic shield to extend circumferentially around a major portion of the circumference of the metallic shield while being spaced radially therefrom, a plurality of relatively flexible metallic fingers affixed to the bar, projecting from the bar in an axial direction and spaced circumferentially along the bar, each finger being attached to the metallic shield at a portion located remote from the bar to make electrical contact with the metallic shield, and a connecting conductor integral with the bar.

  19. Well blowout prevention device

    SciTech Connect

    Chambers, R.A.

    1983-03-22

    The invention provides a device for preventing well blowouts in sucker rod pumping systems and particularly for sensing the parting of the polish rod from the stuffing box and preventing fluid flow through the stuffing box to the atmosphere. The device includes a valve body inserted between the stuffing box and the production-tee, a valve which is selectively capable of being opened or closed in the valve body, means for actuating the valve, and a wear block abutting against a polish rod for sensing when the polish rod parts from the stuffing box. When the polish rod parts from the stuffing box, the lever causes the valve to rapidly close to prevent blowout of the fluid in the well bore. When the wear block wears down to a predetermined amount, the lever senses and effectuates a signaling system to indicate that the wear block should be replaced.

  20. Quick stop device

    DOEpatents

    Hipwell, Roger L.; Hazelton, Andrew J.

    1996-01-01

    A quick stop device for abruptly interrupting the cutting of a workpiece by a cutter is disclosed. The quick stop device employs an outer housing connected to an inner workpiece holder by at least one shear pin. The outer housing includes an appropriate shank designed to be received in the spindle of a machine, such as a machine tool. A cutter, such as a drill bit, is mounted in a stationary position and the workpiece, mounted to the workpiece holder, is rotated during engagement with the cutter. A trigger system includes at least one spring loaded punch disposed for movement into engagement with the workpiece holder to abruptly stop rotation of the workpiece holder. This action shears the shear pin and permits continued rotation of the spindle and outer housing without substantially disturbing the chip root formed during cutting.

  1. Regenerative braking device

    DOEpatents

    Hoppie, Lyle O.

    1982-01-12

    Disclosed are several embodiments of a regenerative braking device for an automotive vehicle. The device includes a plurality of rubber rollers (24, 26) mounted for rotation between an input shaft (14) connectable to the vehicle drivetrain and an output shaft (16) which is drivingly connected to the input shaft by a variable ratio transmission (20). When the transmission ratio is such that the input shaft rotates faster than the output shaft, the rubber rollers are torsionally stressed to accumulate energy, thereby slowing the vehicle. When the transmission ratio is such that the output shaft rotates faster than the input shaft, the rubber rollers are torsionally relaxed to deliver accumulated energy, thereby accelerating or driving the vehicle.

  2. Picosecond optoelectronic devices

    SciTech Connect

    Lee, C.L.

    1984-01-01

    Ever since the invention of picosecond lasers, scientists and electronic engineers have been dreaming of inventing electronic devices that can record in real time the physical and electronic events that take place on picosecond time scales. With the exception of the expensive streak camera, this dream has been largely unfullfilled. Today, a real-time oscilloscope with picosecond time resolution is still not available. To fill the need for even better time resolution, researchers have turned to optical pulses and thus a hybrid technology has emerged-picosecond optoelectronics. This technology, based on bulk photoconductors, has had a slow start. However, because of the simplicity, scaleability, and jitterfree nature of the devices, the technology has recently experienced a rapid growth. This volume reviews the major developments in the field of picosecond optoelectronics over the past decade.

  3. Microelectromechanical reprogrammable logic device

    PubMed Central

    Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.

    2016-01-01

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme. PMID:27021295

  4. Anti-gravity device

    NASA Technical Reports Server (NTRS)

    Palsingh, S. (Inventor)

    1975-01-01

    An educational toy useful in demonstrating fundamental concepts regarding the laws of gravity is described. The device comprises a sphere 10 of radius r resting on top of sphere 12 of radius R. The center of gravity of sphere 10 is displaced from its geometrical center by distance D. The dimensions are so related that D((R+r)/r) is greater than r. With the center of gravity of sphere 10 lying on a vertical line, the device is in equilibrium. When sphere 10 is rolled on the surface of sphere 12 it will return to its equilibrium position upon release. This creates an illusion that sphere 10 is defying the laws of gravity. In reality, due to the above noted relationship of D, R, and r, the center of gravity of sphere 10 rises from its equilibrium position as it rolls a short distance up or down the surface of sphere 12.

  5. Light modulating device

    DOEpatents

    Rauh, R. David; Goldner, Ronald B.

    1989-01-01

    In a device for transmitting light, means for controlling the transmissivity of the device, including a ceramic, reversibly electrochromic, crystalline element having a highly reflective state when injected with electrons and charge compensating ions and a highly transmissive state when the electrons and ions are removed, the crystalline element being characterized as having a reflectivity of at least 50% in the reflective state and not greater than 10% in the transmissive state, and means for modulating the crystalline element between the reflective and transmissive states by injecting ions into the crystalline element in response to an applied electrical current of a first polarity and removing the ions in response to an applied electrical current of a second polarity.

  6. Support and maneuvering device

    DOEpatents

    Wood, Richard L.

    1988-01-01

    A support and maneuvering device includes an elongated flexible inflatable enclosure having a fixed end and a movable end. The movable end is collapsible toward the fixed end to a contracted position when the enclosure is in a noninflated condition. Upon inflation, the movable end is movable away from the fixed end to an extended position. The movable end includes means for mounting an article such as a solar reflector thereon. The device also includes a plurality of position controlling means disposed about the movable end to effect adjusting movement of portions thereof by predetermined amounts and for controlling an angle at which the article disposed at the movable end is oriented. The plurality of position controlling means limits a suitable number degrees of freedom of the movable end for transmitting a steering motion thereto and for controlling the position thereof.

  7. Support and maneuvering device

    DOEpatents

    Wood, R.L.

    1987-03-23

    A support and maneuvering device includes an elongated flexible inflatable enclosure having a fixed end and a movable end. The movable end is collapsible toward the fixed end to a contracted position when the enclosure is in a noninflated condition. Upon inflation, the movable end is movable away from the fixed end to an extended position. The movable end includes means for mounting an article such as a solar reflector thereon. The device also includes a plurality of position controlling means disposed about the movable end to effect adjusting movement of portions thereof by predetermined amounts and for controlling an angle at which the article disposed at the movable end is oriented. The plurality of position controlling means limits a suitable number degrees of freedom of the movable end for transmitting a steering motion thereto and for controlling the position thereof. 9 figs.

