Science.gov

Sample records for 40-million-year lake record

  1. 40-million-year lake record of early Mesozoic orbital climatic forcing

    SciTech Connect

    Olsen, P.E.

    1986-11-14

    Sediments of the early Mesozoic Newark Supergroup of eastern North America consist largely of sedimentary cycles produced by the rise and fall of very large lakes that responded to periodic climate changes controlled by variations in the earth's orbit. Fourier analysis of long sections of the Late Triassic Lockatong and Passaic formations of the Newark Basin show periods in thickness of 5.9, 10.5, 25.2, 32.0, and 96.0 meters corresponding to periodicities in time of roughly 25,000, 44,000, 100,000, 133,000 and 400,000 years, as judged by radiometric time scales and varve-calibrated sedimentation rates. The ratios of the shortest cycle with longer cycles correspond closely to the ratios of the present periods of the main orbital terms that appear to influence climate. Similar long sequences of sedimentary cycles occur through most of the rest of the Newark Supergroup spanning a period of more than 40 million years. This is strong evidence of orbital forcing of climate in the ice-free early Mesozoic and indicates that the main periods of the orbital cycles were not very different 200 million years ago from those today.

  2. A 40-million-year lake record of early mesozoic orbital climatic forcing.

    PubMed

    Olsen, P E

    1986-11-14

    Sediments of the early Mesozoic Newark Supergroup of eastern North America consist largely of sedimentary cycles produced by the rise and fall of very large lakes that responded to periodic climate changes controlled by variations in the earth's orbit. Fourier analysis of long sections of the Late Triassic Lockatong and Passaic formations of the Newark Basin show periods in thickness of 5.9, 10.5, 25.2, 32.0, and 96.0 meters corresponding to periodicities in time of roughly 25,000, 44,000, 100,0003,, 13000 and 400,000 years, as judged by radiometric time scales and varve-calibrated sedimentation rates. The ratios of the shortest cycle with longer cycles correspond closely to the ratios of the present periods of the main orbital terms that appear to influence climate. Similar long sequences of sedimentary cycles occur through most of the rest of the Newark Supergroup spanning a period of more than 40 million years. This is strong evidence of orbital forcing of climate in the ice-free early Mesozoic and indicates that the main periods of the orbital cycles were not very different 200 million years ago from those today.

  3. 40 Million Years of the Iceland Plume

    NASA Astrophysics Data System (ADS)

    Parnell-Turner, R. E.; White, N.; Henstock, T.; Maclennan, J.; Murton, B. J.; Jones, S. M.

    2011-12-01

    The V-shaped ridges, straddling the mid oceanic ridges to the North and South of Iceland, provide us with a linear record of transient mantle convective circulation. Surprisingly, we know little about the structure of these ridges: prior to this study, the most recent regional seismic reflection profiles were acquired in the 1960s. During the Summer of 2010, we acquired over 3,000 km of seismic reflection data across the oceanic basin South of Iceland. The cornerstones of this programme are two 1000 km flowlines, which traverse the basin from Greenland to the European margin. The geometry of young V-shaped ridges near to the oceanic spreading center has been imaged in fine detail; older ridges, otherwise obscured in gravity datasets by sediment cover, have been resolved for the first time. We have mapped the sediment-basement interface, transformed each profile onto an astronomical time scale, and removed the effects of long wavelength plate cooling. The resulting chronology of Icelandic plume activity provides an important temporal frame of reference for plume flux over the past 40 million years. The profiles also cross major contourite drift deposits, notably the Gardar, Bjorn and Eirik drifts. Fine-scale sedimentary features imaged here demonstrate distinct episodes of drift construction; by making simple assumptions about sedimentation rates, we can show that periods of drift formation correspond to periods of enhanced deep water circulation which is in turn moderated by plume activity. From a regional point of view, this transient behaviour manifests itself in several important ways. Within sedimentary basins fringing the North Atlantic, short lived regional uplift events periodically interrupt thermal subsidence from Eocene times to the present day. From a paleoceanographic perspective, there is good correlation between V-shaped ridge activity and changes in overflow of the ancient precursor to North Atlantic Deep Water. This complete history of the Iceland

  4. Revival and Identification of Bacterial Spores in 25- to 40-Million-Year-Old Dominican Amber

    NASA Astrophysics Data System (ADS)

    Cano, Raul J.; Borucki, Monica K.

    1995-05-01

    A bacterial spore was revived, cultured, and identified from the abdominal contents of extinct bees preserved for 25 to 40 million years in buried Dominican amber. Rigorous surface decontamination of the amber and aseptic procedures were used during the recovery of the bacterium. Several lines of evidence indicated that the isolated bacterium was of ancient origin and not an extant contaminant. The characteristic enzymatic, biochemical, and 16S ribosomal DNA profiles indicated that the ancient bacterium is most closely related to extant Bacillus sphaericus.

  5. The Anguilla spp. migration problem: 40 million years of evolution and two millennia of speculation.

    PubMed

    Righton, D; Aarestrup, K; Jellyman, D; Sébert, P; van den Thillart, G; Tsukamoto, K

    2012-07-01

    Anguillid eels Anguilla spp. evolved between 20 and 40 million years ago and possess a number of remarkable migratory traits that have fascinated scientists for millennia. Despite centuries of effort, the spawning areas and migrations are known only for a few species. Even for these species, information on migratory behaviour is remarkably sketchy. The latest knowledge on the requirements for successful migration and field data on the migrations of adults and larvae are presented, how experiments on swimming efficiency have progressed the understanding of migration are highlighted and the challenges of swimming at depth considered. The decline of Anguilla spp. across the world is an ongoing concern for fisheries and environmental managers. New developments in the knowledge of eel migration will, in addition to solving a centuries old mystery, probably help to identify how this decline might be halted or even reversed.

  6. Holocene Lake Records on Kamchatka

    NASA Astrophysics Data System (ADS)

    Diekmann, Bernhard; Biskaborn, Boris; Chapligin, Bernhard; Dirksen, Oleg; Dirksen, Veronika; Hoff, Ulrike; Meyer, Hanno; Nazarova, Larisa

    2014-05-01

    The availibility of terrestrial records of Holocene palaeoenvironmental changes in eastern Siberia still is quite limited, compared to other regions on the northern hemisphere. In particular, the Kamchatka Peninsula as an important climate-sensitive region is very underrepresented. Situated at the border of northeastern Eurasia, the maritime-influenced terrestrial setting of Kamchatka offers the potential to pinpoint connections of environmental changes between the periglacial and highly continental landmasses of eastern Siberia and the sub-Arctic Pacific Ocean and Sea of Okhotsk. The study region lies at the eastern end-loop of the global thermohaline ocean conveyor belt and is strongly affected by atmospheric teleconnections. Volcanic, tectonic, and glacial processes overprint palaeoenvironmental changes in addition to primary climate forcing. In order to widen our understanding of plaeoclimate dynamics on Kamchatka, sediment cores from different lake systems and peat sections were recovered and analysed by a multi-proxy approach, using sedimentological and geochemical data as well as fossil bioindicators, such as diatoms, pollen, and chironomids. Chronostratigraphy of the studied records was achieved through radiocarbon dating and tephrostratigraphy. Sediment cores with complete Holocene sedimentary sequences were retrieved from Lake Sokoch, an up to six metre deep lake of proglacial origin, situated at the treeline in the Ganalsky Ridge of southern central Kamchatka (53°15,13'N, 157°45.49' E, 495 m a.s.l.). Lacustrine sediment records of mid- to late Holocene age were also recovered from the up to 30 m deep Two-Yurts Lake, which occupies a former proglacial basin at the eastern flank of the Central Kamchatka Mountain Chain, the Sredinny Ridge (56°49.6'N, 160°06.9'E, 275 m a.s.l.). In addition to sediment coring in the open and deep Two-Yurts Lake, sediment records were also recovered from peat sections and small isolated forest lakes to compare

  7. Observations of the Interstellar Medium Along the Historical Solar Trajectory: Temporal Evolution of the Heliosphere Over the Last 40 Million Years

    NASA Astrophysics Data System (ADS)

    Redfield, S.; Wyman, K.

    2013-12-01

    Over the course of our motion through the Galaxy, the Solar System has encountered many interstellar environments of varying characteristics. ISM density variations spanning six orders of magnitude are commonly seen throughout the general Galactic environment, and a sufficiently dense cloud within this range has the potential to compress the heliosphere to within one AU. We present a reconstruction of the density profile for the clouds we have most recently passed through based on high-resolution optical spectra towards nearby stars. Observations were made of interstellar NaI and CaII absorption towards 43 bright stars along the historical path of solar motion in our orbit around the center of the Galaxy. No absorption is seen out to a distance of 120 pc (consistent with the Local Bubble), but a complex collection of absorbers (up to 10 components) is seen in stars between 130 and 610 parsecs. A possible link between our local interstellar environment, cosmic rays, and our planetary climate has long been a subject of interest. Compression of the heliosphere (one of our three cosmic ray shields) due to passage through a dense interstellar cloud could have significant effects on Earth: global cooling (atmospheric dust deposition), weather patterns (cloud nucleation), and evolution (DNA mutations). A time scale of interaction with each ISM component in this path can be constructed and ultimately compared with Earth's geologic record. While a number of assumptions go into translating the ISM features observed today, with the interstellar environment with the Sun in the past, this work at least provides a plausible temporal evolution of the heliosphere. Indeed, we now know that many, if not all, nearby stars have exoplanets. These are traversing their own unique paths through the ISM. As we plan to evaluate planet habitability, the temporal evolution of the helio/astrosphere and cosmic ray flux, as dictated by the surrounding interstellar medium will be of critical

  8. Big lake records preserved in a little lake's sediment: An example from Silver Lake, Michigan, USA

    USGS Publications Warehouse

    Fisher, T.G.; Loope, W.L.; Pierce, W.; Jol, H.M.

    2007-01-01

    We reconstruct postglacial lake-level history within the Lake Michigan basin using soil stratigraphy, ground-penetrating radar (GPR), sedimentology and 14C data from the Silver Lake basin, which lies adjacent to Lake Michigan. Stratigraphy in nine vibracores recovered from the floor of Silver Lake appears to reflect fluctuation of water levels in the Lake Michigan basin. Aeolian activity within the study area from 3,000 years (cal yr. B.P.) to the present was inferred from analysis of buried soils, an aerial photograph sequence, and GPR. Sediments in and around Silver Lake appear to contain a paleoenvironmental record that spans the entire post-glacial history of the Lake Michigan basin. We suggest that (1) a pre-Nipissing rather than a Nipissing barrier separated Silver Lake basin from the Lake Michigan basin, (2) that the Nipissing transgression elevated the water table in the Silver Lake basin about 6,500 cal yr. B.P., resulting in reestablishment of a lake within the basin, and (3) that recent dune migration into Silver Lake is associated with levels of Lake Michigan.

  9. Deglacial and lake level fluctuation history recorded in cores, Beaver Lake, Upper Peninsula, Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Whitman, Richard L.

    1999-01-01

    Sediment cores collected from the littoral and pelagic zones of Beaver Lake, Michigan record fluctuations in the water level of Lake Superior. Beaver Lake is a small 300 ha lake in Pictured Rocks National Lakeshore (PRNL) now separated from Lake Superior by a dune-capped barrier bar. Cores were collected using a vibracorer from a lake-ice platform in February 1997. A 2.85 m long core in 10 m of water contains well-sorted sand, rhythmites, peat, interbedded sand and gyttja, and is capped with 1 m of massive gyttja. A 9480 BP AMS age from the basal sand provides a minimum deglacial date for the area. Further analysis indicates a sand-dominated depositional environment from a low lake stand at approximately 8500 BP to present. An approximate 8800 BP red to gray sediment color transition records either the cessation of meltwater input from Lake Agassiz or receding ice, while a younger similarly colored transition, 6600 BP in age, likely records sediment reworking in the coastal zone. Four AMS ages on peat range from 8520 to 7340 BP and are indicative of the Houghton low phase. Burial of the peat by stratified sand and gyttja after 7340 BP indicates a rising lake level. Peat at a higher level in the lake basin, encountered in shallow littoral cores, ranges in age from 6800 to 6420 BP, which estimates a 0.91 m rise/century in lake level to the Nipissing level by 5000 BP.

  10. Lake sediment records as earthquake catalogues: A compilation from Swiss lakes - Limitations and possibilities

    NASA Astrophysics Data System (ADS)

    Kremer, Katrina; Reusch, Anna; Wirth, Stefanie B.; Anselmetti, Flavio S.; Girardclos, Stéphanie; Strasser, Michael

    2016-04-01

    Intraplate settings are characterized by low deformation rates and recurrence intervals of strong earthquakes that often exceed the time span covered by instrumental records. Switzerland, as an example for such settings, shows a low instrumentally recorded seismicity, in contrast to strong earthquakes (e.g. 1356 Basel earthquake, Mw=6.6 and 1601 Unterwalden earthquake, Mw=5.9) mentioned in the historical archives. As such long recurrence rates do not allow for instrumental identification of earthquake sources of these strong events, and as intense geomorphologic alterations prevent preservation of surface expressions of faults, the knowledge of active faults is very limited. Lake sediments are sensitive to seismic shaking and thus, can be used to extend the regional earthquake catalogue if the sedimentary deposits or deformation structures can be linked to an earthquake. Single lake records allow estimating local intensities of shaking while multiple lake records can furthermore be used to compare temporal and spatial distribution of earthquakes. In this study, we compile a large dataset of dated sedimentary event deposits recorded in Swiss lakes available from peer-reviewed publications and unpublished master theses. We combine these data in order to detect large prehistoric regional earthquake events or periods of intense shaking that might have affected multiple lake settings. In a second step, using empirical seismic attenuation equations, we test if lake records can be used to reconstruct magnitudes and epicentres of identified earthquakes.

  11. PSV records from sediments of modern lakes (Aslikyl, Svir, Naroch).

    NASA Astrophysics Data System (ADS)

    Kuzina, D.; Kosareva, L.; Nourgaliev, D.; Kosarev, V.

    2014-12-01

    During the last 20 years, our paleomagnetic group had investigated many lakes with the aim to know the behavior of the geomagnetic field during the Holocene. Lake sediments are the good presenters of the paleosecular variation (PSV) records. In this paper are presented materials from Lakes Aslikul (Russia, 54o 25' N, 54o 07' E), Svir (Belorussia, 54o 47' N; 26o 30' E), Naroch (Belorussia, 54o 51' N, 26o 51' E). Samples of lake floor sediments were collected using a piston corer designed and manufactured at the Kazan University as a prototype were used piston corer which had been designed and used by F. J. H. Mackereth. Three cores were collected from each Lake Aslikul and Svir and six cores from Lake Naroch. Cores length was between 3,5-6,5 meters. Sediments were subsampled into cubic nonmagnetic plastic boxes. Their magnetic susceptibilities were then measured using a MS2-B instrument, and their natural remanent magnetization (NRM) (module and direction) was measured using a JR-4 magnetometer. Based on this data were built generalized record for each parameter. We compared the geomagnetic field variations recorded in our study with the records reported in the literature for the sediments in the different lakes. Our data have a good PSV records correlation with other data so we can obtain age of sediments according to PSV records. The dating of lakes sediments was also improved and further detailed by radiocarbon dating that gave the same results. Some characteristic features, the B and S minima and the Y and E maxima (cf. nomenclature of Thompson and Turner, 1982) are recognized. All peaks have a wide but complicated structure. Studied lakes compared to the other European records available, it can be concluded that the PSV master curves obtained in this study can be used to model Holocene geomagnetic variations. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University also by RFBR research projects No. 14

  12. A full lipid biomarker based record from Lake Challa, Tanzania

    NASA Astrophysics Data System (ADS)

    Blaga, C. I.; de Leeuw, J. W.; Verschuren, D.; Sinninghe Damsté1, J. S.

    2012-04-01

    The climate of the regions surrounding the Indian Ocean - East Africa, Arabian and Indian peninsulas - is strongly dominated by the dynamics of the seasonal monsoon. To understand the long and short term driving forces behind the natural climatic variability in this region it is highly important to reconstruct climatic changes in the past and, thereby, predict future changes taking into account also anthropogenic activities. Most low latitude locations lack continuous, highly resolved continental records with good age control. From the few existing records acquired from tropical glacier ice, cave stalagmites and fossil diatoms a thorough understanding of the climatic variations reflected (rainfall and drought or temperature and its effect on precipitation) is scanty. Chemically stratified crater lakes accumulate high-quality climate-proxy records as shown in very recent studies done on the continuous and finely laminated sediment record of Lake Challa situated on the lower East slope of Mt. Kilimanjaro (Verschuren et al. 2009; Wolff et al. 2011). The unique location of this lake in equatorial East Africa implies that the climate variability is influenced by the Indian Ocean and not by the Atlantic due to the Congo Air Boundary (Thierney et al. 2011). The objective of this study is to fully explore the biomarker content of the Lake Challa sedimentary record already characterized by an excellent time resolution and chronology. Various normal chain lipids (n-alkanes, n-fatty acids, n-alcohols), sterols, long-chain diols, triterpenoids and glycolipids in sedimentary organic matter, were determined in their solvent-extractable (free) and saponification-released forms (bound). The changing composition of organic matter content from the investigated lake is used as a framework to trace palaeo-humidity, terrestrial input, algal input, temperature in sediment traps and underlying sediments of Lake Challa to further our palaeo-environmental knowledge based on GDGT's and

  13. A Prehistorical Record of Cultural Eutrophication from Crawford Lake, Canada

    SciTech Connect

    Ekdahl, E J; Teranes, J; Guilderson, T; Turton, C L; McAndrews, J H; Wittkop, C A; Stoermer, E F

    2004-08-05

    Cultural eutrophication--the process by which human activities increase nutrient input rates to aquatic ecosystems and thereby cause undesirable changes in surface-water quality--is generally thought to have begun with the start of the industrial era. The prehistoric dimension of human impacts on aquatic ecosystems remains relatively undescribed, particularly in North America. Here we present fossil plankton data (diatoms and rotifers), organic and inorganic carbon accumulations, and carbon isotope ratios from a 1000-yr sediment core record from Crawford Lake, Ontario, Canada. The data documents increased nutrient input to Crawford Lake caused by Iroquoian horticultural activity from A.D. 1268 to 1486 and shows how this increased nutrient input elevated lake productivity, caused bottom-water anoxia, and irreversibly altered diatom community structure within just a few years. Iroquoian settlement in the region declined in the fifteenth century, yet diatom communities and lake circulation never recovered to the predisturbance state. A second phase of cultural eutrophication starting in A.D. 1867, initiated by Canadian agricultural disturbance, increased lake productivity but had comparatively less of an impact on diatom assemblages and carbon-storage pathways than the initial Iroquoian disturbance. This study deepens our understanding of the impact of cultural eutrophication on lake systems, highlights the lasting influence of initial environmental perturbation, and contributes to the debate on the ecological impacts of density and agricultural practices of native North American inhabitants.

  14. The 1 Ma Lake Bosumtwi (West Africa) Paleoclimate Record: Comparisons to Marine and Polar Records

    NASA Astrophysics Data System (ADS)

    Peck, J. A.; Shanahan, T. M.; King, J. W.; Overpeck, J. T.; Scholz, C. A.; Heil, C.; Forman, S. L.; Amoako, P. Y.

    2007-12-01

    Lake Bosumtwi is a hydrologically closed lake occupying a 1.07 Ma impact crater in Ghana, West Africa. The lake lies beneath the path of the seasonal migration of the ITCZ and therefore can provide a sedimentary record of monsoon variability in West Africa. Scientific drilling recovered a 291-m long sediment section that spans the full 1 Ma history of the lake. This long continental record is ideal for comparison to long marine and ice-core records at both glacial-interglacial and abrupt-change timescales. Oxygen-isotope stratigraphy, derived from calcareous fossils, often provides age control and a way to place individual marine sediment cores into a global stratigraphic framework. Lacking a direct tie-in to the marine oxygen-isotope stratigraphy, individual lacustrine basins can present challenges for global correlation. Through radiocarbon, optically stimulated luminescence and paleomagnetic dating, limited age control has been established for the 1 Ma Lake Bosumtwi sediment sequence. Within a Bosumtwi sediment sequence that is mostly laminated occur intervals of non-laminated sediment having increased density, decreased organic content and a high-coercivity magnetic mineral assemblage. Some of these massive layers contain slump-folding and intraformational clasts. These lithologies are interpreted to represent lake-level lowstands when a diminished West African summer monsoon resulted in decreased moisture balance and lake-level regression. Some Bosumtwi lake-level lowstands match intervals of increased sea surface salinity in the Gulf of Guinea resulting from reduced river discharge (Weldeab et al. 2007, Science, 316, 1303-1307). However, during other intervals (MIS2) there are differences between the two records. Corresponding to glacial stages and stadials, increased amounts of high-coercivity magnetic minerals are present in the Lake Bosumtwi sediment. Elevated aerosol dust export from arid Sahel sources, possibly accompanied by enhanced magnetic

  15. Directly dated MIS 3 lake-level record from Lake Manix, Mojave Desert, California, USA

    USGS Publications Warehouse

    Reheis, Marith; Miller, David M.; McGeehin, John P.; Redwine, Joanna R.; Oviatt, Charles G.; Bright, Jordon E.

    2015-01-01

    An outcrop-based lake-level curve, constrained by ~ 70 calibrated 14C ages on Anodonta shells, indicates at least 8 highstands between 45 and 25 cal ka BP within 10 m of the 543-m upper threshold of Lake Manix in the Mojave Desert of southern California. Correlations of Manix highstands with ice, marine, and speleothem records suggest that at least the youngest three highstands coincide with Dansgaard–Oeschger (D–O) stadials and Heinrich events 3 and 4. The lake-level record is consistent with results from speleothem studies in the Southwest that indicate cool wet conditions during D–O stadials. Notably, highstands between 43 and 25 ka apparently occurred at times of generally low levels of pluvial lakes farther north as interpreted from core-based proxies. Mojave lakes may have been supported by tropical moisture sources during oxygen-isotope stage 3, perhaps controlled by southerly deflection of Pacific storm tracks due to weakening of the sea-surface temperature gradient in response to North Atlantic climate perturbations.

  16. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China.

    PubMed

    Zhang, Wenxiang; Ming, Qingzhong; Shi, Zhengtao; Chen, Guangjie; Niu, Jie; Lei, Guoliang; Chang, Fengqin; Zhang, Hucai

    2014-01-01

    Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun's catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60-1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun's catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years.

  17. Lake Sediment Records on Climate Change and Human Activities in the Xingyun Lake Catchment, SW China

    PubMed Central

    Zhang, Wenxiang; Ming, Qingzhong; Shi, Zhengtao; Chen, Guangjie; Niu, Jie; Lei, Guoliang; Chang, Fengqin; Zhang, Hucai

    2014-01-01

    Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun′s catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60–1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun’s catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years. PMID:25033404

  18. Geochemistry records from laminated sediments of Shira Lake (Russian Asia)

    NASA Astrophysics Data System (ADS)

    Phedorin, M.; Vologina, E.; Drebuschak, M.; Tolomeev, A.; Kirichenko, I.; Toyabin, A.

    2009-04-01

    We measured downcore elements distributions in five cores collected across the Shira Lake situated in Central part of Asia (E90o12', N54o30'). The lake is small (32km2), saline (ca.20g/l SO4-, Cl-, Na+, Mg+, K+), being filled with regional precipitation of about 300mm/year (mainly through one major tributary, river Son) and has no surface outflow. The aim of our study was to reconstruct history of changes in the regime of the lake that happened both before and during period of instrumental meteorological observations. In particular, we were interested in lake-level changes due to evaporation, water supply from surface and from underground sources, and in changes of bioproduction in the lake as well. To construct depth-age model for the cores, we measured Cs-137 and unsupported Pb-210 in top layers of the cores. The sedimentation rate thus identified varied in the range of 1-2 mm/year for different cores. We visually observed fine sedimentation ‘rhythms' having thickness of about 0.x-2.x mm: these layers may now be reliably identified as annual lamination. We also determined concentrations of elements in the sediments by recording x-ray fluorescence (XRF) spectra when continuously scanning the halves of the cores under sharp synchrotron radiation (SR) beam, using an instrument described in (Zolotarev et al., 2001). The resolution of the scanning was 0.1 mm. After processing of the measured XRF-SR data as in (Phedorin and Goldberg, 2005) we obtained downcore records of 20 elements. We correlated all five cores employing elements patterns. We qualitatively identified variations in surface-water supply treating markers of ‘clastic' material (Ti, Rb, Zr). We identified downcore variations in authgenic mineralization, which appeared to have different kinds: Ca-related, Sr-related, Ba-related, Fe-related. We tried to assess biogenic production changes from Br distribution, admitting analogy of Br in Shira sediments to Br in Lake Baikal sediments (Phedorin et al., 2000

  19. Three New Records of Gammarid Amphipod in Songkhla Lake, Thailand

    PubMed Central

    Rattanama, Kotchakorn; Pattaratumrong, Manasawan Saengsakda; Towatana, Prawit; Wongkamhaeng, Koraon

    2016-01-01

    Songkhla Lake is known as the most popular area for gammarid amphipod studies in the Gulf of Thailand. The first gammarid amphipod study was investigated in 1925 by Chilton. After that, there are various studies including diversity, ecology, and biology. In this study, gammarid amphipod in Songkhla Lake were collected from year 2010 to 2014. In this study, three newly recorded amphipods had been reported namely Hyale dollfusi Chevreux, 1911, Grandidierella megnae (Giles, 1888), and Hourstonius japonica (Hirayama, 1983) which had not been previously reported from the Thai waters. The gammarid amphipods had been catalogued. Their characteristics had been described and illustrated. All specimens were deposited at Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Thailand. PMID:27965741

  20. A Long Pleistocene Paleoclimate Record from Stoneman Lake, Arizona

    NASA Astrophysics Data System (ADS)

    Fawcett, P. J.; Anderson, R. S.; Brown, E. T.; Werne, J. P.; Jimenez-Moreno, G.; Toney, J. L.; Garcia, D.; Garrett, H. L.; Dunbar, N. W.

    2015-12-01

    Long continuous lake sediment cores provide enormous potential for interpreting climate change. In the American Southwest, long records are revolutionizing our understanding of megadroughts, which have occurred in the past and will most certainly occur in the future with rapidly changing climate. One site with the potential to study ancient megadroughts is Stoneman Lake, central Arizona, whose basin is a circular depression formed by a collapse in late Tertiary volcanics. The lake is spring fed, most recently alternating between a marsh and a lake, with water levels having fluctuated by > 3 meters over the last 25 years. Its small closed drainage basin (ca. 2.5 km2) with one small inflowing stream is key to the sensitivity of the record. Two parallel lacustrine sediment cores (70 m and 30 m deep) were recovered in October of 2014. Our preliminary chronology includes 8 AMS dates in the upper 7 m and two distinct tephras at 30.8 m depth and 36.3 m depth. Radiocarbon dates show a 2.7-m-thick Holocene section, and then a low Pleistocene SAR with an age of 11,000 cal yr B.P. at ~2.8 m to an age of 46,500 cal yr B.P. at 4.2 m depth. We estimate that the 70-m deep hole will provide a climate record back to ~1.3 million years ago. Of particular interest are the interglacials that serve as good analogs for future climate including MIS 11 and MIS 19. Initial core description includes MS, bulk density and high-resolution images. Holocene sediments are characterized by massive, dark organic rich silty clays with no distinct lamination. Sediments from the Last Glacial Maximum are well-laminated, light brown silty clays with few organics present. The distinctive laminations probably represent a very deep lake and therefore a wet cold climate, also verified by pollen data. There are several repeated intervals of laminated sediments deeper in the core that may represent older glacial maxima. Future work will include detailed pollen, plant macrofossil and charcoal analysis

  1. New records of Ergasilus (Copepoda: Ergasilidae) in the Laurentian Great Lakes, including a lakewide review of records and host associations

    USGS Publications Warehouse

    Hudson, Patrick L.; Bowen, Charles A.; Stedman, Ralph M.

    1994-01-01

    Ergasilus nerkae was found infecting ninespine stickleback (Pungitius pungitius) in lakes Huron, Michigan, and Superior and threespine stickleback (Gasterosteus aculeatus) and round whitefish (Prosopium cylindraceum) in Lake Huron. Based upon the literature and study of archived material, we propose that E. nerkae is enzootic to the Great Lakes and that ninespine stickleback are a preferred host in Lake Huron. Prevalence of E. nerkae on ninespine stickleback increased from 17% in June to 68% in September, but mean intensity remained light. Prevalence and mean intensity increased with host length. Ergasilus luciopercarum is also reported on lake trout (Salvelinus namaycush) and largemouth bass (Micropterus salmoides) for the first time. Host-parasite records of Ergasilus spp. in North America are reviewed, biology and taxonomy are summarized, and a checklist of Great Lakes host-parasite-locality records is provided. At present, eight species of Ergasilus are known to infect 42 Great Lakes fish species.

  2. The mineral magnetic record of magnetofossils in recent lake sediments of Lake Ely, PA

    NASA Astrophysics Data System (ADS)

    Kodama, K. P.; Moeller, R. E.; Bazylinski, D. A.; Kopp, R. E.; Chen, A. P.

    2013-11-01

    Mineral magnetic and ferromagnetic resonance (FMR) measurements made on the sediments from Lake Ely, Pennsylvania reveal the presence of magnetotactic bacteria magnetofossils. Saturation isothermal remanent magnetization (SIRM) data from a 1.25 m long piston core taken from the deepest part of the lake show a large intensity decrease at depths between 30 and 75 cm in the sediment column most likely the result of reductive diagenesis. Modeling of isothermal remanent magnetization (IRM) and anhysteretic remanent magnetization (ARM) acquisition data indicates the presence of biogenic soft (BS) and biogenic hard (BH) magnetosome coercivity components, even at depths in the core greatly affected by reductive diagenesis. First-order reversal curve distribution diagrams for two samples support this interpretation. Modeling of the FMR data also indicates the presence of the BS and BH magnetosome coercivity components, but the relative importance of the two components is opposite to that seen for the IRM and ARM acquisition modeling. A correlation between SIRM variations and local rainfall recorded over the past 70 years suggests that magnetofossil concentrations recorded paleo-rainfall variations in the most recent lake sediments. Multi-taper method spectral analysis of SIRM variations in the piston core, tied to time by varve counting from 1600 common era (CE) to 1128 before CE, show centennial scale periodicities similar to those observed in spectral analysis of a 230 year long historical rainfall record for the northeastern US reconstructed to Philadelphia, PA. This result indicates that enough magnetofossils can survive reductive diagenesis to retain a record of paleorainfall variations, suggesting that they can be a powerful paleoclimate proxy.

  3. Climatic record of the Iberian peninsula from lake Moncortes' sediments

    NASA Astrophysics Data System (ADS)

    Cao, Min; Huguet, Carme; Rull, Valenti; Valero, Blas; Rosell-Mele, Antoni

    2014-05-01

    Climatic record of the Iberian peninsula from lake Moncortes' sediments Min Cao1, Carme Huguet1, Valenti Rull2, Blas L. Valero-Garces3, Antoni Rosell-Melé1,4 1Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; 2Institut de Botanic de Barcelona (CSIC), Passeig del Migdia s/n, 08038, Barcelona, Spain, 3 Instituto Pirenaico de Ecologıa (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain, 4Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain. The continuing buildup of industrial greenhouse gases in the atmosphere and concomitant increase in global temperatures has made much of the world's society aware that decades to centuries of environmental change lie ahead, and that these will have profound economic, political and societal impacts. The Iberian Peninsula lies in the boundary between tropical and subtropical climates and seems to amplify the climatic signals form the northern hemisphere through both atmospheric and water circulation feedbacks, making it an ideal site to monitor Northern hemisphere climate changes. This extreme sensitivity to climatic changes also makes the Iberian Peninsula extremely vulnerable to future climate changes. This is why understanding sensitivity to climate change and the consequences it will have on both climate and the hydrological cycle is key to implement preventive measures. The aim of our study is to come up with a high resolution quantitative reconstruction of climate variability (temperature, production and precipitation) in the Iberian Peninsula from lake sediments. We also want to establish the relation between those changes and the ones observed in both ice cores from Greenland and paleotemperature records from marine sediments of the continental Iberian margin. For these reasons we sampled a core in Moncortes (42.3N, 0.99E), a lake of karstic origin with an average depth of 25m and an area of 0

  4. A Holocene Sediment Record From Lake Elsinore, Southern California: Evidence for Relative Lake Level Change and the Onset of ENSO.

    NASA Astrophysics Data System (ADS)

    Kirby, M. E.; Lund, S. P.; Poulsen, C. J.

    2003-12-01

    There are very few complete terrestrial, Holocene paleoclimate records from coastal southwestern North America. Lake Elsinore, located 120km southeast of Los Angeles, represents one of the only natural, non-playa lakes in the region. Furthermore, it is well documented that coastal southwestern North America is highly sensitive to changes in atmospheric circulation and its affect on regional hydrodynamics. As shown by Kirby et al. (in press), modern lake levels at Lake Elsinore respond directly to total annual precipitation, particularly winter season amounts. The lake is also located along the eastern Pacific Ocean where changes in ocean circulation and its thermal structure modulate the overlying atmosphere, and thus the adjacent continental climate. Here, we present two 7 meter sediment core records from Lake Elsinore spanning the entire Holocene. Although the cores are from the lake's littoral zone, they show surprisingly complete records with very little lithologic evidence for major hiatuses. A combination of sedimentological analyses (e.g., mass magnetic susceptibility (CHI); total percent carbonate; total organic matter) and lithologic descriptions provide insight to lake dynamics over the Holocene. Using the historical calibration between magnetic susceptibility and relative lake level (i.e., high lake levels = high CHI values and vice versa) from Kirby et al. (in press), we developed a first-order estimate of Holocene relative lake levels for Lake Elsinore. The historic calibration is extrapolated through the sediment record based on the assumption that, like today, first order lake level change is directly related to precipitation amount. Both total percent carbonate and total organic matter support our historical calibration between CHI and lake level. Our data suggest a relative increase in lake levels during the mid-Holocene (ca. 8,000 cal yr BP) and through to the present day. From this observation, we hypothesize that regional hydrology as linked to

  5. The importance of catchment vegetation for lake sediment mercury records

    NASA Astrophysics Data System (ADS)

    Rydberg, Johan; Rösch, Manfred; Heinz, Emanuel; Biester, Harald

    2014-05-01

    elements, because coniferous forest intercepts more mercury from the atmosphere than deciduous forest. Secondly, changes in the vegetation will also affect the re-emission of mercury, because of differences in the shading. Thirdly, the vegetation will influence soil stability, production of litter, litter quality, degradation of soil organic matter. This will, in turn, affect the cycling of organic material, which is an important vector for many trace elements, and the soil erosion. Thus, before using lake sediment records to study the historical changes in mercury loading to the environment there is a need to constrain if there have been any changes in the vegetation. However, this study also shows that long lake-sediment records have a large potential as natural laboratories to study the effect of slow processes, like vegetation development, on the transport and accumulation of mercury and other trace elements through the landscape.

  6. Regional environmental change and human activity over the past hundred years recorded in the sedimentary record of Lake Qinghai, China.

    PubMed

    Sha, ZhanJiang; Wang, Qiugui; Wang, Jinlong; Du, Jinzhou; Hu, Jufang; Ma, Yujun; Kong, Fancui; Wang, Zhuan

    2017-03-01

    Environmental change and human activity can be recorded in sediment cores in aquatic systems such as lakes. Information from such records may be useful for environmental governance in the future. Six sediment cores were collected from Lake Qinghai, China and its sublakes during 2012 and 2013. Measurements of sediment grain-size fractions indicate that sedimentation in the north and southwest of Lake Qinghai is dominated by river input, whereas that in Lake Gahai and Lake Erhai is dominated by dunes. The sedimentation rates in Lake Qinghai were calculated to be 0.101-0.159 cm/y, similar to the rates in other lakes on the Qinghai-Tibetan Plateau. Using these data and sedimentation rates from the literature, we compiled the spatial distribution of sedimentation rates. Higher values were obtained in the three main areas of Lake Qinghai: two in river estuaries and one close to sand dunes. Lower values were measured in the center and south of the lake. Measurements of total organic carbon (TOC), total nitrogen (TN), phosphorus concentrations, and TOC/TN ratios in three cores (QH01, QH02, and Z04) revealed four horizons corresponding to times of increased human activity. These anthropogenic events were (1) the development of large areas of cropland in the Lake Qinghai watershed in 1960, (2) the beginning of nationwide fertilizer use and increases in cropland area in the lake watershed after 1970, (3) the implementation of the national program "Grain to Green," and (4) the rapid increase in the tourism industry from 2000. Profiles of Rb, Sr concentrations, the Rb/Sr ratio, and grain-size fraction in core Z04 indicate that the climate has become drier over the past 100 years. Therefore, we suggest that lake sediments such as those in Lake Qinghai are useful media for high-resolution studies of regional environmental change and human activity.

  7. A Holocene paleomagnetic record from Fish Lake, Oregon.

    NASA Astrophysics Data System (ADS)

    Ziegler, L. B.; Stoner, J. S.; Abbott, M. B.; Finkenbinder, M. S.; Hatfield, R. G.; Konyndyk, D.; Reilly, B.; Hillman, A. L.

    2014-12-01

    Paleo-geomagnetic observations provide fundamental models of the core and the geodynamo that cannot other- wise be obtained. Data and modeling studies are beginning to show that regions of concentrated magnetic flux (flux lobes) on the Core-Mantle boundary, those observed historically and others only hinted at from the short historical record, impose a structure on the geomagnetic field that may govern at least some components of geo- magnetic change. Accumulating evidence suggests that this structure reflects the influence of the lower mantle, yet this structure and the evolution of the geomagnetic field within it, even for the Holocene, are only beginning to be- come apparent. Comparison of specific, well-dated Holocene timeseries of PSV (sedimentary and archeomagnetic) inclination, declination, and paleointensity at key locations can provide intriguing insight when viewed through the lens of the known historical and assumed millennial flux lobes. A limiting factor for these studies is the uneven distribution of high quality data with independent chronologies, with Europe and the North Atlantic having better constrained data sets than North America. To begin to fill this data gap, we present initial results from an ongoing study of the paleomagnetic record from Fish Lake, Oregon. Initial evaluation of directions and intensity along with the construction of an independent chronology allow us to assess and build upon prior results to constrain the evolution of the North American flux lobe and refine our understanding of paleo-geomagnetic change during the Holocene.

  8. Do peatlands or lakes provide the most comprehensive distal tephra records?

    NASA Astrophysics Data System (ADS)

    Watson, E. J.; Swindles, G. T.; Lawson, I. T.; Savov, I. P.

    2016-05-01

    Despite the widespread application of tephra studies for dating and correlation of stratigraphic sequences ('tephrochronology'), questions remain over the reliability and replicability of tephra records from lake sediments and peats, particularly in sites >1000 km from source volcanoes. To address this, we examine the tephrostratigraphy of four pairs of lake and peatland sites in close proximity to one another (<10 km), and evaluate the extent to which the microscopic (crypto-) tephra records in lakes and peatlands differ. The peatlands typically record more cryptotephra layers than nearby lakes, but cryptotephra records from high-latitude peatlands can be incomplete, possibly due to tephra fallout onto snow and subsequent redistribution across the peatland surface by wind and during snowmelt. We find no evidence for chemical alteration of glass shards in peatland or lake environments over the time scale of this study (mid-to late- Holocene). Instead, the low number of basaltic cryptotephra layers identified in distal peatlands reflects the capture of only primary tephra-fall, whereas lakes concentrate tephra falling across their catchments which subsequently washes into the lake, adding to the primary tephra fallout received in the lake. A combination of records from both lakes and peatlands must be used to establish the most comprehensive and complete regional tephrostratigraphies. We also describe two previously unreported late Holocene cryptotephras and demonstrate, for the first time, that Holocene Icelandic ash clouds frequently reached Arctic Sweden.

  9. Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 years

    NASA Astrophysics Data System (ADS)

    Mills, K.; Ryves, D. B.; Anderson, N. J.; Bryant, C. L.; Tyler, J. J.

    2014-08-01

    Equatorial East Africa has a complex regional patchwork of climate regimes, sensitive to climate fluctuations over a variety of temporal and spatial scales during the late Holocene. Understanding how these changes are recorded in and interpreted from biological and geochemical proxies in lake sedimentary records remains a key challenge to answering fundamental questions regarding the nature, spatial extent and synchroneity of climatic changes seen in East African palaeo-records. Using a paired lake approach, where neighbouring lakes share the same geology, climate and landscape, it might be expected that the systems will respond similarly to external climate forcing. Sediment cores from two crater lakes in western Uganda spanning the last ~1000 years were examined to assess diatom community responses to late Holocene climate and environmental changes, and to test responses to multiple drivers using redundancy analysis (RDA). These archives provide annual to sub-decadal records of environmental change. Lakes Nyamogusingiri and Kyasanduka appear to operate as independent systems in their recording of a similar hydrological response signal via distinct diatom records. However, whilst their fossil diatom records demonstrate an individualistic, indirect response to external (e.g. climatic) drivers, the inferred lake levels show similar overall trends and reflect the broader patterns observed in Uganda and across East Africa. The lakes appear to be sensitive to large-scale climatic perturbations, with evidence of a dry Medieval Climate Anomaly (MCA; ca. AD 1000-1200). The diatom record from Lake Nyamogusingiri suggests a drying climate during the main phase of the Little Ice Age (LIA) (ca. AD 1600-1800), whereas the diatom response from the shallower Lake Kyasanduka is more complex (with groundwater likely playing a key role), and may be driven more by changes in silica and other nutrients, rather than by lake level. The sensitivity of these two Ugandan lakes to regional

  10. Record of glacial Lake Missoula floods in glacial Lake Columbia, Washington

    NASA Astrophysics Data System (ADS)

    Hanson, Michelle A.; Clague, John J.

    2016-02-01

    During the last glaciation (marine oxygen isotope stage 2), outburst floods from glacial Lake Missoula deposited diagnostic sediments within glacial Lake Columbia. Two dominant outburst flood lithofacies are present within glacial Lake Columbia deposits: a flood expansion bar facies and a finer-grained hyperpycnite facies. We conclude that the flood sediments have a glacial Lake Missoula source because: (1) current indicators indicate westward flow through the lake, and upvalley flow followed by downvalley flow in tributary valleys; (2) no flood sediments are found north of a certain point; (3) there is a dominance of Belt-Purcell Supergroup clasts in a flood expansion bar; and (4) some of the finer-grained beds have a pink colour, reflective of glacial Lake Missoula lake-bottom sediments. A new radiocarbon age of 13,400 ± 100 14C BP on plant detritus found below 37 flood beds helps constrain the timing of outburst flooding from glacial Lake Missoula.

  11. Hydrological drivers of record-setting water level rise on Earth's largest lake system

    NASA Astrophysics Data System (ADS)

    Gronewold, A. D.; Bruxer, J.; Durnford, D.; Smith, J. P.; Clites, A. H.; Seglenieks, F.; Qian, S. S.; Hunter, T. S.; Fortin, V.

    2016-05-01

    Between January 2013 and December 2014, water levels on Lake Superior and Lake Michigan-Huron, the two largest lakes on Earth by surface area, rose at the highest rate ever recorded for a 2 year period beginning in January and ending in December of the following year. This historic event coincided with below-average air temperatures and extensive winter ice cover across the Great Lakes. It also brought an end to a 15 year period of persistently below-average water levels on Lakes Superior and Michigan-Huron that included several months of record-low water levels. To differentiate hydrological drivers behind the recent water level rise, we developed a Bayesian Markov chain Monte Carlo (MCMC) routine for inferring historical estimates of the major components of each lake's water budget. Our results indicate that, in 2013, the water level rise on Lake Superior was driven by increased spring runoff and over-lake precipitation. In 2014, reduced over-lake evaporation played a more significant role in Lake Superior's water level rise. The water level rise on Lake Michigan-Huron in 2013 was also due to above-average spring runoff and persistent over-lake precipitation, while in 2014, it was due to a rare combination of below-average evaporation, above-average runoff and precipitation, and very high inflow rates from Lake Superior through the St. Marys River. We expect, in future research, to apply our new framework across the other Laurentian Great Lakes, and to Earth's other large freshwater basins as well.

  12. A half-million-year record of paleoclimate from the Lake Manix Core, Mojave Desert, California

    USGS Publications Warehouse

    Reheis, Marith C.; Bright, Jordon; Lund, Steve P.; Miller, David M.; Skipp, Gary; Fleck, Robert J.

    2012-01-01

    Pluvial lakes in the southwestern U.S. responded sensitively to past climate through effects on rainfall, runoff, and evaporation. Although most studies agree that pluvial lakes in the southwestern U.S. reached their highest levels coeval with glacial stages, the specific timing of increased effective moisture and lake-level rise is debated, particularly for the southwesternmost lakes. We obtained a 45-m core of lacustrine sediment from Lake Manix, the former terminus of the Mojave River prior to about 25 ka, and supplemented data from the core with outcrop studies. These sediments provide a robust record of Mojave River discharge over the last half-million years. Lake Manix persisted from OIS 12 through early OIS 2, including during interstadial OIS 3 and interglacials OIS 5, 7, and 9. The ostracode faunal record displays a shift from an unexpectedly warm, summer-dominated lake hydrology during OIS 12 to predominantly colder, winter-dominated conditions afterwards. The ostracode-based stable isotope record displays a large degree of intra-sample variability and does not mimic other well-known isotopic records of climate change. Evaporation likely buffered the Manix δ18O record from most of the expected isotopic differences between interglacial and glacial-interval discharge. Isotopically depleted and stable lakes occurred only four to six times, most notably during OIS 7 and OIS 9. Internal drainage-basin changes also affected the isotopic record. Persistence of lakes in the Manix basin during interglacials requires atmospheric or oceanic circulation controls on the mean position of the Pacific storm track other than large ice sheets. We propose that the relative strength and sign of the Northern Annular Mode (NAM) and its influence on atmospheric river-derived precipitation is a potential explanation.

  13. An 84-kyr paleomagnetic record from the sediments of Lake Baikal, Siberia

    USGS Publications Warehouse

    Peck, J.A.; King, J.W.; Colman, Steven M.; Kravchinsky, V.A.

    1996-01-01

    We have conducted a paleomagnetic study of sediment cores obtained from the Selenga prodelta region of Lake Baikal, Russia. This record, which spans approximately the last 84 kyr, contributes to a better understanding of the nature of geomagnetic field behavior in Siberia and is a useful correlation and dating tool. We demonstrate that the Lake Baikal sediments are recording variations in the geomagnetic field. The directional record displays secular variation behavior with a geomagnetic excursion at 20 ka and additional excursions appearing as large-amplitude secular variation at 41, 61, and 67 ka. Smoothing of the geomagnetic excursion behavior occurs in Lake Baikal sediments owing to the intermediate sedimentation rate (13 cm kyr-1). The Lake Baikal relative paleointensity record correlates to absolute paleointensity data for the last 10 kyr and to relative paleointensity records from the Mediterranean Sea and Indian Ocean for the last 84 kyr. This correlation suggests a strong global (i.e., dipole) component to these records and further supports the reliability of sediments as recorders of relative geomagnetic paleointensity. We show that a relative geomagnetic intensity stratigraphy has a potential resolution of 7 kyr by correlating continental and marine records. The geomagnetic intensity stratigraphy helps constrain the age of the difficult to date Lake Baikal sediments.

  14. A ~1.3Ma paleoecological record from scientific drilling at Lake Malawi, East Africa

    NASA Astrophysics Data System (ADS)

    Cohen, Andrew S.; Blome, Margaret; Ivory, Sarah; King, John; Cole, Julie; McGlue, Michael

    2016-04-01

    Long records of Quaternary ecological and climatic change are critical to understanding the range of potential responses of ecosystems to environmental forcing. Here we present an integrated lake and watershed paleoecological analysis from drill core records obtained by the Lake Malawi Drilling Project, documenting extraordinary fluctuations in climate, hydrology and ecosystem response for the southern tropics of Africa. High resolution lacustrine and terrestrial paleoecology and sedimentology data sets from these Early Pleistocene-Holocene drill cores provide the most complete record of this duration currently available from Africa. Time series analyses of these records demonstrate strong orbital forcing of regional hydroclimate that drives high-amplitude changes in Malawi ecosystems. Prior to ~600ka we also observe a secondary overprint of watershed processes involving river capture or diversion that may have a tectonic origin. We observe shifts between more arid conditions (shallow alkaline and well mixed lake, with discontinuous desert vegetation) and more humid environments (deep, stratified, freshwater lake with dense forest). These broadly synchronous changes in lake paleoecology, lake sedimentology, and watershed vegetation demonstrate the major role of climate in regulating this system. Transitions between these lake/watershed state extremes is often very abrupt, suggesting that the combined lake/watershed repeatedly passed through hydroclimate thresholds, with important implications for the evolution of the lake's endemic biodiversity and ecosystem. The tempo of lake/watershed state fluctuations changes at the Mid-Pleistocene Transition, altering from one of higher frequency/lower amplitude variability prior to 900ka to lower frequency/higher amplitude variability after that time.

  15. North American Moisture Gradients over the Past 15,000 Years Recorded by Lake Levels

    NASA Astrophysics Data System (ADS)

    Henderson, A.; Plank, C.; Shuman, B. N.

    2007-12-01

    Spatial variation in the water levels of lakes provides a useful record of past moisture regimes and their associated synoptic climate patterns. Here, we present updated maps of North American lake levels over the past 15,000 years. Data have been assembled from published lake records in all regions of the continent, and focus on records that provide direct evidence of past shoreline elevations. The results show both the effects of short- term climate variability and the sensitivity of moisture gradients to the boundary conditions of the global climate system. For example, some lakes like Hidden Lake, Colorado, record the infrequent decadal-to-centennial "megadroughts" of the past two millennia that have been captured in tree-ring data, and nearly all lakes in the Rockies and Great Plains record persistently dry conditions for multiple millennia between 8000 and 5000 years BP. Regional climate model simulations show that the documented long-term aridity may have resulted from the direct effects of orbitally-driven changes in seasonal insolation patterns. Consequently, although "megadroughts" may be part of the natural moisture regimes of the late-Holocene, large magnitude shifts in boundary conditions both in the past (e.g., insolation) and future (i.e., greenhouse gases) have the potential to fundamentally alter the availability of water.

  16. Lakes as recorders of extreme flows: utilising particle size analysis to generate a millennial-scale palaeoflood record from the English Lake District

    NASA Astrophysics Data System (ADS)

    Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet

    2013-04-01

    Developing new quantitative measures of catchment processes, such as flood events, is a key goal of geomorphologists. The geomorphic effects of extreme hydrological events are effectively recorded in upland lake basins as efficient sediment trapping renders flow-related proxy indicators (e.g., particle size) reflective of changes in river discharge. We demonstrate that integrating particle size analysis of lake sediment cores with data from an on-going sediment trapping protocol within the lake can provide a valuable natural archive for investigating hydrogeomorphic extremes over extended time periods. A series of sediment cores (3 - 5 m length) extracted from Brotherswater, English Lake District, contain numerous coarse-grained laminations, discerned by applying high-resolution (0.5 cm) laser granulometry and interpreted to reflect a palaeoflood record extending to ~2000 yr BP. Well-constrained core chronologies are derived through integrating radionuclide (210Pb, 137Cs, 241Am, 14C) dating with geochemical markers which reflect phases of local lead (Pb) mining. Geochemical and magnetic profiles have facilitated precise core correlation and the repeatability of the distinctive coarse facies to be verified. That these laminae exhibit inverse grading underlying normal grading, most likely reflecting the waxing and waning of flood-induced hyperpycnal flows, supports our palaeoflood interpretation. Application of a recently-published end-member model for unmixing particle size distributions (Deitze et al., 2012) demonstrates a prominent coarse end-member (medium sand) which we attribute to fluvial transport of coarse grains during high-magnitude flows. Two end members feature in the silt-size fraction, most likely reflecting the sedimentary component delivered under normal flow conditions. The relative importance of these two modes appears to respond to catchment conditioning due to land-use change, which has important implications for how flood events may be recorded

  17. Quantified sensitivity of lakes to record historic earthquakes: Implications for paleoseismology

    NASA Astrophysics Data System (ADS)

    Wilhelm, Bruno; Nomade, Jerome; Crouzet, Christian; Litty, Camille; Belle, Simon; Rolland, Yann; Revel, Marie; Courboulex, Françoise; Arnaud, Fabien; Anselmetti, Flavio S.

    2015-04-01

    Seismic hazard assessment is a challenging issue for modern societies. A key parameter to be estimated is the recurrence interval of damaging earthquakes. In moderately active seismo-tectonic regions, this requires the establishment of earthquake records long enough to be relevant, i.e. far longer than historical observations. Here we investigate how lake sediments can be used for this purpose and quantify the conditions that enable earthquake recording. For this purpose, (i) we studied nine lake-sediment sequences to reconstruct mass-movement chronicles in different settings of the French Alpine range and (ii) we compared the chronicles to the well-documented earthquake history over the last five centuries. The studied lakes are all small alpine-type lakes based directly on bedrock. All lake sequences have been studied following the same methodology; (i) a multi-core approach to well understand the sedimentary processes within the lake basins, (ii) a high-resolution lithological and grain-size characterization and (iii) a dating based on short-lived radionuclide measurements, lead contaminations and radiocarbon ages. We identified 40 deposits related to 26 mass-movement (MM) occurrences. 46% (12 on 26) of the MMs are synchronous in neighbouring lakes, supporting strongly an earthquake origin. In addition, the good agreement between MMs ages and historical earthquake dates suggests an earthquake trigger for 88% (23 on 26) of them. Related epicenters are always located at distances of less than 100 km from the lakes and their epicentral MSK intensity ranges between VII and IX. However, the number of earthquake-triggered MMs varies between lakes of a same region, suggesting a gradual sensitivity of the lake sequences towards earthquake shaking, i.e. distinct lake-sediment slope stabilities. The quantification of this earthquake sensitivity and the comparison to the lake system and sediment characteristics suggest that the primary factor explaining this variability is

  18. First record of Daphnia lumholtzi Sars in the Great Lakes

    USGS Publications Warehouse

    Muzinic, Christopher J.

    2000-01-01

    Adults of the cladoceran Daphnia lumholtzi, native to Australia, Africa, and parts of Asia, were first collected in August 1999 in Lake Erie. Individuals were collected near East Harbor State Park, Lakeside, Ohio from vertical plankton net tows. The average number of D. lumholtzi that were found (0.03/L) indicate that D. lumholtzi is beginning to establish itself in Lake Erie. The morphology of this Daphnia differs greatly from native species because of its elongated head and tail spine. This sighting is important because it acknowledges yet another exotic invader into the Great Lakes basin and it also shows that this, normally, warm water species continues to expand its range northward.

  19. Arctic deltaic lake sediments as recorders of fluvial organic matter deposition

    NASA Astrophysics Data System (ADS)

    Vonk, Jorien; Dickens, Angela; Giosan, Liviu; Zipper, Samuel; Galy, Valier; Holmes, Robert; Montlucon, Daniel; Kim, Bokyung; Hussain, Zainab; Eglinton, Timothy

    2016-08-01

    Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, 13C, 14C) and molecular organic geochemistry (lignin, leaf waxes). High-resolution age models (137Cs, 210Pb) of downcore lake sediment records (n=11) along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels). Comparison with earlier published Mackenzie River depth profiles shows that (i) lake sediments reflect the riverine surface suspended load, and (ii) hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale) riverine fluxes and may prove instrumental in shedding light on past behaviour of arctic rivers, as well as how they respond to a changing climate.

  20. Climatic change record during the past 1 Ma of the Lake Biwa sediments, Japan

    NASA Astrophysics Data System (ADS)

    Takemura, K.; Hayashida, A.; Danhara, T.

    2010-12-01

    Lake Biwa is the largest and oldest lake in Japan. The drilled core in 1982-1983 (i.e., the 1400 m core) has revealed ~900 m lake and terrestrial sediments overlying the basement rock (Takemura, 1990). The age data obtained from fission-track dating and tephra correlation indicated the discontinuity of the sedimentary sequence in present Lake Biwa. Recently, the doubt on discontinuity of the sequence in present Lake Biwa was completely cleared by the reinvestigation of the fission-track ages and tephra identification of Danhara et al. (2010). Improvements on fission track timescale have successfully identified the paleomagnetic data from middle Matuyama reversed Epoch including the Jaramillo event, determining time coverage of the Lake Biwa sediment as ~1.5 Ma. A highly linear sediment accumulation rate curve is thus given to the 900 m-deep Lake Biwa sediment. This secures the stable sedimentary environment of the basin, and the significance of Lake Biwa sediment as a good recorder for paleoclimate changes. Lake Biwa is, therefore, an ideal terrestrial site to explore paleoclimate and tectonic history during the past 1 Ma of East Asia. We summarize the data from multidiscipline approaches of pollen, diatom, geochemistry and paleomagnetic analyses using the drilling core in 1982-1983.

  1. Alkenone and Isotopic Records of Holocene Climatic and Environmental Change From Laminated West Greenland Lakes

    NASA Astrophysics Data System (ADS)

    D'Andrea, W. J.; Huang, Y.

    2004-12-01

    Long chain alkenones (LCAs) are a key class of biomarkers for paleotemperature reconstructions. These compounds are ubiquitous in ocean sediments, but rare in lake sediments. Here we report the first discovery of LCAs in a downcore profile and surface sediments of five Greenland lakes. The concentrations of LCAs in surface sediments of these lakes are one to two orders of magnitude higher than those reported previously in other lake surface sediments around the world. Alkenones are present in five Greenland lakes with elevated salinity, but absent from five freshwater lakes. The alkenones have exceptionally low \\delta13C values ranging from -40 to -43\\permil, and are depleted by 10 to 15\\permil relative to short-chain fatty acids and sterols within the same samples. These \\delta13C values are the lowest ever reported for alkenones in a natural setting and have important implications for tracing the alkenone producers in lakes. Using the published calibration for lake sediments, the alkenone unsaturation indices in the surface sediments of the Greenland lakes record late spring/early summer temperature when algal blooms occur, suggesting the applicability of lacustrine alkenones as a paleotemperature proxy. LCA unsaturation indices and \\deltaD from sediment cores taken from these Greenland lakes will help elucidate the environmental controls on these sedimentary parameters, and will aid the reconstruction of Holocene climate variability in West Greenland. Ongoing work on the saline lakes includes determining high resolution alkenone unsaturation ratios/abundances and bulk/compound-specific isotopic values from sediment cores, algal culturing, and establishing microbial community structure in the saline lakes using DNA/RNA fingerprinting. Up-to-date results will be presented in the meeting.

  2. Quantified sensitivity of small lake sediments to record historic earthquakes: Implications for paleoseismology

    NASA Astrophysics Data System (ADS)

    Wilhelm, Bruno; Nomade, Jerome; Crouzet, Christian; Litty, Camille; Sabatier, Pierre; Belle, Simon; Rolland, Yann; Revel, Marie; Courboulex, Françoise; Arnaud, Fabien; Anselmetti, Flavio S.

    2016-01-01

    Seismic hazard assessment is a critical but challenging issue for modern societies. A key parameter to be estimated is the recurrence interval of damaging earthquakes. This requires the establishment of earthquake records long enough to be relevant, i.e., far longer than historical observations. We study how lake sediments can be used for this purpose and explore conditions that enable lake sediments to record earthquakes. This was achieved (i) through the compilation of eight lake-sediment sequences from the European Alps to reconstruct chronicles of mass movement deposits and (ii) through the comparison of these chronicles with the well-documented earthquake history. This allowed 24 occurrences of mass movements to be identified, of which 21 were most probably triggered by an earthquake. However, the number of earthquake-induced deposits varies between lakes of a same region, suggesting variable thresholds of the lake sequences to record earthquake shaking. These thresholds have been quantified by linking the mass movement occurrences in a single lake to both intensity and distance of the triggering earthquakes. This method offers a quantitative approach to estimate locations and intensities of past earthquake epicenters. Finally, we explored which lake characteristics could explain the various sensitivities. Our results suggest that sedimentation rate should be larger than 0.5 mm yr-1 so that a given lake records earthquakes in moderately active seismotectonic regions. We also postulate that an increasing sedimentation rate may imply an increasing sensitivity to earthquake shaking. Hence, further paleoseismological studies should control carefully that no significant change in sedimentation rates occurs within a record, which could falsify the assessment of earthquake recurrence intervals.

  3. RESEARCH NOTE: A Late Holocene geomagnetic secular variation record from Erhai Lake, southwest China

    NASA Astrophysics Data System (ADS)

    Hyodo, Masayuki; Yoshihara, Arata; Kashiwaya, Kenji; Okimura, Takashi; Masuzawa, Toshiyuki; Nomura, Ryotaro; Tanaka, Shingo; Xing, Tang Bang; Qing, Liu Su; Jian, Liu Shi

    1999-03-01

    A secular variation record of the geomagnetic field direction for the last 6.5 kyr has been obtained from the magnetization of sediment cores from Erhai Lake, southwest China. In order to make a comparison with this record, secular variation in east-central China was investigated by combining available magnetic field data from historical records and archaeomagnetic measurements since about 350 bc. The secular variation in Erhai Lake shows features consistent with the combined record, except for the oldest three observed declination swings in Sian from 720 to 900 ad. Many features of declination and inclination in China also occur in Japan. From 500 to 1000 ad, declination was westerly ranging from about -20° to -5° in Erhai Lake, east-central China, and Japan.

  4. Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey

    NASA Astrophysics Data System (ADS)

    Çağatay, M. N.; Öğretmen, N.; Damcı, E.; Stockhecke, M.; Sancar, Ü.; Eriş, K. K.; Özeren, S.

    2014-11-01

    Sedimentary, geochemical and mineralogical analyses of the ICDP cores recovered from the Northern Basin (NB) of Lake Van provide evidence of lake level and climatic changes related to orbital and North Atlantic climate system over the last 90 ka. High lake levels are generally observed during the interglacial and interstadial periods, which are marked by deposition of varved sediments with high total organic carbon (TOC), total inorganic carbon (TIC), low detrital influx (high Ca/F) and high δ18O and δ13C values of authigenic carbonate. During the glacial and stadial periods of 71-58 ka BP (Marine Isotope Stage 4, MIS4) and end of last glaciation-deglaciation (30-14.5 ka BP; MIS3) relatively low lake levels prevailed, and grey homogeneous to faintly laminated clayey silts were deposited at high sedimentation and low organic productivity rates. Millennial-scale variability of the proxies during 60-30 ka BP (MIS3 is correlated with the Dansgaard-Oeschger (D-O)) and Holocene abrupt climate events in the Atlantic. These events are characterized by laminated sediments, with high TOC, TIC, Ca/Fe, δ18O and δ13C values. The Lake Van NB records correlate well in the region with the climate records from the lakes Zeribar and Urmia in Iran and the Sofular Cave in NW Anatolia, but are in general in anti-phase to those from the Dead Sea Basin (Lake Lisan) in the Levant. The relatively higher δ18O values (0 to -0.4‰) for the interglacial and interstadial periods in the Lake Van NB section are due to the higher temperature and seasonality of precipitation and higher evaporation, whereas the lower values (-0.8 to -2‰) during the glacial and stadial periods are caused mainly by relative decrease in both temperature and seasonality of precipitation. The high δ18O values (up to 4.2‰) during the Younger Dryas, together with the presence of dolomite and low TOC contents, supports evaporative conditions and low lake level. A gradual decrease in the δ18O values from an

  5. Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 yr

    NASA Astrophysics Data System (ADS)

    Mills, K.; Ryves, D. B.; Anderson, N. J.; Bryant, C. L.; Tyler, J. J.

    2013-09-01

    Equatorial East Africa has a complex, regional patchwork of climate regimes, with multiple interacting drivers. Recent studies have focussed on large lakes and reveal signals that are smoothed in both space and time, and, whilst useful at a continental scale, are of less relevance when understanding short-term, abrupt or immediate impacts of climate and environmental changes. Smaller-scale studies have highlighted spatial complexity and regional heterogeneity of tropical palaeoenvironments in terms of responses to climatic forcing (e.g. the Little Ice Age [LIA]) and questions remain over the spatial extent and synchroneity of climatic changes seen in East African records. Sediment cores from paired crater lakes in western Uganda were examined to assess ecosystem response to long-term climate and environmental change as well as testing responses to multiple drivers using redundancy analysis. These archives provide annual to sub-decadal records of environmental change. The records from the two lakes demonstrate an individualistic response to external (e.g. climatic) drivers, however, some of the broader patterns observed across East Africa suggest that the lakes are indeed sensitive to climatic perturbations such as a dry Mediaeval Climate Anomaly (MCA; 1000-1200 AD) and a relatively drier climate during the main phase of the LIA (1500-1800 AD); though lake levels in western Uganda do fluctuate. The relationship of Ugandan lakes to regional climate drivers breaks down c. 1800 AD, when major changes in the ecosystems appear to be a response to sediment and nutrient influxes as a result of increasing cultural impacts within the lake catchments. The data highlight the complexity of individual lake response to climate forcing, indicating shifting drivers through time. This research also highlights the importance of using multi-lake studies within a landscape to allow for rigorous testing of climate reconstructions, forcing and ecosystem response.

  6. One century sedimentary record of lead and zinc pollution in Yangzong Lake, a highland lake in southwestern China.

    PubMed

    Zhang, Enlou; Liu, Enfeng; Shen, Ji; Cao, Yanmin; Li, Yanling

    2012-01-01

    Reconstruction of trace metal pollution histories and sources may help us to regulate current pollutant discharge. This is especially important for the highland lakes in southwestern China, which are facing trace metals pollution. We present sedimentary records of 11 metals accumulated in Yangzong Lake since the 1870's, a highland lake in southwestern China. Pollution of lead and zinc (Pb and Zn) was differentiated based on principal component analysis, geochemical normalization, and lead isotope ratios. Nearly all the metals as well as grain size composition show generally constant values before the mid-1980's, denoting stable detrital input in the catchment. Fluctuations in the concentrations of the metals as well as grain size composition since the mid-1980's indicate an increase in soil erosion with strengthened human disturbance in the catchment. After geochemical normalization, Pb and Zn showed constant values before 1990 AD and then a gradual increase in parallel with the variations in 208Pb/206Pb and 207Pb/206Pb ratios, indicating that Pb and Zn pollution occurred. Combining the data of 208pb/206Pb and 207Pb/6Pb ratios in the sediments of Yangzong Lake, leaded gasoline, Pb-Zn ore and coal, and consumption or production historical trends, we deduced that the enhanced Pb and Zn pollution in Yangzong Lake is caused primarily by ore mining and refining.

  7. Coastal Lake Record of Holocene Paleo-Storms from Northwest Florida

    NASA Astrophysics Data System (ADS)

    Donoghue, J. F.; Coor, J. L.; Wang, Y.; Das, O.; Kish, S.; Elsner, J.; Hu, X. B.; Niedoroda, A. W.; Ye, M.

    2009-12-01

    The northwest Florida coast of the Gulf of Mexico has an unusually active storm history. Climate records for a study area in the mid-region of the Florida panhandle coast show that 29 hurricanes have made landfall within a 100-km radius during historic time. These events included 9 major storms (category 3 or higher). A longer-term geologic record of major storm impacts is essential for better understanding storm climatology and refining morphodynamic models. The Florida panhandle region contains a series of unique coastal lakes which are long-lived and whose bottom sediments hold a long-term record of coastal storm occurrence. The lakes are normally isolated from the open Gulf, protected behind a near-continuous dune barrier. Lake water is normally fresh to brackish. Lake bottom sediments consist of organic-rich muds. During major storms the dunes are breached and the lakes are temporarily open to marine water and the possibility of sandy overwash. Both a sedimentologic and geochemical signature is imparted to the lake sediments by storm events. Bottom sediment cores have been collected from the lakes. The cores have been subsampled and subjected to sedimentologic, stable isotopic and geochronologic analyses. The result is a sediment history of the lakes, and a record of storm occurrence during the past few millennia. The outcome is a better understanding of the long-term risk of major storms. The findings are being incorporated into a larger model designed to make reliable predictions of the effects of near-future climate change on natural coastal systems and on coastal infrastructure, and to enable cost-effective mitigation and adaptation strategies.

  8. Holocene Paleohydrology of the tropical andes from lake records

    SciTech Connect

    Abbott, M. B., LLNL

    1997-03-03

    Two century-scale time series in northern Bolivia constrain the ages of abrupt changes in the physical, geochemical, and biological characteristics of sediments obtained from lakes that formed during deglaciation from the late Pleistocene glacial maximum. The watersheds of Laguna Viscachani (16{degrees}12`S, 68{degrees}07`W, 3780m) and Lago Taypi Chaka Kkota (16{degrees}13`S, 68{degrees}21`W, 4300m), located on the eastern and western slopes of the Cordillera Real, respectively, contain small cirque glaciers. A high-resolution chronology of the lake sediments is provided by 23 AMS {sup 14}C dates of discrete macro-fossils. Late Pleistocene glaciers retreated rapidly, exposing the lake basins between 10,700 and 9700 {sup 14}C yr B.P. The sedimentary facies suggest that after 8900 {sup 14}C B.P. glaciers were absent from the watersheds and remained so during the middle Holocene. An increase in the precipitation-evaporation balance is indicated above unconformities dated to about 2300 {sup 14}C yr B.P. in both Lago Taypi Chaka Kkota and Laguna Viscachani. An abrupt increase in sediment accumulation rated after 1400 {sup 14}C yr B.P. signals the onset of Neoglaciation. A possible link exists between the observed millennial-scale shifts in the regional precipitation- evaporation balance and seasonal shifts in tropical insolation.

  9. Comparison of Offshore Turbidite records and Lake Disturbance Events at the Latitude of Seattle, Washington

    NASA Astrophysics Data System (ADS)

    Galer, S.; Goldfinger, C.; Morey, A. E.; Black, B.; Romsos, C.; Beeson, J. W.; Erhardt, M.

    2014-12-01

    We are investigating the paleoseismic history of northern Washington using offshore turbidite cores and lake sediments collected from forearc lakes along a transect from offshore to Seattle, Washington. Additional offshore cores, ash determinations and heavy mineral analysis flesh out the turbidite stratigraphy off northern Washington, and support 3-5 proximal turbidites in northern Washington canyons (see Adams, 1990) in addition to the 19 regionally correlated beds. Onshore, we have cored multiple lakes including (west to east) Beaver, Leland, Tarboo, Hall, Sawyer, and Wapato, east of the Cascades, and collected multibeam bathymetry, backscatter and chirp subbottom data. These lakes are small (2-113 ha), 6-18 m deep, and are all kettle lakes except Beaver Lake (landslide-dammed) and Wapato Lake, a glacial scour. These lakes were selected for their limited outside sediment sources and low sensitivity to ground shaking. The sedimentology is mostly organic-rich gyttja. All lakes contain the Mazama ash based on its similar depth occurrence in previously published cores and new EMP analysis. Computed Tomography (CT) density, gamma density, and magnetic susceptibility (ms) data show there is more stratigraphic variability than is visually apparent. Low-energy disturbance events are apparent in the stratigraphy of all lakes (except Hall) as increases in clastics, density, and ms. The number of post Mazama disturbance events is similar to the number of expected great earthquakes found offshore and onshore, though definition of the boundaries of the lake events is much less clear. Initial radiocarbon results and preliminary correlations along this 185 km transect show strong similarities in stratigraphic records between these cores over the past ~7600 years, anchored by the Mazama tephra. Preliminary comparisons with offshore cores show a striking similarity in downcore variability in physical properties. Given the evidence for earthquake origin for the offshore cores

  10. Lake sediment records of industrialization in the Sudbury area of Ontario, Canada

    SciTech Connect

    Huhn, F.J.

    1985-01-01

    The smelting of nickel and copper sulfide ores has drastically modified the original landscape around Sudbury, Ontario. A record of this impact exists in the sediments of local lakes. Changes in the annual fallout of heavy metals, identifiable smoke particulates, and pollen grains reflect the changes that occurred in the sedimentation rate and the vegetation. A year by year chronology for the last 300 years was provided by meromictic lake sediments containing countable seasonal laminations, obtained by a freezing technique that kept the sediments and sediment/water interface undisturbed. Results indicate that: correspondences of vegetation changes, and sedimentation rates with metal residues and smoke particulates in the sediments, and with published smelter records are good; annual laminations in meromictic lakes provided an excellent chronology, as checked against known dates for settlement and the onset of smelting; identifiable smoke particulates provided a good record of smelter activity, and were also a check on metal residue mobility in the sediments.

  11. Long Term Atmospheric and Erosional Pollution As Recorded in Lake Sediments from Yunnan, China

    NASA Astrophysics Data System (ADS)

    Hillman, A. L.; Abbott, M. B.; Yu, J.; Bain, D.; Chiou-Peng, T.

    2014-12-01

    Human activities including agriculture, metallurgy (e.g. mining, processing, smelting), and deforestation have altered cycles of erosion and sedimentation in lake environments for thousands of years. In the Yunnan province of southwestern China, where written records are incomplete, it is unclear when, where, and how much disturbance occurred. Lake sediments offer a means to investigate a wide variety of human activities. Here, we present a lake sediment record from Erhai (25°43'N, 100°12'E) based on trace metal concentrations that reveals substantial atmospheric and erosional pollution to the lake environment over the last 4,000 years. Sediments indicate the initiation of copper-based metallurgy at 3,600 years BP, the existence of which has been debated amongst archaeologists. Beginning 2,000 years BP, sedimentation rates increase and concentrations of metals such as aluminum, titanium, lead, and zinc increase. This is likely linked to increased sediment flux to the lake associated with the initiation of terraced agriculture according to historical documents. The most prominent feature of the record is an abrupt and intense increase in lead, silver, cadmium, and zinc beginning at 700 years BP. The peak of this increase occurs at 600 years BP and is consistent with historical records that the Mongols established the first government operated silver mine in Yunnan. Notably, the concentrations of lead during this time are an order of magnitude greater than modern day levels of pollution.

  12. Geological record of meltwater events at Qinghai Lake, China from the past 40 ka

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Liu, Taibei; Wang, Hao; An, Zhisheng; Cheng, Peng; Zhu, Yizhi; Burr, G. S.

    2016-10-01

    We report here on a previously unpublished sediment core from Qinghai Lake, China, that preserves a continuous record of sedimentation for the past 40 ka. A striking feature of the record is a set of distinct meltwater events recorded at 35, 19 and 14 ka respectively. These events are manifest as distinct pulses of relatively old organic radiocarbon in the sediments. We interpret these as a signal of glacial melting in the Qinghai Lake watershed. The meltwater signals are closely correlated to temperature and precipitation records associated with deglaciation. The events at 19 ka and 14 ka correspond to well-established high latitude Melt Water Pulse (MWP) events during Marine Isotope Stage (MIS) 2, and the 35 ka event corresponds to a period of pervasive high lake levels in western China during late MIS 3. We interpret these anomalous dates as the result of relatively old carbon that was destabilized by the glaciers, and released into the lake as the glaciers melted. The data indicate that this process takes thousands of years. We expect that the approach employed here to identify these events is generally applicable to any lake system with a significant glacial meltwater component.

  13. The Archeological Record at Bull Shoals Lake and Norfork Lake Arkansas and Missouri

    DTIC Science & Technology

    1993-06-01

    in the region are of importance. The earliest of these is the journal account of Henry Rowe Schoolcraft (Park 1955). In the winter of 1818 and 1819 he...the description offered by Henry Schoolcraft of the view he and his companions had from the top of a commanding precipice which overlooked the valley...in 1818 and 1819 by Henry R. Schoolcraft . Press-Argus Printers, Van Buren, Arkansas Project Map of Norfork Lake n.d Project Tract Map of Norfork Lake

  14. Human Impact on Biogeochemical Cycles and Deposition Dynamics in Karstic Lakes: El Tobar Lake Record (Central Iberian Range, Spain)

    NASA Astrophysics Data System (ADS)

    Barreiro-Lostres, F.; Moreno-Caballud, A.; Giralt, S.; Hillman, A. L.; Brown, E. T.; Abbott, M. B.; Valero-Garces, B. L.

