Science.gov

Sample records for 40-million-year lake record

  1. 40-million-year lake record of early Mesozoic orbital climatic forcing

    SciTech Connect

    Olsen, P.E.

    1986-11-14

    Sediments of the early Mesozoic Newark Supergroup of eastern North America consist largely of sedimentary cycles produced by the rise and fall of very large lakes that responded to periodic climate changes controlled by variations in the earth's orbit. Fourier analysis of long sections of the Late Triassic Lockatong and Passaic formations of the Newark Basin show periods in thickness of 5.9, 10.5, 25.2, 32.0, and 96.0 meters corresponding to periodicities in time of roughly 25,000, 44,000, 100,000, 133,000 and 400,000 years, as judged by radiometric time scales and varve-calibrated sedimentation rates. The ratios of the shortest cycle with longer cycles correspond closely to the ratios of the present periods of the main orbital terms that appear to influence climate. Similar long sequences of sedimentary cycles occur through most of the rest of the Newark Supergroup spanning a period of more than 40 million years. This is strong evidence of orbital forcing of climate in the ice-free early Mesozoic and indicates that the main periods of the orbital cycles were not very different 200 million years ago from those today.

  2. A 40-million-year lake record of early mesozoic orbital climatic forcing.

    PubMed

    Olsen, P E

    1986-11-14

    Sediments of the early Mesozoic Newark Supergroup of eastern North America consist largely of sedimentary cycles produced by the rise and fall of very large lakes that responded to periodic climate changes controlled by variations in the earth's orbit. Fourier analysis of long sections of the Late Triassic Lockatong and Passaic formations of the Newark Basin show periods in thickness of 5.9, 10.5, 25.2, 32.0, and 96.0 meters corresponding to periodicities in time of roughly 25,000, 44,000, 100,0003,, 13000 and 400,000 years, as judged by radiometric time scales and varve-calibrated sedimentation rates. The ratios of the shortest cycle with longer cycles correspond closely to the ratios of the present periods of the main orbital terms that appear to influence climate. Similar long sequences of sedimentary cycles occur through most of the rest of the Newark Supergroup spanning a period of more than 40 million years. This is strong evidence of orbital forcing of climate in the ice-free early Mesozoic and indicates that the main periods of the orbital cycles were not very different 200 million years ago from those today. PMID:17758107

  3. A 40-million-year lake record of early mesozoic orbital climatic forcing.

    PubMed

    Olsen, P E

    1986-11-14

    Sediments of the early Mesozoic Newark Supergroup of eastern North America consist largely of sedimentary cycles produced by the rise and fall of very large lakes that responded to periodic climate changes controlled by variations in the earth's orbit. Fourier analysis of long sections of the Late Triassic Lockatong and Passaic formations of the Newark Basin show periods in thickness of 5.9, 10.5, 25.2, 32.0, and 96.0 meters corresponding to periodicities in time of roughly 25,000, 44,000, 100,0003,, 13000 and 400,000 years, as judged by radiometric time scales and varve-calibrated sedimentation rates. The ratios of the shortest cycle with longer cycles correspond closely to the ratios of the present periods of the main orbital terms that appear to influence climate. Similar long sequences of sedimentary cycles occur through most of the rest of the Newark Supergroup spanning a period of more than 40 million years. This is strong evidence of orbital forcing of climate in the ice-free early Mesozoic and indicates that the main periods of the orbital cycles were not very different 200 million years ago from those today.

  4. 40 Million Years of the Iceland Plume

    NASA Astrophysics Data System (ADS)

    Parnell-Turner, R. E.; White, N.; Henstock, T.; Maclennan, J.; Murton, B. J.; Jones, S. M.

    2011-12-01

    The V-shaped ridges, straddling the mid oceanic ridges to the North and South of Iceland, provide us with a linear record of transient mantle convective circulation. Surprisingly, we know little about the structure of these ridges: prior to this study, the most recent regional seismic reflection profiles were acquired in the 1960s. During the Summer of 2010, we acquired over 3,000 km of seismic reflection data across the oceanic basin South of Iceland. The cornerstones of this programme are two 1000 km flowlines, which traverse the basin from Greenland to the European margin. The geometry of young V-shaped ridges near to the oceanic spreading center has been imaged in fine detail; older ridges, otherwise obscured in gravity datasets by sediment cover, have been resolved for the first time. We have mapped the sediment-basement interface, transformed each profile onto an astronomical time scale, and removed the effects of long wavelength plate cooling. The resulting chronology of Icelandic plume activity provides an important temporal frame of reference for plume flux over the past 40 million years. The profiles also cross major contourite drift deposits, notably the Gardar, Bjorn and Eirik drifts. Fine-scale sedimentary features imaged here demonstrate distinct episodes of drift construction; by making simple assumptions about sedimentation rates, we can show that periods of drift formation correspond to periods of enhanced deep water circulation which is in turn moderated by plume activity. From a regional point of view, this transient behaviour manifests itself in several important ways. Within sedimentary basins fringing the North Atlantic, short lived regional uplift events periodically interrupt thermal subsidence from Eocene times to the present day. From a paleoceanographic perspective, there is good correlation between V-shaped ridge activity and changes in overflow of the ancient precursor to North Atlantic Deep Water. This complete history of the Iceland

  5. A 40-million-year history of atmospheric CO(2).

    PubMed

    Zhang, Yi Ge; Pagani, Mark; Liu, Zhonghui; Bohaty, Steven M; Deconto, Robert

    2013-10-28

    The alkenone-pCO2 methodology has been used to reconstruct the partial pressure of ancient atmospheric carbon dioxide (pCO2) for the past 45 million years of Earth's history (Middle Eocene to Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple ocean localities that express a wide range of oceanographic and algal growth conditions that potentially bias CO2 results. In this study, we present a pCO2 record spanning the past 40 million years from a single marine locality, Ocean Drilling Program Site 925 located in the western equatorial Atlantic Ocean. The trends and absolute values of our new CO2 record site are broadly consistent with previously published multi-site alkenone-CO2 results. However, new pCO2 estimates for the Middle Miocene are notably higher than published records, with average pCO2 concentrations in the range of 400-500 ppm. Our results are generally consistent with recent pCO2 estimates based on boron isotope-pH data and stomatal index records, and suggest that CO2 levels were highest during a period of global warmth associated with the Middle Miocene Climatic Optimum (17-14 million years ago, Ma), followed by a decline in CO2 during the Middle Miocene Climate Transition (approx. 14 Ma). Several relationships remain contrary to expectations. For example, benthic foraminiferal δ(18)O records suggest a period of deglaciation and/or high-latitude warming during the latest Oligocene (27-23 Ma) that, based on our results, occurred concurrently with a long-term decrease in CO2 levels. Additionally, a large positive δ(18)O excursion near the Oligocene-Miocene boundary (the Mi-1 event, approx. 23 Ma), assumed to represent a period of glacial advance and retreat on Antarctica, is difficult to explain by our CO2 record alone given what is known of Antarctic ice sheet history and the strong hysteresis of the East Antarctic Ice Sheet once it has grown to continental dimensions. We also demonstrate that in the

  6. Revival and Identification of Bacterial Spores in 25- to 40-Million-Year-Old Dominican Amber

    NASA Astrophysics Data System (ADS)

    Cano, Raul J.; Borucki, Monica K.

    1995-05-01

    A bacterial spore was revived, cultured, and identified from the abdominal contents of extinct bees preserved for 25 to 40 million years in buried Dominican amber. Rigorous surface decontamination of the amber and aseptic procedures were used during the recovery of the bacterium. Several lines of evidence indicated that the isolated bacterium was of ancient origin and not an extant contaminant. The characteristic enzymatic, biochemical, and 16S ribosomal DNA profiles indicated that the ancient bacterium is most closely related to extant Bacillus sphaericus.

  7. luxS in bacteria isolated from 25- to 40-million-year-old amber.

    PubMed

    Santiago-Rodriguez, Tasha M; Patrício, Ana R; Rivera, Jessica I; Coradin, Mariel; Gonzalez, Alfredo; Tirado, Gabriela; Cano, Raúl J; Toranzos, Gary A

    2014-01-01

    Interspecies bacterial communication is mediated by autoinducer-2, whose synthesis depends on luxS. Due to the apparent universality of luxS (present in more than 40 bacterial species), it may have an ancient origin; however, no direct evidence is currently available. We amplified luxS in bacteria isolated from 25- to 40-million-year-old amber. The phylogenies and molecular clocks of luxS and the 16S rRNA gene from ancient and extant bacteria were determined as well. Luminescence assays using Vibrio harveyi BB170 aimed to determine the activity of luxS. While the phylogeny of luxS was very similar to that of extant Bacillus spp., amber isolates exhibited unique 16S rRNA gene phylogenies. This suggests that luxS may have been acquired by horizontal transfer millions of years ago. Molecular clocks of luxS suggest slow evolutionary rates, similar to those of the 16S rRNA gene and consistent with a conserved gene. Dendograms of the 16S rRNA gene and luxS show two separate clusters for the extant and ancient bacteria, confirming the uniqueness of the latter group.

  8. Great Salt Lake sets record

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    The level of the Great Salt Lake, Utah, broke its 1873 record on May 12, 1986, rising to 1283.7 m above mean sea level, according to the U.S. Geological Survey (USGS). Heavy snowpack remains in the lake's drainage basin, and the lake is likely to continue rising into June. “It could well go up another foot [i.e., ˜0.3 m],” this season, according to Ted Arnow, USGS district chief in Utah.The Utah state legislature convened a special session on May 13 to discuss measures to control the flooding. Last year, the legislature began to consider funding a plan to pump water from the Great Salt Lake to form a large, shallow pond in the desert 48 km to the west. Because the lake's level was predicted to drop this year, however, the lawmakers postponed action on the issue (Eos, September 10, 1985, p. 641). The Rose Park area of Salt Lake City, which lies below the lake's current level, has been diked, but groundwater is backing up into Rose Park and has to be pumped out over the dikes, Arnow said. Also, trains that use the Southern Pacific railroad causeway, which crosses the lake, have had to be temporarily rerouted south of the lake during storms. The causeway has been progressively raised since 1983, but engineers now say that they can raise it no further because the added weight will make it sink into the lake, Arnow said. If the lake rises much higher, the interstate highway that runs by it might also have to shut down temporarily during storms, he added.

  9. Holocene Lake Records on Kamchatka

    NASA Astrophysics Data System (ADS)

    Diekmann, Bernhard; Biskaborn, Boris; Chapligin, Bernhard; Dirksen, Oleg; Dirksen, Veronika; Hoff, Ulrike; Meyer, Hanno; Nazarova, Larisa

    2014-05-01

    The availibility of terrestrial records of Holocene palaeoenvironmental changes in eastern Siberia still is quite limited, compared to other regions on the northern hemisphere. In particular, the Kamchatka Peninsula as an important climate-sensitive region is very underrepresented. Situated at the border of northeastern Eurasia, the maritime-influenced terrestrial setting of Kamchatka offers the potential to pinpoint connections of environmental changes between the periglacial and highly continental landmasses of eastern Siberia and the sub-Arctic Pacific Ocean and Sea of Okhotsk. The study region lies at the eastern end-loop of the global thermohaline ocean conveyor belt and is strongly affected by atmospheric teleconnections. Volcanic, tectonic, and glacial processes overprint palaeoenvironmental changes in addition to primary climate forcing. In order to widen our understanding of plaeoclimate dynamics on Kamchatka, sediment cores from different lake systems and peat sections were recovered and analysed by a multi-proxy approach, using sedimentological and geochemical data as well as fossil bioindicators, such as diatoms, pollen, and chironomids. Chronostratigraphy of the studied records was achieved through radiocarbon dating and tephrostratigraphy. Sediment cores with complete Holocene sedimentary sequences were retrieved from Lake Sokoch, an up to six metre deep lake of proglacial origin, situated at the treeline in the Ganalsky Ridge of southern central Kamchatka (53°15,13'N, 157°45.49' E, 495 m a.s.l.). Lacustrine sediment records of mid- to late Holocene age were also recovered from the up to 30 m deep Two-Yurts Lake, which occupies a former proglacial basin at the eastern flank of the Central Kamchatka Mountain Chain, the Sredinny Ridge (56°49.6'N, 160°06.9'E, 275 m a.s.l.). In addition to sediment coring in the open and deep Two-Yurts Lake, sediment records were also recovered from peat sections and small isolated forest lakes to compare

  10. Big lake records preserved in a little lake's sediment: An example from Silver Lake, Michigan, USA

    USGS Publications Warehouse

    Fisher, T.G.; Loope, W.L.; Pierce, W.; Jol, H.M.

    2007-01-01

    We reconstruct postglacial lake-level history within the Lake Michigan basin using soil stratigraphy, ground-penetrating radar (GPR), sedimentology and 14C data from the Silver Lake basin, which lies adjacent to Lake Michigan. Stratigraphy in nine vibracores recovered from the floor of Silver Lake appears to reflect fluctuation of water levels in the Lake Michigan basin. Aeolian activity within the study area from 3,000 years (cal yr. B.P.) to the present was inferred from analysis of buried soils, an aerial photograph sequence, and GPR. Sediments in and around Silver Lake appear to contain a paleoenvironmental record that spans the entire post-glacial history of the Lake Michigan basin. We suggest that (1) a pre-Nipissing rather than a Nipissing barrier separated Silver Lake basin from the Lake Michigan basin, (2) that the Nipissing transgression elevated the water table in the Silver Lake basin about 6,500 cal yr. B.P., resulting in reestablishment of a lake within the basin, and (3) that recent dune migration into Silver Lake is associated with levels of Lake Michigan.

  11. Observations of the Interstellar Medium Along the Historical Solar Trajectory: Temporal Evolution of the Heliosphere Over the Last 40 Million Years

    NASA Astrophysics Data System (ADS)

    Redfield, S.; Wyman, K.

    2013-12-01

    Over the course of our motion through the Galaxy, the Solar System has encountered many interstellar environments of varying characteristics. ISM density variations spanning six orders of magnitude are commonly seen throughout the general Galactic environment, and a sufficiently dense cloud within this range has the potential to compress the heliosphere to within one AU. We present a reconstruction of the density profile for the clouds we have most recently passed through based on high-resolution optical spectra towards nearby stars. Observations were made of interstellar NaI and CaII absorption towards 43 bright stars along the historical path of solar motion in our orbit around the center of the Galaxy. No absorption is seen out to a distance of 120 pc (consistent with the Local Bubble), but a complex collection of absorbers (up to 10 components) is seen in stars between 130 and 610 parsecs. A possible link between our local interstellar environment, cosmic rays, and our planetary climate has long been a subject of interest. Compression of the heliosphere (one of our three cosmic ray shields) due to passage through a dense interstellar cloud could have significant effects on Earth: global cooling (atmospheric dust deposition), weather patterns (cloud nucleation), and evolution (DNA mutations). A time scale of interaction with each ISM component in this path can be constructed and ultimately compared with Earth's geologic record. While a number of assumptions go into translating the ISM features observed today, with the interstellar environment with the Sun in the past, this work at least provides a plausible temporal evolution of the heliosphere. Indeed, we now know that many, if not all, nearby stars have exoplanets. These are traversing their own unique paths through the ISM. As we plan to evaluate planet habitability, the temporal evolution of the helio/astrosphere and cosmic ray flux, as dictated by the surrounding interstellar medium will be of critical

  12. Deglacial and lake level fluctuation history recorded in cores, Beaver Lake, Upper Peninsula, Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Whitman, Richard L.

    1999-01-01

    Sediment cores collected from the littoral and pelagic zones of Beaver Lake, Michigan record fluctuations in the water level of Lake Superior. Beaver Lake is a small 300 ha lake in Pictured Rocks National Lakeshore (PRNL) now separated from Lake Superior by a dune-capped barrier bar. Cores were collected using a vibracorer from a lake-ice platform in February 1997. A 2.85 m long core in 10 m of water contains well-sorted sand, rhythmites, peat, interbedded sand and gyttja, and is capped with 1 m of massive gyttja. A 9480 BP AMS age from the basal sand provides a minimum deglacial date for the area. Further analysis indicates a sand-dominated depositional environment from a low lake stand at approximately 8500 BP to present. An approximate 8800 BP red to gray sediment color transition records either the cessation of meltwater input from Lake Agassiz or receding ice, while a younger similarly colored transition, 6600 BP in age, likely records sediment reworking in the coastal zone. Four AMS ages on peat range from 8520 to 7340 BP and are indicative of the Houghton low phase. Burial of the peat by stratified sand and gyttja after 7340 BP indicates a rising lake level. Peat at a higher level in the lake basin, encountered in shallow littoral cores, ranges in age from 6800 to 6420 BP, which estimates a 0.91 m rise/century in lake level to the Nipissing level by 5000 BP.

  13. Authigenic Molybdenum Isotopes Record Lake Baikal in the Past

    NASA Astrophysics Data System (ADS)

    Yu, E.; Liu, H.; Lee, D.

    2013-12-01

    Authigenic molybdenum isotope signatures in marine sediments reflect the mechanisms of deposits under both oxic and reducing conditions. The studies are mainly focusing on marine environment, and the application on lake record is rare. A three-meters long gravity core (GC-99; 52°05'23'N, 105°50'24'E; water depth 201m) from Lake Baikal is studied for Mo isotopes and concentration. The result is using to examine the sources of material or/and the changes in conditions of Lake Baikal with climate changes. To approach on extracting Mo isotope signal directly related to lake water, a sequential leaching technique to extract the Mo isotopes coating on the Fe-Mn oxides and a robust chromatography technique to purify molybdenum isotopes is modified and used for all lake sediment samples. Then, Mo isotope composition is measured by applying double spike method with Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). According to the Mo concentration and its isotope composition δ98/95Mo relative to NIST-SRM-3134, the results imply Lake Baikal stayed oxic condition over the last 24 ka. Moreover, the sediment core GC-99 from Lake Baikal imply two stages fluctuations of the lake environment separated at core depth of 100cm (around 12ka); and the shifting of δ98/95Mo isotope composition shows that the lake during interglacial period was more oxic than the last glacial period due to absence of ice cover.

  14. Lake sediment records as earthquake catalogues: A compilation from Swiss lakes - Limitations and possibilities

    NASA Astrophysics Data System (ADS)

    Kremer, Katrina; Reusch, Anna; Wirth, Stefanie B.; Anselmetti, Flavio S.; Girardclos, Stéphanie; Strasser, Michael

    2016-04-01

    Intraplate settings are characterized by low deformation rates and recurrence intervals of strong earthquakes that often exceed the time span covered by instrumental records. Switzerland, as an example for such settings, shows a low instrumentally recorded seismicity, in contrast to strong earthquakes (e.g. 1356 Basel earthquake, Mw=6.6 and 1601 Unterwalden earthquake, Mw=5.9) mentioned in the historical archives. As such long recurrence rates do not allow for instrumental identification of earthquake sources of these strong events, and as intense geomorphologic alterations prevent preservation of surface expressions of faults, the knowledge of active faults is very limited. Lake sediments are sensitive to seismic shaking and thus, can be used to extend the regional earthquake catalogue if the sedimentary deposits or deformation structures can be linked to an earthquake. Single lake records allow estimating local intensities of shaking while multiple lake records can furthermore be used to compare temporal and spatial distribution of earthquakes. In this study, we compile a large dataset of dated sedimentary event deposits recorded in Swiss lakes available from peer-reviewed publications and unpublished master theses. We combine these data in order to detect large prehistoric regional earthquake events or periods of intense shaking that might have affected multiple lake settings. In a second step, using empirical seismic attenuation equations, we test if lake records can be used to reconstruct magnitudes and epicentres of identified earthquakes.

  15. PSV records from sediments of modern lakes (Aslikyl, Svir, Naroch).

    NASA Astrophysics Data System (ADS)

    Kuzina, D.; Kosareva, L.; Nourgaliev, D.; Kosarev, V.