  8. Organic photosensitive devices

    DOEpatents

    Peumans, Peter; Forrest, Stephen R.

    2013-01-22

    A photoactive device is provided. The device includes a first electrode, a second electrode, and a photoactive region disposed between and electrically connected to the first and second electrodes. The photoactive region further includes an organic donor layer and an organic acceptor layer that form a donor-acceptor heterojunction. The mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region are different by a factor of at least 100, and more preferably a factor of at least 1000. At least one of the mobility of holes in the organic donor region and the mobility of electrons in the organic acceptor region is greater than 0.001 cm.sup.2/V-sec, and more preferably greater than 1 cm.sup.2/V-sec. The heterojunction may be of various types, including a planar heterojunction, a bulk heterojunction, a mixed heterojunction, and a hybrid planar-mixed heterojunction.

  9. Stacked organic photosensitive devices

    DOEpatents

    Forrest, Stephen; Xue, Jiangeng; Uchida, Soichi; Rand, Barry P.

    2007-03-27

    A device is provided having a first electrode, a second electrode, a first photoactive region having a characteristic absorption wavelength .lamda..sub.1 and a second photoactive region having a characteristic absorption wavelength .lamda..sub.2. The photoactive regions are disposed between the first and second electrodes, and further positioned on the same side of a reflective layer, such that the first photoactive region is closer to the reflective layer than the second photoactive region. The materials comprising the photoactive regions may be selected such that .lamda..sub.1 is at least about 10% different from .lamda..sub.2. The device may further comprise an exciton blocking layer disposed adjacent to and in direct contact with the organic acceptor material of each photoactive region, wherein the LUMO of each exciton blocking layer other than that closest to the cathode is not more than about 0.3 eV greater than the LUMO of the acceptor material.

  10. Integrated elastic microscope device

    NASA Astrophysics Data System (ADS)

    Lee, W. M.; Wright, D.; Watkins, R.; Cen, Zi

    2015-03-01

    The growing power of imaging and computing power of smartphones is creating the possibility of converting your smartphone into a high power pocket microscopy system. High quality miniature microscopy lenses attached to smartphone are typically made with glass or plastics that can only be produce at low cost with high volume. To revise the paradigm of microscope lenses, we devised a simple droplet lens fabrication technique that which produces low cost and high performance lens. Each lens is integrated into thin 3-D printed holder with complimentary light emitted diode (LEDs) that clips onto majority of smartphones. The integrated device converts a smartphone into a high power optical microscope/dermatoscope at around $2. This low cost device has wide application in a multitude of practical uses such as material inspection, dermascope and educational microscope.

  11. Particle capture device

    DOEpatents

    Jayne, John T.; Worsnop, Douglas R.

    2016-02-23

    In example embodiments, particle collection efficiency in aerosol analyzers and other particle measuring instruments is improved by a particle capture device that employs multiple collisions to decrease momentum of particles until the particles are collected (e.g., vaporized or come to rest). The particle collection device includes an aperture through which a focused particle beam enters. A collection enclosure is coupled to the aperture and has one or more internal surfaces against which particles of the focused beam collide. One or more features are employed in the collection enclosure to promote particles to collide multiple times within the enclosure, and thereby be vaporized or come to rest, rather than escape through the aperture.

  12. Motion restraining device

    NASA Technical Reports Server (NTRS)

    Ford, A. G. (Inventor)

    1977-01-01

    A motion-restraining device for dissipating at a controlled rate the force of a moving body is discussed. The device is characterized by a drive shaft adapted to be driven in rotation by a moving body connected to a tape wound about a reel mounted on the drive shaft, and an elongated pitman link having one end pivotally connected to the crankshaft and the opposite end thereof connected with the mass through an energy dissipating linkage. A shuttle is disposed within a slot and guided by rectilinear motion between a pair of spaced impact surfaces. Reaction forces applied at impact of the shuttle with the impact surfaces include oppositely projected force components angularly related to the direction of the applied impact forces.

  13. Portable biochip scanner device

    DOEpatents

    Perov, Alexander; Sharonov, Alexei; Mirzabekov, Andrei D.

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  14. Microelectromechanical safe arm device

    DOEpatents

    Roesler, Alexander W.

    2012-06-05

    Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

  15. Urine collection device

    NASA Technical Reports Server (NTRS)

    Michaud, R. B. (Inventor)

    1981-01-01

    A urine collection device for females is described. It is comprised of a collection element defining a urine collection chamber and an inlet opening into the chamber and is adapted to be disposed in surrounding relation to the urethral opening of the user. A drainage conduit is connected to the collection element in communication with the chamber whereby the chamber and conduit together comprise a urine flow pathway for carrying urine generally away from the inlet. A first body of wicking material is mounted adjacent the collection element and extends at least partially into the flow pathway. The device preferably also comprise a vaginal insert element including a seal portion for preventing the entry of urine into the vagina.

  16. Wire brush fastening device

    DOEpatents

    Meigs, R.A.

    1995-09-19

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus. 13 figs.

  17. Wire brush fastening device

    DOEpatents

    Meigs, Richard A.

    1995-01-01

    A fastening device is provided which is a variation on the conventional nut and bolt. The bolt has a longitudinal axis and threading helically affixed thereon along the longitudinal axis. A nut having a bore extending therethrough is provided. The bore of the nut has a greater diameter than the diameter of the bolt so the bolt can extend through the bore. An array of wire bristles are affixed within the bore so as to form a brush. The wire bristles extend inwardly from the bore and are constructed and arranged of the correct size, length and stiffness to guide the bolt within the bore and to restrain the bolt within the bore as required. A variety of applications of the wire brush nut are disclosed, including a bolt capture device and a test rig apparatus.

  18. Microelectromechanical reprogrammable logic device

    NASA Astrophysics Data System (ADS)

    Hafiz, M. A. A.; Kosuru, L.; Younis, M. I.

    2016-03-01

    In modern computing, the Boolean logic operations are set by interconnect schemes between the transistors. As the miniaturization in the component level to enhance the computational power is rapidly approaching physical limits, alternative computing methods are vigorously pursued. One of the desired aspects in the future computing approaches is the provision for hardware reconfigurability at run time to allow enhanced functionality. Here we demonstrate a reprogrammable logic device based on the electrothermal frequency modulation scheme of a single microelectromechanical resonator, capable of performing all the fundamental 2-bit logic functions as well as n-bit logic operations. Logic functions are performed by actively tuning the linear resonance frequency of the resonator operated at room temperature and under modest vacuum conditions, reprogrammable by the a.c.-driving frequency. The device is fabricated using complementary metal oxide semiconductor compatible mass fabrication process, suitable for on-chip integration, and promises an alternative electromechanical computing scheme.