    2014-12-01

    Karstic lakes in the Iberian Range (Central Spain) provide a unique opportunity to test the human impact in the watersheds and the aquatic environments during historical times. We reconstruct the depositional evolution and the changes in biogeochemical cycles of El Tobar karstic lake, evaluating the response and the resilience of this Mediterranean ecosystem to both anthropogenic impacts and climate forcing during the last 1000 years. Lake El Tobar (40°32'N, 3°56'W; 1200 m a.s.l.; see Figure), 16 ha surface area, 20 m max. depth and permanent meromictic conditions, has a relatively large watershed (1080 ha). Five 8 m long sediment cores and short gravity cores where recovered, imaged, logged with a Geotek, described and sampled for geochemical analyses (elemental TOC, TIC, TN, TS), XRF scanner and ICP-MS, and dated (137Cs and 10 14C assays). The record is a combination of: i) laminated dark silts with terrestrial remains and diatoms and ii) massive to banded light silts (mm to cm -thick layers) interpreted as flood deposits. Sediments, TOC, and Br/Ti and Sr/Ca ratios identify four periods of increased sediment delivery occurred about 1500, 1800, 1850 and 1900 AD, coinciding with large land uses changes of regional relevance such as land clearing and increased population. Two main hydrological changes are clearly recorded in El Tobar sequence. The first one, marked by a sharp decrease in Mg, Ca and Si concentrations, took place about 1200 AD, and during a period of increasing lake level, which shifted from shallower to deeper facies and from carbonatic to clastic and organic-rich deposition. This change was likely related to increased water availability synchronous to the transition from the Medieval Climate Anomaly to the Little Ice Age. The second one was a canal construction in 1967 AD when a nearby reservoir provided fresh water influx to the lake, and resulted in stronger meromictic conditions in the system after canal construction, which is marked by lower

  15. Sedimentary record of the 1872 earthquake and "Tsunami" at Owens Lake, southeast California

    USGS Publications Warehouse

    Smoot, J.P.; Litwin, R.J.; Bischoff, J.L.; Lund, S.J.

    2000-01-01

    In 1872, a magnitude 7.5-7.7 earthquake vertically offset the Owens Valley fault by more than a meter. An eyewitness reported a large wave on the surface of Owens Lake, presumably initiated by the earthquake. Physical evidence of this event is found in cores and trenches from Owens Lake, including soft-sediment deformation and fault offsets. A graded pebbly sand truncates these features, possibly over most of the lake floor, reflecting the "tsunami" wave. Confirmation of the timing of the event is provided by abnormally high lead concentrations in the sediment immediately above and below these proposed earthquake deposits derived from lead-smelting plants that operated near the eastern lake margin from 1869-1876. The bottom velocity in the deepest part of the lake needed to transport the coarsest grain sizes in the graded pebbly sand provides an estimate of the minimum initial 'tsunami' wave height at 37 cm. This is less than the wave height calculated from long-wave numerical models (about 55 cm) using average fault displacement during the earthquake. Two other graded sand deposits associated with soft-sediment deformation in the Owens Lake record are less than 3000 years old, and are interpreted as evidence of older earthquake and tsunami events. Offsets of the Owens Valley fault elsewhere in the valley indicate that at least two additional large earthquakes occurred during the Holocene, which is consistent with our observations in this lacustrine record.

  16. Changes in winter air temperatures near Lake Michigan, 1851-1993, as determined from regional lake-ice records

    USGS Publications Warehouse

    Assel, R.A.; Robertson, Dale M.

    1995-01-01

    Records of freezeup and breakup dates for Grand Traverse Bay, Michigan, and Lake Mendota, Wisconsin, are among the longest ice records available near the Great Lakes, beginning in 185 1 and 1855, respectively. The timing of freezeup and breakup results from an integration of meteorological conditions (primarily air temperature) that occur before these events. Changes in the average timing of these ice-events are translated into changes in air temperature by the use of empirical and process-driven models. The timing of freezeup and breakup at the two locations represents an integration of air temperatures over slightly different seasons (months). Records from both locations indicate that the early winter period before about 1890 was - 15°C cooler than the early winter period after that time; the mean temperature has, however, remained relatively constant since about 1890. Changes in breakup dates demonstrate a similar 1.0-1 .5”C increase in late winter and early spring air temperatures about 1890. More recent average breakup dates at both locations have been earlier than during 1890-1940, indicating an additional warming of 1.2”C in March since about 1940 and a warming of 1 . 1°C in January-March since about 1980. Ice records at these sites will continue to provide an early indication of the anticipated climatic warming, not only because of the large response of ice cover to small changes in air temperature but also because these records integrate climatic conditions during the seasons (winter-spring) when most warming is forecast to occur. Future reductions in ice cover may strongly affect the winter ecology of the Great Lakes by reducing the stable environment required by various levels of the food chain. 

  17. Reinvestigating Three Paleo Lake Records in the Middle East using new Model Results

    NASA Astrophysics Data System (ADS)

    Reuter, J. M.; Stott, L. D.; Buenning, N. H.; Yoshimura, K.

    2013-12-01

    Here we present a reinterpretation of three oxygen isotope records from three Middle Eastern Lakes (Zeribar, Van and Eski Acigo). These lake isotope records were interpreted previously to document changes in the precipitation-to-evaporation ratio (Eski and Van) and varying seasonality of precipitation over the lake (Zeribar). These differing interpretations are a consequence of inadequate constraints on atmospheric dynamics that influence isotopic variability in the water cycle of the Middle East. We present new isotope-enabled atmospheric model results that provide a more comprehensive view of each of the potential influences that affected these lake records. Currently the Middle East exhibits a highly seasonal precipitation cycle with the bulk of the rainfall occurring during the winter months. The yearly isotopic composition of rainfall exhibits a seasonal cycle as well with decreased values during the winter and higher isotopic values in both fall and spring. We conducted two model simulations with the Isotope-incorporated Global Spectral Model (IsoGSM): 1) with present-day conditions and 2) with mid-Holocene conditions. For the mid-Holocene simulations changes were made to the surface forcing, orbital parameters and greenhouse gas concentrations. These results show that the annual averaged oxygen isotopes in precipitation 6000 years ago were depleted on the order of 1 to 3‰ compared to present day. The model results are consistent with the published lake core records. However, the shift in isotopic composition of precipitation results from the combined influences of orbital changes, the changes in green house gases and surface forcings. We have evaluated the relative contribution of each of the forcings and present a re-interpretation of the Middle Eastern lake records.

  18. Developing the Late Quaternary Record of Pluvial Lake Clover, Northern Great Basin, U.S.A

    NASA Astrophysics Data System (ADS)

    Laabs, B. J.; Munroe, J. S.

    2009-12-01

    Lake Clover was one of numerous closed-basin pluvial lakes that formed in the northern Great Basin during the Pleistocene. The geomorphic record of the lake includes continuous shoreline ridges and spits at altitudes of as much as 25 m above the modern playa surface. The history of Lake Clover is poorly known compared to those of the larger lakes Lahontan and Bonneville, but can provide a useful framework for understanding regional-scale environmental changes during the latest Pleistocene. Shoreline ridges of Lake Clover are preserved at altitudes of ca. 1729, 1725, 1719, and 1715 m asl, which correspond to intervals when the lake attained a surface area of 788, 726, 618, and 524 km2, respectively. Although the chronology of highstands at these altitudes is still being developed (through radiocarbon and luminescence-dating methods), the morphology and orientations of prominent shoreline features provide clues to regional air-circulation patterns during highstands. The highest shoreline is represented by a gravel ridge that can be traced nearly continuously around the perimeter of the lake basin. The ridge is uniformly developed along shorelines of differing aspect, suggesting that the wind field during the ice-free season was not dominated by a single direction. Along the eastern and western shores of the basin, the lower shorelines are manifested by a similar gravel ridge. However, in other sectors of the basin, features associated with progressively lower shorelines reveal an increasing dominance of northward longshore drift. The most dramatic features correspond with the 1719 m shoreline and include 1) a pronounced V-shaped, northward projecting spit at the southern end of the basin, 2) a 3-km long spit projecting to the north-northwest along the northeastern shoreline, and 3) a tombolo connecting a former island to the northern shore. Together these features suggest that dominant wind directions became more southerly during the ice-free season when the lake

  19. First records of a European cladoceran, Bythotrephes cederstroemi, in Lakes Erie and Huron

    USGS Publications Warehouse

    Bur, Michael T.; Klarer, David M.; Krieger, Kenneth A.

    1986-01-01

    Adult forms of the cladoceran Bythotrephes cederstroemi Schoedler (Cercopagidae), a widespread European freshwater zooplankter, occurred in the stomachs of four common species of Lake Erie fish (yellow perch, Perca flavescens; white perch, Morone americana; white bass, M. chrysops; and walleye, Stizostedion vitreum vitreum) collected in early October 1985. The fish were collected at several stations in the nearshore open waters of the central basin between Ashtabula and Huron, Ohio. Other investigators have seen this species in other locations in Lake Erie and also in Lake Huron. The report of B. cederstroemi in Lake Huron in December 1984 appears to be the first record of this species in North America.

  20. Lake sediments as systematic recorders of seismic shaking: potential and limitations

    NASA Astrophysics Data System (ADS)

    Moernaut, Jasper; Van Daele, Maarten; Strasser, Michael; De Batist, Marc

    2013-04-01

    Instrumental and written records of past earthquakes generally do not extend further back in time than a few hundred years. This is often insufficient to provide reliable information on earthquake recurrence patterns, information that is indispensable for a reliable seismic hazard assessment. Seismically-induced sedimentary features have been found in many lake records worldwide. This encompasses features created during and shortly after the earthquake such as in-situ deformations, liquefaction features, sublacustrine landslides, turbidites and subaerial landslides which propagated into the lake. Also, sedimentary imprints of long-term postseismic effects can be present, such as increased sedimentation rates, outburst floods, changes in water level and chemistry, etc. Up to now, only few comparative studies have been conducted to determine in which ways and how reliably lacustrine sediment sequences can register strong seismic shaking. Therefore, effectively quantifing paleo-earthquake parameters such as magnitude, rupture type and location based on lacustrine sedimentary archives remains a challenging task. Here, we present a comparative overview of relatively recent studies on earthquake-induced sedimentary features in different types of modern lakes in different tectonic settings and discuss the criteria used to single out earthquake shaking as their causative mechanism. Landslide records in Switzerland and turbidite records in Chile and Japan pointed out that the occurrence and/or scale of subaquatic slope failures can correlate with seismic intensity. It also seems that the continuity and type of the paleoseismic record is strongly dependent on lithology, sedimentation rate and slope morphology within the lake basins. Especially in settings with high frequency of strong earthquakes, this can lead to an underrepresentation of paleoseismic events in the records. However, for lake systems which exhibit ideal characteristics, a single coring site can be sufficient

  1. Ecosystem regimes and responses in a coupled ancient lake system from MIS 5b to present: the diatom record of lakes Ohrid and Prespa

    NASA Astrophysics Data System (ADS)

    Cvetkoska, A.; Jovanovska, E.; Francke, A.; Tofilovska, S.; Vogel, H.; Levkov, Z.; Donders, T. H.; Wagner, B.; Wagner-Cremer, F.

    2015-09-01

    In order to understand the panarchy and interactions since the last interglacial period in the oldest, most diverse and hydrologically connected European lake system, we assess changes in the diatom record and selected geochemistry data from Lake Ohrid's "DEEP site" core and compare it with the diatom and multi-proxy data from Lake Prespa core Co1215. Driven by climate forcing, tephra impact and/or human influence, the lakes experienced two adaptive cycles during the last 92 ka: "interglacial and interstadial-regime" and "glacial-regime". The patterns of regime shifts appear synchronous in both lakes, while differences occur in the inferred amplitudes of the variations. The deeper Lake Ohrid shifted between ultraoligo- and oligotrophic regimes in contrast to the more shallow Lake Prespa, which shifts from (oligo-) mesotrophic to eutrophic conditions. In response to external forcing, Lake Ohrid exhibits a high capacity to buffer disturbances, whereas Lake Prespa is much more resilient and "recovers" in relatively short time. This decoupling of the response is evident during the MIS 5/4 and 2/1 transitions, when Lake Ohrid displays prolonged and gradual changes. The lakes' specific differences in the response and feedback mechanisms and their different physical and chemical properties, probably confine a direct influence of Lake Prespa's shallow/eutrophic regimes over the productivity regimes of Lake Ohrid. Regime shifts of Lake Ohrid due to the hydrological connectivity with Lake Prespa are not evident in the data presented here. Moreover, complete ecological collapse did not happened in both lakes for the period presented in the study.

  2. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed – Lake exchange

    USGS Publications Warehouse

    Odigie, Kingsley; Cohen, A.D.; Swarzenski, Peter W.; Flegal, R

    2014-01-01

    Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p < 0.05) between the fluxes of Co, Cu, Mn, Ni, Pb, and Zn and those of iron (Fe) at both sites, (ii) positive correlations (r = 0.82–0.98, p < 0.01, n = 9) between the fluxes of elements (Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and the mass accumulation rates at the offshore site, (iii) the low enrichment factors (EF < 5) of those trace elements, and (iv) the temporal consistencies of the isotopic composition of Pb in the sediment. These measurements indicate that accelerated weathering, rather than industrialization, accounts for most of the increases in trace element fluxes to Lake Tanganyika in spite of the development of mining and smelting operations within the lake’s watershed over the past century. The data also indicate that the mid-lake site is a much more sensitive and useful recorder of environmental changes than the nearshore site. Furthermore, the lead isotopic compositions

  3. Uranium-series dating of sediments from searles lake: differences between continental and marine climate records.

    PubMed

    Bischoff, J L; Rosenbauer, R J; Smith, G I

    1985-03-08

    One of the major unresolved questions in Pleistocene paleoclimatology has been whether continental climatic transitions are consistent with the glacial delta(18)O marine record. Searles Lake in California, now a dry salt pan, is underlain by sediment layers deposited in a succession of lakes whose levels and salinities have fluctuated in response to changes in climate over the last 3 x 10(6) years. Uraniumseries dates on the salt beds range from 35 x 10(3) to 231x 10(3) years. This range of dates allows identification of lake-sediment horizons that are time correlatives of the boundaries of marine isotope stages from the recent 3/4 boundary back to the 8/9 boundary. The 5/6 boundary coincided with a deepening of the lake, but the analogous 1/2 boundary coincided with desiccation. The 3/4, 4/5, 6/7, 7/8, and 8/9 boundaries correspond in age to horizons that record little or no change in sedimentation or climate. These hydrologic results demonstrate that the continental paleoclimate record at this mid-latitude site does not mimic the marine record.

  4. Uranium-series dating of sediments from Searles Lake: Differences between continental and marine climate records

    USGS Publications Warehouse

    Bischoff, J.L.; Rosenbauer, R.J.; Smith, G.I.

    1985-01-01

    One of the major unresolved questions in Pleistocene paleoclimatology has been whether continental climatic transitions are consistent with the glacial ??18O marine record. Searles Lake in California, now a dry salt pan, is underlain by sediment layers deposited in a succession of lakes whose levels and salinities have fluctuated in response to changes in climate over the last 3 ?? 106 years. Uranium-series dates on the salt beds range from 35 ?? 103 to 231 ?? 103 years. This range of dates allows identification of lake-sediment horizons that are time correlatives of the boundaries of marine isotope stages from the recent 3/4 boundary back to the 8/9 boundary. The 5/6 boundary coincided with a deepening of the lake, but the analogous 1/2 boundary coincided with desiccation. The 3/4, 4/5, 6/7, 7/8, and 8/9 boundaries correspond in age to horizons that record little or no change in sedimentation or climate. These hydrologic results demonstrate that the continental paleoclimate record at this mid-latitude site does not mimic the marine record.

  5. The seismic stratigraphy of Okanagan Lake, British Columbia; a record of rapid deglaciation in a deep 'fiord-lake' basin

    NASA Astrophysics Data System (ADS)

    Eyles, Nicholas; Mullins, Henry T.; Hine, Albert C.

    1991-09-01

    This paper presents the first detailed data regarding the newly discovered deep infill of Okanagan Lake. Okanagan Lake (50°00'N, 119°30'W) is 120 km long, ˜ 3-5 km wide and occupies a glacially overdeepened bedrock basin in the southern interior of British Columbia. This basin, and other elongate lakes of the region (e.g. Shuswap, Kootenay, Kalamalka, Canim and Mahood lakes), mark the site of westward flowing ice streams within successive Cordilleran ice sheets. An air gun seismic survey of Okanagan Lake shows that the bedrock floor is nearly 650 m below sea-level, more than 2000 m below the rim of the surrounding plateau. The maximum thickness of Pleistocene sediment in Okanagan Lake basin approaches 800 m. Forty-six seismic reflection traverses and an axial profile show a relatively simple stratigraphy composed of three seismic sequences argued to be no older than the last glacial cycle (< 30 ka). A discontinuous basal unit (sequence I) characterized by large-scale diffractions, and up to 460 m thick, infills the narrow, V-shaped bedrock floor of the basin and is interpreted as a boulder gravel deposited by subglacial meltwaters. Overlying seismic sequence II is composed of two sub-sequences. Sub-sequence IIa is a chaotic to massive facies up to 736 m thick. Lakeshore exposures close to where this unit reaches lake level show deformed and chaotically-bedded glaciolacustrine silts containing gravel lens and large ice-rafted boulders. The surface topography of this sub-sequence is irregular and in general mimics the form of the underlying bedrock as a result of compaction. This sequence passes laterally into stratified facies (sub-sequence IIb) at the northern end of the basin. Seismic sequence II appears to record rapid ice-proximal dumping of glaciolacustrine silt as the Okanagan glacier backwasted upvalley in a deep lake. A thin (60 m max.) laminated seismic sequence (III) drapes the hummocky surface of sequence II and represents postglacial sedimentation

  6. Developing a Holocene storm record for lakes in the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Sean; Howarth, Jamie

    2016-04-01

    Modelling the likely impacts of climate change on the hydrological cycle has led numerous researchers to suggest that change is likely to be characterised by significant modification of the magnitude and frequency of extreme events. However, understanding the characteristics of extreme hydrological events requires records of the magnitude and frequency of events on centennial and millennial timescales, which are not available from instrumental records of climate and river flow. Recent research has shown that abyssal lake sediments have the potential to yield continuous records of floods in the form of turbidites that record the delivery of coarse-grained sediments into lakes during energetic river flows. In this paper we describe the development of a flood stratigraphy for South Lake Mavora, a small (1.23 km2) moraine and outwash sediment-dammed lake in western Southland. The sediments of the lake were sampled using a Mackereth corer capable of retrieving continuous cores 50mm in diameter and up to 6m long. Two 6m-long cores were retrieved from the deepest part of basins and seven 1m-long cores adjacent to the longer cores and in a transect from the deepest part of the basin to a fan-delta on the western side of the lake. The age model for the sediments is based on 28 14C dates from a single core. The lake sediments are predominantly planar-bedded hemipelagic fine and medium silts with individual layers between <1mm and 300mm thick. The hemipelagic sediments are interrupted by three types of rapidly-deposited layers (RDL's). Type 1 RDL's are beds of deformed lacustrine sediment which we interpret as the products of subaqueous mass movements. Type 2 RDL's are 2-200mm-thick beds of normally graded coarse to medium silt capped by thin fine silt layers. They overlie type 1 RDL's and are interpreted as turbidity currently generated by the underlying subaqueous mass movements. Type 3 RDL's consist 1mm to 30mm-thick beds of very fine sandy silt that grade into fine silt

  7. A CHRONOLOGICAL FRAMEWORK FOR THE HOLOCENE VEGETATIONAL HISTORY OF CENTRAL MINNESOTA: THE STEEL LAKE POLLEN RECORD

    SciTech Connect

    Wright, H E; Stefanova, I; Tian, J; Brown, T A; Hu, F S

    2003-11-10

    Paleorecords from Minnesota and adjacent areas have often been used to evaluate large-scale climatic processes in the mid-continent of North America. However, most of these records are compromised by chronological flaws, making problematic any comparisons with climatic interpretations based on other records (e.g., GISP2 in Greenland). We report here a high-resolution pollen record with a secure chronology constrained by 26 {sup 14}C dates on terrestrial macrofossils from Steel Lake, central Minnesota. About 11,200 years ago (calibrated yr BP) the late-glacial Picea forest near Steel Lake was succeeded abruptly by Pinus banksiana and/or resinosa. The Pinus forest began to open 9.4 ka cal BP with the expansion of prairie taxa, and a pine parkland or savanna prevailed until about 8 ka cal BP, when Quercus replaced Pinus to become the dominant tree in the prairie areas for 4500 years. The close chronological control permits the correlation of key vegetational changes with those at other reliably dated sites in the eastern Dakotas and in Minnesota, suggesting that the abrupt decline of the spruce forest was time-transgressive from southwest to northeast during 2000 years, and that the development of prairie was time-transgressive in the same direction over 2600 years. Correlation of key pollen horizons at Steel Lake with those in the high-resolution pollen profiles of Elk Lake, ca. 50 km northwest of Steel Lake, suggests that the well-known Elk Lake varve chronology for the early Holocene is about 1000 years too young.

  8. Lake sedimentary DNA accurately records 20(th) Century introductions of exotic conifers in Scotland.

    PubMed

    Sjögren, Per; Edwards, Mary E; Gielly, Ludovic; Langdon, Catherine T; Croudace, Ian W; Merkel, Marie Kristine Føreid; Fonville, Thierry; Alsos, Inger Greve

    2017-01-01

    Sedimentary DNA (sedDNA) has recently emerged as a new proxy for reconstructing past vegetation, but its taphonomy, source area and representation biases need better assessment. We investigated how sedDNA in recent sediments of two small Scottish lakes reflects a major vegetation change, using well-documented 20(th) Century plantations of exotic conifers as an experimental system. We used next-generation sequencing to barcode sedDNA retrieved from subrecent lake sediments. For comparison, pollen was analysed from the same samples. The sedDNA record contains 73 taxa (mainly genus or species), all but one of which are present in the study area. Pollen and sedDNA shared 35% of taxa, which partly reflects a difference in source area. More aquatic taxa were recorded in sedDNA, whereas taxa assumed to be of regional rather than local origin were recorded only as pollen. The chronology of the sediments and planting records are well aligned, and sedDNA of exotic conifers appears in high quantities with the establishment of plantations around the lakes. SedDNA recorded other changes in local vegetation that accompanied afforestation. There were no signs of DNA leaching in the sediments or DNA originating from pollen.

  9. Demarcation of Typhoon-induced Sedimentary Layers from Lake Records in Southeast China

    NASA Astrophysics Data System (ADS)

    Kandasamy, Selvaraj; Lin, Baozhi; Wang, Huawei; Liu, Qianqian; Lou, Jiann-Yuh; Liu, Zhifei; Chen, Chen-Tung Arthur

    2016-04-01

    Understanding the frequency and cyclicity of extreme events such as tropical storms, heat waves, floods and droughts in monsoon-governed Asia is crucial for the adaptation and mitigation of climate-driven troubles and post-event consequences. Such studies are also critical for the development of future climate-related policies, given that the loss of life and properties during such events in Asia are always many-folds higher than that of the effect of similar disasters in the developed world. Lakes located along the path of typhoons in East Asia may preserve an evidence of storm intensity, because an increased erosion in the confined catchment may increase the clastic sedimentation. Here we investigate ca. 90 cm-long sediment core retrieved from Tian Lake, a coastal island lake located off SE China, for sedimentological, radiometric and geochemical parameters, aiming to reconstruct the effect of past typhoons on the sedimentation history of the lake. We found 4-5 sand-dominated layers in between the regular fine sediments deposition and these sand layers show a close consistency with periods of intense typhoons in the instrumental record. Although the instrumental record suggests an average of 16 typhoons/year in the western North Pacific, the preservation of only 4-5 sand-dominated layers during the last ca. 100 years of accumulation in our core indicates that the sedimentation pattern in Tian Lake may be very sensitive to intense typhoons with category 3 and above. This study will attempt to compare our lacustrine records with the suitable instrumental and other proxy records for understanding mechanisms responsible for intense typhoons and related environmental changes in SE China in the past century.

  10. Calibration of biological lake sediment records: Tracing diatom assemblages through the water column into the sediment

    NASA Astrophysics Data System (ADS)

    Maier, Dominique; Gälman, Veronika; Bigler, Christian; Renberg, Ingemar

    2013-04-01

    Paleolimnological studies rely on sediment cores taken from the deepest point of a lake. The deposited sediment and its embedded biological record are expected to be chronological and to display the lakes ecological past. Therefore many studies use micropalaeontological approaches, since, e. g., unicellular organisms like diatoms are directly dependent on habitat changes and thus mirror the prevailing weather conditions. In this study we combine a set of diatom samples from freeze cores of a varved sediment, a sediment trap and bi-weekly plankton survey data with environmental data to calibrate the biological sediment record of a lake. The annually laminated sediment of the boreal forest lake Nylandssjön in northern Sweden provides a very high temporal resolution, which allows us, even on a seasonal scale, a gapless comparison between in situ production and the sediment deposition. Analysis of the diatom assemblages through the water column into the sediment is expected to reveal quantitative and qualitative miss match in deposition, resuspension, seasonal and interannual delays caused by physical events or autochtonous interactions such as grazing in the water column. The overall comparison of the ten year plankton net record and the corresponding sediment trap samples reveals large shifts from season to season but also from year to year. The sediment trap diatom record indicates comparable abundance patterns for the main taxa (Asterionella formosa and Tabellaria flocculosa). Peaks and seasonal shifts are less pronounced in the sediment trap compared to the plankton data. An overall difficulty lies in the comparison of volumes of water and sediment, concentrations and fluxes, which needs to be solved. However, subsequent comparison with the sediment diatom assemblage is expected to lead us to understand interannual taphonomic processes affecting diatom records within ten years in the naturally formed sediment layers. More importantly we will be able to discover

  11. A 600,000 year long continental pollen record from Lake Van, eastern Turkey

    NASA Astrophysics Data System (ADS)

    Litt, T.; Pickarski, N.; Heumann, G.

    2014-12-01

    Lake Van is the fourth largest terminal lake in the world (38.5°N, 43 °E, volume 607 km3, area 3570 km2, maximum water depth 460 m), extending for 130 km WSW-ENE on the Eastern Anatolian High Plateau, Turkey. The sedimentary record of Lake Van, partly laminated, obtains a long and continuous continental sequence that covers multiple interglacial-glacial cycles. Promoted by the potential of the sedimentary sequence for reconstructing the paleoecological and paleoclimate development of the Near East, a deep drilling operation was carried out in 2010 supported by the International Continental Scientific Drilling Program (ICDP). The 119 m long continental record is based on a well-dated composite profile drilled on the so-called Ahlat Ridge in water depth of 360 m encompassing the last 600,000 years. It contains the longest continuous continental pollen record of the Quaternary in the entire Near East and central Asia obtained to date. It documents glacial and interglacial stages as well as pronounced interstadials encompassing the entire 600 ka of the sedimentary record. The cold-adapted vegetation in the Lake Van region during glacial stages and stadial substages can be described as dwarf-shrub steppe and desert steppe very similar to each other. The climax vegetation of the interglacial stages in the Lake Van region is characterized by an oak steppe-forest with pistachio and juniper. It is interesting to note that, in contrast to the atmospheric CO2 concentration from Antarctic ice cores or marine isotope values based on benthic foraminifera, there is no clear subdivision in the Lake Van pollen record between low-amplitude interglacials (cooler cycles) prior the mid-Brunhes event (MBE) at 430 ka and high-amplitude, post MBE interglacials. Lower CO2 concentrations in the atmosphere might be compensated by stronger insolation forcing during Marine Isotope Stages (MIS) 13a and 15a. A similar pattern can be observed during the triplicate interglacial complex MIS 7

  12. Reconstruction of Prehistoric Landfall Frequencies of Catastrophic Hurricanes in Northwestern Florida from Lake Sediment Records

    NASA Astrophysics Data System (ADS)

    Liu, Kam-biu; Fearn, Miriam L.

    2000-09-01

    Sediment cores from Western Lake provide a 7000-yr record of coastal environmental changes and catastrophic hurricane landfalls along the Gulf Coast of the Florida Panhandle. Using Hurricane Opal as a modern analog, we infer that overwash sand layers occurring near the center of the lake were caused by catastrophic hurricanes of category 4 or 5 intensity. Few catastrophic hurricanes struck the Western Lake area during two quiescent periods 3400-5000 and 0-1000 14C yr B.P. The landfall probabilities increased dramatically to ca. 0.5% per yr during an "hyperactive" period from 1000-3400 14C yr B.P., especially in the first millennium A.D. The millennial-scale variability in catastrophic hurricane landfalls along the Gulf Coast is probably controlled by shifts in the position of the jet stream and the Bermuda High.

  13. Holocene carbonate record of Lake Kivu reflects the history of hydrothermal activity.

    PubMed

    Votava, Jillian E; Johnson, Thomas C; Hecky, Robert E

    2017-01-10

    The sediment record of Lake Kivu reveals a complex volcanogenic and climatic Holocene history. Investigation of the inorganic carbonate record dates the onset of carbonate deposition in the mid-Holocene in Kivu's deep northern and eastern basins and identifies conditions enabling deposition. The magnitude and timing of carbonate-rich sedimentation is not so much controlled by climate but, instead, linked strongly to hydrothermal activity in the basin. Sublacustrine springs supply the vast majority of the calcium and carbonate ions required for supersaturation with respect to aragonite. This major hydrothermal activity that permanently stratifies Lake Kivu today was initiated ∼3,100 y before present (3.1 ka), when carbonate-rich sediments first appeared in the Holocene record. Aragonite is the dominant CaCO3 mineral present in the lake deposits. Both δ(13)C and δ(18)O of the aragonite are enriched above the expected kinetic fractionation of meteoric waters, suggesting a volcanogenic influence on the formation waters. Repeated major fluctuations in the carbonate record after 3.1 ka therefore most likely reflect the historical variation in hydrothermal inputs.

  14. Holocene carbonate record of Lake Kivu reflects the history of hydrothermal activity

    NASA Astrophysics Data System (ADS)

    Votava, Jillian E.; Johnson, Thomas C.; Hecky, Robert E.

    2017-01-01

    The sediment record of Lake Kivu reveals a complex volcanogenic and climatic Holocene history. Investigation of the inorganic carbonate record dates the onset of carbonate deposition in the mid-Holocene in Kivu’s deep northern and eastern basins and identifies conditions enabling deposition. The magnitude and timing of carbonate-rich sedimentation is not so much controlled by climate but, instead, linked strongly to hydrothermal activity in the basin. Sublacustrine springs supply the vast majority of the calcium and carbonate ions required for supersaturation with respect to aragonite. This major hydrothermal activity that permanently stratifies Lake Kivu today was initiated ˜3,100 y before present (3.1 ka), when carbonate-rich sediments first appeared in the Holocene record. Aragonite is the dominant CaCO3 mineral present in the lake deposits. Both δ13C and δ18O of the aragonite are enriched above the expected kinetic fractionation of meteoric waters, suggesting a volcanogenic influence on the formation waters. Repeated major fluctuations in the carbonate record after 3.1 ka therefore most likely reflect the historical variation in hydrothermal inputs.

  15. A Lake Sediment Record of Climate Change and Human-Environment Interactions in Southwestern China

    NASA Astrophysics Data System (ADS)

    Hillman, A.; Abbott, M.; Yu, J.; Steinman, B. A.

    2012-12-01

    The delivery of precipitation to southwestern China is largely through monsoon circulation which has evolved with changing insolation during the Holocene. Additionally, southwestern China has a long history of human activity including mining, metallurgy, agriculture, and pollution. Here, high-resolution sampling of a sediment core from Lake Xing Yun in the Yunnan Province (24°10'N, 102°46'E), a drought sensitive lake that behaves as a closed basin system, provides a sub-decadal record of changing climate and human activity in the late Holocene. We use δ18O and δ13C measurements of authigenic carbonate precipitated from the lake water, magnetic susceptibility values, and hydrologic mass balance models to document the timing, direction, and magnitude of moisture changes associated with variations in monsoon strength. We also use δ13C and δ15N measurements on organic matter, carbon to nitrogen ratios, and sediment trace metal concentrations to assess the impact of human activity on the Xing Yun watershed. The 2,500 year record highlights several transition periods related to both human and climate forcing. The rise of intensive irrigation of the lake associated with agriculture occurs at 900 AD, coincident with the rise of metallurgy and mining activities. The period from 1200 to 1360 AD is marked by an abrupt decrease in δ18O values indicating that lake-level rose at this time. We attribute this to a shifting demographic change associated with political upheaval, which is supported by the leveling off of trace metal concentrations and the stagnation of metallurgy and mining activities. The most pronounced feature of the record is a rapid transition to substantially lower lake levels that persisted from 1360-1850 AD. This can be attributed to the return of dramatic human modification to the watershed and changing monsoon strength associated with the Little Ice Age. Using hydrologic mass balance models we are able to quantify the change that can be ascribed to

  16. A 60-year sedimentary record of natural and anthropogenic impacts on Lake Chenghai, China.

    PubMed

    Zan, Fengyu; Huo, Shouliang; Xi, Beidou; Zhang, Jingtian; Liao, Haiqing; Wang, Yue; Yeager, Kevin M

    2012-01-01

    Recent sediments from Lake Chenghai, China, were investigated at high temporal resolution to trace both natural and anthropogenic effects on the lake using total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), organic phosphorus (Po), inorganic phosphorus (Pi) and organic carbon and nitrogen stable isotopes (delta13Corg and delta15N) in a 137Cs-dated sediment core. The results indicated that the sedimentary record covers the last 60 years, during which the lake had undergone apparent changes in nutrient sources and productivity in response to nutrient loading. Prior to the late 1980s, the nutrient contents in sediments mainly originated from algae and lake productivity was relatively stable. Since the late 1980s, increasing TOC, TN and TP concentrations together with the change of delta13Corg and delta15N suggested anthropogenic perturbations in nutrient loading and lake productivity. Endogenic nutrients derived from algae and anthropogenic inputs were two important sources of sedimentary nutrients. The anthropogenic nutrients mainly originated from the discharge of industrial wastewater and artificial cultivation of Spirulina after the middle 1980s, and domestic wastewater discharged from Yongsheng County since 1993.

  17. A Holocene pollen record of persistent droughts from Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Mensing, S.A.; Benson, L.V.; Kashgarian, Michaele; Lund, S.

    2004-01-01

    Pollen and algae microfossils preserved in sediments from Pyramid Lake, Nevada, provide evidence for periods of persistent drought during the Holocene age. We analyzed one hundred nineteen 1-cm-thick samples for pollen and algae from a set of cores that span the past 7630 years. The early middle Holocene, 7600 to 6300 cal yr B.P., was found to be the driest period, although it included one short but intense wet phase. We suggest that Lake Tahoe was below its rim for most of this period, greatly reducing the volume and depth of Pyramid Lake. Middle Holocene aridity eased between 5000 and 3500 cal yr B.P. and climate became variable with distinct wet and dry phases. Lake Tahoe probably spilled intermittently during this time. No core was recovered that represented the period between 3500 and 2600 cal yr B.P. The past 2500 years appear to have had recurrent persistent droughts. The timing and magnitude of droughts identified in the pollen record compares favorably with previously published ??18O data from Pyramid Lake. The timing of these droughts also agrees with the ages of submerged rooted stumps in the Eastern Sierra Nevada and woodrat midden data from central Nevada. Prolonged drought episodes appear to correspond with the timing of ice drift minima (solar maxima) identified from North Atlantic marine sediments, suggesting that changes in solar irradiance may be a possible mechanism influencing century-scale drought in the western Great Basin. ?? 2004 University of Washington. All rights reserved.

  18. Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland)

    NASA Astrophysics Data System (ADS)

    Wulf, Sabine; Dräger, Nadine; Ott, Florian; Serb, Johanna; Appelt, Oona; Guðmundsdóttir, Esther; van den Bogaard, Christel; Słowiński, Michał; Błaszkiewicz, Mirosław; Brauer, Achim

    2016-01-01

    A detailed Holocene tephrostratigraphic framework has been developed for two predominately varved lake sediment sequences from NE Germany (Lake Tiefer See) and central N Poland (Lake Czechowskie). A total of thirteen tephras and cryptotephras of Icelandic provenance were detected and chemically fingerprinted in order to define correlatives and to integrate known tephra ages into the sediment chronologies. Out of these, three cryptotephras (Askja-AD1875, Askja-S and Hässeldalen) were identified in both records, thus allowing a detailed synchronization of developing high-resolution palaeoenvironmental proxy data. The early Holocene Saksunarvatn Ash layer and the middle Holocene Lairg-B and Hekla-4 cryptotephras in Lake Tiefer See are further important anchor points for the comparison with other high-resolution palaeoclimate records in Central and Northern Europe. Tentative correlations of cryptotephras have been made with a historical basaltic Grimsvötn eruption (˜AD890 - AD856) and three late Holocene rhyolitic eruptions, including the 2.1 ka Glen Garry and two unknown high-silicic cryptotephras of probably Icelandic provenance (˜1.9 cal ka BP).

  19. Preliminary TEX86 temperatures and a lake level record of tropical climate extremes derived from sediment cores and seismic stratigraphy from Lake Turkana, East Africa

    NASA Astrophysics Data System (ADS)

    Morrissey, A. J.; Scholz, C. A.; Russell, J. M.

    2012-12-01

    Lake Turkana is the largest lake in the Eastern Branch of the East African Rift System and records hydrologic conditions of a region spanning nearly 2.5 degrees of latitude (~2.0 - 4.5 degrees N) in the African tropics. New data suggest the Turkana region likely experienced much wetter and cooler climate over several intervals since the latest Pleistocene. Lake level was extremely low twice during the latest Pleistocene, evidenced by depositional hiatuses in high-resolution CHIRP seismic reflection data that correlate with sediments that have low water-content, abundant sand, and low total organic carbon (TOC as low as <0.7%). Lake Turkana, like many lakes in northern tropical Africa, had a wetter climate during the African Humid Period. Intervals of high lake levels (up to ~440 m amsl) are indicated by flat-lying, laterally continuous, low-amplitude reflections that correlate in sediment cores to dark, fine-grained, laminated sediment with high TOC (up to ~6%). Calcium carbonate accumulation during this time period is nearly 0%, and combined with evidence of laminated, unbioturbated sediment suggests a fresh, stratified lake with anoxic bottom waters. During the early mid-Holocene, lake level began to fall to close to present levels (~365 m amsl). Sediments deposited during this time period have low but variable organic carbon content (~0.5 - ~2%) and are much higher in inorganic carbon (from fine-grained calcite precipitation). A moderate lowstand during the late Holocene is indicated by an erosional unconformity seen down to ~40 m below the current lake surface in several seismic profiles. This record of lake level extremes suggests highly variable rainfall patterns, forced by migration of the Intertropical Convergence Zone) across tropical East Africa over the last 20,000 years. More than 50 sediment samples from 3 piston cores represent a continuous record of TEX86 temperature from ~20,000 years ago to modern. The generally low (<0.25) BIT index for the

  20. Holocene pollen record from Lake Sokoch, interior Kamchatka (Russia), and its paleobotanical and paleoclimatic interpretation

    NASA Astrophysics Data System (ADS)

    Dirksen, Veronika; Dirksen, Oleg; van den Bogaard, Christel; Diekmann, Bernhard

    2015-11-01

    A pollen record, obtained from sediments of Lake Sokoch in mountain interior of the Kamchatka Peninsula, covers the last ca. 9600 years (all ages are given in calibrated years BP). Variations in local components, including pollen, spores and non-pollen palynomorphs, and related changes in sedimentation document the lake development from initially seepage and shallow basin to deeper lake during the mid Holocene and then to the hydrologically open system during the late Holocene. The studies of volcanic ashes from the lake sediment core show their complex depositional histories. Lake Sokoch occupies a former proglacial basin between two terminal moraines of the LGM time. The undated basal part of record before ca. 9600 year BP, however, does not reflect properly cold conditions. At that time, although shrublands and tundra dominated, stone birch and white birch forests have already settled in surroundings; the presence of alder woodland indicates wet and maritime-like climate. The subsequent forest advance suggesting warmer conditions was interrupted by the ca. 8000-7600 year BP spell of cooler climate. The following culmination of warmth is bracketed by the evidence of the first maximal forest extent between ca. 7400 and 5100 year BP. During that time, dramatic retreat of alder forest suggests a turn from maritime-like to more continental climate conditions. The cool and wet pulse after ca. 5100 year BP was pronounced as forests retreat while shrublands, meadows and bogs extended. An expansion of white birch forest since ca. 3500 year BP reflected the onset of drier climate, strengthening continentality and seasonal contrast. The second maximum of forests dominated by both stone and white birches occurred between ca. 2200 and 1700 year BP and indicated warming in association with relatively dry and increasingly continental climate. The following period was wetter and cooler, and minor outbreak of alder forest around ca. 1500 year BP suggests a short-term return of

  1. A new 10,000 year pollen record from Lake Kinneret (Israel) - first results

    NASA Astrophysics Data System (ADS)

    Schiebel, V.; Litt, T.; Nowaczyk, N.; Stein, M.; Wennrich, V.

    2012-04-01

    Lake Kinneret - as part of the Jordan Rift Valley in Israel - is situated in the southern Levant, which is affected by Eastern Mediterranean climate. The present lake level is around 212 m below msl. Lake Kinneret has a surface of ca. 165 km2 and its watershed comprises the Galilee, the Golan Heights, the Hermon Range and the Anti-Lebanon Mountains. Its most important tributary is the Jordan River. The geography of the Lake Kinneret region is characterised by big differences in altitude. Steep slopes rise up to 560 m above the lake level in the west, north, and east. Mount Hermon (2814 m above mean sea level, amsl) is the highest summit of the Anti-Lebanon Range, and Mount Meron (1208 m amsl) located in the Upper Galilee encircle Lake Kinneret within a 100-km range in the northwest. Due to the pattern of average precipitation, distinct plant-geographical territories converge in the region: The Mediterranean and the Irano-Turanian biom (after Zohary). Varying ratios of characteristic pollen taxa representing certain plant associations serve as proxy data for the reconstruction of paleovegetation, paleoenvironment, and paleoclimate. We present a pollen record based on analyses of sediment cores obtained during a drilling campaign on Lake Kinneret in March 2010. A composite profile of 17.8 m length was established by correlating two parallel cores by using magnetic susceptibility data. Our record encompasses the past ca. 10,000 years of a region, which has been discussed as migration corridor of humans to Europe and, being part of the Fertile Crescent, as the cradle of agriculture in West Asia. Conclusions concerning human impact on vegetation and therefore population density can be drawn by analysing changes of ratios of certain plant taxa such as Olea europaea cultivated in this region since the Chalcolithic Period (6,500 BP). In addition, stable isotope data were produced from discrete bulk samples, and the elemental composition of the sediments was determined by

  2. A new varved late Glacial and Holocene sediment record from Lake Jelonek (North Poland) - preliminary results

    NASA Astrophysics Data System (ADS)

    Kramkowski, Mateusz; Filbrandt-Czaja, Anna; Ott, Florian; Słowiński, Michał; Tjallingii, Rik; Błaszkiewicz, Mirosław; Brauer, Achim

    2015-04-01

    Anually laminated (varved) lake deposits are suitable natural archives for reconstructing past climatic and environmental changes at seasonal resolution. A major advantage of such records is that varve counting allows constructing robust and independent chronologies, a key challenge for paleoclimate research. Recently, a new annually laminated sediment record has been obtained from Lake Jelonek, located in the eastern part of the Pomeranian Lakeland in northern Poland (Tuchola Pinewoods). The lake is surrounded by forest and covers an area of 19,9 ha and has a maximum depth of 13,8 m. Three overlapping series of 14,3 m - long sediment records have been cored with an UWITEC 90 mm diameter piston corer from the deepest part of the lake. A continuous master composite profile has been established comprising the entire postglacial lacustrine sediment infill. Preliminary analyses including micro-facies analyses on thin sections from selected intervals as well as X-ray fluorescence element scanning (µ-XRF) reveal that the sediments are to a large part annually laminated. Here we present detailed varve models for different sediment intervals and discuss high-resolution geochemical variation in the entire sediment record. A preliminary age model based on radiocarbon dating and major biostratigraphical boundaries based on pollen data will be presented as well. These data will form the fundament for the planned multi-proxy study for detailed reconstructions of climatic and environmental variability during the late glacial and Holocene in the southern Baltic. This study is a contribution to the Virtual Institute ICLEA (Integrated Climate and Landscape Evolution Analysis) funded by the Helmholtz Association and National Science Centre Poland NCN 2011/01/B/ST10/07367.

  3. Questa baseline and premining ground-water quality investigation. 8. Lake-sediment geochemical record from 1960 to 2002, Eagle Rock and Fawn Lakes, Taos County, New Mexico

    USGS Publications Warehouse

    Church, S.E.; Fey, D.L.; Marot, M.E.

    2005-01-01

    Geochemical studies of lake sediment from Eagle Rock Lake and upper Fawn Lake were conducted to evaluate the effect of mining at the Molycorp Questa porphyry molybdenum deposit located immediately north of the Red River. Two cores were taken, one from each lake near the outlet where the sediment was thinnest, and they were sampled at 1-cm intervals to provide geochemical data at less than 1-year resolution. Samples from the core intervals were digested and analyzed for 34 elements using ICP-AES (inductively coupled plasma-atomic emission spectrometry). The activity of 137Cs has been used to establish the beginning of sedimentation in the two lakes. Correlation of the geochemistry of heavy-mineral suites in the cores from both Fawn and Eagle Rock Lakes has been used to develop a sedimentation model to date the intervals sampled. The core from upper Fawn Lake, located upstream of the deposit, provided an annual sedimentary record of the geochemical baseline for material being transported in the Red River, whereas the core from Eagle Rock Lake, located downstream of the deposit, provided an annual record of the effect of mining at the Questa mine on the sediment in the Red River. Abrupt changes in the concentrations of many lithophile and deposit-related metals occur in the middle of the Eagle Rock Lake core, which we correlate with the major flood-of-record recorded at the Questa gage at Eagle Rock Lake in 1979. Sediment from the Red River collected at low flow in 2002 is a poor match for the geochemical data from the sediment core in Eagle Rock Lake. The change in sediment geochemistry in Eagle Rock Lake in the post-1979 interval is dramatic and requires that a new source of sediment be identified that has substantially different geochemistry from that in the pre-1979 core interval. Loss of mill tailings from pipeline breaks are most likely responsible for some of the spikes in trace-element concentrations in the Eagle Rock Lake core. Enrichment of Al2O3, Cu, and Zn

  4. A rock-magnetic record from Lake Baikal, Siberia: Evidence for Late Quaternary climate change

    USGS Publications Warehouse

    Peck, J.A.; King, J.W.; Colman, Steven M.; Kravchinsky, V.A.

    1994-01-01

    Rock-magnetic measurements of sediment cores from the Academician Ridge region of Lake Baikal, Siberia show variations related to Late Quaternary climate change. Based upon the well-dated last glacial-interglacial transition, variations in magnetic concentration and mineralogy are related to glacial-interglacial cycles using a conceptual model. Interglacial intervals are characterized by low magnetic concentrations and a composition that is dominated by low coercivity minerals. Glacial intervals are characterized by high magnetic concentrations and increased amounts of high coercivity minerals. The variation in magnetic concentration is consistent with dilution by diatom opal during the more productive interglacial periods. We also infer an increased contribution of eolian sediment during the colder, windier, and more arid glacial conditions when extensive loess deposits were formed throughout Europe and Asia. Eolian transport is inferred to deliver increased amounts of high coercivity minerals as staining on eolian grains during the glacial intervals. Variations in magnetic concentration and mineralogy of Lake Baikal sediment correlate to the SPECMAP marine oxygen-isotope record. The high degree of correlation between Baikal magnetic concentration/mineralogy and the SPECMAP oxygen-isotope record indicates that Lake Baikal sediment preserves a history of climate change in central Asia for the last 250 ka. This correlation provides a method of estimating the age of sediment beyond the range of the radiocarbon method. Future work must include providing better age control and additional climate proxy data, thereby strengthening the correlation of continental and marine climate records. ?? 1994.

  5. Stable isotope record of Holocene precipitation changes from Lake Nuudsaku in southern Estonia

    NASA Astrophysics Data System (ADS)

    Fortney, Carolyn; Stansell, Nathan; Klein, Eric; Terasmaa, Jaanus; Dodd, Justin

    2015-04-01

    Radiocarbon dated, finely laminated lake sediments record Holocene precipitation changes from southern Estonia. Modern water isotope data suggest that Lake Nuudsaku is a mostly open system that is primarily fed by winter precipitation and groundwater, and summer precipitation plays only a secondary role in the overall hydrologic balance. Initial results indicate that changes in insolation likely drove the overall Holocene pattern with relatively wet conditions during the early Holocene, followed by arid conditions during the middle Holocene and a return to wetter conditions during the late Holocene. However, there is pronounced millennial and centennial-scale variability that cannot be explained by insolation forcing alone. Notably, there is a trend toward wetter conditions from ~4.0 to 2.0 ka, followed by a trend toward drier conditions during the last 2 millennia. This late Holocene pattern diverges from the pattern observed in records from north-central Estonia that suggest an overall trend of wetter conditions for the last ~4 ka. These initial results thus indicate that the Lake Nuudsaku sediments have the potential to yield a unique near-annual to decade-scale record of past precipitation changes from the southern Baltic region.

  6. Mid-Late Holocene Asian monsoon variations recorded in the Lake Rara sediment, western Nepal

    NASA Astrophysics Data System (ADS)

    Nakamura, A.; Yokoyama, Y.; Maemoku, H.; Yagi, H.; Okamura, M.; Matsuoka, H.; Miyake, N.; Adhikari, D.; Dangol, V.; Miyairi, Y.; Obrochta, S.; Matsuzaki, H.; Ikehara, M.

    2011-12-01

    The Asian monsoon is an important component of the Earth's climate system to understand regional and global climate dynamics. While geological reconstructions indicate that the Asian summer monsoon intensity gradually decreased through the Holocene, a clear and coherent picture of millennial and centennial scale variability has yet to emerge (e.g., Overpeck and Cole, 2007). The Himalayas are a key location for understanding centennial to millennial scale variations in the Asian monsoon, yet few studies of the Holocene have been conducted in this sensitive area. Direct evidence for shifts in monsoonal wind strength is often limited to marine proxy records, while terrestrial reconstructions (e.g., lake levels and spleothems) focus on precipitation. Here, we present the first evidence of terrestrial summer monsoon wind strength changes from Lake Rara, western Nepal. The lake is located at 3,000m above sea level and has a maximum water depth of 168m. Lake Rara Mn/Ti data, a proxy for lake stratification, provide the first direct comparison of the Indian summer monsoon wind intensity between the terrestrial Himalayan region and the marine Arabian sea region (Gupta et al., 2003) during mid-late Holocene. Centennial to millennial scale variability found in those records are synchronous, with the weak wind intervals corresponding to drier periods of East Asian. Strong similarities between the Lake Rara monsoon record and the Dongge cave speleothems precipitation record (Wang et al., 2005) suggest that the influence of Indian summer monsoon penetrates into southeastern China, which should be taken into account when interpreting paleomonsoon reconstructions. Overpeck JT, Cole JE. 2007. Climate change - Lessons from a distant monsoon. Nature 445: 270-271. Gupta AK, Anderson DM, Overpeck JT. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421: 354-357. Wang YJ, Cheng H, Edwards RL, He YQ, Kong XG, An

  7. Historical Records of Mercury Stable Isotopes in Sediments of Tibetan Lakes

    PubMed Central

    Yin, Runsheng; Feng, Xinbin; Hurley, James P.; Krabbenhoft, David P.; Lepak, Ryan F.; Kang, Shichang; Yang, Handong; Li, Xiangdong

    2016-01-01

    The Tibetan Plateau (TP), known as the “Third Pole”, is a critical zone for atmospheric mercury (Hg) deposition. Increasing anthropogenic activities in the globe leads to environmental changes, which may affect the loading, transport and deposition of Hg in the environment. However, the deposition history and geochemical cycling of Hg in the TP is still uncertain. Our records of Hg and Hg isotopes in sediment profiles of the two largest lakes in the TP, Lake Qinghai and Nam Co, show increased Hg influx since last century, with the maximum Hg influx enrichment ratios of 5.4 and 3.5 in Lake Qinghai and Nam Co, respectively. Shifts in negative δ 202Hg in Lake Qinghai (−4.55 to −3.15‰) and Nam Co (−5.04 to −2.16‰) indicate increased atmospheric Hg deposition through rainfall, vegetation and runoff of soils. Mass independent fractionation of both even-Hg (∆ 200Hg: +0.05 to +0.10‰) and odd-Hg (∆ 199Hg: +0.12 to +0.31‰) isotopes were observed. Positive Δ 200Hg suggest high proportion of precipitation-derived Hg in the TP, whereas the positive Δ 199Hg results from Hg(II) photo-reduction. Both lakes show increasing Δ 199Hg since the 1900 s, and we conclude that with the decrease of ice duration, Hg(II) photo-reduction may have been accelerated in these TP lakes. PMID:26996936

  8. Ecosystem development following deglaciation: A new sedimentary record from Devils Lake, Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Williams, Joseph J.; McLauchlan, Kendra K.; Mueller, Joshua R.; Mellicant, Emily M.; Myrbo, Amy E.; Lascu, Ioan

    2015-10-01

    Processes and rates of ecosystem development can be reconstructed using lacustrine sedimentary sequences, but this approach often requires records that contain the start of primary succession. Most lakes in the upper Midwestern U.S. were formed by glaciers at the end of the last Ice Age approximately 11,700 cal yr BP. Devils Lake, Wisconsin is a rare example of a lake from this region whose sediments extend into the Pleistocene and may include the Last Glacial Maximum. Sediment magnetic, geochemical, pollen, and charcoal records were generated from a 10 m core whose basal sediments may be 28,000 years old. Together with a previously published pollen record, these proxies combine to reveal a history of long-term climatic, vegetative and geologic change during the late Pleistocene to Holocene. We identify six sedimentary units that indicate a series of consecutive events rather than a predictable trajectory of ecosystem development at the site. Productivity in the lake was low during the late Pleistocene and increased during the Holocene, as reflected by the sediment lithology, which shows a sudden shift from glacial vivianite-rich and organic-poor clastic-dominated sediments to Holocene diatomaceous sapropels. Several important processes initiated around 17,000 cal yr BP, including the onset of organic matter accumulation and fire in the terrestrial ecosystem. However, the post-glacial landscape was not devoid of vegetation because pollen assemblages indicate that terrestrial vegetation, likely a spruce tundra, survived near the site. A switch to a hardwood forest period during the Holocene also led to a change in the fire regime, with increased frequency of burning. Aquatic ecosystem productivity lagged terrestrial ecosystem productivity throughout the record. Nutrient cycling (as recorded by sedimentary δ15N) was variable but not directional, and appeared to be correlated with climate conditions early in the record, and terrestrial ecosystem processes later in

  9. Late Holocene Drought Record From Castor Lake, North-Central Washington State

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Abbott, M. B.; Polissar, P. J.; Finney, B.

    2006-12-01

    The effects of recent and historic drought in the North American west provide motivation for understanding the natural variability and underlying causes of these events. We present a 6,000-year lake sediment record of water balance from Washington State in an effort to address these questions. A series of overlapping sediment cores were collected and chronological control was established through a combination of radiocarbon, tephrochronology, and cesium isotope activity. Modern basin morphometry and lake water oxygen and hydrogen isotope data indicate closed-basin hydrology and the strong influence of evaporative enrichment on lake water composition, and therefore sensitivity of the system to changes in regional water balance and drought. Samples of endogenic aragonite precipitates were isolated from sediment cores at an average sampling interval of 3.7mm, corresponding to a temporal resolution of approximately 7 years. Grayscale data were generated from digital images of the cores collected under controlled light conditions and are shown to track changes in oxygen isotope values, with darker layers corresponding to periods of increased isotopic composition. In addition to supporting the notion that oxygen isotope data are primarily recording changes in water balance as opposed to changes in water source or temperature, the increased resolution of the grayscale record improves the resolution of the climate signal to the sub-millimeter scale of the laminations. There is a significant correlation between the most recent portion of the Castor Lake grayscale record and a 1,500-yr Palmer Drought Severity Index (PDSI) reconstruction from central Washington (1). The strong association between changes in the Castor Lake record and changes in the PDSI reconstruction provides convincing method validation and strengthens the interpretation of both as drought signals. Spectral analyses of the grayscale record using singular spectrum analysis (SSA), maximum entropy method (MEM

  10. Sedimentary Record of syn- and Post-Glacial Climate Change Along the Former LGM ice Terminus, Flathead Lake, Montana

    NASA Astrophysics Data System (ADS)

    Hendrix, M. S.; Hofmann, M.; Moore, J. N.; Sperazza, M.

    2006-12-01

    Located west of the continental divide at the former LGM terminal position of the Flathead Lobe of the Cordilleran Ice Sheet, Flathead Lake (Montana) contains a well preserved record of syn- and post-glacial Quaternary sedimentation. We have studied this record through a combination of geologic mapping around the lake margins, 3.5 kHz and lower frequency seismic reflection profiling of lake sediments, and coring of the lake floor. The oldest part of the Quaternary sedimentary record comprises ice-contact till exposed along the lake basin margins and imaged in deep seismic reflection profiles. Sedimentary facies and geomorphology of the terminal moraine suggest that the Flathead Lobe flowed into a major proglacial lake, probably glacial Lake Missoula. The oldest core sediments recovered from the lake basin consist of a series of clay-rich glacial varves that thin- and fine-upward. These are overlain by a series of anomalously coarse silt beds, each containing a sharp base, upward fining grain size, and lakewide distribution. Depositional age of these beds is constrained as between 14,150±150 cal. Yr BP (14C date on a pine needle below the beds) and 13,180±120 cal. Yr BP (Glacier Peak tephra above the beds). We interpret the silt beds to reflect pulses of sediment delivered to the Flathead Lake basin by high discharge flood events associated with rapid retreat of the Flathead Lobe and possible rapid release of proglacial melt water from upstream tributary valleys dammed by the Flathead Lobe. The transition of Flathead Lake from a proglacial lake to the modern oligotrophic lake system took place shortly after deposition of the Glacier Peak tephra. Interestingly, none of our 8 deep piston cores display an obvious Younger Dryas sedimentologic signal. Holocene core records, combined with information from 3.5 kHz seismic data, indicate periods of significant lake level fluctuation that are likely climate-driven. Of these, the most significant lake drawdown immediately

  11. Phosphorus Weathering and Ecosystem Development: Holocene Record From Green Lake, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Slater-Atwater, S. E.; Filippelli, G. M.; Souch, C.; Menounos, B.

    2001-12-01

    Changes in the availability of the nutrient element phosphorus (P) may control ecosystem development on terrestrial landscapes. Soil development tends to transform mineral P to occluded (mainly oxide-bound) and organic forms. Using well-dated alpine lake sediments from the Coast Mountains of British Columbia, we are using the temporal record of P geochemistry to interpret the extent of soil development on surrounding slopes, inherent slope instability, and repeated cycles of neoglaciation over the Holocene. Over 265 samples were analyzed from a single core from Green Lake. Chronological control is provided by varves, tephra, and radiocarbon dating. Sampling resolution in the upper core (0-2500 ybp) is 10 yr; in the lower core (2500-4600 ybp) resolution is 80 yr. All samples were analyzed for mineral, occluded, and organic P using sequential P extractions. Nine slope samples also were analyzed for these fractions and compared with eight surface Ekman samples from Green Lake. Slope samples show 11.8-31 umol/g of total P, with an average of 20.5 umol/g. Average percentages are occluded P 7.6%, mineral P 86% and organic P 6%. For the surface lake samples, the total P ranged from 24-32.6 umol/g with an average of 28.4 umol/g. Average percentages are occluded P 5.7%, mineral P 89.2%, and organic P 4.9%. These results indicate that modern slope soils and surface lake samples have comparable P compositions, supporting the use of lake samples to reflect nutrient status of surrounding soils. Green Lake core samples show an average of 28.3 umol/g of total P. Most P is in mineral fractions, ranging from 73-98% of the total P, while organic P ranges from 1.1-8.7%. The highest percentage of organic P occurs toward the bottom of the core, between 625 cm and 1155 cm, where the average organic P is 5.7% of the total and mineral P is 87.7 %. These horizons correspond well to warmer conditions, when climate change would have enabled soils to develop. Following this, organic P drops

  12. Holocene n-Fatty Acid Δd Records from Lake Hurleg, Northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    He, Y.; Zhao, C.; Liu, Z.; Wang, H.; Liu, W.; Yu, Z.

    2014-12-01

    The interpretation of δD records from the Tibetan Plateau region remains challenging due to multiple climatic factors influencing on the precipitation isotopic values. Here we study the mechanism of δD variation in this region, by reconstructing the past 10.5 ka n-fatty acid (FA) δD records from sediment core taken in Lake Hurleg on the northeastern Tibetan Plateau and comparing them to the previously presented temperature and moisture data from the same core. Comparison of both C16 and C26 n-FA δD with the average carbon length of n-FA suggests that n-FA δD variability was independent of the n-FA distribution. For δD in the C26 n-FA, it serves as an indicator of hydrogen isotopic signals in terrestrial water. During the Holocene, the heavier C26 n-FA δD values corresponded to millennial cold and wet conditions as inferred by the temperature and salinity records. Thus the terrestrial water δD value changes might be caused by factors other than temperature and moisture, such as the vegetation type and the glacial melt water input. As for the C16 n-FA, although it contains both terrestrial and aquatic source, it mainly mimics the lacustrine water isotopic signal. Therefore, the difference between C16 and C26 n-FA δD can be interpreted as the fractionation between terrestrial and aquatic water induced by evaporation on lake surface. Based on the δD records together with temperature and moisture records, we suggest in millennial timescale, not only stronger precipitation but also less evaporation occurred during the cold periods in the Lake Hurleg region.

  13. Sedimentary processes in High Arctic lakes (Cape Bounty, Melville Island, Canada): What do sediments really record?

    NASA Astrophysics Data System (ADS)

    Normandeau, Alexandre; Lamoureux, Scott; Lajeunesse, Patrick; Francus, Pierre

    2016-04-01

    Lacustrine sedimentary sequences can hold a substantial amount of information regarding paleoenvironments, hydroclimate variability and extreme events, providing critical insights into past climate change. The study of lacustrine sediments is often limited to the analysis of sediment cores from which past changes are inferred. However, studies have provided evidence that the accumulation of sediments in lacustrine basins and their distribution can be affected by a wide range of internal and external forcing mechanisms. It is therefore crucial to have a good knowledge of the factors controlling the transport and distribution of sediments in lakes prior to investigating paleoenvironmental archives. To address this knowledge gap, the Cape Bounty Arctic Watershed Observatory (CBAWO), located on southern Melville Island in the Canadian High Arctic, was initiated in 2003 as a long term monitoring site with the aim of understanding the controls over sediment transport within similar paired watersheds and lakes. The East and West lakes have been monitored each year since 2003 to document the role of hydro-climate variability on water column processes and sediment deposition. Moorings recording water electrical conductivity, temperature, density, dissolved oxygen and turbidity, as well as sediment traps were deployed during the active hydrological period (generally May-July). These data were analyzed in combination with hydrological and climatic data from the watersheds. Additionally, a high-resolution bathymetric and sub-bottom survey was completed in 2015 and allowed imaging the lake floor and sub-surface in great detail. This combination of process and lake morphological data are unique in the Arctic. The morphostratigraphic analysis reveals two highly disturbed lake floors, being widely affected by subaqueous mass movements that were triggered during the last 2000 years. Backscatter intensity maps and the presence of bedforms on each delta foresets indicate that

  14. Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record.

    PubMed

    Corcoran, Patricia L; Norris, Todd; Ceccanese, Trevor; Walzak, Mary Jane; Helm, Paul A; Marvin, Chris H

    2015-09-01

    Microplastics are a source of environmental pollution resulting from degradation of plastic products and spillage of resin pellets. We report the amounts of microplastics from various sites of Lake Ontario and evaluate their potential for preservation in the sediment record. A total of 4635 pellets were sampled from the Humber Bay shoreline on three sampling dates. Pellet colours were similar to those from the Humber River bank, suggesting that the river is a pathway for plastics transport into Lake Ontario. Once in the lake, high density microplastics, including mineral-polyethylene and mineral-polypropylene mixtures, sink to the bottom. The minerals may be fillers that were combined with plastics during production, or may have adsorbed to the surfaces of the polymers in the water column or on the lake bottom. Based on sediment depths and accumulation rates, microplastics have accumulated in the offshore region for less than 38 years. Their burial increases the chance of microplastics preservation. Shoreline pellets may not be preserved because they are mingled with organic debris that is reworked during storm events.

  15. A 2200-yr record of hydrologic variability from Foy Lake, Montana, USA, inferred from diatom and geochemical data

    NASA Astrophysics Data System (ADS)

    Stevens, Lora R.; Stone, Jeffery R.; Campbell, Josh; Fritz, Sherilyn C.

    2006-03-01

    A 2200-yr long, high-resolution (˜5 yr) record of drought variability in northwest Montana is inferred from diatoms and δ18O values of bio-induced carbonate preserved in a varved lacustrine core from Foy Lake. A previously developed model of the diatom response to lake-level fluctuations is used to constrain estimates of paleolake levels derived from the diatom data. High-frequency (decadal) fluctuations in the de-trended δ18O record mirror variations in wet/dry cycles inferred from Banff tree-rings, demonstrating the sensitivity of the oxygen-isotope values to changes in regional moisture balance. Low frequency (multi-centennial) isotopic changes may be associated with shifts in the seasonal distribution of precipitation. From 200 B.C. to A.D. 800, both diatom and isotope records indicate that climate was dry and lake level low, with poor diatom preservation and high organic carbon: nitrogen ratios. Subsequently, lake level rose slightly, although the climate was drier and more stable than modern conditions. At A.D. 1200, lake level increased to approximately 6 m below present elevation, after which the lake fluctuated between this elevation and full stage, with particularly cool and/or wetter conditions after 1700. The hydrologic balance of the lake shifted abruptly at 1894 because of the establishment of a lumber mill at the lake's outlet. Spectral analysis of the δ18O data indicates that severe droughts occurred with multi-decadal (50 to 70 yr) frequency.

  16. New Records of Lake Baikal Leech Fauna: Species Diversity and Spatial Distribution in Chivyrkuy Gulf

    PubMed Central

    Kaygorodova, Irina A.; Pronin, Nikolay M.

    2013-01-01

    The study of several Lake Baikal leech collections offered us the possibility to determine species diversity in the Chivyrkuy Gulf, the biggest one in the lake. As a result, the first information on the Chivyrkuy Hirudinea fauna (Annelida, Clitellata) has been revealed. There are two orders and four families of leeches in the Chivyrkuy Gulf: order Rhynchobdellida (families Glossiphoniidae and Piscicolidae) and order Arhynchobdellida (families Erpobdellidae and Haemopidae). In total, 22 leech species and 2 subspecies belonging to 11 genera were identified. Of these, 4 taxa belong to the family Glossiphoniidae (G. concolor, A. hyalina, A. heteroclita f. papillosa, and A. heteroclita f. striata) recorded in Baikal for the first time. Representatives of 8 unidentified species (Glossophinia sp., Baicaloclepsis sp., Baicalobdella sp., Piscicola sp. 1, Piscicola sp. 2, Erpobdella sp. 1, Erpobdella sp. 2, and Erpobdella sp. 3) have been also recorded. The checklist gives a contemporary overview of the species composition of leech parasites, their hosts, and distribution within the Chivyrkuy Gulf. The analysis of spatial distribution has shown that the leech species diversity is correlated with the biological productivity of the bay. The most diverse community of leech species is detected in the eutrophic zone of the lake. PMID:23844382

  17. A late Pleistocene long pollen record from Lake Urmia, NW Iran

    NASA Astrophysics Data System (ADS)

    Djamali, Morteza; de Beaulieu, Jacques-Louis; Shah-hosseini, Madjid; Andrieu-Ponel, Valérie; Ponel, Philippe; Amini, Abdolhossein; Akhani, Hossein; Leroy, Suzanne A. G.; Stevens, Lora; Lahijani, Hamid; Brewer, Simon

    2008-05-01

    A palynological study based on two 100-m long cores from Lake Urmia in northwestern Iran provides a vegetation record spanning 200 ka, the longest pollen record for the continental interior of the Near East. During both penultimate and last glaciations, a steppe of Artemisia and Poaceae dominated the upland vegetation with a high proportion of Chenopodiaceae in both upland and lowland saline ecosystems. While Juniperus and deciduous Quercus trees were extremely rare and restricted to some refugia, Hippophaë rhamnoides constituted an important phanerophyte, particularly during the late last glacial period. A pronounced expansion in Ephedra shrub-steppe occurred at the end of the penultimate late-glacial period but was followed by extreme aridity that favoured an Artemisia steppe. Very high lake levels, registered by both pollen and sedimentary markers, occurred during the middle of the last glaciation and late part of the penultimate glaciation. The late-glacial to early Holocene transition is represented by a succession of Hippophaë, Ephedra, Betula, Pistacia and finally Juniperus and Quercus. The last interglacial period (Eemian), slightly warmer and moister than the Holocene, was followed by two interstadial phases similar in pattern to those recorded in the marine isotope record and southern European pollen sequences.

  18. Mountain Lake, Presidio National Park, San Francisco: Paleoenvironment, heavy metal contamination, sedimentary record rescue, remediation, and public outreach

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Rodysill, J. R.; Jones, K.; Reidy, L. M.

    2014-12-01

    Sediment cores from Mountain Lake, a small natural lake in Presidio National Park, San Francisco, CA, provide a record of Bay Area environmental change spanning the past 2000 years, and of unusually high heavy metal contamination in the last century (Reidy 2001). In 2013, partial dredging of the lake removed the upper two meters of lake sediment as part of a remediation effort. Prior to dredging, long and short cores spatially covering the lake and representing deep and shallow environments were recovered from the lake to preserve the paleoenvironmental record of one of the only natural lakes on the San Francisco Peninsula. The cores are curated at LacCore and are available for research by the scientific community. Mountain Lake formed in an interdunal depression and was shallow and fluctuating in its first few hundred years. Lake level rise and inundation of a larger area was followed by lowstands under drier conditions around 550-700 and 1300 CE. Nonnative taxa and cultivars appeared at the time of Spanish settlement in the late 18th century, and the lake underwent eutrophication due to livestock pasturing. U.S. Army landscaping introduced trees to the watershed in the late 19th century. The upper ~1m of sediments document unusually high heavy metal contamination, especially for lead and zinc, caused by the construction and heavy use of Highway 1 on the lake shore. Lead levels peak in 1975 and decline towards the surface, reflecting the history of leaded gasoline use in California. Zinc is derived mainly from automobile tires, and follows a pattern similar to that of lead, but continues to increase towards the surface. Ongoing research includes additional radiocarbon dating and detailed lithological analysis to form the basis of lake-level reconstruction and archeological investigations. Because the Presidio archaeological record does not record human habitation in the area until approximately 1300 years before present, the core analysis also has the potential to

  19. Synchronisation of sedimentary records using tephra: A postglacial tephrochronological model for the Chilean Lake District

    NASA Astrophysics Data System (ADS)

    Fontijn, Karen; Rawson, Harriet; Van Daele, Maarten; Moernaut, Jasper; Abarzúa, Ana M.; Heirman, Katrien; Bertrand, Sébastien; Pyle, David M.; Mather, Tamsin A.; De Batist, Marc; Naranjo, Jose-Antonio; Moreno, Hugo

    2016-04-01

    Well-characterised tephra horizons deposited in various sedimentary environments provide a means of synchronising sedimentary archives. The use of tephra as a chronological tool is however still widely underutilised in southern Chile and Argentina. In this study we develop a postglacial tephrochronological model for the Chilean Lake District (ca. 38 to 42°S) by integrating terrestrial and lacustrine records. Tephra deposits preserved in lake sediments record discrete events even if they do not correspond to primary fallout. By combining terrestrial with lacustrine records we obtain the most complete tephrostratigraphic record for the area to date. We present glass geochemical and chronological data for key marker horizons that may be used to synchronise sedimentary archives used for palaeoenvironmental, palaeoclimatological and palaeoseismological purposes. Most volcanoes in the studied segment of the Southern Volcanic Zone, between Llaima and Calbuco, have produced at least one regional marker deposit resulting from a large explosive eruption (magnitude ≥ 4), some of which now have a significantly improved age estimate (e.g., the 10.5 ka Llaima Pumice eruption from Llaima volcano). Others, including several units from Puyehue-Cordón Caulle, are newly described here. We also find tephra related to the Cha1 eruption from Chaitén volcano in lake sediments up to 400 km north from source. Several clear marker horizons are now identified that should help refine age model reconstructions for various sedimentary archives. Our chronological model suggests three distinct phases of eruptive activity impacting the area, with an early-to-mid-Holocene period of relative quiescence. Extending our tephrochronological framework further south into Patagonia will allow a more detailed evaluation of the controls on the occurrence and magnitude of explosive eruptions throughout the postglacial.

  20. Global fallout Pu recorded in lacustrine sediments in Lake Hongfeng, SW China.

    PubMed

    Zheng, Jian; Wu, Fengchang; Yamada, Masatoshi; Liao, Haiqing; Liu, Congqiang; Wan, Guojiang

    2008-03-01

    Studies on the distribution and isotope compositions of fallout Pu are important for source characterization of possible future non-fallout Pu contamination in aquatic environments, and useful for dating of recent sediments to understand the pollution history of environmental contaminants. We present the historical record of atmospheric Pu fallout reconstructed from a sediment core from Lake Hongfeng, China. The Pu activity profile was in agreement with the 137Cs profile. Inventories were 50.7 Bq m(-2) for 239+240Pu and 1586 Bq m(-2) for 137Cs. The average 240Pu/239Pu atom ratio was 0.185+/-0.009, indicating that Pu originated from global stratospheric fallout rather than from direct tropospheric or close-in fallout from the Chinese nuclear testing conducted in the 1970s. Our data suggested that Lake Hongfeng would be an ideal setting for monitoring atmospheric fallout and environmental changes in this region.

  1. Lake-level history of Lake Michigan for the past 12,000 years: the record from deep lacustrine sediments

    USGS Publications Warehouse

    Colman, Steven M.; Forester, Richard M.; Reynolds, Richard L.; Sweetkind, Donald S.; King, John W.; Gangemi, Paul; Jones, Glenn A.; Keigwin, Loyd D.; Foster, David S.

    1994-01-01

    Collection and analysis of an extensive set of seismic-reflection profiles and cores from southern Lake Michigan have provided new data that document the history of the lake basin for the past 12,000 years. Analyses of the seismic data, together with radiocarbon dating, magnetic, sedimentologic, isotopic, and paleontologic studies of core samples, have allowed us to reconstruct lake-level changes during this recent part of the lake's history.The post-glacial history of lake-level changes in the Lake Michigan basin begins about 11.2 ka with the fall from the high Calumet level, caused by the retreat of the Two Rivers glacier, which had blocked the northern outlet of the lake. This lake-level fall was temporarily reversed by a major influx of water from glacial Lake Agassiz (about 10.6 ka), during which deposition of the distinctive gray Wilmette Bed of the Lake Michigan Formation interrupted deposition of red glaciolacustrine sediment. Lake level then continued to fall, culminating in the opening of the North Bay outlet at about 10.3 ka. During the resulting Chippewa low phase, lake level was about 80 m lower than it is today in the southern basin of Lake Michigan.The rise of the early Holocene lake level, controlled primarily by isostatic rebound of the North Bay outlet, resulted in a prominent, planar, transgressive unconformity that eroded most of the shoreline features below present lake level. Superimposed on this overall rise in lake level, a second influx of water from Lake Agassiz temporarily raised lake levels an unknown amount about 9.1 ka. At about 7 ka, lake level may have fallen below the level of the outlet because of sharply drier climate. Sometime between 6 and 5 ka, the character of the lake changed dramatically, probably due mostly to climatic causes, becoming highly undersaturated with respect to calcium carbonate and returning primary control of lake level to the isostatically rising North Bay outlet. Post-Nipissing (about 5 ka) lake level has

  2. The record of historic earthquakes in lake sediments of Central Switzerland

    NASA Astrophysics Data System (ADS)

    Monecke, Katrin; Anselmetti, Flavio S.; Becker, Arnfried; Sturm, Michael; Giardini, Domenico

    2004-12-01

    Deformation structures in lake sediments in Central Switzerland can be attributed to strong historic earthquakes. The type and spatial distribution of the deformation structures reflect the historically documented macroseismic intensities thus providing a useful calibration tool for paleoseismic investigations in prehistoric lake sediments. The Swiss historical earthquake catalogue shows four moderate to strong earthquakes with moment magnitudes of Mw=5.7 to Mw=6.9 and epicentral intensities of I0=VII to I0=IX that affected the area of Central Switzerland during the last 1000 years. These are the 1964 Alpnach, 1774 Altdorf, 1601 Unterwalden, and 1356 Basel earthquakes. In order to understand the effect of these earthquakes on lacustrine sediments, four lakes in Central Switzerland (Sarner See, Lungerer See, Baldegger See, and Seelisberg Seeli) were investigated using high-resolution seismic data and sediment cores. The sediments consist of organic- and carbonate-rich clayey to sandy silts that display fine bedding on the centimeter to millimeter scale. The sediments are dated by historic climate and environmental records, 137Cs activity, and radiocarbon ages. Deformation structures occur within distinct zones and include large-scale slumps and rockfalls, as well as small-scale features like disturbed and contorted lamination and liquefaction structures. These deformations are attributed to three of the abovementioned earthquakes. The spatial distribution of deformation structures in the different lakes clearly reflects the historical macroseismic dataset: Lake sediments are only affected if they are situated within an area that underwent groundshaking not smaller than intensity VI to VII. We estimate earthquake size by relating the epicentral distance of the farthest liquefaction structure to earthquake magnitude. This relationship is in agreement with earthquake size estimations based on the historical dataset.