    2014-12-01

    During the last 20 years, our paleomagnetic group had investigated many lakes with the aim to know the behavior of the geomagnetic field during the Holocene. Lake sediments are the good presenters of the paleosecular variation (PSV) records. In this paper are presented materials from Lakes Aslikul (Russia, 54o 25' N, 54o 07' E), Svir (Belorussia, 54o 47' N; 26o 30' E), Naroch (Belorussia, 54o 51' N, 26o 51' E). Samples of lake floor sediments were collected using a piston corer designed and manufactured at the Kazan University as a prototype were used piston corer which had been designed and used by F. J. H. Mackereth. Three cores were collected from each Lake Aslikul and Svir and six cores from Lake Naroch. Cores length was between 3,5-6,5 meters. Sediments were subsampled into cubic nonmagnetic plastic boxes. Their magnetic susceptibilities were then measured using a MS2-B instrument, and their natural remanent magnetization (NRM) (module and direction) was measured using a JR-4 magnetometer. Based on this data were built generalized record for each parameter. We compared the geomagnetic field variations recorded in our study with the records reported in the literature for the sediments in the different lakes. Our data have a good PSV records correlation with other data so we can obtain age of sediments according to PSV records. The dating of lakes sediments was also improved and further detailed by radiocarbon dating that gave the same results. Some characteristic features, the B and S minima and the Y and E maxima (cf. nomenclature of Thompson and Turner, 1982) are recognized. All peaks have a wide but complicated structure. Studied lakes compared to the other European records available, it can be concluded that the PSV master curves obtained in this study can be used to model Holocene geomagnetic variations. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University also by RFBR research projects No. 14

  16. A full lipid biomarker based record from Lake Challa, Tanzania

    NASA Astrophysics Data System (ADS)

    Blaga, C. I.; de Leeuw, J. W.; Verschuren, D.; Sinninghe Damsté1, J. S.

    2012-04-01

    The climate of the regions surrounding the Indian Ocean - East Africa, Arabian and Indian peninsulas - is strongly dominated by the dynamics of the seasonal monsoon. To understand the long and short term driving forces behind the natural climatic variability in this region it is highly important to reconstruct climatic changes in the past and, thereby, predict future changes taking into account also anthropogenic activities. Most low latitude locations lack continuous, highly resolved continental records with good age control. From the few existing records acquired from tropical glacier ice, cave stalagmites and fossil diatoms a thorough understanding of the climatic variations reflected (rainfall and drought or temperature and its effect on precipitation) is scanty. Chemically stratified crater lakes accumulate high-quality climate-proxy records as shown in very recent studies done on the continuous and finely laminated sediment record of Lake Challa situated on the lower East slope of Mt. Kilimanjaro (Verschuren et al. 2009; Wolff et al. 2011). The unique location of this lake in equatorial East Africa implies that the climate variability is influenced by the Indian Ocean and not by the Atlantic due to the Congo Air Boundary (Thierney et al. 2011). The objective of this study is to fully explore the biomarker content of the Lake Challa sedimentary record already characterized by an excellent time resolution and chronology. Various normal chain lipids (n-alkanes, n-fatty acids, n-alcohols), sterols, long-chain diols, triterpenoids and glycolipids in sedimentary organic matter, were determined in their solvent-extractable (free) and saponification-released forms (bound). The changing composition of organic matter content from the investigated lake is used as a framework to trace palaeo-humidity, terrestrial input, algal input, temperature in sediment traps and underlying sediments of Lake Challa to further our palaeo-environmental knowledge based on GDGT's and

  17. A Record of the in-Lake and Upland Response to Large Earthquakes, Lake Quinault, Washington

    NASA Astrophysics Data System (ADS)

    Leithold, E. L.; Wegmann, K. W.; Bohnenstiehl, D. R.; Smith, S. A.

    2014-12-01

    Lake Quinault, located at the foot of the Olympic Mountains in western Washington, has served as a trap for sediment delivered from the steep, landslide-prone terrain of the Upper Quinault River catchment since its formation between 20,000 and 29,000 years ago. High resolution seismic reflection and sedimentological data reveal a record of both the in-lake and upland response to large earthquakes that have impacted the region during that period. The sedimentary infill of Lake Quinault is dominated by deposition during river floods, which delivered both abundant siliciclastic sediment and plant debris to the lake bottom. Minor episodes of soft-sediment deformation at the lake margins are recorded, and based on a preliminary age model, may be related to known earthquakes, including the well documented 1700 AD Cascadia megathrust event. By far the most dramatic event in the middle-late Holocene record of Lake Quinault, however, is the lateral spreading and degassing of sediments on its gentle western slopes during an event ca. 1300 years ago. Abundant gas chimneys are visible in seismic stratigraphic profiles from this part of the lake. Several of these gas chimneys extend from the limit of seismic penetration at 15-20 m depth in the lake bed upward to the lake bottom where they terminate at mounds with evidence for active venting. Most of the gas chimneys, however, end abruptly around 2.5 m beneath the lake floor and are overlain by parallel, continuous reflectors. Piston cores show soft-sediment deformation at this level, and abrupt shifts in density, magnetic susceptibility, flood layer thickness, particle size, color, and inorganic geochemistry. We interpret these shifts to mark the contact between sediments that experienced shaking and degassing during a strong earthquake event and overlying sediments that have not experienced comparable seismicity. The earthquake evidently strongly affected the Upper Quinault River catchment, causing increased sediment input to

  18. A Prehistorical Record of Cultural Eutrophication from Crawford Lake, Canada

    SciTech Connect

    Ekdahl, E J; Teranes, J; Guilderson, T; Turton, C L; McAndrews, J H; Wittkop, C A; Stoermer, E F

    2004-08-05

    Cultural eutrophication--the process by which human activities increase nutrient input rates to aquatic ecosystems and thereby cause undesirable changes in surface-water quality--is generally thought to have begun with the start of the industrial era. The prehistoric dimension of human impacts on aquatic ecosystems remains relatively undescribed, particularly in North America. Here we present fossil plankton data (diatoms and rotifers), organic and inorganic carbon accumulations, and carbon isotope ratios from a 1000-yr sediment core record from Crawford Lake, Ontario, Canada. The data documents increased nutrient input to Crawford Lake caused by Iroquoian horticultural activity from A.D. 1268 to 1486 and shows how this increased nutrient input elevated lake productivity, caused bottom-water anoxia, and irreversibly altered diatom community structure within just a few years. Iroquoian settlement in the region declined in the fifteenth century, yet diatom communities and lake circulation never recovered to the predisturbance state. A second phase of cultural eutrophication starting in A.D. 1867, initiated by Canadian agricultural disturbance, increased lake productivity but had comparatively less of an impact on diatom assemblages and carbon-storage pathways than the initial Iroquoian disturbance. This study deepens our understanding of the impact of cultural eutrophication on lake systems, highlights the lasting influence of initial environmental perturbation, and contributes to the debate on the ecological impacts of density and agricultural practices of native North American inhabitants.

  19. Directly dated MIS 3 lake-level record from Lake Manix, Mojave Desert, California, USA

    USGS Publications Warehouse

    Reheis, Marith; Miller, David M.; McGeehin, John P.; Redwine, Joanna R.; Oviatt, Charles G.; Bright, Jordon E.

    2015-01-01

    An outcrop-based lake-level curve, constrained by ~ 70 calibrated 14C ages on Anodonta shells, indicates at least 8 highstands between 45 and 25 cal ka BP within 10 m of the 543-m upper threshold of Lake Manix in the Mojave Desert of southern California. Correlations of Manix highstands with ice, marine, and speleothem records suggest that at least the youngest three highstands coincide with Dansgaard–Oeschger (D–O) stadials and Heinrich events 3 and 4. The lake-level record is consistent with results from speleothem studies in the Southwest that indicate cool wet conditions during D–O stadials. Notably, highstands between 43 and 25 ka apparently occurred at times of generally low levels of pluvial lakes farther north as interpreted from core-based proxies. Mojave lakes may have been supported by tropical moisture sources during oxygen-isotope stage 3, perhaps controlled by southerly deflection of Pacific storm tracks due to weakening of the sea-surface temperature gradient in response to North Atlantic climate perturbations.

  20. Lake Sediment Records on Climate Change and Human Activities in the Xingyun Lake Catchment, SW China

    PubMed Central

    Zhang, Wenxiang; Ming, Qingzhong; Shi, Zhengtao; Chen, Guangjie; Niu, Jie; Lei, Guoliang; Chang, Fengqin; Zhang, Hucai

    2014-01-01

    Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun′s catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60–1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun’s catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years. PMID:25033404

  1. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China.

    PubMed

    Zhang, Wenxiang; Ming, Qingzhong; Shi, Zhengtao; Chen, Guangjie; Niu, Jie; Lei, Guoliang; Chang, Fengqin; Zhang, Hucai

    2014-01-01

    Sediments from Xinyun Lake in central Yunnan, southwest China, provide a record of environmental history since the Holocene. With the application of multi-proxy indicators (total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N isotopes, C/N ratio, grain size, magnetic susceptibility (MS) and CaCO3 content), as well as accelerator mass spectrometry (AMS) 14C datings, four major climatic stages during the Holocene have been identified in Xingyun's catchment. A marked increase in lacustrine palaeoproductivity occurred from 11.06 to 9.98 cal. ka BP, which likely resulted from an enhanced Asian southwest monsoon and warm-humid climate. Between 9.98 and 5.93 cal. ka BP, a gradually increased lake level might have reached the optimum water depth, causing a marked decline in coverage by aquatic plants and lake productivity of the lake. This was caused by strong Asian southwest monsoon, and coincided with the global Holocene Optimum. During the period of 5.60-1.35 cal. ka BP, it resulted in a warm and dry climate at this stage, which is comparable to the aridification of India during the mid- and late Holocene. The intensifying human activity and land-use in the lake catchment since the early Tang Dynasty (∼1.35 cal. ka BP) were associated with the ancient Dian culture within Xingyun's catchment. The extensive deforestation and development of agriculture in the lake catchment caused heavy soil loss. Our study clearly shows that long-term human activities and land-use change have strongly impacted the evolution of the lake environment and therefore modulated the sediment records of the regional climate in central Yunnan for more than one thousand years.

  2. Lakes as recorders of extreme flows: a millennial-scale palaeoflood record from the English Lake District

    NASA Astrophysics Data System (ADS)

    Schillereff, D.; Chiverrell, R.; Macdonald, N.; Hooke, J.

    2012-04-01

    Greater insight into the relationship between climatic fluctuations and the frequency and magnitude of precipitation events over recent centuries is crucial in the context of future warming and projected intensification of hydrological extremes. In the absence of suitably long-term quantitative measures of hydrological activity, the potential for natural archives to reveal records of past extreme events is considerable. In particular, upland lake basins can record the geomorphic effects of intense precipitation events as efficient sediment trapping in the coarse-sand to silt range by lakes renders flow-related proxy indicators (e.g., particle size) reflective of changes in river discharge. We demonstrate that a series of sediment cores (3 - 5 m length) from Brotherswater, English Lake District, contain numerous coarse-grained laminations, discerned by applying high-resolution (0.5 cm) laser granulometry and which are interpreted as reflecting a palaeoflood record extending to ~2000 yr BP. Chronologies were derived for the cores using radionuclide (210Pb, 137Cs, 14C) dating and geochemical markers which reflect the local mining history (e.g., Pb, Zn and Ba). Geochemical and magnetic profiles have enabled precise core correlation and the repeatability of the flood stratigraphy in the lake basin to be assessed. The presence of thick facies which exhibit inverse grading underlying normal grading, most likely reflecting the waxing and waning of flood-induced hyperpycnal flows, supports our palaeoflood interpretation. The particle size data, normalized using 20-point µ and σ moving windows to negate the impact of long-term variability in the sediment regime, show a strong correlation between coarse-grained facies and the historical flood record for the Eden catchment during the last 300 years. This supports our assertion that the sediment record is strongly coupled to the hydrological regime. The extended 2000-year time series highlights a greater frequency of intense

  3. A 7000-year Lacustrine Record from Angel Lake, Nevada

    NASA Astrophysics Data System (ADS)

    Munroe, J. S.; Laabs, B. J.

    2009-12-01

    Angel Lake is a tarn at 2554 m asl in the East Humboldt Mountains of northeastern Nevada. To develop a post-glacial paleoclimate record for the lake, a sediment core was retrieved in June, 2007. The core was retrieved in 9.14 m of water, and extended from the sediment-water interface to a depth of 4.54 m below the lake bottom. The basal sediment of the core contains disseminated shards of Mazama tephra, and that ash, along with 5 AMS radiocarbon dates, supports a depth-age model that spans ~7 ka BP. Multiple proxies were investigated at 1-cm intervals including: water content, loss on ignition (LOI), magnetic susceptibility (MS), reflected light spectrophotometry, grain size distribution, and biogenic silica content. MS values generally decreases upward while LOI and water content show significant transient departures from an overall increasing trend through the record. Biogenic silica and detrended LOI values are notably above average from 1 to 2 ka BP and ca. 7 ka BP, suggesting a warmer, more productive lake environment. A pronounced low in detrended LOI is centered on 3.4 ka BP, suggesting decreased productivity. Mean grain size is highly variable, with spikes in the record reflecting delivery of clastic debris to the coring site by high-energy events. Because the core was retrieved from the opposite side of the depocenter from the inlet stream in water ~2 m shallower than the deepest part of the basin, these clastic layers are not considered evidence of fluvial inputs. Instead, these layers are interpreted to represent avalanche deposits onto the lake ice during the winter and spring. Avalanche events were identified as peaks in mean grain size rising above a background level determined by running a Gaussian smoothing function through the grain size time series. The frequency of avalanches was below average from 1.8 to 3.2 ka BP, overlapping the low in detrended LOI. In contrast, avalanches were quite common, up to 2-times the long-term average, from 3.2 to 3

  4. A Long Pleistocene Paleoclimate Record from Stoneman Lake, Arizona

    NASA Astrophysics Data System (ADS)

    Fawcett, P. J.; Anderson, R. S.; Brown, E. T.; Werne, J. P.; Jimenez-Moreno, G.; Toney, J. L.; Garcia, D.; Garrett, H. L.; Dunbar, N. W.

    2015-12-01

    Long continuous lake sediment cores provide enormous potential for interpreting climate change. In the American Southwest, long records are revolutionizing our understanding of megadroughts, which have occurred in the past and will most certainly occur in the future with rapidly changing climate. One site with the potential to study ancient megadroughts is Stoneman Lake, central Arizona, whose basin is a circular depression formed by a collapse in late Tertiary volcanics. The lake is spring fed, most recently alternating between a marsh and a lake, with water levels having fluctuated by > 3 meters over the last 25 years. Its small closed drainage basin (ca. 2.5 km2) with one small inflowing stream is key to the sensitivity of the record. Two parallel lacustrine sediment cores (70 m and 30 m deep) were recovered in October of 2014. Our preliminary chronology includes 8 AMS dates in the upper 7 m and two distinct tephras at 30.8 m depth and 36.3 m depth. Radiocarbon dates show a 2.7-m-thick Holocene section, and then a low Pleistocene SAR with an age of 11,000 cal yr B.P. at ~2.8 m to an age of 46,500 cal yr B.P. at 4.2 m depth. We estimate that the 70-m deep hole will provide a climate record back to ~1.3 million years ago. Of particular interest are the interglacials that serve as good analogs for future climate including MIS 11 and MIS 19. Initial core description includes MS, bulk density and high-resolution images. Holocene sediments are characterized by massive, dark organic rich silty clays with no distinct lamination. Sediments from the Last Glacial Maximum are well-laminated, light brown silty clays with few organics present. The distinctive laminations probably represent a very deep lake and therefore a wet cold climate, also verified by pollen data. There are several repeated intervals of laminated sediments deeper in the core that may represent older glacial maxima. Future work will include detailed pollen, plant macrofossil and charcoal analysis

  5. A middle Wisconsin pollen record from Hay Lake, Arizona

    NASA Astrophysics Data System (ADS)

    Jacobs, Bonnie Fine

    1985-07-01

    The lower part of a 5-m core from Hay Lake (34°N, 109° 25'W) at 2780 m in east-central Arizona provides a pollen record for the middle Wisconsin. Identification of fossil pines is based on a key modified from Hansen and Cushing (1973, Geological Society of America Bulletin84, 1181-1200). Pinus edulis and P. monophylla are similar in size and morphology but are significantly different from P. flexilis. Haploxylon pines dominate the pollen record. The abundance of pinyon pines during the middle Wisconsin is interpreted as indicating that this group was widespread at lower elevations. The local vegetation was mixed conifer forest consisting of Picea, P. aristata, P. flexilis and/or P. strobiformis, and with P. ponderosa and/or P. contorta after about 26,000 yr B.P. Tree line was above the elevation of Hay Lake. The middle Wisconsin climate is inferred to have been cooler than today and is marked by more available moisture that permitted pinyon pines to grow at low elevations.

  6. A 150 year precipitation record preserved in lake sediments of Lake Gahai in the Qaidam Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.

    2012-12-01

    A 150 year precipitation record preserved in lake sediments of Lake Gahai in the Qaidam Basin, northwest China Li Xiangzhong a, Liu Weiguoa, b a State Key Laboratory of Loess and Quaternary Geology, IEE, CAS, Xi'an, 710075, China b School of Human Settlement and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, China Abstract Usually, the oxygen isotopic compositions of ostracods from the lake sediments are interpreted as changes in effective precipitation, temperature and evaporation/input water ratio in a sub-arid or arid area. Here, we compare a 150-year-long oxygen-isotope record that was derived from ostracod carbonate from the sediment core (in a seven-year resolution) of Lake Gahai in the Qaidam Basin with meteorological data (precipitation) and tree-ring evidence for changing precipitation. Our results show that the increased precipitation accompanied a shift to less positive δ18O values in the lake water, and hence of the ostracod shells, whereas decreased precipitation coincides with the opposite in Lake Gahai over the past ~150 years. The sole occurrence of the ostracod E. mareotica also indicates that the lake's salinity may have experienced no marked change over the past 150 years. Therefore, we conclude that the oxygen isotopic compositions of ostracod shells can be used to indicate changes in precipitation for paleoclimatic reconstruction over a short time scale in Lake Gahai. Keywords: oxygen isotope; ostracod; precipitation; Lake Gahai, Qaidam Basin

  7. Climatic record of the Iberian peninsula from lake Moncortes' sediments

    NASA Astrophysics Data System (ADS)

    Cao, Min; Huguet, Carme; Rull, Valenti; Valero, Blas; Rosell-Mele, Antoni

    2014-05-01

    Climatic record of the Iberian peninsula from lake Moncortes' sediments Min Cao1, Carme Huguet1, Valenti Rull2, Blas L. Valero-Garces3, Antoni Rosell-Melé1,4 1Institut de Ciència i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain; 2Institut de Botanic de Barcelona (CSIC), Passeig del Migdia s/n, 08038, Barcelona, Spain, 3 Instituto Pirenaico de Ecologıa (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain, 4Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain. The continuing buildup of industrial greenhouse gases in the atmosphere and concomitant increase in global temperatures has made much of the world's society aware that decades to centuries of environmental change lie ahead, and that these will have profound economic, political and societal impacts. The Iberian Peninsula lies in the boundary between tropical and subtropical climates and seems to amplify the climatic signals form the northern hemisphere through both atmospheric and water circulation feedbacks, making it an ideal site to monitor Northern hemisphere climate changes. This extreme sensitivity to climatic changes also makes the Iberian Peninsula extremely vulnerable to future climate changes. This is why understanding sensitivity to climate change and the consequences it will have on both climate and the hydrological cycle is key to implement preventive measures. The aim of our study is to come up with a high resolution quantitative reconstruction of climate variability (temperature, production and precipitation) in the Iberian Peninsula from lake sediments. We also want to establish the relation between those changes and the ones observed in both ice cores from Greenland and paleotemperature records from marine sediments of the continental Iberian margin. For these reasons we sampled a core in Moncortes (42.3N, 0.99E), a lake of karstic origin with an average depth of 25m and an area of 0

  8. Holocene Record Of The Cuitzeo Lake, Michoacan, Central Mexico

    NASA Astrophysics Data System (ADS)

    Israde-Alcantar, I.; Bischoff, J.; Cram, S.; Ruiz-Fernandez, C.; Barron, J.; Lozano-Garcia, S.; Ortega-Guerrero, B.; Garduño-Monroy, V. H.