  19. PRESSURE SENSING DEVICE

    DOEpatents

    Pope, K.E.

    1959-12-15

    This device is primarily useful as a switch which is selectively operable to actuate in response to either absolute or differential predetermined pressures. The device generally comprises a pressure-tight housing divided by a movable impermeable diaphragm into two chambers, a reference pressure chamber and a bulb chamber containing the switching means and otherwise filled with an incompressible non-conducting fluid. The switch means comprises a normally collapsed bulb having an electrically conductive outer surface and a vent tube leading to the housing exterior. The normally collapsed bulb is disposed such that upon its inflation, respensive to air inflow from the vent, two contacts fixed within the bulb chamber are adapted to be electrically shorted by the conducting outer surface of the bulb.

  20. Nuclear event zero-time calculation and uncertainty evaluation.

    PubMed

    Pan, Pujing; Ungar, R Kurt

    2012-04-01

    It is important to know the initial time, or zero-time, of a nuclear event such as a nuclear weapon's test, a nuclear power plant accident or a nuclear terrorist attack (e.g. with an improvised nuclear device, IND). Together with relevant meteorological information, the calculated zero-time is used to help locate the origin of a nuclear event. The zero-time of a nuclear event can be derived from measured activity ratios of two nuclides. The calculated zero-time of a nuclear event would not be complete without an appropriately evaluated uncertainty term. In this paper, analytical equations for zero-time and the associated uncertainty calculations are derived using a measured activity ratio of two nuclides. Application of the derived equations is illustrated in a realistic example using data from the last Chinese thermonuclear test in 1980.

  1. Superconductivity and its devices

    NASA Astrophysics Data System (ADS)

    Forbes, D. S.

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles.

  2. Residual gas analysis device

    DOEpatents

    Thornberg, Steven M.

    2012-07-31

    A system is provided for testing the hermeticity of a package, such as a microelectromechanical systems package containing a sealed gas volume, with a sampling device that has the capability to isolate the package and breach the gas seal connected to a pulse valve that can controllably transmit small volumes down to 2 nanoliters to a gas chamber for analysis using gas chromatography/mass spectroscopy diagnostics.

  3. Hybrid electroluminescent devices

    DOEpatents

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  4. Thermal Memristive Devices

    NASA Astrophysics Data System (ADS)

    Shapiro, Luke; Walczak, Kamil

    We examine heat transfer via Coulomb Blockaded quantum systems connected to two heat reservoirs (thermal baths). Specifically, we propose simple models for negative differential thermal conductance and pinched hysteretic loops in the heat fluxes as functions of temperature. Our computational method is based on the theory of propagators, where additional mechanisms of shifting and blocking specific energy levels is incorporated. Those devices may play a major role in the future thermal management.

  5. Alignment reference device

    DOEpatents

    Patton, Gail Y.; Torgerson, Darrel D.

    1987-01-01

    An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.

  6. Mechanical devices: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A collection of new technology items that should be of interest to mechanical engineers, machinists, and others who design or work with mechanical devices was described. Section 1 contains articles on several new or modified tools, Section 2 describes a number of specialized mechanical systems, and the last section is devoted to valves, bearings, and other parts that might be used with larger systems. The last patent information available is also given.

  7. Thermal Remote Anemometer Device

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Heath, D. Michele; Winfree, William P.; Miller, William E.; Welch, Christopher S.

    1988-01-01

    Thermal Remote Anemometer Device developed for remote, noncontacting, passive measurement of thermal properties of sample. Model heated locally by scanning laser beam and cooled by wind in tunnel. Thermal image of model analyzed to deduce pattern of airflow around model. For materials applications, system used for evaluation of thin films and determination of thermal diffusivity and adhesive-layer contact. For medical applications, measures perfusion through skin to characterize blood flow and used to determine viabilities of grafts and to characterize tissues.

  8. Organic electroluminescent devices

    SciTech Connect

    Sheats, J.R.; Antoniadis, H.; Hueschen, M.; Leonard, W.; Miller, J.; Moon, R.; Roitman, D.; Stocking, A.

    1996-08-16

    Electroluminscene from organic materials has the potential to enable low-cost, full-color flat-panel displays, as well as other emissive products. Some materials have now demonstrated adequate efficiencies (1 to 15 lumens/watt) and lifetimes (>5000 hours) for practical use; however, the factors that govern lifetime remain poorly understood. This article provides a brief review of device principles and applications requirements and focuses on the understanding of reliability issues. 59 refs., 7 figs.

  9. Temperature measuring device

    SciTech Connect

    Lauf, R.J.; Bible, D.W.; Sohns, C.W.

    1999-10-19

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  10. Fiber optic monitoring device

    DOEpatents

    Samborsky, James K.

    1993-01-01

    A device for the purpose of monitoring light transmissions in optical fibers comprises a fiber optic tap that optically diverts a fraction of a transmitted optical signal without disrupting the integrity of the signal. The diverted signal is carried, preferably by the fiber optic tap, to a lens or lens system that disperses the light over a solid angle that facilitates viewing. The dispersed light indicates whether or not the monitored optical fiber or system of optical fibers is currently transmitting optical information.

  11. Temperature measuring device

    DOEpatents

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  12. Liquid level sensing device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A liquid level sensing device comprising a load cell supporting a column or stack of segments freely resting on one another. The density of each element is substantially identical to that of the surrounding liquid. The elements are freely guided within a surrounding tube. As each element is exposed above the liquid level, its weight will be impressed through the column to the load cell, thereby providing a signal at the load cell directly proportional to the liquid level elevation.

  13. The Nuclear Power and Nuclear Weapons Connection.

    ERIC Educational Resources Information Center

    Leventhal, Paul

    1990-01-01

    Explains problems enforcing the Nuclear Non-Proliferation Treaty (NPT) of 1968. Provides factual charts and details concerning the production of nuclear energy and arms, the processing and disposal of waste products, and outlines the nuclear fuel cycle. Discusses safeguards, the risk of nuclear terrorism, and ways to deal with these problems. (NL)

  14. The nuclear arsenals and nuclear disarmament.

    PubMed

    Barnaby, F

    1998-01-01

    Current world stockpiles of nuclear weapons and the status of treaties for nuclear disarmament and the ultimate elimination of nuclear weapons are summarised. The need for including stockpiles of civil plutonium in a programme for ending production and disposing of fissile materials is emphasized, and the ultimate difficulty of disposing of the last few nuclear weapons discussed.