  3. Sedimentary Records of Non-Aroclor and Aroclor PCB mixtures in the Great Lakes.

    PubMed

    Hu, Dingfei; Martinez, Andres; Hornbuckle, Keri C

    2011-06-01

    Three sediment cores from Lake Ontario, Lake Erie and Indiana Harbor Ship Canal were collected, segmented and analyzed for Aroclor and non-Aroclor polychlorinated biphenyl congeners (PCBs). PCBs associated with the commercially produced Aroclor mixtures 1248 and 1254 dominate the sediment signal and the sum of all congeners (ΣPCB) peaks in concentration and accumulation around 1970 in the Great Lakes. This trend is very similar to Aroclor production history. In the Indiana Harbor Ship Canal, PCBs appear around 1935 and remain at very high levels between 1940 and 1980, probably reflecting the history of use at the nearby steel mill. In contrast, the non-Aroclor PCBs in the Lake Ontario and IHSC sediment cores, including PCB11 and heavily chlorinated congeners PCB206, 207, 208 and 209 reach a peak in the 1950s, decline and peak again in the 1970s or in the early 1980s. All five congeners have been previously measured in commercial paint pigment. PCB11 was found to peak about 5 years later than ΣPCBs, and is probably associated with the production or use history of diarylide yellow pigments. The temporal distribution profiles of these non-Aroclor PCBs are well correlated with the production history of paint pigments and dyes. Although it is well known that the production of Aroclor PCBs is preserved in Great Lakes sediments, this study is the first to show that production of non-Aroclors are also preserved in the sediments as a record of long term trends in environmental exposure.

  4. Legacy of a half century of Athabasca oil sands development recorded by lake ecosystems

    PubMed Central

    Kurek, Joshua; Kirk, Jane L.; Muir, Derek C. G.; Wang, Xiaowa; Evans, Marlene S.; Smol, John P.

    2013-01-01

    The absence of well-executed environmental monitoring in the Athabasca oil sands (Alberta, Canada) has necessitated the use of indirect approaches to determine background conditions of freshwater ecosystems before development of one of the Earth’s largest energy deposits. Here, we use highly resolved lake sediment records to provide ecological context to ∼50 y of oil sands development and other environmental changes affecting lake ecosystems in the region. We show that polycyclic aromatic hydrocarbons (PAHs) within lake sediments, particularly C1-C4–alkylated PAHs, increased significantly after development of the bitumen resource began, followed by significant increases in dibenzothiophenes. Total PAH fluxes in the modern sediments of our six study lakes, including one site ∼90 km northwest of the major development area, are now ∼2.5–23 times greater than ∼1960 levels. PAH ratios indicate temporal shifts from primarily wood combustion to petrogenic sources that coincide with greater oil sands development. Canadian interim sediment quality guidelines for PAHs have been exceeded since the mid-1980s at the most impacted site. A paleoecological assessment of Daphnia shows that this sentinel zooplankter has not yet been negatively impacted by decades of high atmospheric PAH deposition. Rather, coincident with increases in PAHs, climate-induced shifts in aquatic primary production related to warmer and drier conditions are the primary environmental drivers producing marked daphniid shifts after ∼1960 to 1970. Because of the striking increase in PAHs, elevated primary production, and zooplankton changes, these oil sands lake ecosystems have entered new ecological states completely distinct from those of previous centuries. PMID:23297215

  5. Sedimentary Records of Non-Aroclor and Aroclor PCB mixtures in the Great Lakes

    PubMed Central

    HU, DINGFEI; MARTINEZ, ANDRES; HORNBUCKLE, KERI C.

    2012-01-01

    Three sediment cores from Lake Ontario, Lake Erie and Indiana Harbor Ship Canal were collected, segmented and analyzed for Aroclor and non-Aroclor polychlorinated biphenyl congeners (PCBs). PCBs associated with the commercially produced Aroclor mixtures 1248 and 1254 dominate the sediment signal and the sum of all congeners (ΣPCB) peaks in concentration and accumulation around 1970 in the Great Lakes. This trend is very similar to Aroclor production history. In the Indiana Harbor Ship Canal, PCBs appear around 1935 and remain at very high levels between 1940 and 1980, probably reflecting the history of use at the nearby steel mill. In contrast, the non-Aroclor PCBs in the Lake Ontario and IHSC sediment cores, including PCB11 and heavily chlorinated congeners PCB206, 207, 208 and 209 reach a peak in the 1950s, decline and peak again in the 1970s or in the early 1980s. All five congeners have been previously measured in commercial paint pigment. PCB11 was found to peak about 5 years later than ΣPCBs, and is probably associated with the production or use history of diarylide yellow pigments. The temporal distribution profiles of these non-Aroclor PCBs are well correlated with the production history of paint pigments and dyes. Although it is well known that the production of Aroclor PCBs is preserved in Great Lakes sediments, this study is the first to show that production of non-Aroclors are also preserved in the sediments as a record of long term trends in environmental exposure. PMID:23538476

  6. The altered ecology of Lake Christina: a record of regime shifts, land-use change, and management from a temperate shallow lake.

    PubMed

    Theissen, Kevin M; Hobbs, William O; Hobbs, Joy M Ramstack; Zimmer, Kyle D; Domine, Leah M; Cotner, James B; Sugita, Shinya

    2012-09-01

    We collected two sediment cores and modern submerged aquatic plants and phytoplankton from two sub-basins of Lake Christina, a large shallow lake in west-central Minnesota, and used stable isotopic and elemental proxies from sedimentary organic matter to explore questions about the pre- and post-settlement ecology of the lake. The two morphologically distinct sub-basins vary in their sensitivities to internal and external perturbations offering different paleoecological information. The record from the shallower and much larger western sub-basin reflects its strong response to internal processes, while the smaller and deeper eastern sub-basin record primarily reflects external processes including important post-settlement land-use changes in the area. A significant increase in organic carbon accumulation (3-4 times pre-settlement rates) and long-term trends in δ(13)C, organic carbon to nitrogen ratios (C/N), and biogenic silica concentrations shows that primary production has increased and the lake has become increasingly phytoplankton-dominated in the post-settlement period. Significant shifts in δ(15)N values reflect land-clearing and agricultural practices in the region and support the idea that nutrient inputs have played an important role in triggering changes in the trophic status of the lake. Our examination of hydroclimatic data for the region over the last century suggests that natural forcings on lake ecology have diminished in their importance as human management of the lake increased in the mid-1900s. In the last 50 years, three chemical biomanipulations have temporarily shifted the lake from the turbid, algal-dominated condition into a desired clear water regime. Two of our proxies (δ(13)C and BSi) measured from the higher resolution eastern basin record responded significantly to these known regime shifts.

  7. The Record of Geomagnetic Excursions from a ~150 m Sediment Core: Clear Lake, Northern California

    NASA Astrophysics Data System (ADS)

    Levin, E.; Byrne, R.; Looy, C. V.; Wahl, D.; Noren, A. J.; Verosub, K. L.

    2015-12-01

    We are studying the paleomagnetic properties of a new ~150 meter drill core from Clear Lake, CA. Step-wise demagnetization of the natural remanent magnetism (NRM) yields stable directions after 20 mT, implying that the sediments are reliable recorders of geomagnetic field behavior. Several intervals of low relative paleointensity (RPI) from the core appear to be correlated with known geomagnetic excursions. At about 46 m depth, and ~33 ka according to an age model based on radiocarbon dates obtained from pollen and the Olema ash bed, a low RPI zone seems to agree with the age and duration of the Mono Lake Excursion, previously identified between 32 and 35 ka. Slightly lower in the core, at about 50 m depth and ~40 ka, noticeably low RPI values seem to be coeval with the Laschamp excursion, which has been dated at ~41 ka. A volcanic ash near the bottom of the core (141 mblf) is near the same depth as an ash identified in 1988 by Andrei Sarna-Wojcicki and others as the Loleta ash bed in a previous Clear Lake core. If the basal ash in the new core is indeed the, Loleta ash bed, then the core may date back to about 270-300 ka. Depending on the age of the lowest ash, a sequence of low RPI intervals could correlate with the Blake (120 ka), Iceland Basin (188 ka), Jamaica/Pringle Falls (211 ka), and CR0 (260 ka) excursions. Correlation of the low RPI intervals to these geomagnetic excursions will help in the development of a higher resolution chronostratigraphy for the core, resolve a long-standing controversy about a possible hiatus in the Clear Lake record, and provide information about climatically-driven changes in sedimentation.

  8. Earthquake Records of North Anatolian Fault from Sapanca Lake Sediments, NW Anatolia

    NASA Astrophysics Data System (ADS)

    Yalamaz, Burak; Cagatay, Namık; Acar, Dursun; Demirbag, Emin; Gungor, Emin; Gungor, Nurdan; Gulen, Levent

    2014-05-01

    We determined earthquake records in sediment cores of Sapanca Lake which is a pull-apart basin located along the North Anatolian Fault zone in NW Anatolia. The lake has a maximum depth of 55 m, and a surface area of 46.8 km2, measuring 16 km in E-W and 5 km in N-S directions. A systematic study of the sedimentological, physical and geochemical properties of three water-sediment interface cores, up to 75.7 cm long, located along depth transects ranging from 43 to 51.5 m water depths. The cores were analyzed using Geotek Multi Sensor Core Logger (MSCL) for physical properties, laser particle size analyzer for granulometry, TOC Analyzer for Total Organic Content (TOC) and Total Inorganic Carbon (TIC) analysis, Itrax-XRF Core Scanner for elemental analysis and digital X-RAY Radiography. The geochronology was determined using AMS radiocarbon and radionuclide methods. The Sapanca Lake earthquake records are characterized by mass flow units consisting of grey or dark grey coarse to fine sand and silty mud with sharp basal and transional upper boundaries. The units commonly show normal size grading with their basal parts showing high density, and high magnetic susceptibility and enrichment in one or more elements, such as Si, Ca, Tİ, K, Rb, Zr and Fe, indicative of coarse detrial input. Based on radionuclide and radiocarbon analyses the mass flow units are correlated with 1999 İzmit and Düzce earthquakes (Mw=7.4 and 7.2, respectively) , 1967 Mudurnu earthquake (Mw= 6,8), and 1957 Abant (Mw= 7.1) earthquake. Keywords: Sapanca Lake, North Anatolian Fault, Earthquake, Grain size, Itrax-XRF, MSCL

  9. A full-vector paleomagnetic secular variation record (PSV) from Pyramid Lake (Nevada) from 47-17 ka: Evidence for the successive Mono Lake and Laschamp Excursions

    NASA Astrophysics Data System (ADS)

    Lund, S.; Benson, L.; Negrini, R.; Liddicoat, J.; Mensing, S.

    2017-01-01

    We have carried out a paleomagnetic study of late-Pleistocene Pyramid Lake core PLC08-1 (1680 cm). Our goals were to develop a full-vector paleomagnetic secular variation (PSV) record for the core, establish a paleomagnetic chronostratigraphy for the lake based on correlation of the PSV record to other dated PSV records in the region, compare that chronostratigraphy with previously developed radiocarbon and ash chronologies, and search for evidence of the Mono Lake Excursion and Laschamp Excursion. We have recovered a full-vector PSV record (inclination, declination, relative paleointensity) for the interval 47 ka to 17 ka. Twenty radiocarbon dates and four dated ashes provided a chronostratigraphic framework for this record. We have also used the link between our PSV and other dated PSV records to develop an independent PSV chronostratigraphy for the core. The PSV chronostratigraphy is not significantly different from that estimated by the radiocarbon and ash chronologies. We note the existence of two intervals of anomalous paleomagnetic directions. The younger interval, centered at 34.1 ± 0.4 ka, has the characteristic vector component features of the Mono Lake Excursion. The older interval, centered at 40.9 ± 0.5 ka, has the characteristic paleomagnetic signature of the Laschamp Excursion. This is the first time both intervals of excursional behavior have been found in the same sediment record from the western USA. Our new PSV record also corroborates previous estimates of the Mono Lake Excursion directional field behavior (Liddicoat and Coe, 1979) and age (Benson et al., 2003).

  10. Multiproxy Paleoenvironmental Records Spanning the INTIMATE Timescale from Auckland Maar Lakes, New Zealand

    NASA Astrophysics Data System (ADS)

    Augustinus, Paul; D'Costa, Donna; Stephens, Tom; Atkin, Dan; Shane, Phil; Cochran, Ursula; Snowball, Ian; Nilsson, Andreas; Street-Perrott, Alayne; Davies, Sarah

    2010-05-01

    High-resolution Late Quaternary paleoclimate archives are preserved in the lake sediment records contained in several maar craters from the Auckland region in northern New Zealand. Tephrochronology, AMS 14C and Ar/Ar -based chronostratigraphies were developed with several lakes containing laminated sediment records spanning much of the last glacial cycle. A multi-proxy approach was taken to construct a reliable record of local and regional paleoenvironments including: pollen and diatom paleoecology, environmental magnetism, grain size, XRF geochemistry, TOC, TN, TS, organic matter δ13C, δ15N and δD, as well as δ18O in biogenic silica. Pollen and diatom analysis of records spanning the last ca 60 ka show marked vegetation changes that reflect orbital forcing, although diatoms suggest significant hydrological changes that are not reflected in the pollen. Reduction of forest with expansion of grass and shrublands at the start of the LGM (29 ka BP), is accompanied by cool, dry and windy conditions, although the situation is complex with multiple brief warmer phases punctuating the LGM. Post-glacial warming commenced ca 17.9 ka BP and is reflected in several proxies, although the pollen record does not display the marked changes displayed in many of the other proxies during the LGIT and Holocene. Some of the inferred environmental changes are similar to the nature and timing of short-duration events during the last glacial cycle from the North Atlantic region, although others appear to reflect a southern polar forcing. The multi-proxy approach used has produced one of the most complete, well-dated and high-resolution paleoenvironmental records spanning the INTIMATE timescale from the mid-latitude Southern Hemisphere with implications for the nature, timing and forcings of climate change in the Southwest Pacific region.

  11. Sedimentary and Volcanic Records of the Laschamp and Mono Lake Excursions from Australia and New Zealand

    NASA Astrophysics Data System (ADS)

    Ingham, E. M.; Roberts, A. P.; Turner, G. M.; Heslop, D.; Ronge, T.; Conway, C.; Leonard, G.; Townsend, D.; Tiedemann, R.; Lamy, F.; Calvert, A. T.

    2014-12-01

    Geomagnetic excursions are short-lived deviations of the geomagnetic field from the normal range of secular variation. Despite significant advances in geomagnetic excursion research over the past 20 years, fundamental questions remain concerning the typical duration and global morphology of excursional geomagnetic fields. To answer such questions, more high-resolution, chronologically well-constrained excursion records are required, particularly from the Southern Hemisphere. We present preliminary paleomagnetic records of the Laschamp (~41 ka) and Mono Lake (~35 ka) excursions from three marine sediment cores from the Bounty Trough, New Zealand margin, and complementary volcanic records of the Laschamp excursion from lavas of Mt Ruapehu, New Zealand. Relatively high sedimentation rates of 12 - 26 cm/kyr in the Bounty Trough during glacial periods allow identification of excursional field behavior at each of the studied core locations. Each core displays one or two excursional events, with rapid directional swings between stable normal polarity and reversed excursional directions, each associated with coincident relative paleointensity minima. These anomalous paleomagnetic directions are interpreted to represent the Laschamp and Mono Lake excursions, based on a combination of tephrochronology, radiocarbon dating, and cyclostratigraphy (defined from core-scanning X-ray fluorescence and magnetic susceptibility records). Beside these records, we present results from fourteen lava flows, on Mt Ruapehu, for which 40Ar-39Ar dating indicates ages of between 39 and 45 ka. The step heating 40Ar-39Ar experiments produced particularly flat age plateaus, with corresponding 2 s.d. errors mostly approaching 1 kyr. The youngest and oldest flows carry normal polarity magnetization, however six flows, dated between 41 and 43 ka, display transitional field characteristics. Three of these flows display a declination swing of around 180o, which coincides with a previously published

  12. Late Holocene Environmental Reconstruction and Flood Records of Lake Bafa, Western Turkey

    NASA Astrophysics Data System (ADS)

    Yalamaz, Burak; Bulkan, Özlem; Namık Çaǧatay, M.; Acar, Dursun

    2016-04-01

    Lake Bafa is a significant inland lake located in the Büyük Menderes River Basin near the Aegean Sea in the horst and graben system of western Turkey. Lake Bafa was part of the ancient Gulf of Latmos that was gradually filled by the prograding sediments of Büyük Menderes River during the Holocene transgression, and resulted in the creation of the Lake in the southern part. The lake is presently located 15 km from the shoreline, 2 m above sea level. It has a maximum depth of 21 m and surface area of 60 km2. We used multi-proxy analyses of a 4.17 m-long core extending back to ca. 2300 years from the central depo centre of the lake. The objectives are to reconstruct the environmental evolution of the Lake Bafa as it changed from a marginal marine to a lacustrine environment, and to investigate the flood records during the past 2300 yrs. The core is composed of three units: an uppermost lacustrine unit, a unit representing marine to lacustrine conditions and a lowermost marine unit. The uppermost lacustrine unit is 1 m-thick, homogenous clayey silt mud layer with relatively high total organic carbon (TOC= 2.5 - 4.5 %), high total inorganic carbon (TIC = 1.8 -4.5 %) and low detrital input (Si, K, Zr, Ti). According to AMS radiocarbon dating, it was deposited over the last 600 yrs under brackish lacustrine conditions. The underlying unit is 2 m-thick, and consists of banded mud layers with relatively low TOC (1.2-4 %) and TIC (1.2-3.5) contents and high detrital input. Its fossil content, with scarce Cardium sp. and Ammonia sp., indicates that it was deposited under brackish water conditions and represents a transition from marine to lacustrine environments. The unit was deposited between ca. 600 and 1750 yrs BP, and includes frequent flood units ranging up to 10 cm-thick fine sand- to clay-bearing coarse silt. The lowermost unit is characterized by relatively high TOC (2-5.5 %), TIC (1.5-3.5 %) contents and high detrital input. With its abundant Cardium sp. and

  13. Multi-scale hydroclimate reconstruction using co-located lake and bog records from Maine and comparison with other records from the Northeast US

    NASA Astrophysics Data System (ADS)

    Nolan, C.; Shuman, B. N.; Booth, R.; Jackson, S. T.

    2015-12-01

    Sedimentary lake-level records and ombrotrophic bog water-table depth records both document hydrologic variability over the Holocene. Lake level records have long temporal length (10,000+ years) and fidelity in preserving low-frequency trends and centennial to millennial length events. Hydrologic reconstructions based on peatland testate amoebae assemblage composition are sensitive to moisture variability at interannual to multidecadal time scales and precipitation on the bog surface is the sole moisture input. However, bog records are generally not as long as lake level records and bog development processes can confound centennial to millennial trends. In this study we present and combine new reconstructions from Giles Pond, Aurora, Maine, USA and Caribou Bog, Old Town, ME USA. The lake-level record from Giles Pond extends a network of lake-level records from southern New England that show an orbitally driven long-term trend toward wetter conditions punctuated by low-water phases in the mid- to late-Holocene that each lasted 100 to 400+ years. Some of these low lake level events appear to be synchronous across multiple sites in New England (Newby, et al. 2014 GRL). Preliminary data from Giles Pond suggest that some of these events extended all the way to Maine. Thus, there were New England-wide dry periods within the last 5000 years that lasted more than 100 years. These long low stands are unlike anything observed during the historical period and the interannual to decadal variability during these low stands is poorly understood. This leads to challenges in understanding the modern and future implications of the lake-level record alone. The Caribou Bog record also builds on a network of peatland water-table reconstructions from the Northeast, and contributes higher-resolution hydroclimate information that adds interannual to multidecadal texture to the centennial to millennial variability of the Giles Pond record. Our multiproxy approach allows us to use the

  14. Constructing a precise and robust chronology for the varved sediment record of Lake Czechowskie (Poland)

    NASA Astrophysics Data System (ADS)

    Ott, Florian; Brauer, Achim; Słowiński, Michał; Wulf, Sabine; Putyrskaya, Victoria; Blaszkiewicz, Miroslaw

    2014-05-01

    Annually laminated (varved) sediment records are essential for detailed investigations of past climate and environmental changes as they function as a natural memory far beyond instrumental datasets. However, reliable reconstructions of past changes need a robust chronology. In order to determine Holocene inter-annual and decadal-scale variability and to establish a precise time scale we investigated varved sediments of Lake Czechowskie (53°52' N/ 18°14' E, 108 m a.s.l.), northern Poland. During two coring campaigns in 2009 and 2012 we recovered several long and short cores with the longest core reaching 14.25 m. Here we present a multiple dating approach for the Lake Czechowskie sediments. The chronology comprises varve counting for the Holocene time period and AMS 14C dating (19 plant macro remains and two bulk samples) for the entire sediment record reaching back to 14.0 cal ka BP. Varve counting between 14C dated samples and Bayesian age modeling helped to identify and omit samples either too old or too young caused by redeposition or too low C contents, respectively. The good agreement between varve chronology and modeled age based on radiocarbon dates proves the robust age control for the sediment profile. Additionally, independent chronological anchor points derived from (i) 137Cs activity concentration measurements for the last ca. 50 years and (ii) newly detected tephra layers of the Askja AD 1875 eruption and the Laacher See Tephra (12880 varve yrs BP) are used as precise dated isochrones. These volcanic ash layers can be further used as tie points to synchronize and correlate different lake records and to investigate local and regional differences to climatic and environmental changes over a wider geographic region on a common age scale. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association and the Helmholtz Association climate initiative REKLIM topic 8 "Rapid

  15. Holocene environmental change in southwest Turkey: a palaeoecological record of lake and catchment-related changes

    NASA Astrophysics Data System (ADS)

    Eastwood, W. J.; Roberts, N.; Lamb, H. F.; Tibby, J. C.

    1999-04-01

    Percentage, concentration and accumulation pollen data together with diatom and non-siliceous microfossil data are presented for the site of Gölhisar Gölü (37°8'N, 29°36'E; elevation 930 m), a small intramontane lake in Burdur Province, southwest Turkey. Microfossil assemblages from the longest sediment core (GHA: 813 cm) record changes in local and regional vegetation and lake productivity over the last ˜9500 years. Pollen spectra indicate that vegetation progressed from an open landscape with an increase in arboreal pollen occurring ˜8500 BP to mixed forest comprising oak, pine and juniper until around 3000 BP (Cal ˜1240 BC) when a human occupation phase becomes discernible from the pollen spectra. This occurs shortly after the deposition of a volcanic tephra layer which originated from the Minoan eruption of Santorini (Thera) and radiocarbon dated to 3330±70 yr BP (Cal ˜1600 BC). This human occupation phase is comparable to the Beyşehir Occupation phase recorded at other sites in southwest Turkey and involved forest clearance and the cultivation of fruit trees such as Olea, Juglans, Castanea and Vitis together with arable cereal growing and pastoralism. The presence of pollen types associated with the Beyşehir Occupation phase in deposits above the Santorini tephra layer confirms a Late Bronze Age/early Anatolian Dark Age date for its commencement. Since ˜3000 BP notable changes in aquatic ecology associated with tephra deposition and subsequent nutrient and sediment flux from the lake catchment are recorded. The Beyşehir Occupation phase at Gölhisar Gölü came to an end around 1300 BP (Cla AD ˜700) when pine appears to have become the dominant forest tree.

  16. Reconstructing a long-term record of microcystins from the analysis of lake sediments.

    PubMed

    Zastepa, A; Taranu, Z E; Kimpe, L E; Blais, J M; Gregory-Eaves, I; Zurawell, R W; Pick, F R

    2017-02-01

    Based on an analysis of sediment cores from Baptiste Lake (Alberta, Canada), we quantified century-scale trends in cyanobacteria and cyanotoxins, and identified possible drivers of toxigenic cyanobacteria. We measured concentrations of microcystins and pigments preserved in the sediment as proxies of toxigenic cyanobacteria and phytoplankton communities, respectively, while fossil diatom assemblages were used to infer past nutrient concentrations. Microcystins were detected in older sediments (ca. 1800s), pre-dating any significant alteration to the watershed. This demonstrates that toxigenic cyanobacteria may not be a recent phenomenon in eutrophic ecosystems. The dominant variants of microcystin throughout the sediment core were microcystin-LA and microcystin-LR. Other congeners including -LY, -7dmLR, -WR, -LF, -YR, and -LW (-RR was not detected) were mainly found in the upper layers of sediment (post 1980s). Starting in the 1990s, concentrations of microcystins both in the water column and in the sediment record increased in parallel. Total sediment microcystins were strongly correlated with historical nitrogen and phosphorus concentrations inferred from diatom assemblages (r=0.80-0.81, p<0.001, n=22); both nutrients increased over the past two decades coincident with the intensification of agriculture. Microcystins also tracked the rise in cyanobacterial pigments present throughout the core. In contrast, we found no relationship between climate-related variables and sediment microcystin concentrations, although such relationships were detected over the monitoring record with respect to water column concentrations. Overall, the rise in sediment microcystins was much greater than the rise in sediment cyanobacteria and diatom inferred nutrient concentrations. Furthermore, we demonstrate that the reconstruction of the microcystin sediment record can provide important insight for the development of realistic lake management goals. Applying this analytical approach

  17. Using LANDSAT to expand the historical record of phytoplankton blooms in Lake Erie

    NASA Astrophysics Data System (ADS)

    Ho, J. C.; Michalak, A. M.; Stumpf, R. P.; Bridgeman, T. B.

    2014-12-01

    Freshwater harmful algal blooms are occurring with increasing frequency worldwide, intensifying the need for deeper understanding of the processes driving bloom formation. Such understanding is a prerequisite for developing management strategies for limiting bloom occurrence. Unfortunately, however, data for developing robust predictive models of bloom formation are lacking. Even in the well-studied Lake Erie, where diatom and cyanobacteria blooms have occurred for several decades in the Western Basin, previous in-situ and remote-sensing data collection efforts have been hampered by spatial and temporal sampling limitations, resulting in a sparse historical record. Leveraging available data to expand the historical record of algal blooms would thus make it possible to better evaluate hypotheses about factors influencing bloom formation. In this work, remotely-sensed observations of phytoplankton obtained using LANDSAT imagery are presented for 1984-2011. Several phytoplankton detection algorithms based on LANDSAT 5 imagery are evaluated during the period also covered by MERIS (2002-2011), which offers a relatively detailed assessment of bloom occurrence over the last decade. The best algorithm is then applied to historical LANDSAT data, and results are used to obtain new information about historical conditions and assess implications for developing improved models of bloom formation. Estimates of historical bloom occurrence and bloom seasonality shed new light on the widely-held view that phosphorus controls and invasive mussels resulted in substantial bloom reductions in the early 1990s. The new estimated records are not consistent with limited in-situ phytoplankton measurements from that period, and provide additional information on bloom occurrence during years with little to no supporting literature. This work demonstrates the potential to unearth new insights about historical phytoplankton blooms in Lake Erie, as well as in freshwater lakes broadly, and is a

  18. A 1300 Year Sub-Decadally Resolved Hydrologic Record from the Coastal Southwestern United States (Crystal Lake, CA)

    NASA Astrophysics Data System (ADS)

    Palermo, J. A.; Kirby, M. E.

    2015-12-01

    This study presents a 1300 year sub-decadally resolved record of hydrologic variability from coastal southwestern United States (Crystal Lake, CA). Crystal Lake is a small (0.02 km2), alpine landslide dammed lake in the Angeles National Forest of the San Gabriel Mountains. The hydrologically closed lake is the only permanent, freshwater lake in the range; its catchment is small (0.77 km2). In May 2014, lake depth measured 5.5 m, however the spillover point in the southeastern end of the lake indicates a max depth of ~50 m. Two Livingston piston cores were taken in May 2014, 15 m apart in the lake's depocenter. Magnetic susceptibility, LOI 550 °C and 950 °C, and grain size were measured at 1 cm contiguous intervals; C:N ratios and C and N isotopic analyses were measured every 2 cm. In addition, representative allochthonous and autochthonous vegetation were collected within the drainage basin for δ13Corg values. An age model was generated using Bacon v2.2, based on 11 AMS 14C dates of discrete organic matter (i.e. charcoal or wood). Age control for the past 200 years is based on correlation to Rothenberg et al. (2010) core ages. Initial results suggest a history of event sedimentation (large storms) superimposed on multi-decadal to centennial hydrologic changes (wet vs. dry periods) such as the Little Ice Age and the Medieval Climate Anomaly. Additionally, the Crystal Lake record is compared to preexisting regional records to further explore the record's spatial coherence. Mechanisms driving these hydrologic shifts are explored.

  19. Pathogenic fungus Batrachochytrium dendrobatidis in marbled water frog Telmatobius marmoratus: first record from Lake Titicaca, Bolivia.

    PubMed

    Cossel, John; Lindquist, Erik; Craig, Heather; Luthman, Kyle

    2014-11-13

    The pathogenic fungus Batrachochytrium dendrobatidis (Bd) has been associated with amphibian declines worldwide but has not been well-studied among Critically Endangered amphibian species in Bolivia. We sampled free-living marbled water frogs Telmatobius marmoratus (Anura: Leptodactylidae) from Isla del Sol, Bolivia, for Bd using skin swabs and quantitative polymerase chain reactions. We detected Bd on 44% of T. marmoratus sampled. This is the first record of Bd in amphibians from waters associated with Lake Titicaca, Bolivia. These results further confirm the presence of Bd in Bolivia and substantiate the potential threat of this pathogen to the Critically Endangered, sympatric Titicaca water frog T. culeus and other Andean amphibians.

  20. A late Holocene record of solar-forced atmospheric blocking variability over Northern Europe inferred from varved lake sediments of Lake Kuninkaisenlampi

    NASA Astrophysics Data System (ADS)

    Saarni, Saija; Muschitiello, Francesco; Weege, Stefanie; Brauer, Achim; Saarinen, Timo

    2016-12-01

    This study presents a new varved lake sediment sequence from Lake Kuninkaisenlampi, Eastern Finland. The record is constituted by alternations of clastic and biogenic laminae and provides a precise chronology extending back to 3607 ± 94 varve yrs. BP. The seasonality of the boreal climatic zone, with cold winters and mild summers, is reflected in the varve structure as a succession of three laminae from bottom to top, (i) a coarse to fine-grained detrital lamina marked by detrital catchment material transported by spring floods; (ii) a biogenic lamina with diatoms, plant and insect remnants reflecting biological productivity during the season of lake productivity; and (iii) a very fine amorphous organic lamina deposited during the winter stratification. The thickness of the detrital lamina in the lake reflects changes in the rate of spring snow melt in the catchment and is, therefore, considered a proxy for winter conditions. Hence, the record allows reconstructing local climate and environmental conditions on inter-annual to the multi-centennial timescales. We find that minerogenic accumulation reflected in the detrital lamina exhibits a high multi-decadal to centennial-scale spectral coherency with proxies for solar activity, such as Δ14C, and Total Solar Irradiance, suggesting a strong link between solar variability and sediment transport to the lake basin. Increased catchment erosion is observed during periods of low solar activity, which we ascribe to the development of more frequent atmospheric winter blocking circulation induced by solar-forced changes in the stratosphere. We suggest that soil frost in the catchment of Lake Kuninkaisenlampi related to more frequent winter blocking led to increased surface run-off and ultimately to increased catchment erosion during spring. We conclude that, during the past ca 3600 years, solar forcing may have modulated multi-decadal to centennial variations in sedimentation regimes in lakes from Eastern Finland and

  1. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries.

    PubMed

    Thevenon, Florian; Graham, Neil D; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (>100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents.

  2. Preliminary tephra-fall records from three lakes in the Anchorage, Alaska area: advances towards a regional tephrochronostratigraphic framework

    NASA Astrophysics Data System (ADS)

    Wallace, K. L.; Kaufman, D. S.; Schiff, C. J.; Kathan, K.; Werner, A.; Hancock, J.; Hagel, L. A.

    2010-12-01

    Sediment cores recovered from three kettle lakes, all within 10 km of Anchorage, Alaska contain a record of tephra fall from major eruptive events of Cook Inlet volcanoes during the past 11250 yr. Prominent tephra layers from multiple cores within each lake were first correlated within each basin using physical properties, major-oxide glass geochemistry, and constrained by bracketing radiocarbon age. Distinct tephra from each lake were then correlated among all three lakes using the same criteria to develop a composite tephrostratigraphic framework for the Anchorage area. Lorraine Lake, the northern-most lake contains 17 distinct tephra layers; Goose Lake, the eastern most lake contains 10 distinct tephra layers; and Little Campbell Lake, to the west, contains 7 distinct tephra layers. Thinner, less-prominent tephra layers, reflecting smaller or more distant eruptions, also occur but are not included as part of this study. Of the 33 tephra layers, only two could be confidently correlated among all three lakes, and four other correlative deposits were recognized in two of the three lakes. The minimum number of unique major tephra-fall events in the Anchorage area is 22 in the past 11200 years, or about 1 event every 500 years. This number underestimates the actual number of eruptions because not attempt was made to locate crypto-tephra. All but perhaps one tephra deposit originated from Cook Inlet volcanoes with the most prolific source being Mount Spurr/Crater Peak, which is accountable for at least 8 deposits. Combining radiocarbon ages to produce an independent age model for each lake is in progress and will aid in confirming correlations and assigning detailed modeled-tephra age and uncertainty to each tephra layer.

  3. Historical record and source apportionment of polycyclic aromatic hydrocarbons in the Lianhuan Lake sediments.

    PubMed

    Sun, Li; Zang, Shuying; Xiao, Haifeng

    2011-07-01

    Polycyclic aromatic hydrocarbons (PAHs) in a sediment core from the north Lianhuan Lake were collected to investigate its historical changes in the last one hundred years and its possible influence on ecological system in the lake. GC-MS was used to determine the concentrations of PAHs, and sediment chronological age was examined by (137)Cs dating approach. The concentrations of 16 different kinds of PAHs in the sediment samples ranged from 297 to 1,327 ng g(-1), and the low molecular weight (LMW) were predominant. The intensification of industrial and anthropogenic activities in the Daqing oil field may play the key role in the increase of PAHs concentrations in the late 1950s. To the early 1980s, the PAHs concentrations significantly decreased due to the grain size coarsening in the sediment samples, which was confirmed by the precipitation information. The 5-6 rings PAHs concentrations increased in the early 1980s may be attributed to the consumption of petroleum, coal and wood. The results showed that both the PAHs historical record and current concentrations may cause some influence on the Lianhuan Lake ecological system. The toxicology research on this ecological system should be done in the further investigations for determining the PAHs damage on human and ecological system health.

  4. Varve deposition and the sediment yield record at three small lakes of the southern Canadian Cordillera

    SciTech Connect

    Desloges, J.R. )

    1994-05-01

    Lacustrine sediments deposited in three small glacier-fed lakes of the southern Canadian Cordillera are derived primarily from subglacial erosion and delivered via short proglacial streams or by direct melting and calving of cirque glaciers. Sediment transport and deposition during early summer is controlled by runoff-generated bottom currents and in the late summer through winter by settling from suspension. This forms distinct rhythmic laminations of silt and clay in distal lake areas. Cesium-137 content in all three lakes indicates that these are varve sediments. Time series of varve thickness covering the interval 1863 to present show distinct declines in sediment yield from 310 to less than 150 t km[sup [minus]2] a[sup [minus]1]. The decline is related to sediment exhaustion following glacier retreat from Little Ice Age maxima and the opening of intervening sediment storage sites. Annual varve thickness is significantly related to fluctuations in summer or late summer temperature highlighting the importance of ice ablation, melt-water runoff, and subglacial sediment sources in controlling deposition rates. Singular climate events, such as autumn storms provide distinctive sedimentary signatures in the varve record. Reconstructed sediment yield for the Little Ice Age is as much as 100% greater than the average Holocene rate. 39 refs., 8 figs., 2 tabs.

  5. First tephrostratigraphic results of the DEEP site record of Lake Ohrid, Macedonia

    NASA Astrophysics Data System (ADS)

    Leicher, N.; Zanchetta, G.; Sulpizio, R.; Giaccio, B.; Wagner, B.; Nomade, S.; Francke, A.; del Carlo, P.

    2015-12-01

    A tephrostratigraphic record covering the Marine Isotope Stages (MIS) 1-15 was established for the DEEP site record of Lake Ohrid (Macedonia/Albania). Major element analyses (SEM-EDS/WDS) were carried out on juvenile fragments extracted from 12 tephra layers and one cryptotephra (OH-DP-0027 to OH-DP-2060). The geochemical analyses of all of these layers suggest an origin from the Italian Volcanic Provinces, including: the Mercato tephra (8.530 ± 0.1 cal a BP) of Somma-Vesuvius, the Y-3 (29.05 ± 0.37 ka cal BP), the Y-5/Campanian Ignimbrite (39.6 ± 0.1 ka), and the X-6 (109 ± 2 ka) of the Campi Flegrei, the P11 of the Pantelleria Island (129 ± 6 ka), the Vico B (162 ± 6 ka) of the Vico volcano, the Pozzolane Rosse (457 ± 2 ka) and the Tufo di Bagni Albule (527 ±2 ka) of the Colli Albani volcanic district, and the Fall A (496 ± 3 ka, here discussed) of the Sabatini volcanic field. Furthermore, a comparison of the Ohrid record with the tephrostratigraphic records of mid-distal archives allowed the recognition of the equivalents of other less known tephra, such as the TM24-a/POP2 (101.8 ka BP) from Lago Grande di Monticchio and the Sulmona basin, the CF-V5/PRAD3225 (~ 162 ka) from the Campo Felice basin and the Adriatic Sea, the SC5 (494 ± 11 ka) from the Mercure basin, and the A11/12 (511 ± 6 ka) from the Acerno basin, whose specific volcanic origins are still poorly defined. For the first time, the Middle Pleistocene tephrostratigraphic framework of Italian volcanoes could be extended beyond Italy to the Balkan Region. The establishment of the tephrostratigraphic framework for the Lake Ohrid record provides important, independent tie-points for the age-depth model of the DEEP site sequence, which is a prerequisite for paleoclimatic and -environmental reconstructions. Furthermore, this age-depth model helps to improve and re-evaluate the chronology of both unknown and dated tephra layers. Thus, the Lake Ohrid record is candidate to become the Rosetta stone

  6. First tephrostratigraphic results of the DEEP site record of Lake Ohrid, Macedonia

    NASA Astrophysics Data System (ADS)

    Leicher, Niklas; Zanchetta, Giovanni; Sulpizio, Roberto; Giaccio, Biagio; Nomade, Sebastien; Wagner, Bernd; Francke, Alexander; Del Carlo, Paola

    2016-04-01

    A tephrostratigraphic record covering the Marine Isotope Stages (MIS) 1-15 was established for the DEEP site record of Lake Ohrid (Macedonia/Albania). Major element analyses (SEM-EDS/WDS) were carried out on juvenile fragments extracted from 12 tephra layers and one cryptotephra (OH-DP-0027 to OH-DP-2060). The geochemical analyses of all of these layers suggest an origin from the Italian Volcanic Provinces, including: the Mercato tephra (8.530 ± 0.1 cal a BP) of Somma-Vesuvius, the Y-3 (29.05 ± 0.37 ka cal BP), the Y 5/Campanian Ignimbrite (39.6 ± 0.1 ka), and the X-6 (109 ± 2 ka) of the Campi Flegrei, the P11 of the Pantelleria Island (129 ± 6 ka), the Vico B (162 ± 6 ka) of the Vico volcano, the Pozzolane Rosse (457 ± 2 ka) and the Tufo di Bagni Albule (527 ±2 ka) of the Colli Albani volcanic district, and the Fall A (496 ± 3 ka, here discussed) of the Sabatini volcanic field. Furthermore, a comparison of the Ohrid record with the tephrostratigraphic records of mid-distal archives allowed the recognition of the equivalents of other less known tephra, such as the TM24-a/POP2 (101.8 ka BP) from Lago Grande di Monticchio and the Sulmona basin, the CF-V5/PRAD3225 (~ 162 ka) from the Campo Felice basin and the Adriatic Sea, the SC5 (494 ± 11 ka) from the Mercure basin, and the A11/12 (511 ± 6 ka) from the Acerno basin, whose specific volcanic origins are still poorly defined. For the first time, the Middle Pleistocene tephrostratigraphic framework of Italian volcanoes could be extended beyond Italy to the Balkan Region. The establishment of the tephrostratigraphic framework for the Lake Ohrid record provides important, independent tie-points for the age-depth model of the DEEP site sequence, which is a prerequisite for paleoclimatic and -environmental reconstructions. Furthermore, this age-depth model helps to improve and re-evaluate the chronology of both unknown and dated tephra layers. Thus, the Lake Ohrid record is candidate to become the template for

  7. Holocene glacier activity on Kerguelen Island: preliminary results from a novel proglacial lake sediment record

    NASA Astrophysics Data System (ADS)

    Støren, Eivind; Bakke, Jostein; Arnaud, Fabien; Poulenard, Jérôme; Fanget, Bernard; Malet, Emmanuel; Sabatier, Pierre

    2016-04-01

    The Polar-regions are changing rapidly as greenhouse warming is continuing with huge impact on e.g. sea ice extent and snow cover. This change triggers teleconnections to low latitude areas challenging societies and human activity. We have, however, very little quantitative information of past climate in the Polar-regions that can be used to evaluate the potential responses and the response patterns to forcing changes and changes in boundary conditions. Whatever anthropogenic changes may occur in the future, they will be superimposed on, and interact with, natural climate variations due to all the forcing we are aware of. This means we need to better document past climate/environmental variability of the Polar-regions. Especially in the Southern Ocean there are few time series recording past climate due to few suitable land areas and the few Sub-Antarctic Islands is remote and has cumbersome logistics. Continuous terrestrial records from this region are therefore urgently needed for constraining future scenarios from earth system models. Glaciers and ice caps are still ubiquitous in the Polar-regions, although they are rapidly shrinking due to the on-going warming. The continuous sedimentary records produced by glaciers, which are stored in downstream lakes, represent supreme archives of past variability wherefrom quantitative information of key climate system components can be extracted. Kerguelen Island is located within the Antarctic Circumpolar Current and the Southern Westerly wind belt and contains several glaciers and smaller ice caps. Terrestrial archives recording past history of the glaciers at Kerguelen thus have a unique potential to record past changes in oceanic and atmospheric circulation patterns from southern mid-latitudes. Here we present preliminary results from the first distal glacier-fed lake that is sampled from Kerguelen Island. A 2.8 m long sediment core was obtained from Lac Guynemer (121masl.) located at the Peninsule Loranchet at the

  8. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change

    PubMed Central

    Stolarski, Jarosław; Bosellini, Francesca R.; Wallace, Carden C.; Gothmann, Anne M.; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D.; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-01-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry. PMID:27302371

  9. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change

    NASA Astrophysics Data System (ADS)

    Stolarski, Jarosław; Bosellini, Francesca R.; Wallace, Carden C.; Gothmann, Anne M.; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D.; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-06-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry.

  10. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change.

    PubMed

    Stolarski, Jarosław; Bosellini, Francesca R; Wallace, Carden C; Gothmann, Anne M; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-06-15

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry.

  11. A reconstruction of temperature, ice volume and atmospheric CO2 over the past 40 million years

    NASA Astrophysics Data System (ADS)

    Vutukuri, H. R.

    2012-02-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing method. Colloids are typically defined as objects having at least one dimension in the size range of a few nanometers to several micrometers that form a dispersed phase when suspended in a continuum phase. As a result of Brownian motion, the colloidal particles are able to explore configurational space, and eventually reach the equilibrium configuration that minimizes the free energy. An important feature of the colloidal particles is the possibility of controlling the size, shape, and composition. The assembly of colloidal particles has long been a rich and continuously growing area of materials science, with great potential for a broad range of applications including electronics, optics, and biotechnology. Within this field, the bulk of the research has been devoted to studying the assembly of isotropic spherical particles. Recently, there has been growing interest in the design of more complex structures to see how such a change in microstructure could influence certain material properties, especially optical properties, but also to answer the demand for more realistic model systems for molecular analogues. In this thesis, we used external electric fields to impart anisotropy into systems consisting of both isotropic and an-isotropic particles. If there is a mismatch in permittivity between the particles and the suspending medium, the colloids acquire an induced dipole moment. A major advantage of this approach is that the interactions are tunable and fully reversible. Moreover, a large number of parameters can be used to control and tune particle interactions and subsequent self-assembly in AC electric fields, including field strength and frequency, particle shape, particle and solvent dielectric properties. Interestingly, the relatively simple anisotropic dipolar interaction already gives rise to several new phases in a uniaxial field. We developed methods to produce model systems that are essentially colloidal analogues of polymer chains in all three stiffness regimes that can be observed on a single particle level, even in concentrated systems without using molecular tracers. Moreover, we obtained control over the length, and the flexibility of the bead chains. We exploited our simple thermal sintering method further for bonding polymeric colloidal particles after they have been assembled into various three-dimensional structures. Next, we discussed the generality of our method by implementing this method to close and non-close packed structures. We used our thermal annealing method to synthesize more complex shape particles such as rhombic dodecahedron particles and also we discuss the stability of the particles. We controlled the lateral position of the strings of particles with micrometer-scale precision by a combination of structured wall and electric dipoles. We investigated the self-assembly of gold nano-sheets as a function of salt in electric fields. Finally, we studied the effect of external electric fields on the phase behavior of sharp-edged colloidal cubes using optical microscopy and Monte Carlo simulations.

  12. The First 40 Million Years of Circumstellar Disk Evolution: The Signature of Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Meng, Huan Y. A.; Rieke, George H.; Su, Kate Y. L.; Gáspár, András

    2017-02-01

    We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ∼40 Myr: NGC 1333, NGC 1960, NGC 2232, NGC 2244, NGC 2362, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion OB1a and OB1b, Taurus, the β Pictoris Moving Group, ρ Ophiuchi, and the associations of Argus, Carina, Columba, Scorpius–Centaurus, and Tucana–Horologium. Our work features: (1) a filtering technique to flag noisy backgrounds; (2) a method based on the probability distribution of deflections, P(D), to obtain statistically valid photometry for faint sources; and (3) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of disks three or more times brighter than the stellar photospheres at 24 μm decays relatively slowly initially and then much more rapidly by ∼10 Myr. However, there is a continuing component until ∼35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12–20 Myr, including ∼13% of the original population, and with a post-peak mean duration of 10–20 Myr.

  13. The First 40 Million Years of Circumstellar Disk Evolution: The Signature of Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Meng, Huan; Rieke, George; Su, Kate Y. L.; Gaspar, Andras

    2017-01-01

    We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ˜40 Myr. Our work features: 1.) a filtering technique to flag noisy backgrounds; 2.) a method based on the probability distribution of deflections, P(D), to obtain statistically valid photometry for faint sources; and 3.) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of optically thick disks three or more times brighter than the stellar photospheres at 24 μm decays relatively slowly initially and then much more rapidly by ~10 Myr. However, there is a continuing component until ~35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12 - 20 Myr, including ~13% of the original population, and with a post-peak mean duration of 10 - 20 Myr.

  14. 78 FR 44597 - Notice of Approval of Record of Decision for Stehekin River Corridor Implementation Plan, Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... National Park Service Notice of Approval of Record of Decision for Stehekin River Corridor Implementation Plan, Lake Chelan National Recreation Area, North Cascades National Park Service Complex, Washington AGENCY: National Park Service, Interior. ACTION: Notice of Record of Decision. SUMMARY: Pursuant to...

  15. Holocene deglaciation of Byers Peninsula (Livingston Island, Maritime Antarctica) inferred from lake records

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Antoniades, Dermot; Giralt, Santiago; Granados, Ignacio; Toro, Manuel; Pla-Rabes, Sergi; Vieira, Gonçalo

    2014-05-01

    The South Shetland Islands are located in the northwestern tip of the Antarctic Peninsula. This area has been one of the regions in Earth where the climate warming recorded during the second half of the XXI century has been more significant (+2.5 ºC). However, a slight decrease in the rate of warming has been observed during the last decade. The HOLOANTAR project aims to provide accurate data on the Holocene climate conditions in this region in order to better frame this warming trend within the natural climate variability in the region. Our research is focused on the westernmost part of Livingston Island, Byers Peninsula, the largest ice-free area in the South Shetland Islands where tens of lakes and ponds are distributed. During the field work campaign in November-December'12 we collected the complete sedimentary sequence of four lakes distributed along a transect following the deglaciation of the peninsula: Chester, Escondido, Cerro Negro and Domo lakes. Geochemical, biological and geochronological studies are being undertaken on several of these cores. The ongoing analisys of their properties are providing insights about the Holocene palaeoenvironments and palaeoclimate conditions in Byers. In this communication we introduce the chronological framework for the Holocene deglaciation process in Byers Peninsula based on OSL, C14, Pb210 and Cs137 datings, as well as on tephrochronological data. According to these data, the deglaciation in Byers Peninsula started during the Early to Mid Holocene and continued through the Late Holocene, when the lakes distributed along the present-day moraines were formed.

  16. Sediment records of highly variable mercury inputs to mountain lakes in Patagonia during the past millennium

    NASA Astrophysics Data System (ADS)

    Ribeiro Guevara, S.; Meili, M.; Rizzo, A.; Daga, R.; Arribére, M.

    2010-04-01

    High Hg levels in the pristine lacustrine ecosystems of the Nahuel Huapi National Park, a protected zone situated in the Andes of Northern Patagonia, Argentina, have initiated further investigations on Hg cycling and source identification. Here we report Hg records in sedimentary sequences to identify atmospheric sources during the past millennium. In addition to global transport and deposition, a potential atmospheric Hg source to be considered is the local emissions associated with volcanic activity, because the Park is situated in the Southern Volcanic Zone. Two sediment cores were extracted from Lake Tonček, a small, high-altitude system reflecting mainly direct inputs associated with atmospheric contributions, and Lake Moreno Oeste, a much larger and deeper lake having an extended watershed covered mostly by native forest. The sedimentary sequences were dated based on both 210Pb and 137Cs profiles. In addition, tephra layers were identified and geochemically characterized for chronological application and to investigate any association of volcanic eruptions with Hg records. Hg concentrations in sediments were measured along with 32 other elements, as well as organic matter, subfossil chironomids, and biogenic silica. Observed background Hg concentrations, determined from the sequence domains with lower values, ranged from 50 to 100 ng g-1 dry weight (DW), whereas the surficial layers reached 200 to 500 ng g-1 DW. In addition to this traditional pattern, however, two deep domains in both sequences showed dramatically increased Hg levels reaching 400 to 650 ng g-1 DW; the upper dated to the 18th to 19th centuries, and the lower around the 13th century. These concentrations are not only elevated in the present profiles but also many-fold above the background values determined in other fresh water sediments, as were also the Hg fluxes, reaching 120 to 150 μg m-2 y-1 in Lake Tonček . No correlation was observed between Hg concentrations and the contents of

  17. Sediment records of highly variable mercury inputs to mountain lakes in Patagonia during the past millennium

    NASA Astrophysics Data System (ADS)

    Ribeiro Guevara, S.; Meili, M.; Rizzo, A.; Daga, R.; Arribére, M.

    2009-12-01

    High Hg levels in the pristine lacustrine ecosystems of the Nahuel Huapi National Park, a protected zone situated in the Andes of Northern Patagonia, Argentina, have initiated further investigations on Hg cycling and source identification. Here we report Hg records in sedimentary sequences aiming at identifying atmospheric sources during the past millennium. In addition to global transport and deposition, a potential atmospheric Hg source to be considered is the local emissions associated with volcanic activity, considering that the Park is situated in the Southern Volcanic Zone. Two sediment cores were extracted from Lake Tonček, a small, high-altitude system reflecting mainly direct inputs associated with atmospheric contributions, and Lake Moreno Oeste, a much larger and deeper lake having an extended watershed covered mostly by native forest. The sedimentary sequences were dated based on both 210Pb and 137Cs profiles. In addition, tephra layers were identified and geochemically characterized for chronological application and to investigate any association of volcanic eruptions with Hg records. Hg concentrations in sediments were measured along with 32 other elements, as well as organic matter, fossil chironomids, and biogenic silica. Observed background Hg concentrations, determined from the sequence domains with lower values, ranged from 50 to 100 ng g-1 DW (dry weight), whereas the surficial layers reached 200 to 500 ng g-1 DW. In addition to this traditional pattern, however, two deep domains in both sequences showed dramatically increased Hg levels reaching 400 to 650 ng g-1 DW; the upper dated to the 18th to 19th centuries, and the lower around the 13th century. These concentrations are not only elevated in the present profiles but also many-fold above the background values determined in other fresh water sediments, as were also the Hg fluxes, reaching 120 to 150 μg m-2 y-1 in Lake Tonček. No correlation was observed between Hg concentrations and the

  18. Holocene seasonal variability inferred from multiple proxy records from Crevice Lake, Yellowstone National Park, USA

    USGS Publications Warehouse

    Whitlock, Cathy; Dean, Walter E.; Fritz, Sherilyn C.; Stevens, Lora R.; Stone, Jeffery R.; Power, Mitchell J.; Rosenbaum, Joseph R.; Pierce, Kenneth L.; Bracht-Flyr, Brandi B.

    2012-01-01

    A 9400-yr-old record from Crevice Lake, a semi-closed alkaline lake in northern Yellowstone National Park, was analyzed for pollen, charcoal, geochemistry, mineralogy, diatoms, and stable isotopes to develop a nuanced understanding of Holocene environmental history in a region of northern Rocky Mountains that receives both summer and winter precipitation. The limited surface area, conical bathymetry, and deep water (> 31 m) of Crevice Lake create oxygen-deficient conditions in the hypolimnion and preserve annually laminated sediment (varves) for much of the record. Pollen data indicate that the watershed supported a closed Pinus-dominated forest and low fire frequency prior to 8200 cal yr BP, followed by open parkland until 2600 cal yr BP, and open mixed-conifer forest thereafter. Fire activity shifted from infrequent stand-replacing fires initially to frequent surface fires in the middle Holocene and stand-replacing events in recent centuries. Low values of δ18O suggest high winter precipitation in the early Holocene, followed by steadily drier conditions after 8500 cal yr BP. Carbonate-rich sediments before 5000 cal yr BP imply warmer summer conditions than after 5000 cal yr BP. High values of molybdenum (Mo), uranium (U), and sulfur (S) indicate anoxic bottom-waters before 8000 cal yr BP, between 4400 and 3900 cal yr BP, and after 2400 cal yr BP. The diatom record indicates extensive water-column mixing in spring and early summer through much of the Holocene, but a period between 2200 and 800 cal yr BP had strong summer stratification, phosphate limitation, and oxygen-deficient bottom waters. Together, the proxy data suggest wet winters, protracted springs, and warm effectively wet summers in the early Holocene and less snowpack, cool springs, warm dry summers in the middle Holocene. In the late Holocene, the region and lake experienced extreme changes in winter, spring, and summer conditions, with particularly short springs and dry summers and winters during

  19. A multi-proxy record of Holocene environmental change from Lake Chamo, southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebru, Tsige; Viehberg, Finn A.; Frank, Ute; Asrat, Asfawossen; Weber, Michael E.; Foerster, Verena; Wennrich, Volker; Rethemeyer, Janet; Brown, Maxwell C.; Lamb, Henry F.; Schäbitz, Frank

    2013-04-01

    The structure and evolution of East Africa Rift Valley has made the region sensitive to climate change, with alternating wet and arid periods that may have influenced human evolution. Understanding environmental change and its impact on human societies for the last few millennia may provide insights that can be applied to longer records from the region. Geophysical and geochemical data together with ostracods and sedimentary charcoal were used to reconstruct Holocene environments at Lake Chamo, a rift lake in southern Ethiopia. Humid conditions in the early to mid Holocene are inferred from high Si count and high diatom abundance. Poor calcite preservation along with relatively lowered lightness (L*) value also confirm this humid period. Abundant charcoal suggests more stable woody savanna vegetation during this time. A major change to aridity occurred at 5200 cal yr BP, as indicated by high amounts of calcite in the sediments and high ostracod abundance. The dramatic decline of charcoal concentration after this time clearly shows the vegetation response to aridity. Fluctuating value of Ca and Sr in conjunction with high colour changes during 2400 - 800 cal yr BP, reflecting the changing conditions of reducing/oxidizing reaction that might indicate the occurrence of both humid and dry periods. High catchment inwash and deposition of terrigenious material at 1500 - 800 cal yr BP indicate periods of intensive erosion. This intensive erosion might favor as a function of both anthropogenic impact and climatic variability. Moderate values of all the geochemical data along with higher values of "L*-a*-b*" colour data from 800 cal yr BP to the present indicated generally dry conditions. Overall, the record from Lake Chamo shows major environmental changes, in agreement with other studies from the region.

  20. A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis.

    PubMed

    Miller, Helen; Croudace, Ian W; Bull, Jonathan M; Cotterill, Carol J; Dix, Justin K; Taylor, Rex N

    2014-07-01

    A high-resolution record of pollution is preserved in recent sediments from Windermere, the largest lake in the English Lake District. Data derived from X-ray core scanning (validated against wavelength dispersive X-ray fluorescence), radiochronological techniques ((210)Pb and (137)Cs) and ultrahigh precision, double-spike mass spectrometry for lead isotopes are combined to decipher the anthropogenic inputs to the lake. The sediment record suggests that while most element concentrations have been stable, there has been a significant increase in lead, zinc, and copper concentrations since the 1930s. Lead isotope down-core variations identify three major contributory sources of anthropogenic (industrial) lead, comprising gasoline lead, coal combustion lead (most likely source is coal-fired steam ships), and lead derived from Carboniferous Pb-Zn mineralization (mining activities). Periods of metal workings do not correlate with peaks in heavy metals due to the trapping efficiency of up-system lakes in the catchment. Heavy metal increases could be due to flood-induced metal inwash after the cessation of mining and the weathering of bedrock in the catchment. The combination of sediment analysis techniques used provides new insights into the pollutant depositional history of Windermere and could be similarly applied to other lake systems to determine the timing and scale of anthropogenic inputs.

  1. First tephrostratigraphic results of the DEEP site record from Lake Ohrid (Macedonia and Albania)

    NASA Astrophysics Data System (ADS)

    Leicher, Niklas; Zanchetta, Giovanni; Sulpizio, Roberto; Giaccio, Biagio; Wagner, Bernd; Nomade, Sebastien; Francke, Alexander; Del Carlo, Paola

    2016-04-01

    A tephrostratigraphic record covering the Marine Isotope Stages (MIS) 1-15 was established for the DEEP site record of Lake Ohrid (Macedonia and Albania). Major element analyses (energy dispersive spectroscopy (EDS) and wavelength-dispersive spectroscopy (WDS)) were carried out on juvenile fragments extracted from 12 tephra layers (OH-DP-0115 to OH-DP-2060). The geochemical analyses of the glass shards of all of these layers suggest an origin in the Italian volcanic provinces. They include the Y-3 (OH-DP-0115, 26.68-29.42 ka cal BP), the Campanian Ignimbrite-Y-5 (OH-DP-0169, 39.6 ± 0.1 ka), and the X-6 (OH-DP-0404, 109 ± 2 ka) from the Campanian volcanoes, the P-11 of Pantelleria (OH-DP-0499, 133.5 ± 2 ka), the Vico B (OH-DP-0617, 162 ± 6 ka) from the Vico volcano, the Pozzolane Rosse (OH-DP-1817, 457 ± 2 ka) and the Tufo di Bagni Albule (OH-DP-2060, 527 ± 2 ka) from the Colli Albani volcanic district, and the Fall A (OH-DP-2010, 496 ± 3 ka) from the Sabatini volcanic field. Furthermore, a comparison of the Ohrid record with tephrostratigraphic records of mid-distal archives related to the Mediterranean area allowed the recognition of the equivalents of other less known tephra layers, such as the TM24a-POP2 (OH-DP-0404, 102 ± 2 ka) recognized in the Lago Grande di Monticchio and the Sulmona Basin, the CF-V5-PRAD3225 (OH-DP-0624, ca. 163 ± 22 ka) identified in the Campo Felice Basin and the Adriatic Sea, the SC5 (OH-DP-1955, 493.1 ± 10.9 ka) recognized in the Mercure Basin, and the A11/12 (OH-DP-2017, 511 ± 6 ka) sampled at the Acerno Basin, whose specific volcanic sources are still poorly constrained. Additionally, one cryptotephra (OH-DP-0027) was identified by correlation of the potassium X-ray flourescence (XRF) intensities from the DEEP site with those from a short core of a previous study from Lake Ohrid. In these cores, a maximum in potassium is caused by glass shards, which were correlated with the Mercato tephra (8.43-8.63 ka cal BP) from Somma

  2. First tephrostratigraphic results of the DEEP site record from Lake Ohrid, Macedonia

    NASA Astrophysics Data System (ADS)

    Leicher, N.; Zanchetta, G.; Sulpizio, R.; Giaccio, B.; Wagner, B.; Nomade, S.; Francke, A.; Del Carlo, P.

    2015-09-01

    A~tephrostratigraphic record covering the Marine Isotope Stages (MIS) 1-15 was established for the DEEP site record of Lake Ohrid (Macedonia/Albania). Major element analyses (SEM-EDS/WDS) were carried out on juvenile fragments extracted from 12 tephra layers (OH-DP-0115 to OH-DP-2060). The geochemical analyses of the glass shards of all of these layers suggest an origin from the Italian Volcanic Provinces. They include: the Y-3 (OH-DP-0115, 26.68-29.42 cal ka BP), the Campanian Ignimbrite/Y-5 (OH-DP-0169, 39.6 ± 0.1 ka), and the X-6 (OH-DP-0404, 109 ± 2 ka) from the Campanian volcanoes, the P-11 of the Pantelleria Island (OH-DP-0499, 129 ± 6 ka), the Vico B (OH-DP-0617, 162 ± 6 ka) from the Vico volcano, the Pozzolane Rosse (OH-DP-1817, 457 ± 2 ka) and the Tufo di Bagni Albule (OH-DP-2060, 527 ± 2 ka) from the Colli Albani volcanic district, and the Fall A (OH-DP-2010, 496 ± 3 ka) from the Sabatini volcanic field. Furthermore, a comparison of the Ohrid record with tephrostratigraphic records of mid-distal archives related to the Mediterranean area, allowed the recognition of the equivalents of other less known tephra layers, such as the TM24-a/POP2 (OH-DP-0404, 101.8 ka) from the Lago Grande di Monticchio and the Sulmona basin, the CF-V5/PRAD3225 (OH-DP-0624, ca. 162 ka) from the Campo Felice basin/Adriatic Sea, the SC5 (OH-DP-1955, 493.1 ± 10.9 ka) from the Mercure basin, and the A11/12 (OH-DP-2017, 511 ± 6 ka) from the Acerno basin, whose specific volcanic sources are still poorly constrained. Additionally, one cryptotephra (OH-DP-0027) was identified by correlation of the potassium XRF intensities from the DEEP site with those from short cores of previous studies from Lake Ohrid. In these cores, a maximum in potassium is caused by glass shards, which were correlated with the Mercato tephra (8.43-8.63 cal ka BP) from Somma-Vesuvius. With the tephrostratigraphic work, a consistent part of the Middle Pleistocene tephrostratigraphic framework of Italian

  3. Late Pliocene/Early Pleistocene environments inferred from the Lake El'gygytgyn pollen record

    NASA Astrophysics Data System (ADS)

    Andreev, Andrei; Wennrich, Volker; Tarasov, Pavel; Raschke (Morozova), Elena; Brigham-Grette, Julie; Nowaczyk, Norbert; Melles, Martin

    2014-05-01

    The Arctic is known to play a crucial role within the global climate system. The mid-Pliocene (3-3.5 Ma) is considered to be the most probable scenario of the future climate changes. However, reliable climate projections are hampered by the complexity of the underlying natural variability and feedback mechanisms. An important prerequisite for the validation and improvement of the future projections is a better understanding of the long-term environmental history of the Arctic. Unfortunately, formation of continuous paleoenvironmental records in the Arctic was widely restricted due to repeated glaciations. Continuous sequences that penetrate the entire Quaternary and further into the Pliocene are highly desired and would enable to validate the temperature rise during the mid-Pliocene that was proposed by former studies. Such a record has now become available from Lake El'gygytgyn (67º30'N, 172º05E') located in a meteorite impact crater in north-eastern Siberia. The impact nearly 3.6 Ma ago formed an 18 km wide hole in the ground that then filled with water. The retrieved lake sediments have trapped pollen from a several thousand square-kilometer source area providing reliable insights into regional and over-regional millennial-scale vegetation and climate changes of the Arctic since the Pliocene. The ''El'gygytgyn Drilling Project" of ICDP has completed three holes in the center of the lake, penetrating about 318 m thick lake sediments and about 200 m of the impact rocks below. Because of its unusual origin and high-latitude setting in western Beringia, scientific drilling at Lake El'gygytgyn offered unique opportunities for paleoclimate research, allowing time-continuous climatic and environmental reconstructions back into the Pliocene. Late Pliocene and Early Pleistocene pollen assemblages can be subdivided into 55 pollen zones, which reflect the main environmental fluctuations in the region 3.55-2.15 Ma BP. Pollen-based climate reconstructions show that

  4. A Latest Glacial and Holocene Record From Medicine Lake, Siskiyou County, California: Preliminary Diatom, Pollen, and Sediment Data

    NASA Astrophysics Data System (ADS)

    Starratt, S. W.; Barron, J. A.; Kneeshaw, T.; Phillips, L.; Lowenstern, J.; Wanket, J. A.

    2002-12-01

    Medicine Lake is a small (165 ha), relatively shallow (average 7.3 m), medium- altitude (2,036 m) lake located within the summit caldera of Medicine Lake volcano, a dormant Quaternary shield volcano located in the southern Cascade Range. During September 1999 and 2000, high-resolution bathymetry, seismic-reflection profiles, and sediment cores were collected from the lake. Twenty six samples from core B100NC-1 (water depth 12.6 m; length 226 cm) were analyzed for physical properties, sediment grain size, diatoms, pollen, and total organic carbon (TOC). Using both 14C (AMS) dating and tephrochronology, the sediments at the bottom of the core are estimated to be 11,000 cal yr B.P., thus yielding an estimated average sedimentation rate of about 21 cm/1,000 yr. The lowermost part of the core (226 cm - ~200 cm) records the transition from glacial to interglacial conditions. During the period from about 11,000-7,200 cal yr B.P., lake level fluctuated between deeper oligotrophic conditions with a diatom flora dominated by Cyclotella spp. and shallower intervals with a diverse benthic flora. The relative low abundance (10-15%) of Abies (fir) pollen and relative high abundance (30-40%) of Artemesia (sagebrush) pollen in this interval suggest drier than present-day conditions. The lowest part of this interval (226 cm - 210 cm) is almost devoid of Cyclotella and may represent an ice-covered lake in which only a small benthic flora could exist around the margins of the lake where light penetration was the greatest. The sediments in this interval are relatively low in TOC and are dominated by glacial flour. From about 7,200 cal yr B.P. to the present, conditions have fluctuated between higher lake levels (three intervals) that are dominated by Cyclotella with a reduced number and diversity of benthic taxa, and lower lake levels (two intervals) during which the abundances of Cyclotella decrease to less than 10%. Relative values of Abies and Pinus (pine) pollen are higher during

  5. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  6. Orbit-related long-term climate cycles revealed in a 12-Myr continental record from Lake Baikal.

    PubMed

    Kashiwaya, K; Ochiai, S; Sakai, H; Kawai, T

    2001-03-01

    Quaternary records of climate change from terrestrial sources, such as lake sediments and aeolian sediments, in general agree well with marine records. But continuous records that cover more than the past one million years were essentially unavailable until recently, when the high-sedimentation-rate site of Lake Baikal was exploited. Because of its location in the middle latitudes, Lake Baikal is highly sensitive to insolation changes and the entire lake remained uncovered by ice sheets throughout the Pleistocene epoch, making it a valuable archive for past climate. Here we examine long sediment cores from Lake Baikal that cover the past 12 million years. Our record reveals a gradual cooling of the Asian continental interior, with some fluctuations. Spectral analyses reveal periods of about 400 kyr, 600 kyr and 1,000 kyr, which may correspond to Milankovitch periods (reflecting orbital cycles). Our results indicate that changes in insolation were closely related to long-term environmental variations in the deep continental interior, over the past 12 million years.

  7. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone

    USGS Publications Warehouse

    Kelsey, H.M.; Nelson, A.R.; Hemphill-Haley, E.; Witter, R.C.

    2005-01-01

    Bradley Lake, on the southern Oregon coastal plain, records local tsunamis and seismic shaking on the Cascadia subduction zone over the last 7000 yr. Thirteen marine incursions delivered landward-thinning sheets of sand to the lake from nearshore, beach, and dune environments to the west. Following each incursion, a slug of marine water near the bottom of the freshwater lake instigated a few-year-to-several-decade period of a brackish (??? 4??? salinity) lake. Four additional disturbances without marine incursions destabilized sideslopes and bottom sediment, producing a suspension deposit that blanketed the lake bottom. Considering the magnitude and duration of the disturbances necessary to produce Bradley Lake's marine incursions, a local tsunami generated by a great earthquake on the Cascadia subduction zone is the only accountable mechanism. Extreme ocean levels must have been at least 5-8 m above sea level, and the cumulative duration of each marine incursion must have been at least 10 min. Disturbances without marine incursions require seismic shaking as well. Over the 4600 yr period when Bradley Lake was an optimum tsunami recorder, tsunamis from Cascadia plate-boundary earthquakes came in clusters. Between 4600 and 2800 cal yr B.P., tsunamis occurred at the average frequency of ??? 3-4 every 1000 yr. Then, starting ???2800 cal yr B.P., there was a 930-1260 yr interval with no tsunamis. That gap was followed by a ???1000 yr period with 4 tsunamis. In the last millennium, a 670-750 yr gap preceded the A.D. 1700 earthquake and tsunami. The A.D. 1700 earthquake may be the first of a new cluster of plate-boundary earthquakes and accompanying tsunamis. Local tsunamis entered Bradley Lake an average of every 390 yr, whereas the portion of the Cascadia plate boundary that underlies Bradley Lake ruptured in a great earthquake less frequently, about once every 500 yr. Therefore, the entire length of the subduction zone does not rupture in every earthquake, and Bradley

  8. Deglaciation and postglacial environmental changes in the Teton Mountain Range recorded at Jenny Lake, Grand Teton National Park, WY

    NASA Astrophysics Data System (ADS)

    Larsen, Darren J.; Finkenbinder, Matthew S.; Abbott, Mark B.; Ofstun, Adam R.

    2016-04-01

    Sediments contained in lake basins positioned along the eastern front of the Teton Mountain Range preserve a continuous and datable record of deglaciation and postglacial environmental conditions. Here, we develop a multiproxy glacier and paleoenvironmental record using a combination of seismic reflection data and multiple sediment cores recovered from Jenny Lake and other nearby lakes. Age control of Teton lake sediments is established primarily through radiocarbon dating and supported by the presence of two prominent rhyolitic tephra deposits that are geochemically correlated to the widespread Mazama (∼7.6 ka) and Glacier Peak (∼13.6 ka) tephra layers. Multiple glacier and climate indicators, including sediment accumulation rate, bulk density, clastic sediment concentration and flux, organic matter (concentration, flux, δ13C, δ15N, and C/N ratios), and biogenic silica, track changes in environmental conditions and landscape development. Sediment accumulation at Jenny Lake began centuries prior to 13.8 ka and cores from three lakes demonstrate that Teton glacier extents were greatly reduced by this time. Persistent ice retreat in Cascade Canyon was slowed by an interval of small glacier activity between ∼13.5 and 11.5 ka, prior to the end of glacial lacustrine sedimentation ∼11.5 ka. The transition to non-glacial sediments marks the onset of Holocene conditions at Jenny Lake and reflects a shift toward warmer summers, increased vegetation cover, and landscape stability in the Tetons. We discuss the Teton lake sediment records within the context of other regional studies in an effort to construct a comprehensive overview of deglaciation and postglacial environmental conditions at Grand Teton National Park.

  9. Drought variability in the Pacific Northwest from a 6,000-yr lake sediment record.

    PubMed

    Nelson, Daniel B; Abbott, Mark B; Steinman, Byron; Polissar, Pratigya J; Stansell, Nathan D; Ortiz, Joseph D; Rosenmeier, Michael F; Finney, Bruce P; Riedel, Jon

    2011-03-08

    We present a 6,000-yr record of changing water balance in the Pacific Northwest inferred from measurements of carbonate δ(18)O and grayscale on a sediment core collected from Castor Lake, Washington. This subdecadally resolved drought record tracks the 1,500-yr tree-ring-based Palmer Drought Severity Index reconstructions of Cook et al. [Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Science 306:1015-1018] in the Pacific Northwest and extends our knowledge back to 6,000 yr B.P. The results demonstrate that low-frequency drought/pluvial cycles, with occasional long-duration, multidecadal events, are a persistent feature of regional climate. Furthermore, the average duration of multidecadal wet/dry cycles has increased since the middle Holocene, which has acted to increase the amplitude and impact of these events. This is especially apparent during the last 1,000 yr. We suggest these transitions were driven by changes in the tropical and extratropical Pacific and are related to apparent intensification of the El Niño Southern Oscillation over this interval and its related effects on the Pacific Decadal Oscillation. The Castor Lake record also corroborates the notion that the 20th century, prior to recent aridity, was a relatively wet period compared to the last 6,000 yr. Our findings suggest that the hydroclimate response in the Pacific Northwest to future warming will be intimately tied to the impact of warming on the El Niño Southern Oscillation.

  10. Regional climate signal modified by local factors - multi core study records (Lake Czechowskie region, N Poland)

    NASA Astrophysics Data System (ADS)

    Zawiska, Izabela; Rzodkiewicz, Monika; Noryśkiewicz, Agnieszka; Kramkowski, Mateusz; Obremska, Milena; Ott, Florian; Plessen, Birgit; Tjallingii, Rik; Słowiński, Michał; Błaszkiewicz, Mirosław; Brauer, Achim

    2016-04-01

    Lake sediments can be utilized as valuable paleoclimate and environmental archives as they contain information of past changes. Multi-proxy analyses of sedimentary compartments (e.g. pollen, diatoms, Cladocera) reveal those changes. However, to decipher the spatial variability of past climate changes and to define the proxies suited for local and regional scale reconstructions archive comparisons are needed. Here we present a detailed multi-proxy study from four different sediment cores covering the Younger Dryas cold period from the Lake Czechowskie region (N Poland). Three cores are located along a transect in the Lake Czechowskie basin from its deepest point towards a former lake bay close to today's shoreline. The fourth lacustrine sediment core was retrieved from the Trzechowskie paleolake, app. 1 km W from Lake Czechowskie. The dataset comprises information from pollen (AP, NAP, Juniperus, Betula-tree, Pinus silvestris), diatom (planktonic/benthic index, diatom valve concentration, dominant species), Cladocera (planktonic/benthic index, dominant species, number of Cladocera species, total sum of specimens) and geochemical (TOC and CaCO3 content, mineral matter, titanium) analyses. At the beginning of the Younger Dryas the AP pollen share decreased and NAP and Juniperus pollen increased in all studied locations. The mineral matter and titanium record showed higher values in two cores taken from the deepest parts of Lake Czechowskie and the core from Trzechowskie paleolake while in the core located at the marginal part of the lake it was already high in Allerød and it did not change much in Younger Dryas. The Cladocera based indexes: total sum of specimens and number of species decreased at the beginning of YD but on the contrary the Cladocera species composition changes were site-specific. The diatoms valve concentration index significantly lowered in core from the deep location while on the contrary increased in core from paleolake Trzechowskie. Our results

  11. Sedimentary Record of the Last two Interglacials in the Terrestrial Canadian Arctic (Pingualuit Crater Lake, Nunavik)

    NASA Astrophysics Data System (ADS)

    St-Onge, G.; Guyard, H.; Pienitz, R.; Hausmann, S.; Francus, P.; Salonen, V.; Luoto, T.; Black, J.; Lamothe, M.; Zolitschka, B.; Larocque, I.