    2007-05-01

    A 205 cm-long core spanning the last ca.10,000 years was taken in the western basin of Lake Cuitzeo, located in the tectonic depressions of central Mexico. Age control for the core is provided by four AMS dates on organic sediment. The uppermost 30 cm of the core appears to be highly bioturbated according to Pb210 chronologies. A time plot of mass-accumulation rates of sediment (g/cm2/kyr) shows high rates from 10,000 to 6000 yrs BP, strikingly reduced mid-Holocene rates, and increasing rates post 1000 yrs (which could be due to introduction of European ranching and agriculture). Organic and inorganic carbon (TOC. TIC), diatoms, iron and titanium concentrations were analyzed and used to infer variations in the hydrological cycle and climatic conditions. The lower part of the core (ca.8000 C14 yr B.P.) is characterized by high percents of CaCO3 (more than 35 percent) which rapidly declines to values less than 20 percent after ca. 6000 C14 yr B.P., likely reflecting reduced summer precipitation due to decline summer insolation. Coincident with this decline in percents CaCO3 there is a decline greater that two-fold sediment accumulation rates and an increase in percents TOC. Two peaks TOC are recorded at 909 and 6744 C14 yr B.P. suggesting increased precipitation. The TOC peak at 909 C14 yr B.P. may be associated with increased precipitation during the Medieval Warm Period. The middle Holocene TOC peak at 6744 C14 yr B.P. coincides with a period of increased precipitation in the Cariaco Basin of Venezuela. These changes in precipitation are similar to those recorded in lake records from Guatemala and the marine record of the Cariaco Basin and can be explained by shifts in the mean latitude of the Atlantic Intertropical Convergence Zone (ITCZ). The upper 100 cm of the core was studied at 1 cm intervals for metals (Al, Fe, Ti, Pb, etc.) using ICPMS geochemistry. These metals show strong cycles throughout the studied interval which may reflect wet-dry cycles. A two fold

  9. The importance of catchment vegetation for lake sediment mercury records

    NASA Astrophysics Data System (ADS)

    Rydberg, Johan; Rösch, Manfred; Heinz, Emanuel; Biester, Harald

    2014-05-01

    elements, because coniferous forest intercepts more mercury from the atmosphere than deciduous forest. Secondly, changes in the vegetation will also affect the re-emission of mercury, because of differences in the shading. Thirdly, the vegetation will influence soil stability, production of litter, litter quality, degradation of soil organic matter. This will, in turn, affect the cycling of organic material, which is an important vector for many trace elements, and the soil erosion. Thus, before using lake sediment records to study the historical changes in mercury loading to the environment there is a need to constrain if there have been any changes in the vegetation. However, this study also shows that long lake-sediment records have a large potential as natural laboratories to study the effect of slow processes, like vegetation development, on the transport and accumulation of mercury and other trace elements through the landscape.

  10. Do peatlands or lakes provide the most comprehensive distal tephra records?

    NASA Astrophysics Data System (ADS)

    Watson, E. J.; Swindles, G. T.; Lawson, I. T.; Savov, I. P.

    2016-05-01

    Despite the widespread application of tephra studies for dating and correlation of stratigraphic sequences ('tephrochronology'), questions remain over the reliability and replicability of tephra records from lake sediments and peats, particularly in sites >1000 km from source volcanoes. To address this, we examine the tephrostratigraphy of four pairs of lake and peatland sites in close proximity to one another (<10 km), and evaluate the extent to which the microscopic (crypto-) tephra records in lakes and peatlands differ. The peatlands typically record more cryptotephra layers than nearby lakes, but cryptotephra records from high-latitude peatlands can be incomplete, possibly due to tephra fallout onto snow and subsequent redistribution across the peatland surface by wind and during snowmelt. We find no evidence for chemical alteration of glass shards in peatland or lake environments over the time scale of this study (mid-to late- Holocene). Instead, the low number of basaltic cryptotephra layers identified in distal peatlands reflects the capture of only primary tephra-fall, whereas lakes concentrate tephra falling across their catchments which subsequently washes into the lake, adding to the primary tephra fallout received in the lake. A combination of records from both lakes and peatlands must be used to establish the most comprehensive and complete regional tephrostratigraphies. We also describe two previously unreported late Holocene cryptotephras and demonstrate, for the first time, that Holocene Icelandic ash clouds frequently reached Arctic Sweden.

  11. A Holocene paleomagnetic record from Fish Lake, Oregon.

    NASA Astrophysics Data System (ADS)

    Ziegler, L. B.; Stoner, J. S.; Abbott, M. B.; Finkenbinder, M. S.; Hatfield, R. G.; Konyndyk, D.; Reilly, B.; Hillman, A. L.

    2014-12-01

    Paleo-geomagnetic observations provide fundamental models of the core and the geodynamo that cannot other- wise be obtained. Data and modeling studies are beginning to show that regions of concentrated magnetic flux (flux lobes) on the Core-Mantle boundary, those observed historically and others only hinted at from the short historical record, impose a structure on the geomagnetic field that may govern at least some components of geo- magnetic change. Accumulating evidence suggests that this structure reflects the influence of the lower mantle, yet this structure and the evolution of the geomagnetic field within it, even for the Holocene, are only beginning to be- come apparent. Comparison of specific, well-dated Holocene timeseries of PSV (sedimentary and archeomagnetic) inclination, declination, and paleointensity at key locations can provide intriguing insight when viewed through the lens of the known historical and assumed millennial flux lobes. A limiting factor for these studies is the uneven distribution of high quality data with independent chronologies, with Europe and the North Atlantic having better constrained data sets than North America. To begin to fill this data gap, we present initial results from an ongoing study of the paleomagnetic record from Fish Lake, Oregon. Initial evaluation of directions and intensity along with the construction of an independent chronology allow us to assess and build upon prior results to constrain the evolution of the North American flux lobe and refine our understanding of paleo-geomagnetic change during the Holocene.

  12. Ferromagnetic response of a sediment record from Lake Soppensee

    NASA Astrophysics Data System (ADS)

    Kind, J.; García-Rubio, I.; Gehring, A. U.

    2012-12-01

    Environmental magnetism uses the spatial and temporal occurrence of magnetic carriers as diagnostic tools to detect environmental changes. Concentration, composition, grain size, and configuration of magnetite can be indicative of the origin of this magnetic carrier. In order to reconstruct the development of Lake Soppensee (Central Switzerland) since the late Pleistocene, a detailed ferromagnetic resonance (FMR) spectroscopy analysis was applied. FMR is a powerful tool to probe the magnetic properties of ferrimagnetic materials. Sediments from Lake Soppensee were analyzed in order to deduce different processes causing the formation of magnetite and its preservation. Based on the occurrence of magnetite, the sediment record can be subdivided into three stages. The first stage, attributed to the deglaciation contains superparamagnetic (SP) magnetite that is detected by the low-temperature FMR analysis. The simultaneous occurrence of SP magnetite in sediments with predominant hematite is interpreted as magnetite formation in reducing interstitial voids within a prevailing oxic environment. The second stage, assigned to the Bølling/Allerød - Younger Dryas period contains stable single domain (SSD) magnetite in varying concentrations. During the Bølling/Allerød denser vegetation cover led to an increase of organic matter in the depositional environment, which accelerated the microbial activity and the consumption of oxygen and the enhanced formation of SSD magnetite. An opposite trend is found for the cold Younger Dryas period. The third stage during the fairly stable Holocene exhibits the formation of SSD magnetite solely. Even though no drastic climatic changes are documented throughout the Holocene, the magnetite content varies considerably. In sediments with high magnetite content, dispersed magnetite particles and magnetite in chain-like configuration were detected by anisotropy traits inferred from the FMR spectra. This configuration provides clear evidence

  13. A Sediment Record of Abrupt Lake Level Change in West-Central Minnesota

    NASA Astrophysics Data System (ADS)

    Mueller, S. B.; Triplett, L. D.; Myrbo, A.; Clotts, R. A.; Russell, J. M.; Shapley, M. D.

    2001-12-01

    Records of historical events preserved in lacustrine sediments are valuable for testing the conceptual models used in paleolimnology. The effects of climatic forcing and internal hydrologic dynamics are typically commingled in the geochemical signatures in sediments. However, Campbell Lake, Becker County, Minnesota, provides a record of abrupt lake-level drop unrelated to climate: in 1915 ditching reduced the lake surface area from 250 to 40 hectares and its average depth from three meters to one meter. We use sediment cores to assess the lake's response to this documented forcing, within the context of natural long-term variability. Existing paleoclimate studies from lakes in the region, as well as the historical record of anthropogenic impact to the lake, also make Campbell Lake a natural site to evaluate models of carbon and sulfur storage and carbon and oxygen stable isotope response to hydrologic changes. Loss-on-ignition and 210Pb chronology show only a slight increase in sedimentation rate following the drainage event, rather than the expected sharp increase due to reworking of littoral sediments. There is a dramatic rise in sedimentation rate around 1960, which may be indirectly related to the 1915 decrease in lake depth. The top 30 cm of sediment contains abundant carbonate stem casts from charophyte algae, indicating a shift to the lake's modern condition of aquatic macrophyte dominance. The time lag between lake-level drop and its manifestation in the sediments suggests that abrupt forcing events may not always be immediately reflected in the paleorecord.

  14. Expressions of climate perturbations in western Ugandan crater lake sediment records during the last 1000 years

    NASA Astrophysics Data System (ADS)

    Mills, K.; Ryves, D. B.; Anderson, N. J.; Bryant, C. L.; Tyler, J. J.

    2014-08-01

    Equatorial East Africa has a complex regional patchwork of climate regimes, sensitive to climate fluctuations over a variety of temporal and spatial scales during the late Holocene. Understanding how these changes are recorded in and interpreted from biological and geochemical proxies in lake sedimentary records remains a key challenge to answering fundamental questions regarding the nature, spatial extent and synchroneity of climatic changes seen in East African palaeo-records. Using a paired lake approach, where neighbouring lakes share the same geology, climate and landscape, it might be expected that the systems will respond similarly to external climate forcing. Sediment cores from two crater lakes in western Uganda spanning the last ~1000 years were examined to assess diatom community responses to late Holocene climate and environmental changes, and to test responses to multiple drivers using redundancy analysis (RDA). These archives provide annual to sub-decadal records of environmental change. Lakes Nyamogusingiri and Kyasanduka appear to operate as independent systems in their recording of a similar hydrological response signal via distinct diatom records. However, whilst their fossil diatom records demonstrate an individualistic, indirect response to external (e.g. climatic) drivers, the inferred lake levels show similar overall trends and reflect the broader patterns observed in Uganda and across East Africa. The lakes appear to be sensitive to large-scale climatic perturbations, with evidence of a dry Medieval Climate Anomaly (MCA; ca. AD 1000-1200). The diatom record from Lake Nyamogusingiri suggests a drying climate during the main phase of the Little Ice Age (LIA) (ca. AD 1600-1800), whereas the diatom response from the shallower Lake Kyasanduka is more complex (with groundwater likely playing a key role), and may be driven more by changes in silica and other nutrients, rather than by lake level. The sensitivity of these two Ugandan lakes to regional

  15. Blueback herring (Alosa aestivalis) in Lake Ontario: First record, entry route, and colonization potential

    USGS Publications Warehouse

    Owens, Randall W.; O'Gorman, Robert; Mills, Edward L.; Rudstam, Lars G.; Hasse, John J.; Kulik, Brandon H.; MacNeill, David B.

    1998-01-01

    Two juvenile blueback herring (Alosa aestivalis) were caught in Lake Ontario in October 1995, the first record of this anadromous marine clupeid in the Great Lakes. Blueback herring most likely gained entry to Lake Ontario via the Erie Barge Canal, a navigation canal that links the Mohawk-Hudson rivers, which drain to the Atlantic Ocean, to Oneida Lake, which drains to Lake Ontario through the Oneida-Oswego rivers. Blueback herring ascend the Hudson River to spawn and were first reported from the upper Mohawk River in 1978. They currently spawn in several of the upper Mohawk's tributaries, including one about 430 km from the ocean but only 25 km from Oneida Lake. They were first found in Oneida Lake in 1982 and, in fall 1994, large numbers of juvenile blueback herring were found moving down the Oswego River. In the southern United States, blueback herring established self-reproducing populations in several reservoirs, and thus they have the potential to colonize Lake Ontario. If blueback herring became established in Lake Ontario, they could spread to other Great Lakes and impede recovery of depressed populations of indigenous fishes, like lake herring (Coregonus artedi) and lake trout (Salvelinus namaycush), through competition with, or predation on, their larvae.

  16. Climatic changes near the Great Lakes inferred from 141 year ice records

    USGS Publications Warehouse

    Assel, Raymond A.; Robertson, Dale M.

    1992-01-01

    Freeze-up and break-up dates and duration of ice cover for lakes and rivers represent an integration of weather conditions prior to the specified event(s). Changes in mean ice conditions may be used as quantitative indicators of climatic changes if long homogenous ice records are accompanied by sufficiently homogenous air temperature records to calibrate the changes in mean ice cover in terms of climatic variables. Historical ice records dating back to 1855 are available for Lake Mendota, WI (located on the southwestern side of Lake Michigan) and back to 1851 for Grand Traverse Bay, MI (located on the northeastern side of Lake Michigan). Changes in the mean ice cover of these two systems were used to describe changes in fall, winter, and spring air temperatures in the area near the Great Lakes during the past 141 years. 

  17. Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: the ISOMED synthesis

    NASA Astrophysics Data System (ADS)

    Roberts, N.; Jones, M. D.; Benkaddour, A.; Eastwood, W. J.; Filippi, M. L.; Frogley, M. R.; Lamb, H. F.; Leng, M. J.; Reed, J. M.; Stein, M.; Stevens, L.; Valero-Garcés, B.; Zanchetta, G.

    2008-12-01

    Lake isotope records can be used to assess the spatial coherency of Late Quaternary climate change across the circum-Mediterranean region. We place modern and palaeo-data within a simple conceptual lake response model to show that the isotope hydrology of most Mediterranean lakes has been influenced strongly by water balance, even in those systems that are chemically dilute (i.e. freshwater). δ18O data on biogenic and endogenic carbonates from 24 lake basins are used to reconstruct multi-millennial-scale trends since the LGM. While it is difficult to make direct comparisons between lake records in terms of single climatic parameters, coherent regional isotopic trends can be identified. During glacial times Mediterranean lakes deposited carbonates isotopically heavier in δ18O compared to the Holocene, partly due to source area effects. Isotopic enrichment was most marked during intervals corresponding to the H1 and Younger Dryas events, confirming that Late Pleistocene cold stages in the North Atlantic region were marked by aridity around much of the Mediterranean. Almost all Mediterranean lake records shifted to more depleted isotopic values during the Last Glacial-Interglacial Transition (LGIT). This shift is the reverse of the trend which characterised the same transition in lakes from northern and central Europe, and suggests that temperature changes were not an important direct driver of Mediterranean lake isotopic records over glacial-interglacial timescales. In the early Holocene, many lakes in the eastern part of the region were more depleted isotopically than in recent millennia. This corresponds with marine sapropel formation, both chronologically and geographically, and implies that increases in local rainfall contributed significantly to the creation of a freshwater lid and anoxia in the East Mediterranean Sea. In contrast, no such pattern is currently apparent from lake isotope records from the West Mediterranean, suggesting a possible NW-SE contrast

  18. Record of glacial Lake Missoula floods in glacial Lake Columbia, Washington

    NASA Astrophysics Data System (ADS)

    Hanson, Michelle A.; Clague, John J.

    2016-02-01

    During the last glaciation (marine oxygen isotope stage 2), outburst floods from glacial Lake Missoula deposited diagnostic sediments within glacial Lake Columbia. Two dominant outburst flood lithofacies are present within glacial Lake Columbia deposits: a flood expansion bar facies and a finer-grained hyperpycnite facies. We conclude that the flood sediments have a glacial Lake Missoula source because: (1) current indicators indicate westward flow through the lake, and upvalley flow followed by downvalley flow in tributary valleys; (2) no flood sediments are found north of a certain point; (3) there is a dominance of Belt-Purcell Supergroup clasts in a flood expansion bar; and (4) some of the finer-grained beds have a pink colour, reflective of glacial Lake Missoula lake-bottom sediments. A new radiocarbon age of 13,400 ± 100 14C BP on plant detritus found below 37 flood beds helps constrain the timing of outburst flooding from glacial Lake Missoula.

  19. Hydrological drivers of record-setting water level rise on Earth's largest lake system

    NASA Astrophysics Data System (ADS)

    Gronewold, A. D.; Bruxer, J.; Durnford, D.; Smith, J. P.; Clites, A. H.; Seglenieks, F.; Qian, S. S.; Hunter, T. S.; Fortin, V.

    2016-05-01

    Between January 2013 and December 2014, water levels on Lake Superior and Lake Michigan-Huron, the two largest lakes on Earth by surface area, rose at the highest rate ever recorded for a 2 year period beginning in January and ending in December of the following year. This historic event coincided with below-average air temperatures and extensive winter ice cover across the Great Lakes. It also brought an end to a 15 year period of persistently below-average water levels on Lakes Superior and Michigan-Huron that included several months of record-low water levels. To differentiate hydrological drivers behind the recent water level rise, we developed a Bayesian Markov chain Monte Carlo (MCMC) routine for inferring historical estimates of the major components of each lake's water budget. Our results indicate that, in 2013, the water level rise on Lake Superior was driven by increased spring runoff and over-lake precipitation. In 2014, reduced over-lake evaporation played a more significant role in Lake Superior's water level rise. The water level rise on Lake Michigan-Huron in 2013 was also due to above-average spring runoff and persistent over-lake precipitation, while in 2014, it was due to a rare combination of below-average evaporation, above-average runoff and precipitation, and very high inflow rates from Lake Superior through the St. Marys River. We expect, in future research, to apply our new framework across the other Laurentian Great Lakes, and to Earth's other large freshwater basins as well.

  20. NEW RECORDS AND RANGE EXTENSIONS FOR SEVERAL CHIRONOMID GENERA IN LAKE SUPERIOR

    EPA Science Inventory

    Recent USEPA investigations of Lake Superior benthos in Minnesota, Wisconsin, and Michigan waters have resulted in the discovery of six uncommon genera of Chironomidae. Five new records of genera for Lake Superior and five significant Nearctic range extensions are reported. New r...

  1. A half-million-year record of paleoclimate from the Lake Manix Core, Mojave Desert, California

    USGS Publications Warehouse

    Reheis, Marith C.; Bright, Jordon; Lund, Steve P.; Miller, David M.; Skipp, Gary; Fleck, Robert J.

    2012-01-01

    Pluvial lakes in the southwestern U.S. responded sensitively to past climate through effects on rainfall, runoff, and evaporation. Although most studies agree that pluvial lakes in the southwestern U.S. reached their highest levels coeval with glacial stages, the specific timing of increased effective moisture and lake-level rise is debated, particularly for the southwesternmost lakes. We obtained a 45-m core of lacustrine sediment from Lake Manix, the former terminus of the Mojave River prior to about 25 ka, and supplemented data from the core with outcrop studies. These sediments provide a robust record of Mojave River discharge over the last half-million years. Lake Manix persisted from OIS 12 through early OIS 2, including during interstadial OIS 3 and interglacials OIS 5, 7, and 9. The ostracode faunal record displays a shift from an unexpectedly warm, summer-dominated lake hydrology during OIS 12 to predominantly colder, winter-dominated conditions afterwards. The ostracode-based stable isotope record displays a large degree of intra-sample variability and does not mimic other well-known isotopic records of climate change. Evaporation likely buffered the Manix δ18O record from most of the expected isotopic differences between interglacial and glacial-interval discharge. Isotopically depleted and stable lakes occurred only four to six times, most notably during OIS 7 and OIS 9. Internal drainage-basin changes also affected the isotopic record. Persistence of lakes in the Manix basin during interglacials requires atmospheric or oceanic circulation controls on the mean position of the Pacific storm track other than large ice sheets. We propose that the relative strength and sign of the Northern Annular Mode (NAM) and its influence on atmospheric river-derived precipitation is a potential explanation.

  2. An 84-kyr paleomagnetic record from the sediments of Lake Baikal, Siberia

    USGS Publications Warehouse

    Peck, J.A.; King, J.W.; Colman, Steven M.; Kravchinsky, V.A.