  15. The Nuclear Power/Nuclear Weapons Connection.

    ERIC Educational Resources Information Center

    Totten, Sam; Totten, Martha Wescoat

    1985-01-01

    Once they have nuclear power, most countries will divert nuclear materials from commercial to military programs. In excerpts from the book "Facing the Danger" (by Totten, S. and M. W., Crossing Press, 1984), five anti-nuclear activists explain how and why they have been addressing the nuclear connection. (RM)

  16. The Columbus device

    NASA Astrophysics Data System (ADS)

    Salvetti, Matteo

    2005-10-01

    The Columbus device [1] is proposed as one component of a spectrum of experiments needed to explore the physics of fusion burning plasmas. Columbus has a larger volume than Ignitor by about 50%, lower current densities in the magnet systems and capability to sustain longer plasma pulses. The machine preserves the ability to confine, under macroscopically stable conditions, plasmas with peak pressures exceeding 3 MPa, corresponding to ignition at central plasma densities around 10^21 nuclei/m^3 and to reach this regime by ohmic heating alone. The presence of an ICRH system will expand the capabilities of the device. In our opinion, a spectrum of ``Science First'' devices is the only viable path to an efficient fusion program development and plasma ignition is an important milestone to be achieved before undertaking the construction of a Demo reactor requiring minimization of the external heating power. The Iter design envisages that about one third of its heating power be supplied from the outside in order to maintain its plasma pressure at the desired values. The Columbus program is proposed as a U.S. counterpart to the Ignitor project conducted in Italy and to be complementary to it. The machine costs can be minimized by incorporating the main engineering solutions devised for Ignitor. [1] Coppi,B. and Salvetti,M.,``Highlights of the Columbus Concept'', M.I.T. Report, PTP02/06 (2002).

  17. [Implantable hemodynamic monitoring devices].

    PubMed

    Seifert, M; Butter, C

    2015-11-01

    Heart failure is one of the most frequent diagnoses in hospital admissions in Germany. In the majority of these admissions acute decompensation of an already existing chronic heart failure is responsible. New mostly wireless and remote strategies for monitoring, titration, adaptation and optimization are the focus for improvement of the treatment of heart failure patients and the poor prognosis. The implantation of hemodynamic monitoring devices follows the hypothesis that significant changes in hemodynamic parameters occur before the occurrence of acute decompensation requiring readmission. Three different hemodynamic monitoring devices have so far been investigated in clinical trials employing right ventricular pressure, left atrial pressure and pulmonary artery pressure monitoring. Only one of these systems, the CardioMENS™ HF monitoring system, demonstrated a significant reduction of hospitalization due to heart failure over 6 months in the CHAMPION trial. The systematic adaptation of medication in the CHAMPION trial significantly differed from the usual care of the control arm over 6 months. This direct day to day management of diuretics is currently under intensive investigation; however, further studies demonstrating a positive effect on mortality are needed before translation of this approach into guidelines. Without this evidence a further implementation of pressure monitoring into currently used devices and justification of the substantial technical and personnel demands are not warranted.

  18. Synchronous semiconductor memory device

    SciTech Connect

    Onno, C.; Hirata, M.

    1989-11-21

    This patent describes a synchronous semiconductor memory device. It comprises: first latch means for latching a write command in synchronism with clock signal; second latch means for latching a write data in synchronism with the clock signal and for outputting two write process signals based on the write data latched thereby; pulse generating means for generating an internal write pulse signal based on the write command latched by the first latch means. The internal write pulse signal having a semiconductor memory device; write control means supplied with the internal write pulse signal and the write process signals for controlling write and read operations of the synchronous semiconductor memory device; memory means for storing the write data latched by the second latch means; and noise preventing means coupled to the second latch means and the write control means for supplying the write process signals to the write control means only in the write mode responsive to the internal write pulse signal and for setting the write process signals to fixed potentials during a time other than the write mode.

  19. Power transmission device

    SciTech Connect

    Nishimura, S.; Kishizawa, Y.; Kato, Y.

    1988-11-22

    This patent describes a multistage gear shifting device for a motor vehicle in which first speed to fourth speed gear trains and reverse gear trains are arranged between two shafts in an order such that a low speed gear train comes first, one gear of each gear train being able to engage with and disengage from one of the two shafts through a hydraulic clutch, the gear shifting device including a manual valve which has operating positions corresponding to first speed to fourth speed and reverse and which is adapted to selectively operate hydraulic clutches for the respective gear trains, the one gear of the fourth speed gear train and one gear of the reverse gear train being integrally formed with each other and loosely fitting on one of two shafts and detachably engaged with one of the two shafts through a common hydraulic clutch, the other gears of the fourth speed and reverse gear trains being loosely fitting on the other shaft, the multistage gear shifting device including a selector for selectively engaging the other gears of the fourth speed and reverse gear trains, an actuator for actuating the selector in response to the action of the manual valve, and a switching valve annexed to the actuator, the switching valve guiding hydraulic oil from the manual valve to the common hydraulic clutch when the manual valve is brought to an operating position corresponding to fourth speed or reverse and discharging the hydraulic oil in the common hydraulic clutch to a drain through the manual valve.

  20. Double face sealing device

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1991-01-01

    A double face sealing device is disclosed for mounting between two surfaces to provide an air-tight and fluid-tight seal between a closure member bearing one of the surfaces and a structure or housing bearing the other surface which extends around the opening or hatchway to be closed. The double face sealing device includes a plurality of sections or segments mounted to one of the surfaces, each having a main body portion, a pair of outwardly extending and diverging, cantilever, spring arms, and a pair of inwardly extending and diverging, cantilever, spring arms, an elastomeric cover on the distal, free ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free, ends of the outwardly extending and diverging spring arms, and an elastomeric cover on the distal, free ends of the inwardly extending and diverging spring arms. The double face sealing device has application or use in all environments requiring a seal, but is particularly useful to seal openings or hatchways between compartments of spacecraft or aircraft.

  1. Plasma jet ignition device

    DOEpatents

    McIlwain, Michael E.; Grant, Jonathan F.; Golenko, Zsolt; Wittstein, Alan D.

    1985-01-15

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  2. Thermophotovoltaic energy conversion device

    DOEpatents

    Charache, Greg W.; Baldasaro, Paul F.; Egley, James L.