    2009-05-01

    The Pingualuit crater lake (Nunavik, Canada) resulted from a meteoritic impact that occurred ca. 1.4 million years ago. Due to its unique morphometry (depth and shape), the lake bottom may have escaped glacial erosion. Based on a punctual seismic profile acquired using a 12 kHz Knudsen echosounder and using both gravity and piston corers, we recovered the uppermost 8.5 m of sediments. High-resolution physical (CAT- Scan, Multi Sensor Core Logger, diffuse spectral reflectance), geochemical (ITRAX core scanner, carbon and nitrogen contents, δ13C of the organic matter) and magnetic (magnetic susceptibility, natural, anhysteretic, isothermal and saturation isothermal remanent magnetizations) analyses were performed. Two main lithofacies were clearly identified by the different measurements and likely represent successive interglacial/glacial cycles. Most of the sediment consists of light grey silts containing several angular rock fragments, that is characterized by very low organic carbon content, relatively high density and magnetic susceptibility values, suggesting a deposition during glacial conditions. Interbedded between this facies are at least two decimetre-thick, organic-rich and finely laminated intervals likely representing ice free periods. The presence of diatoms, chrysophytes and chironomid head capsules in smear and microscope slides from these two intervals supports this hypothesis. In addition, preliminary Infrared Stimulated Luminescence (IRSL) measurements indicate that the upper organic-rich layer has an age coeval with the last interglacial (Oxygen Isotope Stage 5), while the age of the lower organic-rich layer is consistent with an older interglacial, likely the Oxygen Isotope Stage 7. The sedimentary infill thus constitutes a unique long-term terrestrial record of environmental and climatic conditions in the Canadian Arctic. Furthermore, because these sediments escaped glacial erosion, it suggests the presence of a subglacial lake during the last

  12. Late Glacial and Holocene environmental history of Wielkopolska region (western Poland) recorded in sediments of Strzeszyńskie Lake and Kierskie Lake

    NASA Astrophysics Data System (ADS)

    Pleskot, Krzysztof; Szczuciński, Witold; Tjallingii, Rik; Makohonienko, Mirosław; Nowaczyk, Norbert; Brauer, Achim

    2016-04-01

    The growing amount of publications concerning reconstructions of Late Glacial and Holocene environment based on analysis of lake sediments gives us robust insight into general patterns of that record. However, it is still challenging to decipher processes and events that occurred on local scale, as they record may be strongly affected by the type, catchment, size and depth of a lake. Therefore in the present study we focus on application of sedimentological and geochemical methods in order to reveal environmental history from two neighbouring lakes located within city of Poznań, Wielkopolska (western Poland). The lake sediments analysis cover Late Glacial and Holocene in case of smaller Strzeszyńskie Lake (SL) and the last 8 ka in deeper Kierskie Lake (KL). The study is based on two 8.5 (SL) and 14 (KL) m long sediment cores, which were described and analyzed in thin sections and on smear slides. The relative chemical composition variations within the cores were measured using an X-ray fluorescence (XRF). Moreover, the cores were measured for magnetic susceptibility and sampled for pollen analysis. The chronology has been established by a AMS 14C dating of bulk samples of lake sediments. To assess the reservoir effect, selected samples were analyzed for soluble and residual carbon fractions. Our results suggest the onset of authigenic sedimentation in SL in Allerød. The sediments from this period are characterized by high organic matter and low carbonate content. This trend changed into opposite at the beginning of the Younger Dryas, while at its termination sediments again became more organic. The transition to Holocene is marked by spread of Betula forest, gradual increase in magnetic susceptibility and Ca content together with decreasing organic matter and clastic input. During Preboreal and Boreal period the relatively stable conditions was noted. Then, ca. 8.5 ka BP, sharp decrease in magnetic susceptibility occurred coincided with deciduous forest

  13. A millennium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes.

    PubMed

    Cooke, Colin A; Abbott, Mark B; Wolfe, Alexander P; Kittleson, John L

    2007-05-15

    To date, information concerning pre-Colonial metallurgy in South America has largely been limited to the archaeological record of artifacts. Here, we reconstruct a millennium of smelting activity in the Peruvian Andes using the lake-sediment stratigraphy of atmospherically derived metals (Pb, Zn, Cu, Ag, Sb, Bi, and Ti) and lead isotopic ratios (206Pb/ 207Pb) associated with smelting from the Morococha mining region in the central Peruvian Andes. The earliest evidence for metallurgy occurs ca. 1000 A.D., coinciding with the fall of the Wari Empire and decentralization of local populations. Smelting during this interval appears to have been aimed at copper and copper alloys, because of large increases in Zn and Cu relative to Pb. A subsequent switch to silver metallurgy under Inca control (ca. 1450 to conquest, 1533 A.D.) is indicated by increases in Pb, Sb, and Bi, a conclusion supported by further increases of these metals during Colonial mining, which targeted silver extraction. Rapid development of the central Andes during the 20th century raised metal burdens by an order of magnitude above previous levels. Our results represent the first evidence for pre-Colonial smelting in the central Peruvian Andes, and corroborate the sensitivity of lake sediments to pre-Colonial metallurgical activity suggested by earlier findings from Bolivia.

  14. A 2000-year palaeoflood record from northwest England from lake sediments

    NASA Astrophysics Data System (ADS)

    Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet

    2014-05-01

    Greater insight into the relationship between climatic fluctuations and the frequency and magnitude of precipitation events over recent centuries is crucial in the context of future warming and projected intensification of hydrological extremes. However, the detection of trends in flood frequency and intensity is not a straightforward task as conventional flood series derived from instrumental sources rarely span sufficiently long timescales to capture the most extreme events. Usefully, the geomorphic effects of extreme hydrological events can be effectively recorded in upland lake basins as efficient sediment trapping preserves discharge-related proxy indicators (e.g., particle size). Provided distinct sedimentary signatures of historic floods are discernable and the sediment sequence can be well-constrained in time, these lacustrine archives offer a valuable data resource. We demonstrate that a series of sediment cores (3 - 5 m length) from Brotherswater, northwest England, contain numerous coarse-grained laminations, discerned by applying high-resolution (0.5 cm) laser granulometry, which are interpreted as reflecting a palaeoflood record extending to ~2000 yr BP. The presence of thick facies which exhibit inverse grading underlying normal grading, most likely reflecting the waxing and waning of flood-induced hyperpycnal flows, supports our palaeoflood interpretation. Data from an on-going sediment trapping protocol at Brotherswater that shows a relationship between river discharge (recorded via short-term lake level change representing flood events) and the calibre of particles captured in the traps lends further support to our interpretation. Well-constrained chronologies were constructed for the cores through integrating radionuclide (210Pb, 137Cs, 241Am, 14C) dating within a Bayesian age-depth modelling protocol. Geochemical markers of known-age that reflect phases of local point-source lead (Pb) mining were used to resolve time periods where radiocarbon

  15. The last millenia sedimentary record of Lake Esponja, Northern Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Fagel, Nathalie; Araneda, Alberto; Alvarez, Denisse; Perfetti-Bolaño, Alessandra; Billy, Isabelle; Martinez, Philippe; Schmidt, Sabine; Urrutia, Roberto

    2016-04-01

    We evaluate the climate and environmental variability of Northern Chilean Patagonia during the Last Millennia, using a multi-proxy analysis of a sediment core from Lago Esponja (45°09'S, 72°08'W). The lake is located in the region of Aysen del General Carlos Ibanez del Campo, in NW Patagonia. The study focuses on a multiproxy analysis of sedimentary records. The longest core (150 cm long) was collected in 2014 at 40 m depth. The sediment, which is composed of light brown organic-rich clayey silt, was analyzed for sedimentology (grain size, magnetic susceptibility organic matter and biogenic silica content), mineralogy (X-ray diffraction) and geochemistry (elemental and isotopic analyses of C and N, XRF core-scaner at 1 mm resolution). The radiocarbon ages, measured on 3 macro-remains, demonstrate that the core covers the last 6.700 years. The sedimentation rate ranges between 0.1 mm/yr in the lower section (100-150 cm) and 0.4 mm/yr in the upper meter. Visual descriptions and Scopix radiographies show that the sediment record is finely laminated except a massive decimetric coarser and darker layer corresponding to a tephra (estimated age 700AD±50). Magnetic susceptibility (confirmed by scopix radiographies) highlights the presence of 8 additional millimetric tephra layers. The biogenic silica content of the sediment is low (mean 5%). Diatom assemblage is dominated by benthic and acidophilous species, with high saprobic values. None marked changes were observed regarding the dynamic of the lake. The high organic matter content (mean 15%) and its high C/N ratio (12.7) throughout the core indicate inputs of allochtonous and terrestrial organic matter. Such parameters present high sediment variability also marked by changes in the chemical composition. The laminations reflect changes in the allochtonous sedimentary inputs, with high terrestrial inputs during wetter conditions in relation with the Westerlies. The sedimentary records of Lago Esponja will be compared

  16. Stable isotope record from Seneca Lake, New York: Evidence for a cold paleoclimate following the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Anderson, William T.; Mullins, Henry T.; Ito, Emi

    1997-02-01

    A radiocarbon controlled stable isotope record from Seneca Lake, New York, has defined a relatively cold paleoclimate (10.1 8.2 ka) that was younger, and regionally of greater magnitude, than the well-known Younger Dryas cold interval. These new isotope results are supported by published pollen records, from throughout the Great Lakes region, that also define a relatively cold paleoclimate at this time. This cold paleoclimate occurred during global meltwater pulse IB when large volumes of cold, isotopically light (low δ18O) meltwater flowed into the Great Lakes from the rapidly retreating Laurentide ice sheet. The discharge of cold glacial meltwaters into the Great Lakes during pulse IB suppressed downwind summer temperatures in the Finger Lakes region and provided a source of isotopically light precipitation. Published proxy data from Greenland, Norway, and Alaska also record relatively cold paleoclimates following the Younger Dryas, suggesting widespread Northern Hemisphere cooling as a direct result of the rapid melting of the Laurentide ice sheet between 10 and 8 ka.

  17. Asian dust transport during the last century recorded in Lake Suigetsu sediments

    NASA Astrophysics Data System (ADS)

    Nagashima, Kana; Suzuki, Yoshiaki; Irino, Tomohisa; Nakagawa, Takeshi; Tada, Ryuji; Hara, Yukari; Yamada, Kazuyoshi; Kurosaki, Yasunori

    2016-03-01

    Asian dust has a significant impact on the natural environment. Its variability on multiple timescales modulates the ocean biogeochemistry and climate. We demonstrate that temporal changes in the deposition flux of Aeolian dust recorded in sediments from Lake Suigetsu, central Japan, during the last century exhibit a continuous decreasing trend and a decadal-scale decrease in 1952-1974. The former decreasing trend can be explained by a decrease in the dust storm frequency at source regions due to the warming of Mongolia in the twentieth century, suggesting future decrease of Asian dust transport with further warming in Mongolia. Decadal-scale decrease of Aeolian dust is explained by weaker westerlies in lower latitudes in central Japan, reflecting a weaker Aleutian Low during the corresponding period. Decadal-scale westerly change probably causes north-south shifts of the dominant dust transport path, which affects subarctic northern Pacific Ocean biogeochemistry by changing the micronutrient iron supply.

  18. Continental climate response to orbital forcing from biogenic silica records in Lake Baikal

    USGS Publications Warehouse

    Colman, Steven M.; Peck, J.A.; Karabanov, E.B.; Carter, Susan J.; Bradbury, J.P.; King, J.W.; Williams, D.F.

    1995-01-01

    CHANGES in insolation caused by periodic changes in the Earth's orbital parameters provide the primary forcing for global ice ages1-6. But it is not clear to what extent the climates in continental interiors are controlled directly by regional variations in insolation and to what extent they are driven instead by the highly nonlinear response of the oceans and ice sheets. Here we investigate this question using the record of biogenic silica in Lake Baikal as a proxy for climate change in this high-latitude mid-continental region. We find a good correlation between this record and that of marine oxygen isotopes4. Over the past 250 kyr the Baikal record exhibits both a strongly nonlinear component (manifested in a 100-kyr periodicity) and weaker direct-insolation components (manifested in the 41-kyr (obliquity) and 23- and 19-kyr (precession) orbital cycles). These results show that even though extreme continental climates such as this are influenced directly by insolation variations, they are dominated by the nonlinear rhythm of the oceans and ice sheets.

  19. Holocene record of glacier variability from lake sediments reveals tripartite climate history for Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; Bakke, Jostein; Vasskog, Kristian; D`Andrea, William; Bradley, Raymond; Olafsdottir, Sædis

    2016-04-01

    The Arctic is responding sensitively to ongoing global climate change, warming and moistening faster than any other region on the planet. Holocene proxy paleoclimate time series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. Glaciers rapidly respond to climate shifts as demonstrated by their current demise around the world. This response has a composite climate signature, marked by shifts in hydroclimate (winter precipitation) as well as (summer) temperature. Attendant changes in glacier size are recorded by variations in glacigenic rock flour that may be deposited in downstream lakes. Here, we present a Holocene reconstruction of glacier activity, based on sediments from Hajeren, a glacier-fed lake on northwest Spitsbergen in the High Arctic Svalbard archipelago. Owing to undisturbed sediments and robust age control, we could resolve variability on a sub-centennial scale. To ensure the accurate detection of glacier activity, we applied a toolbox of physical, magnetic and geochemical proxies in conjunction with multivariate statistics. Our findings indicate a three-stage Holocene climate history for Svalbard, driving by melt water pulses, episodic Atlantic cooling and a decline in orbitally driven summer insolation. Correspondence between inferred advances, including a Holocene glacier maximum around 9.5 ka BP, suggests forcing by the melting LIS during the Early Holocene. Following a late Holocene Thermal Maximum around 7.4 ka BP, glaciers disappeared from the catchment. Glaciers reformed around 4.2 ka BP during the regional onset of the Neoglacial, supporting previous findings. This transition did, however, not mark the onset of persistent glacier activity in the catchment, but a series of centennial-scale cycles of growth and decay, including events around 3.3 and 1.1 ka BP. As orbitally driven insolation declined towards the present, the glaciation threshold

  20. Seasonal climate variability in historical and prehistorical times deduced from varved lake sediments: Calibration of records from Lakes Woseriner See and Tiefer See

    NASA Astrophysics Data System (ADS)

    Czymzik, Markus; Kienel, Ulrike; Dreibrodt, Stefan; Brauer, Achim

    2013-04-01

    Societies are susceptible to the effects of even short-term climate variations on water supply, health, and agricultural productivity. However, understanding of human-climate interactions is limited due to the lack of high-resolution climate records in space and time. Varved lake sediments provide long time-series of seasonal climate variability directly from populated areas that can be compared to historical and archeological records. Calibration against meteorological data enables process-based insights into sediment deposition within the lake that can be extrapolated into the past using transfer functions. Lakes Woseriner See (53°40'N/12°2'E; 37 m asl.) and Tiefer See (53°23'N/13°97'E, 65 m asl.) in northeastern Germany are located only 35 km apart. Situated within the former settlement areas, the lakes are well suited for studying climate influences on society related to the Neolithic Funnelbeaker culture or the Slavic colonization. Sub-recent annual laminations allow to establish climate proxy data-series at seasonal resolution that can be calibrated against the long meteorological record from the nearby City of Schwerin. Seasonal climate proxy data-series covering the last 90 years have been obtained from short sediment cores applying a combination of microfacies analyses, X-ray fluorescence scanning (µ-XRF), and varve counting. Main sediment microfacies in both lakes are endogenic calcite varves comprising calcite and organic layer couplets of varying thickness, diatom layers, and dispersed detrital grains. Calibration against meteorological data indicates that variations in sediment layer thickness and composition are not stationary through time but influenced by inter-annual variations in meteorological conditions.

  1. Multiproxy Records of Indo-Pacific Climate and Environmental Change from Lake Towuti, Indonesia, Since 60 Kyr BP

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Vogel, H.; Bijaksana, S.; Konecky, B. L.; Wicaksono, S. A.; Costa, K.; Wattrus, N. J.; Melles, M.

    2014-12-01

    Lake Towuti is a large tectonic lake in central Sulawesi, Indonesia that provides a unique opportunity to reconstruct climate and terrestrial environments in the heart of the Indo-Pacific warm pool. Long-term climate variations in this region are governed by a complex interplay between the Australasian monsoons and the ENSO system forced by changing insolation, sea level, ice sheets, and greenhouse gas concentrations. Existing reconstructions suggest heterogeneous responses of Indonesian climate to these forcings, highlighting the need for new long records of regional hydrology. We have developed multiproxy datasets from Lake Towuti and nearby lakes that provide continuous, detailed, and reproducible paleoenvironmental records spanning the past 60 kyr BP. Elemental tracers of terrestrial runoff and compound-specific stable isotope records of vegetation show that wet conditions and rainforest ecosystems persisted during Marine Isotope Stage 3 and the Holocene, and were interrupted by severe drying between 33 and 15 kyr BP when high-latitude ice sheets expanded and global temperatures cooled. This chronology of change implies that central Indonesian hydroclimate varies strongly in response to high-latitude climate forcing. New vegetation records from nearby lakes confirm these findings, but suggest the amplitude of glacial-interglacial changes in vegetation were weaker at high altitude, with important implications for the heterogeneity among Indonesian climate reconstructions. New lithologic and trace element records from Lake Towuti further document the significance of climate changes at the MIS3, 2, and 1 boundaries to Lake Towuti's paleolimnology, heat budget, and seasonal mixing. High-resolution seismic reflection data from Lake Towuti constrain the maximum depth of lake level lowstands during MIS2. Hydrological modeling suggests that precipitation was reduced by at least 50% at that time, an amplitude at or above the upper limits of precipitation changes

  2. A 100 year sedimentary record of heavy metal pollution in a shallow eutrophic lake, Lake Chaohu, China.

    PubMed

    Zan, Fengyu; Huo, Shouliang; Xi, Beidou; Su, Jing; Li, Xiang; Zhang, Jingtian; Yeager, Kevin M

    2011-10-01

    This study has worked on the evaluation of the temporal and spatial evolution of heavy metal contamination in sediment taken from a shallow eutrophic lake, Lake Chaohu, China, over the last 100 years, and thereby used (137)Cs and (210)Pb dating, a PIRLA procedure, statistical analysis, geochemical normalization and a enrichment factor calculation (EF). Concentrations of 5174, 29 325, 10.7, 36.4, 20.4, 386.0, 21.1 and 38.4 mg kg(-1) for Ti, Fe, Co, Cr, Cu, Mn, Pb and Zn, respectively, are proposed as natural background values for the Lake Chaohu based on a PIRLA procedure. The contamination history from the last 100 years can be divided into two periods. Before the 1960s, heavy metal contamination did not occur and there was no spatial difference for heavy metal distribution. Since the 1960s, heavy metal enrichment and contamination has occurred, and the west half of the lake region showed a higher degree of contamination than the east half to various intensified anthropogenic activities. In the east half of the lake region, the anthropogenic source of heavy metals mainly originated from agricultural intensification, whereas in the west half of the lake it originated from city runoff and industry as well as agriculture. In all anthropogenic heavy metals, Co is only from industry.

  3. Manganese redox cycling in Lake Imandra: impact on nitrogen and the trace metal sediment record

    NASA Astrophysics Data System (ADS)

    Ingri, J.; Pekka, L.; Dauvalter, V.; Rodushkin, I.; Peinerud, E.

    2011-01-01

    Sediment and water samples from the mine-polluted Yokostrovskaya basin in Lake Imandra have been analysed. Three major processes have influenced the accumulation and distribution of metals in the sediment: (1) Development of the apatite-nepheline and the sulfide ore mining industries. (2) Secondary formation of sulphides in the upper sediment column. (3) Redox cycling of Mn in the surface sediment and in the bottom water. This study demonstrate the dominant role of the Mn redox cycling in controlling distribution of several major and trace elements, especially during the winter stratification period. Mn oxides act as a major scavenger and carrier for the non-detrital fraction of Al, Ca, K, Mg, P, Ba, Co, Cu, Ni, Mo and Zn in the bottom water. Aluminium, Ca, K, Mg, P, Cu, Ni and Zn are mainly sorbed at the surface of the particulate Mn phase, while Ba and Mo form a phase (or inner sphere complex) with Mn. Co is associated with the Mn-rich phase, probably by oxidation of Co(II) to a trivalent state by the particulate Mn surface. Formation and dissolution of Mn particles most likely also control anoxic ammonium oxidation to nitrate and reduction of nitrate to N2. It is shown that secondary sulphides in Lake Imandra sediments are fed with trace metals primarily scavenged from the dissolved phase in the water column. This enrichment process, driven by the Mn-redox cycle, therefore changes the sediment record by the transfer of a dissolved pollution signal to the particulate sediment record, thus making it more complicated to trace direct influence of particles from different pollution sources.

  4. Holocene pollen and sediment record from the tangle lakes area, central Alaska

    USGS Publications Warehouse

    Ager, Thomas A.; Sims, John D.

    1981-01-01

    trees. In this case, improved moisture conditions may have promoted spruce growth and reproduction in spite of somewhat cooler temperatures.Previous pollen records from Alaska suggest that Artemisia pollen contributed little to the pollen rain of most taiga and tundra sites during Holocene time. The pollen record from Tangle Lakes, however shows rather high percentages (7–13 percent) of Artemisia deposited during the approximate time interval 4700 to 3500 years B.P. Local habitats that have well‐drained soils derived from glacial deposits support patches of Artemisia telesii and other Artemisia species. These local habitats may account for the source of Artemisiapollen deposited in the Tangle Lakes area during Holocene time.

  5. A 33 kyr Paleomagnetic Secular Variation Record from Fish Lake, Utah

    NASA Astrophysics Data System (ADS)

    Reilly, B. T.; Stoner, J. S.; Hatfield, R. G.; Ziegler, L. B.; Abbott, M. B.; Larsen, D. J.; Hillman, A. L.

    2014-12-01

    We present a new North American lacustrine PSV record spanning the last ~ 33 ka from Fish Lake, Utah. Eleven meters of sediment were recovered from three holes with overlapping drives using a UWITECH coring system. Magnetic susceptibility was measured in the field to ensure stratigraphic completeness and to provide real time information on the material recovered. The recovered lake stratigraphy includes three distinct facies, interpreted to represent the post-glacial (0.75-6.75 m), last glacial maximum (LGM)/deglaciation (6.75-9.5 m), and pre-LGM period (9.5-11.75 m), with an initial chronology constrained by ten radiocarbon dates. CT scans were made on each section and used to monitor for coring deformation and establish precise stratigraphic correlation. Magnetic remanence was studied using AF demagnetization of u-channel samples measured on the OSU 2-G Enterprises u-channel magnetometer. The NRM is characterized by a viscous remanent magnetization (VRM), present throughout the core but successfully removed by 20 mT AF demagnetization. Weak NRM intensities in the post-glacial interval (3-6 x 10-4 A/m before AF demagnetization and 1-3 x 10-4 A/m following 20 mT AF demagnetization) approach the sensitivity of the u-channel magnetometer with increasing demagnetization and result in high MAD values during PCA analysis. Accordingly, we choose to use the NRM measured after 20 mT AF demagnetization for the post-glacial sediments to avoid both the VRM overprint and noise introduced due to week intensities at higher demagnetization steps. Major inclination features are consistent with other western North American PSV records providing confidence in this approach. NRM intensities are significantly higher below 6.75 m, reflecting increased terrigenous input during the LGM/deglaciation and pre LGM periods. A stable magnetization is isolated using a PCA over the 20-60 mT AF demagnetization steps, yielding MAD values of <1 and ~2, respectively. Declination is rotated to a mean

  6. The Tulare Lake Project: A 35,000-year record of lake level constraining precipitation and stream discharge from the southern Sierra Nevada of California, USA

    NASA Astrophysics Data System (ADS)

    Negrini, R. M.

    2015-12-01

    Building upon earlier works by Harding (1949), Atwater et al. (1986) and Davis (1999), research centered at CSU Bakersfield over the past 15 years has generated a high resolution paleoclimate history with water resource implications for one of the world's great agricultural centers, the San Joaquin Valley of California. Lake level is based upon aerial mapping of geomorphological features (e.g., sand spits and shorelines), lithologic features exposed in trenches from opposite sides of the lake basin (e.g., marsh deposits), and proxy data from core (e.g., clay %). Age control was provided by radiocarbon dating of charcoal, mussel shells, and bulk organic matter and by paleomagnetic secular variation dating. From oldest to youngest, highlights include: 1. millennial-scale variations at the base of the record, 2. evidence for avulsion of the Kings River into Tulare Lake at or near the time of maximum glaciation in the Sierra Nevada as predicted by Weissman et al. (2005), 3. lake-level changes during the early and middle Holocene that vary in tune with eastern Pacific sea-surface temperatures from marine core records. This includes an unusually wet period starting at 12,500 cal B.P. followed by a dramatic, rapid drop in lake level at 7,500 cal B.P. Evidence for the former feature includes geochemical (leaf wax n-alkane markers for grass) and petrographic (grass phytolith) data. The latter feature represents an abrupt decrease in Sierran Stream discharge equal to several millions of acre-ft/yr. 4. A centuries-long increase in lake level commencing in the 13th or 14th century based on both lake-level reconstructions from the LBDA of Cook et al. (2010) and dated fine-grained sediments exposed in high-elevation trenches (Negrini et al., 2006), 5. A flood deposit identified in the uppermost sediments exposed in the southeastern edge of the lake that has a radiocarbon age consistent with that of an early 17th century flood found in the sediments of the Santa Barbara Channel

  7. Do High-elevation Lakes Record Variations in Snowfall and Atmospheric Rivers in the Sierra Nevada of California?

    NASA Astrophysics Data System (ADS)

    Ashford, J.; Sickman, J. O.; Lucero, D. M.

    2014-12-01

    Understanding the underlying causes of interannual variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental records and the difficulties in reconstructing climate using a traditional paleo-record such as tree-rings. New paleo proxies are needed to provide a record of snowpack water content and extreme precipitation events over millennial timescales which can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake (z = 27 m), an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K yr record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating light-dark bands (~1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. We hypothesize that the light-dark banding results from the breakdown of persistent hypolimnetic anoxia during spring snowmelt and autumn overturn. We speculate that the thicknesses of the dark bands are controlled by the duration of anoxia which in turn is controlled by the volume and duration of snowmelt. The sand to gravel sized clasts are most likely associated with extreme precipitation events resulting from atmospheric rivers intersecting the southern Sierra Nevada. We hypothesize that centimeter-sized clasts are deposited in large avalanches and that the sands are deposited in large rain events outside of the snow-cover period.

  8. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States

    USGS Publications Warehouse

    Anderson, Lesleigh

    2011-01-01

    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  9. Late Quaternary Lake History of Hala Lake, Qinghai Province, China, Evidenced by Ostracod Assemblages and Sediment Properties in Multiple Sediment Records

    NASA Astrophysics Data System (ADS)

    YAN, Dada; Wuennemann, Bernd

    2014-05-01

    Hala Lake, a closed 65 m deep lake basin in the western Qilian Mountains, Qinghai Province, is considered a monitor of climate-driven hydrological and environmental changes during the past 24 kyr BP. The distribution patterns of ostracod assemblages, sediment-geochemical properties in four sediment records from different water depths and the unique limnological setting (green algae layer between 25 and 32 m water depth and seasonally anoxic conditions) enabled us to reconstruct four major phases of centennial-scale water depth fluctuations from the global Last Glacial Maximum (ca. 24 kyr BP) to the Present. Our results show that Hala Lake experienced a very shallow and small water body during the LGM and Late Glacial under cold and dry climate conditions. Rapid increase of water depth and contemporaneous lake expansion started at around 15 kyr BP (Phase I), most likely as a result of glacier melt due to the onset of climate warming. The lake reached >45 m water depth at around 13.5 kyr BP, followed by a decline (5-6 m) during the Younger Dryas spell (ca. 12 kyr BP), which may be attributed to a short-term return to cooler and drier conditions. During the early Holocene (Phase II), water depth increased again towards lake highstands close to its present level. Besides continued glacier melt supply, we assume that summer monsoon effective moisture contributed to the overall water budget, but remained relatively unstable, favoring water depth fluctuations of about 10-15 m. A pronounced lower water depth falls into the period between 9 and 8 kyr BP, perhaps the result of weak monsoon influence or its complete absence, although the warming trend continued towards its optimum at ca. 8-7 kyr BP. A distinct mass flow, most likely triggered by an earthquake, occurred during a lake lowstand between 8.1 kyr BP and 7.0 kyr BP. The mid-Holocene (Phase III) was characterized by deepened water between 7.5 and 4.5 kyr BP, interrupted by short-term declines at around 7 and 6

  10. A late quaternary record of eolian silt deposition in a maar lake, St. Michael Island, western Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Ager, T.A.; Been, J.; Bradbury, J.P.; Dean, W.E.

    2003-01-01

    Recent stratigraphic studies in central Alaska have yielded the unexpected finding that there is little evidence for full-glacial (late Wisconsin) loess deposition. Because the loess record of western Alaska is poorly exposed and not well known, we analyzed a core from Zagoskin Lake, a maar lake on St. Michael Island, to determine if a full-glacial eolian record could be found in that region. Particle size and geochemical data indicate that the mineral fraction of the lake sediments is not derived from the local basalt and is probably eolian. Silt deposition took place from at least the latter part of the mid-Wisconsin interstadial period through the Holocene, based on radiocarbon dating. Based on the locations of likely loess sources, eolian silt in western Alaska was probably deflated by northeasterly winds from glaciofluvial sediments. If last-glacial winds that deposited loess were indeed from the northeast, this reconstruction is in conflict with a model-derived reconstruction of paleowinds in Alaska. Mass accumulation rates in Zagoskin Lake were higher during the Pleistocene than during the Holocene. In addition, more eolian sediment is recorded in the lake sediments than as loess on the adjacent landscape. The thinner loess record on land may be due to the sparse, herb tundra vegetation that dominated the landscape in full-glacial time. Herb tundra would have been an inefficient loess trap compared to forest or even shrub tundra due to its low roughness height. The lack of abundant, full-glacial, eolian silt deposition in the loess stratigraphic record of central Alaska may be due, therefore, to a mimimal ability of the landscape to trap loess, rather than a lack of available eolian sediment. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  11. Holocene tropical South American hydroclimate revealed from a decadally resolved lake sediment δ 18O record

    NASA Astrophysics Data System (ADS)

    Bird, Broxton W.; Abbott, Mark B.; Rodbell, Donald T.; Vuille, Mathias

    2011-10-01

    Oxygen isotope ratios of authigenic calcite (δ 18O cal) measured at annual to decadal resolution from Laguna Pumacocha document Andean precipitation variability during the last 11,200 years. Modern limnological data show that Pumacocha δ 18O cal reflects the average annual isotopic composition of the lake's surface waters (δ 18O lw), and that δ 18O lw tracks the isotopic composition of precipitation (δ 18O precip), which is largely controlled by the intensity of the South American summer monsoon (SASM). Based on these relationships we use down-core δ 18O cal measurements as a proxy for δ 18O precip that varies with the intensity of SASM precipitation. Pumacocha δ 18O cal increased rapidly between 11,200 and 10,300 yr B.P. from - 14.5‰ to - 10.5‰, reaching a maximum of - 10.3‰ by 9800 yr B.P. After 9800 yr B.P., δ 18O cal underwent a long-term decrease that tracked increasing Southern Hemisphere summer insolation, suggesting that enhanced SASM precipitation was linked to precessional forcing. Higher-frequency trends did not follow insolation and therefore represent other variability in the climate system. Millennial-scale trends from Pumacocha strongly resemble those from lower-resolution tropical Andean ice and lake core isotopic records, particularly the Huascaran ice core, and low elevation speleothems. These relationships suggest that tropical Andean isotopic records reflect variations in precipitation intensity related to precessional forcing rather than tropical temperatures. They also demonstrate a coherent pattern of SASM variability, although with differences between low elevation and Andean records during the late Glacial to Holocene transition and the late Holocene. Centennial and decadal SASM precipitation variability is also apparent. Reduced SASM rainfall occurred from 10,000-9200, 7000-5000, 1500-900 yr B.P. and during the last 100 years. Intensifications of the SASM occurred at 5000, 2200-1500, and 550-130 yr B.P. with the amplitude of

  12. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka

    PubMed Central

    An, Zhisheng; Colman, Steven M.; Zhou, Weijian; Li, Xiaoqiang; Brown, Eric T.; Jull, A. J. Timothy; Cai, Yanjun; Huang, Yongsong; Lu, Xuefeng; Chang, Hong; Song, Yougui; Sun, Youbin; Xu, Hai; Liu, Weiguo; Jin, Zhangdong; Liu, Xiaodong; Cheng, Peng; Liu, Yu; Ai, Li; Li, Xiangzhong; Liu, Xiuju; Yan, Libin; Shi, Zhengguo; Wang, Xulong; Wu, Feng; Qiang, Xiaoke; Dong, Jibao; Lu, Fengyan; Xu, Xinwen

    2012-01-01

    Two atmospheric circulation systems, the mid-latitude Westerlies and the Asian summer monsoon (ASM), play key roles in northern-hemisphere climatic changes. However, the variability of the Westerlies in Asia and their relationship to the ASM remain unclear. Here, we present the longest and highest-resolution drill core from Lake Qinghai on the northeastern Tibetan Plateau (TP), which uniquely records the variability of both the Westerlies and the ASM since 32 ka, reflecting the interplay of these two systems. These records document the anti-phase relationship of the Westerlies and the ASM for both glacial-interglacial and glacial millennial timescales. During the last glaciation, the influence of the Westerlies dominated; prominent dust-rich intervals, correlated with Heinrich events, reflect intensified Westerlies linked to northern high-latitude climate. During the Holocene, the dominant ASM circulation, punctuated by weak events, indicates linkages of the ASM to orbital forcing, North Atlantic abrupt events, and perhaps solar activity changes. PMID:22943005

  13. A Holocene Sediment Record of Phosphorus Accumulation in Shallow Lake Harris, Florida (USA) Offers New Perspectives on Recent Cultural Eutrophication

    PubMed Central

    Kenney, William F.; Brenner, Mark; Curtis, Jason H.; Arnold, T. Elliott; Schelske, Claire L.

    2016-01-01

    We studied a complete Holocene sediment record from shallow (zmax = 9.7 m) Lake Harris, Florida (USA) to infer the historical development of the lake and its current eutrophic status. We used 210Pb and 14C to date the 5.9-m sediment sequence (core LH-6-13) and determined accumulation rates for bulk sediment, organic matter, calcium carbonate, phosphorus fractions and biogenic silica fractions. The chronology of changes in sediment characteristics for LH-6-13 is consistent with the general paleoenvironmental framework established by core studies from other Florida lakes. Lake Harris began to fill with water in the early Holocene, ca. 10,680 cal a BP. A shift from carbonate-dominated to organic-rich sediments ca. 5,540 cal a BP corresponds to a transition to wetter climate in the middle Holocene. A rapid increase in diatom biogenic silica concentrations and accumulation rates ca. 2,600 cal a BP signals that the lake had deepened to its modern limnetic state. In LH-6-13, an up-core decrease in rates of accumulation for several sediment variables indicates time-course oligotrophication of the lake through the Holocene. In near-surface sediments, abrupt increases in the accumulation rates of these same variables indicate progressive cultural eutrophication after ca. AD 1900. Comparison of the modern state of Lake Harris to its condition 50–100 years ago provides a measure of the impact of recent cultural eutrophication. Because the pre-disturbance trajectory of this lake was one of oligotrophication, the true impact of cultural eutrophication is even greater than what is inferred from the changes over the past century. PMID:26789518

  14. A Holocene Sediment Record of Phosphorus Accumulation in Shallow Lake Harris, Florida (USA) Offers New Perspectives on Recent Cultural Eutrophication.

    PubMed

    Kenney, William F; Brenner, Mark; Curtis, Jason H; Arnold, T Elliott; Schelske, Claire L

    2016-01-01

    We studied a complete Holocene sediment record from shallow (zmax = 9.7 m) Lake Harris, Florida (USA) to infer the historical development of the lake and its current eutrophic status. We used (210)Pb and (14)C to date the 5.9-m sediment sequence (core LH-6-13) and determined accumulation rates for bulk sediment, organic matter, calcium carbonate, phosphorus fractions and biogenic silica fractions. The chronology of changes in sediment characteristics for LH-6-13 is consistent with the general paleoenvironmental framework established by core studies from other Florida lakes. Lake Harris began to fill with water in the early Holocene, ca. 10,680 cal a BP. A shift from carbonate-dominated to organic-rich sediments ca. 5,540 cal a BP corresponds to a transition to wetter climate in the middle Holocene. A rapid increase in diatom biogenic silica concentrations and accumulation rates ca. 2,600 cal a BP signals that the lake had deepened to its modern limnetic state. In LH-6-13, an up-core decrease in rates of accumulation for several sediment variables indicates time-course oligotrophication of the lake through the Holocene. In near-surface sediments, abrupt increases in the accumulation rates of these same variables indicate progressive cultural eutrophication after ca. AD 1900. Comparison of the modern state of Lake Harris to its condition 50-100 years ago provides a measure of the impact of recent cultural eutrophication. Because the pre-disturbance trajectory of this lake was one of oligotrophication, the true impact of cultural eutrophication is even greater than what is inferred from the changes over the past century.

  15. Southern Westerly Winds submit to the ENSO regime: A multiproxy paleohydrology record from Lake Dobson, Tasmania

    NASA Astrophysics Data System (ADS)

    Rees, Andrew B. H.; Cwynar, Les C.; Fletcher, Michael-Shawn

    2015-10-01

    The El Niño-Southern Oscillation (ENSO) and Southern Westerly Winds (SWW) profoundly influence synoptic-scale climate in the Southern Hemisphere. Although many studies have invoked either phenomenon to explain trends in proxy data, few have demonstrated the transition from a climate dominated by SWW flow to one controlled by El Niño activity, which is postulated to have occurred after 5 cal ka BP in the mid-latitudes of the Southern Hemisphere. Tasmania, southeast Australia, is ideally situated to detect changes in both of these climatic controls. Currently, El Niño and La Niña events result in drier and wetter conditions island-wide, respectively, with the greatest impact in the north. Further, Tasmania houses north-south trending mountain ranges near its western coast. As a result, areas west of the mountains exhibit a positive correlation between SWW flow and precipitation, while eastern regions possess either no or a negative relationship. Here, we present data from chironomid remains, charcoal, and geochemical proxies to investigate the paleohydrological history of Lake Dobson, a site located in Mount Field National Park, Tasmania. The proxies revealed three broad periods: (1) an early Holocene (11.5-8.3 cal kyr BP) characterised by generally high rainfall, the occurrence of irregular fires, and elevated charcoal influx at 11.4 and 10.2 cal ka BP - conditions compatible with attenuated SWW flow over the site; (2) an ambiguous mid-Holocene (8.3-5 cal kyr BP) that marks the transition from a SWW- to ENSO-dominated climate; and (3) a relatively dry and stable late Holocene (5 cal kyr BP to present) that is consistent with the onset of a climate controlled by ENSO activity (i.e., characterised by a more mean El Niño climate state). The proxy record of Lake Dobson highlights the teleconnections between the equatorial Pacific and southern Australasia.

  16. Detailed Record of Paleomagnetic Field Change From Lake Sediments From Southern Argentina

    NASA Astrophysics Data System (ADS)

    Gogorza, C. S.; Sinito, A. M.; Lirio, J. M.; Nunez, H.; Chaparro, M. A.; Vilas, J. F.

    2001-12-01

    Paleomagnetic, magnetic and sedimentological studies carried out on four cores, about 10m long, from the bottom sediments of Escondido Lake (southwestern Argentina) are described. Measurements of intensity and directions of Natural Remanent Magnetization (NRM), magnetic susceptibility, isothermal remanent magnetization, saturation isothermal remanent magnetization (SIRM), back field, anhysteric remanent magnetization and saturation anhysteric remanent magnetization (SARM) were carried out. Stability of the NRM was investigated by alternating-field demagnetization. One sample of each five were chosen as pilot samples, which were demagnetized successively until 70mT peak and the stable remanent magnetization was isolated. Most of the samples showed no systematic change in the direction of their remanent magnetization during AF demagnetization; few of them showed a viscous magnetization, probably picked up in laboratory fields, which could easily be removed by AF demagnetization at about 25 mT. The main carriers of magnetisation seems to be ferrimagnetic minerals, predominantly pseudo single domain magnetite Within-lake correlation was based on the magnetic susceptibility and intensity of remanent magnetization. The individual measurements were stretched. The tephra layers were identified from the lithologic profiles and also from the magnetic susceptibility logs. Due to their different chronological meaning these layers were removed from the sequence and the gaps that were produced along the profiles by the removal were closed, obtaining a shortened depth. Calibrated ages were calculated from radiocarbon dating and a transfer function shortened depth-age was built. SARM and SIRM measurements were used to obtain relative paleointensity profiles. The secular variation (SV) of the geomagnetic field (both in intensity and direction) was studied using spectral analysis and precession analysis of the magnetic vector. In order to test the stability of the obtained

  17. Preliminary Record of Holocene Storm Events in the Finger Lakes, NY

    NASA Astrophysics Data System (ADS)

    Curtin, T. M.; Morgan, C. K.; Petrick, B. F.; Davin, L. I.; Rogers, C. E.; Crocker, M. L.; Loddengaard, K.; Baker, A. P.

    2006-12-01

    Terrigenous sediment deposited in three of the Finger Lakes of New York, Seneca, Keuka, and Canandaigua, preserve evidence for major storm events over the past ~13 ka. A combination of analytical techniques was used for ten cores, including visual inspection, magnetic susceptibility, loss-on-ignition, and grain size to identify these storm events. Storm layers are characterized by coincident coarse siliciclastic mean grain size, high % sand content, and more terrestrial plant macrofossils than the surrounding mud. The combination of sedimentological analyses with radiocarbon dating allows for development of a paleostorm chronology for each lake and comparison of the timing of the storm layers to determine if they were deposited synchronously or not. The number (10-31), thickness (0.1-6 cm), and grain size characteristics (1-37% sand) of the layers present in each core varies widely. As a result, single storm-related event deposition does not appear to have been synchronous among the three lake basins. However, there is temporal clustering of events. The greatest number of storm layers occurs in two distinct intervals, between ~13 and ~8.2 ka and ~4.6 and 0 ka. During the early to mid-Holocene, the number of events was high. We infer that a period of increased storminess occurred when the average climate of the region became warmer and wetter. Between ~8.2 and ~4.6 ka, when the average climate in North America was warm and dry, the number, thickness, and average mean grain size of the terrigenous layers decreased. After ~4.6 ka, the number of storms appears to have gradually increased as a result of a shift in the southern extent of the jet stream. The thickest, sandiest layers were deposited beginning at ~700 yrs BP and is associated with the climate of the Little Ice Age and Medieval Warming Period. The increase in the number, thickness, and sand content is especially apparent at ~290 yrs BP and is coincident the onset of widespread erosion due to deforestation

  18. Annual and Longer Sedimentary Rhythms of the Organic Rock Record of Titan's Circumpolar Seas and Lakes

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Tan, S. P.; Marion, G. M.; Jennings, D. E.; Mastrogiuseppe, M.; Adidharma, H.

    2014-12-01

    eccentricity, the circumpolar climate and annual range of the seasonal cycle will change, forcing responses in rainfall rates, erosion rates, and the composition of lakes and seas. Thus, sediment deposit sequences—layered organic rock strata—in the circumpolar regions will record past climate changes due to long-term cycles as well as annual periodicity.

  19. Stable isotope record in annually laminated lake sediments from Lake Żabińskie (NE Poland) for the last millennium.

    NASA Astrophysics Data System (ADS)

    Gabryś, Alicja; Piotrowska, Natalia; Tylmann, Wojciech; Bonk, Alicja; Filipiak, Janusz; Wacnik, Agnieszka; Hernandez-Almeida, Ivan; Grosjean, Martin

    2015-04-01

    Stable isotope record of carbon (13C) and oxygen (18O) has been analysed from an annually laminated sediment from Lake Zabinskie (Mazurian Lakeland, NE Poland) with high resolution (1-3 yrs). The sediment layers which were formed in each year during the last millennium contain information about environmental changes in the past. The calcite layers are formed in lake sediment in warm months of the year, therefore the reconstruction of summer climate variables in the past is potentially possible. The investigation of correlation between isotope dataset and instrumental climate data for years 1897-2008 AD confirmed that theory. The record of temperature, precipitation and SPEI (Standardised Precipitation Evaporation Index) coefficient, which is a combination of both temperature and precipitation, was tested. The strongest linear correlations were found for most samples for June, July, August (JJA) months but in some cases the correlation coefficient was stronger when also May was taken into account. For the whole 120-yrs series the correlation between δ18O and average JJA temperature is 0.007, average JJA precipitation is 0.16 and average JJA SPEI is 0.20. Analyzing the results for 1897-2008 we can distinguish period 1960-2008 with relevantly stronger correlations: R(temperature) = 0.19, R(precipitation) = 0.20 and R(SPEI) = 0.45. This period is connected with cessation of human activity close to Lake Zabinskie. Reconstruction of climate variables for the last millennium was made using transfer function obtained for calibration period (1897-2008). Reconstructions showed that known climate extremes like Medieval Warm Period, Little Ice Age with Sporer (1420-1570), Maunder (1645-1715) and Dalton (1790-1820) Minimum was recorded in sediment from Lake Zabinskie. The presented study is a part of the project "Climate of northern Poland during the last 1000 years: Constraining the future with the past (CLIMPOL)", funded within Polish-Swiss Research Programme. http://www.climpol.ug.edu.pl

  20. Paleo-climate and paleo-environment reconstruction based on a high-resolution, multi-proxy Holocene lake record from Lake Urmia (NW Iran)

    NASA Astrophysics Data System (ADS)

    Haghipour, Negar; Eglinton, Timothy; McIntyre, Cameron; Darvishi Khatooni, Javad; Hunziker, Daniela; mohammadi, Ali

    2016-04-01

    Lake Urmia, in northwest Iran, is the largest saline lake in the Middle East with a surface area of ~ 5000km2. Historical documents indicate its existence since at least 2000 years BC, and palynological investigation of a 100 m-long core suggest it contains a sedimentary record spanning the last 200 ka. Despite this potential as an archive of paleo-climate and paleo-environmental information, to date there has been no molecular organic geochemical investigation or precise dating of these sediments. We present lake sediment core data on both geochemical proxies and sediment lipid biomarkers on two cores form different part of the Lake. Each core has 10m length and covers Holocene time scale. The age model based on calibrated radiocarbon dates shows variation of sedimentation rates between early and middle Holocene and a sudden increase in late Holocene. This is interpreted as a sudden event and mass movement. Downcore results on bulk measurements (TOC, δ13C and C/N) give evidence for a warmer and wetter climates between 0.5 and 3 kyr BP. Phytoplankton biomarkers were most abundant in this period, indicating high phytoplankton productivity. Further gradual shift to cooler and drier episodes occur between 3.5 and 7Kyr Bp, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. The coolest and drier conditions occurred between 7-10.3 Kyr BP. This is in agreement with Carbon and Hydrogen isotopic composition of n-alkonic acids.

  1. Sedimentary record of polycyclic aromatic hydrocarbons and DDTs in Dianchi Lake, an urban lake in Southwest China.

    PubMed

    Guo, Jian-yang; Wu, Feng-chang; Liao, Hai-qing; Zhao, Xiao-li; Li, Wen; Wang, Jing; Wang, Li-fang; Giesy, John P

    2013-08-01

    Unique time trends of polycyclic aromatic hydrocarbons (PAHs) and dichlorodiphenyltrichloroethanes (DDTs) were found in a dated sediment core from Dianchi Lake (DC), an urban lake in Southwest China. The temporal trend of PAHs in DC was not only different from those in China's coastline and remote lakes of China, but also different from those in more developed countries. Identification of sources suggested that PAHs in DC originated primarily from domestic combustion of coal and biomass. However, a change of source from low- and moderate-temperature combustion to high-temperature combustion processes was observed. Different from those in China's coastline and some developed countries, the temporal trend of DDTs in DC mirrored the historical usage of DDTs in China, with erosion of soils and surface runoff from its drainage area the most likely routes of DDT introduction to the lake. Rapid urbanization and industrialization in its catchment, effective interception of point-source pollution, and changes in sources of energy during the last few decades have significantly influenced the vertical profiles of PAHs in DC.

  2. Reinterpretation of the exposed record of the last two cycles of Lake Bonneville, Western United States

    USGS Publications Warehouse

    Scott, W.E.; McCoy, W.D.; Shroba, R.R.; Rubin, M.

    1983-01-01

    A substantially modified history of the last two cycles of Lake Bonneville is proposed. The Bonneville lake cycle began prior to 26,000 yr B.P.; the lake reached the Bonneville shoreline about 16,000 yr B.P. Poor dating control limits our knowledge of the timing of subsequent events. Lake level was maintained at the Bonneville shoreline until about 15,000 yr B.P., or somewhat later, when catastrophic downcutting of the outlet caused a rapid drop of 100 m. The Provo shoreline was formed as rates of isostatic uplift due to this unloading slowed. By 13,000 yr B.P., the lake had fallen below the Provo level and reached one close to that of Great Salt Lake by 11,000 yr B.P. Deposits of the Little Valley lake cycle are identified by their position below a marked unconformity and by amino acid ratios of their fossil gastropods. The maximum level of the Little Valley lake was well below the Bonneville shoreline. Based on degree of soil development and other evidence, the Little Valley lake cycle may be equivalent in age to marine oxygenisotope stage 6. The proposed lake history has climatic implications for the region. First, because the fluctuations of Lake Bonneville and Lake Lahontan during the last cycle of each were apparently out of phase, there may have been significant local differences in the timing and character of late Pleistocene climate changes in the Great Basin. Second, although the Bonneville and Little Valley lake cycles were broadly synchronous with maximum episodes of glaciation, environmental conditions necessary to generate large lakes did not exist during early Wisconsin time. ?? 1983.

  3. Glacial to Holocene climate changes in the SE Pacific. The Raraku Lake sedimentary record (Easter Island, 27°S)

    NASA Astrophysics Data System (ADS)

    Sáez, Alberto; Valero-Garcés, Blas L.; Giralt, Santiago; Moreno, Ana; Bao, Roberto; Pueyo, Juan J.; Hernández, Armand; Casas, David

    2009-12-01

    Easter Island (SE Pacific, 27°S) provides a unique opportunity to reconstruct past climate changes in the South Pacific region based on terrestrial archives. Although the general climate evolution of the south Pacific since the Last Glacial Maximum (LGM) is coherent with terrestrial records in southern South America and Polynesia, the details of the dynamics of the shifting Westerlies, the South Pacific Convergence Zone and the South Pacific Anticyclone during the glacial-interglacial transition and the Holocene, and the large scale controls on precipitation in tropical and extratropical regions remain elusive. Here we present a high-resolution reconstruction of lake dynamics, watershed processes and paleohydrology for the last 34 000 cal yrs BP based on a sedimentological and geochemical multiproxy study of 8 cores from the Raraku Lake sediments constrained by 22 AMS radiocarbon dates. This multicore strategy has reconstructed the sedimentary architecture of the lake infilling and provided a stratigraphic framework to integrate and correlate previous core and vegetation studies conducted in the lake. High lake levels and clastic input dominated sedimentation in Raraku Lake between 34 and 28 cal kyr BP. Sedimentological and geochemical evidences support previously reported pollen data showing a relatively open forest and a cold and relatively humid climate during the Glacial period. Between 28 and 17.3 cal kyr BP, including the LGM period, colder conditions contributed to a reduction of the tree coverage in the island. The coherent climate patterns in subtropical and mid latitudes of Chile and Eastern Island for the LGM (more humid conditions) suggest stronger influence of the Antarctic circumpolar current and an enhancement of the Westerlies. The end of Glacial Period occurred at 17.3 cal kyr BP and was characterized by a sharp decrease in lake level conducive to the development of major flood events and erosion of littoral sediments. Deglaciation (Termination

  4. A frozen record of density-driven crustal overturn in lava lakes: The example of Kilauea Iki 1959

    USGS Publications Warehouse

    Stovall, W.K.; Houghton, B.F.; Harris, A.J.L.; Swanson, D.A.

    2009-01-01

    Lava lakes are found at basaltic volcanoes on Earth and other planetary bodies. Density-driven crustal foundering leading to surface renewal occurs repeatedly throughout the life of a lava lake. This process has been observed and described in a qualitative sense, but due to dangerous conditions, no data has been acquired to evaluate the densities of the units involved. Kilauea Iki pit crater in Hawai'i houses a lava lake erupted during a 2 month period in 1959. Part of the surface of the Kilauea Iki lake now preserves the frozen record of a final, incomplete, crustal-overturn cycle. We mapped this region and sampled portions of the foundering crust, as well as overriding and underlying lava, to constrain the density of the units involved in the overturn process. Overturn is driven by the advance of a flow front of fresh, low-density lava over an older, higher density surface crust. The advance of the front causes the older crust to break up, founder, and dive downwards into the lake to expose new, hot, low-density lava. We find density differences of 200 to 740 kg/m3 between the foundering crust and over-riding and under-lying lava respectively. In this case, crustal overturn is driven by large density differences between the foundering and resurfacing units. These differences lead, inevitably, to frequent crustal renewal: simple density differences between the surface crust and underlying lake lava make the upper layers of the lake highly unstable. ?? Springer-Verlag 2008.

  5. Historical Data Record of Ice Cover Conditions on Great Bear Lake and Great Slave Lake, Canada, Derived from SMMR and SSM/I (1979-2011)

    NASA Astrophysics Data System (ADS)

    Kang, K.; Duguay, C.

    2012-12-01

    Ice phenology events such as freeze onset (FO)/melt-onset (MO), freeze duration (FD)/melt duration (MD), ice-on/ice-off, and ice cover duration (ICD), as well as ice growth/thickening are useful climate data records as they are sensitive to variability and changes in both air temperature and snow mass. The presence/absence of ice cover and its seasonal growth also influence energy and heat exchanges between lakes and the overlying atmosphere. The poor spatial/temporal coverage of ground-based observations in most northern countries make remote sensing a desirable tool for investigating the response and role of ice cover in climate-lake interactions. Space-borne passive microwave instruments operating since the late 1970s provide an invaluable data source for investigating the response of ice cover on large lakes to climate. In this study, we present new ice phenology and ice thickness retrieval algorithms (H-pol: phenology and V-pol: thickness) developed using 19.35 GHz brightness temperature data (1987-2011) from SSM/I, and 18.00 GHz TB data (1979-1987) from SMMR over large northern lakes: Great Bear Lake (GBL) and Great Slave Lake (GSL). For the full period of analysis (1979-2011), FO and ice-on dates were found to occur later on both GBL (6 d decade-1 and 3 d decade-1) and GSL (5 d decade-1 and 2 d decade-1). In GSL, trends in MO are positive 4-6 d decade-1 while ice-off date, and ICD are negative, i.e., toward earlier breakup. The trend of ice-off date and the ice cover duration shows -3 d decade-1 and -4 d decade-1 for both GBL and GSL, respectively. Maximum ice thickness shows slightly negative trends in the order of -2 for GBL and -5 cm decade-1 for GSL. The satellite-derived ice cover thickness and phenology data record reveal inter-annual variability and trends consistent with climate conditions, in particular surface air temperature.

  6. Quantifying magnitude and frequency of recent extreme floods using a 600 year lake sediment record from the UK

    NASA Astrophysics Data System (ADS)

    Chiverrell, Richard; Sear, David; Warburton, Jeff; Schillereff, Daniel; Macdonald, Neil

    2016-04-01

    Flooding in northwest England has been reconstructed from the coarse grained units preserved in lake sediment sequences at Bassenthwaite Lake, a record that includes the floods of December 2015 (Storm Desmond) and November 2009 and shows they were the most extreme in over 600 years. The inception and propagation of a lake sediment flood event horizon in the aftermath of the December 2015 storms in the UK will be explored. Linking our new sediment palaeoflood series to river discharges, the first assessment of flood frequency and magnitude based on lake sediments for the UK, shows that recent disastrous flooding in northern England was more extreme than revealed by standard hydrological approaches, making these events the rarest (Recurrence Interval >1:10000 years) ever recorded in the UK. Particle size characteristics of flood laminations, after correction for variations in the stability of catchment sediment sources, were correlated on a hydrodynamic basis with recorded river flows. The particle size flood record is underpinned by a robust chronology to CE1420 derived from radionuclide (Pb210, Am241, and Cs137) dating and correlation to the rich history of metal (Pb, Zn, Ba and Cu) mining in the catchment accurately recorded in the sediment geochemistry. The sediment palaeoflood series reveals five flood rich periods (CE 1460-1500, 1580-1680, 1780-1820, 1850-1925, 1970-present), and these correspond with positive phases of reconstructed winter NAOI and other Atlantic circulation patterns. The hydro-climatology of the extreme events (top 1% of floods) in our series, show that 67% of floods have occurred in the 21st Century during a period of prolonged warmer northern Hemisphere temperatures and positive NAOI winter index. Climate model ensemble outputs for the Northern hemisphere forecast increased frequency and magnitude of positive NAOI, and warmer air temperatures; we infer from this that there will also be an increase in the frequency of extreme floods and

  7. A New, Continuous 5400 Yr-long Paleotsunami Record from Lake Huelde, Chiloe Island, South Central Chile.

    NASA Astrophysics Data System (ADS)

    Kempf, P.; Moernaut, J.; Vandoorne, W.; Van Daele, M. E.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2014-12-01

    After the last decade of extreme tsunami events with catastrophic damage to infrastructure and a horrendous amount of casualties, it is clear that more and better paleotsunami records are needed to improve our understanding of the recurrence intervals and intensities of large-scale tsunamis. Coastal lakes (e.g. Bradley Lake, Cascadia; Kelsey et al., 2005) have the potential to contain long and continuous sedimentary records, which is an important asset in view of the centennial- to millennial-scale recurrence times of great tsunami-triggering earthquakes. Lake Huelde on Chiloé Island (42.5°S), Chile, is a coastal lake located in the middle of the Valdivia segment, which is known for having produced the strongest ever instrumentally recorded earthquake in 1960 AD (MW: 9.5), and other large earthquakes prior to that: i.e. 1837 AD, 1737 AD (no report of a tsunami) and 1575 AD (Lomnitz, 1970, 2004, Cisternas et al., 2005). We present a new 5400 yr-long paleotsunami record with a Bayesian age-depth model based on 23 radiocarbon dates that exceeds all previous paleotsunami records from the Valdivia segment, both in terms of length and of continuity. 18 events are described and a semi-quantitative measure of the event intensity at the study area is given, revealing at least two predecessors of the 1960 AD event in the mid to late Holocene that are equal in intensity. The resulting implications from the age-depth model and from the semi-quantitative intensity reconstruction are discussed in this contribution.

  8. A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu, China.

    PubMed

    Zan, Fengyu; Huo, Shouliang; Xi, Beidou; Zhu, Chaowei; Liao, Haiqing; Zhang, Jingtian; Yeager, Kevin M

    2012-03-01

    In this study, the sediment profiles of total organic carbon, total nitrogen, C/N ratios, total phosphorus, N/P ratios, C/P ratios, particle sizes, and stable carbon and nitrogen isotopes (δ(13)C and δ(15)N) were used to investigate natural and anthropogenic impacts on Lake Chaohu over the past 100 years. Before 1960, Lake Chaohu experienced low productivity and a relatively steady and low nutrient input. The increasing concentration and fluxes of total organic carbon, total nitrogen, total phosphorus, together with changes in the δ(13)C and δ(15)N of organic material in the sediment cores, suggested that the anthropogenic effects on trophic status first started because of an increase in nutrient input caused by a population increase in the drainage area. With the construction of the Chaohu Dam, an increase in the utilization of fertilizer and the population growth which occurred since 1960, stable depositional conditions and increasing nutrient input resulted in a dominantly algae-derived organic matter source and high productivity. Nutrient input increased most significantly around 1980 following the rapidly growing population, with concomitant urbanization, industrial and agricultural development. This study also revealed that the concentration and distribution of nutrients varied between different areas of sediment within Lake Chaohu because of the influence of different drainage basins and pollution sources.

  9. Records, ages, and growth of the mooneye, Hiodon tergisus, of the Great Lakes

    USGS Publications Warehouse

    Van Oosten, John

    1961-01-01

    Mooneyes (Hiodon tergisus) are very scarce in the upper three Great Lakes since only four specimens have been received from Lake Michigan, one from Lake Huron, and none from Lake Superior. The published statistics of the mooneyes are erroneous. Those of 1931 of Lake Michigan were perhaps chubs (Coregonus spp.) and those of Lake Huron of 1929 were also chubs and of 1934, 1949, and 1951 were gizzard shad (Dorosoma cepedianum) but since 1956 were alewives (Alosa pseudoharengus). Mooneyes are common in Lakes Erie and Ontario and perhaps in Lake St. Clair but are commercialized only in the States of Ohio and Michigan. Virtually all Lake Erie mooneyes were caught in trap nets, pound nets, and seines in less than 35 feet of water. Their life-history data collected in 1927-31 included lengths and weights of age-groups I-VII, calculated increments and lengths based on both anterior radii and lateral diameters of scales, length-weight relationships, and sexual maturity. Apparently mature specimens exceeded 8.8 inches, 3.25 ounces, and age-group I.

  10. Record of seismotectonic events in siliceous cyanobacterial sediments (Magadi cherts), Lake Magadi, Kenya

    NASA Astrophysics Data System (ADS)

    Behr, H.-J.; Röhricht, C.

    The Quaternary sediments of Lake Magadi in the Kenya Rift include large volumes of chert. Before their lithification, these siliceous sediments underwent very strong deformation, as recorded by diapirism with pillow-chert mounds, extrusion along dykes and fault ramps, horizontal liquefaction slides with brecciation, slumping, as well as petee-, flow- and shear structures. Eugster (1969) considered these structures to have resulted from desiccation of Na-silicate precipitates (magadiite) that were deposited over wide areas and were several metres thick. Magadiite can remain soft over long periods; therefore, these ``Magadi-type cherts'' are called the type examples of inorganic cherts. However, field observations and microbiological studies of the cherts show that real inorganic cherts are rare at the type locality of Magadi-type cherts. Most of the cherts are older than the High Magadi Beds and developed from flat-topped calcareous bioherms of Pleurocapsa, Gloecocapsa, and other coccoid cyanobacteria, thinly bedded filamentous microbial mats, stromatolites, bacterial slimes, diatoms, Dascladiacea colonies and other organic matter. Silicification occurred from a silicasol via opal-A to opal-C with final recrystallisation to a chert of quartzine composition. The metabolic processes of cyanobacteria controlled the pH and influenced the dissolution-precipitation mechanism. Collapse, liquefaction and extrusion of the pre-lithified siliceous matrix was caused by seismotectonic rift activity, which activated fault scarplets and large-scale dyke systems. It led to liquefaction and other earthquake-induced structures along the fault ramps and on tilted blocks. Concentrated silicasols were generated by the interaction of alkaline waters with volcanic detritus, coupled with biochemical processes. After liquefaction and extrusion, the material solidified by spontaneous crystallisation in an environment that was characterised by highly variable pH and salinity. The Lake Magadi

  11. Initial Geochemistry Data of the Lake Ohrid (Macedonia, Albania) DEEP -Site Sediment Record: The ICDP Scopsco Drilling Project

    NASA Astrophysics Data System (ADS)

    Francke, A.; Wagner, B.; Sulpizio, R.; Zanchetta, G.; Leicher, N.; Gromig, R.; Krastel, S.; Lindhorst, K.; Wilke, T.

    2014-12-01

    Ancient lakes, with sediment records spanning >1 million years, are very rare. The UNESCO World Heritage site of Lake Ohrid on the Balkans is thought to be the oldest lake in Europe. With 212 endemic species described to date, it is also a hotspot of evolution. In order to unravel the geological and evolutionary history of the lake, an international group of scientists, conducted a deep drilling campaign in spring 2013 under the umbrella of the ICDP SCOPSCO project (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid). Overall, about 2,100 m of sediments were recovered from four drill sites. At the main drill site (DEEP-site) in central parts of the lake where seismic data indicated a maximum sediment fill of ca. 700 m, a total of more than 1,500 m of sediments were recovered until a penetration depth of 569 m. Currently, core opening, core description, XRF and MSCL scanning, sub-sampling (16 cm resolution), and inorganic and organic geochemical as well as sedimentological analyses of the sediment cores from the DEEP site are in progress at the University of Cologne. Previous studies at Lake Ohrid have shown that interglacial periods are characterized by high TIC and TOC contents, likely associated with high contents of calcite and organic matter in the sediments. In contrast, during glacial periods negligible TIC and low TOC contents correspond to high K counts indicating enhanced supply of clastic material. Similar patterns can be observed in the biogeochemical analyses of the subsamples and in the XRF data of the DEEP site record. Following these variations on a glacial-interglacial time scale, TIC and TOC data obtained from the subsamples and from core catcher samples indicate that the DEEP site sequence provides a 1.2 million year old continuous record of environmental and climatological variability in the Balkan Region. The age control can be further improved by first findings of macroscopic tephra horizons. Peaks in K, Sr, Zr, and magnetic

  12. First record of Mylagaulid rodents (Rodentia, Mammalia) from the Miocene of Eastern Siberia (Olkhon Island, Baikal Lake, Irkutsk Region, Russia).

    PubMed

    Tesakov, A S; Lopatin, A V

    2015-01-01

    A new genus and species of rodent, Lamugaulus olkhonensis, belonging to the subfamily Promylagaulinae of the family Mylagaulidae, is described on the basis of isolated teeth from the Khalagay Formation of the Lower Miocene Tagay locality (Olkhon island, Lake Baikal, Irkutsk Region). This is the first record of mylagaulids in Eastern Siberia, significantly expanding the data on the distribution of this mainly North American group of rodents in Asia and showing its presence outside the Central Asian arid zone.

  13. Holocene Climate and Catchment-Specific Responses to Climate Change, Recorded in a Transect of Icelandic Lakes

    NASA Astrophysics Data System (ADS)

    Geirsdottir, A.; Axford, Y.; Florian, C. R.; Miller, G. H.; Crump, S. E.; Larsen, D. J.; Olafsdóttir, S.; Thordarson, T.; Blair, C.

    2015-12-01

    Holocene paleoclimate reconstructions from the northern North Atlantic landmasses exhibit greater responses to climate forcings than other Arctic regions presumably tied to changes in North Atlantic ocean-atmosphere circulation. Here we present an overview of high-resolution, precisely dated and PSV synchronized Holocene lake sediment records on Iceland, where we employ diverse proxies at sites spanning a broad modern climate gradient, from the presently glaciated highlands to the coastal lowlands. Despite substantial differences in catchment specific processes that influence each lake record, the multi-proxy reconstructions over the last 10 ka show remarkably consistent trends, especially throughout the mid to late Holocene cooling related to the slow decrease in summer insolation. Of particular note are highly non-linear abrupt departures of centennial scale summer cold periods such as at 5.5 ka, ~4.2 ka; ~3.0 ka, ~1.5 ka, 0.7 ka, and 0.2 ka. Some of the abrupt shifts may be related to Icelandic volcanism influencing catchment stability, but the lack of a full recovery to pre-existing values after the perturbation suggests increased periglacial activity, decreased vegetation cover, and glacier growth in Iceland. That these shifts reflect regional climate changes is also supported by contemporaneous shifts documented elsewhere in the northern North Atlantic region. Although timing and abruptness of these shifts is similar between our Icelandic lake records, their magnitude can differ substantially. Regional-scale factors such as volcanism likely modulate climatic responses to radiative forcing; and at the same time, local watershed characteristics like vegetation cover and soil properties produce site-specific environmental responses to climate change. Our Icelandic lake records provide opportunities to observe the precise timing of local climate shifts and corresponding environmental responses, and thus to disentangle these effects.

  14. First record of trypanosomes from the blood of sculpins (Cottus ricei and C. cognatus) from Lake Superior, WI, USA

    USGS Publications Warehouse

    Pronina, Svetlana V.; Pronin, Nikolai M.; Selgeby, Jim H.

    1999-01-01

    During parasitological research of fishes in Lake Superior (USA) in August-September 1994, infection with trypanosomes of the blood of sculpins (Cottus ricei and C. cognatus) was recorded for the first time. The descriptions of three morphological groups of the genus Trypanosoma: T. sp. I, found in blood of C. ricei, T. sp. II and T. sp. III from blood of C. cognatus, have been provided.

  15. First seismic survey of Lake Saint-Jean (Québec, Canada): sedimentary record of the last deglaciation

    NASA Astrophysics Data System (ADS)

    Nutz, Alexis; Schuster, Mathieu; Ghienne, Jean-François; Raphaël, Certain; Nicolas, Robin; Claude, Roquin; Frédéric, Bouchette; Cousineau Pierre, A.

    2015-04-01

    complexity. It is notably worth noting that the transition from glacial to post-glacial periods is well marked by an abrupt change in depositional dynamics. In addition, this work highlights an original lacustrine sedimentary system which is not straightforward notably because of the importance of erosion, by-pass and intermittent deposition over most of the lakefloor. As it deals with both glacial environments and lake systems, this works is of interest for all those concerned by the geological record of both the transition from glacial to post-glacial periods and the lacustrine environments.

  16. Fossil fuel and wood combustion as recorded by carbon particles in Lake Erie sediments 1850-1998.

    PubMed

    Kralovec, Andrew C; Christensen, Erik R; Van Camp, Ryan P

    2002-04-01

    Carbon particle analysis was performed on a dated sediment core from Lake Erie in order to explore the inputs of pollution from incomplete combustion of coal, oil, and wood. Carbon particles were isolated from the sediment by chemical digestion, and elemental carbon content was determined by CHN analysis. The type of carbon particle (from burning coal, oil, and wood) and particle size and relative abundance were determined using scanning electron microscopy on 100 particles from each core section. The elemental carbon content in the Lake Erie core ranges from 2.5 to 7.4 mg of carbon/g of sediment (1850-1998), and the maximum carbon content in the sediment occurs in the late 1960s to early 1970s. It is shown that particle mass is a better predictor than particle number of historical energy consumption records. This is especially clear for wood where variable particle volumes play a significant role in determining the record of elemental carbon mass from wood burning. Lake Erie core's content of total carbon and carbon particle type is in agreement with U.S. energy consumption records, except that a wood maximum occurs during 1905-1917, about 36 yr after the U.S. consumption maximum from 1870 to 1880.

  17. The 1.5-ka varved record of Lake Montcortès (southern Pyrenees, NE Spain)

    NASA Astrophysics Data System (ADS)

    Corella, Juan Pablo; Brauer, Achim; Mangili, Clara; Rull, Valentí; Vegas-Vilarrúbia, Teresa; Morellón, Mario; Valero-Garcés, Blas L.

    2012-09-01

    The karstic Lake Montcortès sedimentary sequence spanning the last 1548 yr constitutes the first continuous, high-resolution, multi-proxy varved record in northern Spain. Sediments consist of biogenic varves composed of calcite, organic matter and detrital laminae and turbidite layers. Calcite layer thickness and internal sub-layering indicate changes in water temperature and seasonality whereas the frequency of detrital layers reflects rainfall variability. Higher temperatures occurred in Lake Montcortès in AD 555-738, 825-875, 1010-1322 and 1874-present. Lower temperatures and prolonged winter conditions were recorded in AD 1446-1598, 1663-1711 and 1759-1819. Extreme and multiple precipitation events dominated in AD 571-593, 848-922, 987-1086, 1168-1196, 1217-1249, 1444-1457, 1728-1741 and 1840-1875, indicating complex hydrological variability in NE Spain since AD 463. The sedimentary record of Lake Montcortès reveals a short-term relation between rainfall variability and the detrital influx, pronounced during extended periods of reduced anthropogenic influences. In pre-industrial times, during warm climate episodes, population and land use increased in the area. After the onset of the industrialization, the relationship between climate and human activities decoupled and population dynamics and landscape modifications were therefore mostly determined by socio-economic factors.

  18. Recruitment of Total Phytoplankton, Chlorophytes and Cyanobacteria from Lake Sediments Recorded by Photosynthetic Pigments in a Large, Shallow Lake (Lake Taihu, China)

    NASA Astrophysics Data System (ADS)

    Cao, Huan-Sheng; Kong, Fan-Xiang; Tan, Jian-Kang; Zhang, Xiao-Feng; Tao, Yi; Yang, Zhou

    2005-08-01

    Recruitment of total phytoplankton, chlorophytes and cyanobacteria from lake sediments to the water column was studied using photosynthetic pigments at one site (1.5 m) in Lake Taihu, a large shallow lake in China. Samples were taken weekly from the migration traps installed on the bottom from March to May 2004. Abundance of total phytoplankton, chlorophytes and cyanobacteria were represented by Chlorophyll (Chl) a, b, and phycocyanin (PC), respectively. Over the three months, total phytoplankton, chlorophytes, and cyanobacteria corresponding to 48.9%, 68.9% and 316.2% of their initial concentrations in surface sediments were recruited in Lake Taihu. However, compared with their increase in pelagic abundance over the same period, the recruitment accounted for a rather small inoculum. Accompanying the recruitment, total phytoplankton and chlorophytes declined and cyanobacteria increased in the upper 0-2 cm sediments; colonies of Microcystis aeruginosa in the water column enlarged from small size with several cells to large colonies with hundreds of cells. Thus, overwintering and subsequent growth renewal of pelagic phytoplankton merits further study and comparison with benthic survival and recruitment.

  19. Using Kettle Lake Records to Date and Interpret Holocene Ash Deposition in Upper Cook Inlet, Anchorage, AK

    NASA Astrophysics Data System (ADS)

    Werner, A.; Kathan, K. M.; Kaufman, D. S.; Hancock, J. R.; Waythomas, C. F.; Wallace, K. L.

    2004-12-01

    Fourteen sediment cores recovered from three kettle lakes (Goose, Little Campbell and Lorraine) near Anchorage, AK were used to document and date Holocene volcanic ash deposition in the upper Cook Inlet area. Small lakes (<0.5 km2) with small (<1.5 km2), low relief (<50 m), and well-vegetated drainage areas were selected in order to minimize ash remobilization by mass wasting and fluvial processes. The resulting stratigraphic records are interpreted as primary terpha-fall stratigraphies. Relative to the surrounding lacustrine sediments, the ash layers exhibit low organic-matter content (as determined by loss-on-ignition, LOI), high magnetic susceptibility (MS), increased density (X-radiographs), and bubble-wall glass shards. Some ash layers are up to 1 cm thick (macrotephra) consisting of pure glass, some occur as light bands, while others (microtephra) can only be located using non-visual techniques (MS, LOI and X-radiography). The thinnest microtephras observed occur either as discrete (1 mm) layers or diffuse laminations composed of tephra mixed with ambient lake sediment. Forty-five AMS C-14 dates on terrestrial macro fossils were used to constrain sedimentation-rate models for the cores, and to assign absolute ages to ash units. Comparison of inferred tephra ages corroborates our intra and inter basin stratigraphic correlations (+/- 200 yrs) based on physical and MS stratigraphy. Ten out of 12 macrotephras can be confidently correlated among all three lakes, whereas, two of the prominent tephras occur in one basin but not in the others. This suggests subtle differences in ash plume extents or differences in tephra preservation between lakes. A total of 24 Holocene ash units (12 macro and 12 micro) have been recognized and dated in the Anchorage area, suggesting an ash-fall frequency of about 2.4/1000 yrs. By comparison, historical records suggest more frequent ash-fall events (120/1000 yrs). Our data indicate that, either the ash layers are not consistently

  20. A list of Michigan Corixidae (Hemiptera) with four new state records from the Great Lakes of Michigan

    USGS Publications Warehouse

    Chordas, Stephen W.; Hudson, Patrick L.