    1996-01-01

    We have conducted a paleomagnetic study of sediment cores obtained from the Selenga prodelta region of Lake Baikal, Russia. This record, which spans approximately the last 84 kyr, contributes to a better understanding of the nature of geomagnetic field behavior in Siberia and is a useful correlation and dating tool. We demonstrate that the Lake Baikal sediments are recording variations in the geomagnetic field. The directional record displays secular variation behavior with a geomagnetic excursion at 20 ka and additional excursions appearing as large-amplitude secular variation at 41, 61, and 67 ka. Smoothing of the geomagnetic excursion behavior occurs in Lake Baikal sediments owing to the intermediate sedimentation rate (13 cm kyr-1). The Lake Baikal relative paleointensity record correlates to absolute paleointensity data for the last 10 kyr and to relative paleointensity records from the Mediterranean Sea and Indian Ocean for the last 84 kyr. This correlation suggests a strong global (i.e., dipole) component to these records and further supports the reliability of sediments as recorders of relative geomagnetic paleointensity. We show that a relative geomagnetic intensity stratigraphy has a potential resolution of 7 kyr by correlating continental and marine records. The geomagnetic intensity stratigraphy helps constrain the age of the difficult to date Lake Baikal sediments.

  3. A ~1.3Ma paleoecological record from scientific drilling at Lake Malawi, East Africa

    NASA Astrophysics Data System (ADS)

    Cohen, Andrew S.; Blome, Margaret; Ivory, Sarah; King, John; Cole, Julie; McGlue, Michael

    2016-04-01

    Long records of Quaternary ecological and climatic change are critical to understanding the range of potential responses of ecosystems to environmental forcing. Here we present an integrated lake and watershed paleoecological analysis from drill core records obtained by the Lake Malawi Drilling Project, documenting extraordinary fluctuations in climate, hydrology and ecosystem response for the southern tropics of Africa. High resolution lacustrine and terrestrial paleoecology and sedimentology data sets from these Early Pleistocene-Holocene drill cores provide the most complete record of this duration currently available from Africa. Time series analyses of these records demonstrate strong orbital forcing of regional hydroclimate that drives high-amplitude changes in Malawi ecosystems. Prior to ~600ka we also observe a secondary overprint of watershed processes involving river capture or diversion that may have a tectonic origin. We observe shifts between more arid conditions (shallow alkaline and well mixed lake, with discontinuous desert vegetation) and more humid environments (deep, stratified, freshwater lake with dense forest). These broadly synchronous changes in lake paleoecology, lake sedimentology, and watershed vegetation demonstrate the major role of climate in regulating this system. Transitions between these lake/watershed state extremes is often very abrupt, suggesting that the combined lake/watershed repeatedly passed through hydroclimate thresholds, with important implications for the evolution of the lake's endemic biodiversity and ecosystem. The tempo of lake/watershed state fluctuations changes at the Mid-Pleistocene Transition, altering from one of higher frequency/lower amplitude variability prior to 900ka to lower frequency/higher amplitude variability after that time.

  4. Lakes as recorders of extreme flows: utilising particle size analysis to generate a millennial-scale palaeoflood record from the English Lake District

    NASA Astrophysics Data System (ADS)

    Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet

    2013-04-01

    Developing new quantitative measures of catchment processes, such as flood events, is a key goal of geomorphologists. The geomorphic effects of extreme hydrological events are effectively recorded in upland lake basins as efficient sediment trapping renders flow-related proxy indicators (e.g., particle size) reflective of changes in river discharge. We demonstrate that integrating particle size analysis of lake sediment cores with data from an on-going sediment trapping protocol within the lake can provide a valuable natural archive for investigating hydrogeomorphic extremes over extended time periods. A series of sediment cores (3 - 5 m length) extracted from Brotherswater, English Lake District, contain numerous coarse-grained laminations, discerned by applying high-resolution (0.5 cm) laser granulometry and interpreted to reflect a palaeoflood record extending to ~2000 yr BP. Well-constrained core chronologies are derived through integrating radionuclide (210Pb, 137Cs, 241Am, 14C) dating with geochemical markers which reflect phases of local lead (Pb) mining. Geochemical and magnetic profiles have facilitated precise core correlation and the repeatability of the distinctive coarse facies to be verified. That these laminae exhibit inverse grading underlying normal grading, most likely reflecting the waxing and waning of flood-induced hyperpycnal flows, supports our palaeoflood interpretation. Application of a recently-published end-member model for unmixing particle size distributions (Deitze et al., 2012) demonstrates a prominent coarse end-member (medium sand) which we attribute to fluvial transport of coarse grains during high-magnitude flows. Two end members feature in the silt-size fraction, most likely reflecting the sedimentary component delivered under normal flow conditions. The relative importance of these two modes appears to respond to catchment conditioning due to land-use change, which has important implications for how flood events may be recorded

  5. Protocol to Reconstruct Historical Contaminant Loading to Large Lakes: The Lake Michigan Sediment Record of Mercury

    EPA Science Inventory

    Samples of opportunity from Pb-210 dated sediment cores collected from Lake Michigan between 1994 and 1996 were analyzed for mercury. The storage of both anthropogenic and total (post-1850) mercury in the lake was calculated to be 186 and 228 metric tons, respectively. By setti...

  6. Sedimentary records of earthquake-induced increase in sediment influx from lake catchments

    NASA Astrophysics Data System (ADS)

    Avşar, Ulaş; Hubert-Ferrari, Aurélia; De Batist, Marc; Fagel, Nathalie

    2013-04-01

    Lacustrine paleoseismological records from three small and shallow lakes (Yeniçaǧa, Ladik and Boraboy) located on the North Anatolian Fault (Turkey) are investigated. The high-resolution multi-proxy sedimentological analyses, as well as the precise sediment chronologies, allowed us to understand the sedimentological consequences of historically known paleoearthquakes. Accordingly, clastic layer intercalations within highly organic-rich background sedimentation are attributed to be the result of seismic shaking, which may increase the sediment yield from the catchment by shattering the landscape and triggering landslides. This kind of sedimentary traces are quite rare in the lacustrine paleoseismology literature. Even if seismic shaking may increase the sediment yield from the catchment, the existence of sedimentary traces of this increase depends on the catchment size relative to the lake size, i.e. small lakes having large catchments are expected to better record the catchment response. In order to make an overall comparison within the literature, the ratios of catchment area to lake area for 51 lakes were determined. Accordingly, it is found that the ratios of catchment area to lake area for Yeniçaǧa, Ladik and Boraboy lakes (i.e., 73, 52 and 81, respectively) are distinguishably higher than the average of the lakes in the lacustrine paleoseismology literature, which is around 17.5.

  7. Arctic deltaic lake sediments as recorders of fluvial organic matter deposition

    NASA Astrophysics Data System (ADS)

    Vonk, Jorien; Dickens, Angela; Giosan, Liviu; Zipper, Samuel; Galy, Valier; Holmes, Robert; Montlucon, Daniel; Kim, Bokyung; Hussain, Zainab; Eglinton, Timothy

    2016-08-01

    Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, 13C, 14C) and molecular organic geochemistry (lignin, leaf waxes). High-resolution age models (137Cs, 210Pb) of downcore lake sediment records (n=11) along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels). Comparison with earlier published Mackenzie River depth profiles shows that (i) lake sediments reflect the riverine surface suspended load, and (ii) hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale) riverine fluxes and may prove instrumental in shedding light on past behaviour of arctic rivers, as well as how they respond to a changing climate.

  8. First record of Daphnia lumholtzi Sars in the Great Lakes

    USGS Publications Warehouse

    Muzinic, Christopher J.

    2000-01-01

    Adults of the cladoceran Daphnia lumholtzi, native to Australia, Africa, and parts of Asia, were first collected in August 1999 in Lake Erie. Individuals were collected near East Harbor State Park, Lakeside, Ohio from vertical plankton net tows. The average number of D. lumholtzi that were found (0.03/L) indicate that D. lumholtzi is beginning to establish itself in Lake Erie. The morphology of this Daphnia differs greatly from native species because of its elongated head and tail spine. This sighting is important because it acknowledges yet another exotic invader into the Great Lakes basin and it also shows that this, normally, warm water species continues to expand its range northward.

  9. Phosphorus Fluxes in the Beartooth Mountains: a Record of Detailed P Geochemistry from Island Lake

    NASA Astrophysics Data System (ADS)

    McLennan, D. A.; Latimer, J. C.; Williams, T. M.; Brown, S. R.; Stone, J.; McCune, A.

    2014-12-01

    Island Lake, situated within the Precambrian rocks of the Beartooth Mountains that run along the border of Wyoming and Montana, is a glacial lake located at the tree line with an elevation of 3048 m, a maximum water depth of 33 m, a catchment area of 11.7 km2, and a lake area of 0.61 km2. Like many alpine lakes, Island Lake is highly transparent with a deep chlorophyll maximum. Alpine settings may be more susceptible to small perturbations in climate and thus good sensors for investigating climate change. It is hypothesized that this low-nutrient alpine lake has shifted from a nitrogen-limiting system to one that is limited by phosphorus (P) availability. In summer 2013, a 1.54-m sediment core was collected for diatom and geochemical analyses, including P and metals. Detailed P geochemistry can be used to elucidate landscape evolution and P burial fluxes can provide insight into biogeochemical cycling over time. Changes in landscape due to fire, zonal shifts in vegetation, and shifts in climatological factors such as precipitation can impact the bioavailability of P entering the lake as well as burial fluxes. The sediment record will clarify the role of P in lake biogeochemical cycling at Island Lake through the Holocene. Planktonic diatom abundances have been used to reconstruct a history of Holocene lake stratification, and ongoing detailed P geochemistry using a sequential extraction technique (SEDEX) will be used to identify the role of P fluxes on productivity within the lake. SEDEX can differentiate between P associated with oxides/oxyhydroxides, mineral fractions, and organic matter, and the relative changes in these fractions provide insight into landscape dynamics. Coupled with diatom proxies, P geochemistry can also provide a better understanding of biogeochemical cycling within the lake. This multiproxy approach should provide insight into the responses within the catchment to environmental changes over the Holocene.

  10. Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van, eastern Turkey

    NASA Astrophysics Data System (ADS)

    Çağatay, M. N.; Öğretmen, N.; Damcı, E.; Stockhecke, M.; Sancar, Ü.; Eriş, K. K.; Özeren, S.

    2014-11-01

    Sedimentary, geochemical and mineralogical analyses of the ICDP cores recovered from the Northern Basin (NB) of Lake Van provide evidence of lake level and climatic changes related to orbital and North Atlantic climate system over the last 90 ka. High lake levels are generally observed during the interglacial and interstadial periods, which are marked by deposition of varved sediments with high total organic carbon (TOC), total inorganic carbon (TIC), low detrital influx (high Ca/F) and high δ18O and δ13C values of authigenic carbonate. During the glacial and stadial periods of 71-58 ka BP (Marine Isotope Stage 4, MIS4) and end of last glaciation-deglaciation (30-14.5 ka BP; MIS3) relatively low lake levels prevailed, and grey homogeneous to faintly laminated clayey silts were deposited at high sedimentation and low organic productivity rates. Millennial-scale variability of the proxies during 60-30 ka BP (MIS3 is correlated with the Dansgaard-Oeschger (D-O)) and Holocene abrupt climate events in the Atlantic. These events are characterized by laminated sediments, with high TOC, TIC, Ca/Fe, δ18O and δ13C values. The Lake Van NB records correlate well in the region with the climate records from the lakes Zeribar and Urmia in Iran and the Sofular Cave in NW Anatolia, but are in general in anti-phase to those from the Dead Sea Basin (Lake Lisan) in the Levant. The relatively higher δ18O values (0 to -0.4‰) for the interglacial and interstadial periods in the Lake Van NB section are due to the higher temperature and seasonality of precipitation and higher evaporation, whereas the lower values (-0.8 to -2‰) during the glacial and stadial periods are caused mainly by relative decrease in both temperature and seasonality of precipitation. The high δ18O values (up to 4.2‰) during the Younger Dryas, together with the presence of dolomite and low TOC contents, supports evaporative conditions and low lake level. A gradual decrease in the δ18O values from an

  11. Records from Lake Qinghai: Holocene climate history of Northeastern Tibetan Plateau linking to global change

    NASA Astrophysics Data System (ADS)

    An, Z.; Colman, S.; Zhou, W.; Brown, E.; Li, X.; Jull, T.; Wang, S.; Liu, W.; Sun, Y.; Lu, X.; Song, Y.; Chang, H.; Cai, Y.; Xu, H.; Wang, X.; Liu, X.; Wu, F.; Han, Y.; Cheng, P.; Ai, L.; Wang, Z.; Qiang, X.; Shen, J.; Zhu, Y.; Wu, Z.; Liu, X.

    2008-12-01

    Lake Qinghai (99°36'-100°16'E, 36°32'-37°15'N ) of the north eastern margin of Tibet Plateau is the largest inland lake of China. It sits on the transitional zone of Asian monsoon- arid areas, receives influences of Asian monsoons and Westerlies, thus sensitive to global climate changes. Although previous studies had investigated Holocene climate change of Lake Qinghai area, it is rare to see precise Holocene climatic sequences of Lake Qinghai, nor in-depth discussions on controlling factors of Lake Qinghai climate changes. In Year 2005, with support from ICDP, Chinese Academy of Sciences (CAS), Chinese Ministry of Science and Technology (MOST) and National Science Foundation of China (NSFC), Drilling, Observation and Sampling of the Earths Continental Crust Corporation (DOSECC) and Institute of Earth Environment, Chinese Academy of Sciences (IEECAS) took a series of shallows cores from the southern basin of Lake Qinghai. West sub-basin sediments display Holocene lacustrine feature for the upper 5m, while the 5-18m are interbeded sediments of shallow lake, eolian-lacustrine and eolian loess. Chinese and US scientists with support from NSFC, MOST, CAS and NSF analysed 1F core from west sub-basin depocenter of the south basin with multiple physical, chemical, biological approaches. By comparing with modern process observation records, we obtained proxies that respectfully reflect precipitation, temperature and lake salinity changes, etc., reconstructed high resolution time sequences of magnetic susceptibility, colour scale, grain size, Corg, C/N, δ13Corg, carbonate, δ13C and δ18O of carbonate and ostracodes, elements, char-soot,Uk'37 and %C37:4 as well as pollen of the last 13Ka. They indicate the climatic change history of Lake Qinghai since past 13Ka, and agreeable evidences are found from adjacent tree ring and stalagmite records. Comparison of Lake Qinghai Holocene climate change sequence with those from high altitude ice core, stalagmites and ocean

  12. Paleohydrology and paleochemistry of Lake Manitoba, Canada: the isotope and ostracode records

    USGS Publications Warehouse

    Last, W.M.; Teller, J.T.; Forester, R.M.

    1994-01-01

    Lake Manitoba, the largest lake in the Prairie region of North America, contains a fine-grained sequence of late Pleistocene and Holocene sediment that documents a complex postglacial history. This record indicates that differential isostatic rebound and changing climate have interacted with varying drainage basin size and hydrologic budget to create significant variations in lake level and limnological conditions. During the initial depositional period in the basin, the Lake Agassiz phase (???12-9 ka), ??18O of ostracodes ranged from -16??? to -5??? (PDB), implying the lake was variously dominated by cold, dilute glacial meltwater and warm to cold, slightly saline water. Candona subtriangulata, which prefers cold, dilute water, dominates the most negative ??18O intervals, when the basin was part of proglacial Lake Agassiz. At times during this early phase, the ??18O of the lake abruptly shifted to higher values; euryhaline taxa such as C. rawsoni or Limnocythere ceriotuberosa, and halobiont taxa such as L. staplini or L. sappaensis are dominant in these intervals. This positive covariance of isotope and ostracode records implies that the lake level episodically fell, isolating the Lake Manitoba basin from the main glacial lake. ??18O values from inorganic endogenic Mg-calcite in the post-Agassiz phase of Lake Manitoba trend from -4??? at 8 ka to -11??? at 4.5 ka. We interpret that this trend indicates a gradually increasing influence of isotopically low (-20??? SMOW) Paleozoic groundwater inflow, although periods of increased evaporation during this time may account for zones of less negative isotopic values. The ??18O of this inorganic calcite abruptly shifts to higher values (-6???) after ???4.5 ka due to the combined effects of increased evaporative enrichment in a closed basin lake and the increased contribution of isotopically high surface water inflow on the hydrologic budget. After ???2 ka, the ??18O of the Mg-calcite fluctuates between -13??? and -7

  13. The Breccia of Frog Lakes: Record of Mafic Arc Magmatism in the Mesozoic Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Douglas, S.; Riggs, N.; Barth, A. P.; Economos, R. C.

    2011-12-01

    The evolution of the Mesozoic western margin of North America in California is characterized by a change in tectonic regimes. After the emplacement of the Golconda thrust during the Sonoma orogeny in early Triassic time, the passive western margin changed to a convergent margin with subducting oceanic crust. Onset of arc magmatism is recorded by the volcanic section of Saddlebag Lake pendant in the east-central Sierra Nevada and includes welded tuffs, mafic flows, and volcanic breccias. The welded tuffs and mafic breccias provide insight into the diversity of volcanic processes during early evolution of the Sierran arc. The Mesozoic volcanic section of the Saddlebag Lake pendant (SLP) overlies foreland basin sediments derived from the eroding Golconda allochthon. The initial volcanic unit, the tuff of Black Mountain, is overlain by the conglomerate of Cooney Lake, which contains continental-derived sediment similar to the Candelaria Fm, and no volcanic clasts. Stratigraphically above the conglomerate is the 224 Ma tuff of Saddlebag Lake, which underlies the breccia of Frog Lakes. The breccia of Frog Lakes thus represents the earliest stratigraphic record of mafic volcanism in the Mesozoic Sierran arc. Basaltic to andesitic clasts found within the breccia of Frog Lakes are geochemically similar to modern arc-derived andesites, enriched in fluid-mobile LILEs, indicating that water had been introduced into the mantle wedge by the subducting plate and consequently depleted in less-mobile HFSEs, especially niobium. A subaqueous setting is indicated by the presence of a fine-grained, laminated sedimentary succession between the tuff of Saddlebag Lake and the breccia of Frog Lakes, together with jigsaw fragmentation of Frog Lakes breccia clasts, fluidal margins of some of these clasts, and localized fine-grained laminated sedimentary zones within clast-rich horizons. Although the arc setting remained subaqueous throughout deposition of at least the basal SLP Mesozoic

  14. Coastal Lake Record of Holocene Paleo-Storms from Northwest Florida

    NASA Astrophysics Data System (ADS)

    Donoghue, J. F.; Coor, J. L.; Wang, Y.; Das, O.; Kish, S.; Elsner, J.; Hu, X. B.; Niedoroda, A. W.; Ye, M.

    2009-12-01

    The northwest Florida coast of the Gulf of Mexico has an unusually active storm history. Climate records for a study area in the mid-region of the Florida panhandle coast show that 29 hurricanes have made landfall within a 100-km radius during historic time. These events included 9 major storms (category 3 or higher). A longer-term geologic record of major storm impacts is essential for better understanding storm climatology and refining morphodynamic models. The Florida panhandle region contains a series of unique coastal lakes which are long-lived and whose bottom sediments hold a long-term record of coastal storm occurrence. The lakes are normally isolated from the open Gulf, protected behind a near-continuous dune barrier. Lake water is normally fresh to brackish. Lake bottom sediments consist of organic-rich muds. During major storms the dunes are breached and the lakes are temporarily open to marine water and the possibility of sandy overwash. Both a sedimentologic and geochemical signature is imparted to the lake sediments by storm events. Bottom sediment cores have been collected from the lakes. The cores have been subsampled and subjected to sedimentologic, stable isotopic and geochronologic analyses. The result is a sediment history of the lakes, and a record of storm occurrence during the past few millennia. The outcome is a better understanding of the long-term risk of major storms. The findings are being incorporated into a larger model designed to make reliable predictions of the effects of near-future climate change on natural coastal systems and on coastal infrastructure, and to enable cost-effective mitigation and adaptation strategies.

  15. Lake sediment records of industrialization in the Sudbury area of Ontario, Canada

    SciTech Connect

    Huhn, F.J.