    1998-01-01

    A thermophotovoltaic device and a method for making the thermophotovoltaic device. The device includes an n-type semiconductor material substrate having top and bottom surfaces, a tunnel junction formed on the top surface of the substrate, a region of active layers formed on top of the tunnel junction and a back surface reflector (BSR). The tunnel junction includes a layer of heavily doped n-type semiconductor material that is formed on the top surface of the substrate and a layer of heavily doped p-type semiconductor material formed on the n-type layer. An optional pseudomorphic layer can be formed between the n-type and p-type layers. A region of active layers is formed on top of the tunnel junction. This region includes a base layer of p-type semiconductor material and an emitter layer of n-type semiconductor material. An optional front surface window layer can be formed on top of the emitter layer. An optional interference filter can be formed on top of the emitter layer or the front surface window layer when it is used.

  3. Thermophotovoltaic energy conversion device

    DOEpatents

    Charache, G.W.; Baldasaro, P.F.; Egley, J.L.

    1998-05-19

    A thermophotovoltaic device and a method for making the thermophotovoltaic device are disclosed. The device includes an n-type semiconductor material substrate having top and bottom surfaces, a tunnel junction formed on the top surface of the substrate, a region of active layers formed on top of the tunnel junction and a back surface reflector (BSR). The tunnel junction includes a layer of heavily doped n-type semiconductor material that is formed on the top surface of the substrate and a layer of heavily doped p-type semiconductor material formed on the n-type layer. An optional pseudomorphic layer can be formed between the n-type and p-type layers. A region of active layers is formed on top of the tunnel junction. This region includes a base layer of p-type semiconductor material and an emitter layer of n-type semiconductor material. An optional front surface window layer can be formed on top of the emitter layer. An optional interference filter can be formed on top of the emitter layer or the front surface window layer when it is used. 1 fig.

  4. Sectional device handling tool

    DOEpatents

    Candee, Clark B.

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  5. DNA in nanofluidic devices

    NASA Astrophysics Data System (ADS)

    Riehn, Robert

    2006-03-01

    Nanochannels with a channel cross-section of around 100 nm x 100 nm or less are emerging as a powerful new technique for single-molecule DNA analysis. In these nanochannels, DNA is linearized to a constant fraction of its contour length, and thus spatial locations measured by fluorescence microscopy can be directly related to genomic locations. Because the stretching in nanochannels is caused by lateral confinement, molecules are free to undergo longitudinal fluctuations. Hence, time-averaging over a single molecule is meaningful, and a high resolution can be achieved even using few molecules. We will present how DNA imaging in nanochannels can be applied to common tasks in molecular biology that go beyond simple sizing. In particular, we will discuss the genomic identification of human DNA fragments using fluorescent markers, and how to perform enzymatic reactions, such as restriction mapping using endonucleases, in nanochannels. We will also present our recent progress in the development of ``nanoplumbing'', that is devices that contain junctions of nanochannels. We will show how device dimensions influence the transport of DNA at those nanochannel junctions, and how those properties can be utilized in the design of devices and exotic materials.

  6. Packaging of solid state devices

    DOEpatents

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  7. Non- contacting capacitive diagnostic device

    DOEpatents

    Ellison, Timothy

    2005-07-12

    A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

  8. Nanoscale Electronic Devices

    NASA Astrophysics Data System (ADS)

    Jing, Xiaoye

    Continuous downscaling in microelectronics has pushed conventional CMOS technology to its physical limits, while Moore's Law has correctly predicted the trend for decades, each step forward is accompanied with unprecedented technological difficulties and near-exponential increase in cost. At the same time, however, demands for low-power, low-cost and high-speed devices have never diminished, instead, even more stringent requirements have been imposed on device performances. It is therefore crucial to explore alternative materials and device architectures in order to alleviate the pressure caused by downscaling. To this end, we investigated two different approaches: (1) InSb nanowire based field effect transistors (NWFETs) and (2) single walled carbon nanotube (SWCNT) -- peptide nucleic acid (PNA) --SWCNT conjugate. Two types of InSb nanowires were synthesized by template-assisted electrochemistry and chemical vapor deposition (CVD) respectively. In both cases, NWFETs were fabricated by electron beam lithography (EBL) and crystallinity was confirmed by transmission electron microscopy (TEM) and selected area diffraction (SAD) patterns. For electrochemistry nanowire, ambipolar conduction was observed with strong p-type conduction, the effect of thermal annealing on the conductivity was analyzed, a NWFET model that took into consideration the underlapped region in top-gated NWFET was proposed. Hole mobility in the channel was calculated to be 292.84 cm2V-1s -1 with a density of 1.5x1017/cm3. For CVD nanowire, the diameter was below 40nm with an average of 20nm. Vapor-liquid-solid (VLS) process was speculated to be the mechanism responsible for nanowire growth. The efficient gate control was manifested by high ION/I OFF ratio which was on the order of 106 and a small inverse subthreshold slope (<200 mV/decade). Scale analysis was used to successfully account for disparities observed among a number of sample devices. N-type conduction was found in all NWFETs with

  9. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  10. Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    I. Wide band gap devices. Wide-Bandgap Semiconductor devices for automotive applications / M. Sugimoto ... [et al.]. A GaN on SiC HFET device technology for wireless infrastructure applications / B. Green ... [et al.]. Drift velocity limitation in GaN HEMT channels / A. Matulionis. Simulations of field-plated and recessed gate gallium nitride-based heterojunction field-effect transistors / V. O. Turin, M. S. Shur and D. B. Veksler. Low temperature electroluminescence of green and deep green GaInN/GaN light emitting diodes / Y. Li ... [et al.]. Spatial spectral analysis in high brightness GaInN/GaN light emitting diodes / T. Detchprohm ... [et al.]. Self-induced surface texturing of Al2O3 by means of inductively coupled plasma reactive ion etching in Cl2 chemistry / P. Batoni ... [et al.]. Field and termionic field transport in aluminium gallium arsenide heterojunction barriers / D. V. Morgan and A. Porch. Electrical characteristics and carrier lifetime measurements in high voltage 4H-SiC PiN diodes / P. A. Losee ... [et al.]. Geometry and short channel effects on enhancement-mode n-Channel GaN MOSFETs on p and n- GaN/sapphire substrates / W. Huang, T. Khan and T. P. Chow. 4H-SiC Vertical RESURF Schottky Rectifiers and MOSFETs / Y. Wang, P. A. Losee and T. P. Chow. Present status and future Directions of SiGe HBT technology / M. H. Khater ... [et al.]Optical properties of GaInN/GaN multi-quantum Wells structure and light emitting diode grown by metalorganic chemical vapor phase epitaxy / J. Senawiratne ... [et al.]. Electrical comparison of Ta/Ti/Al/Mo/Au and Ti/Al/Mo/Au Ohmic contacts on undoped GaN HEMTs structure with AlN interlayer / Y. Sun and L. F. Eastman. Above 2 A/mm drain current density of GaN HEMTs grown on sapphire / F. Medjdoub ... [et al.]. Focused thermal beam direct patterning on InGaN during molecular beam epitaxy / X. Chen, W. J. Schaff and L. F. Eastman -- II. Terahertz and millimeter wave devices. Temperature-dependent microwave performance of

  11. Nuclear security

    SciTech Connect

    Dingell, J.D.