    1999-01-01

    Corisella tarsalis, Sigara lineata, Trichocorixa borealis, and Trichocorixa kanza were recently identified from Michigan and constitute new state records. These four species were collected from two of the Great Lakes or their connecting rivers and increase the number of corixids for Michigan to 47 species. We newly report the genus Corisella for Michigan. Although most abundant in the western United States and Canada, scattered Corisella records in the Midwest (Wisconsin, Ohio and Ontario, Canada) indicated there was a good probability of its occurrence in Michigan. Finally, we provide an updated list of Michigan Corixidae.

  1. A varved lake sediment record of the 10Be solar activity proxy for the Lateglacial-Holocene transition

    NASA Astrophysics Data System (ADS)

    Czymzik, Markus; Adolphi, Florian; Muscheler, Raimund; Mekhaldi, Florian; Martin-Puertas, Celia; Aldahan, Ala; Possnert, Göran; Brauer, Achim

    2016-12-01

    Solar modulated variations in cosmogenic radionuclide production provide both information on past changes in the activity of the Sun and a global synchronization tool. However, to date the use of cosmogenic radionuclides for these applications is almost exclusively based on 10Be records from ice cores and 14C time-series from tree rings, all including archive-specific limitations. We present the first 10Be record from annually laminated (varved) lake sediments for the Lateglacial-Holocene transition from Meerfelder Maar. We quantify environmental influences on the catchment and, consequently, 10Be deposition using a new approach based on regression analyses between our 10Be record and environmental proxy time-series from the same archive. Our analyses suggest that environmental influences contribute to up to 37% of the variability in our 10Be record, but cannot be the main explanation for major 10Be excursions. Corrected for these environmental influences, our 10Be record is interpreted to dominantly reflect changes in solar modulated cosmogenic radionuclide production. The preservation of a solar production signal in 10Be from varved lake sediments highlights the largely unexplored potential of these archives for solar activity reconstruction, as global synchronization tool and, thus, for more robust paleoclimate studies.

  2. Fingerprinting of glacial silt in lake sediments yields continuous records of alpine glaciation (35–15 ka), western USA

    USGS Publications Warehouse

    Rosenbaum, Joseph G.; Reynolds, Richard L.; Colman, Steven M.

    2012-01-01

    Fingerprinting glacial silt in last glacial-age sediments from Upper Klamath Lake (UKL) and Bear Lake (BL) provides continuous radiocarbon-dated records of glaciation for the southeastern Cascade Range and northwestern Uinta Mountains, respectively. Comparing of these records to cosmogenic exposure ages from moraines suggests that variations in glacial flour largely reflect glacial extent. The two areas are at similar latitudes and yield similar records of glacial growth and recession, even though UKL lies less than 200 km from the ocean and BL is in the continental interior. As sea level began to fall prior to the global Last Glacial Maximum (LGM), existing glaciers in the UKL area expanded. Near the beginning of the global LGM (26.5 ka), the BL record indicates onset of glaciation and UKL-area glaciers underwent further expansion. Both records indicate that local glaciers reached their maximum extents near the end of the global LGM, remained near their maxima for ~1000 yr, and underwent two stages of retreat separated by a short period of expansion.

  3. Stratified tephra records from lake sediment archives: Holocene eruptions of the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Lane, Christine; Scholz, Christopher; Poppe, Sam; Schmid, Martin; Ross, Kelly Ann

    2016-04-01

    Lake sediments preserve rare stratified records of explosive volcanism, often with accompanying chronological controls or climatostratigraphic detail. In proximal areas where outcrop stratigraphies are complex, exposures isolated and sediments frequently eroded, the lacustrine archive provides a means to check the order of events and identify additional eruptions not preserved on land. The visible volcanic ash (tephra) record within lake sediments may be limited by eruption volume, distance from source and high sedimentation rates. A more complete eruption history can be detected through the study of non-visible tephra layers. Such "cryptotephra" records may be revealed through non-destructive core-scanning methods, such as XRF-scanning or magnetic susceptibility measurements, or by more thorough laboratory processes and microscopic analysis. Compositional analysis of tephra glass shards using WDS-EPMA and LA-ICP-MS provide a means to provenance eruptions, to cross-correlate between multiple sediment cores, and to establish connections between the lacustrine record and proximal outcrops. Here we present the results of such a "tephrostratigraphic" approach applied to the Holocene volcanic record of the Virunga Volcanic Province (VVP). More than 10 explosive volcanic eruptions, attributed to multiple volcanic centres, are evidenced over the last 12,000 years. This unique insight into the frequency of explosive eruptions from the VVP, demonstrates the potential of visible and cryptotephra investigations in lacustrine sediment archives as a means of studying past, present and future volcanic hazards.

  4. A 60,000-yr record of climate in Southeast Tropical Africa: Preliminary results from Lake Tanganyika

    NASA Astrophysics Data System (ADS)

    Tierney, J.; Russell, J.

    2006-12-01

    Few paleoclimate records exist that record high-frequency climate variability within tropical Africa, particularly during Marine Isotope Stage 3 (30-60,000 years BP). Thus very little is known about the potential role or response the region may have with regards to high-latitude abrupt climate change. However, climate variability in tropical East Africa is linked to large-scale changes in the convective intensity and location of the inter- tropical convergence zone (ITCZ) and the strength of the seasonal monsoonal winds from both the Atlantic and Indian Oceans. Understanding tropical African climate history may illuminate the causes and amplifying mechanisms of global climate change. We present here a multiproxy record of 60,000 years of climate variability from the sediments of Lake Tanganyika, southeast tropical Africa, which addresses outstanding questions regarding the role of East Africa in the context of abrupt climate change. Continuously accumulating hemipelagic sediments recovered from 650 m water depth from the southern half of Lake Tanganyika record hydrologic variability, terrestrial paleoenvironments, and changes in wind-driven upwelling intensity. Major element variations in Tanganyika sediments measured at 1 mm resolution by scanning XRF resolve changes in sediment geochemistry over decadal to centennial timescales, shedding light on the amplitude and frequency of short-term climate variability in this region. Additionally, records of bulk stable isotopes (δ13C, δ15N), compound- specific δD, and biogenic silica indicate rapid, dramatic changes in lake productivity, vegetation, and rainfall over millennial time-scales from Marine Isotope Stage 3 to present, including the Younger Dryas. In the case of the latter, the Younger Dryas is manifest in Lake Tanganyika as a sedimentary sequence of low diatom content, indicating reductions in southerly monsoonal windspeed and lake upwelling, and hydrogen isotope data over this interval indicate significant

  5. Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa

    NASA Astrophysics Data System (ADS)

    Berke, Melissa A.; Johnson, Thomas C.; Werne, Josef P.; Grice, Kliti; Schouten, Stefan; Sinninghe Damsté, Jaap S.

    2012-11-01

    New molecular proxies of temperature and hydrology are helping to constrain tropical climate change and elucidate possible forcing mechanisms during the Holocene. Here, we examine a ˜14,000 year record of climate variability from Lake Victoria, East Africa, the world's second largest freshwater lake by surface area. We determined variations in local hydroclimate using compound specific δD of terrestrial leaf waxes, and compared these results to a new record of temperature utilizing the TEX86 paleotemperature proxy, based on aquatic Thaumarchaeotal membrane lipids. In order to assess the impact of changing climate on the terrestrial environment, we generated a record of compound specific δ13C from terrestrial leaf waxes, a proxy for ecosystem-level C3/C4 plant abundances, and compared the results to previously published pollen-inferred regional vegetation shifts. We observe a general coherence between temperature and rainfall, with a warm, wet interval peaking ˜10-9 ka and subsequent gradual cooling and drying over the remainder of the Holocene. These results, particularly those of rainfall, are in general agreement with other tropical African climate records, indicating a somewhat consistent view of climate over a wide region of tropical East Africa. The δ13C record from Lake Victoria leaf waxes does not appear to reflect changes in regional climate or vegetation. However, palynological analyses document an abrupt shift from a Poaceae (grasses)-dominated ecosystem during the cooler, arid late Pleistocene to a Moraceae-dominated (trees/shrubs) landscape during the warm, wet early Holocene. We theorize that these proxies are reflecting vegetation in different locations around Lake Victoria. Our results suggest a predominantly insolation-forced climate, with warm, wet conditions peaking at the maximum interhemispheric seasonal insolation contrast, likely intensifying monsoonal precipitation, while maximum aridity coincides with the rainy season insolation and the

  6. Lake Biel sediment record during the last 7500 years and impact of the Aare river deviation in 1878 AD.

    NASA Astrophysics Data System (ADS)

    Jeannet, Alice; Corella, Juan Pablo; Reusch, Anna; Kremer, Katrina; Girardclos, Stéphanie

    2013-04-01

    Lake sediments are excellent archives of environmental and climate changes as well as human impact on lake- and river-systems. Lake Biel is a medium-sized peri-alpine lake (Switzerland) with a maximum depth of 74 m and lies at 429 m asl. Our study focuses on the south-west basin, where the lake sedimentation was naturally mainly controlled by autochthonous sedimentation, and is now, since the artificial Aare river deviation through the Hagneck canal in 1878 AD, under the strong influence of water and sediment input from its catchment. A 10.05-m-long composite sediment sequence, cored in 2011 at 52 m water depth, was built from two cores retrieved with an Uwitec system. The cored sedimentary sequence begins in 1975 and spans the last 7500 years, as dated by seven 14C analyses and 210Pb/137Cs activity profiles. Magnetic susceptibility and density were measured with a Geotek MSCL at 0.5 cm resolution, granulometry with a CILAS grain sizer every 10 cm and X-ray fluorescence measurements were carried out using an Avaatech core scanner at 1-cm resolution. Lake Biel sediment record is subdivided in four main units. The lowest Unit A (651-1005 cm; 7355 to 5075 BP), with dark greyish clayey silty laminated layers and sedimentation rates between 0.10 to 0.29 cm/yr, shows stable low values for almost all proxies, excepted for allochtonous elements which increase between 7000-6000 BP. By analogy with Unit C facies (see below), Unit A is interpreted as influenced by the Aare river which probably flew into the south-west basin at that time. Unit B1 (651-343 cm, 5075 to 2036 BP) has lower sedimentation rate (0.10 cm/yr), high Ca/Ti ratio, light sediment color, constant clayey silty grain size and varying elemental profiles which point to the dominant influence of autochtonous lake processes influenced by climate. From the beginning of Unit B2 (343-147 cm, 2036 to 1878 AD) sediment grain size increases which possibly reflects a human influence over the lake system. The greatest

  7. Modelling past and future sediment transfer in catchment-lake systems using integrated records of environmental change

    NASA Astrophysics Data System (ADS)

    Smith, Hugh; Sellami, Haykel; Sangster, Heather; Riley, Mark; Chiverrell, Richard; Boyle, John

    2016-04-01

    Agricultural change has caused significant environmental impacts with the onset of modern practices and intensification over the past century. In response, many current policy and management initiatives aim to reduce soil erosion and river pollution by fine sediment. However, there is a lack of detailed, longer-term baseline information extending beyond the instrumental record against which to measure the success or otherwise of such efforts. Furthermore, future reductions in the magnitude of impacts on soil erosion achievable under a changing climate remain unclear. Here, we provide an overview of an integrated approach for reconstructing impacts from past agricultural change based on social and environmental records coupled with multi-model simulations of catchment erosion and lake sediment dating. We aim to model soil erosion and sediment transfer responses to climatic variability and land use changes spanning the last ca. 100 years using variants of the RUSLE and Morgan-Morgan-Finney models. The study focuses on six lake catchments in Britain which cover a range of agricultural environments from intensively-farmed lowlands to upland catchments subject to lower-intensity livestock grazing. Land use reconstructions are based on historic aerial photography (1940s-2000s) and satellite-derived land cover maps (1990-2007) in combination with annual parish-level agricultural census data (1890s-1970s) and farmer interviews. Radionuclide dating of lake sediments coupled with pollen analysis provides independent data on decadal sedimentation rates and vegetation cover for comparison with model outputs and land use reconstructions. This combination of social and environmental records, soil erosion modelling and dating of lake sedimentary archives forms a powerful platform from which to project impacts from future agricultural scenarios under a changing climate.

  8. Age model for a continuous, ca 250-ka Quaternary lacustrine record from Bear Lake, Utah-Idaho

    USGS Publications Warehouse

    Colman, Steven M.; Kaufman, D.S.; Bright, Jordon; Heil, C.; King, J.W.; Dean, W.E.; Rosenbaum, J.G.; Forester, R.M.; Bischoff, J.L.; Perkins, Marie; McGeehin, J.P.

    2006-01-01

    The Quaternary sediments sampled by continuous 120-m-long drill cores from Bear Lake (Utah-Idaho) comprise one of the longest lacustrine sequences recovered from an extant lake. The cores serve as a good case study for the construction of an age model for sequences that extend beyond the range of radiocarbon dating. From a variety of potential age indicators, we selected a combination of radiocarbon ages, one magnetic excursion (correlated to a standard sequence), and a single Uranium-series age to develop an initial data set. The reliability of the excursion and U-series data require consideration of their position with respect to sediments of inferred interglacial character, but not direct correlation with other paleoclimate records. Data omitted from the age model include amino acid age estimates, which have a large amount of scatter, and tephrochronology correlations, which have relatively large uncertainties. Because the initial data set was restricted to the upper half of the BL00-1 core, we inferred additional ages by direct correlation to the independently dated paleoclimate record from Devils Hole. We developed an age model for the entire core using statistical methods that consider both the uncertainties of the original data and that of the curve-fitting process, with a combination of our initial data set and the climate correlations as control points. This age model represents our best estimate of the chronology of deposition in Bear Lake. Because the age model contains assumptions about the correlation of Bear Lake to other climate records, the model cannot be used to address some paleoclimate questions, such as phase relationships with other areas.

  9. Mixing it Up: A Record of Holocene Climate Change in Non-Annually Laminated Sediment of Seneca Lake, NY

    NASA Astrophysics Data System (ADS)

    Rogers, C. E.; Curtin, T. M.

    2005-12-01

    The mid to late Holocene climate record was examined in two cores that represent distal sedimentation in Seneca Lake, one of 11 Finger Lakes in western New York. Laminated sediments, ~5 m thick, were collected from the middle of the lake at 131-137 m water depths. These sites were selected because they preserve a continuous record of changes in the hydrologic balance and sedimentary processes. Variations in grain size and fabric at 50-100-cm intervals were observed and represent time periods of hundreds to thousands of years. The combination of magnetic susceptibility, loss-on-ignition, grain size analysis by laser diffraction, and grain fabric analysis using thin sections allow us to reconstruct the evolution of the lake since deglaciation and to compare and contrast paleoclimate indicator data. Variations in the type of sedimentary fabrics preserved are coincident with variations in geochemical and sedimentological indicators of environmental conditions that may have occurred in response to fluctuations in the hydrologic balance and circulation and/or overturn. Laterally continuous, thin, black laminae rich in organic matter and possibly minute grains of iron sulfides accumulated during the mid Holocene Hypsithermal (~9-7 ka). Presence of black laminae may signify a steady supply of organic matter and an absence of oxygen, at least below the sediment-water interface if not in the lower part of the water column. Coincident with finely laminated sediment are the coarsest mean grain sizes. Three 2-6 cm thick sand beds occur in one core, suggesting that an influx of water and sediment occurred during intense storms. A combination of warmer surface water and influx of freshwater from storms during the Hypsithermal may have influenced the turnover history of the lake by stabilizing the water column. Absence of overturn would result in depletion of nutrients in surface waters, a decrease in primary productivity, and a decrease in oxygen at the bottom of the lake as a

  10. Extending the record of lacustrine phases beyond the last interglacial for Lake Eyre in central Australia using luminescence dating

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Cohen, Tim J.; Arnold, Lee J.

    2017-04-01

    We show with multiple luminescence dating techniques that the sedimentary record for Lake Eyre, Australia's largest lake, extends beyond 200 thousand years (ka) to Marine Isotope Stage (MIS) 7. Transgressive clayey sand and finely laminated clays overlying the Miocene Etadunna Formation in Lake Eyre North document the deep-lake phases of central South Australia in the past. Until now, unresolved chronology has hampered our ability to interpret these sedimentary records, which are important for understanding the timing of the wettest phase of central Australia's late Quaternary climate. In this study, we apply quartz optically stimulated luminescence (OSL) dating, thermally-transferred OSL (TT-OSL) dating and K-feldspar post infrared infrared stimulated luminescence (pIRIR) dating to lake-floor sediments near Williams Point in Madigan Gulf to provide new age constraint for the lacustrine sediments of Lake Eyre. Methodological studies on quartz and K-feldspar demonstrate that these luminescence dating procedures are suitable for the Lake Eyre lacustrine samples and produce consistent replicate ages. A Bayesian model applied to the new dating results provides a chronological model of lacustrine deposition and shows that the transgressive clayey sand were deposited 221 ± 19 ka to 201 ± 10 ka and that the deep-water sediments were laid down in early MIS 6 (191 ± 9 ka to 181 ± 9 ka). We also find evidence for a potential depositional hiatus in mid MIS 6 and the likely formation of a palaeo-playa later in MIS 6 from 158 ± 11 ka to 143 ± 15 ka. In contrast, the MIS 5 sediments are characterised by oscillating deep- and shallow-water lacustrine units deposited 130 ± 16 ka to 113 ± 20 ka. This study is the first of its kind to provide evidence for a wet desert interior in Australia beyond the last glacial cycle using comprehensive numerical dating. Our results show that past deep-lake episodes of central South Australia, which were previously thought to represent

  11. Verlorenvlei - The first continuous Holocene high-resolution lake sediment record from the Winter Rainfall Zone of South Africa

    NASA Astrophysics Data System (ADS)

    Haberzettl, T.; Kasper, T.; Lederer, M.; Wündsch, M.; Frenzel, P.; Zabel, M.; Kirsten, K. L.; Meadows, M. E.; Quick, L. J.; St-Onge, G.; Maeusbacher, R.

    2015-12-01

    Verlorenvlei is a coastal lake in the Winter Rainfall Zone of the Western Cape Province of South Africa. Up to now several attempts have been made to recover sediment cores from this lake. However, no continuous high-resolution record covering large parts of the Holocene has been available so far. Within the project RAIN (Regional Archives for Integrated iNvestigations) it was possible to recover a 14.2 m paired parallel core from the central part of Verlorenvlei. Investigations on recent surface sediment distributions (elemental composition and grain sizes) indicate that this sediment core is very well suited for paleoenvironmental reconstructions. Using a set of 23 radiocarbon ages, a chronology for the past 9,000 cal BP was established which suggests continuous sedimentation over this period. Preliminary lithological and geochemical investigations show that this record can be used for sea level reconstructions as the lake was periodically inundated by the ocean during the past 9,000 cal BP. This is recorded in distinctly elevated Ca and Sr contents as well as the occurrence of marine indicator species (snail and mussel shells) in parts of the sediment core. Thin, pale grey layers of fine sediment occurring at various sediment depths seem to reflect event related deposits. In terms of lithology, geochemical and magnetic composition, the upper 50 cm clearly differ from the rest of the record and indicate increased sediment supply from the catchment, which is likely linked to anthropogenic farming activities. In conclusion, the newly recovered sediment record from Verlorenvlei offers excellent potential for a detailed, high-resolution reconstruction of sea level changes, climate variations and anthropogenic impact during the past 9,000 cal BP in an area in which natural archives are very scarce or poorly dated.

  12. Historical trends of atmospheric black carbon on tibetan plateau as reconstructed from a 150-year lake sediment record.

    PubMed

    Cong, Zhiyuan; Kang, Shichang; Gao, Shaopeng; Zhang, Yulan; Li, Qing; Kawamura, Kimitaka

    2013-03-19

    Black carbon (BC) is one of the key components causing global warming. Especially on the Tibetan Plateau (TP), reconstructing BC's historical trend is essential for better understanding its anthropogenic impact. Here, we present results from high altitude lake sediments from the central TP. The results provide a unique history of BC over the past 150 years, from the preindustrial to the modern period. Although BC concentration levels in the Nam Co Lake sediments were lower than those from other high mountain lakes, the temporal trend of BC fluxes clearly showed a recent rise, reflecting increased emissions from anthropogenic activities. The BC records were relatively constant until 1900, then began to gradually increase, with a sharp rise beginning around 1960. Recent decades show about 2.5-fold increase of BC compared to the background level. The emission inventory in conjunction with air mass trajectories further demonstrates that BC in the Nam Co Lake region was most likely transported from South Asia. Rapid economic development in South Asia is expected to continue in the next decades; therefore, the influence of BC over the TP merits further investigations.

  13. A High Resolution Record of Central Asian Climate Change Over the Last 1,000 Years From Lake Issyk-Kul, Kyrgyzstan.

    NASA Astrophysics Data System (ADS)

    Ricketts, R. D.; Rasmussen, K. A.

    2001-12-01

    Lake Issyk-Kul is a highly oligotrophic, brackish closed-basin lake located in the heart of central Asia. Its continental-interior position along the PAGES-PEP II transect in an area where relatively few records of past climate have been fully exploited makes it an interesting site for paleoclimate research. Sedimentary, geochemical and palynological analyses of sediment recovered from the lake indicate that the sediment contains carbonate, clastic and organic components that suggest that changes in lake-level and climate have affected the basin. Previous work on sediment from the basin has focused on piston cores that contain sediment deposited during the last 1,000 to 11,000 years, while this work focuses on sediment deposited more recently. Multicores were collected from the lake in order to recover the last 1,000 years of the sediment record. Two of these cores (3MC and 8MC) were selected for detailed analyses due to the proximity of their core sites to locations where longer and extensively analyzed piston cores had been recovered. These multicores were analyzed for AMS-radiocarbon and 210Pb ages, grain size, %carbonate, %TOC, carbonate mineralogy, and the stable isotope and trace element content of ostracode shells. Radiocarbon ages indicate that sediment in the relatively short (35 cm) multicores extends back approximately 1,000 years, which gives a sediment accumulation rate (0.35 mm/year) for the multicores that is similar to that found in piston cores collected from the lake. Instrumental records of lake level over the last 80 years and 14C dates from archeological sites indicate that the lake level of Issyk-Kul has fluctuated by approximately 20 meters over the last millennium. A comparison between the archeological/instrumental lake-level record and the climate record contained in sediment from the two multicores indicates some correlations between the records.

  14. Combined records from a stalagmite from Barbados and from lake sediments in Haiti reveal variable seasonality in the Caribbean between 6.7 and 3 ka BP

    NASA Astrophysics Data System (ADS)

    Mangini, A.; Blumbach, P.; Verdes, P.; Spötl, C.; Scholz, D.; Machel, H.; Mahon, S.

    2007-05-01

    The growth of a well-dated stalagmite from Barbados records high infiltration rates into the karst aquifer and hence increased rainfall intensity between 6.7 and 3 ka BP in agreement with records from Lake Miragoane, Haiti [Hodell et al., 1991. Reconstruction of the Caribbean climate change over the past 10,500 years. Nature 352, 790-793], mainly reflecting the insolation maximum of the Northern Hemisphere. Both the lake record and the stable isotope record of the stalagmite reveal additional centennial variability of recharge. High oxygen isotope values in stalagmite calcite, corresponding to reduced recharge, are synchronous with periods of lower stable isotope values recorded in Lake Miragoane ostracods, previously attributed to enhanced precipitation. Accordingly, periods of increased recharge in Barbados correspond to 18O-enriched isotope values of ostracods, which were attributed to higher evaporation/precipitation ratios in the lakes. We ascribe this apparent discrepancy to changes in seasonality, i.e., winter periods of reduced temperature and relative humidity following summer months of increased precipitation. At present, such climate conditions occur during periods of enhanced Northern Atlantic Oscillation (NAO +). If enhanced seasonality is a consequence of a NAO + situation, the apparent discrepancy of high isotope values in lakes (previously attributed to droughts) can be reconciled with lower winter temperatures in the lakes. Further, the correlation of solar intensity (derived from 14C and 10Be) with the isotopic signals recorded in the lacustrine sediments suggests a solar forcing of the NAO during the mid Holocene.

  15. Lake ice records used to detect historical and future climatic changes

    USGS Publications Warehouse

    Robertson, Dale M.; Ragotzkie, R.A.; Magnuson, John J.

    1992-01-01

    With the relationships between air temperature and freeze and break up dates, we can project how the ice cover of Lake Mendota should respond to future climatic changes. If warming occurs, the ice cover for Lake Mendota should decrease approximately 11 days per 1 °C increase. With a warming of 4 to 5 °C, years with no ice cover should occur in approximately 1 out of 15 to 30 years.

  16. A model of the 4000-year paleohydrology (δ18O) record from Lake Salpetén, Guatemala

    NASA Astrophysics Data System (ADS)

    Rosenmeier, Michael F.; Brenner, Mark; Hodell, David A.; Martin, Jonathan B.; Curtis, Jason H.; Binford, Michael W.

    2016-03-01

    A simple mass-balance model provides insights into the influence of catchment vegetation changes and climate variability on the hydrologic and stable oxygen isotope (δ18O) evolution of Lake Salpetén, in the Maya Lowlands of northern Guatemala. Model simulations for the last 4000 years incorporate pollen-inferred changes in vegetation cover and account for 75% of the variance observed in the biogenic carbonate δ18O record from a long lake sediment core. Vegetation-driven hydrologic changes, however, failed to capture the full range of late Holocene sediment core δ18O variability. The model requires incorporation of additional shifts in catchment vegetation cover, inclusion of regional precipitation changes, or likely both, to explain the fluctuations observed in the lake core oxygen isotope record. Climatic interpretation of the model results suggests that there was relatively greater moisture availability between about 2400 and 1800 years ago, but increased δ18O values centered at ~ 3300, 2900, 500, and 200 calendar years before present (cal yr BP) indicate abrupt precipitation decreases. There is evidence for protracted aridity between 1500 and 800 cal yr BP.

  17. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record

    NASA Astrophysics Data System (ADS)

    Conroy, Jessica L.; Overpeck, Jonathan T.; Cole, Julia E.; Shanahan, Timothy M.; Steinitz-Kannan, Miriam

    2008-06-01

    Paleoclimate records from the tropical Pacific suggest the early to mid-Holocene was a period of reduced El Niño/Southern Oscillation (ENSO) variability, with a transition to modern, increased ENSO frequency occurring some time in the last few thousand years. However, the nature and timing of this shift remains uncertain due to the discontinuous nature and/or coarse resolution of many ENSO proxies, as well as a lack of agreement between previously published records. A new, continuous, climate record from El Junco Crater Lake in the Galápagos Islands reveals several abrupt changes in lake level and precipitation through the Holocene. Hydroclimatic model simulations suggest that El Junco lake level responds sensitively to increases in precipitation associated with El Niño events, rising during wet El Niño events and falling during the intervening dry periods. Grain size data from El Junco sediment cores indicate past lake level variability, likely associated with changing seasonal precipitation and ENSO frequency. The grain size data suggest increased precipitation intensity prior to 9000±120 cal years BP, and after 4200±130 cal years BP, as well as a two-step increase in precipitation at 3200±160 and 2000±100 cal years BP. Maximum Holocene precipitation and inferred ENSO variability occurred between 2000±100 and 1500±70 cal years BP, during the same period that six other independent proxy records suggest higher ENSO frequency and longer, stronger El Niño events. Decreasing sediment carbon/nitrogen (C/N) ratios in El Junco sediments indicate rising lake levels from the early Holocene to present, corroborating the grain size data. The inferred increase in precipitation at 4200±130 cal years BP and at 2000±100 cal years BP coincides with decreasing Southwest Asian and East Asian Monsoon intensity, suggesting tropical Pacific climate and the Asian monsoon were interconnected systems at centennial to millennial timescales during the Holocene. A weakening

  18. New records of late Holocene tephras from Lake Futalaufquen (42.8°S), northern Patagonia

    NASA Astrophysics Data System (ADS)

    Daga, Romina; Ribeiro Guevara, Sergio; Arribére, María

    2016-03-01

    In regions with limited knowledge of the historical volcanic record, like remote areas in the Andean Southern Volcanic Zone, the definition of reliable age-depth models for lake sequences represents a valuable tool for tephra layers dating. In Lake Futalaufquen (42.8°S), Northern Patagonia, a short sedimentary sequence was extracted after the AD 2008 Chaitén eruption with the purpose to analyze the records of volcanic eruptions at these poorly studied latitudes. The sequence was dated by 210Pb, 137Cs, and 14C techniques. Five tephras were identified for the last 1600 years, restricted to the last 5 centuries. Sedimentology, morphology, and geochemical properties allowed the characterization of the tephras and their correlation with tephras recently identified proximal to the sources, mainly from Chaitén and Huequi volcanoes, and Michinmahuida accessory cones, representing the first distal records reported of these tephras. Furthermore, tephras modeled ages obtained by the sequence age-depth model shrink the ages for the volcanic events, like a potential cycle of activity from Michinmauida accessory cones during AD 1530 ± 55, one eruption from Huequi volcano at AD 1695 ± 50, and a possible recent eruption from Chaitén at AD 1775 ± 40. Additionally, the work contributes to improve the regional volcanic records knowledge, basic for volcanic hazard assessment.

  19. Late Glacial to Holocene abrupt temperature changes recorded by Crenarchaeota in Lake Lucerne (Vierwaldstättersee, Switzerland)

    NASA Astrophysics Data System (ADS)

    Blaga, Cornelia I.; Reichart, Gert-Jan; Lotter, André F.; Anselmetti, Flavio; Sinninghe Damsté, Jaap S.

    2010-05-01

    In this study we applied the TEX86 (TetraEther Index of 86 carbon atoms) temperature proxy to a sediment core from Lake Lucerne (Vierwaldstättersee) to reconstruct, in almost decadal resolution, temperature changes during the Younger Dryas and the Early Holocene (ca. 14600 to 10600 cal. BP). The TEX86 proxy suggests a sequence of shifts during the late glacial period that strongly resemble the shifts in δ18O values from the Greenland ice core record. The TEX86-reconstructed lake temperature record indicates a step-wise pattern of climate changes across the studied interval with a shift from colder to warmer temperatures at the onset of the late-glacial interstadial, followed by an abrupt cooling at the onset of Younger Dryas and a rapid warming from 5.5 to 9°C at the Younger Dryas/Holocene transition in less than 200 years. The temperature change associated with the Interstadial-Younger Dryas alternation is ca. 4 °C and is in line with previous temperature reconstructions based on different proxies. The rapid changes in temperature associated with the last deglaciation are reflected in the highest possible detail in the TEX86 record. It is thus clear that our proxy, based on the isoprenoidal GDGTs (Glycerol Dialkyl Glycerol Tetraethers), is capable to reflect high resolution records of rapid (decadal to century scale oscillations) environmental fluctuations comparable with those obtained from ice cores.

  20. Finely laminated 4000 yr sediment record from Lake Bolatau (Bukovina, Romania) - implications for palaeolimnology and erosion history

    NASA Astrophysics Data System (ADS)

    Németh, Alexandra; Kern, Zoltán; Mindrescu, Marcel; Grădinaru, Ionela; Bozsó, Gábor; Németh, Tibor; Bihari, Árpád; Fekete, József

    2014-05-01

    Geochemical and sedimentological analyses of lacustrine sediments are a valuable tool for understanding the dynamics of local and regional climate over various time scales. This study focuses on Lake Bolatau located at 1137 m a.s.l. in Obcina Feredeului, one of the flysch nappes at to the Northern Romanian Carpathians. The lake was first mentioned in a scientific study in 1964, whereby the landslide dam origin was initially suggested, but there remained no evidence whatsoever of the age of the lake, albeit the first recorded historical reference to Lake Bolatau was in 1806 (Mindrescu et al. 2013). From this currently eutrophic lake sediment two finely laminated lake sediment cores were extracted (winter 2013), of which one core was over 3 m long. Both cores were subsequently cut into 1 cm-long items of which we selected various batches of samples for specific analyses. Petrographic thin sections from the cores were examined under polarization microscope and BSE microscope. An age-depth model for the Bolatau sediment record was established based on 8 AMS radiocarbon dates from terrestrial macrofossils and the double peaks (i.e. mid-1960s: global fallout maximum; 1986: Chernobyl accident) of the 137Cs flux. The onset of the lacustrine sedimentation is estimated at ~4.6 ka cal BP. There was no abrupt change in the rate of sedimentation, after its onset however the geochemical and sedimentological properties of the sediments changed through time. While vivanite or pyrite doesn't precipitate today XRD results indicated that there were several time intervals when environmental conditions were favorable for that. We identified syn-sedimentary and authigenic form of pyrite based on Wilkin et al. (1996). The presence of syn-sedimentary pyrite means that oxic-anoxic interface was often in the water column. XRF results obtained from the upper 60 cm suggest that Fe actively migrated and precipitated in the organic matter rich layers due to the often anoxic environment. We

  1. Reconstructing Late Pleistocene air temperature variability based on branched GDGTs in the sedimentary record of Llangorse Lake (Wales)

    NASA Astrophysics Data System (ADS)

    Maas, David; Hoek, Wim; Peterse, Francien; Akkerman, Keechy; Macleod, Alison; Palmer, Adrian; Lowe, John

    2015-04-01

    This study aims to provide a temperature reconstruction of the Lateglacial sediments of Llangorse Lake. A new temperature proxy is used, based on the occurrence of different membrane lipids of soil bacteria (de Jonge et al., 2014). Application of this proxy on lacustrine environments is difficult because of in situ (water column) production and co-elution of isomers. Pollen analysis provides a palynological record that can be used for biostratigraphical correlation to other records. Llangorse Lake lies in a glacial basin just northeast of the Brecon Beacons in Powys, South Wales. The lake is located upstream in the Afon Llynfi valley, at the edge of the watershed of the River Wye. The lake consists of two semi-separated basins with a maximum water depth of 7.5 m, arranged in an L-shape with a surface area of roughly 1.5 km2. Previous studies have focused on the Holocene development of the lake and its surrounding environment (Jones et al., 1985). This study focuses on the deglacial record that appeared to be present in the basal part of the sequence. The lake was cored in the September, 2014 with a manual operated 3 m piston corer from a small coring platform. Overlapping cores were taken to form a continuous 12 m core, spanning the Holocene and the Lateglacial sediments. Six adjacent Lateglacial core segments from the southern basin of Llangorse lake were scanned for their major element composition using XRF scanning at 5 mm resolution to discern changes in sediment origin. Furthermore, loss on ignition (LOI) analysis was used to determine the changes in organic content of the sediments. Subsamples of the Lateglacial sedimentary record were analyzed for the occurrence of different bacterial membrane lipids (brGDGTs: branched glycerol dialkyl glycerol tetraethers) by means of HPLC-MS (high performance liquid chromatography and mass spectrometry) using two silica columns to achieve proper separation of isomers (de Jonge et al., 2013). Air temperatures are

  2. Records of wells, water levels, and quality of ground water in the Sammamish Lake area, King County, Washington

    USGS Publications Warehouse

    Liesch, Bruce A.

    1955-01-01

    This report, one of a series on the ground-water resources of the State of Washington, contains well records and other data collected during the course of an investigation in the Sammamish Lake area immediately east of Seattle, King County, Washington.  Most of these investigations are conducted in cooperation with the State of Washington, Department of Conservation and Development, Division of Water Resources.  However, a few investigations, including the one in the Sammamish Lake area, have been made entirely with Federal funds.  A similar investigation is now being made in the area to the west, including the city of Seattle and metropolitan areas to the north and south.  It is planned that results of teh two investigations will be combined into a single comprehencive report.  In order that the data collected can be made available sooner, this report as been prepared with only a brief explanatory and descriptive text.

  3. Initial geochemistry data of the Lake Ohrid (Macedonia, Albania) "DEEP" site sediment record: The ICDP SCOPSCO drilling project

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Krastel, Sebastian; Lindhorst, Katja; Mantke, Nicole; Klinghardt, Dorothea

    2014-05-01

    Lake Ohrid, located at the border of Macedonia and Albania is about 30 km long, 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe. The ICDP SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) deep drilling campaign at Lake Ohrid in spring 2013 aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the "DEEP" site in the center of the lake, seismic data indicated a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Initial data from core catcher samples and on-site susceptibility measurements indicate that the sediment sequence covers more than 1.2 million years and provides a continuous archive of environmental and climatological variability in the area. Currently, core opening, core description, XRF and MSCL -scanning, core correlation, and sub-sampling of the sediment cores from the "DEEP" site is conducted at the University of Cologne. High-resolution geochemical data obtained from XRF-scanning imply that the sediments from the "DEEP" site are highly sensitive to climate and environmental variations in the Balkan area over the last few glacial

  4. Methane turnover and environmental change from Holocene biomarker records in a thermokarst lake in Arctic Alaska

    USGS Publications Warehouse

    Elvert, Marcus; Pohlman, John; Becker, Kevin W.; Gaglioti, Benjamin V.; Hinrichs, Kai-Uwe; Wooller, Matthew J.

    2016-01-01

    Arctic lakes and wetlands contribute a substantial amount of methane to the contemporary atmosphere, yet profound knowledge gaps remain regarding the intensity and climatic control of past methane emissions from this source. In this study, we reconstruct methane turnover and environmental conditions, including estimates of mean annual and summer temperature, from a thermokarst lake (Lake Qalluuraq) on the Arctic Coastal Plain of northern Alaska for the Holocene by using source-specific lipid biomarkers preserved in a radiocarbon-dated sediment core. Our results document a more prominent role for methane in the carbon cycle when the lake basin was an emergent fen habitat between ~12,300 and ~10,000 cal yr BP, a time period closely coinciding with the Holocene Thermal Maximum (HTM) in North Alaska. Enhanced methane turnover was stimulated by relatively warm temperatures, increased moisture, nutrient supply, and primary productivity. After ~10,000 cal yr BP, a thermokarst lake with abundant submerged mosses evolved, and through the mid-Holocene temperatures were approximately 3°C cooler. Under these conditions, organic matter decomposition was attenuated, which facilitated the accumulation of submerged mosses within a shallower Lake Qalluuraq. Reduced methane assimilation into biomass during the mid-Holocene suggests that thermokarst lakes are carbon sinks during cold periods. In the late-Holocene from ~2700 cal yr BP to the most recent time, however, temperatures and carbon deposition rose and methane oxidation intensified, indicating that more rapid organic matter decomposition and enhanced methane production could amplify climate feedback via potential methane emissions in the future.

  5. Paleogenetic records of Daphnia pulicaria in two North American lakes reveal the impact of cultural eutrophication.

    PubMed

    Frisch, Dagmar; Morton, Philip K; Culver, Billy W; Edlund, Mark B; Jeyasingh, Punidan D; Weider, Lawrence J

    2017-02-01

    Understanding the evolutionary consequences of the green revolution, particularly in wild populations, is an important frontier in contemporary biology. Because human impacts have occurred at varying magnitudes or time periods depending on the study ecosystem, evolutionary histories may vary considerably among populations. Paleogenetics in conjunction with paleolimnology enable us to associate microevolutionary dynamics with detailed information on environmental change. We used this approach to reconstruct changes in the temporal population genetic structure of the keystone zooplankton grazer, Daphnia pulicaria, using dormant eggs extracted from sediments in two Minnesota lakes (South Center, Hill). The extent of agriculture and human population density in the catchment of these lakes has differed markedly since European settlement in the late 19th century and is reflected in their environmental histories reconstructed here. The reconstructed environments of these two lakes differed strongly in terms of environmental stability and their associated patterns of Daphnia population structure. We detected long periods of stability in population structure and environmental conditions in South Center Lake that were followed by a dramatic temporal shift in population genetic structure after the onset of European settlement and industrialized agriculture in its watershed. In particular, we noted a 24.3-fold increase in phosphorus (P) flux between pre-European and modern sediment P accumulation rates (AR) in this lake. In contrast, no such shifts were detected in Hill Lake, where the watershed was not as impacted by European settlement and rates of change were less directional with a much smaller increase in sediment P AR (2.3-fold). We identify direct and indirect effects of eutrophication proxies on genetic structure in these lake populations and demonstrate the power of using this approach in understanding the consequences of anthropogenic environmental change on natural

  6. Mid to Late Holocene hydroclimatic and geochemical records from the varved sediments of East Lake, Cape Bounty, Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Cuven, Stéphanie; Francus, Pierre; Lamoureux, Scott

    2011-09-01

    A long sedimentary sequence from East Lake, Cape Bounty, Melville Island (74°55'N; 109°30'W) contains a 4200 year-long clastic varved record of paleohydrologic variations at high resolution. Sedimentary elemental geochemistry from micro X-ray fluorescence (μ-XRF) and sediment fabric variability reflect changes in sediment sources and lacustrine conditions through time. The sedimentary environment progressed from marine in the mid-Holocene, to estuarian from 2195 BC to 243 AD, to fully lacustrine source after 244 AD. Correlation with local meteorological data indicates that varve thickness (VT) is positively correlated with snow depth on May 1st and negatively correlated with mean Sept-May temperatures. Our paleoclimatic reconstruction from VT series revealed high snow accumulation and warm Sept-May months before 1350 BC, and a period of low snow accumulation and cold Sept-May between 1600-1900 AD that may correspond to the Little Ice Age. The general trends of VT series from Cape Bounty are in phase with the δ 18O series in Agassiz Ice Cap, and in anti-phase with the VT series from Lower Murray Lake in the northeastern of Queen's Elizabeth Islands (QEI). Low mean Arctic temperatures coincide with clusters of high sediment yield events at East, Nicolay and South Sawtooth Lakes, especially during 1600-1750 AD and 1810-1910 AD. The East Lake record also exhibits the signature of the Atlantic Multidecadal Oscillation (AMO) for periods: 600-850 AD, 1400-1550 AD and 1750-1850 AD.

  7. Retrieval of atmospheric elemental carbon records using lake sediments: Implications in radiative forcing

    NASA Astrophysics Data System (ADS)

    Ahmed, Tanveer

    Elemental or black carbon (EC or BC) aerosols produced during incomplete combustion strongly absorb solar radiation and contribute to global warming, and cause cardiopulmonary disease. Long-term atmospheric EC measurements, [EC]atm, are needed to validate global climate models to estimate the impact of EC on earth's temperature. Such data is sparse. In this work, a new technique was developed to retrieve the historical record of [EC]atm in the Northeastern US for the past two centuries. Measurements of [EC]atm were made in the monthly composites of daily filters collected over ˜30 yr at Whiteface Mountain (WFM), NY using the thermal optical method. Bottom sediment cores were collected from four lakes near WFM. They were sliced in horizontal sections, freeze dried, and their ages determined 210Pb dating technique. EC in sediments was chemically separated and its concentration determined using the same thermal-optical method. It was shown that [EC]sed = K [EC]atm where K is constant (m3/g). Measurements of [EC]atm and [EC]sed for the ˜1978 to 2005 period was used to determine the value for K. The value of K and [EC]sed for periods before 1978 were used to determine [EC]atm for the past ˜100 yrs. [EC]atm in the preindustrial period in US, ˜1850, varied between 38 and 73 ng/m3, with a mean value of 56 +/- 14 ng/m3. [EC]atm was found to increase sharply with rapid industrialization and reached its maximum value of 751 +/- 265 ng/m3 during 1920s, which was a factor of ˜12 higher compared to the mean preindustrial level. The [EC]atm declined gradually until ˜1980 and then decreased sharply. Directly measured values of [EC]atm are only ˜25% higher compared to the mean preindustrial level. Model US EC emissions estimates of Novakov et al. (2003), based on energy consumptions, reproduce our [EC]sed trends quite well for the ˜1900 to 1930 period. Subsequently, the model EC values drop-off more rapidly than our [EC]atm. To extend the technique where long tern [EC

  8. Lake sediments record prehistoric lead pollution related to early copper production in North America.

    PubMed

    Pompeani, David P; Abbott, Mark B; Steinman, Byron A; Bain, Daniel J

    2013-06-04

    The mining and use of copper by prehistoric people on Michigan's Keweenaw Peninsula is one of the oldest examples of metalworking. We analyzed the concentration of lead, titanium, magnesium, iron, and organic matter in sediment cores recovered from three lakes located near mine pits to investigate the timing, location, and magnitude of ancient copper mining pollution. Lead concentrations were normalized to lithogenic metals and organic matter to account for processes that can influence natural (or background) lead delivery. Nearly simultaneous lead enrichments occurred at Lake Manganese and Copper Falls Lake ∼8000 and 7000 years before present (yr BP), indicating that copper extraction occurred concurrently in at least two locations on the peninsula. The poor temporal coherence among the lead enrichments from ∼6300 to 5000 yr BP at each lake suggests that the focus of copper mining and annealing shifted through time. In sediment younger than ∼5000 yr BP, lead concentrations remain at background levels at all three lakes, excluding historic lead increases starting ∼150 yr BP. Our work demonstrates that lead emissions associated with both the historic and Old Copper Complex tradition are detectable and can be used to determine the temporal and geographic pattern of metal pollution.

  9. Ecosystem responses during Late Glacial period recorded in the sediments of Lake Łukie (East Poland)

    NASA Astrophysics Data System (ADS)

    Zawiska, Izabela; Słowiński, Michał; Correa-Metrio, Alex; Obremska, Milena; Luoto, Tomi; Nevalainen, Liisa; Woszczyk, Michał; Milecka, Krystyna

    2014-05-01

    The main objectives of this study was to reconstruct climate impact on the functioning of Lake Łukie and its catchment (Łęczna Włodawa Lake District, East European Plain) during Late Glacial period. In order to reconstruct climatic fluctuations and corresponding ecosystem responses, we analysed lake sediments for pollen, subfossil Cladocera, plant macrofossils and chemical composition of the sediment. Of these, plant macrofossils and Cladocera were used to infer minimum and mean July temperatures and ordination analysis was used to examine biotic community shifts. Multiproxy analyses of late-glacial sediments of Lake Łukie clearly show that the main driver of aquatic and terrestrial ecosystems as well as geomorphological processes in the catchment was climate variation. The history of the lake initiated during the Older Dryas. In that period, Łęczna Włodawa Lake District was covered by open habitats dominated by grasses (Poaceae), humid sites were occupied by tundra plant communities with less clubmoss (Selaginella selaginoides), dry sites by dominated by steppe-like vegetation with light-demanding species such as Helianthemum, Artemisia, Chenopodiaceae, and juniper bushes (Juniperus). Cold climate limited the growth and development of organisms in the lake, Cladocera community species composition was poor, with only few species present there all the time. During this time period, permafrost was still present in the ground limiting infiltration of rainwater and causing high erosion in the catchment area. Surface runoff is confirmed by the presence of sclerotia of Cenococcum geophilum and high terrigenous silica content. The warming of the early Allerød caused a remarkable change in the natural environment of this area. This is in accordance with the temperature rise reconstructed with the use of plant macrofossils though the Cladocera reconstruction did not recorded the rise than. This temperature increase resulted in turnover of vegetation in the

  10. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    USGS Publications Warehouse

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  11. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    NASA Astrophysics Data System (ADS)

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-05-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11 000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11 000-7500 calendar years before present [cal yr BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11 200-9300 cal yr BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500 cal yr BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000 cal yr BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160 cal yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500 years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history.

  12. Holocene evolution of the River Nile drainage system as revealed from the Lake Dendi sediment record, central Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Viehberg, F. A.; Wennrich, V.; Junginger, A.; Kolvenbach, A.; Rethemeyer, J.; Schaebitz, F.; Schmiedl, G. H.

    2015-12-01

    A 12 m long sediment sequence from Dendi Crater lakes, located on the central Ethiopian Plateau, was analysed with sedimentological and geochemical methods to reconstruct the regional environmental history. Bulk organic carbon samples from 23 horizons throughout the sequence were used for AMS radiocarbon dating and indicate that the sediment sequence spans the last ca. 12 cal kyr BP. Microscope analyses and sedimentological data reveal three tephra layers, of which the most prominent layer with a thickness of ~2 m was deposited at 10.2 cal kyr BP and probably originates from an eruption of the Wenchi crater 12 km to the west of the Dendi lakes. Sedimentological data of the pelagic deposits indicate shifts in erosion and rainfall throughout the record. A decrease in Ca and Sr at 11.6 cal kyr BP is related to the shift of less humid condition during the Younger Dryas (YD) to the return to full humid conditions of the African Humid Period (AHP). Single thin horizons with high carbonate content or high Ti and K imply that short spells of dry conditions and significantly increased rainfall superimpose the generally more humid conditions during the AHP. The end of the AHP is gradual. Relatively stable and less humid conditions characterised the Dendi Crater lakes until around 3.9 cal kyr BP. A highly variable increase in clastic matter over the last 1500 years indicates higher erosion due to short-term variations in precipitation within the Dendi catchment. Overall, the sediment record suggests moderate change of precipitation during the Holocene, which is probably due to their exposed location in the Ethiopian highlands. The data from the Dendi Crater lakes show, in concert with other records from the Nile catchment and the Eastern Mediterranean Sea (EMS), that the Blue Nile provided the main freshwater source for maintaining EMS stratification and sapropel S1 formation between ca. 10.0 and 8.7 cal kyr BP. Subsequent aridification is recorded from equatorial East Africa

  13. The bounding-surfaces record of a barrier spit from Huangqihai Lake, North China: implications for coastal barrier boundary hierarchy

    NASA Astrophysics Data System (ADS)

    Shan, Xin; Yu, Xinghe; Clift, Peter D.; Wang, Tianyi; Tan, Chengpeng; Jin, Lina

    2016-09-01

    Ground-penetrating radar and trenching studies of a barrier spit on the north shore of Huangqihai Lake were made, that reveal important implications for the coastal washover barrier boundary hierarchy and interpretations of this depositional record. A four-fold hierarchy bounding-surface model, representing different levels of impact and genesis, is defined. Each level of the hierarchy is enclosed by a distinct kind of surface characterized by different ground-penetrating radar reflection features, sedimentary characteristics (color, grain size, sorting, rounding and sedimentary structures) and origin. We suggest that this hierarchical model can be applied to any coastal washover barrier deposits.

  14. Quantifying Sediment Delivery History in Mediterranean Mountain Watersheds from Lake Records (Iberian Range, Spain)

    NASA Astrophysics Data System (ADS)

    Valero-Garcés, Blas; Barreiro-Lostres, Fernando; Moreno, Ana; González-Sampériz, Penélope; Giralt, Santiago; Nadal-Romero, Estela

    2016-04-01

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains with long history of human occupation and strong seasonality of hydrological regimes. Monitoring studies in experimental catchments in the Pyrenees have identified main controlling factors on erosion dynamics but, because of the short time span, they do not integrate the diverse temporal and spatial variability of these environments. We propose a novel strategy based on multi-proxy analyses of lake sediments aimed to quantify sediment delivery and erosion dynamics. Karstic lakes in the Iberian Range (Spain) provide the opportunity to reconstruct the depositional evolution of Mediterranean mountain watersheds and to evaluate the response to both, anthropogenic and climate forcings during the last millennia. Precipitation (rainfall intensity, seasonality, runoff production) and land cover (forest area, degraded areas, land uses) are key factors controlling erosion in both experimental and lake catchments. Values for Minimum Denuded Mass (Mdc) and Total Denudation Rate (DRt) measured in experimental catchments and reconstructed from lake sequences are comparable. In both settings, most sediment yield occurs during flooding events. The reconstructed sediment delivery to the lakes during flood events spans several orders or magnitude (less than 100 T to 98000 T) and the denudation rate ranges from 6 to 480 T km-2 yr-1. Reconstructed mass denudation values per event in the forested lake catchments are similar (less than 30 T km-2 yr-1) to sediment yields from a high altitude experimental watershed. Flood sediment yield values from an abandoned farmland experimental catchment (69 T km2) are in the lower range of lake watersheds (from 60 to 480 T km-2 yr-1). No lake watershed has reached the values documented for the badland catchment (3094 T km-2). These results underline the punctuated nature of sediment dynamics in Mediterranean landscapes at decadal and centennial scales. Major

  15. A Holocene Lake Record from Laguna Del Maule (LdM) in the Chilean Andes: Climatic and Volcanic Controls on Lake Depositional Dynamics

    NASA Astrophysics Data System (ADS)

    Valero-Garces, B. L.; Frugone Alvarez, M.; Barreiro-Lostres, F.; Carrevedo, M. L.; Latorre Hidalgo, C.; Giralt, S.; Maldonado, A.; Bernárdez, P.; Prego, R.; Moreno-Caballud, A.

    2014-12-01

    Central Chile is a tectonically active, drought-prone region sensitive to latitudinal variations in large-scale cold fronts associated with fluctuations of the Pacific subtropical high. Holocene high-resolution records of climate and volcanic events could help inform more on the frequency of extensive droughts as well as volcanic and seismic hazards. LdM is a high altitude, volcanic lake located in the Transition Southern Volcanic Zone (~36°S, 2200 m.a.s.l). The LdM volcanic field is a very seismically and volcanically active zone in the Andes, with several caldera-forming eruptions over the last 1.5 Ma, and intense postglacial activity. In 2013, we recovered over 40 m of sediment cores at four sites of LdM and collected > 20 km of seismic lines. The cores were imaged, their physical and geochemical properties analysed with a Geotek MSCL and XRF scanner respectively, and sampled for TOC, TIC, TS, TN, BioSi, and bulk mineralogy. The chronology was constructed with a Bayesian age-depth model including 210Pb-137Cs, the Quizapú volcanic ash (1932 AD) and 17 AMS 14C dates. The 4.8 m long composite sequence spans the Late glacial and Holocene.Sediments are massive to banded, quartz and plagioclase-rich silts with variable diatom (BioSi, 15- 30 %) and organic matter content (TOC, 1-5 %). Four main units have been defined based on sedimentological and geochemical composition. The transition from Unit 4 to 3 is ascribed to the onset of the Holocene; Unit 2 spans the mid Holocene, and Unit 1 the last 4 ka. Higher (lower) TOC, Br/Ti and Fe/Mn ratios in units 1 and 3 (2 and 4) suggest higher (lower) organic productivity in the lake and dominant oxic (anoxic) conditions at the bottom of the lake. Up to 17 ash and lapilli layers mark volcanic events, mostly grouped in units 1 and 3. Periods of higher lake productivity (units 1 and 3) are synchronous to higher frequency of volcanic events. Some climate transitions (LIA, 4ka, 8ka and 11ka) are evident in the LdM sequence

  16. Past seismic activity in Eastern Anatolia recorded over several glacial/interglacial cycles in the sediments of Lake Van

    NASA Astrophysics Data System (ADS)

    Stockhecke, M.; Anselmetti, F.; Sturm, M.

    2012-12-01

    Lake sediments document besides paleoenvironmental and paleoclimate conditions also paleoseismic activity through various forms of deformation structures. These are especially visible in finely-laminated sediments. Being situated in a tectonically active region, the partly annually-laminated sedimentary sequence of the terminal Lake Van, recovered in 2010 under the context of the ICDP Paleovan project, shows dozens of earthquake-triggered microdeformations that document past seismic events of the last half a million years. Lithological and multiproxy analysis revealed that the Lake Van's depositional conditions varied in correspondence to Milankovitch and sub-Milankovitch cycles. Glacial/stadial and interglacial/interstadial conditions were recorded continuously over the last half a million years excluding two discontinuities, which indicate major hydrological and geomorphological changes in Lake Van's early history. Two sites were drilled 10 km apart: A primary drill site, situated on a ridge, covers the entire lake history since its initial transgression in the middle Pleistocene; A secondary drill site, located in a more shallow northern basin, covers the past 90'000 years. Multiple coring at both drill sites allows to establish two almost complete 220 m and 145 m long composite sections, respectively. Observing deformation structures in multiple parallel cores at each site is used as a criteria to distinguish 'true' paleoseismic deformation structures from potential drilling artifacts. Deformation structures consist of i) silt-filled vertical fractures, ii) microfaults with displacements at cm-scale, iii) microfolds, iv) liquefaction structures (mushroom, pseudonodules), iv) disturbed varve laminations and v) mixed layers. While the ridge site records the paleoseismic events as microdeformations, the northern basinal site rather records seismic events through the deposition of seismo-turbidites. In some cases, individual earthquake events can even be identified

  17. Using palaeolimnological data and historical records to assess long-term dynamics of ecosystem services in typical Yangtze shallow lakes (China).

    PubMed

    Xu, Min; Dong, Xuhui; Yang, Xiangdong; Wang, Rong; Zhang, Ke; Zhao, Yanjie; Davidson, Thomas A; Jeppesen, Erik

    2017-01-26

    Understanding the dynamics of ecosystem services (ESs) is crucial for sustainable resource management. Palaeolimnological records have a great potential to reveal long-term variations and dynamic interactions in ESs, especially supporting/regulating services, which are not easily quantified by documentary records. To elucidate the variations between eight important ESs in shallow lake ecosystems, we combined documentary records with palaeolimnological proxies (covering the past 100years) from two typical lakes (Lakes Taibai and Zhangdu) of the Yangtze River basin. Although all supporting services and some provisioning services have increased, the regulating services of the two lakes have markedly declined, in particular since the 1950s. Human activities, including hydrological intervention, nutrient input and land-use change, were identified as the main factors behind the observed variations. Both in Lake Taibai and Zhangdu, primary production and biodiversity (supporting services) have increased (synergies), whereas climate and water purification (regulating services) have significantly decreased (tradeoffs) since the 1950s when attempts were made by the local population to reach a higher land/fish ESs level. By considering long-term records, dynamic tradeoff and synergy relationship between various ESs relative to different types of human "modification" in a temporal perspective, we suggest valuable information can be gained in future lake management initiatives.

  18. Ecosystem regimes and responses in a coupled ancient lake system from MIS 5b to present: the diatom record of lakes Ohrid and Prespa

    NASA Astrophysics Data System (ADS)

    Cvetkoska, Aleksandra; Jovanovska, Elena; Francke, Alexander; Tofilovska, Slavica; Vogel, Hendrik; Levkov, Zlatko; Donders, Timme H.; Wagner, Bernd; Wagner-Cremer, Friederike

    2016-05-01

    We reconstruct the aquatic ecosystem interactions since the last interglacial period in the oldest, most diverse, hydrologically connected European lake system, by using palaeolimnological diatom and selected geochemistry data from Lake Ohrid "DEEP site" core and equivalent data from Lake Prespa core, Co1215. Driven by climate forcing, the lakes experienced two adaptive cycles during the last 92 ka: "interglacial and interstadial" and "glacial" cycle. The short-term ecosystems reorganizations, e.g. regime shifts within these cycles substantially differ between the lakes, as evident from the inferred amplitudes of variation. The deeper Lake Ohrid shifted between ultra oligo- and oligotrophic regimes in contrast to the much shallower Lake Prespa, which shifted from a deeper, (oligo-) mesotrophic to a shallower, eutrophic lake and vice versa. Due to the high level of ecosystem stability (e.g. trophic state, lake level), Lake Ohrid appears relatively resistant to external forcing, such as climate and environmental change. Recovering in a relatively short time from major climate change, Lake Prespa is a resilient ecosystem. At the DEEP site, the decoupling between the lakes' response to climate change is marked in the prolonged and gradual changes during the MIS 5/4 and 2/1 transitions. These response differences and the lakes' different physical and chemical properties may limit the influence of Lake Prespa on Lake Ohrid. Regime shifts of Lake Ohrid due to potential hydrological change in Lake Prespa are not evident in the data presented here. Moreover, a complete collapse of the ecosystems functionality and loss of their diatom communities did not happen in either lake for the period presented in the study.

  19. New Records and Range Extensions for Several Chironomid Genera from Lake Superior

    EPA Science Inventory

    Five genera of chironomids have been reported for the first time in Lake Superior. Chironomids are small flying insects with a sediment-dwelling aquatic larval stage. The chironomids were collected by scientists at the Mid-Continent Ecology Division as part of a research program ...

  20. [Over One Hundred Year Sediment Record of Polycyclic Aromatic Hydrocarbons in the Lake Bosten, Xinjiang].

    PubMed

    Shen, Bei-bei; Wu, Jing-lu; Zhao, Zhong-hua; Zeng, Hai-ao; Jin, Miao

    2016-02-15

    The vertical distributions of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated from a sediment core in the Lake Bosten, Xinjiang. Meanwhile, the possible source and risk assessment of PAHs in Lake Bosten were also discussed. The total PAHs concentration in the sediment core ranged from 37.5 ng x g(-1) to 184.5 ng x g(-1), and Naphthalene and Phenanthrene were the dominant compounds throughout the core. Over the one hundred year, the vertical profile of PAHs underwent significant changes around 1950s. The vertical distributions of PAHs had little change and low molecular weight PAHs were dominant PAHs before 1950s. Since then, the high molecular weight PAHs appeared and increased with fluctuations. A sharp increase in PAHs level and individuals was observed especially after 1990s and a maximum was found in the surface sediment. The results suggested PAHs in Lake Bosten were from the local sources, which were dominated by the low temperature combustion. Besides, the abundance of PAHs from high temperature combustion processes, such as combustion of industrial coal and vehicle emission, increased significantly in recent years. However, based on the results of risk assessment, the PAHs may not induce adverse biological effects on the aquatic ecosystem in Lake Bosten.

  1. Glacial lake deltas in New England record continuous, not delayed, postglacial rebound

    NASA Astrophysics Data System (ADS)

    Hooke, Roger LeBaron; Ridge, John Charles

    2016-05-01

    Deltas formed in Lake Hitchcock, a glacial lake that developed in the Connecticut River Valley, New England, between ∼18.3 and 12.5 ka. The heights of topset/foreset contacts of these deltas presently increase northward, linearly, at rate of ∼0.9 m/km. Others have interpreted this as indicating that isostatic rebound did not begin until after the lake drained, several kiloyears after glacial retreat began. However, (non-elastic) adjustment of Earth's lithosphere to changing loads is known to occur on time scales of years. Late-glacial shoreline features elsewhere in New England also increase in elevation with distance from the LGM margin at ∼0.9 m/km, suggesting that this is a result of fundamental properties of the crust and mantle, and independent of the history of glacier retreat. On the basis of a numerical model of flexure of the lithosphere beneath a circular load, we suggest that deflection of the lithosphere is remarkably linear in a zone 50-200 km wide between the retreating ice margin and a forebulge, and that initial rebound of this zone is spatially quite uniform for some kiloyears before differential rebound starts. Thus, lake shorelines, formed over a period of some centuries during deglaciation would, today, rise linearly northward.

  2. First record of Neoergasilus japonicus (Poecilostomatoida: Ergasilidae), a parasitic copepod new to the Laurentian Great Lakes

    USGS Publications Warehouse

    Hudson, Patrick L.; Bowen, Charles A.

    2002-01-01

    The parasitic copepod Neoergasilus japonicus, native to eastern Asia, was first collected from 4 species of fish (fathead minnow, Pimephales promelas; largemouth bass, Micropterus salmoides; pumpkinseed sunfish, Lepomis gibbosus; and yellow perch, Perca flavescens) in July 1994 in Saginaw Bay, Lake Huron, Michigan. Further sampling in the bay in 2001 revealed infections on 7 additional species (bluegill, Lepomis macrochirus; carp, Cyprinus carpio; channel catfish, Ictalurus punctatus; goldfish, Carassius auratus; green sunfish, Lepomis cyanellus; rock bass, Ambloplites rupestris; and smallmouth bass, Micropterus dolomieu). An additional 21 species examined in 2001 were devoid of the parasite. A limited collection of fish from Lake Superior (n = 8) and Lake Michigan (n = 46) in 1994 showed no infection. Neoergasilus japonicus is most frequently found attached to the dorsal fin and, in decreasing frequency, on the anal, tail, pelvic, and pectoral fins. Prevalence generally ranged from 15 to 70 and intensity from 1 to 10. The greatest number of copepods on a single host was 44. The copepod Neoergasilus japonicus appears to disperse over long distances rather quickly, spreading across Europe in 20 yr and then moving on to North America over a span of 10 yr. Its main vehicle of transport and introduction into the Great Lakes is probably exotic fish hosts associated with the fish-culture industry.

  3. The Oligocene Creede Formation, Colorado: The sedimentary record of a deep lake within a resurgent caldera

    SciTech Connect

    Larsen, D.; Smith, G.A. . Dept. of Earth and Planetary Sciences)

    1993-04-01

    The Oligocene Creede Formation is the sedimentary fill of the Creede caldera in the Tertiary San Juan volcanic field in southern Colorado. Scientific drill core and outcrop studies of Creede strata allow an evaluation of the post-collapse sedimentary environments present within a caldera. Although the Creede Formation is structurally disrupted, correlation of fallout tuffs in exposed strata to those in the cores has clarified stratigraphic relationships. Following ash-fallout from the caldera-forming eruption, up to 121 meters of coarse grained debris-flow strata and rockfall debris with interstratified basinward ephemeral lake deposits were deposited. The presence of pseudomorphs after ikaite and up-section increase in carbonate facies suggest that the lake water was somewhat alkaline and cold (near freezing), and evolved chemically with time. A late-stage drop in lake level combined with integration of basin-feeding drainages and decreased subsidence lead to basinward progradation of coarser deltaic and lacustrine fan deposits. Sedimentation patterns suggest that subsidence occurred largely in the northern half of the caldera, and decreased late in the lake's history allowing the basin to fill with sediment.

  4. Stable isotopes and sediments from Pickerel Lake, South Dakota, USA: A 12ky record of environmental changes

    USGS Publications Warehouse

    Schwalb, A.; Dean, W.E.

    1998-01-01

    Sedimentological parameters and stable O- and C-isotopic composition of marl and ostracode calcite selected from a 17.7-m-long core from the 8-m-deep center of Pickerel Lake, northeastern South Dakota, provide one of the longest (ca. 12ky) paleoenvironmental records from the northern Great Plains. The late Glacial to early Holocene climate in the northern Great Plains was characterized by changes from cold and wet to cold and dry, and back to cold and wet conditions. These climatic changes were controlled by fluctuations in the positions of the Laurentide ice sheet and the extent of glacial Lake Agassiz. We speculate that the cold and dry phase may correspond to the Younger Dryas event. A salinity maximum was reached between 10.3 and 9.5 ka, after which Pickerel Lake shifted from a system controlled by atmospheric changes to a system controlled by groundwater seepage that might have been initiated by the final withdrawal of Glacial Lake Agassiz. A prairie lake was established at approximately 8.7 ka, and lasted until about 2.2 ka. During this mid-Holocene prairie period, drier conditions than today prevailed, interrupted by periods of increased moisture at about 8, 4, and 2.2 ka. Prairie conditions were more likely dry and cool rather than dry and warm. The last 2.2 ka are characterized by higher climatic variability with 400-yr aridity cycles including the Medieval Warm Period and the Little Ice Age. Although the signal of changing atmospheric circulation is overprinted by fluctuations in the positions of the ice sheet and glacial Lake Agassiz during the late Glacial-Holocene transition, a combination of strong zonal circulation and strong monsoons induced by the presence of the ice sheet and high insolation may have provided mechanisms for increased precipitation. Zonal flow introducing dry Pacific air became more important during the prairie period but seems to have been interrupted by short periods of stronger meridional circulation with intrusions of moist air

  5. Search for continuous paleoclimatic record in Holocene lacustrine sediments from Lake District, Chile (40°S)

    NASA Astrophysics Data System (ADS)

    Bertrand, S.; Fagel, N.

    2003-04-01

    Our aim is to reconstruct a continuous Holocene climatic evolution related to ENSO variability in southern Chile. We focus on the sedimentary infilling of two glacial lakes from the Lake District Area (38-40°S). The preliminar sedimentological analysis must allow to define the key-site and the best palaeoclimatic proxies. This area, at the foothill of the Cordillera de Los Andes, has been affected by an intense Quaternary volcanic activity and by several historical earthquakes (e.g., Valdivia 1960). After preliminary seismic investigation, four cores were recovered in two lakes selected at the two ends of a N-S transect. (1) Icalma lake (12 km2, 38°S) is located in the Cordillera de Los Andes at an elevation of 1150m and results of the infilling of a glacial umbilic. The two 8m sediment cores consist of an alternation of laminated silts and volcanic layers. The sedimentary record is strongly disturbed by numerous seismic or volcanic events. The cumulated volcanogenic-derived material represents up to 50 % of the core length. In particular, the cores record at -4.50m a pumice layer widespread in the watershed and dated at 2900 yr BP. One core contains pluricentrimetric layers of wood accumulation. They could be due to earthquake impact on the vegetational cover in the watershed. An ubiquitous 6cm-thick slump described at -40 cm may be related with the 1960 Valdivia earthquake. (2) On Puyehue lake (164 km2, 40°S, elevation 185 m), two cores (7 and 11m) have been collected in both underflow and interflow sites. The interflow site (PUII) shows a very well laminated sediment, with only small disturbances due to volcanic and seismic activities. This core will be the key-site for the paleoclimatic study. The second core (PUI) is very rich in organic matter. The sediment is strongly destratified by numerous gas bubbles (methane). These characteristics are due to the dense vegetational cover in the watershed and to the core location near the delta of the main river. This

  6. Chironomid δ 18O as a proxy for past lake water δ 18O: a Lateglacial record from Rotsee (Switzerland)

    NASA Astrophysics Data System (ADS)

    Verbruggen, F.; Heiri, O.; Reichart, G.-J.; Lotter, A. F.

    2010-08-01

    We explored whether the stable oxygen isotope composition (δ 18O) of fossil chironomid remains can be used to reconstruct past variations in lake water δ 18O from Lateglacial and early Holocene sediments from Rotsee (Switzerland). A sediment core from the former littoral zone of the lake was examined since it contained both high concentrations of chironomid remains and abundant authigenic carbonates and therefore allowed a direct comparison of chironomid δ 18O with values measured on bulk carbonates. Since carbonate particles adhering to chironomid remains potentially affect 18O measurements we tested two methods to chemically remove residual carbonates. Trials with isotopically heavy and light acid solutions indicated that treatment with hydrochloric acid promoted oxygen exchange between chironomid remains and the water used during pretreatment. In contrast, a buffered 2 M ammonium chloride (NH 4Cl) solution did not seem to affect chironomid δ 18O to a significant extent. Fossil chironomid δ 18O was analyzed for the Rotsee record both using standard palaeoecological methods and after pretreatment with NH 4Cl. Samples prepared using standard techniques showed a poor correlation with δ 18O of bulk carbonate ( r2 = 0.14) suggesting that carbonate contamination of the chironomid samples obscured the chironomid δ 18O signature. Samples pretreated with NH 4Cl correlated well with bulk carbonate δ 18O ( r2 = 0.67) and successfully tracked the well-known Lateglacial changes in δ 18O. Chironomid δ 18O indicated depleted lake water δ 18O during the Oldest Dryas period, the Aegelsee and Gerzensee Oscillations, and the Younger Dryas, whereas enriched δ 18O values were associated with sediments deposited during the Lateglacial interstadial and the early Holocene. Differences in the amplitude of variations in bulk carbonate and chironomid δ 18O are attributed to differential temperature effects on oxygen isotope fractionation during the formation of carbonates and

  7. The Holocene history of Oro Lake, one of the western Canada's longest continuous lacustrine records

    NASA Astrophysics Data System (ADS)

    Last, William M.; Vance, Robert E.

    2002-04-01

    Over the past decade, there have been significant advances in our understanding of the Holocene history of the Great Plains region of western Canada. However, despite this increased interest, paleolimnological research is limited by a paucity of study sites with relatively long, uninterrupted stratigraphic sequences. To date, only three Canadian Great Plains lakes have provided complete, uninterrupted sequences spanning the past 10,000 years. Oro Lake is one of these. Oro Lake is small, perennial, and saline. It occupies a topographically closed basin on the Missouri Coteau in southern Saskatchewan, Canada. Its 10,000-year stratigraphic sequence consists mainly of well-bedded, calcareous, and gypsiferous clayey silts. A short-lived early Holocene freshwater siliciclastic-dominated lake occupied the newly formed basin immediately after deglaciation. At ˜9300 BP, limnological conditions changed dramatically and abruptly. Since then, alkaline, high-salinity brines with high Mg/Ca ratios have prevailed. Stable meromictic conditions existed from about 9300 to ˜7400 BP, with maximum salinities (>75 ppt) occurring at 8300 BP. About 7400 years ago, gradually increasing aridity during the mid-Holocene resulted in increased eolian sedimentation, reorganization of the groundwater influx, and occasional breakdown of meromixis. About 4000 BP, the lake returned to a mainly stratified water column with subaqueous soluble salts being precipitated from the monimolimnion, and aragonite and Mg-carbonates being generated from the mixolimnion. During the most recent 1000 years, periodic hypersaline conditions became more common, coincident with decreased concentrations of Ca 2+ and complimentary increased proportions of Mg 2+ and Na + ions.

  8. Changing of dominant atmospheric circulation since LGM recorded by a lake core in the central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Wang, J.; Lu, X.; Daut, G.; Kasper, T.; Haberzettl, T.; Schwalb, A.; Maeusbacher, R.

    2013-12-01

    The mechanism of climate changes and some abrupt events on the Tibetan Plateau since LGM exists many uncertainties. Further understanding is possibly provided by a continue lake core records in the Nam Co (4718 asl, 2015 km2) on the central Tibetan Plateau. The 11m long core collected in 90m deep water area has a well age-depth distribution according to 32 14C dating data. 24-19 kaBP, higher Pediastrum suggested a shallow water condition. 19-16.5kaBP, decreased Pediastrum and Cyperaceae suggested water depth increasing and wetland reducing. Pinus, Picea and Abies were over than 30% during 24-16.5 kaBP, implying a different climate condition than it at present. 16.5-14.2 kaBP, humidity was enhanced according to Cyperaceae, Gramineae, Artemisia and Chenopodiacen. Pinus, Picea and Abies were less than 10%, suggesting climate shifted in lake area. 14.2-13.2 kaBP, Fe/Mn, Ca and Sr/Ba indicated water depth increase while total pollen concentration (TPC) and TOC (endogenesis source) reflected temperature rising. 13.2-11.5 kaBP, cold-dry climate was reflected by lake volume changing based upon Fe/Mn, Ca, Sr/Ba and Pediastrum, and the decreasing of TOC and TCP. 11.5-8.5 kaBP, a good water and heat condition was indicated by pollen assemblages and geochemistry, and the best period was within 10.2-9.3 kaBP. 8.5-5.8 kaBP, the best water-heat condition gradually weakened according to decreased TCP but stable TOC. After 5.8 kaBP, climate tended to be dry. In general, there were not only existed several climatic change events in the Nam Co lake area, but also occurred climatic type shifting since LGM.

  9. Human-climate interactions in the central Mediterranean region during the last millennia: The laminated record of Lake Butrint (Albania)

    NASA Astrophysics Data System (ADS)

    Morellón, Mario; Anselmetti, Flavio S.; Ariztegui, Daniel; Brushulli, Brunhilda; Sinopoli, Gaia; Wagner, Bernd; Sadori, Laura; Gilli, Adrian; Pambuku, Arben

    2016-03-01

    Lake Butrint (39°47 N, 20°1 E) is a ca. 21 m deep, coastal lagoon located in SW Albania where finely-laminated sediments have been continuously deposited during the last millennia. The multi-proxy analysis (sedimentology, high-resolution elemental geochemistry and pollen) of a 12 m long sediment core, supported by seven AMS radiocarbon dates and 137Cs dating, enable a precise reconstruction of the environmental change that occurred in the central Mediterranean region during the last ∼4.5 cal kyrs BP. Sediments consist of triplets of authigenic carbonates, organic matter and clayey laminae. Fluctuations in the thickness and/or presence of these different types of seasonal laminae indicate variations in water salinity, organic productivity and runoff in the lake's catchment, as a result of the complex interplay of tectonics, anthropogenic forcing and climate variability. The progradation of the Pavllo river delta, favoured by variable human activity from the nearby ancient city of Butrint, led to the progressive isolation of this hydrological system from the Ionian Sea. The system evolved from an open bay to a restricted lagoon, which is consistent with archaeological data. An abrupt increase in mass-wasting activity between 1515 and 1450 BC, likely caused by nearby seismic activity, led to the accumulation of 24 homogenites, up to 17 cm thick. They have been deposited during the onset of finely laminated sedimentation, which indicates restricted, anoxic bottom water conditions and higher salinity. Periods of maximum water salinity, biological productivity, and carbonate precipitation coincide with warmer intervals, such as the early Roman Warm Period (RWP) (500 BC-0 AD), the Medieval Climate Anomaly (MCA) (800-1400 AD) and recent times (after 1800 AD). Conversely, lower salinity and more oxic conditions, with higher clastic input were recorded during 1400-500 BC, the Late Roman and the Early Medieval periods (0-800 AD) and during the Little Ice Age (1400-1800 AD

  10. Aligning MIS5 proxy records from Lake Ohrid (FYROM) with independently dated Mediterranean archives: implications for core chronology

    NASA Astrophysics Data System (ADS)

    Zanchetta, G.; Regattieri, E.; Giaccio, B.; Wagner, B.; Sulpizio, R.; Francke, A.; Vogel, L. H.; Sadori, L.; Masi, A.; Sinopoli, G.; Lacey, J. H.; Leng, M. L.; Leicher, N.