    1985-01-01

    The smelting of nickel and copper sulfide ores has drastically modified the original landscape around Sudbury, Ontario. A record of this impact exists in the sediments of local lakes. Changes in the annual fallout of heavy metals, identifiable smoke particulates, and pollen grains reflect the changes that occurred in the sedimentation rate and the vegetation. A year by year chronology for the last 300 years was provided by meromictic lake sediments containing countable seasonal laminations, obtained by a freezing technique that kept the sediments and sediment/water interface undisturbed. Results indicate that: correspondences of vegetation changes, and sedimentation rates with metal residues and smoke particulates in the sediments, and with published smelter records are good; annual laminations in meromictic lakes provided an excellent chronology, as checked against known dates for settlement and the onset of smelting; identifiable smoke particulates provided a good record of smelter activity, and were also a check on metal residue mobility in the sediments.

  16. Comparison of Offshore Turbidite records and Lake Disturbance Events at the Latitude of Seattle, Washington

    NASA Astrophysics Data System (ADS)

    Galer, S.; Goldfinger, C.; Morey, A. E.; Black, B.; Romsos, C.; Beeson, J. W.; Erhardt, M.

    2014-12-01

    We are investigating the paleoseismic history of northern Washington using offshore turbidite cores and lake sediments collected from forearc lakes along a transect from offshore to Seattle, Washington. Additional offshore cores, ash determinations and heavy mineral analysis flesh out the turbidite stratigraphy off northern Washington, and support 3-5 proximal turbidites in northern Washington canyons (see Adams, 1990) in addition to the 19 regionally correlated beds. Onshore, we have cored multiple lakes including (west to east) Beaver, Leland, Tarboo, Hall, Sawyer, and Wapato, east of the Cascades, and collected multibeam bathymetry, backscatter and chirp subbottom data. These lakes are small (2-113 ha), 6-18 m deep, and are all kettle lakes except Beaver Lake (landslide-dammed) and Wapato Lake, a glacial scour. These lakes were selected for their limited outside sediment sources and low sensitivity to ground shaking. The sedimentology is mostly organic-rich gyttja. All lakes contain the Mazama ash based on its similar depth occurrence in previously published cores and new EMP analysis. Computed Tomography (CT) density, gamma density, and magnetic susceptibility (ms) data show there is more stratigraphic variability than is visually apparent. Low-energy disturbance events are apparent in the stratigraphy of all lakes (except Hall) as increases in clastics, density, and ms. The number of post Mazama disturbance events is similar to the number of expected great earthquakes found offshore and onshore, though definition of the boundaries of the lake events is much less clear. Initial radiocarbon results and preliminary correlations along this 185 km transect show strong similarities in stratigraphic records between these cores over the past ~7600 years, anchored by the Mazama tephra. Preliminary comparisons with offshore cores show a striking similarity in downcore variability in physical properties. Given the evidence for earthquake origin for the offshore cores

  17. Long Term Atmospheric and Erosional Pollution As Recorded in Lake Sediments from Yunnan, China

    NASA Astrophysics Data System (ADS)

    Hillman, A. L.; Abbott, M. B.; Yu, J.; Bain, D.; Chiou-Peng, T.

    2014-12-01

    Human activities including agriculture, metallurgy (e.g. mining, processing, smelting), and deforestation have altered cycles of erosion and sedimentation in lake environments for thousands of years. In the Yunnan province of southwestern China, where written records are incomplete, it is unclear when, where, and how much disturbance occurred. Lake sediments offer a means to investigate a wide variety of human activities. Here, we present a lake sediment record from Erhai (25°43'N, 100°12'E) based on trace metal concentrations that reveals substantial atmospheric and erosional pollution to the lake environment over the last 4,000 years. Sediments indicate the initiation of copper-based metallurgy at 3,600 years BP, the existence of which has been debated amongst archaeologists. Beginning 2,000 years BP, sedimentation rates increase and concentrations of metals such as aluminum, titanium, lead, and zinc increase. This is likely linked to increased sediment flux to the lake associated with the initiation of terraced agriculture according to historical documents. The most prominent feature of the record is an abrupt and intense increase in lead, silver, cadmium, and zinc beginning at 700 years BP. The peak of this increase occurs at 600 years BP and is consistent with historical records that the Mongols established the first government operated silver mine in Yunnan. Notably, the concentrations of lead during this time are an order of magnitude greater than modern day levels of pollution.

  18. Geological record of meltwater events at Qinghai Lake, China from the past 40 ka

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Liu, Taibei; Wang, Hao; An, Zhisheng; Cheng, Peng; Zhu, Yizhi; Burr, G. S.

    2016-10-01

    We report here on a previously unpublished sediment core from Qinghai Lake, China, that preserves a continuous record of sedimentation for the past 40 ka. A striking feature of the record is a set of distinct meltwater events recorded at 35, 19 and 14 ka respectively. These events are manifest as distinct pulses of relatively old organic radiocarbon in the sediments. We interpret these as a signal of glacial melting in the Qinghai Lake watershed. The meltwater signals are closely correlated to temperature and precipitation records associated with deglaciation. The events at 19 ka and 14 ka correspond to well-established high latitude Melt Water Pulse (MWP) events during Marine Isotope Stage (MIS) 2, and the 35 ka event corresponds to a period of pervasive high lake levels in western China during late MIS 3. We interpret these anomalous dates as the result of relatively old carbon that was destabilized by the glaciers, and released into the lake as the glaciers melted. The data indicate that this process takes thousands of years. We expect that the approach employed here to identify these events is generally applicable to any lake system with a significant glacial meltwater component.

  19. High Resolution Environmental Magnetic Study of a Holocene Sedimentary Record from Zaca Lake, Ca

    NASA Astrophysics Data System (ADS)

    Platzman, E. S.; Lund, S.; Kirby, M. E.; Feakins, S. J.

    2012-12-01

    Magnetic studies of Holocene lake sediments recovered from Zaca lake have yielded a 3000-year high resolution record of environmental variability and paleolimnology. Zaca lake is a small oligomictic lake ~12m deep situated 730 m above sea level in the steep canyons of the San Rafael mountains, NW of Santa Barbara. Throughout much of the year Zaca lake is anaerobic below 7m. Hydrogen sulfide, fed into the lake via runoff and local sulphur springs, is present throughout the hypolimnion with concentrations sometime exceeding 30 mg/ l. During the summer months when the lake is stratified, light colored carbonate rich microlaminae are formed; and often during the winter months when the lake overturns, killing the anaerobic bacteria, black microlamina rich in iron sulfide are deposited on the lake floor, creating a stratigraphy reflecting patterns of environmental variability on annual to millennial scales. Samples for magnetic analysis were obtained from 8.5 m of core recovered from the central region of Zaca lake. Ages, constrained using radiocarbon chronostratigraphy, yielded sedimentation rates of 2-10 mm/yr with an average rate of 3 mm per yr over the 3000 yr interval. Parameters reflecting decadal scale variability in magnetic concentration (susceptibility, ARM, SIRM) and grainsize (ARM/Chi) were measured every 2 cm. Additional rock magnetic tests, including thermal demagnetization of three component IRM, were applied at selected intervals to constrain the magnetic mineralogy. These data were combined with analyses of clastic grain size, % calcium carbonate and % organics to create a multiproxy record of environmental variability. Results show that Zaca lake has had a complex depositional history. Anthropogenic effects associated with European colonization are present in the upper meters. Most notable, however, is a dramatic shift in the magnetic parameters and mineralogy between the upper and lower half of the core (circa 1300 ybp) indicating a shift in regime

  20. Holocene Paleohydrology of the tropical andes from lake records

    SciTech Connect

    Abbott, M. B., LLNL

    1997-03-03

    Two century-scale time series in northern Bolivia constrain the ages of abrupt changes in the physical, geochemical, and biological characteristics of sediments obtained from lakes that formed during deglaciation from the late Pleistocene glacial maximum. The watersheds of Laguna Viscachani (16{degrees}12`S, 68{degrees}07`W, 3780m) and Lago Taypi Chaka Kkota (16{degrees}13`S, 68{degrees}21`W, 4300m), located on the eastern and western slopes of the Cordillera Real, respectively, contain small cirque glaciers. A high-resolution chronology of the lake sediments is provided by 23 AMS {sup 14}C dates of discrete macro-fossils. Late Pleistocene glaciers retreated rapidly, exposing the lake basins between 10,700 and 9700 {sup 14}C yr B.P. The sedimentary facies suggest that after 8900 {sup 14}C B.P. glaciers were absent from the watersheds and remained so during the middle Holocene. An increase in the precipitation-evaporation balance is indicated above unconformities dated to about 2300 {sup 14}C yr B.P. in both Lago Taypi Chaka Kkota and Laguna Viscachani. An abrupt increase in sediment accumulation rated after 1400 {sup 14}C yr B.P. signals the onset of Neoglaciation. A possible link exists between the observed millennial-scale shifts in the regional precipitation- evaporation balance and seasonal shifts in tropical insolation.

  1. The Lake Towuti Drilling Project: A New, 1-Million Year Record of Indo-Pacific Hydroclimate

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Bijaksana, S.; Vogel, H.; Melles, M.; Crowe, S.; Fajar, S. J.; Hasberg, A. K.; Ivory, S.; Kallmeyer, J.; Kelly, C. S.; Kirana, K. H.; Morlock, M.; Tamuntuan, G. H.; Wicaksono, S. A.

    2015-12-01

    ­The Indo-Pacific region plays an integral role in the Earth's climate system. Changes in local insolation, greenhouse gas concentrations, ice volume, and local sea level are each hypothesized to exert a dominant control on Indo-Pacific hydroclimate variations through the Pleistocene, yet existing records from the region are generally short and exhibit fundamental differences in orbital-scale patterns that limit our understanding of the regional climate responses to these global forcings. New paleoclimate records spanning multiple glacial-interglacial cycles are therefore required to document the region's hydroclimatic response to the full range of global climate boundary conditions observed during the late Quaternary. Lake Towuti is located in central Indonesia and is the only known terrestrial sedimentary archive in the region that spans multiple glacial-interglacial cycles. From May - July, 2015, the Towuti Drilling Project, consisting of nearly 40 scientists from eight countries, recovered over 1,000 meters of new sediment core from Lake Towuti. This includes cores though the entire sediment column to bedrock, which likely provide a >1-million-year records of regional hydroclimate. On-site borehole and sediment core logging data document major shifts in sediment composition, including transitions from lake clays to peats, calcareous sediments, and gravels. These data show excellent agreement with major lithological transitions recorded in seismic reflection data, and indicate large changes in lake levels and hydroclimate through the late Quaternary. Prior work on Lake Towuti indicated a dominant control by global ice volume on regional hydroclimate, a hypothesis we aim to test through the analysis of these new cores. This presentation will review existing records from the region and show the first long geochemical and sedimentological records from Lake Towuti to understand orbital-scale hydrologic change during the last ~1 million years.

  2. Human Impact on Biogeochemical Cycles and Deposition Dynamics in Karstic Lakes: El Tobar Lake Record (Central Iberian Range, Spain)

    NASA Astrophysics Data System (ADS)

    Barreiro-Lostres, F.; Moreno-Caballud, A.; Giralt, S.; Hillman, A. L.; Brown, E. T.; Abbott, M. B.; Valero-Garces, B. L.

    2014-12-01

    Karstic lakes in the Iberian Range (Central Spain) provide a unique opportunity to test the human impact in the watersheds and the aquatic environments during historical times. We reconstruct the depositional evolution and the changes in biogeochemical cycles of El Tobar karstic lake, evaluating the response and the resilience of this Mediterranean ecosystem to both anthropogenic impacts and climate forcing during the last 1000 years. Lake El Tobar (40°32'N, 3°56'W; 1200 m a.s.l.; see Figure), 16 ha surface area, 20 m max. depth and permanent meromictic conditions, has a relatively large watershed (1080 ha). Five 8 m long sediment cores and short gravity cores where recovered, imaged, logged with a Geotek, described and sampled for geochemical analyses (elemental TOC, TIC, TN, TS), XRF scanner and ICP-MS, and dated (137Cs and 10 14C assays). The record is a combination of: i) laminated dark silts with terrestrial remains and diatoms and ii) massive to banded light silts (mm to cm -thick layers) interpreted as flood deposits. Sediments, TOC, and Br/Ti and Sr/Ca ratios identify four periods of increased sediment delivery occurred about 1500, 1800, 1850 and 1900 AD, coinciding with large land uses changes of regional relevance such as land clearing and increased population. Two main hydrological changes are clearly recorded in El Tobar sequence. The first one, marked by a sharp decrease in Mg, Ca and Si concentrations, took place about 1200 AD, and during a period of increasing lake level, which shifted from shallower to deeper facies and from carbonatic to clastic and organic-rich deposition. This change was likely related to increased water availability synchronous to the transition from the Medieval Climate Anomaly to the Little Ice Age. The second one was a canal construction in 1967 AD when a nearby reservoir provided fresh water influx to the lake, and resulted in stronger meromictic conditions in the system after canal construction, which is marked by lower

  3. Changes in winter air temperatures near Lake Michigan, 1851-1993, as determined from regional lake-ice records

    USGS Publications Warehouse

    Assel, R.A.; Robertson, Dale M.

    1995-01-01

    Records of freezeup and breakup dates for Grand Traverse Bay, Michigan, and Lake Mendota, Wisconsin, are among the longest ice records available near the Great Lakes, beginning in 185 1 and 1855, respectively. The timing of freezeup and breakup results from an integration of meteorological conditions (primarily air temperature) that occur before these events. Changes in the average timing of these ice-events are translated into changes in air temperature by the use of empirical and process-driven models. The timing of freezeup and breakup at the two locations represents an integration of air temperatures over slightly different seasons (months). Records from both locations indicate that the early winter period before about 1890 was - 15°C cooler than the early winter period after that time; the mean temperature has, however, remained relatively constant since about 1890. Changes in breakup dates demonstrate a similar 1.0-1 .5”C increase in late winter and early spring air temperatures about 1890. More recent average breakup dates at both locations have been earlier than during 1890-1940, indicating an additional warming of 1.2”C in March since about 1940 and a warming of 1 . 1°C in January-March since about 1980. Ice records at these sites will continue to provide an early indication of the anticipated climatic warming, not only because of the large response of ice cover to small changes in air temperature but also because these records integrate climatic conditions during the seasons (winter-spring) when most warming is forecast to occur. Future reductions in ice cover may strongly affect the winter ecology of the Great Lakes by reducing the stable environment required by various levels of the food chain. 

  4. Comparison of lake records for climate reconstructions: A case study from Hala Lake, northern Tibetan Plateau, China

    NASA Astrophysics Data System (ADS)

    Wuennemann, B.

    2012-12-01

    Sediment cores from a lake are often interpreted in light of modern limnological and environmental conditions to infer past climate and hydrological conditions in a region. Records from the Tibetan Plateau and adjacent areas display a heterogeneous picture through space and time. The saline Hala Lake, located in the Qilian Mountains, Qinghai Province, China, at 4078 m a.s.l. was selected to prove the applicability of a selected single sediment core for a consistent inference of past hydrological and climate conditions. Based on nine sediment cores obtained from different locations and water depth, sedimentation patterns and depositional conditions within the lake were investigated in detail. Two long cores H7 and H8 from the center of the lake (65 m water depth) and from the western nearshore location (20 m water depth) were compared by means of sedimentary composition, minerals and geochemical data (X-ray diffraction, X-ray fluorescence, loss-on-ignition, and by CNS analyzer). The respective age model was based on seventeen AMS radiocarbon dates, indicating a negligible reservoir error for sediments from the lake center and approximately 1,000 years error for the near-shoreline sediments. Six cores from the littoral zone revealed a sedimentary succession from sand and silty clay to laminated clay at the southern side of the lake. Undisturbed finely laminated sediments were found from 15 m water depth down to the deepest part. Core H5 (2.5 m length) from 31 m water depth yielded abundant green algal mats mixed with clayey lake deposits. Algae occurred between 25 and 32 m water depth and influenced the dissolved oxygen content of the stratified lake. The comparison of cores H7 and H8 yielded prominent mismatches for different time periods, which may, in part, attributed to lake internal processes independent of climatic influence. We thus conclude that data from a single sediment core may lead to different climate inferences. Common shifts among proxy data, however

  5. Reinvestigating Three Paleo Lake Records in the Middle East using new Model Results

    NASA Astrophysics Data System (ADS)

    Reuter, J. M.; Stott, L. D.; Buenning, N. H.; Yoshimura, K.

    2013-12-01

    Here we present a reinterpretation of three oxygen isotope records from three Middle Eastern Lakes (Zeribar, Van and Eski Acigo). These lake isotope records were interpreted previously to document changes in the precipitation-to-evaporation ratio (Eski and Van) and varying seasonality of precipitation over the lake (Zeribar). These differing interpretations are a consequence of inadequate constraints on atmospheric dynamics that influence isotopic variability in the water cycle of the Middle East. We present new isotope-enabled atmospheric model results that provide a more comprehensive view of each of the potential influences that affected these lake records. Currently the Middle East exhibits a highly seasonal precipitation cycle with the bulk of the rainfall occurring during the winter months. The yearly isotopic composition of rainfall exhibits a seasonal cycle as well with decreased values during the winter and higher isotopic values in both fall and spring. We conducted two model simulations with the Isotope-incorporated Global Spectral Model (IsoGSM): 1) with present-day conditions and 2) with mid-Holocene conditions. For the mid-Holocene simulations changes were made to the surface forcing, orbital parameters and greenhouse gas concentrations. These results show that the annual averaged oxygen isotopes in precipitation 6000 years ago were depleted on the order of 1 to 3‰ compared to present day. The model results are consistent with the published lake core records. However, the shift in isotopic composition of precipitation results from the combined influences of orbital changes, the changes in green house gases and surface forcings. We have evaluated the relative contribution of each of the forcings and present a re-interpretation of the Middle Eastern lake records.

  6. First records of a European cladoceran, Bythotrephes cederstroemi, in Lakes Erie and Huron

    USGS Publications Warehouse

    Bur, Michael T.; Klarer, David M.; Krieger, Kenneth A.

    1986-01-01

    Adult forms of the cladoceran Bythotrephes cederstroemi Schoedler (Cercopagidae), a widespread European freshwater zooplankter, occurred in the stomachs of four common species of Lake Erie fish (yellow perch, Perca flavescens; white perch, Morone americana; white bass, M. chrysops; and walleye, Stizostedion vitreum vitreum) collected in early October 1985. The fish were collected at several stations in the nearshore open waters of the central basin between Ashtabula and Huron, Ohio. Other investigators have seen this species in other locations in Lake Erie and also in Lake Huron. The report of B. cederstroemi in Lake Huron in December 1984 appears to be the first record of this species in North America.

  7. Abrupt climate-triggered lake ecosystem changes recorded in late glacial lake sediments in northern Poland

    NASA Astrophysics Data System (ADS)

    Slowinski, M. M.; Zawiska, I.; Ott, F.; Noryskiewicz, A. M.; Apolinarska, K.; Lutynska, M.; Michczynska, D. J.; Brauer, A.; Wulf, S.; Skubala, P.; Blaszkiewicz, M.

    2013-12-01

    The aim of this study was to better understand how local lake ecosystems responded to abrupt climate changes through applying multi-proxy sediment analyses. Therefore, we carried out a detailed and high-resolution case study on the late glacial sediment from the Trzechowskie palaeolake located in the eastern part of the Pomeranian Lakeland, northern Poland. We reconstructed climate induced environmental changes in the paleolake and its catchment using biotic proxies (macrofossils, pollen, cladocera, diatoms, oribatidae mite) and classical geochemical proxies (δ18O, δ13C, loss-on-ignition, CaCO3 content) in combination with high-resolution μ-XRF element core scanning. The core chronology has been established by means of biostratigraphy, AMS 14C-dating on plant macro remains, varve counting in laminated intervals and tephrochronology. The latter was possible by the discovery of the late Allerød Laacher See Tephra for the first time at such eastern location. Biogenic accumulation in the lake started rather late during the lateglacial interstadial at 13903×170 cal yrs BP. The rapid and pronounced cooling at the beginning of the Younger Dryas had a major impact on the lake and its catchment as clearly reflected by both, biotic and geochemical proxies. The depositional environment of the lake abruptly changed from a varved to massive gytjia. The pronounced warming at the demise of Younger Dryas cooling is well-reflected in all environmental indicators but with conspicuous leads and lags reflecting complex responses of lake ecosystems to climate warming. The research was supported by the National Science Centre Poland - NN306085037. This study is a contribution to the Virtual Institute ICLEA (Integrated Climate and Landscape Evolution Analysis) funded by the Helmholtz Association.