    1991-02-01

    The Department of Energy's (DOE) Lawrence Livermore National Laboratory, located in Livermore, California, generates and controls large numbers of classified documents associated with the research and testing of nuclear weapons. Concern has been raised about the potential for espionage at the laboratory and the national security implications of classified documents being stolen. This paper determines the extent of missing classified documents at the laboratory and assesses the adequacy of accountability over classified documents in the laboratory's custody. Audit coverage was limited to the approximately 600,000 secret documents in the laboratory's custody. The adequacy of DOE's oversight of the laboratory's secret document control program was also assessed.

  12. NUCLEAR REACTOR

    DOEpatents

    Young, G.

    1963-01-01

    This patent covers a power-producing nuclear reactor in which fuel rods of slightly enriched U are moderated by heavy water and cooled by liquid metal. The fuel rods arranged parallel to one another in a circle are contained in a large outer closed-end conduit that extends into a tank containing the heavy water. Liquid metal is introduced into the large conduit by a small inner conduit that extends within the circle of fuel rods to a point near the lower closed end of the outer conduit. (AEC) Production Reactors

  13. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened.

  14. Nuclear energy.

    PubMed

    Grandin, Karl; Jagers, Peter; Kullander, Sven

    2010-01-01

    Nuclear energy can play a role in carbon free production of electrical energy, thus making it interesting for tomorrow's energy mix. However, several issues have to be addressed. In fission technology, the design of so-called fourth generation reactors show great promise, in particular in addressing materials efficiency and safety issues. If successfully developed, such reactors may have an important and sustainable part in future energy production. Working fusion reactors may be even more materials efficient and environmental friendly, but also need more development and research. The roadmap for development of fourth generation fission and fusion reactors, therefore, asks for attention and research in these fields must be strengthened. PMID:20873683

  15. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashley, J.W.

    1958-12-16

    A graphite moderator structure is described for a gas-cooled nuclear reactor having a vertical orlentation wherein the structure is physically stable with regard to dlmensional changes due to Wigner growth properties of the graphite, and leakage of coolant gas along spaces in the structure is reduced. The structure is comprised of stacks of unlform right prismatic graphite blocks positioned in layers extending in the direction of the lengths of the blocks, the adjacent end faces of the blocks being separated by pairs of tiles. The blocks and tiles have central bores which are in alignment when assembled and are provided with cooperatlng keys and keyways for physical stability.

  16. Intrauterine device developments.

    PubMed

    1984-01-01

    Results of recent IUD research are presented. The largest study of postpartum IUD insertion to date, a multicenter comparative trail involving 3791 women at 15 sites in 13 countries, has shown that the practice is safe and effective if the IUD is correctly placed. Modifications in design of the device are unnecessary to reduce expulsions. In 1977, Family Health International (FHI) began developing IUDs that would have clinically acceptable expulsion rates following postpartum insertion. By adding chromic catgut suture material to the upper arms of the TCu andLippes Loop, FHI developed the Delta T and Delta Loop. Many of the centers involved in studies of postpartum IUD insertion were large urban maternity hospitals in developing countries with heavy caseloads of 10,000-30,000 deliveries/year. Results of the trials and of a 19-center evaluation of the timing of postpartum insertion support several conclusions: 1) insertion should take place within 10 minutes of placental expulsion; 2) if insertion is done within 10 minutes of delivery, there is no increased risk of infection or uterine perforation; 3) the type of device inserted is less important than the method of insertion; expulsion rates at different clinics ranged from 6-37/1000 women at 6 monts, and the fundal placement of the device is crucial; and 4) expulsions are higher for postpartum than interval insertions but not so high as to make the offer of an IUD immediately postpartum unacceptable. Since the incidence of pain or bleeding associated with IUD use is related to their size, attempts to decrease the side effects have centered on development of smaller copper devices. 1 such device, the copper i, consists of a straight stem with small crossarms in an 'x' configuration disigned to anchor the IUD in place. A copper wire around the stem of the device exposes 200 sq millimeters of cooper. A study of 98 women who used the Copper i showed an accidental pregnancy rate of 3.2 at 6 months and 9.0 at 12 months

  17. DEVICE CONTROL TOOL FOR CEBAF BEAM DIAGNOSTICS SOFTWARE

    SciTech Connect

    Pavel Chevtsov

    2008-02-11

    Continuously monitoring the beam quality in the CEBAF accelerator, a variety of beam diagnostics software created at Jefferson Lab makes a significant contribution to very high availability of the machine for nuclear physics experiments. The interface between this software and beam instrumentation hardware components is provided by a device control tool, which is optimized for beam diagnostics tasks. As a part of the device/driver development framework at Jefferson Lab, this tool is very easy to support and extend to integrate new beam instrumentation components. All device control functions are based on the configuration (ASCII text) files that completely define the used hardware interface standards (CAMAC, VME, RS-232, GPIB, etc.) and communication protocols. The paper presents the main elements of the device control tool for beam diagnostics software at Jefferson Lab.

  18. Dictionary of nuclear engineering

    SciTech Connect

    Sube, R.

    1985-01-01

    Ralf Sube, an experienced compiler of three wellknown four-language reference works has now prepared this glossary of nuclear engineering terms in English, German, French and Russian. Based on the proven lexicography of the Technik-Worterbuch series, it comprises about 30,000 terms in each language covering the following: Nuclear and Atomic Physics; Nuclear Radiation and Isotopes; Nuclear Materials; Nuclear Facilties; Nuclear Power Industry; Nuclear Weapons.

  19. Nuclear physics

    SciTech Connect

    Garg, U.; Reviol, W.; Kaczarowski, R.

    1995-08-01

    Several groups from the University of Notre Dame are playing an important role in developing the research program at ATLAS. One of their main interests is the study, in collaboration with ANL staff members, of the behavior of nuclei at high spin in the transitional region near A=180 (i.e. the Hg-Pt-Os nuclei), and A=100 (i.e. the Ru-Tc nuclei) with emphasis on shape coexistence and configuration mixing. This group has also participated in many other experiments performed with the BGO gamma-ray facility, especially in the investigation of superdeformation. The {gamma}-ray groups at ANL and Notre Dame have also had collaborative experiments at Gammasphere. The Notre Dame group has built, tested and extensively used a state-of-the-art plunger device for lifetime measurements in conjunction with the ATLAS {gamma}-ray facility. An adapted version of this device is now under construction at Notre Dame, under contract with ANL, for use at the Gammasphere facility.