    2015-10-01

    The DEEP site sediment sequence obtained during the ICDP SCOPSCO project at Lake Ohrid was dated using tephrostratigraphic information, cyclostratigraphy, and orbital tuning through marine isotope record. Although this approach is suitable for the generation of a general chronological framework of the long succession, it is insufficient to resolve more detailed paleoclimatological questions, such as leads and lags of climate events between marine and terrestrial records or between different regions. In this paper, we demonstrate how the use of different tie points can affect cyclostratigraphy and orbital tuning for the period between ca. 140 and 70 ka and how the results can be correlated with directly/indirectly radiometrically-dated Mediterranean marine and continental proxy records. The alternative age model obtained shows consistent differences with that proposed by Francke et al. (2015) for the same interval, in particular at the level of the MIS6-5e transition. According to this age model, different proxies from the DEEP site sediment record support an increase of temperatures between glacial to interglacial conditions, which is almost synchronous with a rapid increase in sea surface temperature observed in the western Mediterranean. The results show how important a detailed study of independent chronological tie points is for synchronizing different records and to highlight asynchronisms of climate events.

  11. Holocene climate change and human impact, central Mexico: a record based on maar lake pollen and sediment chemistry

    NASA Astrophysics Data System (ADS)

    Park, Jungjae; Byrne, Roger; Böhnel, Harald; Garza, Roberto Molina; Conserva, Mariaelena

    2010-03-01

    This paper presents multiproxy (pollen, magnetic susceptibility, sediment chemistry) records from two maar crater lakes in the Valle de Santiago of Guanajuato, Mexico: Hoya San Nicolás and Hoya Rincon de Parangueo. Sediment cores from the two sites have basal dates of ca 11,600 and 9600 cal yr BP, respectively. The San Nicolás results show that the lake desiccated several times during the Holocene, and this resulted in the selective destruction of the less resistant pollen types. A comparative analysis of data from both sites indicates that during the earliest Holocene (ca 11,600-9000 cal yr BP) there were short term oscillations of wetter and drier climate; during the early Holocene (ca 9000-5700 cal yr BP) it was on average wetter; during the middle Holocene (ca 5700-3800 cal yr BP) drier; and during the middle to late Holocene (ca 3800-2200 cal yr BP) wetter. Increasing human disturbance during the late Holocene of environment obscures the climatic record. Agricultural activities in the area began as early as ca 5700 cal yr BP and intensified around 2400 cal yr BP.

  12. Annually resolved environmental reconstruction in two arctic varved lake sediment records using image analysis of thin-sections

    NASA Astrophysics Data System (ADS)

    Francus, P.; Patridge, W.; Bradley, R. S.; Abbott, M. B.; Keimig, F.; Stoner, J.

    2003-04-01

    We obtained quantitative multivariate data from each varve in two minerogenic lacustrine sequences from the Canadian High Arctic, using an image analysis technique applied to thin-sections. In Sawtooth Lake (79° 20 N, 83° 51 W), the information on each varve from the uppermost core section was compared with a 35 yr meteorological dataset. Snowmelt intensity, which is an index reflecting the energy available for sediment transport, correlates well with the median grain-size measured for each varve, as well as with the weight of the 10-20 and 20-60 microns fractions. The proportion of fine silt also correlates with low intensity summer precipitation. In Murray Lake (81°20 N, 69°30 W), annual median grain-size is believed to be a proxy for summer temperature. The chronologies of both records, based on independent varve counts, have been confirmed using environemental magnetic parameters. We present the spectral properties of the varve records, and the paleoenvironmental history of the region, for the last 1000 years. Image analysis of thin-sections allows us to decipher the climatic control on sedimentary processes, and yields a new perspective for constructing models that link climate to sediments containing few biological remains.

  13. Climatic-change implications from long-term (1823-1994) ice records for the Laurentian Great Lakes

    USGS Publications Warehouse

    Assel, R.A.; Robertson, D.M.; Hoff, M.H.; Selgeby, J.H.

    1995-01-01

    Long-term ice records (1823-1994) from six sites in different parts of the Laurentian Great Lakes region were used to show the type and general timing of climatic changes throughout the region. The general timing of both freeze-up and ice loss varies and is driven by local air temperatures, adjacent water bodies and mixing, and site morphometry. Grand Traverse Bay and Buffalo Harbor represent deeper-water environments affected by mixing of off-shore waters; Chequamegon Bay, Memnominee, Lake Mendota, and Toronto Harbor represent relatively shallow-water, protected environments. Freeze-up dates gradually become later and ice-loss dates gradually earlier from the start of records to the 1890s in both environments, marking the end of the 'Little Ice Age.' After this, freeze-up dates remained relatively constant suggesting little change in early-winter air temperatures during the 20th century. Ice-loss dates at Grand Traverse Bay and Buffalo Harbor (but not at the other sites) became earlier during the 1940s and 1970s and became later during the 1960s. The global warming of the 1980s was marked by a trend toward earlier ice-loss dates in both environments.

  14. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies

    NASA Astrophysics Data System (ADS)

    Chen, Fahu; Wu, Duo; Chen, Jianhui; Zhou, Aifeng; Yu, Junqing; Shen, Ji; Wang, Sumin; Huang, Xiaozhong

    2016-12-01

    Climatic and environmental changes in the northeastern Tibetan Plateau are controlled by the Asian summer monsoon (ASM) and the westerlies, two key circulation components of the global climate system which directly affect a large human population and associated ecosystems in eastern Asia. During the past few decades, a series of Holocene palaeoclimatic records have been obtained from sediment cores from Lake Qinghai and from various other geological archives in the surrounding area of the northeastern Tibetan Plateau. However, because of uncertainties regarding the sediment chronologies and the climatic significance of the proxies used, the nature of Holocene climatic changes in the region remains unclear and even controversial. Here we review all major classes of the published data from drilled cores from Lake Qinghai, as well as other evidence from lakes and aeolian deposits from surrounding areas, in order to reconstruct changes in moisture patterns and possible summer monsoon evolution in the area during the Holocene. Combining the results of moisture and precipitation proxies such as vegetation history, pollen-based precipitation reconstruction, aeolian activity, lake water depth/lake level changes, salinity and sediment redness, we conclude that moisture and precipitation began to increase in the early Holocene, reached their maximum during the middle Holocene, and decreased during the late Holocene - similar to the pattern of the East Asian summer monsoon (EASM) in northern China. It is clear that the region experienced a relatively dry climate and weak EASM during the early Holocene, as indicated by relatively low tree pollen percentages and fluctuating pollen concentrations; generally low lake levels of Lake Qinghai and the adjacent Lake Hurleg and Lake Toson in the Qaidam Basin; and widely distributed aeolian sand deposition in the Lake Qinghai Basin and the nearby Gonghe Basin to the south, and in the eastern Qaidam Basin to the west. We argue that the

  15. A detailed 2,000-year late holocene pollen record from lower Pahranagat Lake, Southern Nevada, USA

    SciTech Connect

    Hemphill, M.L.; Wigand, P.E.

    1995-09-01

    Preliminary analysis of 128 pollen samples and seven radiocarbon dates from a 5-meter long, 10-cm diameter sediment core retrieved from Lower Pahranagat Lake (elevation - 975 in), Lincoln County, Nevada, gives us a rare, continuous, record of vegetation change at an interval of every 14 years over the last 2,000 years. During this period increasing Pinus (pine) pollen values with respect to Juniperus Ouniper pollen values reflect the increasing dominance of pinyon in southern Nevada woodlands during the last 2,000 years. Today Pinus pollen values indicate that pinyon pine is more frequent in the southern Great Basin since the end of the Neoglacial 2,000 years ago. During the same time frame, a general decrease in Poaceae (grass) pollen values with respect to Artemisia (sagebrush) pollen values reflect the general trend of increasing dominance of steppe and desert scrub species with respect to grasses. Variations in these two species reflect not only the generally more xeric nature of climate during the last 2,000 years, but also periods of summer shifted rainfall - 1,500 years ago that encouraged both a period of grass and pinyon expansion. The ratio of aquatic to littoral pollen types indicates generally deeper water conditions 2 to 1 ka and more variable, but predominately more marshy, conditions at the site during most of the last 1 ka. Investigation of ostracodes from the same record being conducted by Dr. R. Forester at the USGS corroborate the pollen record by evidencing shifts between open and closed hydrologic systems including lake, marsh and even stream habitats. Analysis of an additional 10 meters of core recovered in the summer of 1994 with a basal date of 5.6 ka promises to provide the best record of middle through late Holocene vegetation and climate history for southern Nevada.

  16. Rapid climate change from north Andean Lake Fúquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation for the last 284 ka

    NASA Astrophysics Data System (ADS)

    Bogotá-A, R. G.; Groot, M. H. M.; Hooghiemstra, H.; Lourens, L. J.; Van der Linden, M.; Berrio, J. C.

    2011-11-01

    This paper compares a new super-high resolution pollen record from a central location in Lake Fúquene (4°N) with 3 pollen records from marginal sites from the same lake basin, located at 2540 m elevation in the Eastern Cordillera of Colombia. We harmonized the pollen sum of all records, and provided previously published records of climate change with an improved age model using a new approach for long continental pollen records. We dissociated from subjective curve matching and applied a more objective procedure including radiocarbon ages, cyclostratigraphy, and orbital tuning using the new 284 ka long Fúquene Basin Composite record (Fq-BC) as the backbone ( Groot et al., 2011). We showed that a common ˜9 m cycle in the arboreal pollen percentage (AP%) records reflects obliquity forcing and drives vegetational and climatic change. The AP% records were tuned to the 41 kyr component filtered from standard benthic δ 18O LR04 record. Changes in sediment supply to the lake are reflected in concert by the four records making frequency analysis in the depth domain an adequate method to compare records from the same basin. We calibrated the original 14C ages and used where necessary biostratigraphic correlation, i.e. for records shorter than one obliquity cycle. Pollen records from the periphery of the lake showed changes in the abundance of Alnus and Weinmannia forests more clearly while centrally located record Fq-9C shows a more integrated signal of regional vegetation change. The revised age models show that core Fq-2 reflects the last 44 ka and composite record Fq-7C the last 85.5 ka. Marginally located core Fq-3 has an age of 133 ka at 32 m core depth and the lowermost 11 m of sediments appear of older but unknown age. The longest record Fq-BC shows ˜60 yr resolution over the period of 284-27 ka. All pollen records are in support of a common regional vegetation development leading to a robust reconstruction of long series of submillennial climate oscillations

  17. Holocene fire and occupation in Amazonia: records from two lake districts.

    PubMed

    Bush, Mark B; Silman, Miles R; de Toledo, Mauro B; Listopad, Claudia; Gosling, William D; Williams, Christopher; de Oliveira, Paulo E; Krisel, Carolyn

    2007-02-28

    While large-scale pre-Columbian human occupation and ecological disturbance have been demonstrated close to major Amazonian waterways, less is known of sites in terra firme settings. Palaeoecological analyses of two lake districts in central and western Amazonia reveal long histories of occupation and land use. At both locations, human activity was centred on one of the lakes, while the others were either lightly used or unused. These analyses indicate that the scale of human impacts in these terra firme settings is localized and probably strongly influenced by the presence of a permanent open-water body. Evidence is found of forest clearance and cultivation of maize and manioc. These data are directly relevant to the resilience of Amazonian conservation, as they do not support the contention that all of Amazonia is a 'built landscape' and therefore a product of past human land use.

  18. Short-term cycle of eolian dust (Kosa) recorded in Lake Kawaguchi sediments, central Japan

    NASA Astrophysics Data System (ADS)

    Kyotani, Tomohiro; Koshimizu, Satoshi; Kobayashi, Hiroshi

    The fluctuation during the last 100 yr of the eolian dust (Kosa aerosol) originating from arid and semi-arid areas of China has been reconstructed by using the sediments from Lake Kawaguchi, central Japan with high temporal resolution. The quantification of Kosa contribution to the sediments was carried out by a new method using scanning electron microscopy-energy dispersive X-ray microanalysis (SEM-EDX) proposed by us. The correlation plot of (Na 2O+K 2O) contents against SiO 2 was used for individual Si-rich particles having SiO 2 content over 80%. The Kosa fraction of Si-rich particles in Lake Kawaguchi sediments during the last 100 yr is approximately 10-30%. The fluctuation of the Kosa fraction during the last 100 yr does not coincide with that of the total amount of Si-rich particles, because detrital components from Japanese igneous rocks control the fluctuation of the total number of Si-rich particles. The discrimination method based on single particle analysis is more effective than that of bulk analysis for the lake sediments formed by complex matrix components. We can first show a short-term (approximately 10-20 yr scale) cycle in Kosa aerosol fluctuation. Higher sedimentation rates (5-10 yr-cm) of the Lake Kawaguchi sediments and the new analytical method using SEM-EDX revealed a remarkable fluctuation pattern of Kosa aerosol, suggesting climate cycles much shorter than glacial-interglacial. Such short-term cycles may be related to sun-spots. The number of days of Kosa events during the last 30 yr, obtained by visual observation by Meteorological Agency of Japan, also supports the presence of such a short-term cycle.

  19. Late Holocene Indian summer monsoon variations recorded at Lake Erhai, Southwestern China

    NASA Astrophysics Data System (ADS)

    Xu, Hai; Zhou, Xinying; Lan, Jianghu; Liu, Bin; Sheng, Enguo; Yu, Keke; Cheng, Peng; Wu, Feng; Hong, Bin; Yeager, Kevin M.; Xu, Sheng

    2015-03-01

    In this study we report changes in Indian summer monsoon (ISM) intensity during the past ~ 3500 yr inferred from proxy indices at Lake Erhai, southwestern China. Both the pollen concentrations and other proxy indices, including sediment grain size, total organic carbon contents (TOC), and elemental contents (e.g., Fe, Al), clearly indicate a long term decreasing trend in ISM intensity over the late Holocene. During the period from approximately AD 750 to AD 1200, pollen concentrations of conifer and broadleaf trees, and herbs reached the lowest levels over the past ~ 3500 yr; while the pollen percentages of both herbs and broadleaf trees increased, suggesting a significant medieval drought. The grain size, TOC, and elemental contents also support an arid climate during the medieval period. The Little Ice Age (LIA) at Lake Erhai was characterized as cold and wet. The medieval and LIA climatic patterns at Lake Erhai were similar to those over most of the ISM areas, but anti-phase with those over East Asian summer monsoon (EASM) areas. We suspect that sea surface temperature variations in the Indo-Pacific oceans and the related land-sea thermal contrasts may be responsible for such hydroclimatic differences between EASM and ISM areas.

  20. A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake

    NASA Astrophysics Data System (ADS)

    Afrifa Yamoah, Kweku; Callac, Nolwenn; Fru, Ernest Chi; Wohlfarth, Barbara; Wiech, Alan; Chabangborn, Akkaneewut; Smittenberg, Rienk H.

    2016-07-01

    Climate and human-induced environmental change promote biological regime shifts between alternate stable states, with implications for ecosystem resilience, function, and services. While these effects have been shown for present-day ecosystems, the long-term response of microbial communities has not been investigated in detail. This study assessed the decadal variations in phytoplankton communities in a ca. 150 year long sedimentary archive of Lake Nong Thale Prong (NTP), southern Thailand using a combination of bulk geochemical analysis, quantitative polymerase chain reaction (qPCR) and lipid biomarkers techniques including compound-specific hydrogen isotope analysis as a proxy for precipitation. Relatively drier and by inference warmer conditions from ca. 1857 to 1916 Common Era (CE) coincided with a dominance of the green algae Botryococcus braunii, indicating lower nutrient levels in the oxic lake surface waters, possibly related to lake water stratification. A change to higher silica (Si) input around 1916 CE was linked to increased rainfall and concurs with an abrupt takeover by diatom blooms lasting for 50 years. These were increasingly outcompeted by cyanobacteria from the 1970s onwards, most likely because of increased levels of anthropogenic phosphate and a reduction in rainfall. Our results showcase that the multi-proxy approach applied here provides an efficient way to track centennial-scale limnological, geochemical and microbial change, as influenced by hydroclimatic and anthropogenic forcing.

  1. Biogeochemical variability during the past 3.6 million years recorded by FTIR spectroscopy in the sediment record of Lake El'gygytgyn, Far East Russian Arctic

    NASA Astrophysics Data System (ADS)

    Meyer-Jacob, C.; Vogel, H.; Gebhardt, A. C.; Wennrich, V.; Melles, M.; Rosén, P.

    2014-01-01

    A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9-56.5%), total organic carbon (TOC; n = 309; gradient: 0-2.9%), and total inorganic carbon (TIC; n= 152; gradient: 0-0.4%) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El'gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2CV = 0.86-0.91 and low root mean square error of cross-validation (RMSECV) (3.1-7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El'gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6-3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was ~3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial-interglacial cycles during the Quaternary.

  2. Algal pigments record shifts in dominant primary productivity through the Holocene in an arctic lake

    NASA Astrophysics Data System (ADS)

    Florian, C.; Miller, G. H.; Fogel, M. L.

    2011-12-01

    The character and magnitude of primary productivity in arctic lakes is largely controlled by climate. Organic compounds derived from pigments and preserved in lake sediments allow reconstruction of past abundances of algae that do not leave silicious microfossils. Fossil algal pigments are abundant in lake sediment and can be accurately quantified using High Pressure Liquid Chromatography (HPLC). Several groups of algae produce unique pigments that can be used to reconstruct their past abundance. In Qivitu Highlands Lake, eastern central Baffin Island, the ratio of pigments diatoxantin and lutein exhibits coherent changes through the Holocene. Diatoxanthin is produced by diatoms and chrysophytes, whereas lutein is produced by green algae and higher plants. Because these pigments are the dominant carotenoids in the sediment, they serve as proxies for the dominant group of primary producers. During the Holocene Thermal Maximum and the past century, lutein is much more abundant than diatoxanthin. During Neoglacial cooling and into the Little Ice Age, diatoxanthin becomes the dominant carotenoid. This shift reveals that there was a change in not only the magnitude of algal production, but also the most abundant type. The adaptation of aquatic algal assemblages to changing climate suggests that gross changes in primary productivity may not be suitable to track the abundance of one type of algal microfossil (such as diatoms) without considering the other algal groups. Higher plants also produce lutein, and its abundance is additionally influenced by the presence of terrestrial organic matter as well as aquatic macrophyte plants. We hypothesize that the prevalence of lutein during warm summers is due to a longer ice-free season, allowing the development of a greater biomass of green algae and macrophyte plants as well as possible increases of terrestrial higher plant communities. This is part of a larger study where the lutein to diatoxanthin ratio is compared to organic

  3. Diatom-inferred Holocene record of moisture variability in Lower Bear Lake, San Bernardino Mountains, California, USA

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Kirby, M. E.

    2014-12-01

    Although Holocene diatom records from southern California lakes have been difficult to obtain, diatoms have been found in Lower Bear Lake (LBL) sediments, providing a 9200-year hydroclimatological record for the San Bernardino Mountains. Based on several physical and chemical properties as well as gastropod and ostracod assemblages. Kirby et al. (2012, QSR,46:57-65) inferred nine decadal to multi-centennial pluvial episodes (five major (PE-V to PE-I), four minor (PE-IIIa-c, PE-IIa) in sediment core BBLVC05-1 (34o15'20" N, 116o55'20" W; 4.5 m long). Here, we consider the implications of this new diatom data. The diatom record shows a gradual increase in salinity during the Holocene, corroborating the inference of decreasing lake size made by Kirby et al. (2012). The longest pluvial (PE-V; 9170?-8250 cal yr BP), is dominated by small fragilaroid taxa, indicating fresh, slightly alkaline waters. An increase in halophilic taxa at ~8700 cal yr BP suggests a several-decades-long drier interval within the pluvial. PE-IV (7000-6400 cal yr BP) is dominated by benthic taxa, including relatively high numbers of epiphytic taxa, indicating an increase in aquatic macrophytes. The abundance of Aulacoseira in PE-IV and PE-III (3350-3000 cal yr BP) suggests increased turbulence due to increased storminess. PE-III and PE-II (850-700 cal yr BP) contain greater abundances of benthic (epiphytic) and halophilic species, although the latter never dominate the assemblage. PE-I (500-476 cal yr BP) was not sampled. Aerophilic taxa comprise up to 3% of the assemblage during pluvial events suggesting increased erosion during those periods and the presence of symbiotic species throughout the record indicates nitrogen-depleted waters. The diatom data generally support the occurrence of multiple pluvials over the Holocene with the most sustained occurring in the early Holocene. Furthermore, the diatom data suggest LBL likely diminished in size through the Holocene becoming more saline in the

  4. Late Holocene Multiproxy Record (Palynology, Stable Isotope and Multi-Element Geochemistry) of Lake Santa Maria del Oro, Western Mesoamerica.

    NASA Astrophysics Data System (ADS)

    Lozano, S.; Caballero, M.; Rodriguez, A.; Roy, P.; Sosa, S.

    2007-05-01

    We present the palynological, stable isotope and major element (ITRAX X-Ray fluorescence) data from a 850-cm sediment sequence from the deepest part of lake Santa María del Oro (SMO) in order to document changes in the climatic and limnological conditions and in the vegetation for the last ca. 5000 yr. SMO is a crater lake of (750 m asl, 2 km diam.) located in a tropical sub-humid climate (1250 mm/yr, average annual temperature 21° C) at the transition between the temperate central Mexican highlands and the arid northern regions. Tropical deciduous forests which loose their leaves for 8 months in a year and the tropical oak forests are the main plant communities in the lake catchments. The western part of Mesoamerica is the cradle of maize (Zea mays ssp. mays ) agriculture; this region is probably one of the two centers of maize domestication based on the presence of one of its closets wild relative teosinte (Zea mays ssp. parviglumis ). Chronology was established with 8 AMS radiocarbon dates. Sediments are finely laminated, with some intervals dominated by black and brown clayey silt and others by brown clayey silt and calcareous silt. In some levels, laminae are characterized by silts and fine sands. Authigenic carbonate laminations are formed during the summer season, when the highest temperatures are reached in the area. Throughout the pollen analysis, teosinte pollen and maize pollen was recorded. The major element concentration (Ca and Ti) in the bulk sediments was analyzed by ITRAX multi-element scanner and the isotopic data (δ13C and δ18O) in authigenic carbonates by mass spectrometer. Ca and Ti ITRAX intensities were calibrated to mass % by using the linear relationship between ITRAX intensity and mass % obtained through conventional XRF analysis. Preliminary pollen data of SMO sediments indicates abundant pollen of teosinte from ca. 2000 to 100 BC and maize presence at ca. 1300 BC and ca. 900 BC along with high charcoal particle concentrations

  5. Mid-late Holocene climate and vegetation in northeastern part of the Altai Mountains recorded in Lake Teletskoye

    NASA Astrophysics Data System (ADS)

    Rudaya, Natalia; Nazarova, Larisa; Novenko, Elena; Babich, Valery; Kalugin, Ivan; Daryin, Andrei

    2015-04-01

    We report the first high-resolution (with intervals ca. 20-50 years) late-Holocene (4200 yr BP) pollen record from Lake Teletskoye, Altai Mountains, obtained from the underwater Ridge of Sofia Lepneva in 2006 (core Tel 2006). The study presents (i) the results of palynological analysis of Tel 2006; (ii) the results of spectral analysis of natural cycles based on the periodical fluctuation of taiga-biome curve; and (iii) quantitative reconstructions of the late-Holocene regional vegetation, woody coverage and climate in northern part of the Altai Mountains in order to define place of Northeast Altai on the map of the late-Holocene Central Asian environmental history. Late Holocene vegetation of the northeastern part of Altai recorded in Tel 2006 core is characterized by spread of dark-coniferous forest with structure similar to modern. Dominant trees, Siberian pine (Pinus sibirica) and Siberian fir (Abies sibirica), are the most ecological sensitive taxa between Siberian conifers (Shumilova, 1962), that as a whole suggests mild and humid climatic conditions during last 4200 years. However, changes of pollen taxa percentages and results of numerical analysis reveal pronounced fluctuation of climate and vegetation. Relatively cool and dry stage occurred prior to ca. 3500 cal yr BP. Open vegetation was widespread in the region with maximum deforestation and minimal July temperatures between 3800-3500 cal yr BP. Steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae could grow on the open sites around Lake Teletskoye. Reconstructed woody coverage is very low and varies between 29-35%. After ca. 3500 cal yr BP the area of dark-coniferous mountain taiga has significantly enlarged with maximums of woody coverages and taiga biome scores between ca. 2470-1040 cal yr BP. In the period of ~3500-2500 cal yr BP the averages July temperatures increased more than 1 0C. Climate became warmer and wetter. During last millennium (after 1040 cal yr BP) average July

  6. A quantitative ~1ky lake level record of Lake Prespa (SW Balkans) derived from beach ridge sediments: implications for hydro-climatic changes from the Medieval Climate Anomaly to the present

    NASA Astrophysics Data System (ADS)

    van der Schriek, Tim; Giannakopoulos, Christos

    2016-04-01

    We present the first quantitative lake stage record of Prespa that covers the past millennium, based on the singular isthmus beach ridge complex, allowing numerical reconstruction of precipitation-driven inflow changes during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Mediterranean precipitation change, based on lake-proxy reconstructions, shows a distinct W-E pattern over the past millennium. Generally, the West experienced drier conditions during the MCA and wetter conditions during the LIA; the East experienced opposite conditions. This pattern is linked to the multi-decadal North Atlantic Oscillation (NAO) Winter Index: positive phases are associated with drier (wetter) and negative phases with wetter (drier) conditions in the W (E) Mediterranean. The SW Balkans is located at the juncture of proposed boundary between these contrasting climate and hydrological domains. It is not clear which, if any, of these patterns reflects past precipitation changes in the region, given the lack of detailed palaeo-hydrological data. The beach ridge complex that underlies the entire isthmus separating Lakes Mikri- and Megali Prespa offers a unique opportunity to address this question. High, oblique, sediment-supply allows the formation and preservation of beach ridges that register the annual water level fluctuations of Lake Megali Prespa which are driven by wet season precipitation and contain a strong NAO-signal. Modern beach-ridge sediment facies were calibrated against observed lake levels, thus allowing the reliable determination of past lake levels from the geological record. Lake surface area variation was found to be a more reliable indicator of hydro-climate change than water level fluctuations as the latter are strongly influenced by lake bathymetry. Accordingly, surface areas were calculated for different water levels to enable the conversion of lake level stage-indicators to quantitative inflow estimates. The isthmus profile reveals a "high

  7. Lake and Bog Sediment Records of Holocene Climate and Glacier Variability in the Cordillera Vilcabamba of Southern Peru

    NASA Astrophysics Data System (ADS)

    Schweinsberg, A.; Licciardi, J. M.; Rodbell, D. T.; Stansell, N.

    2013-12-01

    Records of past fluctuations in climatically sensitive tropical glaciers are among the best indicators of regional paleoclimatic trends and forcings. However, continuous sediment records in this region remain limited, particularly during the Holocene. Here we present the first continuous records of glacier activity in the Cordillera Vilcabamba (13°20'S) of southern Peru from lake and bog sediment cores in stratigraphic contact with 10Be-dated moraines. Completed analyses include sediment lithostratigraphy, magnetic susceptibility, and biogenic silica, in conjunction with AMS radiocarbon dates on charcoal. Carbon measurements, bulk density, and bulk sedimentation rates are used to derive a record of clastic sediment flux that serves as a proxy indicator of former glacier activity. Visually distinct sedimentological variations, magnetic susceptibility peaks, and radiocarbon dates were correlated among adjacent cores to construct one composite record representative of each coring site. Three composite cores are presented: two from the Rio Blanco valley and one from the Yanama valley. Sediment records from these two glaciated valleys suggest a series of environmental changes during the last ~12,000 calendar years BP. Clastic sediment flux trends are broadly consistent with published evidence that the early to middle Holocene was relatively warm and arid in the southern Peruvian Andes. An episode of high clastic flux in the late Holocene may reflect enhanced glacial activity in response to the onset of cooler and wetter conditions. A prominent peak in magnetic susceptibility at 1660 cal yr BP is present in all composite cores and serves as a chronostratigraphic marker. In addition, our new basal radiocarbon ages place limits on the cosmogenic 10Be production rate in the high Andes, suggesting the cosmogenic 10Be production rate is considerably lower than previously published estimates.

  8. A 37,000-year environmental magnetic record of aeolian dust deposition from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Dorfman, J. M.; Stoner, J. S.; Finkenbinder, M. S.; Abbott, M. B.; Xuan, C.; St-Onge, G.

    2015-11-01

    Environmental magnetism and radiocarbon dating of Burial Lake sediments constrain the timing and magnitude of regional aeolian deposition for the Noatak region of western Arctic Alaska for the last ∼37,000 years. Burial Lake (68.43°N, 159.17°W, 21.5 m water depth) is optimally located to monitor regional dust deposition because it is perched above local drainage and isolated from glacial processes. Cores collected in the summer of 2010 were studied through the application of magnetizations and progressive alternating field (AF) demagnetization of u-channel samples, with additional data provided by computed tomography (CT) derived density, hysteresis measurements, isothermal remanent magnetization (IRM) acquisition experiments, organic carbon content, biogenic silica, physical grain size, radiocarbon dating of wood, seeds, and plant macrofossils, point source magnetic susceptibility, and X-ray fluorescence (XRF). With similar magnetic properties to regional Alaskan loess deposits, low coercivity, highly magnetic material deposited during the late-Pleistocene contrasts with a high coercivity, weakly magnetic component found throughout the record, consistent with locally-derived detritus. The relative proportion of low coercivity to high coercivity magnetic material, defined by the S-Ratios, is used to reconstruct the regional input of dust to the basin over time. A four-fold decrease in the low coercivity component through the deglacial transition is interpreted to reflect diminished dust input to the region. Comparisons with potential sources of dust show that the timing of deposition in Burial Lake is largely consistent with general aridity, lack of vegetative cover, and increased windiness, rather than glacial advances or retreats. The influence from subaerial exposure of continental shelves cannot be ruled out as a significant far-field source of dust to interior Alaska during the Last Glacial Maximum (LGM), but is unlikely to have been the sole source, or to

  9. Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    PubMed Central

    Leung, Wilson; Shaffer, Christopher D.; Reed, Laura K.; Smith, Sheryl T.; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E. J.; Machone, Joshua F.; Patterson, Seantay D.; Price, Amber L.; Turner, Bryce A.; Robic, Srebrenka; Luippold, Erin K.; McCartha, Shannon R.; Walji, Tezin A.; Walker, Chelsea A.; Saville, Kenneth; Abrams, Marita K.; Armstrong, Andrew R.; Armstrong, William; Bailey, Robert J.; Barberi, Chelsea R.; Beck, Lauren R.; Blaker, Amanda L.; Blunden, Christopher E.; Brand, Jordan P.; Brock, Ethan J.; Brooks, Dana W.; Brown, Marie; Butzler, Sarah C.; Clark, Eric M.; Clark, Nicole B.; Collins, Ashley A.; Cotteleer, Rebecca J.; Cullimore, Peterson R.; Dawson, Seth G.; Docking, Carter T.; Dorsett, Sasha L.; Dougherty, Grace A.; Downey, Kaitlyn A.; Drake, Andrew P.; Earl, Erica K.; Floyd, Trevor G.; Forsyth, Joshua D.; Foust, Jonathan D.; Franchi, Spencer L.; Geary, James F.; Hanson, Cynthia K.; Harding, Taylor S.; Harris, Cameron B.; Heckman, Jonathan M.; Holderness, Heather L.; Howey, Nicole A.; Jacobs, Dontae A.; Jewell, Elizabeth S.; Kaisler, Maria; Karaska, Elizabeth A.; Kehoe, James L.; Koaches, Hannah C.; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J.; Kus, Jordan E.; Lammers, Jennifer A.; Leads, Rachel R.; Leatherman, Emily C.; Lippert, Rachel N.; Messenger, Gregory S.; Morrow, Adam T.; Newcomb, Victoria; Plasman, Haley J.; Potocny, Stephanie J.; Powers, Michelle K.; Reem, Rachel M.; Rennhack, Jonathan P.; Reynolds, Katherine R.; Reynolds, Lyndsey A.; Rhee, Dong K.; Rivard, Allyson B.; Ronk, Adam J.; Rooney, Meghan B.; Rubin, Lainey S.; Salbert, Luke R.; Saluja, Rasleen K.; Schauder, Taylor; Schneiter, Allison R.; Schulz, Robert W.; Smith, Karl E.; Spencer, Sarah; Swanson, Bryant R.; Tache, Melissa A.; Tewilliager, Ashley A.; Tilot, Amanda K.; VanEck, Eve; Villerot, Matthew M.; Vylonis, Megan B.; Watson, David T.; Wurzler, Juliana A.; Wysocki, Lauren M.; Yalamanchili, Monica; Zaborowicz, Matthew A.; Emerson, Julia A.; Ortiz, Carlos; Deuschle, Frederic J.; DiLorenzo, Lauren A.; Goeller, Katie L.; Macchi, Christopher R.; Muller, Sarah E.; Pasierb, Brittany D.; Sable, Joseph E.; Tucci, Jessica M.; Tynon, Marykathryn; Dunbar, David A.; Beken, Levent H.; Conturso, Alaina C.; Danner, Benjamin L.; DeMichele, Gabriella A.; Gonzales, Justin A.; Hammond, Maureen S.; Kelley, Colleen V.; Kelly, Elisabeth A.; Kulich, Danielle; Mageeney, Catherine M.; McCabe, Nikie L.; Newman, Alyssa M.; Spaeder, Lindsay A.; Tumminello, Richard A.; Revie, Dennis; Benson, Jonathon M.; Cristostomo, Michael C.; DaSilva, Paolo A.; Harker, Katherine S.; Jarrell, Jenifer N.; Jimenez, Luis A.; Katz, Brandon M.; Kennedy, William R.; Kolibas, Kimberly S.; LeBlanc, Mark T.; Nguyen, Trung T.; Nicolas, Daniel S.; Patao, Melissa D.; Patao, Shane M.; Rupley, Bryan J.; Sessions, Bridget J.; Weaver, Jennifer A.; Goodman, Anya L.; Alvendia, Erica L.; Baldassari, Shana M.; Brown, Ashley S.; Chase, Ian O.; Chen, Maida; Chiang, Scott; Cromwell, Avery B.; Custer, Ashley F.; DiTommaso, Tia M.; El-Adaimi, Jad; Goscinski, Nora C.; Grove, Ryan A.; Gutierrez, Nestor; Harnoto, Raechel S.; Hedeen, Heather; Hong, Emily L.; Hopkins, Barbara L.; Huerta, Vilma F.; Khoshabian, Colin; LaForge, Kristin M.; Lee, Cassidy T.; Lewis, Benjamin M.; Lydon, Anniken M.; Maniaci, Brian J.; Mitchell, Ryan D.; Morlock, Elaine V.; Morris, William M.; Naik, Priyanka; Olson, Nicole C.; Osterloh, Jeannette M.; Perez, Marcos A.; Presley, Jonathan D.; Randazzo, Matt J.; Regan, Melanie K.; Rossi, Franca G.; Smith, Melanie A.; Soliterman, Eugenia A.; Sparks, Ciani J.; Tran, Danny L.; Wan, Tiffany; Welker, Anne A.; Wong, Jeremy N.; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J.; Hoogewerf, Arlene J.; Ackerman, Cheri M.; Armistead, Isaac O.; Baatenburg, Lara; Borr, Matthew J.; Brouwer, Lindsay K.; Burkhart, Brandon J.; Bushhouse, Kelsey T.; Cesko, Lejla; Choi, Tiffany Y. Y.; Cohen, Heather; Damsteegt, Amanda M.; Darusz, Jess M.; Dauphin, Cory M.; Davis, Yelena P.; Diekema, Emily J.; Drewry, Melissa; Eisen, Michelle E. M.; Faber, Hayley M.; Faber, Katherine J.; Feenstra, Elizabeth; Felzer-Kim, Isabella T.; Hammond, Brandy L.; Hendriksma, Jesse; Herrold, Milton R.; Hilbrands, Julia A.; Howell, Emily J.; Jelgerhuis, Sarah A.; Jelsema, Timothy R.; Johnson, Benjamin K.; Jones, Kelly K.; Kim, Anna; Kooienga, Ross D.; Menyes, Erika E.; Nollet, Eric A.; Plescher, Brittany E.; Rios, Lindsay; Rose, Jenny L.; Schepers, Allison J.; Scott, Geoff; Smith, Joshua R.; Sterling, Allison M.; Tenney, Jenna C.; Uitvlugt, Chris; VanDyken, Rachel E.; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P.; Agbley, Kwabea; Boham, Sampson K.; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A.; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E.; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S.; Banker, Roxanne; Bartling, Justina R.; Bhatiya, Chinmoy I.; Boudoures, Anna L.; Christiansen, Lena; Fosselman, Daniel S.; French, Kristin M.; Gill, Ishwar S.; Havill, Jessen T.; Johnson, Jaelyn L.; Keny, Lauren J.; Kerber, John M.; Klett, Bethany M.; Kufel, Christina N.; May, Francis J.; Mecoli, Jonathan P.; Merry, Callie R.; Meyer, Lauren R.; Miller, Emily G.; Mullen, Gregory J.; Palozola, Katherine C.; Pfeil, Jacob J.; Thomas, Jessica G.; Verbofsky, Evan M.; Spana, Eric P.; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I.N.; Fitzgibbons, John D.; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J.; Knouse, Kristin A.; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S.; Norton, Diana; Pham, Philip; Polk, Jessica W.; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D.; Scala, Victoria; Schwartz, Nicholas U.; Shuen, Jessica A.; Xu, Amy; Xu, Thomas Q.; Zhang, Yi; Rosenwald, Anne G.; Burg, Martin G.; Adams, Stephanie J.; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E.; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J.; Robertson, Gregory M.; Smith, Samuel I.; DiAngelo, Justin R.; Sassu, Eric D.; Bhalla, Satish C.; Sharif, Karim A.; Choeying, Tenzin; Macias, Jason S.; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E.; Alvarez, Consuelo J.; Davis, Kristen C.; Dunham, Carrie A.; Grantham, Alaina J.; Hare, Amber N.; Schottler, Jennifer; Scott, Zackary W.; Kuleck, Gary A.; Yu, Nicole S.; Kaehler, Marian M.; Jipp, Jacob; Overvoorde, Paul J.; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A.; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T.; Poet, Jeffrey L.; Allen, Alica B.; Anderson, John E.; Barnett, Jason M.; Baumgardner, Jordan S.; Brown, Adam D.; Carney, Jordan E.; Chavez, Ramiro A.; Christgen, Shelbi L.; Christie, Jordan S.; Clary, Andrea N.; Conn, Michel A.; Cooper, Kristen M.; Crowley, Matt J.; Crowley, Samuel T.; Doty, Jennifer S.; Dow, Brian A.; Edwards, Curtis R.; Elder, Darcie D.; Fanning, John P.; Janssen, Bridget M.; Lambright, Anthony K.; Lane, Curtiss E.; Limle, Austin B.; Mazur, Tammy; McCracken, Marly R.; McDonough, Alexa M.; Melton, Amy D.; Minnick, Phillip J.; Musick, Adam E.; Newhart, William H.; Noynaert, Joseph W.; Ogden, Bradley J.; Sandusky, Michael W.; Schmuecker, Samantha M.; Shipman, Anna L.; Smith, Anna L.; Thomsen, Kristen M.; Unzicker, Matthew R.; Vernon, William B.; Winn, Wesley W.; Woyski, Dustin S.; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J.; Aronhalt, Todd; Bellush, James M.; Burke, Christa; DeFazio, Steve; Does, Benjamin R.; Johnson, Todd D.; Keysock, Nicholas; Knudsen, Nelson H.; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S.; Stagaard, Erica; Starcher, Justin R.; Waggoner, Andrew W.; Yemelyanova, Anastasia K.; Hark, Amy T.; Bertolet, Anne; Kuschner, Cyrus E.; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E.; Smith, Mary A.; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S. Catherine Silver; Henry, Tyneshia C. P.; Johnson, Ashlee G.; White, Jackie X.; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L. M.; Chau, Kim M.; Ward, Alyssa; Regisford, E. Gloria C.; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M.; Bahr, Thomas J.; Caesar, Nicole M.; Campana, Christopher; Cassidy, Daniel W.; Cognetti, Peter A.; English, Johnathan D.; Fadus, Matthew C.; Fick, Cameron N.; Freda, Philip J.; Hennessy, Bryan M.; Hockenberger, Kelsey; Jones, Jennifer K.; King, Jessica E.; Knob, Christopher R.; Kraftmann, Karen J.; Li, Linghui; Lupey, Lena N.; Minniti, Carl J.; Minton, Thomas F.; Moran, Joseph V.; Mudumbi, Krishna; Nordman, Elizabeth C.; Puetz, William J.; Robinson, Lauren M.; Rose, Thomas J.; Sweeney, Edward P.; Timko, Ashley S.; Paetkau, Don W.; Eisler, Heather L.; Aldrup, Megan E.; Bodenberg, Jessica M.; Cole, Mara G.; Deranek, Kelly M.; DeShetler, Megan; Dowd, Rose M.; Eckardt, Alexandra K.; Ehret, Sharon C.; Fese, Jessica; Garrett, Amanda D.; Kammrath, Anna; Kappes, Michelle L.; Light, Morgan R.; Meier, Anne C.; O’Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R.; Reilly, Mary T.; Robinett, Deirdre; Rossi, Nadine L.; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M.; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R.; Herrick, Douglas A.; Khoury, Christopher B.; Lea, Charlotte; Louie, Christopher A.; Lowell, Shannon M.; Reynolds, Thomas J.; Schibler, Jeanine; Scoma, Alexandra H.; Smith-Gee, Maxwell T.; Tuberty, Sarah; Smith, Christopher D.; Lopilato, Jane E.; Hauke, Jeanette; Roecklein-Canfield, Jennifer A.; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A.; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R.; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R.; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R.; Flohr, Sarah; Flores, Amanda H.; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B.; Smith, Jonathan E.; Unruh, Anna K.; Velasquez, Vicente; Wolski, Matthew W.; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E.; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J.; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T.; Moore, Zachary D.; Savell, Christopher D.; Watson, Reece; Mel, Stephanie F.; Anilkumar, Arjun A.; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M.; Dai, Tiffany; Garbagnati, Giancarlo F.; Horton, Lanor S.; Kim, Dongyeon; Lau, Joyce H.; Liu, James Z.; Mach, Sandy D.; Phan, Thu A.; Ren, Yi; Stapleton, Kenneth E.; Strelitz, Jean M.; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C.; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J.; Fafara-Thompson, Antoinette E.; Gross, Meleah J.; Gygi, Amber M.; Jackson, Lesley E.; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L.; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L.; Neely, Jessica; Ogawa, Emmy E.; Rich, Ashley; Rogers, Anna; Spencer, J. Devin; Stemler, Kristina M.; Throm, Allison A.; Van Camp, Matt; Weihbrecht, Katie; Wiles, T. Aaron; Williams, Mallory A.; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M.; Bashiri, Azita; Bower, Mindy E.; Florian, Kayla A.; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S.; Karim, Helmet; Mullen, Victor W.; Pelchen, Carly E.; Yenerall, Paul M.; Zhang, Jiayu; Rubin, Michael R.; Arias-Mejias, Suzette M.; Bermudez-Capo, Armando G.; Bernal-Vega, Gabriela V.; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G.; Martinez-Rodriguez, Javier O.; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O.; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J.; Santiago-Sanabria, Arnaldo J.; Senquiz-Gonzalez, Andrea M.; delValle, Frank R. Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I.; Zambrana-Burgos, Joan D.; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D.; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P.; Collado-Méndez, Xavier A.; Colón-Cruz, Luis R.; Correa-Muller, Ana I.; Crooke-Rosado, Jonathan L.; Cruz-García, José M.; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M.; Feliciano-Cancela, Alex J.; Gónzalez-Pérez, Valerie M.; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N.; Laboy-Corales, Ángel L.; Llaurador-Caraballo, Gabriela A.; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A.; Martínez-Traverso, Idaliz M.; Medina-Ortega, Kiara N.; Méndez-Castellanos, Sonya G.; Menéndez-Serrano, Krizia C.; Morales-Caraballo, Carol I.; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M.; Ramírez-Aponte, Edwin G.; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S.; Rivera-Pagán, Ingrid T.; Rivera-Vicéns, Ramón E.; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O.; Rodríguez-García, Priscila M.; Rodríguez-Laboy, Abneris E.; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L.; Rubio-Marrero, Eva N.; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L.; Santos-Ramos, Carlos E.; Serrano-González, Joseline; Tamayo-Figueroa, Alina M.; Tascón-Peñaranda, Edna P.; Torres-Castillo, José L.; Valentín-Feliciano, Nelson A.; Valentín-Feliciano, Yashira M.; Vargas-Barreto, Nadyan M.; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R.; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R.; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L.; Molleston, Jerome M.; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J.; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P.; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y.; Zheng, Yin; Preuss, Mary L.; Garcia, Angelica; Juergens, Matt; Morris, Robert W.; Nagengast, Alexis A.; Azarewicz, Julie; Carr, Thomas J.; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L.; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L.; Adams, Ashley L.; Barnard, Brianna K.; Cheramie, Martin N.; Eime, Anne M.; Golden, Kathryn L.; Hawkins, Allyson P.; Hill, Jessica E.; Kampmeier, Jessica A.; Kern, Cody D.; Magnuson, Emily E.; Miller, Ashley R.; Morrow, Cody M.; Peairs, Julia C.; Pickett, Gentry L.; Popelka, Sarah A.; Scott, Alexis J.; Teepe, Emily J.; TerMeer, Katie A.; Watchinski, Carmen A.; Watson, Lucas A.; Weber, Rachel E.; Woodard, Kate A.; Barnard, Daron C.; Appiah, Isaac; Giddens, Michelle M.; McNeil, Gerard P.; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C.; Buhler, Jeremy; Mardis, Elaine R.

    2015-01-01

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu. PMID:25740935

  10. Drosophila muller f elements maintain a distinct set of genomic properties over 40 million years of evolution.

    PubMed

    Leung, Wilson; Shaffer, Christopher D; Reed, Laura K; Smith, Sheryl T; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E J; Machone, Joshua F; Patterson, Seantay D; Price, Amber L; Turner, Bryce A; Robic, Srebrenka; Luippold, Erin K; McCartha, Shannon R; Walji, Tezin A; Walker, Chelsea A; Saville, Kenneth; Abrams, Marita K; Armstrong, Andrew R; Armstrong, William; Bailey, Robert J; Barberi, Chelsea R; Beck, Lauren R; Blaker, Amanda L; Blunden, Christopher E; Brand, Jordan P; Brock, Ethan J; Brooks, Dana W; Brown, Marie; Butzler, Sarah C; Clark, Eric M; Clark, Nicole B; Collins, Ashley A; Cotteleer, Rebecca J; Cullimore, Peterson R; Dawson, Seth G; Docking, Carter T; Dorsett, Sasha L; Dougherty, Grace A; Downey, Kaitlyn A; Drake, Andrew P; Earl, Erica K; Floyd, Trevor G; Forsyth, Joshua D; Foust, Jonathan D; Franchi, Spencer L; Geary, James F; Hanson, Cynthia K; Harding, Taylor S; Harris, Cameron B; Heckman, Jonathan M; Holderness, Heather L; Howey, Nicole A; Jacobs, Dontae A; Jewell, Elizabeth S; Kaisler, Maria; Karaska, Elizabeth A; Kehoe, James L; Koaches, Hannah C; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J; Kus, Jordan E; Lammers, Jennifer A; Leads, Rachel R; Leatherman, Emily C; Lippert, Rachel N; Messenger, Gregory S; Morrow, Adam T; Newcomb, Victoria; Plasman, Haley J; Potocny, Stephanie J; Powers, Michelle K; Reem, Rachel M; Rennhack, Jonathan P; Reynolds, Katherine R; Reynolds, Lyndsey A; Rhee, Dong K; Rivard, Allyson B; Ronk, Adam J; Rooney, Meghan B; Rubin, Lainey S; Salbert, Luke R; Saluja, Rasleen K; Schauder, Taylor; Schneiter, Allison R; Schulz, Robert W; Smith, Karl E; Spencer, Sarah; Swanson, Bryant R; Tache, Melissa A; Tewilliager, Ashley A; Tilot, Amanda K; VanEck, Eve; Villerot, Matthew M; Vylonis, Megan B; Watson, David T; Wurzler, Juliana A; Wysocki, Lauren M; Yalamanchili, Monica; Zaborowicz, Matthew A; Emerson, Julia A; Ortiz, Carlos; Deuschle, Frederic J; DiLorenzo, Lauren A; Goeller, Katie L; Macchi, Christopher R; Muller, Sarah E; Pasierb, Brittany D; Sable, Joseph E; Tucci, Jessica M; Tynon, Marykathryn; Dunbar, David A; Beken, Levent H; Conturso, Alaina C; Danner, Benjamin L; DeMichele, Gabriella A; Gonzales, Justin A; Hammond, Maureen S; Kelley, Colleen V; Kelly, Elisabeth A; Kulich, Danielle; Mageeney, Catherine M; McCabe, Nikie L; Newman, Alyssa M; Spaeder, Lindsay A; Tumminello, Richard A; Revie, Dennis; Benson, Jonathon M; Cristostomo, Michael C; DaSilva, Paolo A; Harker, Katherine S; Jarrell, Jenifer N; Jimenez, Luis A; Katz, Brandon M; Kennedy, William R; Kolibas, Kimberly S; LeBlanc, Mark T; Nguyen, Trung T; Nicolas, Daniel S; Patao, Melissa D; Patao, Shane M; Rupley, Bryan J; Sessions, Bridget J; Weaver, Jennifer A; Goodman, Anya L; Alvendia, Erica L; Baldassari, Shana M; Brown, Ashley S; Chase, Ian O; Chen, Maida; Chiang, Scott; Cromwell, Avery B; Custer, Ashley F; DiTommaso, Tia M; El-Adaimi, Jad; Goscinski, Nora C; Grove, Ryan A; Gutierrez, Nestor; Harnoto, Raechel S; Hedeen, Heather; Hong, Emily L; Hopkins, Barbara L; Huerta, Vilma F; Khoshabian, Colin; LaForge, Kristin M; Lee, Cassidy T; Lewis, Benjamin M; Lydon, Anniken M; Maniaci, Brian J; Mitchell, Ryan D; Morlock, Elaine V; Morris, William M; Naik, Priyanka; Olson, Nicole C; Osterloh, Jeannette M; Perez, Marcos A; Presley, Jonathan D; Randazzo, Matt J; Regan, Melanie K; Rossi, Franca G; Smith, Melanie A; Soliterman, Eugenia A; Sparks, Ciani J; Tran, Danny L; Wan, Tiffany; Welker, Anne A; Wong, Jeremy N; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J; Hoogewerf, Arlene J; Ackerman, Cheri M; Armistead, Isaac O; Baatenburg, Lara; Borr, Matthew J; Brouwer, Lindsay K; Burkhart, Brandon J; Bushhouse, Kelsey T; Cesko, Lejla; Choi, Tiffany Y Y; Cohen, Heather; Damsteegt, Amanda M; Darusz, Jess M; Dauphin, Cory M; Davis, Yelena P; Diekema, Emily J; Drewry, Melissa; Eisen, Michelle E M; Faber, Hayley M; Faber, Katherine J; Feenstra, Elizabeth; Felzer-Kim, Isabella T; Hammond, Brandy L; Hendriksma, Jesse; Herrold, Milton R; Hilbrands, Julia A; Howell, Emily J; Jelgerhuis, Sarah A; Jelsema, Timothy R; Johnson, Benjamin K; Jones, Kelly K; Kim, Anna; Kooienga, Ross D; Menyes, Erika E; Nollet, Eric A; Plescher, Brittany E; Rios, Lindsay; Rose, Jenny L; Schepers, Allison J; Scott, Geoff; Smith, Joshua R; Sterling, Allison M; Tenney, Jenna C; Uitvlugt, Chris; VanDyken, Rachel E; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P; Agbley, Kwabea; Boham, Sampson K; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S; Banker, Roxanne; Bartling, Justina R; Bhatiya, Chinmoy I; Boudoures, Anna L; Christiansen, Lena; Fosselman, Daniel S; French, Kristin M; Gill, Ishwar S; Havill, Jessen T; Johnson, Jaelyn L; Keny, Lauren J; Kerber, John M; Klett, Bethany M; Kufel, Christina N; May, Francis J; Mecoli, Jonathan P; Merry, Callie R; Meyer, Lauren R; Miller, Emily G; Mullen, Gregory J; Palozola, Katherine C; Pfeil, Jacob J; Thomas, Jessica G; Verbofsky, Evan M; Spana, Eric P; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I N; Fitzgibbons, John D; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J; Knouse, Kristin A; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S; Norton, Diana; Pham, Philip; Polk, Jessica W; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D; Scala, Victoria; Schwartz, Nicholas U; Shuen, Jessica A; Xu, Amy; Xu, Thomas Q; Zhang, Yi; Rosenwald, Anne G; Burg, Martin G; Adams, Stephanie J; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J; Robertson, Gregory M; Smith, Samuel I; DiAngelo, Justin R; Sassu, Eric D; Bhalla, Satish C; Sharif, Karim A; Choeying, Tenzin; Macias, Jason S; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E; Alvarez, Consuelo J; Davis, Kristen C; Dunham, Carrie A; Grantham, Alaina J; Hare, Amber N; Schottler, Jennifer; Scott, Zackary W; Kuleck, Gary A; Yu, Nicole S; Kaehler, Marian M; Jipp, Jacob; Overvoorde, Paul J; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques Dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T; Poet, Jeffrey L; Allen, Alica B; Anderson, John E; Barnett, Jason M; Baumgardner, Jordan S; Brown, Adam D; Carney, Jordan E; Chavez, Ramiro A; Christgen, Shelbi L; Christie, Jordan S; Clary, Andrea N; Conn, Michel A; Cooper, Kristen M; Crowley, Matt J; Crowley, Samuel T; Doty, Jennifer S; Dow, Brian A; Edwards, Curtis R; Elder, Darcie D; Fanning, John P; Janssen, Bridget M; Lambright, Anthony K; Lane, Curtiss E; Limle, Austin B; Mazur, Tammy; McCracken, Marly R; McDonough, Alexa M; Melton, Amy D; Minnick, Phillip J; Musick, Adam E; Newhart, William H; Noynaert, Joseph W; Ogden, Bradley J; Sandusky, Michael W; Schmuecker, Samantha M; Shipman, Anna L; Smith, Anna L; Thomsen, Kristen M; Unzicker, Matthew R; Vernon, William B; Winn, Wesley W; Woyski, Dustin S; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J; Aronhalt, Todd; Bellush, James M; Burke, Christa; DeFazio, Steve; Does, Benjamin R; Johnson, Todd D; Keysock, Nicholas; Knudsen, Nelson H; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S; Stagaard, Erica; Starcher, Justin R; Waggoner, Andrew W; Yemelyanova, Anastasia K; Hark, Amy T; Bertolet, Anne; Kuschner, Cyrus E; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E; Smith, Mary A; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S Catherine Silver; Henry, Tyneshia C P; Johnson, Ashlee G; White, Jackie X; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L M; Chau, Kim M; Ward, Alyssa; Regisford, E Gloria C; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M; Bahr, Thomas J; Caesar, Nicole M; Campana, Christopher; Cassidy, Daniel W; Cognetti, Peter A; English, Johnathan D; Fadus, Matthew C; Fick, Cameron N; Freda, Philip J; Hennessy, Bryan M; Hockenberger, Kelsey; Jones, Jennifer K; King, Jessica E; Knob, Christopher R; Kraftmann, Karen J; Li, Linghui; Lupey, Lena N; Minniti, Carl J; Minton, Thomas F; Moran, Joseph V; Mudumbi, Krishna; Nordman, Elizabeth C; Puetz, William J; Robinson, Lauren M; Rose, Thomas J; Sweeney, Edward P; Timko, Ashley S; Paetkau, Don W; Eisler, Heather L; Aldrup, Megan E; Bodenberg, Jessica M; Cole, Mara G; Deranek, Kelly M; DeShetler, Megan; Dowd, Rose M; Eckardt, Alexandra K; Ehret, Sharon C; Fese, Jessica; Garrett, Amanda D; Kammrath, Anna; Kappes, Michelle L; Light, Morgan R; Meier, Anne C; O'Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R; Reilly, Mary T; Robinett, Deirdre; Rossi, Nadine L; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R; Herrick, Douglas A; Khoury, Christopher B; Lea, Charlotte; Louie, Christopher A; Lowell, Shannon M; Reynolds, Thomas J; Schibler, Jeanine; Scoma, Alexandra H; Smith-Gee, Maxwell T; Tuberty, Sarah; Smith, Christopher D; Lopilato, Jane E; Hauke, Jeanette; Roecklein-Canfield, Jennifer A; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R; Flohr, Sarah; Flores, Amanda H; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B; Smith, Jonathan E; Unruh, Anna K; Velasquez, Vicente; Wolski, Matthew W; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T; Moore, Zachary D; Savell, Christopher D; Watson, Reece; Mel, Stephanie F; Anilkumar, Arjun A; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M; Dai, Tiffany; Garbagnati, Giancarlo F; Horton, Lanor S; Kim, Dongyeon; Lau, Joyce H; Liu, James Z; Mach, Sandy D; Phan, Thu A; Ren, Yi; Stapleton, Kenneth E; Strelitz, Jean M; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J; Fafara-Thompson, Antoinette E; Gross, Meleah J; Gygi, Amber M; Jackson, Lesley E; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L; Neely, Jessica; Ogawa, Emmy E; Rich, Ashley; Rogers, Anna; Spencer, J Devin; Stemler, Kristina M; Throm, Allison A; Van Camp, Matt; Weihbrecht, Katie; Wiles, T Aaron; Williams, Mallory A; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M; Bashiri, Azita; Bower, Mindy E; Florian, Kayla A; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S; Karim, Helmet; Mullen, Victor W; Pelchen, Carly E; Yenerall, Paul M; Zhang, Jiayu; Rubin, Michael R; Arias-Mejias, Suzette M; Bermudez-Capo, Armando G; Bernal-Vega, Gabriela V; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G; Martinez-Rodriguez, Javier O; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J; Santiago-Sanabria, Arnaldo J; Senquiz-Gonzalez, Andrea M; delValle, Frank R Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I; Zambrana-Burgos, Joan D; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P; Collado-Méndez, Xavier A; Colón-Cruz, Luis R; Correa-Muller, Ana I; Crooke-Rosado, Jonathan L; Cruz-García, José M; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M; Feliciano-Cancela, Alex J; Gónzalez-Pérez, Valerie M; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N; Laboy-Corales, Ángel L; Llaurador-Caraballo, Gabriela A; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A; Martínez-Traverso, Idaliz M; Medina-Ortega, Kiara N; Méndez-Castellanos, Sonya G; Menéndez-Serrano, Krizia C; Morales-Caraballo, Carol I; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M; Ramírez-Aponte, Edwin G; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S; Rivera-Pagán, Ingrid T; Rivera-Vicéns, Ramón E; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O; Rodríguez-García, Priscila M; Rodríguez-Laboy, Abneris E; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L; Rubio-Marrero, Eva N; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L; Santos-Ramos, Carlos E; Serrano-González, Joseline; Tamayo-Figueroa, Alina M; Tascón-Peñaranda, Edna P; Torres-Castillo, José L; Valentín-Feliciano, Nelson A; Valentín-Feliciano, Yashira M; Vargas-Barreto, Nadyan M; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L; Molleston, Jerome M; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y; Zheng, Yin; Preuss, Mary L; Garcia, Angelica; Juergens, Matt; Morris, Robert W; Nagengast, Alexis A; Azarewicz, Julie; Carr, Thomas J; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L; Adams, Ashley L; Barnard, Brianna K; Cheramie, Martin N; Eime, Anne M; Golden, Kathryn L; Hawkins, Allyson P; Hill, Jessica E; Kampmeier, Jessica A; Kern, Cody D; Magnuson, Emily E; Miller, Ashley R; Morrow, Cody M; Peairs, Julia C; Pickett, Gentry L; Popelka, Sarah A; Scott, Alexis J; Teepe, Emily J; TerMeer, Katie A; Watchinski, Carmen A; Watson, Lucas A; Weber, Rachel E; Woodard, Kate A; Barnard, Daron C; Appiah, Isaac; Giddens, Michelle M; McNeil, Gerard P; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C; Buhler, Jeremy; Mardis, Elaine R; Elgin, Sarah C R

    2015-03-04

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.

  11. Environmental legacy of copper metallurgy and Mongol silver smelting recorded in Yunnan Lake sediments.

    PubMed

    Hillman, Aubrey L; Abbott, Mark B; Yu, JunQing; Bain, Daniel J; Chiou-Peng, TzeHuey

    2015-03-17

    Geochemical measurements on well-dated sediment cores from Lake Er (Erhai) are used to determine the timing of changes in metal concentrations over 4500 years in Yunnan, a borderland region in southwestern China noted for rich mineral deposits but with inadequately documented metallurgical history. Our findings add new insight into the impacts and environmental legacy of human exploitation of metal resources in Yunnan history. We observe an increase in copper at 1500 BC resulting from atmospheric emissions associated with metallurgy. These data clarify the chronological issues related to links between the onset of Yunnan metallurgy and the advent of bronze technology in adjacent Southeast Asia, subjects that have been debated for nearly half a century. We also observe an increase from 1100 to 1300 AD in a number of heavy metals including lead, silver, zinc, and cadmium from atmospheric emissions associated with silver smelting. Culminating during the rule of the Mongols, known as the Yuan Dynasty (1271-1368 AD), these metal concentrations approach levels three to four times higher than those from industrialized mining activity occurring within the catchment today. Notably, the concentrations of lead approach levels at which harmful effects may be observed in aquatic organisms. The persistence of this lead pollution over time created an environmental legacy that likely contributes to known issues in modern day sediment quality. We demonstrate that historic metallurgical production in Yunnan can cause substantial impacts on the sediment quality of lake systems, similar to other paleolimnological findings around the globe.

  12. Mineral magnetic record of environment in Late Pleistocene and Halocene sediments, Lake Manas, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Jelinowska, A.; Tucholka, P.; Gasse, F.; Fontes, J. C.

    1995-04-01

    A study of magnetic parameters was carried out on a Late Pleistocene and Holocene sedimentary sequence (5 m) from Lake Manas (northern Xinjiang, China), that has already been analyzed for bulk sediment mineralogy, stables isotopes from carbonates and biogenic material. Magnetic minerals confirm major changes in paleoenvironmental and paleohydrological conditions that were deduced from other methods. They also provide complementary information on changes in the lake system during the early and middle Holocene. The most important mineral magnetic change results from the authigenic formation of ferrimagnetic greigite, Fe3S4 during the lacustrine episodes dated from approximately 8.7 kyr B.P. to approximately 5.5 kyr B.P. (380-335 cm) and from approximately 4.5 kyr B.P. to approximately 3.5 kyr B.P. (320-285 cm) respectively. Our data also indicate an abrupt break in sedimentary conditions which coincides with a short-term return towards dry climatic conditions around 3.5 kyr B.P., which was only suggested from other proxy data.

  13. Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau.

    PubMed

    Yang, Ruiqiang; Xie, Ting; Li, An; Yang, Handong; Turner, Simon; Wu, Guangjian; Jing, Chuanyong

    2016-07-01

    Sediment cores from five lakes across the Tibetan Plateau were used as natural archives to study the time trends of polycyclic aromatic hydrocarbons (PAHs). The depositional flux of PAHs generally showed an increasing trend from the deeper layers towards the upper layer sediments. The fluxes of PAHs were low with little variability before the 1950s, and then gradually increased to the late 1980s, with a faster increasing rate after the 1990s. This temporal pattern is clearly different compared with those remote lakes across the European mountains when PAHs started to decrease during the period 1960s-1980s. The difference of the temporal trend was attributed to differences in the economic development stages and energy structure between these regions. PAHs are dominated by the lighter 2&3-ring homologues with the averaged percentage over 87%, while it is notable that the percentage of heavier 4-6 ring PAHs generally increased in recent years, which suggests the contribution of local high-temperature combustion sources becoming more predominant.

  14. Timing of atmospheric precipitation in the Zagros Mountains inferred from a multi-proxy record from Lake Mirabad, Iran

    NASA Astrophysics Data System (ADS)

    Stevens, Lora R.; Ito, Emi; Schwalb, Antje; Wright, Herbert E.

    2006-11-01

    A sediment core 7.2 m long from Lake Mirabad, Iran, was examined for loss-on-ignition, mineralogy, oxygen-isotopic composition of authigenic calcite, and trace-element composition of ostracodes to complement earlier pollen and ostracode-assemblage studies. Pollen, ostracode-inferred lake level, and high Sr/Ca ratios indicate that the early Holocene (10000 to 6500 cal yr BP) was drier than the late Holocene. Low δ18O values during this interval are interpreted as resulting from winter-dominated precipitation, characteristic of a Mediterranean climate. Increasing δ18O values after 6500 cal yr BP signal a gradual increase in spring rains, which are present today. A severe 600-yr drought occurred at ca. 5500 cal yr BP, shortly after the transition from pistachio-almond to oak forest. During the late Holocene, two milder droughts occurred at about 1500 and 500 cal yr BP. Within the resolution of the record, no drought is evident during the collapse of the Akkadian empire (4200-3900 cal yr BP). Rather, a decrease in δ18O values to early-Holocene levels may indicate the return to a Mediterranean precipitation regime.

  15. A high-resolution lake sediment record of glacier activity from SE Greenland defines abrupt Holocene cooling events

    NASA Astrophysics Data System (ADS)

    Balascio, N. L.; Bradley, R. S.; D'Andrea, W. J.

    2013-12-01

    Orbital driven changes in high latitude summer insolation during the Holocene are responsible for the primary millennial-scale climate trends in the Arctic. Following deglaciation, maximum summer temperatures generally occurred during the early to mid-Holocene and declined through the late Holocene. Superimposed on this gradual cooling trend are centennial- and decadal-scale intervals that indicate more rapid perturbations of the arctic climate system. Highly resolved sedimentary records from terrestrial and marine sites help to better characterize climate system dynamics during the Holocene and investigate forcing and feedback mechanism that operate on different timescales. Reconstructing glacial activity can provide valuable paleoclimate information about trends in summer temperature and/or winter precipitation. Proglacial lakes contain sediment archives of meltwater input from glaciers and typically have high sedimentation rates preserving detailed information on glacial activity. However, interpreting proglacial sedimentary records can be difficult because 1) there may be significant input of sediment from non-glacial sources, 2) there is often a lack of organic material for radiocarbon dating, and 3) not all glaciers are sensitive to rapid climatic changes. Here we present a c. 10 cal ka BP record of glacier activity from Kulusuk Lake (65.6°N, 37.1°W; 202 m a.s.l.), a proglacial lake in southeast Greenland that is well constrained by radiocarbon dates and shows a clear signal of changes in glacial input throughout the Holocene. Kulusuk Lake is presently fed by meltwater from two cirque glaciers. It has a small catchment and no other significant source of sediment input. A 3.5 m sediment core contains distinct lithologic changes defined by grain size, magnetic susceptibility, organic content, and scanning XRF data. During the early Holocene, an overall decrease in meltwater input from 8.7-7.7 ka indicates the retreat of the glaciers in response to regional

  16. Palaeomagnetic investigations on lake sediments from NE China: a new record of geomagnetic secular variations for the last 37 ka

    NASA Astrophysics Data System (ADS)

    Frank, Ute

    2007-04-01

    Detailed palaeomagnetic investigations were carried out on two 23 m long sediment cores from Erlongwan maar lake, NE China. The sediment composition of both cores is nearly identical. Based on a macroscopical inspection of the cores 410 graded layers intercalated into the laminated sediments were identified. Measurements of the anisotropy of the magnetic susceptibility revealed that these layers have not disturbed the sediment structure in general, but only in intervals where their thicknesses exceeds 50 cm. The age model for Erlongwan is based on 15 AMS 14C-datings on bulk sediment, showing that the sediment profile spans the last 37 ka cal BP. Although one of the sediment cores has been slightly deformed during core recovery, similar inclination and declination records could be obtained by standard palaeomagnetic methods. The stacked inclination and declination records show both variations similar to those known from palaeosecular variation records from Eastern China and Japan. Therefore, the presented study is a contribution to the ongoing process of compiling a PSV mastercurve for East Asia.

  17. A 13,500 Year Record of Holocene Climate, Fire and Vegetation from Swan Lake, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Wahl, D.; Anderson, L.; Miller, D. M.; Rosario, J. J.; Starratt, S.; McGeehin, J. P.; Bright, J. E.

    2015-12-01

    Modern climate dynamics in the western US are largely determined by a combination of two factors: 1) the strength and position of midlatitude pressure systems, which, in turn, are responsible for the generation and trajectory of winter storms, and 2) the strength of the North America Monsoon (NAM) which brings summer precipitation northward in response to northern hemisphere warming. Paleoclimate records from the Great Basin of the western US suggest some coherence in the timing of major climatic shifts during the Holocene. However, knowledge of the timing and magnitude of these changes at local scales, which can help explain the relative contribution of midlatitude winter storms vs. NAM, is lacking in many places. Here we present new data that constrain the timing and magnitude of late glacial and Holocene climate variability in the northeastern Great Basin, provide insight into past spatial variability of precipitation patterns in the western US, and improve our understanding of regional scale influences on Great Basin climate. In 2011, a 7.65 m sediment core was raised from Swan Lake, a small wetland located in southeastern Idaho that was formed in the spillway channel created by the catastrophic flooding of Lake Bonneville ~18 ka BP. Pollen, charcoal, clumped isotope, diatom, ostracod, and sedimentological data are used to reconstruct vegetation, fire history, and lake level/groundwater flux over the last 13,500 years. Age control is provided by 19 AMS radiocarbon determinations, which are reported as thousands of calibrated years before present (ka BP). This effort builds on earlier work by Bright (1966) who reported on pollen, macrofossils, and sediment type from Swan Lake. Our data suggest cool and wet conditions prevailed until around 12.3 ka BP, after which a drying trend begins. The early Holocene was marked by a warmer, drier climate, which persisted until around 6.2 ka BP. Moister conditions after 6.2 ka BP likely resulted from a combination of enhanced

  18. Holocene environment of Central Kamchatka, Russia: Implications from a multi-proxy record of Two-Yurts Lake

    NASA Astrophysics Data System (ADS)

    Hoff, Ulrike; Biskaborn, Boris K.; Dirksen, Veronika G.; Dirksen, Oleg; Kuhn, Gerhard; Meyer, Hanno; Nazarova, Larisa; Roth, Alexandra; Diekmann, Bernhard

    2015-11-01

    Within the scope of Russian-German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5 × 2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka.

  19. Climate variability in the past ∼19,000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona

    NASA Astrophysics Data System (ADS)

    Saini, Jeetendra; Günther, Franziska; Aichner, Bernhard; Mischke, Steffen; Herzschuh, Ulrike; Zhang, Chengjun; Mäusbacher, Roland; Gleixner, Gerd

    2017-02-01

    We investigated 4.84-m-long sediment record spanning over the Late Glacial and Holocene from Lake Donggi Cona to be able to reconstruct circulation pattern on the Tibetan Plateau (TP). Presently, Lake Donggi Cona is located at the boundaries of Westerlies and Asian monsoon circulations in the northeastern TP. However, the exact timing and stimulating mechanisms for climatic changes and monsoon shifts in this region are still debated. We used a 19-ka-long stable isotope record of sedimentary n-alkanes to address this discrepancy by providing insights into paleohydrological conditions. The δD of nC23 is influenced by lake water evaporation; the δD values of sedimentary nC29 are mainly controlled by moisture source and temperature changes. Long-chain n-alkanes dominate over the core whereas three mean clusters (i.e. microbial, aquatic and terrestrial) can be inferred. Multi-proxies suggest five major episodes in the history of Lake Donggi Cona. The Lake Donggi Cona record indicates that the Late Glacial (18.4-14.8 cal ka BP) was dominated by low productivity of mainly microbial and aquatic organisms. Relatively low δD values suggest low temperatures and moist conditions eventually caused by stronger Westerlies, winter monsoon and melt-water influence. Likely, the shift (∼17.9 cal ka BP) from microbial to enhanced aquatic input suggests either a change from deep to shallow water lake or a break in local stratification. Between 14.8 and 13.0 cal ka BP, variable climatic conditions prevailed. Although the Westerlies weekend, the increase in temperature enhanced the permafrost and snow melting (displayed by a high sedimentary accumulation rate). Higher δD values indicate increasingly arid conditions with higher temperatures which eventually lead to high evaporative conditions and lowest lake levels. Low vegetation cover and high erosion rates led to high sediment accumulation resulting in stratification followed by anoxia in the terminal lake. From 13.0 to 9.2 cal

  20. Late Quaternary water depth changes in Hala Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records

    NASA Astrophysics Data System (ADS)

    Yan, Dada; Wünnemann, Bernd

    2014-07-01

    Late Pleistocene and Holocene climate dynamics along the marginal belt of the East Asian Summer Monsoon in China and their responses to hydrological cycles in lake basins of the Tibetan Plateau are still a matter of scientific discussion. Hala Lake, a closed 65 m deep lake basin in the western Qilian Mountains, Qinghai Province, is considered a monitor of climate-driven hydrological and environmental changes during the past 24 kyr BP. The distribution patterns of ostracod assemblages, stable isotopes, sediment-geochemical properties in four sediment records from different water depths and their combination with the unique limnological setting enabled us to reconstruct four major phases of centennial-scale water depth fluctuations from the global Last Glacial Maximum (ca 24 kyr BP) to the Present. Our results show that Hala Lake experienced a very shallow and small water body during the LGM and Lateglacial under cold and dry climate conditions. Rapid increase of water depth and contemporaneous lake expansion started at around 14 kyr BP (Phase I), most likely as a result of glacier melt due to the onset of climate warming. The lake reached >45 m water depth at around 13.5 kyr BP. Reduced water depth during the Younger Dryas spell (ca 12 kyr BP) may be attributed to a short-term return to cooler and drier conditions. During the early Holocene (Phase II), water depth increased further toward lake highstands close to its present level, with a highest lake level of up to 9 m above the present lakestand at 8.0-7.8 kyr BP. Besides continued glacier melt supply, we assume that summer monsoon effective moisture contributed to the overall water budget, but remained relatively unstable, favoring water depth fluctuations. A pronounced lower water depth falls into the period between 9.2 and 8.1 kyr BP, perhaps the result of weak monsoon influence or its complete absence, although the warming trend continued toward its optimum at ca 8-7 kyr BP. A distinct mass flow, most likely

  1. Exploring the Stable Isotope Record of Lake Carpenter: A Lacustrine Sequence in the Aptian-Albian Cretaceous Cedar Mountain Formation, Utah, USA

    NASA Astrophysics Data System (ADS)

    Montgomery, E.; Al-Suwaidi, A. H.; Suarez, M. B.; Kirkland, J. I.; Suarez, C. A.