  8. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed – Lake exchange

    USGS Publications Warehouse

    Odigie, Kingsley; Cohen, A.D.; Swarzenski, Peter W.; Flegal, R

    2014-01-01

    Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p < 0.05) between the fluxes of Co, Cu, Mn, Ni, Pb, and Zn and those of iron (Fe) at both sites, (ii) positive correlations (r = 0.82–0.98, p < 0.01, n = 9) between the fluxes of elements (Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and the mass accumulation rates at the offshore site, (iii) the low enrichment factors (EF < 5) of those trace elements, and (iv) the temporal consistencies of the isotopic composition of Pb in the sediment. These measurements indicate that accelerated weathering, rather than industrialization, accounts for most of the increases in trace element fluxes to Lake Tanganyika in spite of the development of mining and smelting operations within the lake’s watershed over the past century. The data also indicate that the mid-lake site is a much more sensitive and useful recorder of environmental changes than the nearshore site. Furthermore, the lead isotopic compositions

  9. A multi-proxy record of volume in the Great Salt Lake over the Holocene

    NASA Astrophysics Data System (ADS)

    Nielson, K. E.; Bowen, G. J.; Toney, J. L.; Tarozo, R.; Huang, Y.; Bowen, B.

    2010-12-01

    Continental paleoclimate records for the Holocene are essential for understanding the influence of climate modes on terrestrial settings. Terminal lakes, like the Great Salt Lake, UT (GSL) are particularly well suited for examining changes in water balance in response to large scale climate change. We present records of lipid abundance and hydrogen isotope data; hydrogen and oxygen isotope variability in brine shrimp cysts; carbonate oxygen and carbon isotopes; and variability in mineralogy from reflectance spectrometry in a core spanning 9 to 2 ka bp from the GSL. The isotopic value of lake waters are inferred from the cyst isotope records. The oxygen isotopic composition of cysts decreases slowly by about 2 ‰ from the beginning of the record (approx. 9 ka bp) to about 6 ka, and is highly variable after about 4.5 ka bp. This gradual isotopic decrease suggests increased water input into the GSL up to the Mid-Holocene and more variable inputs after. Some portion of the decrease is likely attributable to a reestablishment of equilibrium with local precipitation sources following the rapid evaporation of Lake Bonneville at the end of the Pleistocene. Carbonate oxygen and carbon isotope ratios co-vary before 5.5 ka and after 4.5 ka, and are anti-correlated between, suggesting a major restructuring of the hydrologic regime in the Mid-Holocene. Distributions of lipid and n

  10. Alaska index; streamflow, lake levels, and water-quality records to September 30, 1988

    USGS Publications Warehouse

    Still, Patsy J.; Cosby, Jennie M.

    1989-01-01

    Streamflow, lake levels, and water quality data are compiled for stations in the southeast, south-central, southwest, Yukon basin , northwest, and Arctic Slope subregions of Alaska. The report includes a map of each hydrologic subregion and tables listing types of data collected and periods of records. (USGS)

  11. Historical Records of Mercury Stable Isotopes in Sediments of Tibetan Lakes.

    PubMed

    Yin, Runsheng; Feng, Xinbin; Hurley, James P; Krabbenhoft, David P; Lepak, Ryan F; Kang, Shichang; Yang, Handong; Li, Xiangdong

    2016-01-01

    The Tibetan Plateau (TP), known as the "Third Pole", is a critical zone for atmospheric mercury (Hg) deposition. Increasing anthropogenic activities in the globe leads to environmental changes, which may affect the loading, transport and deposition of Hg in the environment. However, the deposition history and geochemical cycling of Hg in the TP is still uncertain. Our records of Hg and Hg isotopes in sediment profiles of the two largest lakes in the TP, Lake Qinghai and Nam Co, show increased Hg influx since last century, with the maximum Hg influx enrichment ratios of 5.4 and 3.5 in Lake Qinghai and Nam Co, respectively. Shifts in negative δ (202)Hg in Lake Qinghai (-4.55 to -3.15‰) and Nam Co (-5.04 to -2.16‰) indicate increased atmospheric Hg deposition through rainfall, vegetation and runoff of soils. Mass independent fractionation of both even-Hg (∆ (200)Hg: +0.05 to +0.10‰) and odd-Hg (∆ (199)Hg: +0.12 to +0.31‰) isotopes were observed. Positive Δ (200)Hg suggest high proportion of precipitation-derived Hg in the TP, whereas the positive Δ (199)Hg results from Hg(II) photo-reduction. Both lakes show increasing Δ (199)Hg since the 1900 s, and we conclude that with the decrease of ice duration, Hg(II) photo-reduction may have been accelerated in these TP lakes. PMID:26996936

  12. Lake sediment records of late Holocene monsoon variability in western Nepal (preliminary results)

    NASA Astrophysics Data System (ADS)

    Ghazoui, Zakaria; Bertrand, Sebastien; Sachse, Dirk; Nomade, Jerome; Prasad Gajurel, Ananta; van der Beek, Peter

    2015-04-01

    In Nepal, high altitude paleoclimatological and limnological studies face many logistical challenges due to remoteness, accessibility, and altitude of potential lake sampling sites. Therefore, paleolimnological investigations in the Nepalese Himalaya remain scarce, and most of our understanding of past Indian Summer Monsoon (ISM) variability relies on a low-density network of speleothems and ice cores. Here we report preliminary new data from three high-altitude lakes in the Nepal Himalaya. In order to improve our understanding of climate variability in western Nepal during the late Holocene three lakes were investigated and sampled in autumn 2014: Rara Lake, Mugu District; Phoksundo Lake, Dolpa District; Dhumba Lake, Mustang District. The sediment cores are being studied using a multi-proxy approach combining radiocarbon, 210Pb and 137Cs chronologies, physical properties (Geotek multi-sensor core logger), grain size (Malvern Mastersizer 3000) inorganic geochemistry (major and selected trace elements by ICP-AES and ITRAX XRF core scanning), bulk organic geochemistry (C, N concentrations and stable isotopes) and hydrogen isotopic composition of leaf wax long-chain n-alkanes (δDwax). These sediment records will provide important new insights into the late-Holocene variability of the Indian Summer Monsoon in Nepal, including the recent latitudinal shift of the rainbelt due to climate change in the 20th and 21st centuries.

  13. Developing a Holocene storm record for lakes in the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Sean; Howarth, Jamie

    2016-04-01

    Modelling the likely impacts of climate change on the hydrological cycle has led numerous researchers to suggest that change is likely to be characterised by significant modification of the magnitude and frequency of extreme events. However, understanding the characteristics of extreme hydrological events requires records of the magnitude and frequency of events on centennial and millennial timescales, which are not available from instrumental records of climate and river flow. Recent research has shown that abyssal lake sediments have the potential to yield continuous records of floods in the form of turbidites that record the delivery of coarse-grained sediments into lakes during energetic river flows. In this paper we describe the development of a flood stratigraphy for South Lake Mavora, a small (1.23 km2) moraine and outwash sediment-dammed lake in western Southland. The sediments of the lake were sampled using a Mackereth corer capable of retrieving continuous cores 50mm in diameter and up to 6m long. Two 6m-long cores were retrieved from the deepest part of basins and seven 1m-long cores adjacent to the longer cores and in a transect from the deepest part of the basin to a fan-delta on the western side of the lake. The age model for the sediments is based on 28 14C dates from a single core. The lake sediments are predominantly planar-bedded hemipelagic fine and medium silts with individual layers between <1mm and 300mm thick. The hemipelagic sediments are interrupted by three types of rapidly-deposited layers (RDL's). Type 1 RDL's are beds of deformed lacustrine sediment which we interpret as the products of subaqueous mass movements. Type 2 RDL's are 2-200mm-thick beds of normally graded coarse to medium silt capped by thin fine silt layers. They overlie type 1 RDL's and are interpreted as turbidity currently generated by the underlying subaqueous mass movements. Type 3 RDL's consist 1mm to 30mm-thick beds of very fine sandy silt that grade into fine silt

  14. A CHRONOLOGICAL FRAMEWORK FOR THE HOLOCENE VEGETATIONAL HISTORY OF CENTRAL MINNESOTA: THE STEEL LAKE POLLEN RECORD

    SciTech Connect

    Wright, H E; Stefanova, I; Tian, J; Brown, T A; Hu, F S

    2003-11-10

    Paleorecords from Minnesota and adjacent areas have often been used to evaluate large-scale climatic processes in the mid-continent of North America. However, most of these records are compromised by chronological flaws, making problematic any comparisons with climatic interpretations based on other records (e.g., GISP2 in Greenland). We report here a high-resolution pollen record with a secure chronology constrained by 26 {sup 14}C dates on terrestrial macrofossils from Steel Lake, central Minnesota. About 11,200 years ago (calibrated yr BP) the late-glacial Picea forest near Steel Lake was succeeded abruptly by Pinus banksiana and/or resinosa. The Pinus forest began to open 9.4 ka cal BP with the expansion of prairie taxa, and a pine parkland or savanna prevailed until about 8 ka cal BP, when Quercus replaced Pinus to become the dominant tree in the prairie areas for 4500 years. The close chronological control permits the correlation of key vegetational changes with those at other reliably dated sites in the eastern Dakotas and in Minnesota, suggesting that the abrupt decline of the spruce forest was time-transgressive from southwest to northeast during 2000 years, and that the development of prairie was time-transgressive in the same direction over 2600 years. Correlation of key pollen horizons at Steel Lake with those in the high-resolution pollen profiles of Elk Lake, ca. 50 km northwest of Steel Lake, suggests that the well-known Elk Lake varve chronology for the early Holocene is about 1000 years too young.

  15. Lake isotope records of the 8200-year cooling event in western Ireland: Comparison with model simulations

    NASA Astrophysics Data System (ADS)

    Holmes, Jonathan A.; Tindall, Julia; Roberts, Neil; Marshall, William; Marshall, Jim D.; Bingham, Ann; Feeser, Ingo; O'Connell, Michael; Atkinson, Tim; Jourdan, Anne-Lise; March, Anna; Fisher, Elizabeth H.

    2016-01-01

    The early Holocene cooling, which occurred around 8200 calendar years before present, was a prominent abrupt event around the north Atlantic region. Here, we investigate the timing, duration, magnitude and regional coherence of the event as expressed in carbonate oxygen-isotope records from three lakes on northwest Europe's Atlantic margin in western Ireland, namely Loch Avolla, Loch Gealáin and Lough Corrib. An abrupt negative oxygen-isotope excursion lasted about 200 years. Comparison of records from three sites suggests that the excursion was primarily the result of a reduction of the oxygen-isotope values of precipitation, which was likely caused by lowered air temperatures, possibly coupled with a change in atmospheric circulation. Comparison of records from two of the lakes (Loch Avolla and Loch Gealáin), which have differing bathymetries, further suggests a reduction in evaporative loss of lake water during the cooling episode. Comparison of climate model experiments with lake-sediment isotope data indicates that effective moisture may have increased along this part of the northeast Atlantic seaboard during the 8200-year climatic event, as lower evaporation compensated for reduced precipitation.

  16. Demarcation of Typhoon-induced Sedimentary Layers from Lake Records in Southeast China

    NASA Astrophysics Data System (ADS)

    Kandasamy, Selvaraj; Lin, Baozhi; Wang, Huawei; Liu, Qianqian; Lou, Jiann-Yuh; Liu, Zhifei; Chen, Chen-Tung Arthur

    2016-04-01

    Understanding the frequency and cyclicity of extreme events such as tropical storms, heat waves, floods and droughts in monsoon-governed Asia is crucial for the adaptation and mitigation of climate-driven troubles and post-event consequences. Such studies are also critical for the development of future climate-related policies, given that the loss of life and properties during such events in Asia are always many-folds higher than that of the effect of similar disasters in the developed world. Lakes located along the path of typhoons in East Asia may preserve an evidence of storm intensity, because an increased erosion in the confined catchment may increase the clastic sedimentation. Here we investigate ca. 90 cm-long sediment core retrieved from Tian Lake, a coastal island lake located off SE China, for sedimentological, radiometric and geochemical parameters, aiming to reconstruct the effect of past typhoons on the sedimentation history of the lake. We found 4-5 sand-dominated layers in between the regular fine sediments deposition and these sand layers show a close consistency with periods of intense typhoons in the instrumental record. Although the instrumental record suggests an average of 16 typhoons/year in the western North Pacific, the preservation of only 4-5 sand-dominated layers during the last ca. 100 years of accumulation in our core indicates that the sedimentation pattern in Tian Lake may be very sensitive to intense typhoons with category 3 and above. This study will attempt to compare our lacustrine records with the suitable instrumental and other proxy records for understanding mechanisms responsible for intense typhoons and related environmental changes in SE China in the past century.

  17. Calibration of biological lake sediment records: Tracing diatom assemblages through the water column into the sediment

    NASA Astrophysics Data System (ADS)

    Maier, Dominique; Gälman, Veronika; Bigler, Christian; Renberg, Ingemar

    2013-04-01

    Paleolimnological studies rely on sediment cores taken from the deepest point of a lake. The deposited sediment and its embedded biological record are expected to be chronological and to display the lakes ecological past. Therefore many studies use micropalaeontological approaches, since, e. g., unicellular organisms like diatoms are directly dependent on habitat changes and thus mirror the prevailing weather conditions. In this study we combine a set of diatom samples from freeze cores of a varved sediment, a sediment trap and bi-weekly plankton survey data with environmental data to calibrate the biological sediment record of a lake. The annually laminated sediment of the boreal forest lake Nylandssjön in northern Sweden provides a very high temporal resolution, which allows us, even on a seasonal scale, a gapless comparison between in situ production and the sediment deposition. Analysis of the diatom assemblages through the water column into the sediment is expected to reveal quantitative and qualitative miss match in deposition, resuspension, seasonal and interannual delays caused by physical events or autochtonous interactions such as grazing in the water column. The overall comparison of the ten year plankton net record and the corresponding sediment trap samples reveals large shifts from season to season but also from year to year. The sediment trap diatom record indicates comparable abundance patterns for the main taxa (Asterionella formosa and Tabellaria flocculosa). Peaks and seasonal shifts are less pronounced in the sediment trap compared to the plankton data. An overall difficulty lies in the comparison of volumes of water and sediment, concentrations and fluxes, which needs to be solved. However, subsequent comparison with the sediment diatom assemblage is expected to lead us to understand interannual taphonomic processes affecting diatom records within ten years in the naturally formed sediment layers. More importantly we will be able to discover

  18. A 600,000 year long continental pollen record from Lake Van, eastern Turkey

    NASA Astrophysics Data System (ADS)

    Litt, T.; Pickarski, N.; Heumann, G.

    2014-12-01

    Lake Van is the fourth largest terminal lake in the world (38.5°N, 43 °E, volume 607 km3, area 3570 km2, maximum water depth 460 m), extending for 130 km WSW-ENE on the Eastern Anatolian High Plateau, Turkey. The sedimentary record of Lake Van, partly laminated, obtains a long and continuous continental sequence that covers multiple interglacial-glacial cycles. Promoted by the potential of the sedimentary sequence for reconstructing the paleoecological and paleoclimate development of the Near East, a deep drilling operation was carried out in 2010 supported by the International Continental Scientific Drilling Program (ICDP). The 119 m long continental record is based on a well-dated composite profile drilled on the so-called Ahlat Ridge in water depth of 360 m encompassing the last 600,000 years. It contains the longest continuous continental pollen record of the Quaternary in the entire Near East and central Asia obtained to date. It documents glacial and interglacial stages as well as pronounced interstadials encompassing the entire 600 ka of the sedimentary record. The cold-adapted vegetation in the Lake Van region during glacial stages and stadial substages can be described as dwarf-shrub steppe and desert steppe very similar to each other. The climax vegetation of the interglacial stages in the Lake Van region is characterized by an oak steppe-forest with pistachio and juniper. It is interesting to note that, in contrast to the atmospheric CO2 concentration from Antarctic ice cores or marine isotope values based on benthic foraminifera, there is no clear subdivision in the Lake Van pollen record between low-amplitude interglacials (cooler cycles) prior the mid-Brunhes event (MBE) at 430 ka and high-amplitude, post MBE interglacials. Lower CO2 concentrations in the atmosphere might be compensated by stronger insolation forcing during Marine Isotope Stages (MIS) 13a and 15a. A similar pattern can be observed during the triplicate interglacial complex MIS 7

  19. Reconstruction of Prehistoric Landfall Frequencies of Catastrophic Hurricanes in Northwestern Florida from Lake Sediment Records

    NASA Astrophysics Data System (ADS)

    Liu, Kam-biu; Fearn, Miriam L.

    2000-09-01

    Sediment cores from Western Lake provide a 7000-yr record of coastal environmental changes and catastrophic hurricane landfalls along the Gulf Coast of the Florida Panhandle. Using Hurricane Opal as a modern analog, we infer that overwash sand layers occurring near the center of the lake were caused by catastrophic hurricanes of category 4 or 5 intensity. Few catastrophic hurricanes struck the Western Lake area during two quiescent periods 3400-5000 and 0-1000 14C yr B.P. The landfall probabilities increased dramatically to ca. 0.5% per yr during an "hyperactive" period from 1000-3400 14C yr B.P., especially in the first millennium A.D. The millennial-scale variability in catastrophic hurricane landfalls along the Gulf Coast is probably controlled by shifts in the position of the jet stream and the Bermuda High.

  20. New records for Euhrychiopsis Lecontei (Coleoptera: Curculionidae) and their densities in Wisconsin lakes

    USGS Publications Warehouse

    Jester, L.L.; Bozek, Michael A.; Sheldon, S.P.; Helsel, D.R.

    1997-01-01

    The native aquatic weevil, Euhrychiopsis lecontei is currently being researched as a potential biological control for the exotic aquatic macrophyte Eurasian watermilfoil (Myriophyllum spicatum), yet little is known about its specific distribution in North America. In this study, E. lecontei was collected in 25 of 27 lakes surveyed for the weevil in Wisconsin, greatly increasing the known distribution of the species in this state. E. lecontei densities evaluated in 14 Wisconsin lakes ranged from <0.01 to 1.91 weevils per apical stem of milfoil. These new records indicate that E. lecontei is widespread throughout Wisconsin and is associated with natural declines of M. spicatum in some lakes. Additional sampling for E. lecontei and research on its ecology and life history are needed to understand the role of this organism in aquatic ecosystems.

  1. A Lake Sediment Record of Climate Change and Human-Environment Interactions in Southwestern China

    NASA Astrophysics Data System (ADS)

    Hillman, A.; Abbott, M.; Yu, J.; Steinman, B. A.

    2012-12-01

    The delivery of precipitation to southwestern China is largely through monsoon circulation which has evolved with changing insolation during the Holocene. Additionally, southwestern China has a long history of human activity including mining, metallurgy, agriculture, and pollution. Here, high-resolution sampling of a sediment core from Lake Xing Yun in the Yunnan Province (24°10'N, 102°46'E), a drought sensitive lake that behaves as a closed basin system, provides a sub-decadal record of changing climate and human activity in the late Holocene. We use δ18O and δ13C measurements of authigenic carbonate precipitated from the lake water, magnetic susceptibility values, and hydrologic mass balance models to document the timing, direction, and magnitude of moisture changes associated with variations in monsoon strength. We also use δ13C and δ15N measurements on organic matter, carbon to nitrogen ratios, and sediment trace metal concentrations to assess the impact of human activity on the Xing Yun watershed. The 2,500 year record highlights several transition periods related to both human and climate forcing. The rise of intensive irrigation of the lake associated with agriculture occurs at 900 AD, coincident with the rise of metallurgy and mining activities. The period from 1200 to 1360 AD is marked by an abrupt decrease in δ18O values indicating that lake-level rose at this time. We attribute this to a shifting demographic change associated with political upheaval, which is supported by the leveling off of trace metal concentrations and the stagnation of metallurgy and mining activities. The most pronounced feature of the record is a rapid transition to substantially lower lake levels that persisted from 1360-1850 AD. This can be attributed to the return of dramatic human modification to the watershed and changing monsoon strength associated with the Little Ice Age. Using hydrologic mass balance models we are able to quantify the change that can be ascribed to

  2. A Holocene pollen record of persistent droughts from Pyramid Lake, Nevada, USA

    USGS Publications Warehouse

    Mensing, S.A.; Benson, L.V.; Kashgarian, Michaele; Lund, S.