  20. The North Korean nuclear dilemma.

    SciTech Connect

    Hecker, Siegfried S.

    2004-01-01

    The current nuclear crisis, the second one in ten years, erupted when North Korea expelled international nuclear inspectors in December 2002, then withdrew from the Nuclear Nonproliferation Treaty (NPT), and claimed to be building more nuclear weapons with the plutonium extracted from the spent fuel rods heretofore stored under international inspection. These actions were triggered by a disagreement over U.S. assertions that North Korea had violated the Agreed Framework (which froze the plutonium path to nuclear weapons to end the first crisis in 1994) by clandestinely developing uranium enrichment capabilities providing an alternative path to nuclear weapons. With Stanford University Professor John Lewis and three other Americans, I was allowed to visit the Yongbyon Nuclear Center on Jan. 8, 2004. We toured the 5 MWe reactor, the 50 MWe reactor construction site, the spent fuel pool storage building, and the radiochemical laboratory. We concluded that North Korea has restarted its 5 MWe reactor (which produces roughly 6 kg of plutonium annually), it removed the 8000 spent fuel rods that were previously stored under IAEA safeguards from the spent fuel pool, and that it most likely extracted the 25 to 30 kg of plutonium contained in these fuel rods. Although North Korean officials showed us what they claimed was their plutonium metal product from this reprocessing campaign, we were not able to conclude definitively that it was in fact plutonium metal and that it came from the most recent reprocessing campaign. Nevertheless, our North Korean hosts demonstrated that they had the capability, the facility and requisite capacity, and the technical expertise to produce plutonium metal. On the basis of our visit, we were not able to address the issue of whether or not North Korea had a 'deterrent' as claimed - that is, we were not able to conclude that North Korea can build a nuclear device and that it can integrate nuclear devices into suitable delivery systems. However

  1. [Medical Devices Law for anesthesiologists].

    PubMed

    Regner, M

    2015-09-01

    The Medical Devices Law is a relatively new legal system, which has replaced the still well-known medical devices regulations in Germany. The Medical Devices Law in Germany is based on European directives, which have been translated into national law with the Medical Devices Act. The Medical Devices Act is a framework of regulations and incorporates a number of decrees that address specific topics within the medical devices directives and in turn individual regulations refer to guidelines and recommendations from other sources which provide detailed technical information on specific topics. Overall, the Medical Devices Act represents a very complex legal system, which needs to be permanently observed with respect to continuous updating and adjustment. In this article the design and the structure are described but most of all the article filters significant problem areas that need to be considered when using and operating medical devices, especially for anesthesiologists.

  2. Nonimaging radiant energy direction device

    DOEpatents

    Winston, Roland

    1980-01-01

    A raidant energy nonimaging light direction device is provided. The device includes an energy transducer and a reflective wall whose contour is particularly determined with respect to the geometrical vector flux of a field associated with the transducer.

  3. Digital Real-Time Multiple Channel Multiple Mode Neutron Flux Estimation on FPGA-based Device

    NASA Astrophysics Data System (ADS)

    Thevenin, Mathieu; Barbot, Loïc; Corre, Gwénolé; Woo, Romuald; Destouches, Christophe; Normand, Stéphane

    2016-02-01

    This paper presents a complete custom full-digital instrumentation device that was designed for real-time neutron flux estimation, especially for nuclear reactor in-core measurement using subminiature Fission Chambers (FCs). Entire fully functional small-footprint design (about 1714 LUTs) is implemented on FPGA. It enables real-time acquisition and analysis of multiple channels neutron's flux both in counting mode and Campbelling mode. Experimental results obtained from this brand new device are consistent with simulation results and show good agreement within good uncertainty. This device paves the way for new applications perspectives in real-time nuclear reactor monitoring.

  4. Probing cell mechanical properties with microfluidic devices

    NASA Astrophysics Data System (ADS)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  5. 78 FR 1247 - Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... COMMISSION Certain Electronic Devices, Including Wireless Communication Devices, Tablet Computers, Media... United States after importation of certain electronic devices, including wireless communication devices... importation of certain electronic devices, including wireless communication devices, tablet computers,...

  6. 76 FR 22849 - DoD Unclassified Controlled Nuclear Information (UCNI)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...) Illegally producing a nuclear explosive device (e.g., unclassified nuclear weapon design information useful... Detection and Security Alarm Systems. (i) Information on the layout or design of security and alarm systems... of the Secretary 32 CFR Part 223 RIN 0790-AI64 DoD Unclassified Controlled Nuclear Information...

  7. Hybrid free electron laser devices

    SciTech Connect

    Asgekar, Vivek; Dattoli, G.

    2007-03-15

    We consider hybrid free electron laser devices consisting of Cerenkov and undulator sections. We will show that they can in principle be used as segmented devices and also show the possibility of exploiting Cerenkov devices for the generation of nonlinear harmonic coherent power. We discuss both oscillator and amplifier schemes.

  8. Medical devices and patient safety.

    PubMed

    Mattox, Elizabeth

    2012-08-01

    Errors related to health care devices are not well understood. Nurses in intensive care and progressive care environments can benefit from understanding manufacturer-related error and device-use error, the principles of human factors engineering, and the steps that can be taken to reduce risk of errors related to health care devices.

  9. Barriers to medical device innovation

    PubMed Central

    Bergsland, Jacob; Elle, Ole Jakob; Fosse, Erik

    2014-01-01

    The US Food and Drug Administration (FDA) has defined a medical device as a health care product that does not achieve it’s purpose by chemical action or by being metabolized. This means that a vast number of products are considered medical devices. Such devices play an essential role in the practice of medicine. The FDA classifies medical devices in three classes, depending on the risk of the device. Since Class I and II devices have relatively simple requirements for getting to the market, this review will focus on “implantable devices”, which, in general, belong to Class III. The European Union and Canada use a slightly different classification system. While early generations of medical devices were introduced without much testing, either technical or clinical, the process of introducing a Class III medical device from concept to clinical practice has become strongly regulated and requires extensive technological and clinical testing. The modern era of implantable medical devices may be considered to have started in the 1920s with development of artificial hips. The implantable pacemaker was another milestone and pacemakers and cardioverters/defibrillators have since saved millions of lives and created commercial giants in the medical device industry. This review will include some examples of cardiovascular devices. Similar considerations apply to the total implantable device market, although clinical and technological applications obviously vary considerably. PMID:24966699