    2014-12-01

    The Cedar Mountain Formation (CMF) represents the earliest deposition of terrestrial Cretaceous strata in the USA, recording significant changes in biota and climate. Understanding these transitions requires improved time constraints and high-resolution proxy records. Here we present new δ13C (organic carbon & carbonate) chemostratigraphic record of a lacustrine sequence in a locality named "Lake Carpenter", near Moab, Utah. Lake Carpenter (LC) comprises interbedded limestone and mudstone units of the Ruby Ranch Member of the CMF. Results of the chemostratigraphy are constrained by detrital zircons from the section allowing correlation of the chemostratigraphy to the carbon isotope segments C9 to C11 (Bralower et al., 1999) spanning the Late Aptian to Early Albian, and supported by previous litho- and chemostratigraphic work in the CMF. δ13Corg values show a pronounced negative stepped excursion, of -6‰ with values reaching -32.3 ‰ occurring in conjunction with an increase in TOC. This negative excursion is followed by a positive recovery, with values of ~-25‰ and relatively low TOC. δ13Ccarb records positive values, up to +8‰, in the lowermost part of the section (< ~7m) followed by a decrease to ~-7 ‰. δ18Ocarb over this interval records values between -2 and -4‰ followed by a decrease to ~-7‰. The lowermost portion of the LC section is indicative of relatively deep lacustrine environment in which organic carbon burial influenced the δ13C of dissolved inorganic carbon (DIC) in the lake. This lower δ13C of DIC may be due to increased upwelling and/or turnover and recycling of organic carbon in the lake. Variability of δ13Ccarb and δ18Ocarb values may reflect changes in water supply to the lake, or climatic variability resulting in the lake drying out. δ13Corg values may be affected by local lake dynamics, including variations in organic carbon storage and changes in algal productivity, perhaps also indicative of changes in nutrient

  2. Climate and lake-level history of the northern Altiplano, Bolivia, as recorded in Holocene sediments of the Rio Desaguadero

    SciTech Connect

    Baucom, P.C.; Rigsby, C.A.

    1999-05-01

    Strata exposed in terraces and modern cutbanks along the Rio Desaguadero contain a variety of lithofacies that were deposited in four distinct facies associations. These facies associations document a history of aggradation and downcutting that is linked to Holocene climate change on the Altiplano. Braided-stream, meandering-stream, deltaic and shoreline, and lacustrine sediments preserved in multi-level terraces in the northern Rio Desaguadero valley record two high-water intervals: one between 4,500 and 3,900 yr BP and another between 2,000 and 2,200 yr BP. These wet periods were interrupted by three periods of fluvial downcutting, centered at approximately 4,000 yr BP, 3,600 yr BP, and after 2,000 yr BP. Braided-river sediments preserved in a single terrace level in the southern Rio Desaguadero valley record a history of nearly continuous fluvial sedimentation from at least 7,000 yr BP until approximately 3,200 yr BP that was followed by a single episode (post-3,210 yr BP) of down-cutting and lateral migration. The deposition and subsequent fluvial downcutting of the northern strata was controlled by changes in effective moisture that can be correlated to Holocene water-level fluctuations of Lake Titicaca. The deposition and dissection of braided-stream sediments to the south are more likely controlled by a combination of base-level change and sediment input from the Rio Mauri.

  3. The Mono Lake geomagnetic excursion recorded in loess: Its application as time marker and implications for its geomagnetic nature

    NASA Astrophysics Data System (ADS)

    Hambach, U.; Hark, M.; Zeeden, C.; Reddersen, B.; Zöller, L.; Fuchs, M.

    2009-04-01

    One of the youngest and worldwide documented geomagnetic excursions in the Brunhes Chron is the Mono Lake excursion (MLE). It has been detected in marine and terrestrial sedimentary archives as well as in lavas. Recent age determinations and age estimates for the MLE centre around an age interval of approximately 31 - 34 ka. Likewise the Laschamp excursion the MLE goes along with a distinct peak in cosmogenic radionuclides in ice cores and sedimentary archives. It provides therefore an additional geomagnetic time marker for various geoarchives to synchronise different climate archives. Here we report on a detailed record of the MLE from a loess site at Krems, Lower Austria. The site is situated on the southern slope of the Wachtberg hill in the vicinity of the old city centre of Krems. The archive comprises Middle to Upper Würmian (Late Pleistocene) loess in which an Upper Palaeolithic (Early Gravettian) cultural layer is embedded. The most spectacular finds are a double infant burial found in 2005 and a single burial discovered in 2006 (Einwögerer et al., 2006). Generally, archaeological findings show an extraordinarily good preservation due to embedding in rapidly sedimented loess (Händel et al., 2008). The about 10 m thick loess pile consists of calcareous sandy, coarse silt which is rich in mica indicating local sources. It is well stratified with brownish horizons representing embryonic soils pointing to incipient pedogenesis. Some of the pedo-horizons show occasionally indications of minor erosion and bedding-parallel sediment transport, but no linear erosional features. Pale greyish horizons are the result of partial gleying under permafrost conditions. No strong pedogenesis including decalcification and clay formation is present. The cultural layer is still covered by more than 5 m of loess, and dated by radiocarbon to ~27 ka 14C BP (Einwögerer et al., 2006). Below this layer up to 2.5 m of loess resting on Lower Pleistocene fluvial gravels are

  4. A 9000-Year Record of Centennial-to-Multi Centennial Scale Pluvial Events From Lower Bear Lake Sediments (San Bernardino Mtns., Coastal Southwestern North America)

    NASA Astrophysics Data System (ADS)

    Rivera, J. J.; Kirby, M. E.; Zimmerman, S. R.; Starratt, S.; Patterson, W. P.; Hiner, C.; Monarrez, P.

    2011-12-01

    Lower Bear Lake is located in the San Bernardino Mountains of coastal southwestern North America (CSWNA). This lake is the natural, pre-dam lake where present day Big Bear Reservoir is located. A single drive, 4.8 m-long sediment core was extracted from Lower Bear Lake in 2005. We present a 9000 calendar years before present (cal yr BP) paleohydrologic reconstruction. This new multi-proxy record (LOI 550°C, 950°C; C:N ratios, microfossils counts, grain size) is well-dated (22 AMS 14C dates on discrete organic material) and is characterized by variable sedimentology. Our results indicate two major features: 1) a long-term Holocene drying trend as observed elsewhere in CSWNA with an abrupt shift from wetter to drier conditions about 6200; and, 2) nine centennial-to-multi-centennial pluvial events over the past 9000 cal yr BP superimposed on the long term drying trend. Of these nine inferred pluvial intervals, five are considered major based on their combined proxy interpretations: 9300?-8250, 7000-6400, 3350-3000, 850-700, and 500-??? cal yr BP. To assess our results in terms of broader, regional paleoclimate records, we compare the timing of the major pluvial intervals at Lower Bear Lake to those identified previously at Lake Elsinore and Tulare Lake. This comparison reveals a similar timing between the three sites and the major pluvials. This temporally and spatially coherent signal indicates that a similar climate forcing acted to increase regional wetness at various times during the past 9000 cal yr BP. As a working hypothesis, we contend that small changes in the dominant patterns of Pacific SSTs modulated atmospheric circulation, thus favoring periods of enhanced atmospheric river storm activity across CSWNA.

  5. Micropaleontological Record of Post-glacial History in Lake Champlain and Adjacent Regions: Implications for Glacial Lake Drainage and Abrupt Climate Events

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Manley, P. L.; Guilbault, J.; Berke, M.; Rayburn, J. A.; Franzi, D. A.; Knuepfer, P. L.

    2005-12-01

    Post-glacial lacustrine and marine sediments of the Lake Champlain region range from 20 to >50 meters in thickness presenting an opportunity to assess the timing of North American glacial lake drainage at multidecadal timescales and evaluate its effect on North Atlantic salinity and abrupt climate events 13.5 to 10 kyr B.P. High-resolution analysis of foraminifera and ostracodes from cores taken onshore in the Plattsburgh, N.Y. vicinity and southern Quebec and offshore in southern Lake Champlain reveal complex changes in salinity during and after the transition from pro-glacial Lake Vermont (Lake Candona in Canada) to marine sedimentation in the Champlain Sea. The microfaunal sequence (bottom to top) includes: non-marine ostracodes ( Candona) in lacustrine varves, foraminiferal assemblages (common Cassidulina reniforme), another interval of Candona-bearing sediments (sometimes containing foraminifera), and, finally, sediments from the main phase of the Champlain sea episode containing diverse foraminiferal and marine ostracode assemblages. A decrease in salinity during the Champlain Sea is also in evidence from the shift in dominance of distinct variants of Elphidium in the deep basin. The marine episode ended with a progressive salinity decrease and the formation of Lake Champlain about 10 kyr B.P. Observed salinity changes could be caused by catastrophic fresh-water influx from large glacial lakes west of the Lake Champlain region, meltwater from the retreating Laurentide Ice Sheet margin, diminished influx of marine water from the St. Lawrence due to changes in the position of the ice sheet margin and isostatic adjustment, or a combination of factors. The ages of these events were determined by estimating the reservoir effect on radiocarbon dates on marine shells through comparison with AMS dates on plant material and palynology, and shed light on the hypothesis that glacial lake discharges catalyzed abrupt climate events.

  6. High-resolution 14C dating of a 25,000-year lake-sediment record from equatorial East Africa

    NASA Astrophysics Data System (ADS)

    Blaauw, Maarten; van Geel, Bas; Kristen, Iris; Plessen, Birgit; Lyaruu, Anna; Engstrom, Daniel R.; van der Plicht, Johannes; Verschuren, Dirk

    2011-10-01

    We dated a continuous, ˜22-m long sediment sequence from Lake Challa (Mt. Kilimanjaro area, Kenya/Tanzania) to produce a solid chronological framework for multi-proxy reconstructions of climate and environmental change in equatorial East Africa over the past 25,000 years. The age model is based on a total of 168 AMS 14C dates on bulk-organic matter, combined with a 210Pb chronology for recent sediments and corrected for a variable old-carbon age offset. This offset was estimated by i) pairing bulk-organic 14C dates with either 210Pb-derived time markers or 14C dates on grass charcoal, and ii) wiggle-matching high-density series of bulk-organic 14C dates. Variation in the old-carbon age offset through time is relatively modest, ranging from ˜450 yr during glacial and late glacial time to ˜200 yr during the early and mid-Holocene, and increasing again to ˜250 yr today. The screened and corrected 14C dates were calibrated sequentially, statistically constrained by their stratigraphical order. As a result their constrained calendar-age distributions are much narrower, and the calibrated dates more precise, than if each 14C date had been calibrated on its own. The smooth-spline age-depth model has 95% age uncertainty ranges of ˜50-230 yr during the Holocene and ˜250-550 yr in the glacial section of the record. The δ 13C values of paired bulk-organic and grass-charcoal samples, and additional 14C dating on selected turbidite horizons, indicates that the old-carbon age offset in Lake Challa is caused by a variable contribution of old terrestrial organic matter eroded from soils, and controlled mainly by changes in vegetation cover within the crater basin.

  7. Late Pliocene and Early Pleistocene vegetation history of northeastern Russian Arctic inferred from the Lake El'gygytgyn pollen record

    NASA Astrophysics Data System (ADS)

    Andreev, A. A.; Tarasov, P. E.; Wennrich, V.; Raschke, E.; Herzschuh, U.; Nowaczyk, N. R.; Brigham-Grette, J.; Melles, M.

    2014-05-01

    The 318 m thick lacustrine sediment record from Lake El'gygytgyn, northeastern Russian Arctic cored by the international El'gygytgyn Drilling Project provides unique opportunities for the time-continuous reconstruction of the regional paleoenvironmental history for the past 3.6 Myr. Pollen studies of the lower 216 m of the lacustrine sediments demonstrate their value as an excellent archive of vegetation and climate changes during the Late Pliocene and Early Pleistocene. About 3.5-3.35 Myr BP, the vegetation at Lake El'gygytgyn, now an area of tundra was dominated by spruce-larch-fir-hemlock forests. After ca. 3.35 Myr BP dark coniferous taxa gradually disappeared. A very pronounced environmental change took place ca. 3.31-3.28 Myr BP, corresponding to the Marine Isotope Stage (MIS) M2, when treeless tundra- and steppe-like habitats became dominant in the regional vegetation. Climate conditions were similar to those of Late Pleistocene cold intervals. Numerous coprophilous fungi spores identified in the pollen samples suggest the presence of grazing animals around the lake. Following the MIS M2 event, larch-pine forests with some spruce mostly dominated the area until ca. 2.6 Myr BP, interrupted by colder and drier intervals ca. 3.043-3.025, 2.935-2.912, and 2.719-2.698 Myr BP. At the beginning of the Pleistocene, ca. 2.6 Myr BP, noticeable climatic deterioration occurred. Forested habitats changed to predominantly treeless and shrubby environments, which reflect a relatively cold and dry climate. Peaks in observed green algae colonies (Botryococcus) around 2.53, 2.45, 2.32-2.305, 2.20 and 2.16-2.15 Myr BP suggest a spread of shallow water environments. A few intervals (i.e., 2.55-2.53, ca. 2.37, and 2.35-2.32 Myr BP) with a higher presence of coniferous taxa (mostly pine and larch) document some relatively short-term climate ameliorations during Early Pleistocene glacial periods.

  8. Description of a new species of Niphargus (Crustacea: Amphipoda: Niphargidae): the first record of a lake ecomorph in the Carpathian Mountains.

    PubMed

    Petković, Matija; Delić, Teo; Lučić, Luka; Fišer, Cene

    2015-10-01

    We describe and phylogenetically characterize a new species Niphargus mirocensis from Mt. Miroč, eastern Serbia. This species shows distinct morphology typical for a lake ecomorph of niphargid amphipod, i.e. large and stout body, elongated appendages and raptorial gnathopods and presents the first record of this ecomorph in Carpathian Mountains. Phylogenetic analyses based on Cytochrome Oxidase Subunit 1 gene (COI), Histone (H3) and 28S rRNA (28S) suggests that species is nested within a clade of lake ecomorphs spread in Italy and Central Dinaric Region. The new finding is geographic extension of clade's range, the species of which are generally narrow endemics.

  9. A multi-proxy intercomparison of environmental change in two maar lake records from central Turkey during the last 14 ka

    NASA Astrophysics Data System (ADS)

    Roberts, C. Neil; Allcock, Samantha L.; Arnaud, Fabien; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Leng, Melanie J.; Metcalfe, Sarah E.; Malet, Emmanuel; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan

    2016-04-01

    Individual palaeoenvironmental records are a combination of regional-scale (e.g. climatic) and local factors. In order to separate these signals, we compare multiple proxies from two nearby maar lake records, on the assumption that common signals are due to regional-scale forcing. On the other side, we infer that residual signals are likely to be local and site-specific, rather than reflecting regional climate changes. A new core sequence from Nar lake has been dated by varve counting and U-Th as covering the last 13,800 years (Dean et al., 2015; Roberts et al., 2016). Periods of marked dryness are associated with peaks in Mg/dolomite, elevated Diatom-Inferred Electrical Conductivity, an absence of laminated sediments, and low Quercus/chenopod ratios. These conditions occurred during the Late-Glacial stadial, at 4.3-3.7 and 3.2-2.6 ka BP. Wet phases occurred during the early Holocene and again 1.5-0.6 ka, characterised by negative δ18O values, calcite precipitation, high Ca/Sr ratios, a high % of planktonic diatoms, laminated sediments, and high Quercus/chenopod ratios. Comparison with the independently dated record from Eski Acıgöl (Roberts et al., 2001) shows good correspondence for many proxies, especially for δ18O. A ranking of multiple proxies shows the worst correspondence is for clastic lithogenic elements (e.g. Ti flux). Differences between the two lake records are caused by basin infilling at Eski Acıgöl, which fails to register climatic changes during the last 2 ka, and to catchment erosion and increased flux of lithogenic elements into Nar lake; this is catchment-specific and primarily anthropogenic rather than climatic in origin. In separating a regional signal from site-specific "noise", two lakes may therefore be better than one. Dean, J.R. et al. 2015 Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar lake, central Turkey, using stable isotopes and carbonate mineralogy. Quaternary

  10. An improved chronology for the Lateglacial palaeoenvironmental record of Lake Haemelsee, Germany: challenges for independent site comparisons

    NASA Astrophysics Data System (ADS)

    Lane, Christine; Brauer, Achim; Ramsey Christopher, Bronk; Engels, Stefan; Haliuc, Aritina; Hoek, Wim; Hubay, Katalin; Jones, Gwydion; Sachse, Dirk; Staff, Richard; Turner, Falko; Wagner-Cremer, Frederike

    2016-04-01

    Exploring temporal and spatial variability of environmental response to climatic changes requires the comparison of widespread palaeoenvironmental sequences on their own, independently-derived, age models. High precision age-models can be constructed using statistical methods to combine absolute and relative age estimates measured using a range of techniques. Such an approach may help to highlight otherwise unrecognised uncertainties, where a single dating method has been applied in isolation. Radiocarbon dating, tephrochronology and varve counting have been combined within a Bayesian depositional model to build a chronology for a sediment sequence from Lake Haemelsee (Northern Germany) that continuously covers the entire Lateglacial and early Holocene. Each of the dating techniques used brought its own challenges. Radiocarbon dates provide the only absolute ages measured directly in the record, however a low macrofossil content led to small sample sizes and a limited number of low precision dates. A floating varved interval provided restricted but very precise relative dating for sediments covering the Allerød to Younger Dryas transition. Well-spaced, visible and crypto- tephra layers, including the widespread Laacher See , Vedde Ash, Askja-S and Saksunarvatn tephra layers, allow absolute ages for the tephra layers established in other locations to be imported into the Haemelsee sequence. These layers also provide multiple tie-lines that allow the Haemelsee sequences to be directly compared at particular moments in time, and within particular intervals, to other important Lateglacial archives. However, selecting the "best" published tephra ages to use in the Haemelsee age model is not simple and risks biasing comparison of the palaeoenvironmental record to fit one or another comparative archive. Here we investigate the use of multiple age models for the Haemelsee record, in order to retain an independent approach to investigating the environmental transitions of

  11. Stromatolites provide a terrestrial record of a ~35ka warming event in Walker Lake, a remnant of the Pleistocene Lake Lahontan (Western Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Juarez Rivera, M.; Agić, H.; Ward, L.; Kerrigan, Z.; Petryshyn, V. A.; Frantz, C. M.; Tripati, A.; Corsetti, F. A.; Spear, J. R.

    2014-12-01

    Walker Lake is a closed-basin remnant of the large Pleistocene glacial Lake Lahontan that has experienced drastic changes in water level. Carbonate structures, such as stromatolites, precipitated from the lake and were studied as potential sources for historical climate change. A 16.7 cm long stromatolite was collected from a paleoshoreline approximately 58 meters above the present Walker Lake surface elevation. Radiocarbon dating revealed that the stromatolite spans approximately 2,000 years of growth, from 35,540 to 33,580 Calibrated YBP (IntCal13). Distinct laminae were drilled along the growth axis, and the resulting powders were collected for clumped isotope analyses, which uses the amount of heavy CO2 "clumps" (13C-18O-16O, or ∆47) generated from the dissolution of carbonate in acid to measure the temperature of formation of a rock. Using this method, we tracked the change in lake temperature and δ18Ofluid during stromatolite formation. Our results show that the stromatolite experienced an overall increase in temperature and δ18Ofluid values during the course of accretion. The resulting data were input to a Rayleigh distillation model for water evaporation in order to estimate the magnitude of lake level and volume fluctuations. Our modeling results show that, during the course of stromatolite accretion, the lake experienced a volume decrease of ~5 Km3, corresponding to lake level fall of ~14 meters. This study shows that lacustrine material (such as stromatolites or other tufas) can potentially be used to reconstruct the timing and magnitude of terrestrial climate change during important transitions in Earth history.

  12. A late Holocene metal record of Andean climate and anthropogenic activity in lake sediments near Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Beal, S. A.; Kelly, M. A.; Jackson, B. P.; Stroup, J. S.; Osterberg, E. C.

    2011-12-01

    The tropical hypothesis maintains that major changes in global climate are motivated by phenomena based at tropical latitudes. Evidence for this hypothesis lies in: modern-day observations of El Niño Southern Oscillation (ENSO); East African lake sediment records of Intertropical Convergence Zone (ITCZ) position that precede high-latitude changes; and the potential for ITCZ shifts to cause major CO2 degassing from the Southern Ocean. In order to improve the understanding of these phenomena we present an ~1800 year record of atmospheric metal deposition in a lake sediment core near Quelccaya Ice Cap, Peru (13.9 °S). In June, 2010 we collected a 1.45 meter-long core from Yanacocha - a small, closed-basin tarn that has been isolated from glacial input since ~11,200 BP. The chronology for the core is based on 4 of 6 AMS 14C dates on aquatic macrofossils and one sharp Zr/Ti anomaly at 36 cm, likely derived from the 350 BP eruption of Huaynaputina. We completely digested organic-rich core samples at 1 cm resolution using HNO3, HCl, and HF in a closed-vessel microwave system, and then analyzed the digestates for 67 metals by inductively coupled plasma mass spectrometry. Here we show fluxes of lithogenic metals (Fe, Nb, Ti, and Zr) that reflect changes in wind strength and aridity, fluxes of lithogenic metal isotopes (REEs and Pb) that reflect wind direction, and enrichment factors (EFs) of metals (Ag, As, Cd, Cu, Hg, and Pb) that reflect anthropogenic activity. Five episodic peaks in lithogenic metal fluxes, centered around 1800, 1300, 900, 600, and 100 yrs BP, are thought to result from either drier or windier conditions, potentially caused by a northern ITCZ position or a more persistent El Niño state. The provenance of atmospheric deposition, evidenced by REE ratios (light REEs / heavy REEs), suggest that high lithogenic fluxes are associated with a change in wind direction, possibly caused by a change in the ENSO state, which will be explored with forthcoming Pb

  13. Eocene lake basins in Wyoming and Nevada record rollback of the Farallon flat-slab beneath western North America

    NASA Astrophysics Data System (ADS)

    Smith, M. E.; Cassel, E. J.; Jicha, B. R.; Singer, B. S.; Carroll, A.

    2014-12-01

    Numerical and conceptual models of flat-slab rollback predict broad initial dynamic subsidence above the slab hinge then uplift and volcanism triggered by the advection of asthenosphere beneath the overriding plate. These predicted surface effects provide a viable but largely untested explanation for lake basin formation in Cordilleran-type orogenies. We argue that the hydrologic closure of both the foreland (early Eocene) and hinterland (late Eocene) of the North American Cordillera were caused by a trenchward-migrating wave of dynamic and thermal topography resulting from progressive removal of the Farallon flat-slab. Two major episodes of hydrologic drainage closure are recorded by Eocene terrestrial strata in the western United States. The first occurred in the retroarc foreland during the early Eocene, and resulted in the deposition of the Green River Fm. The second occurred in the hinterland during the late Eocene and resulted in accumulation of the Elko Fm. In both regions, lake strata overlie fluvial strata and become progressively more evaporative up-section, and are overlain by volcaniclastic strata. Both successions were then truncated by regional unconformities that extend until the Oligocene. We interpret these stratigraphic successions to record trenchward propagation of a regional topographic wave, caused by slab rollback. Migration of the slab-hinge initially caused dynamic subsidence and initiation of lacustrine deposition. Regional surface uplift followed, and was associated with scattered volcanism. Uplift promoted formation of endorheic basins and ultimately the development of regional unconformities. The height of the uplift can be roughly approximated by the preserved thickness of lacustrine and other nonmarine deposits at both locations (0.2-1.0 km). The 40Ar/39Ar and U-Pb geochronology of Green River Fm ash beds indicate that this surface topographic wave migrated trenchward (SW) across the foreland from 53 to 47 Ma at a velocity of ~6 cm

  14. Extreme events in the sedimentary record of maar Lake Pavin: Implications for natural hazards assessment in the French Massif Central

    NASA Astrophysics Data System (ADS)

    Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Albéric, Patrick; Lajeunesse, Patrick; Lehours, Anne-Catherine; Meybeck, Michel

    2016-06-01

    A set of sedimentary cores, high resolution swath bathymetry and subbottom profiler data provides new insights on sedimentary processes in meromictic maar Lake Pavin, France. Three sedimentary environments (i.e., littoral, plateau and basin) have been identified in the lake from sediment composition using bulk organic geochemistry and the analysis of hydroacoustic images. Various forms of rapidly deposited layers (RDLs) have been identified and radiocarbon dated. An up to date stratigraphy of sedimentary events matching coeval RDLs across the lake is presented and illustrates a wide range of natural hazards linked to Lake Pavin during the last 2000 years. In AD 600, a sudden lake outburst triggered a slump deposit along with a 9 m lake-level drop that drove shifts in sedimentary organic matter composition. Outside the lake, outburst flood deposits have been described downstream and provide sedimentary evidence for this event. The lake-level drop also favored the generation of gravity reworking processes, as shown by (1) a regional earthquake-triggered large slope failure on the plateau connected to a mass-wasting deposit in the basin dated to AD 1300, and (2) a succession of turbidites in AD 1825 and AD 1860 contemporaneous to two historic earthquakes, suggesting that this lake is sensitive to earthquakes with a minimum epicentral intensity of V. Finally, past observations of lake water color changes in AD 1783 and AD 1936, similar to reports in other meromictic lakes, match iron-rich deposits identified in maar lake sediments and suggest that Lake Pavin could have undergone limnic eruptions.

  15. The history of Cesium-137 liquid emissions by Mühleberg Nuclear Power Plant (Switzerland) is recorded in Lake Biel sediments

    NASA Astrophysics Data System (ADS)

    Girardclos, Stéphanie; Faessler, Jérôme; Loizeau, Jean-Luc; Zehringer, Markus

    2014-05-01

    Lake sediments record changes happening in their upstream river catchment and regional environment which includes traces of artificial radionuclides emissions deriving from human activities. 137Cs emissions started worldwide in the early 1950's and peaked in 1963-64 due to nuclear bomb tests in the high atmosphere. A second 137Cs activity peak, due to the 1986 Chernobyl catastrophe is recorded in sediment archives from central Europe. These two events (1963/64 and 1986) serve routinely as time markers for recent lake records. Nuclear Power Plants (NPPs) are often constructed along river course for cooling purposes. Since 1972, Mühleberg NPP (central Switzerland) lies 18 km upstream Lake Biel and releases radioactive liquid emissions into the Aare river which adds to the diffuse - above mentioned - radioactive pollution, as revealed by Albrecht et al. (1995; 1998) and recently confirmed by Thevenon et al. (2013) from Lake Biel sediments. The water of Lake Biel is used as drinking water for ca. 60'000 inhabitants and its outflowing water is further used by downstream cities lying on the Aare-Rhine course such as Basel (200'000 inhab.) In this study, the 137Cs activity curve of a 90-cm-long sediment core (BIE10-8), retrieved in April 2010 from the central Lake Biel basin at ca. 50 m depth, and measured by gamma ray spectrometry using high resolution germanium detectors, confirms previous work and reveals a new peak for the year 1998-2000, as observed by Thevenon et al. (2013). This peak is most certainly due to Mühleberg NPP as shown by the good correlation with declared 137Cs liquid emissions indicating a significant increase in 1998-99. Decay corrected activity data, converted into 137Cs fluxes, point to water pollution by Mühleberg NPP in 1975-1985 as being similar to those linked to the catastrophic events in 1963-64 and 1986 (about 75%). As former study showed that Lake Biel sediments scavenge only a portion of the total radionuclide in water, i.e. 30-55% for

  16. Late Holocene subalpine lake sediments record a multi-proxy shift to increased aridity at 3.65 kyr BP, following a millennial-scale neopluvial interval in the Lake Tahoe watershed and western Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Noble, Paula; Zimmerman, Susan; Ball, Ian; Adams, Kenneth; Maloney, Jillian; Smith, Shane

    2016-04-01

    A mid Holocene dry period has been reported from lake records in the Great Basin and Sierra Nevada, yet the spatial and temporal extent of this interval is not well understood. We present evidence for a millennial-scale interval of high winter precipitation (neopluvial) at the end of the mid Holocene in the Lake Tahoe-Pyramid Lake watershed in the northern Sierra Nevada that reached its peak ˜3.7 kcal yr BP. A transect of 4 cores recovered from Fallen Leaf Lake in the Tahoe Basin were dated using AMS14C on plant macrofossils, and analyzed using scanning XRF, C and N elemental and stable isotope measurements, and diatoms as paleoclimate proxies. Fallen Leaf Lake is a deep glacially-derived lake situated in the Glen Alpine Valley at an elevation of 1942m, ˜45 m above the level of Lake Tahoe. In Fallen Leaf Lake, the end of the neopluvial is dated at 3.65 ± 0.09 kcal yr BP, and is the largest post-glacial signal in the cores. The neopluvial interval is interpreted to be a period of increased snowpack in the upper watershed, supported by depleted g δ13Corg (-27.5) values, negative baseline shifts in TOC and TN, lower C:N, and high abundances of Aulacoseira subarctica, a winter-early spring diatom. Collectively, these proxies indicate cooler temperatures, enhanced mixing, and/or shortened summer stratification resulting in increased algal productivity relative to terrestrial inputs. The neopluvial interval ends abruptly at 3.65 ka, with a change from mottled darker opaline clay to a homogeneous olive clay with decreased A. subarctica and opal, and followed by a 50% reduction in accumulation rates. After this transition δ13Corg becomes enriched by 2‰ and TOC, TN, and C:N all show the start of positive trends that continue through the Holocene. Pyramid Lake is an endorheic basin situated at the terminal end of the watershed, and inflow arrives from the Lake Tahoe basin via the Truckee River. At Pyramid Lake, existing ages on paleo-shorelines indicate a significant

  17. Facies characterization based on physical properties from downhole logging for the sediment record of Lake Van, Turkey

    NASA Astrophysics Data System (ADS)

    Baumgarten, H.; Wonik, T.; Kwiecien, O.

    2014-11-01

    Lake Van (Turkey) is the 4th largest terminal lake in the world and is located at a key position for climatic reconstruction. The ICDP project 'PALEOVAN' is a deep-drilling campaign initiated in the summer of 2010 to enhance the understanding of paleoclimatic and paleoenvironmental conditions in the Middle East for a period of 550,000 years. Multiple coring of two sites (Northern Basin and Ahlat Ridge) at a water depth of up to 360 m has been performed. The sedimentary record is mainly composed of clayey silts and tephra deposits that were supplied by four volcanic sources: 1) the Süphan volcano, located on the northern shore, 2) the Nemrut volcano, 15 km west of the westernshore, 3) the Incekaya volcano, on the southwestern shore and 4) intralake eruptive centers. The dominant chemical composition of the volcanic sources is known from studies of land deposits. High-quality downhole logs have been acquired from both sites. To construct a continuous lithological profile, 180 m of downhole logging data from the Ahlat Ridge have been analyzed by cluster analysis. To improve the differentiation of the sediments, two elemental intensity profiles from x-ray fluorescence core-scanning (calcium and zirconium) performed on the composite profile core material were added to the cluster analysis. Five cluster units were derived and transformed into three tephra and two clayey silt units. To compare the two clayey silt units with the composite profile from the visual core description (VCD) that showed 15 lithological units, the composite profile was classified into two major groups of lacustrine sediments: banded clayey silts (interpreted as glacial deposits) and laminated clayey silts (interpreted as interglacial deposits). Despite this simplification, no correlation between the two clayey silt units derived from cluster analysis and the banded and laminated clayey silts could be found. The following reasons are proposed: (a) the comparability of the datasets was limited by

  18. Natural and human-induced environmental change in southern Albania for the last 300 years — Constraints from the Lake Butrint sedimentary record

    NASA Astrophysics Data System (ADS)

    Ariztegui, D.; Anselmetti, F. S.; Robbiani, J.-M.; Bernasconi, S. M.; Brati, E.; Gilli, A.; Lehmann, M. F.

    2010-04-01

    A sediment core from Lake Butrint in southwestern Albania contains an annually-layered sequence covering the last ˜ 300 years. It provides thus an exceptionally well-dated time series to study past climate-driven environmental changes, as well as anthropogenic perturbations along the coast of the Ionian Sea. The varves are composed of organic-rich carbonate couplets and detritus-dominated clay layers. The first are deposited during spring-to-fall, and reflect the chemistry of the lake, which, in turn, is sensitive to 1) the relative importance of marine versus freshwater inputs, 2) relative evaporation rates, and 3) the productivity cycle within the lake. The detrital laminae are deposited during winter, reflecting precipitation and runoff conditions during the wet season. A 2-3‰ stable carbon isotope ratio shift in both bulk organics and authigenic carbonates was attributed to increasing eutrophication towards the end of the 20th century, and validated by historical and instrumental data. An increase in the δ18O of authigenic carbonates by more than 8‰ indicates the progressive salinization of the lake, which can primarily be attributed to man-made perturbations that reduced the freshwater input to the lake and/or enhanced the exchange with seawater from the nearby Ionian Sea. A recent increase in the relative evaporation versus precipitation rates may have additionally contributed to the observed 18O enrichment in the Lake Butrint carbonates. The interdecadal cyclicity in the thickness of the detrital laminae seems to be at least partially controlled by NAO and/or ENSO-like phenomena that modulate precipitation patterns in the eastern Mediterranean. Thus, this study demonstrates the potential of combining microstratigraphic and stable isotopic tools to disentangle anthropogenic and natural environmental changes in Lake Butrint, validated by historical records.

  19. A high-resolution Late Glacial to Holocene record of environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Francke, Alexander; Leng, Melanie J.; Vane, Christopher H.; Wagner, Bernd

    2015-09-01

    Lake Ohrid (Macedonia/Albania) is the oldest extant lake in Europe and exhibits an outstanding degree of endemic biodiversity. Here, we provide new high-resolution stable isotope and geochemical data from a 10 m core (Co1262) through the Late Glacial to Holocene and discuss past climate and lake hydrology (TIC, δ13Ccalcite, δ18Ocalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock Eval pyrolysis). The data identifies 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC and TOC contents, (2) the early to mid-Holocene characterised by high TOC and increasing TOC/N and (3) the Late Holocene-Present which shows a marked decrease in TIC and TOC. In general, an overall trend of increasing δ18Ocalcite from 9 ka to present suggests progressive aridification through the Holocene, consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of past Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the International Continental scientific Drilling Program Scientific Collaboration On Past Speciation Conditions in Lake Ohrid project cores recovered in spring-summer 2013, potentially dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  20. A high resolution Late Glacial to Holocene record of climatic and environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack; Francke, Alexander; Leng, Melanie; Vane, Chris; Wagner, Bernd

    2015-04-01

    Lake Ohrid (Macedonia/Albania) is one of the world's oldest lakes and is renowned for its high degree of biological diversity. It is the target site for the ICDP SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) project, an international research initiative to study the links between geology, environment and the evolution of endemic taxa. In 2011 a 10-meter core was recovered from the western shore of Lake Ohrid adjacent to the Lini Peninsula. Here we present high-resolution stable isotope and geochemical data from this core through the Late Glacial to Holocene to reconstruct past climate and hydrology (TIC, δ18Ocalcite, δ13Ccalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock-Eval pyrolysis). The data identify 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC, TOC and higher isotope values, (2) the early to mid-Holocene characterised by higher TOC, TOC/N and lower δ18Ocalcite, and (3) the late Holocene which shows a marked decrease in TIC and TOC. In general there is an overall trend of increasing δ18Ocalcite from 9 ka to present, suggesting progressive aridification through the Holocene, which is consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the SCOPSCO project cores recovered in spring-summer 2013 dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  1. An isotopic and trace element study of ostracods from Lake Miragoane, Haiti: A 10,500 year record of paleosalinity and paleotemperature changes in the Caribbean

    NASA Astrophysics Data System (ADS)

    Curtis, Jason H.; Hodell, David A.

    We report a high-resolution climate reconstruction for the Caribbean based on isotopic and trace element analysis of freshwater ostracod shells from Lake Miragoane, Haiti. By combining oxygen isotopes with Sr/Ca and Mg/Ca ratios, we are able to determine qualitative changes in temperature and salinity of this small, deep lake from the very late Pleistocene (10,500 years BP) to the present. During the latter part of the Younger Dryas Chronozone from ˜10,500 to 10,000 years BP, isotopic, trace element, and pollen results suggest that climate was arid and temperature was cooler than today in the Caribbean region. Similar interpretations of lake level lowering and increased aridity have been made for African lakes during this period. During the last deglaciation (Termination 1b), from ˜10,000 to 7,000 years BP, temperature increased and salinity decreased as lake levels rose during the early Holocene. Minimum salinity conditions are recorded between 7,000 and 4,000 years BP, which coincides with the early Holocene moist period when lake levels were consistently high in the tropics. From ˜4,000 to 2,500 years BP, lake level declined and salinity increased with the onset of a dry climate that generally prevailed throughout the late Holocene. The interval from ˜2,500 to 1,500 years BP was marked by an exceptionally dry period when all parameters indicate high salinity. This severe dry period persisted until ˜1000 years BP when wetter conditions briefly returned. The last millennia has been marked by a general trend toward increased salinity and inferred drier conditions.

  2. Continuous lake-sediment records of glaciation in the Sierra Nevada between 52,600 and 12,500 14C yr B.P.

    USGS Publications Warehouse

    Benson, L.V.; May, Howard M.; Antweiler, R.C.; Brinton, T.I.; Kashgarian, Michaele; Smoot, J.P.; Lund, S.P.

    1998-01-01

    The chemistry of the carbonate-free clay-size fraction of Owens Lake sediments supports the use of total organic carbon and magnetic susceptibility as indicators of stadial-interstadial oscillations. Owens Lake records of total organic carbon, magnetic susceptibility, and chemical composition of the carbonate-free, clay-size fraction indicate that Tioga glaciation began ~24,500 and ended by ~13,600 14C yr B.P. Many of the components of glacial rock flour (e.g., TiO2, MnO, BaO) found in Owens Lake sediments achieved maximum values during the Tioga glaciation when valley glaciers reached their greatest extent. Total organic carbon and SiO2 (amorphous) concentrations reached minimum values during Tioga glaciation, resulting from decreases in productivity that accompanied the introduction of rock flour into the surface waters of Owens Lake. At least 20 stadial-interstadial oscillations occurred in the Sierra Nevada between 52,600 and 14,000 14C yr B.P. Total organic carbon data from a Pyramid Lake sediment core also indicate oscillations in glacier activity between >39,500 and ~13,600 14C yr B.P. Alpine glacier oscillations occurred on a frequency of ???1900 yr in both basins, suggesting that millennial-scale oscillations occurred in California and Nevada during most of the past 52,600 yr.

  3. Holocene evolution of Itapeva Lake, Rio Grande do Sul, Brazil: Palynomorphs C org, N, and S records

    NASA Astrophysics Data System (ADS)

    Meyer, Karin Elise Bohns; Reichhart, Karin; Ashraf, Abdul Rahman; Marques-Toigo, Marleni; Mosbrugger, Volker

    2005-06-01

    Holocene coastal environmental changes are interpreted from a 590 cm long core taken from Itapeva Lake in the northern coastal plain, Rio Grande do Sul, Brazil. The sediment core is radiocarbon dated at 211 cm depth (6460±40 yr B.P.) and studied by geochemistry and palynomorph analyses. The Pleistocene-Holocene boundary is predicted at the top of a glauconitic sand layer at 330 cm depth. On the basis of C org, N, S, and palynomorph data, it is possible to distinguish four zones related to the Holocene transgression-regression cycle, as well as proxies for the salinity trends and organic matter source. The start of Zone 1 represents the oldest Holocene sedimentary record in the core. Palynomorphs reveal a marsh environment with a freshwater influence. In Zone 2, Operculoclinium centrocarpum and high S values indicate brackish water and reflect a Holocene sea-level rise related to the postglacial marine transgression. The high amount of Cyperaceae pollen grains and a significant C org increase in Zone 3 indicate a typical marsh environment with episodes of marine water that reflect a regression phase. Salvinia natans (L) All. and Cyperaceae pollen grains are the most significant palynomorphs in Zone 4, which characterizes a freshwater marsh.

  4. Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Xingqi; Herzschuh, Ulrike; Wang, Yongbo

    2016-04-01

    Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium.

  5. Exotic seismic phases recorded near Mammoth Lakes and their use in the delineation of shallow-crustal (magma?) anomalies

    NASA Astrophysics Data System (ADS)

    Peppin, William A.

    1987-11-01

    Observations of several hundred exotic seismic phases (herein defined) recorded in and near Long Valley caldera, California, have been cataloged. I discuss here four classes of such seismograms: (1) seismograms with missing S-waves, (2) seismograms with an unusual pre-S phase seen at the single station SLK northwest of the caldera, (3) seismograms with a strong pre-S phase as seen at a number of stations south of the caldera, and (4) a very large, very slow (<2 km/sec) post-S phase seen at the single station Benton. For each of these phenomena, it is not yet possible to pin down an unambiguous and unique theoretical explanation. However, for each, I have presented an explanation, summarizing current thinking, which involves nonplanar reflections/refractions within shallow-crustal anomalous zones which can reasonably be supposed to be magma bodies. If these explanations are even partially pertinent, then the investigation of exotic phases near complex regions like Mammoth Lakes and other volcanic areas is potentially a way to bring precise resolving power on the nature and geometry of local crustal anomalies.

  6. Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau

    PubMed Central

    Li, Kai; Liu, Xingqi; Herzschuh, Ulrike; Wang, Yongbo

    2016-01-01

    Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium. PMID:27091591

  7. Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, central India

    NASA Astrophysics Data System (ADS)

    Prasad, Sushma; Anoop, A.; Riedel, N.; Sarkar, S.; Menzel, P.; Basavaiah, N.; Krishnan, R.; Fuller, D.; Plessen, B.; Gaye, B.; Röhl, U.; Wilkes, H.; Sachse, D.; Sawant, R.; Wiesner, M. G.; Stebich, M.

    2014-04-01

    Concerns about the regional impact of global climate change in a warming scenario have highlighted the gaps in our understanding of the Indian Summer Monsoon (ISM, also referred to as the Indian Ocean summer monsoon) and the absence of long term palaeoclimate data from the central Indian core monsoon zone (CMZ). Here we present the first high resolution, well-dated, multiproxy reconstruction of Holocene palaeoclimate from a 10 m long sediment core raised from the Lonar Lake in central India. We show that while the early Holocene onset of intensified monsoon in the CMZ is similar to that reported from other ISM records, the Lonar data shows two prolonged droughts (PD, multidecadal to centennial periods of weaker monsoon) between 4.6-3.9 and 2-0.6 cal ka. A comparison of our record with available data from other ISM influenced sites shows that the impact of these PD was observed in varying degrees throughout the ISM realm and coincides with intervals of higher solar irradiance. We demonstrate that (i) the regional warming in the Indo-Pacific Warm Pool (IPWP) plays an important role in causing ISM PD through changes in meridional overturning circulation and position of the anomalous Walker cell; (ii) the long term influence of conditions like El Niño-Southern Oscillation (ENSO) on the ISM began only ca. 2 cal ka BP and is coincident with the warming of the southern IPWP; (iii) the first settlements in central India coincided with the onset of the first PD and agricultural populations flourished between the two PD, highlighting the significance of natural climate variability and PD as major environmental factors affecting human settlements.

  8. The missing piece: sediment records in remote Mountain lakes confirm glaciers being secondary sources of persistent organic pollutants.

    PubMed

    Schmid, Peter; Bogdal, Christian; Blüthgen, Nancy; Anselmetti, Flavio S; Zwyssig, Alois; Hungerbühler, Konrad

    2011-01-01

    After atmospheric deposition and storage in the ice, glaciers are temporary reservoirs of persistent organic pollutants (POPs). Recently, the hypothesis that melting glaciers represent secondary sources of these pollutants has been introduced by investigations of the historical trend of POPs in a dated sediment core from the proglacial Alpine Lake Oberaar. Here, the hypothesis is further confirmed by the comparison of sediment data gathered from two Alpine lakes with a glaciated and a nonglaciated hydrological catchment. The two lakes (Lake Engstlen and Lake Stein in the Bernese Alps in Switzerland) are situated only 8 km apart at similar altitude and in the same meteorological catchment. In the nonglacial lake sediment of Lake Engstlen, PCBs and DDT (polychlorinated biphenyls and dichlorodiphenyl trichloroethane) levels culminated with the historic usage of these chemicals some 30-50 years ago. In the glacial Lake Stein, this peak was followed by a reincrease in the 1990s, which goes along with the accelerated melting of the adjacent glacier. This study confirms the hypothesis of glaciers being a secondary source of these pollutants and is in accordance with the earlier findings in Lake Oberaar.

  9. Lake Prespa palaeoenvironment since the MIS 5: a continuous record from a mid-altitude site on modern human's way to Europe.

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, K.; Aufgebauer, A.; Schäbitz, F.; Wagner, B.

    2012-04-01

    Lake Prespa is situated in the Balkans (40°57'50'' N, 20°58'41'' E) along the eastern trajectory of modern human dispersal. A long (c. 18m) composite sediment core was investigated using geophysical, geochemical and pollen analyses. This study aims to reconstruct the palaeoenvironment and palaeoclimate from a mid-altitude (849m asl) site and evaluate their implications in the migration of our ancestors from Africa to Europe. The age-depth model, based on radiocarbon dating and tephrochronology, indicates continuous sedimentation reaching back to MIS 5. According to the pollen record, the wider Lake Prespa catchment sustained refugial temperate tree populations throughout this period. Following the decline of woodlands at the end of MIS 5, pollen concentration and TOC percentages retain relatively low values until the onset of the Holocene when closed forest formations dominated the landscape signaling the establishment of a warmer and moister climate. Distinct fluctuations of arboreal relative percentages coupled with the occurrence of TIC and Mn peaks can be tentatively correlated to Heinrich events. Climatic oscillations are sensitively recorded in the Lake Prespa sediments at a sub-millennial scale permitting a detailed reconstruction of the regional palaeoenvironment, as well as correlations with other regional and global climate archives. This project is part of the Collaborative Research Center 806: "Our Way To Europe; Culture-Environment Interaction and Human Mobility in the Late Quaternary" (www.sfb806.de). Keywords: Lake Prespa, Balkans, eastern Mediterranean, pollen analysis, palaeolimnology, modern human dispersal

  10. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    USGS Publications Warehouse

    Anderson, Lesleigh; Max Berkelhammer,; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.

    2016-01-01

    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean–atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north–south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean–atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean–atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north–south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean–atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the

  11. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    NASA Astrophysics Data System (ADS)

    Anderson, Lesleigh; Berkelhammer, Max; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.

    2016-02-01

    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean-atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north-south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean-atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean-atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north-south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean-atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the processes that drive

  12. Episodes of environmental stability versus instability in Late Cenozoic lake records of Eastern Africa.

    PubMed

    Trauth, Martin H; Bergner, Andreas G N; Foerster, Verena; Junginger, Annett; Maslin, Mark A; Schaebitz, Frank

    2015-10-01

    Episodes of environmental stability and instability may be equally important for African hominin speciation, dispersal, and cultural innovation. Three examples of a change from stable to unstable environmental conditions are presented on three different time scales: (1) the Mid Holocene (MH) wet-dry transition in the Chew Bahir basin (Southern Ethiopian Rift; between 11 ka and 4 ka), (2) the MIS 5-4 transition in the Naivasha basin (Central Kenya Rift; between 160 ka and 50 ka), and (3) the Early Mid Pleistocene Transition (EMPT) in the Olorgesailie basin (Southern Kenya Rift; between 1.25 Ma and 0.4 Ma). A probabilistic age modeling technique is used to determine the timing of these transitions, taking into account possible abrupt changes in the sedimentation rate including episodes of no deposition (hiatuses). Interestingly, the stable-unstable conditions identified in the three records are always associated with an orbitally-induced decrease of insolation: the descending portion of the 800 kyr cycle during the EMPT, declining eccentricity after the 115 ka maximum at the MIS 5-4 transition, and after ∼ 10 ka. This observation contributes to an evidence-based discussion of the possible mechanisms causing the switching between environmental stability and instability in Eastern Africa at three different orbital time scales (10,000 to 1,000,000 years) during the Cenozoic. This in turn may lead to great insights into the environmental changes occurring at the same time as hominin speciation, brain expansion, dispersal out of Africa, and cultural innovations and may provide key evidence to build new hypotheses regarding the causes of early human evolution.

  13. Synchronous climate-driven regime shifts at the onset of the Holocene inferred from diatom records in lakes of the Greater Yellowstone region

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Stone, J.; Fritz, S. C.

    2013-12-01

    Diatom records covering the late-glacial and early Holocene periods were recovered from three lakes in different areas of Yellowstone National Park to investigate the impacts of large-scale climatic change on aquatic ecosystem evolution following deglaciation. All lakes show synchronous diatom community shifts from the dominance of tychoplanktic Fragilaria species to benthic species in the interval of 11,300-11500 cal yr BP, indicating a regional decrease in effective moisture. The synchroneity of changes in diatom community structure suggests the influence of overlying large-scale climatic change on lacustrine ecosystems. A major shift in the same interval also is evident in other proxy records, such as pollen and charcoal, throughout the Yellowstone region at the late-glacial/early-Holocene transition. This suggests that the summer insolation maximum induced a widespread and rapid reorganization of ecosystem structure and function.

  14. Tropical African climate variability during the last glacial/interglacial transition: the molecular record from Lake Malawi

    NASA Astrophysics Data System (ADS)

    Castañeda, I. S.; Werne, J. P.; Johnson, T. C.

    2003-12-01

    In general, information regarding tropical African climate variability is relatively limited, especially in comparison with high-latitude studies. Unlike the high-latitudes where climate change is often expressed by fluctuations in temperature, low-latitude climate change is often expressed as variability in zonal circulation, which can result in hydrological fluctuations. Lake Malawi, situated in low-latitude tropical Africa (9-14° S), contains a continuous and high-resolution sedimentary record of the past 22ka BP and is anoxic below 250m, which enhances preservation of organic matter (OM). For these reasons, L. Malawi is an excellent location to examine the response of low-latitude African climate to global climate change. The climate of Malawi is strongly influenced by the position and seasonal migration of the ITCZ. During the rainy season from November to March, the ITCZ is positioned over L. Malawi (12-13° S) and the dominant winds are weak and northerly. Between April and May the ITCZ moves northward towards the equator and strong southerly winds prevail (Jury & Mwafulirwa, 2002). Previous studies of L. Malawi have shown responses to global climatic events, such as the Younger Dryas. Additionally, studies have demonstrated the response of L. Malawi to local or regional events, such as variability in the ITCZ. Based on BSi MAR, diatom, phosphorus, and trace metal data, Johnson et al. (2002) proposed that at times more frequent or stronger northerly winds promoted upwelling in the northern basin of L. Malawi, and suggested more southerly migrations of the ITCZ (reaching latitudes of >13\\deg S) as the cause of these increased winds. Additionally, a recent study of L. Malawi based on multiple bulk geochemical proxies provides evidence for both southward and northward displacements of the ITCZ during the past 23ka BP (Filippi and Talbot, submitted). In this study the molecular biomarker record of L. Malawi is examined. Previous studies of Lake Malawi have

  15. Lake core record of Grinnell Glacier dynamics during the latest Pleistocene deglaciation and the Younger Dryas, Glacier National Park, Montana, USA

    NASA Astrophysics Data System (ADS)

    Schachtman, Nathan S.; MacGregor, Kelly R.; Myrbo, Amy; Hencir, Nora Rose; Riihimaki, Catherine A.; Thole, Jeffrey T.; Bradtmiller, Louisa I.

    2015-07-01

    Few records in the alpine landscape of western North America document the geomorphic and glaciologic response to climate change during the Pleistocene-Holocene transition. While moraines can provide snapshots of glacier extent, high-resolution records of environmental response to the end of the Last Glacial Maximum, Younger Dryas cooling, and subsequent warming into the stable Holocene are rare. We describe the transition from the late Pleistocene to the Holocene using a ~ 17,000-yr sediment record from Swiftcurrent Lake in eastern Glacier National Park, MT, with a focus on the period from ~ 17 to 11 ka. Total organic and inorganic carbon, grain size, and carbon/nitrogen data provide evidence for glacial retreat from the late Pleistocene into the Holocene, with the exception of a well-constrained advance during the Younger Dryas from 12.75 to 11.5 ka. Increased detrital carbonate concentration in Swiftcurrent Lake sediment reflects enhanced glacial erosion and sediment transport, likely a result of a more proximal ice terminus position and a reduction in the number of alpine lakes acting as sediment sinks in the valley.

  16. Two times lowering of lake water at around 48 and 38 ka, caused by possible earthquakes, recorded in the Paleo-Kathmandu lake, central Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Sakai, Harutaka; Fujii, Rie; Sugimoto, Misa; Setoguchi, Ryoko; Paudel, Mukunda Raj

    2016-02-01

    Sedimentary facies and micro-fossil analyses, and AMS14C dating were performed in order to reveal the water-level fall events and draining process of the lake (Paleo-Kathmandu Lake) that existed in the past in the Central Nepal Himalaya. The sedimentary facies change from the lacustrine Kalimati Formation to the deltaic Sunakothi Formation in the southern and central Kathmandu basin, and the abrupt and prominent increase of phytoliths Bambusoideae and Pediastrum, and contemporaneous decrease of sponge spicule and charcoal grains around 48 and 38 ka support the lowering of water level at these times. According to the pollen analysis, both events occurred under rather warm and wet climate, thus supporting that they were triggered by tectonic cause and not by climate change. The first event might be linked to a possible occurrence of a large earthquake with an epicenter in the vicinity of the Paleo-Kathmandu Lake. The occurrence of a mega landslide in Langtang area close to the north of the Kathmandu Valley producing pseudotachylite dated at 51 ± 13 ka could be linked to this earthquake. Finally, the water was completely drained out from the remnant lake at the central part of the Kathmandu basin by ca.12 ka.

  17. Comparing lake and soil records to climate model simulations of hydrologic conditions across the western United States at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ibarra, D. E.; Maher, K.; Oster, J. L.; Egger, A. E.; Harris, C.; Horton, D. E.; Weaver, K. L.

    2012-12-01

    Motivated by the potential for dramatic future hydrologic changes, studies that investigate the transitions between Earth's different climate states have the potential to enhance our understanding of the modern climate system and potential future variability. The interval surrounding the Last Glacial Maximum (LGM) represents a period when Earth's boundary conditions, greenhouse gas concentrations and orbital parameters were substantially different than today, and thus reconstruction of climate at the LGM provides a key test for climate models. Our study synthesizes multi-proxy geochemical analyses and examines Paleoclimate Model Intercomparison Project 3 (PMIP3) simulations in an effort to reconstruct changes in the hydrologic cycle over the western United States during the LGM. To enhance the spatial coverage of lake level records, we investigated the timing and magnitude of the most recent pluvial lake cycle at Surprise Valley, California by combining the 230Th-U ages and the δ18O and δ13C of shoreline tufa deposits. This new lake record, spanning 31.2 to 4.6 ka, places lake level 180 and 100 meters above present day playa, at 13.9 ± 1.2 and 22.5 ± 4.6 ka respectively. Combined isotopic and hydrologic modeling of Lake Surprise indicates that annual evaporation may have decreased by as much as 62% (at 13.9 ka) and 20% (at 22.5 ka) during the lake highstand and the LGM. Alternatively, annual precipitation may have increased by as much as 164% and 25% during the lake highstand and the LGM, respectively. Regionally, uranium isotopic variations in dated soil opal are used to constrain net infiltration (~P-ET) along a north-south transect (34.9 to 43.2 °N) in western North America between 10 and 60 ka. Leading up to the LGM, P-ET in soils increased by about 30 to 80% in the valleys of the Great Basin and Mojave deserts, peaking between 24 to 30 ka. A comparison of lake record highstands to changes in P-ET recorded in soil opal found that increases in P-ET precede

  18. Fine Resolution Analysis of Lake Malawi Sediment Record Shows No Significant Climatic Impacts from the Mount Toba Super-Eruption of ~75ky

    NASA Astrophysics Data System (ADS)

    Jackson, L. J.; Stone, J.; Cohen, A. S.

    2014-12-01

    Debate over long, and short-term climatic impacts of the Mt. Toba super-eruption circa 75ky is often focused on East Africa. A severe drop in anatomically modern human populations has been hypothesized to be synchronous with a volcanic winter caused by the Toba super-eruption. If the Toba eruption caused a volcanic winter in East Africa, climatologically-sensitive ecosystems, such as Lake Malawi and its immediate watershed should show a direct and observable response in the sediment record. Cooler temperatures would cause a reduction of density contrast between epilimnion and hypolimnion waters, allowing for increased mixing and oxygenation of normally anoxic bottom waters. Enhanced mixing would cause noticeable changes in lake fly and algal communities. Cooler temperatures might also affect precipitation and the fire regime in the surrounding watershed. We analyzed two Lake Malawi cores at the finest practical resolution. Core 2A-10H-2 was analyzed in less than 6-year intervals and core 1C-8H-1 in 7-year intervals surrounding the Youngest Toba Tephra (YTT) for microfaunal abundance and variability, sediment composition, and evidence of changes in the occurrence of fires or watershed precipitation. Our analysis included point counts of diatoms and other algae, lake flies, charcoal, and siliciclastics. Changes in microfossil assemblage, variability, and abundance, as well as sediment composition around the YTT in Core 2A and 1C do not indicate that increased mixing or cooler temperatures occurred in either the central or northern basins of Lake Malawi. Similarly, charcoal counts do not suggest a change in fire regime. Our results indicate that at a subdecadal scale there was no substantial response in Lake Malawi or its immediate watershed to the Mt. Toba super-eruption, in contrast to predictions from the volcanic winter hypothesis.

  19. The balance between deposition and subsidence (tectonics) in a rift basin playa and its effect on the climatic record of an area: Evidence from Bristol Dry Lake, California

    SciTech Connect

    Rosen, M.R. )

    1991-03-01

    Two continuous core intervals drilled in Bristol Dry Lake, a large (150 km{sup 2}) playa in the central Mojave Desert of California, penetrated over 500 m of sediment and did not reach basement. The repetitious nature of the alternating shallow brine pond halite and siliciclastic and the consistency of the carbonate isotopic data from the surface and core indicate a relatively stable brine composition for most of the history of Bristol Dry Lake. All sedimentary structures and primary halite fabrics in the core indicate shallow-water, brine-pond halite alternated with halite-saturated siliciclastic muds in the basin center. A delicate balance of subsidence and mechanical and chemical deposition of evaporite and siliciclastic minerals was necessary to maintain the largely ephemeral lake environment of deposition through over 550 m of basin fill. The alternating brine pond/saline lake setting in Bristol Dry Lake is not directly related to climatic influences, and the sediments do not record major climatic events demonstrated in other closed-basin lakes. The reason for this insensitivity to climatic events is explained by the interior location of the basin, the low relief of the mountains surrounding the catchment, the large surface area of the catchment, and the low average sedimentation rates. All of the above criteria are at least partially controlled by the tectonics of the area, which, in turn, affect the sedimentation rate and supply water to the basin. Therefore, it is important to consider the influence of the above factors in determining global versus local, or regional, climate curves for a particular basin.

  20. Lake carbonate-δ18 records from the Yukon Territory, Canada: Little Ice Age moisture variability and patterns

    USGS Publications Warehouse

    Anderson, Lesleigh; Finney, Bruce P.; Shapley, Mark D.

    2011-01-01

    A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake’s hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ18O values decrease. Past lake-water δ18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ18O, supplemented by those in carbonate and organic δ13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ∼AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ∼AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ18O, a similarly small, stratified, alkaline lake located ∼250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.

  1. What does a lake sediment terrigenous input record actually tell us? Tentative answers based on a multi-lakes source-to-sink approach in the 4000 km2 Arve-Rhône alpine catchment

    NASA Astrophysics Data System (ADS)

    Arnaud, F.; Révillon, S.; Giguet-Covex, C.; Wilhelm, B.; Jenny, J.-P.; Magny, M.; Von Grafenstein, U.; Poulenard, J.; Ployon, E.

    2012-04-01

    Since the emergence of paleolimnology as a scientific discipline, numerous studies attempted to link terrigenous input to environmental variables. In particular, it has been proposed that the total amount of river-borne sediment should be used as a mirror of "humidity", assuming the erosion flux is mainly driven by climate changes. Alternatively and in a sense, at the opposite, the recent development of Holocene paleo-studies and the growing interest for the reconstruction of past human-environment interactions led to postulate that since at least the Bronze age, humans became the main driver of erosion patterns. Indeed there is not really a scientific debate, each "church" hanging to its position: "pro-human" vs. "pro-climate". In this paper, we attempt to light the debate, based on an original approach which was led in the framework of the Pygmalion program. Rather than studying a single lake record, we tried to integrate results at various time and spatial scales within a 4000 km2, lithologically and morphologically complex catchment. The chosen area lies at the northern edge of French Alps: Arve river catchment, which drains among others the Mont Blanc massif, and its continuation after its junction with river Rhône, downstream Lake Geneva. After a river course of ca. 250 km, Lake Bourget represents a partial sink for erosion products when river Rhône flows within the lake during major floods. In this, Holocene-long sediment cores from Lake Bourget can be interpreted as a regional record of terrigenoux fluxes. Thanks to a set of 20 tributary samples, we led a source-to-sink approach, based on Nd isotopes. This led us to identify from the sediment record fluctuations in the main provenance of sediments. Moreover, the high resolution record of chemical weathering proxies (clay mineralogy and K/Ti ratio) gave important information upon the role of soil genesis in erosion patterns. This approach stated that the Little Ice Age has been an exceptional period of

  2. Paleoenvironmental evolution and Asian monsoon variability on the southern Tibetan Plateau during the late Quaternary: A comparison of two lake records

    NASA Astrophysics Data System (ADS)

    Börner, Nicole; Gifty Akita, Lailah; Jochum, Klaus Peter; Plessen, Birgit; Frenzel, Peter; Zhu, Liping; Schwalb, Antje

    2016-04-01

    The Tibetan Plateau affects the global atmospheric circulation and is thus a key region to study the Asian monsoon system. It is also one of the most sensitive areas to global climate change as, for example, the temperature rise is twice the global average (0.4°C per decade [1]). To understand the recent climate change and predict future climate scenarios it is necessary to investigate past climate changes. The comparison of high-resolution multi-proxy records from Nam Co (4719 m a.s.l., 30°40'N, 90°50'E) and Tangra Yumco (4549 m a.s.l., 31°13'N, 86°43'E) aims to infer long term variations in strength and extent of the Asian monsoon system on the southern Tibetan Plateau. Multi-proxy analysis, including the oxygen and carbon isotope signatures of bulk sediments and the chemical composition of ostracod shells (stable isotopes, trace elements), were carried out on two long cores (10.4 m and 11.5 m), covering the past 24,000 years and 18,000 years, respectively, in order to reconstruct lake level changes and related environmental parameters, i.e. salinity, temperature and productivity. The records from Nam Co and Tangra Yumco show high similarity throughout the late Quaternary with small temporal differences in onset and duration of climatic changes. The Last Glacial Maximum is dominated by dry and cold conditions and is followed by gradually increasing temperatures and moisture, only interrupted by a dry phase, which coincides with the "Heinrich 1 event" in the North Atlantic region. A significant transition to wetter conditions and rising lake levels is indicated around 15,500 cal years BP, suggesting a strengthening of summer monsoon precipitation. The Bølling/Allerød is characterized by increased meltwater input, followed by cold and arid conditions during the Younger Dryas. The early Holocene is marked by increasing temperatures and precipitation, being the wettest period within our record, characterized by the highest lake levels, lake stratification and

  3. Record of late Pleistocene glaciation and deglaciation in the southern Cascade Range. I. Petrological evidence from lacustrine sediment in Upper Klamath Lake, southern Oregon

    USGS Publications Warehouse

    Reynolds, R.L.; Rosenbaum, J.G.; Rapp, J.; Kerwin, M.W.; Bradbury, J.P.; Colman, S.; Adam, D.

    2004-01-01

    Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37-25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins

  4. Sediment delivery and lake dynamics in a Mediterranean mountain watershed: Human-climate interactions during the last millennium (El Tobar Lake record, Iberian Range, Spain).

    PubMed

    Barreiro-Lostres, Fernando; Brown, Erik; Moreno, Ana; Morellón, Mario; Abbott, Mark; Hillman, Aubrey; Giralt, Santiago; Valero-Garcés, Blas

    2015-11-15

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency).

  5. Paleolimnological records of nitrogen deposition in shallow, high-elevation lakes of Grand Teton National Park, Wyoming, USA

    USGS Publications Warehouse

    Spaulding, Sarah A.; Otu, Megan K.; Wolfe, Alexander P.; Baron, Jill S.

    2015-01-01

    Reactive nitrogen (Nr) from anthropogenic sources has been altering ecosystem function in lakes of the Rocky Mountains, other regions of western North America, and the Arctic over recent decades. The response of biota in shallow lakes to atmospheric deposition of Nr, however, has not been considered. Benthic algae are dominant in shallow, high-elevation lakes and are less sensitive to nutrient inputs than planktonic algae. Because the benthos is typically more nutrient rich than the water column, shallow lakes are not expected to show evidence of anthropogenic Nr. In this study, we assessed sedimentary evidence for regional Nr deposition, sediment chronology, and the nature of algal community response in five shallow, high-elevation lakes in Grand Teton National Park (GRTE). Over 140 diatom taxa were identified from the sediments, with a relatively high species richness of taxa characteristic of oligotrophic conditions. The diatom assemblages were dominated by benthic taxa, especially motile taxa. The GRTE lakes demonstrate assemblage-wide shifts in diatoms, including 1) synchronous and significant assemblage changes centered on ~1960 AD; 2) pre-1960 assemblages differed significantly from post-1960 assemblages; 3) pre-1960 diatom assemblages fluctuated randomly, whereas post- 1960 assemblages showed directional change; 4) changes in δ15N signatures were correlated with diatom community composition. These results demonstrate recent changes in shallow high18 elevation lakes that are most correlated with anthropogenic Nr. It is also possible, however, that the combined effect of Nr deposition and warming is accelerating species shifts in benthic diatoms. While uncertainties remain about the potential synergy of Nr deposition and warming, this study adds shallow lakes to the growing list of impacted high-elevation localities in western North America.

  6. A high-resolution mid-Pleistocene temperature record from Arctic Lake El'gygytgyn: a 50 kyr super interglacial from MIS 33 to MIS 31?

    NASA Astrophysics Data System (ADS)

    de Wet, Gregory A.; Castañeda, Isla S.; DeConto, Robert M.; Brigham-Grette, Julie

    2016-02-01

    Previous periods of extreme warmth in Earth's history are of great interest in light of current and predicted anthropogenic warming. Numerous so called ;super interglacial; intervals, with summer temperatures significantly warmer than today, have been identified in the 3.6 million year (Ma) sediment record from Lake El'gygytgyn, northeast Russia. To date, however, a high-resolution paleotemperature reconstruction from any of these super interglacials is lacking. Here we present a paleotemperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) from Marine Isotope Stages (MIS) 35 to MIS 29, including super interglacial MIS 31. To investigate this period in detail, samples were analyzed with an unprecedented average sample resolution of 500 yrs from MIS 33 to MIS 30. Our results suggest the entire period currently defined as MIS 33-31 (∼1114-1062 kyr BP) was characterized by generally warm and highly variable conditions at the lake, at times out of phase with Northern Hemisphere summer insolation, and that cold ;glacial; conditions during MIS 32 lasted only a few thousand years. Close similarities are seen with coeval records from high southern latitudes, supporting the suggestion that the interval from MIS 33 to MIS 31 was an exceptionally long interglacial (Teitler et al., 2015). Based on brGDGT temperatures from Lake El'gygytgyn (this study and unpublished results), warming in the western Arctic during MIS 31 was matched only by MIS 11 during the Pleistocene.

  7. Full-vector paleomagnetic secular variation records from latest quaternary sediments of Lake Malawi (10.0°S, 34.3°E)

    NASA Astrophysics Data System (ADS)

    Lund, Steve; Platzman, Ellen; Johnson, Tom

    2016-07-01

    We have conducted a paleomagnetic study of Late Quaternary sediments from Lake Malawi, East Africa, in order to develop a high-resolution record of paleomagnetic secular variation (PSV). This study has recovered PSV records from two cores (3P, 6P) in northern Lake Malawi (10.0°S, 34.3°E). The PSV appears to be recorded in fine-grained detrital magnetite/titanomagnetite grains. Detailed af demagnetization of the natural remanence (NRM) shows that a distinctive characteristic remanence (ChRM) is demagnetized from ∼20 to 80 mT, which decreases simply toward the origin. The resulting directional PSV records for 3P and 6P are easily correlatable with 29 distinct inclination features and 29 declination features. The statistical character of the PSV in both cores is consistent with Holocene PSV noted at other Holocene equatorial sites. Radiocarbon dating of the cores is based on 18 independent radiocarbon dates and four dated stratigraphic horizons that can be correlated into each core. The final directional PSV time series cover the last 24,000 years with an average sediment accumulation rate of ∼30 cm/kyr. We have also developed a relative paleointensity estimate for these PSV records based on normalizing the NRM (after 20 mT af demagnetization) by the SIRM (after 20 mT af demagnetization). Changing sedimentation patterns complicate any attempt to develop a single paleointensity record for the entire core lengths. We have developed a relative paleointensity record for the last 6000 years that has 14 correlatable features including 5 notable peaks in intensity. Three of these peaks are synchronous with paleointensity highs farther north in SE Europe/SW Asia/Egypt but two of the peaks are at times of low paleointensity farther north. We interpret this to indicate that Lake Malawi (10°S) is at least partly under the influence of a different flux-regeneration region of the outer-core dynamo. A relative paleointensity record was also developed for ∼11,000-24,000 YBP

  8. Reflection of global late glacial and Holocene paleoclimate oscillations in the palynological record from bottom sediments of Tavatui Lake (Middle Urals)

    NASA Astrophysics Data System (ADS)

    Maslennikova, A. V.; Udachin, V. N.; Anfilogov, V. N.; Deryagin, V. V.

    2016-06-01

    The palynological analysis of the reliably dated core section of bottom sediments from Tavatui Lake revealed consistency between the chronology and succession of Late Pleistocene and Early Pliocene events (GI-a/b, CS-1, GH-11.2) in the Middle Urals and the North Atlantic region. It is established that the Holocene thermal maximum (5.3-8.0 cal. ka ago) in the Middle Urals was characterized by high temperatures and humidity. The initial stage of the Subboreal cooling was reffered to the interval of 4.5-5.3 cal. ka ago. The data obtained provided grounds for the conclusion that the palynological record in the Tavatui Lake section reflects in detail global and regional climate oscillations, which allows it to be used as a Holocene and late glacial reference section, as well as for predicting the behavior of the natural system of the Middle Urals in response to future climate change.

  9. Macrofossils in Raraku Lake (Easter Island) integrated with sedimentary and geochemical records: towards a palaeoecological synthesis for the last 34,000 years

    NASA Astrophysics Data System (ADS)

    Cañellas-Boltà, N.; Rull, V.; Sáez, A.; Margalef, O.; Giralt, S.; Pueyo, J. J.; Birks, H. H.; Birks, H. J. B.; Pla-Rabes, S.

    2012-02-01

    Macrofossil analysis of a composite 19 m long sediment core from Rano Raraku Lake (Easter Island) was related to litho-sedimentary and geochemical features of the sediment. Strong stratigraphical patterns are shown by indirect gradient analyses of the data. The good correspondence between the stratigraphical patterns derived from macrofossil (Correspondence Analysis) and sedimentary and geochemical data (Principal Component Analysis) shows that macrofossil associations provide sound palaeolimnological information in conjunction with sedimentary data. The main taphonomic factors influencing the macrofossil assemblages are run-off from the catchment, the littoral plant belt, and the depositional environment within the basin. Five main stages during the last 34,000 calibrated years BP (cal yr BP) are characterised from the lithological, geochemical, and macrofossil data. From 34 to 14.6 cal kyr BP (last glacial period) the sediments were largely derived from the catchment, indicating a high energy lake environment with much erosion and run-off bringing abundant plant trichomes, lichens, and mosses into the centre of Raraku Lake. During the early Holocene the infilling of the lake basin and warmer conditions favoured the growth of a littoral plant belt that obstructed terrigenous input. Cladoceran remains and Solanaceae seeds are indicative of reduced run-off and higher values of N and organic C indicate increased aquatic and catchment productivity. From 8.7 to 4.5 cal kyr BP a swamp occupied the entire basin. The increase of Cyperaceae seeds reflects this swamp development and, with oribatid mites and coleopteran remains, indicates a peaty environment and more anoxic conditions in Raraku. At around 4.5 cal kyr BP dry conditions prevented peat growth and there is a sedimentary hiatus. About 800 cal yr BP, peat deposition resumed. Finally, in the last few centuries, a small lake formed within the surrounding swamp. Evidence of human activity is recorded in these

  10. A multi-proxy lake core record from Lago Lungo, Rieti Basin, Lazio, Italy and its relation to human activities in the catchment during the last century

    NASA Astrophysics Data System (ADS)

    Noble, Paula; Tunno, Irene; Mensing, Scott; Piovesan, Gianluca

    2016-04-01

    The lakes of the Rieti Basin have experienced extensive human modification dating back to pre-Roman times, yet lake archives indicate that the most profound changes to the aquatic ecosystem have occurred during the last century. Analysis of the upper ˜120 cm segment of a sediment core from Lago Lungo, dating back to ˜1830 CE, show changes in water quality and hydrologic inflow largely attributed to 20th century reclamation and land use activities. Lago Lungo is a shallow, small, eutrophic, hard water lake situated in an intermontaine alluvial plain ˜90 km NE of Rome. It is one of several remnant lakes in a poorly drained wetland area fed by numerous springs. Reclamation activities over the last century have substantially altered the drainage network affecting water delivery to the lakes and their connectivity. There are 3 interesting signals in the core. First, small Stephanodiscus species, associated with hypereutrophic conditions, appear after 1950, peak ˜1990, and may be attributed to increased use of chemical fertilizers and intensification of local agriculture. Elemental proxies from scanning XRF data (abundances of Ti, Si/Ti, and Ca) are consistent with increased eutrophication starting ˜1950. A decline in Stephanodicsus after 1990 reflects some improvement to the water quality following the lake's incorporation into a nature preserve and creation of a narrow vegetation buffer. Intermittent water quality measurements from 1982 onward corroborate the changes in trophic status interpreted from the core record. Second, a large change in the core stratigraphy, elemental geochemistry, and diatom composition occurs ˜1940 and is associated with several major reclamation efforts, including the rerouting of the Santa Susanna channel, which redirected large volumes of artesian inflows away from the lakes and estuarine system. Upstream, dams on the Turano and Salto rivers were also constructed, further affecting hydrological inflows into the basin. From ˜1900

  11. The Holocene deglaciation of the Byers Peninsula (Livingston Island, Antarctica) based on the dating of lake sedimentary records

    NASA Astrophysics Data System (ADS)

    Oliva, M.; Antoniades, D.; Giralt, S.; Granados, I.; Pla-Rabes, S.; Toro, M.; Liu, E. J.; Sanjurjo, J.; Vieira, G.

    2016-05-01

    The process of deglaciation in the Antarctic Peninsula region has large implications for the geomorphological and ecological dynamics of the ice-free environments. However, uncertainties still remain regarding the age of deglaciation in many coastal environments, as is the case in the South Shetland Islands. This study focuses on the Byers Peninsula, the largest ice-free area in this archipelago and the one with greatest biodiversity in Antarctica. A complete lacustrine sedimentary sequence was collected from five lakes distributed along a transect from the western coast to the Rotch Dome glacier front: Limnopolar, Chester, Escondido, Cerro Negro and Domo lakes. A multiple dating approach based on 14C, thermoluminescence and tephrochronology was applied to the cores in order to infer the Holocene environmental history and identify the deglaciation chronology in the Byers Peninsula. The onset of the deglaciation started during the Early Holocene in the western fringe of the Byers Peninsula according to the basal dating of Limnopolar Lake (ca. 8.3 cal. ky BP). Glacial retreat gradually exposed the highest parts of the Cerro Negro nunatak in the SE corner of Byers, where Cerro Negro Lake is located; this lake was glacier-free since at least 7.5 ky. During the Mid-Holocene the retreat of the Rotch Dome glacier cleared the central part of the Byers plateau of ice, and Escondido and Chester lakes formed at 6 cal. ky BP and 5.9 ky, respectively. The dating of the basal sediments of Domo Lake suggests that the deglaciation of the current ice-free easternmost part of the Byers Peninsula occurred before 1.8 cal. ky BP.