    2004-01-01

    Pollen and algae microfossils preserved in sediments from Pyramid Lake, Nevada, provide evidence for periods of persistent drought during the Holocene age. We analyzed one hundred nineteen 1-cm-thick samples for pollen and algae from a set of cores that span the past 7630 years. The early middle Holocene, 7600 to 6300 cal yr B.P., was found to be the driest period, although it included one short but intense wet phase. We suggest that Lake Tahoe was below its rim for most of this period, greatly reducing the volume and depth of Pyramid Lake. Middle Holocene aridity eased between 5000 and 3500 cal yr B.P. and climate became variable with distinct wet and dry phases. Lake Tahoe probably spilled intermittently during this time. No core was recovered that represented the period between 3500 and 2600 cal yr B.P. The past 2500 years appear to have had recurrent persistent droughts. The timing and magnitude of droughts identified in the pollen record compares favorably with previously published ??18O data from Pyramid Lake. The timing of these droughts also agrees with the ages of submerged rooted stumps in the Eastern Sierra Nevada and woodrat midden data from central Nevada. Prolonged drought episodes appear to correspond with the timing of ice drift minima (solar maxima) identified from North Atlantic marine sediments, suggesting that changes in solar irradiance may be a possible mechanism influencing century-scale drought in the western Great Basin. ?? 2004 University of Washington. All rights reserved.

  3. Chemical characterization of Lake Constance sediments record by high resolution EDXRF

    NASA Astrophysics Data System (ADS)

    Rammlmair, D.; Wessels, M.

    2003-04-01

    Sediment-input into Lake Constance is mainly characterized by the Alpine Rhine River which drains some 12000 km2 in the Alps. Due to melting of snow in the catchment, the annual runoff and sediment input has a strong maximum in summer. This is superimposed by single events of heavy rain fall generating strong flood events and leads to annually laminated sediments along the northern slope of Lake Constance. These were used to reconstruct past environmental history and processes within the lake and its catchment, such as heavy metal contamination, eutrophication, and climate history. A typical core covering a time span of some 180 years during which the Lake and its catchment was heavily influenced by hydraulic engineering (end of 1800s), chemical pollution, and eutrophication and recovery since the 1990s was scanned for major and trace element contents with an EDXRF core scanner (Mo-tube, 45 kV, 30mA, slit capillary, 50 µm step size and 30 sec signal accumulation time). In our contribution, we present first results of selected elements which were used to characterize the sedimentary record according to - background-sediments deposited during years with low runoff and low allochthonous sediment accumulation influenced by anthropogenic heavy metal input (brownish-grey layers) - calcite precipitation within the lake (thin white layers) - individual flood-layers of tributaries to the Alpine-Rhine-River System (grey lamina) - other smaller tributaries draining the molasse catchment (brown and yellowish layers) - chemical gradation within a single layer.

  4. Abrupt change of sedimentation rate recorded in lacustrine sediment from coastal lakes, Nankai subduction zone

    NASA Astrophysics Data System (ADS)

    Matsuoka, H.; Okamura, M.

    2014-12-01

    Nankai earthquakes are plate-boundary earthquakes associated with the Nankai subduction zone that have occurred repeatedly during historic times. In order to reveal pre-historical evidence of Nankai earthquakes, we investigated lacustrine sediments of small lakes on the coastal area of Shikoku Island, along the Nankai Trough. We studied over 150 piston- and vibro- core samples from 20 small lakes in this region, and found out many sedimentary evidences of tsunami events. Only three small lakes, Tadasu-Ike, Kaniga-Ike and Kamoda- Ike have over 5000 yaers sedimentary record. Tadasu-Ike and Kaniga-Ike have kept ten and several times tsunami events, on the other hand only one event preserved in though 6500 years sediments of Kamoda- Ike. These three small lakes have characteristic sedimentary conditions. Abrupt change of sedimentation rate was recorded 1-2 times through 5000-7000 years their history. This change was thought to reflect subsidence of the surrounding area. Co-seismic subsidence and gradual uplift during inter-seismic period are well known in this region. Several thousand-year cycle subsidences are assumed in addition to subsidences accompanied with 100-year cycle earthquakes.

  5. Lake Biel Holocene sediment record before and after the Aare river deviation (1878 AD)

    NASA Astrophysics Data System (ADS)

    Jeannet, Alice; Corella, Juan Pablo; Kremer, Katrina; Girardclos, Stéphanie

    2014-05-01

    Lake sediments are excellent archives of environmental and climate changes as well as human impact on lake- and river-systems. Lake Biel is a medium-sized peri-alpine lake in Switzerland, with a maximum depth of 74 m, and lies at an altitude of 429 m a.s.l. Lake Biel, which formed during the Pleistocene by glacial erosion, is part of the Aare river system. Our study focuses on the south-west part of the lake basin where the lake sedimentation was originally (i.e. naturally) mainly controlled by autochthonous sedimentation. This area is currently under a strong influence of water and sediment input from this river catchment since the Aare river deviation through the Hagneck canal in 1878. A 10.05 m long composite sediment sequence, cored from a 52 m water depth in September 2011, was built from two long cores retrieved with the ETH Zurich/Eawag Uwitec system. A radiocarbon age model indicates that the retrieved sedimentary sequence spans the last 7500 years. The upper sediments were correlated to previous short core radionuclide stratigraphy for the 1.5 m upper part (Thevenon et al., 2013). Magnetic susceptibility and density were measured by Geotek MultiSensor Core Logger at 0.5 cm resolution. Granulometry was measured with a CILAS grain sizer every 10 cm, and X-ray fluorescence (XRF) was carried out using an Avaatech core scanner at 1-cm resolution. This technique provides semi-quantitative information of the sediment elemental composition and shows how runoff and river input (Ti, Al, Si) or redox conditions (Fe/Mn) vary through time. Lake Biel sediment record suggests marked environmental changes with runoff decrease linked to climate and vegetation change during Atlantic chronobiozone, as well as a complex climate-human impact during the 'La Tène' and Roman cultural times. The most prominent recorded feature is the 10-times increase of sediment rate that occurred after the Aare river deviation through the Hagneck canal into Lake Biel in 1878. This artificial

  6. Holocene pollen record from Lake Sokoch, interior Kamchatka (Russia), and its paleobotanical and paleoclimatic interpretation

    NASA Astrophysics Data System (ADS)

    Dirksen, Veronika; Dirksen, Oleg; van den Bogaard, Christel; Diekmann, Bernhard

    2015-11-01

    A pollen record, obtained from sediments of Lake Sokoch in mountain interior of the Kamchatka Peninsula, covers the last ca. 9600 years (all ages are given in calibrated years BP). Variations in local components, including pollen, spores and non-pollen palynomorphs, and related changes in sedimentation document the lake development from initially seepage and shallow basin to deeper lake during the mid Holocene and then to the hydrologically open system during the late Holocene. The studies of volcanic ashes from the lake sediment core show their complex depositional histories. Lake Sokoch occupies a former proglacial basin between two terminal moraines of the LGM time. The undated basal part of record before ca. 9600 year BP, however, does not reflect properly cold conditions. At that time, although shrublands and tundra dominated, stone birch and white birch forests have already settled in surroundings; the presence of alder woodland indicates wet and maritime-like climate. The subsequent forest advance suggesting warmer conditions was interrupted by the ca. 8000-7600 year BP spell of cooler climate. The following culmination of warmth is bracketed by the evidence of the first maximal forest extent between ca. 7400 and 5100 year BP. During that time, dramatic retreat of alder forest suggests a turn from maritime-like to more continental climate conditions. The cool and wet pulse after ca. 5100 year BP was pronounced as forests retreat while shrublands, meadows and bogs extended. An expansion of white birch forest since ca. 3500 year BP reflected the onset of drier climate, strengthening continentality and seasonal contrast. The second maximum of forests dominated by both stone and white birches occurred between ca. 2200 and 1700 year BP and indicated warming in association with relatively dry and increasingly continental climate. The following period was wetter and cooler, and minor outbreak of alder forest around ca. 1500 year BP suggests a short-term return of

  7. Questa baseline and premining ground-water quality investigation. 8. Lake-sediment geochemical record from 1960 to 2002, Eagle Rock and Fawn Lakes, Taos County, New Mexico

    USGS Publications Warehouse

    Church, S.E.; Fey, D.L.; Marot, M.E.

    2005-01-01

    Geochemical studies of lake sediment from Eagle Rock Lake and upper Fawn Lake were conducted to evaluate the effect of mining at the Molycorp Questa porphyry molybdenum deposit located immediately north of the Red River. Two cores were taken, one from each lake near the outlet where the sediment was thinnest, and they were sampled at 1-cm intervals to provide geochemical data at less than 1-year resolution. Samples from the core intervals were digested and analyzed for 34 elements using ICP-AES (inductively coupled plasma-atomic emission spectrometry). The activity of 137Cs has been used to establish the beginning of sedimentation in the two lakes. Correlation of the geochemistry of heavy-mineral suites in the cores from both Fawn and Eagle Rock Lakes has been used to develop a sedimentation model to date the intervals sampled. The core from upper Fawn Lake, located upstream of the deposit, provided an annual sedimentary record of the geochemical baseline for material being transported in the Red River, whereas the core from Eagle Rock Lake, located downstream of the deposit, provided an annual record of the effect of mining at the Questa mine on the sediment in the Red River. Abrupt changes in the concentrations of many lithophile and deposit-related metals occur in the middle of the Eagle Rock Lake core, which we correlate with the major flood-of-record recorded at the Questa gage at Eagle Rock Lake in 1979. Sediment from the Red River collected at low flow in 2002 is a poor match for the geochemical data from the sediment core in Eagle Rock Lake. The change in sediment geochemistry in Eagle Rock Lake in the post-1979 interval is dramatic and requires that a new source of sediment be identified that has substantially different geochemistry from that in the pre-1979 core interval. Loss of mill tailings from pipeline breaks are most likely responsible for some of the spikes in trace-element concentrations in the Eagle Rock Lake core. Enrichment of Al2O3, Cu, and Zn

  8. A new 10,000 year pollen record from Lake Kinneret (Israel) - first results

    NASA Astrophysics Data System (ADS)

    Schiebel, V.; Litt, T.; Nowaczyk, N.; Stein, M.; Wennrich, V.

    2012-04-01

    Lake Kinneret - as part of the Jordan Rift Valley in Israel - is situated in the southern Levant, which is affected by Eastern Mediterranean climate. The present lake level is around 212 m below msl. Lake Kinneret has a surface of ca. 165 km2 and its watershed comprises the Galilee, the Golan Heights, the Hermon Range and the Anti-Lebanon Mountains. Its most important tributary is the Jordan River. The geography of the Lake Kinneret region is characterised by big differences in altitude. Steep slopes rise up to 560 m above the lake level in the west, north, and east. Mount Hermon (2814 m above mean sea level, amsl) is the highest summit of the Anti-Lebanon Range, and Mount Meron (1208 m amsl) located in the Upper Galilee encircle Lake Kinneret within a 100-km range in the northwest. Due to the pattern of average precipitation, distinct plant-geographical territories converge in the region: The Mediterranean and the Irano-Turanian biom (after Zohary). Varying ratios of characteristic pollen taxa representing certain plant associations serve as proxy data for the reconstruction of paleovegetation, paleoenvironment, and paleoclimate. We present a pollen record based on analyses of sediment cores obtained during a drilling campaign on Lake Kinneret in March 2010. A composite profile of 17.8 m length was established by correlating two parallel cores by using magnetic susceptibility data. Our record encompasses the past ca. 10,000 years of a region, which has been discussed as migration corridor of humans to Europe and, being part of the Fertile Crescent, as the cradle of agriculture in West Asia. Conclusions concerning human impact on vegetation and therefore population density can be drawn by analysing changes of ratios of certain plant taxa such as Olea europaea cultivated in this region since the Chalcolithic Period (6,500 BP). In addition, stable isotope data were produced from discrete bulk samples, and the elemental composition of the sediments was determined by

  9. A new varved late Glacial and Holocene sediment record from Lake Jelonek (North Poland) - preliminary results

    NASA Astrophysics Data System (ADS)

    Kramkowski, Mateusz; Filbrandt-Czaja, Anna; Ott, Florian; Słowiński, Michał; Tjallingii, Rik; Błaszkiewicz, Mirosław; Brauer, Achim

    2015-04-01

    Anually laminated (varved) lake deposits are suitable natural archives for reconstructing past climatic and environmental changes at seasonal resolution. A major advantage of such records is that varve counting allows constructing robust and independent chronologies, a key challenge for paleoclimate research. Recently, a new annually laminated sediment record has been obtained from Lake Jelonek, located in the eastern part of the Pomeranian Lakeland in northern Poland (Tuchola Pinewoods). The lake is surrounded by forest and covers an area of 19,9 ha and has a maximum depth of 13,8 m. Three overlapping series of 14,3 m - long sediment records have been cored with an UWITEC 90 mm diameter piston corer from the deepest part of the lake. A continuous master composite profile has been established comprising the entire postglacial lacustrine sediment infill. Preliminary analyses including micro-facies analyses on thin sections from selected intervals as well as X-ray fluorescence element scanning (µ-XRF) reveal that the sediments are to a large part annually laminated. Here we present detailed varve models for different sediment intervals and discuss high-resolution geochemical variation in the entire sediment record. A preliminary age model based on radiocarbon dating and major biostratigraphical boundaries based on pollen data will be presented as well. These data will form the fundament for the planned multi-proxy study for detailed reconstructions of climatic and environmental variability during the late glacial and Holocene in the southern Baltic. This study is a contribution to the Virtual Institute ICLEA (Integrated Climate and Landscape Evolution Analysis) funded by the Helmholtz Association and National Science Centre Poland NCN 2011/01/B/ST10/07367.

  10. A rock-magnetic record from Lake Baikal, Siberia: Evidence for Late Quaternary climate change

    USGS Publications Warehouse

    Peck, J.A.; King, J.W.; Colman, Steven M.; Kravchinsky, V.A.

    1994-01-01

    Rock-magnetic measurements of sediment cores from the Academician Ridge region of Lake Baikal, Siberia show variations related to Late Quaternary climate change. Based upon the well-dated last glacial-interglacial transition, variations in magnetic concentration and mineralogy are related to glacial-interglacial cycles using a conceptual model. Interglacial intervals are characterized by low magnetic concentrations and a composition that is dominated by low coercivity minerals. Glacial intervals are characterized by high magnetic concentrations and increased amounts of high coercivity minerals. The variation in magnetic concentration is consistent with dilution by diatom opal during the more productive interglacial periods. We also infer an increased contribution of eolian sediment during the colder, windier, and more arid glacial conditions when extensive loess deposits were formed throughout Europe and Asia. Eolian transport is inferred to deliver increased amounts of high coercivity minerals as staining on eolian grains during the glacial intervals. Variations in magnetic concentration and mineralogy of Lake Baikal sediment correlate to the SPECMAP marine oxygen-isotope record. The high degree of correlation between Baikal magnetic concentration/mineralogy and the SPECMAP oxygen-isotope record indicates that Lake Baikal sediment preserves a history of climate change in central Asia for the last 250 ka. This correlation provides a method of estimating the age of sediment beyond the range of the radiocarbon method. Future work must include providing better age control and additional climate proxy data, thereby strengthening the correlation of continental and marine climate records. ?? 1994.

  11. The Lake Bosumtwi Drilling Project: A 1 Ma West African Paleoclimate Record

    NASA Astrophysics Data System (ADS)

    Peck, J. A.; Heil, C.; King, J. W.; Scholz, C. A.; Shanahan, T. M.; Overpeck, J. T.; Fox, P. A.; Amoako, P. Y.; Forman, S. L.; Koeberl, C.; Milkereit, B.

    2005-12-01

    Lake Bosumtwi occupies a 1.07 Ma impact crater located in Ghana, West Africa centered at 06*32'N and 01*25'W. This 78 m deep, hydrologically-closed lake has a water budget extremely sensitive to the precipitation/evapotranspiration balance and is located in the path of the seasonal migration of the ITCZ. Therefore, Lake Bosumtwi is ideally situated to provide a long record of change in North African monsoon strength. In addition, the stratified water column allows for the preservation of finely-laminated sediments and the potential for high-resolution (annual) paleoclimate reconstruction. Using the GLAD800 lake drilling system, five drill sites were occupied along a water-depth transect in order to facilitate the reconstruction of the lake level history. At these five sites, a total of 14 separate holes were drilled yielding a total sediment recovery of 1,833 m. The shallow water drill sites consist of alternating laminated lacustrine mud (deepwater environment), moderately-sorted sand (nearshore beach environment) and sandy gravel (fluvial or lake marginal environments). These sediment cores and seismic reflection profiles are being used to construct a basin-wide stratigraphic framework, in order to extend further back in time the present Bosumtwi lake level histories obtained from highstand terraces and short piston cores. At a deep water site, the complete 1 Ma lacustrine stratigraphic section was recovered in 294 m deep holes that ended in impact-glass bearing, accretionary lapilli fallout representing the initial days of sedimentation. The lowermost lacustrine sediment is a bioturbated, light-gray mud with abundant gastropod shells indicating that a shallow-water oxic lake environment was established in the crater. Much of the overlying 294 m of mud is laminated thus these sediment cores will provide a unique 1 million year record of tropical African climate change. Two contrasting litholgies identified in the dated, upper part of the deep water drill hole

  12. The Geochemical Record of Cultural Eutrophication and Remediation Efforts in Three Connecticut Lakes

    NASA Astrophysics Data System (ADS)

    Ku, T.; Bourne, H. L.; Tirtajana, S.; Nahar, M.; Kading, T.