  10. FDA's perspectives on cardiovascular devices.

    PubMed

    Chen, Eric A; Patel-Raman, Sonna M; O'Callaghan, Kathryn; Hillebrenner, Matthew G

    2009-06-01

    The Food and Drug Administration (FDA) decision process for approving or clearing medical devices is often determined by a review of robust clinical data and extensive preclinical testing of the device. The mission statement for the Center for Devices and Radiological Health (CDRH) is to review the information provided by manufacturers so that it can promote and protect the health of the public by ensuring the safety and effectiveness of medical devices deemed appropriate for human use (Food, Drug & Cosmetic Act, Section 903(b)(1, 2(C)), December 31, 2004; accessed December 17, 2008 http://www.fda.gov/opacom/laws/fdcact/fdctoc.htm). For high-risk devices, such as ventricular assist devices (VADs), mechanical heart valves, stents, cardiac resynchronization therapy (CRT) devices, pacemakers, and defibrillators, the determination is based on FDA's review of extensive preclinical bench and animal testing followed by use of the device in a clinical trial in humans. These clinical trials allow the manufacturer to evaluate a device in the intended use population. FDA reviews the data from the clinical trial to determine if the device performed as predicted and the clinical benefits outweigh the risks. This article reviews the regulatory framework for different marketing applications related to cardiovascular devices and describes the process of obtaining approval to study a cardiovascular device in a U.S. clinical trial.

  11. Nanochanneled Device and Related Methods

    NASA Technical Reports Server (NTRS)

    Ferrari, Mauro (Inventor); Liu, Xuewu (Inventor); Grattoni, Alessandro (Inventor); Fine, Daniel (Inventor); Goodall, Randy (Inventor); Hosali, Sharath (Inventor); Medema, Ryan (Inventor); Hudson, Lee (Inventor)

    2013-01-01

    A nanochannel delivery device and method of manufacturing and use. The nanochannel delivery device comprises an inlet, an outlet, and a nanochannel. The nanochannel may be oriented parallel to the primary plane of the nanochannel delivery device. The inlet and outlet may be in direct fluid communication with the nanochannel.

  12. Superconducting quantum-interference devices

    NASA Technical Reports Server (NTRS)

    Peters, P. N.; Holdeman, L. B.

    1975-01-01

    Published document discusses devices which are based on weak-link Josephson elements that join superconductors. Links can take numerous forms, and circuitry utilizing links can perform many varied functions with unprecedented sensitivity. Theoretical review of Josephson's junctions include tunneling junctions, point contact devices, microbridges, and proximity-effect devices.

  13. Detached rock evaluation device

    DOEpatents

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  14. Nanotube resonator devices

    DOEpatents

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  15. Shrinking optical devices

    NASA Astrophysics Data System (ADS)

    Wee, W. H.; Pendry, J. B.

    2009-07-01

    Much of optics depends on objects being much larger than the wavelength of light: shadows of opaque objects are sharp only if free of diffraction effects, and 'cat's eye' retroreflectors function only if they are large. Here, we show how to make theoretically arbitrarily small versions of these devices by exploiting the power of a negatively refracting lens to magnify objects that are smaller than the wavelength, thus creating the effect of a large object while keeping all physical dimensions small. We also give a new perspective on the 'perfect lens theorem' on which the paper is based.

  16. Pneumatically actuated micropipetting device

    NASA Astrophysics Data System (ADS)

    Szita, Nicolas; Buser, Rudolf A.

    1998-03-01

    We have realized a valveless micropipetting device with an integrated sensor which can aspirate and dispense liquid volumes without any valves, hence without any reflow or dead volume. With an external pneumatic actuation, we have demonstrated aspirating and dispensing from 190nl of 6 (mu) l of water. Measurements showed a standard deviation of down to 1 percent. An integrated capacitive sensor will allow monitoring of the pressure throughout the pipetting process and detect malfunctions, e.g. clotting of the pipetting tip. It is our intention to use this demonstrated precise aspiration mechanism in combination with a micromachined reaction chamber and a miniaturized optical analysis system.

  17. COUNTERROTATING PLASMA DEVICE

    DOEpatents

    Halbach, K.; Baker, W.R.; Veron, D.

    1963-07-01

    An ion-electron plasma device having a conductive, cylindrical casing provided with an axially directed magneticmirror-type field is described. An axially aligned tubular electrode is disposed at each end of the casing with oppositely directed radial electric fields provided between each electrode and the casing. Simultaneous pulses of gas, injected from the inner end of each of the electrodes, become ionized and oppositely rotating plasma bodies are formed. The magnetic mirrors repel the plasma bodies and cause them to collide in the region between the mirrors. The opposite directions of rotation of the plasma bodies cause very high currents to flow therebetween and consequent heating occurs. (AEC)

  18. Fuel saving device

    SciTech Connect

    Imbert, J. C.

    1984-01-10

    The present invention relates to a fuel saving device adaptable to all types of carburetors, petrol engines and domestic or industrial burners, constituted by a solenoid generating a magnetic field which has an influence on the air-fuel mixture. Said solenoid has a red copper coil, has its axis oriented in parallel to the axis of the engine, and, periodically, in a first pre-determined direction, during the moon phase which goes from the full moon to the new moon, and in a second, opposite, direction, during the moon phase going from the new moon to the full moon. The invention finds an application in motor engine of low consumption.

  19. RADIATION MEASURING DEVICES

    DOEpatents

    Bouricius, G.M.B.; Rusch, G.K.

    1960-03-22

    A radiation-measuring device is described having an a-c output. The apparatus has a high-energy particle source responsive to radiation flux disposed within a housing having a pair of collector plates. A potential gradient between the source and collector plates causes ions to flow to the plates. By means of electrostatic or magnetic deflection elements connected to an alternating potential, the ions are caused to flow alternately to each of the collector plates causing an a-c signal thereon.

  20. Micro environmental sensing device

    DOEpatents

    Polosky, Marc A.; Lukens, Laurance L.

    2006-05-02

    A microelectromechanical (MEM) acceleration switch is disclosed which includes a proof mass flexibly connected to a substrate, with the proof mass being moveable in a direction substantially perpendicular to the substrate in response to a sensed acceleration. An electrode on the proof mass contacts one or more electrodes located below the proof mass to provide a switch closure in response to the sensed acceleration. Electrical latching of the switch in the closed position is possible with an optional latching electrode. The MEM acceleration switch, which has applications for use as an environmental sensing device, can be fabricated using micromachining.