  12. Phytoliths Used to Investigate the Effects of the Indonesian Mount Toba Super-Eruption (~75 kyr) in East Africa: A Subdecadal Record from Lake Malawi

    NASA Astrophysics Data System (ADS)

    Yost, C. L.; Cohen, A. S.

    2014-12-01

    The recent discovery of cryptotephra visually and chemically matched to the Youngest Toba Tuff (YTT, 75.0 ± 0.9 kyr) in Lake Malawi drill core sediments has spurred renewed interest in this period of time in East Africa. The YTT is the most recent and largest of the four Mount Toba eruptions, and is the only super-eruption to have taken place during the Quaternary. The timing of the YTT approximately coincides with a hypothesized human genetic bottleneck. Several climate models have proposed an episode of global cooling following the YTT; however, the magnitude and duration of the cooling is much debated, ranging from just a few degrees of cooling to a state of volcanic winter. Cored sediments from Lake Malawi provide an excellent record of local variability in the lake's watershed that may be linked to specific climatic events. To investigate the possible effects of the YTT in East Africa, we continuously sampled Lake Malawi drill core 2A-10H-2 at 2-4 mm (~6 yr) intervals above and below the first occurrence of the YTT. Poaceae phytoliths were grouped into plant functional types (C3, C4, xerophytic, mesophytic, arboreal, etc.), revealing mostly subtle changes in terrestrial vegetation over the ~400 yr time period examined. Abrupt increases in concentration values for phytoliths derived from riverine Podostemaceae plants appear to signal increased discharge from rivers draining the surrounding uplands. Perhaps most significant is the increasing trend in burned phytoliths and decreasing trend in tree phytoliths post-YTT. Although there appears to be a very weak cooling signal synchronous with the YTT, the most abrupt terrestrial vegetation changes appear to be better correlated with the deposition of a slightly older cryptotephra horizon derived from the local Rungwe Volcanic Province. A potential complication with this record is the existence of a turbidite pre-YTT that encompasses the Rungwe horizon.

  13. Paleoenvironmental changes during the last 8,500 years recorded in annually laminated sediments from Lake Szurpiły, NE Poland

    NASA Astrophysics Data System (ADS)

    Kinder, Małgorzata; Tylmann, Wojciech; Bubak, Iwona; Enters, Dirk; Kupryjanowicz, Mirosława; Mayr, Christoph; Ohlendorf, Christian; Piotrowska, Natalia; Zolitschka, Bernd

    2014-05-01

    Annually laminated (varved) lake sediments provide a precise time scale for high-resolution paleoenvironmental reconstructions of climatic change and human impact. We reconstructed the environmental changes from Lake Szurpiły (NE Poland) using varve chronology and multi-proxy interdisciplinary approach. Our reconstruction is one of the few for NE Poland and extends the geographical network of laminated lacustrine sediments. This research was supported by the Polish Ministry of Science and Higher Education grants (N N306 275635, N N306 009337, N N306 291639). It is a contribution to the bilateral scientific program "Northern Polish Lake Research" (NORPOLAR). Parallel overlapping sediment cores with total length of 12.38 m and extending back to the Late Glacial were retrieved in 2007. The geochemical (X-ray Fluorescence, CNS, stable isotopes), microscopic (varve thickness and structure), biological (diatoms, pollen) and statistical analyses were applied and combined in an annual scale based on the varve chronology, which was verified by independent radiometric dating (Pb-210, Cs-137 and AMS radiocarbon dating). Due to the large slump, this study focuses on the almost continuously varved uppermost 7.58-m long section of the profile, covering the last 8,500 years. The climate fluctuations were the main cause of the environmental changes during the first 6,000 years. The geochemical record is mainly driven by the lake productivity, oxic conditions and minerogenic input. Although the first evidence of the anthropogenic impact is documented in pollen record at 8,000 BP, the environmental conditions were relatively stable until 2,500 BP, when the human activity increased significantly. Since that time the climatic and human influence are combined and more difficult to disentangle. Three settlement phases separated by natural regeneration of the environment occurred between 2,500-400 BP. The variation of geochemical and pollen data at 400-100 BP reflects climate

  14. A 16-ka oxygen-isotope record from Genggahai Lake on the northeastern Qinghai-Tibetan Plateau: Hydroclimatic evolution and changes in atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Qiang, Mingrui; Song, Lei; Jin, Yanxiang; Li, Yuan; Liu, Li; Zhang, Jiawu; Zhao, Yan; Chen, Fahu

    2017-04-01

    Moisture source history and changes in atmospheric circulation are the most important attributes for portraying past climate changes and for estimating possible future trends. However, few climate records reflecting these attributes are available from the marginal zones of the Asian summer monsoon. Here, we present a record of the oxygen isotopic composition of authigenic carbonates (δ18Ocarb) of sequential sediments from Genggahai Lake in the northeastern Qinghai-Tibetan Plateau (QTP). Isotopic analyses were performed on the fine-grained carbonate fraction (<38 μm), mollusc shells, and stem encrustations from submerged plants. The stratigraphic variations of the δ18O record from the different carbonate components exhibit a remarkably similar pattern, probably reflecting the fact that δ18Ocarb variability was controlled primarily by changes in the oxygen isotopic composition of the lake water (δ18OLW). Disequilibrium effects and water temperature are precluded as major factors affecting the δ18Ocarb variations. Genggahai Lake is hydrologically open and characterized by a rapid discharge rate, as indicated by analysis of the hydrological setting of the lake system and by the observed significant positive correlation between δ18OLW and the oxygen isotopic composition of the inflowing water (δ18OI). Under such hydrological conditions, we argue that the isotopic signals of different moisture sources should be reflected in the carbonate isotopic composition. Furthermore, placing the δ18Ocarb record in the context of regional palaeoclimate archives, we found that the isotopic signals, particularly the negative shifts from the average values, cannot be interpreted consistently, despite a process of evaporative enrichment at the lake surface. During the early- to mid-Holocene, low δ18Ocarb values during 10.6-9.4 and 7.4-6.3 ka were associated with higher lake levels, and thus the record may have been significantly affected by a strengthened Asian summer monsoon

  15. A 3000-year record of ground-rupturing earthquakes along the central North Anatolian fault near Lake Ladik, Turkey

    USGS Publications Warehouse

    Fraser, J.; Pigati, J.S.; Hubert-Ferrari, A.; Vanneste, K.; Avsar, U.; Altinok, S.

    2009-01-01

    The North Anatolian fault (NAF) is a ???1500 km long, arcuate, dextral strike-slip fault zone in northern Turkey that extends from the Karliova triple junction to the Aegean Sea. East of Bolu, the fault zone exhibits evidence of a sequence of large (Mw >7) earthquakes that occurred during the twentieth century that displayed a migrating earthquake sequence from east to west. Prolonged human occupation in this region provides an extensive, but not exhaustive, historical record of large earthquakes prior to the twentieth century that covers much of the last 2000 yr. In this study, we extend our knowledge of rupture events in the region by evaluating the stratigraphy and chronology of sediments exposed in a paleoseismic trench across a splay of the NAF at Destek, ???6:5 km east of Lake Ladik (40.868?? N, 36.121?? E). The trenched fault strand forms an uphill-facing scarp and associated sediment trap below a small catchment area. The trench exposed a narrow fault zone that has juxtaposed a sequence of weakly defined paleosols interbedded with colluvium against highly fractured bedrock. We mapped magnetic susceptibility variations on the trench walls and found evidence for multiple visually unrecognized colluvial wedges. This technique was also used to constrain a predominantly dip-slip style of displacement on this fault splay. Sediments exposed in the trench were dated using both charcoal and terrestrial gastropod shells to constrain the timing of the earthquake events. While the gastropod shells consistently yielded 14 C ages that were too old (by ???900 yr), we obtained highly reliable 14 C ages from the charcoal by dating multiple components of the sample material. Our radiocarbon chronology constrains the timing of seven large earthquakes over the past 3000 yr prior to the 1943 Tosya earthquake, including event ages of (2?? error): A.D. 1437-1788, A.D. 1034-1321, A.D. 549-719, A.D. 17-585 (1-3 events), 35 B.C.-A.D. 28, 700-392 B.C., 912-596 B.C. Our results

  16. A Comparison of Eemian and Holocene Transgressions of the Baltic Sea based on the Sedimentary Record of Lake Ladoga

    NASA Astrophysics Data System (ADS)

    Delusina, I.; Andreev, A.

    2015-12-01

    Two cycles of postglacial transgressions of Baltic Sea could be recognized in the sediments of Lake Ladoga and vicinity: an Eemian (MIS 5e, ca 124-119 kya) and a Holocene with several subsequent stages: Ancylus Lake, Mastogloia Sea and Littorina Sea, starting at ca 9.5 kya BP and existing up to 4 kya BP. New data obtained from deep coring in Lake Ladoga (Andreev et al., 2014) has allowed us to re-visit an old question about the age and nature of sediments at the bottom of Lake Ladoga. The lake is east of the Baltic and provides important information about the marginal stage of Baltic Sea levels, and in particular about differences between the Eemian and Holocene transgressions. Previously Eemian marine sediments have never been found at the bottom of Lake Ladoga although they have been identified along river terraces, in small lakes and as detached lenses. The new coring reached a depth of 22 m, and found marine diatoms that might correspond to the Eemian transgression. As part of the effort to understand these fossils, we have compiled a comprehensive picture of the distribution of Eemian sediments around Lake Ladoga. There is very little published data about these deposits (Miettinen et al., 2014) so we have assembled known, but never published or published only in Russian, data. The number of unpublished marine Eemian sequences exceeds 70. They occur more frequently here than on other Baltic coasts, because of the low position of the eastern Baltic territories above the sea level. This meant that they were not destroyed by isostatic uplift, which resulted in the deposition of thicker layers of sediment than in mountainous Fennoscandia. Typical Eemian sediments comprise a black clay layer with Yoldia arctica, have a monotonous appearance and are easily distinguished from other interglacial sediments. The modern elevation of these sections implies that the elevation of the Eemian Sea could not have exceeded +17 m and probably was very uniform.The Holocene

  17. Mediterranean climate since the Middle Pleistocene: a 640 ka stable isotope record from Lake Ohrid (Albania/Macedonia)

    NASA Astrophysics Data System (ADS)

    Lacey, J. H.; Leng, M. J.; Francke, A.; Sloane, H. J.; Milodowski, A.; Vogel, H.; Baumgarten, H.; Wagner, B.

    2015-08-01

    Lake Ohrid (Macedonia/Albania) is an ancient lake with a unique biodiversity and a site of global significance for investigating the influence of climate, geological and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data on carbonate from the upper ca. 248 m of sediment cores recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project, covering the past 640 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the Total Inorganic Carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle, comprising abundant endogenic calcite through interglacials and being almost absent in glacials, apart from discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to hydroclimate fluctuations on orbital and millennial timescales. We also measured isotopes on authigenic siderite (δ18Os and δ13Cs) and, with the δ18OCc and δ18Os, reconstruct δ18O of lakewater (δ18Olw) through the 640 ka. Overall, glacials have lower δ18Olw when compared to interglacials, most likely due to cooler summer temperatures, a higher proportion of winter precipitation (snowfall), and a reduced inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability through Marine Isotope Stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial, and was isotopically freshest during MIS 9. After MIS 9, the variability between glacial and interglacial δ18Olw is enhanced and the lake became increasingly evaporated through to present day with MIS 5 having the highest average δ18Olw. Our results provide new evidence for long-term climate change in the northern Mediterranean

  18. Northern Mediterranean climate since the Middle Pleistocene: a 637 ka stable isotope record from Lake Ohrid (Albania/Macedonia)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Leng, Melanie J.; Francke, Alexander; Sloane, Hilary J.; Milodowski, Antoni; Vogel, Hendrik; Baumgarten, Henrike; Zanchetta, Giovanni; Wagner, Bernd

    2016-03-01

    Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5

  19. Critical nitrogen deposition loads in high-elevation lakes of the western US inferred from paleolimnological records

    USGS Publications Warehouse

    Saros, J.E.; Clow, D.W.; Blett, T.; Wolfe, A.P.

    2011-01-01

    Critical loads of nitrogen (N) from atmospheric deposition were determined for alpine lake ecosystems in the western US using fossil diatom assemblages in lake sediment cores. Changes in diatom species over the last century were indicative of N enrichment in two areas, the eastern Sierra Nevada, starting between 1960 and 1965, and the Greater Yellowstone Ecosystem, starting in 1980. In contrast, no changes in diatom community structure were apparent in lakes of Glacier National Park. To determine critical N loads that elicited these community changes, we modeled wet nitrogen deposition rates for the period in which diatom shifts first occurred in each area using deposition data spanning from 1980 to 2007. We determined a critical load of 1.4 kg N ha-1 year-1 wet N deposition to elicit key nutrient enrichment effects on diatom communities in both the eastern Sierra Nevada and the Greater Yellowstone Ecosystem. ?? 2010 Springer Science+Business Media B.V.

  20. Environmental magnetic implications of greigite (Fe3S4) formation in a 3 m.y. lake sediment record from Butte Valley, northern California Andrew

    USGS Publications Warehouse

    Roberts, P.; Reynolds, R.L.; Verosub, K.L.; Adam, D.P.

    1996-01-01

    Authigenic greigite (Fe3S4) has been identified in several horizons of lake beds in a 102-m core from Butte Valley, northern California, using mineral magnetic methods and x-ray diffraction analysis. The presence of greigite has several implications for the paleoenvironmental record from Butte Valley. First, its occurrence in 2.5 - 3.0 Ma strata confirms that greigite can persist in the geological record for long periods of time. Second, the detrital mineral magnetic record may be partially obscured by the presence of authigenic greigite and care must be taken in interpreting magnetic variations in the greigite-bearing zones as paleoclimate proxies. Third, differences in the timing of remanence acquisition for authigenic and detrital phases may compromise studies of high-frequency geomagnetic field variations. Fourth, greigite may also be significant as a paleoenvironmental indicator of lake and sediment chemistry. The magnetic detection of greigite may therefore provide important information about palcolimnological conditions. Copyright 1996 by the American Geophysical Union.

  1. Quantitative reconstructions of mid- to late holocene climate and vegetation in the north-eastern altai mountains recorded in lake teletskoye

    NASA Astrophysics Data System (ADS)

    Rudaya, Natalia; Nazarova, Larisa; Novenko, Elena; Andreev, Andrei; Kalugin, Ivan; Daryin, Andrei; Babich, Valery; Li, Hong-Chun; Shilov, Pavel

    2016-06-01

    We report the first high-resolution (20-50 years) mid- to late Holocene pollen records from Lake Teletskoye, the largest lake in the Altai Mountains, in south-eastern West Siberia. Generally, the mid- to late Holocene (the last 4250 years) vegetation of the north-eastern Altai, as recorded in two studied sediment cores, is characterised by Siberian pine-spruce-fir forests that are similar to those of the present day. A relatively cool and dry interval with July temperatures lower than those of today occurred between 3.9 and 3.6 ka BP. The widespread distribution of open, steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae reflects maximum deforestation during this interval. After ca. 3.5 ka BP, the coniferous mountain taiga spread significantly, with maximum woody coverage and taiga biome scores between ca. 2.7 and 1.6 ka BP. This coincides well with the highest July temperature (approximately 1 °C higher than today) intervals. A short period of cooling about 1.3-1.4 ka BP could have been triggered by the increased volcanic activity recorded across the Northern Hemisphere. A new period of cooling started around 1100-1150 CE, with the minimum July temperatures occurring between 1450 and 1800 CE.

  2. A 12,000-Year-Long, Annually-Resolved Varve Record Spanning the Last Interglacial from Lake Bosumtwi, Southern Ghana

    NASA Astrophysics Data System (ADS)

    McKay, N.; Overpeck, J. T.; Shanahan, T. M.; Peck, J. A.; Heil, C. W.; King, J. W.; Scholz, C. A.

    2012-12-01

    The impact of continued global warming on the likelihood of severe drought in sub-Saharan West Africa remains uncertain, as climate models generally do not simulate realistic climate dynamics in the region and have inconsistent projections for the future. The Last Interglacial period (LIG), occurring between 128 and 116 thousand years ago, is a partial analog for future warming because at its peak, global temperatures were slightly higher, and this warming was accentuated in Northern Hemisphere terrestrial summer temperatures. Here we present a new, annually-resolved, 12,100-year-long varve record for the LIG from Lake Bosumtwi in southern Ghana (6.5°N, 1.4°W). The abundance of terrigenous elements in the sediment, varve thickness, and the isotope geochemistry and mineralogy of authigenic carbonates in the sediment were used to infer changes in lake level. The varve chronology, varve thickness and elemental abundance records were developed with a new ensemble approach that allows for a more robust determination of uncertainty in the record. The new records reveal a dynamic history of hydrologic variability during the LIG. The LIG lake highstand was lower and shorter-lived than the the prolonged highstand in the early Holocene, and unlike the Holocene, the lake never overflowed during LIG. The overall drier conditions during the LIG are most likely driven by amplified precessional forcing during the interval, resulting in a northward shift in the rainbelt. The LIG, like the Holocene, had two distinct millennial-scale moist intervals, from 125 - 123 and 121 - 120 ka. In both the LIG and the Holocene, these peaks occurred during times of precession-driven insolation maxima in July and October, corresponding to the two rainy seasons in the modern climatology. This suggests that, at least during interglacials, prolonged wet conditions occur at the lake when rainy season insolation is highest. Over the course of the LIG, lake level generally tracked sea surface

  3. An unrecognised Holocene palaeo-lake at the terminus of the Murray-Darling Basin: a palaeo-discharge record and implications for current climate reconstructions

    NASA Astrophysics Data System (ADS)

    De Carli, E.; Hubble, T.; Penny, D.; Petley, D. N.; Clarke, S. L.; Hamilton, R. J.; Gadd, P.; Brand, H.

    2015-12-01

    The 1.073 million km2 Murray-Darling River Basin (MDB) drains 14% of Australia's landmass, incorporates Australia's most economically important agricultural region, and presents one of Australia's most important and contentious water security challenges. The twin Murray and Darling catchments extend from the sub-tropics to the mid latitudes, with catchment precipitation driven by synoptic-scale oceanic-atmospheric processes that include the Australian Monsoon, SAM, IPO, PDO, IOD and ENSO. In this study we report the discovery of a hitherto unrecognised terminal palaeo-lake system 'Lake Mannum' that existed during the middle to late Holocene, as evidenced by an extensive sequence of laminated muds. The deposit contains gray laminae enriched in smectite and Nd/Ti, diagnostic of palaeo-discharges originating from the Darling catchment. These gray laminae are set within olive-black background muds enriched in illite, K and Rb, diagnostic of palaeo-discharges originating from the Murray Catchment. The deposit reflects the hydrological regime of the MDB, representing the first in-situ palaeo-discharge record for the MDB and a proxy record for south-eastern Australia's precipitation and hydroclimate. Given the strong influence of major oceanic-atmospheric synoptic circulation over the river system, variability in MDB discharge and delivery of suspended sediment flux to the continental shelf have been used as proxy indicators for south-eastern Australia's palaeo-climate during the Holocene. The existence of palaeo-lake Mannum at the terminus of the MDB suggests that discharge of terrigenous sediment to the Southern Ocean was strongly suppressed during this time, meaning that Holocene climate reconstructions which rely on the marine sediment record require re-evaluation.

  4. First record of protozoan parasites in cyprinid fish, Schizothorax niger Heckel, 1838 from Dal lake in Kashmir Himalayas with study on their pathogenesis.

    PubMed

    Dar, Shoaib Ali; Kaur, Harpreet; Chishti, M Z; Ahmad, Fayaz; Tak, Irfan ur Rauf; Dar, Gowhar Hamid

    2016-04-01

    Trichodina heterodentata Duncan, 1977 and Ichthyophthirius multifiliis Fouquet, 1876 obtained from gills during a parasitological survey conducted for the protozoan parasitic fauna of Schizothorax niger a snow trout in Dal Lake, Kashmir, India during the period October 2013 and March 2015. Thirty out of 180 fish were found infected with protozoan parasites. During the study of their pathogenecity the most common deteriorating signs observed in gill tissue were necrosis, hypertrophy, hyperplasia and fusion of secondary lamellae. Prevalence of infection was found to be 16.66%. This is the first record of the protozoan fauna of the schizothoracines from Kashmir valley, India.

  5. Biogeochemical properties and diagenetic changes during the past 3.6 Ma recorded by FTIR spectroscopy in the sediment record of Lake El'gygytgyn, Far East Russian Arctic

    NASA Astrophysics Data System (ADS)

    Meyer-Jacob, C.; Vogel, H.; Melles, M.; Rosén, P.

    2013-05-01

    A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9-56.5%), total organic carbon (TOC; n = 309; gradient: 0.02-2.89%), and total inorganic carbon (TIC; n = 153; gradient: 0.01-1.46%) in a 318 m long sediment record with a basal age of 3.6 Ma from Lake El'gygytgyn, Far East Russian Arctic. The developed partial least squares regression (PLSR) models yield high cross-validated (CV) R2CV = 0.85-0.91 and low root mean square error of cross-validation (RMSECV) (2.1-4.3% of the gradient for the different properties). The FTIRS-inferred concentrations of BSi, TOC, and TIC provide an initial insight into the climatic and environmental evolution at Lake El'gygytgyn throughout the late Pliocene and Quaternary showing a considerably high bioproductivity in the lake ecosystem between ~ 3.27-3.54 Ma during the early Pliocene warm period. Moreover, we found that the recorded FTIR spectra contain information on sample burial depth as a result of diagenetic changes (dehydration/dehydroxilation) of certain mineral phases. Despite the indicated post-depositional processes, the calibration models yield good statistical performances showing that general FTIRS models can be developed for several hundred meters long records extending several million years back in time. Our results highlight FTIRS to be a rapid, cost-effective alternative to conventional methods for quantification of biogeochemical properties.

  6. High resolution record of millet cultivation during the Bronze Age around Lake le Bourget (French Alps). Is there any climatic control?

    NASA Astrophysics Data System (ADS)

    Jacob, J.; Disnar, J. R.; Arnaud, F.; Billaud, Y.; Chapron, E.; Sicre, M.-A.; Boscardin, R.

    2009-04-01

    Our understanding of past interactions between the development of human societies, the evolution of climate and associated changes in ecosystems and landscape dynamics is conditioned by the acquisition of high resolution records within which specific tracers allow us estimating variability. The recent development of a molecular biomarker (miliacin) specific of Panicum miliaceum (common millet) associated with the determination of a biomarker allowing to track soil erosion in the sediments of Lake le Bourget (French Alps; [1], [2]) expands the possibilities afforded by organic geochemistry applied to sedimentary archives to unravel these interactions. Within the frame of the Pygmalion project (ANR Blanc, France) we improved the previous miliacin record from Lake le Bourget sediments [1] to reach an infra-decadal resolution for the 2000-600 BC time period that covers the Bronze Age. Miliacin is detected for the first time in sediment samples dated back to ca. 1700 BC, in agreement with the supposed date of introduction of P. miliaceum in the region. Miliacin concentration is low (ca. 20 ng.g-1) during the 1700-1400 BC interval and then rises to values up to 300 ng.g-1 at 850 BC before the strong decrease to 20 ng.g-1 at 750 BC imputable to the abandonment of palaffitic habitats due to a climatic deterioration at the Bronze Age/Iron Age transition. In addition to this general trend, miliacin concentration shows century-scale variations in the 1700-800 BC interval that share similarities with other records. Two periods of miliacin high concentrations at 950 and 850 BC coincide with high densities of dendrochronological dates acquired on wooden piles and with two periods of lake level lowering. The comparison of miliacin evolution in Lake le Bourget with the high resolution alkenone-derived sea surface temperature (SST) record obtained in the North Atlantic off Iceland [3] shows striking coincidences. Previous studies showed that periods of elevated SSTs in this area

  7. Sedimentary records of metal deposition in Japanese alpine lakes for the last 250 years: recent enrichment of airborne Sb and In in East Asia.

    PubMed

    Kuwae, Michinobu; Tsugeki, Narumi K; Agusa, Tetsuro; Toyoda, Kazuhiro; Tani, Yukinori; Ueda, Shingo; Tanabe, Shinsuke; Urabe, Jotaro

    2013-01-01

    Concentrations of 18 elements, including Sb, In, Sn, and Bi, were measured in sediment cores from two pristine alpine lakes on Mount Hachimantai, northern Japan, representing the past 250 years. Vertical variations in concentrations are better explained by atmospheric metal deposition than by diagenetic redistribution of Fe and Mn hydroxide and organic matter. Anthropogenic metal fluxes were estimated from (210)Pb-derived accumulation rates and metal concentrations in excess of the Al-normalized mean background concentration before 1850. Anthropogenic fluxes of Sb and In showed gradual increases starting around 1900 in both lakes, and marked increases after 1980. Comparison of Sb/Pb and Pb stable isotope ratios in sediments with those in aerosols of China or northern Japan and Japanese source materials (recent traffic- and incinerator-derived dust) suggest that the markedly elevated Sb flux after 1980 resulted primarily from enhanced long-range transport in aerosols containing Sb and Pb from coal combustion on the Asian continent. The fluxes of In, Sn, and Bi which are present in Chinese coal showed increasing trends similar to Sb for both study lakes. This suggests that the same source although incinerators in Japan may not be ruled out as sources of In. The sedimentary records for the last 250 years indicate that atmospheric pollution of Sb and In in East Asia have intensified during recent decades.

  8. Linking the10Be continental record of Lake Baikal to marine and ice archives of the last 50 ka: Implication for the global dust-aerosol input

    USGS Publications Warehouse

    Aldahan, A.; Possnert, G.; Peck, J.; King, J.; Colman, S.

    1999-01-01

    We present here a 10Be profile from the continental sediments of Lake Baikal (the world's largest fresh water lake), which, for the first time, shows the ??? 40 ka 10Be enhancement and a pattern that strongly matches those from the marine and ice records for the last 50 ka. This finding provides a new horizon for global and regional correlation of continental archives. Additionally, our VADM-predicted 10Be production confirms and further strengthens a common global cause (geomagnetic field intensity) for the change in atmospheric 10Be over the last 50 ka. We also show that most of the 10Be inventory to the lake has been provided by riverine input, but with a significant addition from direct precipitation and dust-aerosol fallout. We estimate a higher dust-aerosol contribution of 10Be during the Holocene and interstadial stage 3 (22-50 ka) as compared with the glacial period (12-22 ka). Copyright 1999 by the American Geophysical Union.

  9. A case of paleo-creep? Comparison of fault displacements in a trench with the corresponding earthquake record in lake sediments along the Polochic fault, Guatemala

    NASA Astrophysics Data System (ADS)

    Brocard, Gilles; Anselmetti, Flavio

    2014-05-01

    The Polochic and Motagua strike-slip faults in Guatemala accommodate the displacement (~2 cm/y) across the boundary between the Caribbean and North American plates. Both faults are expected to produce large destructive earthquakes such as the Mw 7.5 earthquake of 1976 on the Motagua fault. Former large earthquakes with magnitudes larger than Mw 7.0 are suggested from the areal extent of destructions to Precolombian Mayan cities and churches, and both the Motagua and Polochic fault have been suspected as the sources of these earthquakes. The available record, however, is surprisingly poor in large earthquakes, suggesting either that the record is sketchy or that such earthquakes are effectively infrequent. We investigated the activity of the Polochic fault by opening trenches along its major strand in Uspantán, Quiché, and Agua Blanca, Alta Verapaz. Recent displacements are evidenced in Agua Blanca, with soils less than 350 years old disrupted by the fault. We combined the study of the trenches with the study of sediment cores in Laguna Chichój, a lake located 4 km north of the Polochic fault. We had previously conducted an analysis of the sensitivity of the Chichój lake sediments to earthquakes in the 20th century. In the 20th centurey the earthquake record is well known, as well the locally felt intensity of these earthquakes. We found that for MMI intensities of VI and higher turbidites and slumps are produced in the lake. We used this calibration to study the earthquake record of the past 12 centuries and identified a cluster of earthquakes with MMI > VI between 830 and 1450 AD. The oldest seismite temporally matches widespread destructions in Mayan cities in 830 AD. Surprisingly, no earthquakes are recorded between 1450 and 1976 AD. Yet, the trench in Agua Blanca records substantial displacement of the Polochic fault over the period. It seems therefore that this ultimate displacement did not produce any substantial earthquake, and may correspond to a period

  10. A High-Resolution Multi-Proxy Lake Sediment Record from Torfdalsvatn Suggests an Enhanced Temperature Gradient Between North and South Iceland During the Early Holocene

    NASA Astrophysics Data System (ADS)

    Florian, Christopher; Geirsdóttir, Áslaug; Miller, Gifford; Axford, Yarrow

    2015-04-01

    Torfdalsvatn (66° 3'41.73"N, 20°23'14.26"W) is a relatively small (0.4 km2) and shallow (z=5.8 m) lake on the Skagi Peninsula of northern Iceland approximately 0.5 km from the modern coastline. This location is ideal for comparison with the many marine core records from the North Iceland Shelf that record variability in the northern extent of the warm Irminger Current, one of the primary controls on regional climate. To develop a record of north Iceland Holocene terrestrial climate, we analyzed a 8.4 m sediment core at 15-30 year resolution from approximately 12 ka to present using multiple proxies including sedimentary pigments, organic carbon flux, carbon to nitrogen ratio and stable isotopes, as well as biogenic silica measured by Fourier Transform Infrared Spectroscopy (FTIR-S). Results show gradual warming during the early Holocene, with stable soil development and peak aquatic productivity not occurring until after 8 ka. Increased aquatic productivity and a stable terrestrial environment between 6 and 2 ka indicate peak Holocene warmth in this interval. Aquatic productivity abruptly decreases at 1.8 ka associated with an increase in minerogenic material from landscape destabilization in the catchment with the onset of late Holocene cooling. At 1ka, the proportion of terrestrially-derived organic matter deposited in the lake sediment increases, indicating significant destabilization of soil horizons due to continued cooling and potential human settlement. This record is in good agreement with composite north Iceland chironomid-inferred July air temperatures from Axford et al. (2007), which show peak summer temperatures occurring between approximately 5 and 2 ka. The time of peak warmth at Torfdalsvatn is associated with peak biogenic carbonate concentration in the marine core MD99-2269, indicating an influx of warm Irminger waters. This is in contrast with Holocene climate records obtained from lakes in south and west Iceland, implying that there was an

  11. Quaternary record of aridity and mean annual precipitation based on δ15N in ratite and dromornithid eggshells from Lake Eyre, Australia.

    PubMed

    Newsome, Seth D; Miller, Gifford H; Magee, John W; Fogel, Marilyn L

    2011-12-01

    The cause(s) of the late Pleistocene megafauna extinction on the Australian continent remains largely unresolved. Unraveling climatic forcing mechanisms from direct or indirect human agents of ecosystem alteration has proven to be extremely difficult in Australia due to the lack of (1) well-dated vertebrate fossils and (2) paleo-environmental and -ecological records spanning the past approximately 100 ka when regional climatic conditions are known to have significantly varied. We have examined the nitrogen isotope composition (δ(15)N) of modern emu (Dromaius novaehollandiae) eggshells collected along a precipitation gradient in Australia, along with modern climatological data and dietary δ(15)N values. We then used modern patterns to interpret an approximately 130-ka record of δ(15)N values in extant Dromaius and extinct Genyornis newtoni eggshells from Lake Eyre to obtain a novel mean annual precipitation (MAP) record for central Australia spanning the extinction interval. Our data also provide the first detailed information on the trophic ecology and environmental preferences of two closely related taxa, one extant and one extinct. Dromaius eggshell δ(15)N values show a significant shift to higher values during the Last Glacial Maximum and Holocene, which we interpret to indicate more frequent arid conditions (<200 mm MAP), relative to δ(15)N from samples just prior to the megafauna extinction. Genyornis eggshells had δ(15)N values reflecting wetter nesting conditions overall relative to those of coeval Dromaius, perhaps indicating that Genyornis was more reliant on mesic conditions. Lastly, the Dromaius eggshell record shows a significant decrease in δ(13)C values prior to the extinction, whereas the Genyornis record does not. Neither species showed a concomitant change in δ(15)N prior to the extinction, which suggests that a significant change in vegetation surrounding Lake Eyre occurred prior to an increase in local aridity.

  12. Climate and Orogenic Evolution of the Sierra Nevada and Westernmost Basin and Range as Recorded in the Pliocene-Pleistocene Waucobi Lake Beds

    NASA Astrophysics Data System (ADS)

    De Masi, C. L.; Castillo, C. M.; Deino, A. L.; Scott, G. R.; Klemperer, S. L.; Knott, J.

    2015-12-01

    The interplay between climate and orogenic evolution is archived in lacustrine basins as changes in basin geometry, sedimentary input, water level, and lacustrine chemistry. The Pliocene-Pleistocene Waucobi Lake Beds in the Owens Valley east of Big Pine, CA and Sierra Nevada Mountains are uplifted onto the western White-Inyo Mountain piedmont with a tephrochronology age of 2.2-2 Ma. We present 40Ar/39Ar and paleomagnetic chronology, isotopic analysis of clays and seismic data to evaluate the climate and tectonic controls on the Waucobi basin. Within the 130-m-thick lake beds, we determined ages of 2.6-2 Ma on sanidine from intercalated tuff beds by 40Ar/39Ar single-crystal laser step-heating method. A paleomagnetic reversal identifies the Gauss/Matuyama boundary at 2.5-2.6 Ma. Clay mineral analysis shows phillipsite, an alkaline clay, dominating the lower section of Waucobi whereas the upper section contains montmorillonite, a fresh water clay. Deuterium isotopic analyses were performed on clay showing δD values for phillipsite increasing between 2.6-2.5 Ma from -105 ‰ to -60 ‰ indicating a wet climate, whereas δD values in montmorillonite decrease between 2.3-2.2 Ma from -70 ‰ to -90 ‰ implying a drier climate. Shallow active seismic studies suggest a basement depth of 300 m near the locality Duchess canyon. Clay mineral and isotopic analyses indicate that Waucobi records an environment that does not reflect climate change represented by other lake systems in the eastern Sierra. This suggests that Waucobi records tectonic changes occurring between the Sierra Nevada and White-Inyo Mountains. Assuming a constant sedimentation rate calculated from the Duchess canyon exposure of 91 m and ages of 2.6-2.3 Ma, the seismic data indicates that the base of the lake section may be as old as 3.5 Ma. We suggest that lake formation coincides with extension-strike slip tectonics along the western Basin and Range, and uplift of the Sierra from the mid-Pliocene to

  13. Magnetostratigraphy of sediments from Lake El'gygytgyn ICDP Site 5011-1: paleomagnetic age constraints for the longest paleoclimate record from the continental Arctic

    NASA Astrophysics Data System (ADS)

    Haltia, E. M.; Nowaczyk, N. R.

    2014-03-01

    Paleomagnetic measurements were performed on sediments drilled from ICDP Site 5011-1 in Lake El'gygytgyn (67°30' N, 172°05' E) located in Far East Russian Arctic. The lake partly fills a crater formed by a meteorite impact 3.58 ± 0.04 Ma ago. Sediments from three parallel cores (5011-1A, 5011-1B and 5011-1C), recovered from the middle part of the lake, yield a total of 355 m of sediment. Sediments are characterized by a variable lithology, where intervals of homogenous and laminated sediments alternate, and mass movement deposits occur frequently along the sediment profile. Mineral magnetic investigation made on sediments enclosed in core catchers suggests that magnetic carrier in these sediments is partly maghemitized Ti-rich pseudo-single domain magnetite. Its detrital origin can be shown by mineral magnetic measurements and SEM-EDS analyses performed on mini-sized cylindrical rock samples, polished rock sections and creek sediments. The intensity of the natural remanent magnetization in the sediments is high with a range from about 1 to 1000 mA m-1. Most of the sediments carry a stable magnetization interpreted as primary depositional remanent magnetization. Characteristic inclination data show alternating intervals of steep positive and negative inclinations that are used to assign magnetic polarity to the lake sediment profile. This is a rather straightforward procedure owing to the mainly high quality of data. The Matuyama/Gauss (M/G) (2.608 Ma) and Brunhes/Matuyama (B/M) (0.780 Ma) reversals were recognized in the sediments. The Mammoth and Kaena reversed subchrons were identified during the Gauss chron, and the Olduvai and Jaramillo normal subchrons as well as the Réunion and Cobb Mountain cryptochrons were identified during the Matuyama chron. Sediments also provide a record of the Olduvai precursor and Intra-Jaramillo geomagnetic excursions. Sediment deposition rate is highest at the base of the sequence laid down in the early Gauss chron, when the

  14. Paleoclimatic record of the late Quaternary from a gravity core sediment of Lake Hovsgol in northern Mongolia

    NASA Astrophysics Data System (ADS)

    Cheong, D.; Kim, B.

    2007-12-01

    Gravity core sediment (HS 7) from Lake Hovsgol(Mongolia) is divided into three sedimentary units on the basis of sediments texture, water contents, occurrence of fossils and sediment color. Unit 1(27¢¦128§¯) is generally massive and is crudely stratified. Ostracods are well preserved over the all interval of Unit1, but diatoms are not well preserved. At Unit2(9¢¦27§¯), mud content is slightly low and lamination is well developed. It is dark greenish gray in the upper part, and dark greenish gray is alternating with light brownish gray in the lower part. Diatom contents increase towards the top and ostracods fragments disappear at the top of Unit 2. Unit3(0¢¦9§¯) is laminated mud in olive gray color. Diatom contents are high but ostracods are not observed in this unit. According to 14C age dating results, we assumed that Unit1 is Pleistocene sediment, Unit2 is sediment of a transitional stage and Unit 3 is Holocene sediment. Chemical composition of trace elements from ostracods show variations through Unit1, especially showing a distinct change at 95¢¦100§¯ interval. It matches to the distribution of ostracod at this interval. Contents of ostracod decrease at the interval and contents of Cytherissa lacustris decrease, but Limnocythere inopinata increase. It was interpreted that warm air was supplied to Lake Hovsgol after LGM(Last Glacial Maximum), causing ice melting. Consequently the bottom environment of Lake Hovsgol experienced some changes as the lake level increased little bit. At the top of Unit 1 appear a lots of pyrite which are arranged in line, and diatoms occure but ostracods are not observed toward the top of Unit 2, and lamination is developed in Unit 2. It means the bottom environment of Lake Hovsgol changed to anoxic condition. At that time, plenty of water was supplied into the lake, resulting in water stratification and cutting off oxygen supply to the bottom of Lake Hovsgol. It made the lake level rise higher, so that the bottom

  15. Late Quaternary vegetation and environments in the Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh

    NASA Astrophysics Data System (ADS)

    Müller, Stefanie; Tarasov, Pavel E.; Andreev, Andrei A.; Tütken, Thomas; Gartz, Steffi; Diekmann, Bernhard

    2010-08-01

    Here we present a detailed radiocarbon-dated 936 cm long pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) situated in the western part of the Verkhoyansk Mountains, about 140 km south of the Arctic Circle. A set of 53 surface pollen samples representing tundra, cold deciduous forest and taiga was collected in northern and central Yakutia communities to verify the accuracy of the quantitative biome reconstruction method and to obtain a more precise attribution of the identified pollen taxa to the main regional biomes. The adjusted method is then applied to the pollen record from Lake Billyakh to gain a reconstruction of vegetation and environments since about 50.7 kyr BP. The results of the pollen analysis and pollen-based biome reconstruction suggest that herbaceous tundra and steppe communities dominated the area from 50.7 to 13.5 kyr BP. Relatively low pollen concentrations and high percentages of herbaceous pollen taxa (mainly Cyperaceae, Poaceae and Artemisia) likely indicate a reduced vegetation cover and/or lower pollen production. On the other hand, extremely low percentages of drought-tolerant taxa, such as Chenopodiaceae and Ephedra, and the constant presence of various mesophyllous herbaceous ( Thalictrum, Rosaceae, Asteraceae) and shrubby taxa ( Betula sect. Nanae/Fruticosae, Duschekia fruticosa, Salix) in the pollen assemblages prevent an interpretation of the last glacial environments around Lake Billyakh as extremely arid. The lowest pollen percentages of woody taxa and the highest values of Artemisia pollen attest that the 31-15 kyr BP period as the driest and coldest interval of the entire record. A relative high content of taxa representing shrub tundra communities and the presence of larch pollen recorded prior to 31 kyr and after 13.5 kyr BP likely indicate interstadial climate amelioration associated with the middle and latest parts of the last glacial. An increase in pollen percentages of herbaceous taxa around 12 kyr BP

  16. Holocene Record of Major and Trace Components in the Sediments of an Urban Impoundment on the Mississippi River: Lake Pepin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Dean, Walter E.

    2009-01-01

    Lake Pepin is a natural impoundment formed by damming of the Mississippi River about 9,180 radiocarbon years ago (19,600 calendar years) by an alluvial fan deposited by the Chippewa River, a tributary of the Mississippi in Wisconsin. Unique among 26 Mississippi River impoundments, Lake Pepin has stratigraphically preserved Holocene materials, including pollutants, that have been transported down the Mississippi. This natural Holocene record can then be compared to changes that have occurred since European settlement (ca. AD 1830), and since enactment of clean air and water legislation. The most immediate response to settlement in the sediments of Lake Pepin was an increase in bulk-sediment accumulation rate. This was accompanied by gradual increases in concentrations of phosphorus (P), and organic carbon (OC), followed by dramatic increases in these elements beginning about 1940. The increase in P was far greater than any of the minor fluctuations in P that occurred throughout the Holocene, but the increase in OC was comparable to an increase in OC that occurred in the mid-Holocene. The concentrations of several metals (for example, cadmium [Cd], and lead [Pb]) also are elevated in recent sediments. Increased Cd concentrations lasted only about two decades during the industrial era between World War II and the enactment of clean water standards in the 1970s. Increased Pb emissions, on the other hand, occurred over more than 100 years, first from burning of coal and smelting of lead ores, and then, beginning in the 1930s, burning of leaded gasoline. Concentrations of Pb in the sediments of Lake Pepin decreased to about two times preindustrial levels within a decade of enactment of unleaded gasoline restrictions.

  17. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes

    NASA Astrophysics Data System (ADS)

    Epp, L. S.; Gussarova, G.; Boessenkool, S.; Olsen, J.; Haile, J.; Schrøder-Nielsen, A.; Ludikova, A.; Hassel, K.; Stenøien, H. K.; Funder, S.; Willerslev, E.; Kjær, K.; Brochmann, C.

    2015-06-01

    High Arctic environments are particularly sensitive to climate changes, but retrieval of paleoecological data is challenging due to low productivity and biomass. At the same time, Arctic soils and sediments have proven exceptional for long-term DNA preservation due to their constantly low temperatures. Lake sediments contain DNA paleorecords of the surrounding ecosystems and can be used to retrieve a variety of organismal groups from a single sample. In this study, we analyzed vascular plant, bryophyte, algal (in particular diatom) and copepod DNA retrieved from a sediment core spanning the Holocene, taken from Bliss Lake on the northernmost coast of Greenland. A previous multi-proxy study including microscopic diatom analyses showed that this lake experienced changes between marine and lacustrine conditions. We inferred the same environmental changes from algal DNA preserved in the sediment core. Our DNA record was stratigraphically coherent, with no indication of leaching between layers, and our cross-taxon comparisons were in accordance with previously inferred local ecosystem changes. Authentic ancient plant DNA was retrieved from nearly all layers, both from the marine and the limnic phases, and distinct temporal changes in plant presence were recovered. The plant DNA was mostly in agreement with expected vegetation history, but very early occurrences of vascular plants, including the woody Empetrum nigrum, document terrestrial vegetation very shortly after glacial retreat. Our study shows that multi-taxon metabarcoding of sedimentary ancient DNA from lake cores is a valuable tool both for terrestrial and aquatic paleoecology, even in low-productivity ecosystems such as the High Arctic.

  18. Early- to Mid-Holocene hydroclimate shifts in tropical East Africa: the multi-proxy sediment record from Lake Rutundu, Kenya

    NASA Astrophysics Data System (ADS)

    De Cort, Gijs; Creutz, Mike; Barao, Lucia; Conley, Daniel; Haug, Gerald; Bodé, Samuel; Blaauw, Maarten; Engstrom, Dan; Verschuren, Dirk

    2015-04-01

    Following the generally arid conditions of the Last Glacial Maximum (LGM), a large part of the African continent experienced the Early to Mid-Holocene as a much more humid period than today. This so-called African Humid Period (AHP) coincided with high summertime insolation over the Northern Hemisphere subtropics, causing invigorated monsoons to create moist conditions over the northern parts of the continent. Similarly, equatorial and even low-latitude southeastern Africa experienced a wetter climate due to the post-glacial increase in atmospheric greenhouse gasses ultimately leading to altered Atlantic and Indian Ocean monsoon dynamics. The timing and abruptness of the onset and ending of the AHP in the different regions of the continent have been the subject of major discussion. On the other hand, shorter-lived climate fluctuations within the AHP have received much less attention, due to a scarcity of well-dated, high-resolution African paleoclimate records spanning the entire Holocene. In this study we used the sediment record of Lake Rutundu, a high-altitude crater lake on Mount Kenya, to document multidecadal to millennial-scale hydroclimate variability on the East African equator from the LGM to the present. A multiproxy approach combining core-surface scanning techniques (magnetic susceptibility, X-ray fluorescence) and close-interval bulk-sediment analyses (organic matter and biogenic Si content, grain size, organic δ15N and δ13C) resulted in a high-resolution record firmly anchored in time by an age model based on 210Pb dating and sixteen calibrated radiocarbon ages. This new Lake Rutundu hydroclimate record confirms that moister conditions following the LGM returned to East Africa ca.16 kyr BP, and it contains a perfectly timed Younger Dryas episode (12.8-11.5 kyr BP) of intermittent drought. We find that the Early- to Mid-Holocene period, which in African records is often described as uniformly wet, was in fact punctuated by three distinct, century

  19. Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East Africa.

    PubMed

    Faith, J Tyler; Tryon, Christian A; Peppe, Daniel J; Beverly, Emily J; Blegen, Nick; Blumenthal, Scott; Chritz, Kendra L; Driese, Steven G; Patterson, David

    2015-06-01

    The opening and closing of the equatorial East African forest belt during the Quaternary is thought to have influenced the biogeographic histories of early modern humans and fauna, although precise details are scarce due to a lack of archaeological and paleontological records associated with paleoenvironmental data. With this in mind, we provide a description and paleoenvironmental reconstruction of the Late Pleistocene Middle Stone Age (MSA) artifact- and fossil-bearing sediments from Karungu, located along the shores of Lake Victoria in western Kenya. Artifacts recovered from surveys and controlled excavations are typologically MSA and include points, blades, and Levallois flakes and cores, as well as obsidian flakes similar in geochemical composition to documented sources near Lake Naivasha (250 km east). A combination of sedimentological, paleontological, and stable isotopic evidence indicates a semi-arid environment characterized by seasonal precipitation and the dominance of C4 grasslands, likely associated with a substantial reduction in Lake Victoria. The well-preserved fossil assemblage indicates that these conditions are associated with the convergence of historically allopatric ungulates from north and south of the equator, in agreement with predictions from genetic observations. Analysis of the East African MSA record reveals previously unrecognized north-south variation in assemblage composition that is consistent with episodes of population fragmentation during phases of limited dispersal potential. The grassland-associated MSA assemblages from Karungu and nearby Rusinga Island are characterized by a combination of artifact types that is more typical of northern sites. This may reflect the dispersal of behavioral repertoires-and perhaps human populations-during a paleoenvironmental phase dominated by grasslands.

  20. A 1,200-year record of climate variability reconstructed from a laminated lacustrine sediment sequence from Lake Ohau, South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Roop, H. A.; Dunbar, G. B.; Vandergoes, M.; Levy, R. H.; Howarth, J. D.; Fitzsimons, S.; Phipps, S. J.

    2014-12-01

    Comprehensive understanding of natural climate-system dynamics requires high-resolution paleoclimate records extending beyond the instrumental period. This is particularly the case for the sparsely-instrumented Southern Hemisphere mid-latitudes, where the timing and amplitude of regional and hemispheric-scale climatic events is poorly constrained. The climate of New Zealand is influenced by climatological patterns originating in both the tropics (e.g. El-Niño-Southern Oscillation, Interdecadal Pacific Oscillation) and the Antarctic (Southern Annular Mode, SAM). Specifically, summer rainfall records from the western South Island of New Zealand exhibit decadal trends that are highly correlated with the SAM. A 1,200-year laminated sediment sequence recovered from Lake Ohau (44.234°S, 169.854°E), which sits in this SAM-sensitive region of New Zealand, offers a unique opportunity to explore the hydrology and climate of this region at annual-to-decadal resolution. Here we present a climate-proxy model based on detailed micro-facies analysis, physical (particle size, porosity) and chemical (ITRAX micro-XRF) characteristics of the lamination stratigraphy, and an 85-year hydrometeorological record. Using this model, we explore climate trends over the last 1,200 years and compare this sediment record to SAM reconstructions from paleoclimate model simulations, and South American tree ring and Antarctic ice core proxy records.

  1. Oscillations in the Indian summer monsoon during the Holocene inferred from a stable isotope record from pyrogenic carbon from Lake Chenghai, southwest China

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Zhang, Enlou; Liu, Enfeng; Ji, Ming; Chen, Rong; Zhao, Cheng; Shen, Ji; Li, Yanling

    2017-02-01

    A robust, well-dated record of centennial-scale abrupt changes in the Asian summer monsoon is crucial for understanding the potential forcing factors and their environmental effects. In this study, we analyzed the stable carbon isotopes of pyrogenic carbon (δ13CPC) in a 556-cm long sediment core retrieved from Lake Chenghai in the Yunnan Plateau, China. The results provide a continuous 7660-year precipitation record of the Indian summer monsoon (ISM). They indicate that from ∼7600 cal yr BP precipitation in the Lake Chenghai catchment gradually increased until 5030 cal yr BP, and then subsequently decreased in the second half of the Holocene. In addition, at least six centennial-scale droughts occurred at about 7300, 6300, 5500, 3400, 2500 and 500 cal yr BP. Our findings suggest that ISM intensity is primary controlled by variations in solar irradiance on a centennial time scale. This external forcing may be amplified by North Atlantic cooling events and El Niño-Southern Oscillation activity in the eastern tropical Pacific, which shift the intertropical convergence zone further southwards.

  2. Past soil erosion history recorded by lake sediments in mountain areas (north and south French Alps): complex interactions with climatic and human activities

    NASA Astrophysics Data System (ADS)

    Giguet-Covex, C.; Poulenard, J.; Arnaud, F.; Disnar, J.-R.; Sabatier, P.; Wilhelm, B.; Jouffroy-Bapicot, I.; Rey, P.-J.; David, F.; Malet, E.

    2012-04-01

    Erosion rates and patterns are influenced both by hydrological activity and the evolution of soil-vegetation cover. This soil-vegetation cover is in turn impacted by climatic changes and human activities through deforestation, grazing and agriculture. Such land uses are reported in mountain areas since several millennia (the Neolithic or Bronze Age in the Alps). The effects of these activities and climatic changes on erosion and above all on soil cover are relatively few documented. However, a good knowledge of these processes is important to better evaluate the future evolution of soils and the sustainability for agricultural practices, in the context of global change. Because lakes act as traps of erosion products, lake sediments represent interesting continuous archives of past soil evolution and erosion. They provide a unique opportunity to reconstruct at high resolution the soil history over long time periods and thus to determine the timing of changes in response to climate and/or anthropogenic pressures. As a result of the Pygmalion research program, we present the study of two small mountain catchment in north (Lake Anterne, 2063 m asl) and south French Alps (Lake Lauzanier, 2285 m asl), covering the Holocene and the last 1000 years, respectively. To trace the past soil erosion erosion history and bring arguments about the origin of changes, mineral and organic geochemical analyses were performed and combined with quantitative reconstructions of terrigenous inputs. To emphasize our assumptions about the origins of recorded changes, a pluridisciplinary approach (palynology, archaeology...) was also adopted. The study of Lake Anterne shows the second half of the Holocene is characterized by four important phases of erosion. These phases are underlined by high flood frequencies and different geochemical composition of sediments. These geochemical signatures reveal changes of sediment sources related to different erosion patterns. In particular, the first phase

  3. Paleolimnological record as an indication of incipient eutrophication in an oligotrophic subtropical coastal lake in Southern Brazil.

    PubMed

    Hennemann, Mariana Coutinho; Simonassi, José Carlos; Petrucio, Mauricio Mello

    2015-08-01

    Paleolimnology of lake sediments can be a powerful tool to assess various aspects of lake history and catchment change through elemental, isotopic and molecular analysis of the sedimented organic matter (OM). In this sense, the objective of the present study was to investigate the source, depositional history and preservation of OM in the sediments of two different sites in Peri Lake (southern Brazil) to better understand the nature and direction of environmental changes. Therefore, two sediment cores were sampled and analysed for total organic carbon (TOC), total nitrogen (TN) and total phosphorus (TP) concentrations and elemental ratios, and stable isotope ratios of C and N (δ(13)C and δ(15)N). Both cores showed similar general tendencies, with increasing amounts of OM (range 1-35%), TOC (2.55-258.40 mg g(-1)), TN (0.30-25.97 mg g(-1)) and TP (0.03-4.72 mg g(-1)) from the bottom toward the top more recent layers. TOC:TN ratios (range 8.1-14.7) showed a slight decrease in recent times and indicated a mixture of allochthonous and autochthonous contribution to the OM, with predominance of the last source. TN:TP (range 0.2-51.3) indicated a condition of potential limitation by P in general. Both δ(13)C (range -25.58 to -20.85) and δ(15)N (range 2.6 to 7.1) showed a decreasing pattern toward the top of the cores, in opposition to macronutrient concentration. Differences in the depth variation pattern between the two cores were associated to the marginal location of one of the cores. The results suggest that nutrients and primary production are increasing in the lake.

  4. First record of harpacticoid copepods from Lake Tahoe, United States: two new species of Attheyella (Harpacticoida, Canthocamptidae)

    PubMed Central

    Bang, Hyun Woo; Baguley, Jeffrey G.; Moon, Heejin

    2015-01-01

    Abstract Benthic harpacticoids were collected for the first time at Lake Tahoe, California-Nevada, United States. Two species were identified as members of the genus Attheyella Brady, 1880. The genus Attheyella comprises about 150 species within six subgenera, but only twelve species have previously been reported from North American freshwater habitats. The two new species of Attheyella described here have a 3-segmented endopod on P1 and 2-segmented P2–P4 endopods, the distal segment of exopod of P2–P4 has three outer spines, and the P5 has five setae on the exopod and six setae on the baseoendopod. Attheyella (Attheyella) tahoensis sp. n. most closely resembles Attheyella (Attheyella) idahoensis (Marsh, 1903) from Idaho, Montana, and Alaska (United States) and Attheyella (Attheyella) namkungi Kim, Soh & Lee, 2005 from Gosu Cave in South Korea. They differ mainly by the number of setae on the distal endopodal segment of P2–P4. In addition, intraspecific variation has been observed on the caudal rami. Attheyella (Neomrazekiella) tessiae sp. n. is characterized by the extension of P5 baseoendopod, 2-segmented endopod of female P2–P3, and naked third seta of male P5 exopod. The two new species are likely endemic to Lake Tahoe, an isolated alpine lake within the Great Basin watershed in the western United States. PMID:25685014

  5. First record of harpacticoid copepods from Lake Tahoe, United States: two new species of Attheyella (Harpacticoida, Canthocamptidae).

    PubMed

    Bang, Hyun Woo; Baguley, Jeffrey G; Moon, Heejin

    2015-01-01

    Benthic harpacticoids were collected for the first time at Lake Tahoe, California-Nevada, United States. Two species were identified as members of the genus Attheyella Brady, 1880. The genus Attheyella comprises about 150 species within six subgenera, but only twelve species have previously been reported from North American freshwater habitats. The two new species of Attheyella described here have a 3-segmented endopod on P1 and 2-segmented P2-P4 endopods, the distal segment of exopod of P2-P4 has three outer spines, and the P5 has five setae on the exopod and six setae on the baseoendopod. Attheyella (Attheyella) tahoensissp. n. most closely resembles Attheyella (Attheyella) idahoensis (Marsh, 1903) from Idaho, Montana, and Alaska (United States) and Attheyella (Attheyella) namkungi Kim, Soh & Lee, 2005 from Gosu Cave in South Korea. They differ mainly by the number of setae on the distal endopodal segment of P2-P4. In addition, intraspecific variation has been observed on the caudal rami. Attheyella (Neomrazekiella) tessiaesp. n. is characterized by the extension of P5 baseoendopod, 2-segmented endopod of female P2-P3, and naked third seta of male P5 exopod. The two new species are likely endemic to Lake Tahoe, an isolated alpine lake within the Great Basin watershed in the western United States.

  6. Magnetostratigraphy of sediments from Lake El'gygytgyn ICDP Site 5011-1: paleomagnetic age constraints for the longest paleoclimate record from the continental Arctic

    NASA Astrophysics Data System (ADS)

    Haltia, E. M.; Nowaczyk, N. R.

    2013-09-01

    44 cm kyr-1. Sediment deposition decelerates upcore and it is an order of magnitude lower during the Brunhes chron when compared to that in early the Gauss chron. Decrease in sediment deposition in late Pliocene probably relates to atmospheric and oceanic reorganization heralding the onset of Quaternary climate change. The high-quality magnetostratigraphy reconstructed from Lake El'gygytgyn sediments provides 12 tie-points to pin down the age of the longest paleoclimate record from the continental Arctic.

  7. Paleoflood activity and climate change over the last 2000 years recorded by high altitude alpine lake sediments in Western French Alps.

    NASA Astrophysics Data System (ADS)

    Fouinat, Laurent; Sabatier, Pierre; Develle, Anne-Lise; Giguet-Covex, Charline; Poulenard, Jérôme; Doyen, Elise; Crouzet, Christian; Malet, Emmanuel; Reyss, Jean-Louis; Arnaud, Fabien

    2015-04-01

    Extreme precipitation events can trigger floods that may have serious human and economic consequences. The flood represents extreme rainfall event, which in high altitude mountain regions are mostly triggered alternatively by local convective summer storms or, less frequently, by regional widespread rainfall event. The former's precipitation pattern comes from Mediterranean Sea fluxes, dominant in the south; instead of the latter coming from the Atlantic Ocean, dominant in the north of the French Alps. The aim of the study is then to explore which regime dominates in Western French Alps. Paleoflood chronicle is a way to understand past continental climate through the variability of both frequency and intensity. In this study we explore the paleoflood activity as recorded by sediments of the small alpine lake Muzelle (2200 m.a.s.l.) located in the western French Alps. Lake Muzelle catchment area is 5 km² -around 4 % being glacier covered- and is drained by one main stream. Lake Muzelle is 18.8 meters deep and is ice-covered during 7-8 months each year. Moreover, the watershed is being used for pastoral activity for several centuries. In this study, we use sedimentological analysis as well high resolution XRF core scanner geochemistry to identify turbidites interpreted as flood deposits. 256 turbidites were documented in the sediment sequence. Sr/Ti geochemical ratio is used to identify the coarsest grain size fraction of the flood deposit and the thickness of each deposit was measured. Dating was carried out using short-lived-radio-elements (210Pb, 137Cs, 241Am), historical events as well as nine 14C dates and paleomagnetic declination to constrain the age model over the last 2000 years. The study includes also palynological and sediment DNA analysis to understand past human activity on the watershed. As a result, the 31 years frequency shows a stable period from 0 to 1100 AD. Between 1100 and1200 AD the flood frequency presents a brutal increase with a relatively

  8. A 200 year sedimentary record of progressive eutrophication in Lake Greifen (Switzerland): Implications for the origin of organic-carbon-rich sediments

    SciTech Connect

    Hollander, D.J. ); McKenzie, J.A. ); Haven, H.L. ten )

    1992-09-01

    Over the past 200 years Lake Greifen, a small lake in northeastern Switzerland, has undergone dramatic changes in primary productivity and eutrophication due to increased nutrient supply from agricultural activity and industrialization. A 40 year historical record of the water-column chemistry indicates that productivity and eutrophication reached a maximum in 1974, after which stricter regulations on the input of nutrients resulted in a progressive decrease. Collected cores show the sedimentary expression of this anthropogenically induced eutrophication by a well-developed annual sedimentation and by enhanced values of total organic carbon, organic-carbon accumulation rates, and hydrogen indices (HI) of the kerogens. Analyses of the carbon isotopic composition of sedimentary carbonates and organic matter reveal that the fractionation between these two phases varies with the HI of kerogens. This observation is explicable in terms of changing productivity and preservation of the organic matter, and the CO[sub 2 (aq)] budget of the water body. The authors propose that if high primary productivity were primarily responsible for the preservation and accumulation of organic matter, then a negative correlation will occur between [Delta][delta][sup 13]C[sub calcite-organic matter]([Delta][delta][sup 13]C[sub cal-om]) and HI values. In an environment with relatively low to moderate productivity but with bottom-water anoxia, a positive correlation will exist between [Delta][delta][sup 13]C[sub cal-om] and HI values. This study of Lake Greifen has implications for understanding paleoenvironmental controls on ancient organic-carbon-rich sediments.

  9. Magnetic properties of sediments from Lake El'gygytgyn, Northeastern Siberia: constructing an age model for a terrestrial arctic climate record

    NASA Astrophysics Data System (ADS)

    Haltia-Hovi, E.; Nowaczyk, N.; Lake El'Gygytgyn Scientific Party

    2010-12-01

    Lake El'gygytgyn (67°30'N 172°00'E; 12 km in diameter; maximum depth 175 m) occupies a meteorite impact crater formed ca. 3.6 Ma ago in Western Beringia, Northeastern Siberia. The area is assumed to have escaped Quaternary glaciations, and the sediments deposited in the basin are anticipated to preserve a unique terrestrial paleoclimatic record extending until the early part of Late Pliocene. Pilot study on the sediments from Lake El'gygytgyn started in the year 1998 showed that magnetic susceptibility (κLF) is responding to variations in Northern Hemisphere insolation during the last 250 kyr (Nowaczyk et al., 2007). Encouraged by the results from the pilot study, new cores were retrieved from the lake in the frame of a joint ICDP El'gygytgyn Drilling Project in spring 2009, when sediments were cored to the depth of 318 meters reaching the impact rocks underlying the sediments. At present, sediments are subjected to intensive study of their physical, biological and chemical proxies to reveal arctic climatic history as recorded by the sediments. κLF is measured on split core surfaces at 1 mm intervals, and it shows pronounced highs and lows with values generally ranging between 0.1 to 3.0*1000 (10-6 SI). To investigate magnetostratigraphy, U-channel samples have been taken from the sediments cored from two parallel coring sites, and measurements of NRM and its AF demagnetization are underway to construct an age model for the sediments based on polarity changes. The polarity sequence established heretofore reveals a clear pattern of magnetozones with normal/reversed polarity, where B/M boundary (0.781 Ma), Jaramillo subchron (from 1.072 to 0.988 Myr) and the termination of Olduvai subchron (1.778 Ma) are manifested distinctly in the data. NRM values range between 0.001 and 0.1 A/m, and magnetizations of low intensity coincide with more complicated magnetizations with multiple components. Information on mineral magnetic properties have been collected from discrete

  10. Source identification and sedimentary record of polycyclic aromatic hydrocarbons in Lake Bled (NW Slovenia) using stable carbon isotopes.

    PubMed

    Petrišič, Marinka Gams; Muri, Gregor; Ogrinc, Nives

    2013-02-05

    A combination of molecular and stable isotope analyses was used to trace and identify the sources of polycyclic aromatic hydrocarbons (PAH) in sediments of Lake Bled (NW Slovenia). Sediment samples were taken from two locations with contrasting depositional regimes: Zaka Bay, with permanently oxic bottom and station D, where anoxic conditions prevail throughout the year. The concentrations of PAH in surface sediments at the two locations were comparable and higher than in previous studies, reaching 4230 and 4380 ng g(-1), respectively. It was found that retene (Re) and perylene (Per) are both mainly of natural origin in Zaka Bay while, at station D, the value of δ(13)C determined at a depth of 12-14 cm in the 1950s indicated that Re was of pyrolytic origin. The distribution of δ(13)C values of other individual PAH showed that PAH input to lake sediments was of pyrolytic origin, likely dominated by coal and later in 1950s also by wood burning. PAH from vehicular emissions could also contribute to the overall isotope signatures at the depth of 12-14 cm at station D and Zaka Bay corresponding to the period 1953-1961.

  11. A 12,000-year record of vertical deformation across the Yellowstone caldera margin: The shorelines of Yellowstone Lake

    NASA Technical Reports Server (NTRS)

    Locke, William W.; Meyer, Grant A.

    1994-01-01

    The 600 ka Yellowstone caldera exhibits several signs of unrest, the most evident of which is historic ground deformation including both uplift and subsidence. We document deformation in the area of the southern caldera across approximately 12,000 years using the postglactic shoreline terraces of Yellowstone Lake. Raised shoreline elevations were interpreted from 230 leveling profiles surveyed across flights of terraces, with an accuracy of +/- 0.5 m. Of about 11 recognizable terraces, the five most continuous raised shorelines were correlated around the lake basin to reveal deformation patterns. Net deformation over the past approximatley 3 kyr has been dominantly up within the caldera interior and slightly down along the caldera rim, relative to the extracaldera region. This uplift is roughly similar to the historic pattern and may largely represent the effects of the most recent inflation episode. Subtraction of the total estimated magnitude of inflation in this epsiode suggests that the overall trend of postglacial deformation has been subsidence. The cause of this trend is undetermined but is most likely related to the effects of regional extension and long-term cooling within the Yellowstone caldera.

  12. A 1000-yr record of environmental change in NE China indicated by diatom assemblages from maar lake Erlongwan

    NASA Astrophysics Data System (ADS)

    Wang, Luo; Rioual, Patrick; Panizzo, Virginia N.; Lu, Houyuan; Gu, Zhaoyan; Chu, Guoqiang; Yang, Deguang; Han, Jingtai; Liu, Jiaqi; Mackay, Anson W.

    2012-07-01

    Past environmental changes based on diatom relative abundances have been inferred from the maar Lake Erlongwan in northeast China. The limnology of Lake Erlongwan is affected by the strongly seasonal regional climate. The composition of diatom assemblages, in turn, responds to changes in the seasonal duration of ice cover in winter, water-column turnover in spring and autumn, and thermal stratification in summer. Statistical analysis of the sedimentary diatom assemblages reveals three significant stratigraphic zones over the past 1000 yr. The highest abundance of the planktonic species Discostella species occurs between AD 1050 and 1400 and suggests an annual ice-free period of long duration and well-developed summer stratification of the water column. This planktonic diatom peak between ca. AD 1150 and 1200 suggests that this period was the warmest over the past 1000 yr. The interval between AD 1400 and 1800 is marked by a decline in planktonic diatoms and suggests shorter duration of the ice-free season, weaker water stratification and possibly generally cold conditions. After AD 1800 relative abundances of planktonic diatoms, including Puncticulata praetermissa and Asterionella formosa, increase again, which indicates lengthening of the duration of the annual ice-free period and a stronger overturn of the water column. All these data imply that the pattern of the seasons is different between the MWP and the 20th century.

  13. Black Carbon as a marker for paleofires during the Late Quaternary in sedimentary record of Saci lake (PA) -Brazil

    NASA Astrophysics Data System (ADS)

    Martins, G. S.; Cordeiro, R. C.; Turcq, B.; Sifeddine, A.; Rodrigues, R.; Santos, A. B.; Moreira, L.; Guilles, M. C.; Seoane, J. S.

    2012-12-01

    Controversies still exist about the climate in the South American tropical forest over the Late Quaternary. In the present work, we show a sedimentary profile (SACI-1) of 243 cm in Saci Lake, located in the south of Para state. The paleoclimatic reconstruction was made by several geochemical markers, working as indicators of environmental changes in this lake during the Late Quaternary. Seventeen samples along the SACI-1 core were dated, and an age model was construct used a non-Bayesian, 'classical' age-depth models, showing a basal age of 35,500 cal years BP. The lithological description allows identifying six sedimentary units. Unit VI (35,500-29,900 cal yrs BP) and unit V (29,900-16,400 cal yr BP) are characterized by lowest concentrations of TOC, high values of C/N ratio and δ15N, and low values of chlorophyll derivates. These characteristics suggest a predominance of allochthonous organic matter. Unit V, covers the LGM (Last Maximum Glacial), when was observed the lowest values of TOC and moderate values of both BC concentration and flux (at approximately 162 cm), suggesting a dry period with low water level and wildfires in the region. Unit IV (9,100-8,300 cal years BP), presented a transition from a wetter to a drier climate with decreasing values of TOC and biogeochemical changes associated with a sandy sedimentation, indicating a higher intensity of run-off events. The higher values of C/N ratio and incresing δ13C values in this phase, suggest an increase in C4 vascular plants. The unit III (8,300-5,800 cal years BP) is characterized by a dry climate, with the lowest average values of total organic carbon, suggesting low lake levels. Low values of chlorophyll derivatives indicate a low productivity environment and high levels of clay suggest a low hydrodynamic depositional energy environment. The highest concentration of Black Carbon data indicated an increased occurrence of fires related to this dry climate. This phase was characterized by lower C

  14. Calcification and silicification: fossilization potential of cyanobacteria from stromatolites of Niuafo'ou's Caldera Lakes (Tonga) and implications for the early fossil record.

    PubMed

    Kremer, Barbara; Kazmierczak, Józef; Lukomska-Kowalczyk, Maja; Kempe, Stephan

    2012-06-01

    Calcification and silicification processes of cyanobacterial mats that form stromatolites in two caldera lakes of Niuafo'ou Island (Vai Lahi and Vai Si'i) were evaluated, and their importance as analogues for interpreting the early fossil record are discussed. It has been shown that the potential for morphological preservation of Niuafo'ou cyanobacteria is highly dependent on the timing and type of mineral phase involved in the fossilization process. Four main modes of mineralization of cyanobacteria organic parts have been recognized: (i) primary early postmortem calcification by aragonite nanograins that transform quickly into larger needle-like crystals and almost totally destroy the cellular structures, (ii) primary early postmortem silicification of almost intact cyanobacterial cells that leave a record of spectacularly well-preserved cellular structures, (iii) replacement by silica of primary aragonite that has already recrystallized and obliterated the cellular structures, (iv) occasional replacement of primary aragonite precipitated in the mucopolysaccharide sheaths and extracellular polymeric substances by Al-Mg-Fe silicates. These observations suggest that the extremely scarce earliest fossil record may, in part, be the result of (a) secondary replacement by silica of primary carbonate minerals (aragonite, calcite, siderite), which, due to recrystallization, had already annihilated the cellular morphology of the mineralized microbiota or (b) relatively late primary silicification of already highly degraded and no longer morphologically identifiable microbial remains.

  15. Holocene environmental and climatic change in the Northern Great Plains as recorded in the geochemistry of sediments in Pickerel Lake, South Dakota

    USGS Publications Warehouse

    Dean, W.E.; Schwalb, A.

    2000-01-01

    The sediments in Pickerel Lake, northeastern South Dakota, provide a continuous record of climatic and environmental change for the last 12000 yr. Sediments deposited between 12 and 6 ka (radiocarbon) show extreme variations in composition, oxygen and carbon isotopic composition of bulk carbonate, carbon isotopic composition of organic matter, and magnetic susceptibility. These variations reflect changes in sources of moisture, regional vegetation types, precipitation-evaporation balance, ground- and surface-water influx, water residence time, erosion, lake productivity, water level, and water temperature. The total carbonate content of late Pleistocene sediments steadily increased from <20% at the base of the core to as much as 80% in sediments deposited between 11 and 9 ka. By about 8 ka, the total carbonate content of the sediments had declined to about 40% where it remained with little variation for the past 8 kyr, suggesting relatively stable conditions. There are marked increases in values of ??13C and ??18O in bulk carbonate, and ??13C of organic matter, in sediments deposited between 10 and 6 ka as evaporation increased, and the vegetation in the watershed changed from forest to prairie. This shift toward more 18O-enriched carbonate may also reflect a change in source or seasonality of precipitation. During this early Holocene interval the organic carbon (OC) content of the sediments remained relatively low (2-3%), but then increased rapidly to 4.5% between 7 and 6 ka, reflecting the rapid transition to a prairie lake. The OC content fluctuates slightly between 4 and 6% in sediments deposited over the past 6 kyr. Like OC and total carbonate, most variables measured show little variation in the 13 m of sediment deposited over the past 6 kyr, particularly when compared with early Holocene variations. Although the magnetic susceptibility of this upper 13 m of sediment is generally low (<10 SI units), the upper six meters of the section is marked by striking 1

  16. Paleomonsoonal Precipitation and Hydroclimate Variability from Glacial to Interglacial Climates in the Southwest: The Stoneman Lake, Arizona Record

    NASA Astrophysics Data System (ADS)

    Garcia, D.; Fawcett, P. J.; Anderson, R. S.; Sharp, Z. D.

    2015-12-01

    Oxygen isotope values from diatom silica have been used to determine past hydrological conditions in a variety of settings including differentiating summer monsoonal paleoprecipitation from winter frontal paleoprecipitation in the American southwest. Lacustrine cores from the Valles Caldera, New Mexico, show a distinct change in silica oxygen isotope values from glacial to interglacial as a switch from a purely winter frontal precipitation during the glacial to a mix of winter frontal and summer monsoonal precipitation during the interglacial. A relatively large (ca. 20‰) and rapid increase in δ18O following the glacial termination implies an abrupt onset of the North American monsoon. We plan to elaborate on this research to see if this is true elsewhere in the southwest. Two lacustrine sediment cores (70 m deep and 30 m deep respectively) were recovered from Stoneman Lake, northern Arizona in October of 2014. With these cores we plan to determine regional hydroclimate variability between the Pleistocene-Holocene glacial transition ca. 14 ka. Oxygen isotope analysis from diatom silica will allow us to determine past sources of precipitation to the basin (Gulf of Mexico vs North Pacific), and paleoprecipitation variability. In conjunction with other proxies, we can determine if the onset of paleomonsoonal precipitation in central Arizona occurs immediately after the glacial termination as in NM, or if there is some component of monsoonal precipitation during the late glacial period. Diatom sampling was performed at approximately every 50 cm. To purify the diatoms, the samples are chemically and physically separated. The step wise fluorination and laser ablation technique are then applied to remove water & hydroxyl groups and to extract O2 & SiF4 respectively.If results from the Stoneman Lake core are similar to that of the Valles Caldera core, we should expect to see a nearly 20‰ increase in δ18Olake water. This would suggest a: 1) collapse of the summer

  17. Doppler recordings after diving to depth of 30 meters at high altitude of 4,919 meters (16,138 feet) during the Tilicho Lake Expedition 2007.

    PubMed

    Kot, J; Sicko, Z; Zyszkowski, M; Brajta, M

    2014-01-01

    When going to high altitude (higher than 2,400 meters above mean sea level [about 8,200 feet]), human physiology is strongly affected by changes in atmospheric conditions, including decreased ambient pressure and hypobaric hypoxia, which can lead to severe hypoxemia, brain and/or pulmonary edema, negative changes in body and blood composition, as well as disturbances in regional microcirculation. When adding other factors, such as dehydration, physical exercise and exposure to low temperature, it is likely that nitrogen desaturation after diving at such environmental conditions is far from optimal, There are only single reports on diving at high alti-tudes. In 2007 a Polish team of climbers and divers participated in the Tilicho Lake and Peak Expedition to the Himalaya Mountains in Nepal. During this expedition, four divers conducted six dives in the Tilicho Lake at altitude of 4,919 meters above mean sea level equivalent (16,138 feet) to a maximum depth of 15 meters of fresh water (mfw) (equivalent to 28 mfw at sea level by the Cross Correction method) and 30 mfw (equivalent to 57 mfw at sea level "by Cross correction). Decompression debt was calculated using Cross Correction with some additional safety add-ons. Precordial Doppler recordings were taken every 15 minutes until 90 minutes after surfacing. No signs or symptoms of decompression sickness were observed after diving but in one diver, very high bubble grade Doppler signals were recorded. It can be concluded that diving at high altitude should be accompanied by additional safety precautions as well as taking into account personal sensitivity for such conditions.