    2009-12-01

    Cultural eutrophication is the process whereby human activity increases the amount of nutrients, primarily nitrogen and phosphorous, entering an aquatic ecosystem causing excessive biological growth. To reverse or decelerate cultural eutrophication, many regulatory agencies have implemented stringent laws intended to lower the flux of nutrients into impacted water bodies or have emplaced internal remediation systems designed to decrease primary productivity. To quantify the effects of cultural eutrophication and remediation efforts, we examined sedimentary histories of three eutrophic Connecticut lakes that record the transition from pre-anthropogenic conditions into eutrophication and through recent remediation. The three Connecticut lakes (Lake Waramaug, Beseck Lake, and Amos Lake) represent a range of remediation activities. Since 1983, Lake Waramaug has been the focus of significant remediation efforts including the installation of three hypolimnetic withdrawal / layer aeration systems, zoning regulations to limit runoff, and the stocking and seeding of fish and zooplankton. Beseck Lake has experienced episodic eutrophic conditions, in part due to failing septic systems, and in 2001, 433 residences were converted from septic systems to a city sewer system. Amos Lake serves as a cultural eutrophication end member as it has not has received any major remediation. Multiple freeze and gravity cores were collected from 2005-2008. Radiocarbon, Pb-210, Cs-137, Hg, and Pb measurements determined sediment ages. Organic C accumulation rates, C/N ratios, organic matter delta-15N, bulk sediment Fe and Al concentrations, and P speciation (labile, iron-bound, aluminum-bound, organic, and total) determined sediment and nutrient sources and accumulations. Dithionite-extractable iron, pyrite S, and pyrite delta-34S provided insight into changes in P-Fe-S cycling. The sediment cores represent the last few hundreds of years of lake history and, importantly, some Lake Waramaug

  13. Ecosystem development following deglaciation: A new sedimentary record from Devils Lake, Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Williams, Joseph J.; McLauchlan, Kendra K.; Mueller, Joshua R.; Mellicant, Emily M.; Myrbo, Amy E.; Lascu, Ioan

    2015-10-01

    Processes and rates of ecosystem development can be reconstructed using lacustrine sedimentary sequences, but this approach often requires records that contain the start of primary succession. Most lakes in the upper Midwestern U.S. were formed by glaciers at the end of the last Ice Age approximately 11,700 cal yr BP. Devils Lake, Wisconsin is a rare example of a lake from this region whose sediments extend into the Pleistocene and may include the Last Glacial Maximum. Sediment magnetic, geochemical, pollen, and charcoal records were generated from a 10 m core whose basal sediments may be 28,000 years old. Together with a previously published pollen record, these proxies combine to reveal a history of long-term climatic, vegetative and geologic change during the late Pleistocene to Holocene. We identify six sedimentary units that indicate a series of consecutive events rather than a predictable trajectory of ecosystem development at the site. Productivity in the lake was low during the late Pleistocene and increased during the Holocene, as reflected by the sediment lithology, which shows a sudden shift from glacial vivianite-rich and organic-poor clastic-dominated sediments to Holocene diatomaceous sapropels. Several important processes initiated around 17,000 cal yr BP, including the onset of organic matter accumulation and fire in the terrestrial ecosystem. However, the post-glacial landscape was not devoid of vegetation because pollen assemblages indicate that terrestrial vegetation, likely a spruce tundra, survived near the site. A switch to a hardwood forest period during the Holocene also led to a change in the fire regime, with increased frequency of burning. Aquatic ecosystem productivity lagged terrestrial ecosystem productivity throughout the record. Nutrient cycling (as recorded by sedimentary δ15N) was variable but not directional, and appeared to be correlated with climate conditions early in the record, and terrestrial ecosystem processes later in

  14. Historical Records of Mercury Stable Isotopes in Sediments of Tibetan Lakes

    PubMed Central

    Yin, Runsheng; Feng, Xinbin; Hurley, James P.; Krabbenhoft, David P.; Lepak, Ryan F.; Kang, Shichang; Yang, Handong; Li, Xiangdong

    2016-01-01

    The Tibetan Plateau (TP), known as the “Third Pole”, is a critical zone for atmospheric mercury (Hg) deposition. Increasing anthropogenic activities in the globe leads to environmental changes, which may affect the loading, transport and deposition of Hg in the environment. However, the deposition history and geochemical cycling of Hg in the TP is still uncertain. Our records of Hg and Hg isotopes in sediment profiles of the two largest lakes in the TP, Lake Qinghai and Nam Co, show increased Hg influx since last century, with the maximum Hg influx enrichment ratios of 5.4 and 3.5 in Lake Qinghai and Nam Co, respectively. Shifts in negative δ 202Hg in Lake Qinghai (−4.55 to −3.15‰) and Nam Co (−5.04 to −2.16‰) indicate increased atmospheric Hg deposition through rainfall, vegetation and runoff of soils. Mass independent fractionation of both even-Hg (∆ 200Hg: +0.05 to +0.10‰) and odd-Hg (∆ 199Hg: +0.12 to +0.31‰) isotopes were observed. Positive Δ 200Hg suggest high proportion of precipitation-derived Hg in the TP, whereas the positive Δ 199Hg results from Hg(II) photo-reduction. Both lakes show increasing Δ 199Hg since the 1900 s, and we conclude that with the decrease of ice duration, Hg(II) photo-reduction may have been accelerated in these TP lakes. PMID:26996936

  15. An 8,000 year oxygen isotope record of hydroclimatic change from Paradise Lake, central British Columbia

    NASA Astrophysics Data System (ADS)

    Hillman, A. L.; Abbott, M. B.; Steinman, B. A.; Pompeani, D. P.; Cwiklik, J. P.

    2013-12-01

    Climate in the Pacific Northwest over the Holocene has primarily been controlled by the position of the Aleutian Low (AL), which is interconnected to the Pacific Decadal Oscillation (PDO) and the El Nino Southern Oscillation (ENSO). Stable isotopes of authigenic calcite precipitated from lake water and archived as lake sediment can be used to reconstruct changes in precipitation/evaporation (P/E) balance over timescales ranging from individual years to millennia. Several records of this type from southern British Columbia and northern Washington (e.g., Castor and Cleland Lakes), as well as from the southern Yukon Territory (e.g., Marcella and Rantin Lakes) have been produced, but few records from between these two regions exist. Here, we present a record of δ18O and δ13C measurements of authigenic calcite from Paradise Lake, British Columbia (54.68259°N, 122.61154°W), a surficially closed basin, groundwater throughflow lake located in the central interior of British Columbia. A total of 14 AMS radiocarbon dates were used to provide age control for the Paradise Lake record. In sediment from 8,000-4,500 years BP, oxygen isotope values vary around a mean value of -18.0‰. From 4,500-2,000 years BP, a general trend towards more positive oxygen isotope values occurs, with increased variability in both δ18O and δ13C. A gradual shift of ~2‰ in δ18O measurements (to a mean value of -16.0‰) occurs over the last 2,000 years of the record, likely due to lower lake levels. The large magnitude mean state shifts in oxygen isotopes over the last 8,000 years are similar to that observed in the Marcella Lake record (Anderson et al., 2007), although they are of a smaller magnitude. We hypothesize that significant groundwater throughflow at Paradise Lake likely causes a muted hydrologic and isotopic response to climate forcing relative to Marcella Lake, which has more isotopically enriched water and loses a greater proportion of water via evaporation. The Paradise lake

  16. Modern Limnological and Contamination Records from a Drinking Water Lake in Central New York

    NASA Astrophysics Data System (ADS)

    Bookman, R.; Seltzer, G.; Driscoll, C.; Montesdeoca, M.; Philippon, J.

    2004-12-01

    Otisco Lake is the easternmost of the Finger Lakes in central New York. It is a mesotrophic lake with a maximum depth of 20 m and a drainage area of 94 km2. Since the beginning of the 20th century the lake waters have been used for drinking water supply. Using a gravity corer we collected four sediment cores with a maximum length of 45 cm from the bottom of the lake. The cores represent the last ˜150 years. The changes with depth in nitrogen, carbon, and the trace metal mercury were recorded by analyzing 1 to 2 cm long segments from each core. The chronology was obtained on one of the cores using the Lead-210 dating method and by identifying the rise in copper concentration as a marker horizon of the year 1942, when copper sulfate was first added to the lake to control algal blooms. Lead-210 was measured by α -spectrometry and dates were calculated according to the CRS model. The sediment accumulation rates calculated from the unsupported lead activity show an increase from 0.06 g cm-2yr-1 at the bottom of the core to 0.15 g cm-2yr-1 at depth of 13 cm. In the upper part of the core the sediment accumulation fluctuates between 0.10 and 0.13 g cm-2yr-1, with the lowest value at the uppermost cm in the core. Background copper concentrations average 25 ug g-1 in the lower 20 cm of the core, but from depth of 22 cm to 13 cm the concentrations rapidly increase up to 142 ug g-1. Concentrations along the rest of the upper core fluctuate around 112 ug g-1. The beginning of increased concentration correlates well with the Lead-210 chronology marking the 1942-year horizon. Mercury contamination in lakes is largely attributed to atmospheric deposition of pollutant emissions. Total mercury at Otisco Lake was measured in the four cores showed almost identical profiles. Mercury flux increased from around 50 ug m-2yr-1 in the 1870's to a maximum value of 132 ug m-2yr-1 during the mid 1970's, with a steep increase beginning at the 1940's. At the beginning of the 1980's the

  17. Sedimentary processes in High Arctic lakes (Cape Bounty, Melville Island, Canada): What do sediments really record?

    NASA Astrophysics Data System (ADS)

    Normandeau, Alexandre; Lamoureux, Scott; Lajeunesse, Patrick; Francus, Pierre

    2016-04-01

    Lacustrine sedimentary sequences can hold a substantial amount of information regarding paleoenvironments, hydroclimate variability and extreme events, providing critical insights into past climate change. The study of lacustrine sediments is often limited to the analysis of sediment cores from which past changes are inferred. However, studies have provided evidence that the accumulation of sediments in lacustrine basins and their distribution can be affected by a wide range of internal and external forcing mechanisms. It is therefore crucial to have a good knowledge of the factors controlling the transport and distribution of sediments in lakes prior to investigating paleoenvironmental archives. To address this knowledge gap, the Cape Bounty Arctic Watershed Observatory (CBAWO), located on southern Melville Island in the Canadian High Arctic, was initiated in 2003 as a long term monitoring site with the aim of understanding the controls over sediment transport within similar paired watersheds and lakes. The East and West lakes have been monitored each year since 2003 to document the role of hydro-climate variability on water column processes and sediment deposition. Moorings recording water electrical conductivity, temperature, density, dissolved oxygen and turbidity, as well as sediment traps were deployed during the active hydrological period (generally May-July). These data were analyzed in combination with hydrological and climatic data from the watersheds. Additionally, a high-resolution bathymetric and sub-bottom survey was completed in 2015 and allowed imaging the lake floor and sub-surface in great detail. This combination of process and lake morphological data are unique in the Arctic. The morphostratigraphic analysis reveals two highly disturbed lake floors, being widely affected by subaqueous mass movements that were triggered during the last 2000 years. Backscatter intensity maps and the presence of bedforms on each delta foresets indicate that

  18. Hidden plastics of Lake Ontario, Canada and their potential preservation in the sediment record.

    PubMed

    Corcoran, Patricia L; Norris, Todd; Ceccanese, Trevor; Walzak, Mary Jane; Helm, Paul A; Marvin, Chris H

    2015-09-01

    Microplastics are a source of environmental pollution resulting from degradation of plastic products and spillage of resin pellets. We report the amounts of microplastics from various sites of Lake Ontario and evaluate their potential for preservation in the sediment record. A total of 4635 pellets were sampled from the Humber Bay shoreline on three sampling dates. Pellet colours were similar to those from the Humber River bank, suggesting that the river is a pathway for plastics transport into Lake Ontario. Once in the lake, high density microplastics, including mineral-polyethylene and mineral-polypropylene mixtures, sink to the bottom. The minerals may be fillers that were combined with plastics during production, or may have adsorbed to the surfaces of the polymers in the water column or on the lake bottom. Based on sediment depths and accumulation rates, microplastics have accumulated in the offshore region for less than 38 years. Their burial increases the chance of microplastics preservation. Shoreline pellets may not be preserved because they are mingled with organic debris that is reworked during storm events.

  19. A record of Holocene climate change from lake geochemical analyses in southeastern Arabia

    NASA Astrophysics Data System (ADS)

    Parker, Adrian G.; Goudie, Andrew S.; Stokes, Stephen; White, Kevin; Hodson, Martin J.; Manning, Michelle; Kennet, Derek

    2006-11-01

    Lacustrine sediments from southeastern Arabia reveal variations in lake level corresponding to changes in the strength and duration of Indian Ocean Monsoon (IOM) summer rainfall and winter cyclonic rainfall. The late glacial/Holocene transition of the region was characterised by the development of mega-linear dunes. These dunes became stabilised and vegetated during the early Holocene and interdunal lakes formed in response to the incursion of the IOM at approximately 8500 cal yr BP with the development of C3 dominated savanna grasslands. The IOM weakened ca. 6000 cal yr BP with the onset of regional aridity, aeolian sedimentation and dune reactivation and accretion. Despite this reduction in precipitation, the lake was maintained by winter dominated rainfall. There was a shift to drier adapted C4 grasslands across the dune field. Lake sediment geochemical analyses record precipitation minima at 8200, 5000 and 4200 cal yr BP that coincide with Bond events in the North Atlantic. A number of these events correspond with changes in cultural periods, suggesting that climate was a key mechanism affecting human occupation and exploitation of this region.

  20. Mountain Lake, Presidio National Park, San Francisco: Paleoenvironment, heavy metal contamination, sedimentary record rescue, remediation, and public outreach

    NASA Astrophysics Data System (ADS)

    Myrbo, A.; Rodysill, J. R.; Jones, K.; Reidy, L. M.

    2014-12-01

    Sediment cores from Mountain Lake, a small natural lake in Presidio National Park, San Francisco, CA, provide a record of Bay Area environmental change spanning the past 2000 years, and of unusually high heavy metal contamination in the last century (Reidy 2001). In 2013, partial dredging of the lake removed the upper two meters of lake sediment as part of a remediation effort. Prior to dredging, long and short cores spatially covering the lake and representing deep and shallow environments were recovered from the lake to preserve the paleoenvironmental record of one of the only natural lakes on the San Francisco Peninsula. The cores are curated at LacCore and are available for research by the scientific community. Mountain Lake formed in an interdunal depression and was shallow and fluctuating in its first few hundred years. Lake level rise and inundation of a larger area was followed by lowstands under drier conditions around 550-700 and 1300 CE. Nonnative taxa and cultivars appeared at the time of Spanish settlement in the late 18th century, and the lake underwent eutrophication due to livestock pasturing. U.S. Army landscaping introduced trees to the watershed in the late 19th century. The upper ~1m of sediments document unusually high heavy metal contamination, especially for lead and zinc, caused by the construction and heavy use of Highway 1 on the lake shore. Lead levels peak in 1975 and decline towards the surface, reflecting the history of leaded gasoline use in California. Zinc is derived mainly from automobile tires, and follows a pattern similar to that of lead, but continues to increase towards the surface. Ongoing research includes additional radiocarbon dating and detailed lithological analysis to form the basis of lake-level reconstruction and archeological investigations. Because the Presidio archaeological record does not record human habitation in the area until approximately 1300 years before present, the core analysis also has the potential to

  1. Holocene Monsoon Changes Inferred from Lake Sediment Pollen and Carbonate Records, Northeastern Cambodia

    NASA Astrophysics Data System (ADS)

    Maxwell, Andrew Lee

    2001-11-01

    Major Holocene monsoon changes in continental Southeast Asia are reconstructed from analysis of 14C-dated changes in pollen and organic/inorganic carbon in sediment cores taken from permanent, closed-basin, volcanic lakes in Ratanakiri Province, northeastern Cambodia. Analysis focuses on the nature and timing of monsoon changes, inferred from changes in vegetation and lake conditions. These data provide the first well-dated palynological record, covering most of the Holocene and continuous up to the present, from a terrestrial site in mainland Southeast Asia. The record from a 15-m core retrieved from Kara Lake, representing the last 9300 years, shows that the late Glacial conditions ended about 8500 14C yr B.P., more than 1000 years later than sites in southwest China. Summer monsoon intensity increased over the period ca. 8400-5300 14C yr B.P., similar to most other sites in the Asian monsoon region. A subsequent expansion of secondary forests at the expense of dense semievergreen forests suggest a drier climate leading to more frequent fire disturbance. After ca. 3500 14C yr B.P. disturbance frequency may have increased further with increasing seasonality. From ca. 2500 14C yr B.P. to the present, dense forest has recovered in a mosaic with annually burned dry forest, but climate may not be the main control on local vegetation dynamics in the late Holocene.

  2. Synchronisation of sedimentary records using tephra: A postglacial tephrochronological model for the Chilean Lake District

    NASA Astrophysics Data System (ADS)

    Fontijn, Karen; Rawson, Harriet; Van Daele, Maarten; Moernaut, Jasper; Abarzúa, Ana M.; Heirman, Katrien; Bertrand, Sébastien; Pyle, David M.; Mather, Tamsin A.; De Batist, Marc; Naranjo, Jose-Antonio; Moreno, Hugo

    2016-04-01

    Well-characterised tephra horizons deposited in various sedimentary environments provide a means of synchronising sedimentary archives. The use of tephra as a chronological tool is however still widely underutilised in southern Chile and Argentina. In this study we develop a postglacial tephrochronological model for the Chilean Lake District (ca. 38 to 42°S) by integrating terrestrial and lacustrine records. Tephra deposits preserved in lake sediments record discrete events even if they do not correspond to primary fallout. By combining terrestrial with lacustrine records we obtain the most complete tephrostratigraphic record for the area to date. We present glass geochemical and chronological data for key marker horizons that may be used to synchronise sedimentary archives used for palaeoenvironmental, palaeoclimatological and palaeoseismological purposes. Most volcanoes in the studied segment of the Southern Volcanic Zone, between Llaima and Calbuco, have produced at least one regional marker deposit resulting from a large explosive eruption (magnitude ≥ 4), some of which now have a significantly improved age estimate (e.g., the 10.5 ka Llaima Pumice eruption from Llaima volcano). Others, including several units from Puyehue-Cordón Caulle, are newly described here. We also find tephra related to the Cha1 eruption from Chaitén volcano in lake sediments up to 400 km north from source. Several clear marker horizons are now identified that should help refine age model reconstructions for various sedimentary archives. Our chronological model suggests three distinct phases of eruptive activity impacting the area, with an early-to-mid-Holocene period of relative quiescence. Extending our tephrochronological framework further south into Patagonia will allow a more detailed evaluation of the controls on the occurrence and magnitude of explosive eruptions throughout the postglacial.

  3. Global fallout Pu recorded in lacustrine sediments in Lake Hongfeng, SW China.

    PubMed

    Zheng, Jian; Wu, Fengchang; Yamada, Masatoshi; Liao, Haiqing; Liu, Congqiang; Wan, Guojiang

    2008-03-01

    Studies on the distribution and isotope compositions of fallout Pu are important for source characterization of possible future non-fallout Pu contamination in aquatic environments, and useful for dating of recent sediments to understand the pollution history of environmental contaminants. We present the historical record of atmospheric Pu fallout reconstructed from a sediment core from Lake Hongfeng, China. The Pu activity profile was in agreement with the 137Cs profile. Inventories were 50.7 Bq m(-2) for 239+240Pu and 1586 Bq m(-2) for 137Cs. The average 240Pu/239Pu atom ratio was 0.185+/-0.009, indicating that Pu originated from global stratospheric fallout rather than from direct tropospheric or close-in fallout from the Chinese nuclear testing conducted in the 1970s. Our data suggested that Lake Hongfeng would be an ideal setting for monitoring atmospheric fallout and environmental changes in this region.

  4. Sedimentary Records of Non-Aroclor and Aroclor PCB mixtures in the Great Lakes.

    PubMed

    Hu, Dingfei; Martinez, Andres; Hornbuckle, Keri C

    2011-06-01

    Three sediment cores from Lake Ontario, Lake Erie and Indiana Harbor Ship Canal were collected, segmented and analyzed for Aroclor and non-Aroclor polychlorinated biphenyl congeners (PCBs). PCBs associated with the commercially produced Aroclor mixtures 1248 and 1254 dominate the sediment signal and the sum of all congeners (ΣPCB) peaks in concentration and accumulation around 1970 in the Great Lakes. This trend is very similar to Aroclor production history. In the Indiana Harbor Ship Canal, PCBs appear around 1935 and remain at very high levels between 1940 and 1980, probably reflecting the history of use at the nearby steel mill. In contrast, the non-Aroclor PCBs in the Lake Ontario and IHSC sediment cores, including PCB11 and heavily chlorinated congeners PCB206, 207, 208 and 209 reach a peak in the 1950s, decline and peak again in the 1970s or in the early 1980s. All five congeners have been previously measured in commercial paint pigment. PCB11 was found to peak about 5 years later than ΣPCBs, and is probably associated with the production or use history of diarylide yellow pigments. The temporal distribution profiles of these non-Aroclor PCBs are well correlated with the production history of paint pigments and dyes. Although it is well known that the production of Aroclor PCBs is preserved in Great Lakes sediments, this study is the first to show that production of non-Aroclors are also preserved in the sediments as a record of long term trends in environmental exposure. PMID:23538476

  5. Legacy of a half century of Athabasca oil sands development recorded by lake ecosystems

    PubMed Central

    Kurek, Joshua; Kirk, Jane L.; Muir, Derek C. G.; Wang, Xiaowa; Evans, Marlene S.; Smol, John P.

    2013-01-01

    The absence of well-executed environmental monitoring in the Athabasca oil sands (Alberta, Canada) has necessitated the use of indirect approaches to determine background conditions of freshwater ecosystems before development of one of the Earth’s largest energy deposits. Here, we use highly resolved lake sediment records to provide ecological context to ∼50 y of oil sands development and other environmental changes affecting lake ecosystems in the region. We show that polycyclic aromatic hydrocarbons (PAHs) within lake sediments, particularly C1-C4–alkylated PAHs, increased significantly after development of the bitumen resource began, followed by significant increases in dibenzothiophenes. Total PAH fluxes in the modern sediments of our six study lakes, including one site ∼90 km northwest of the major development area, are now ∼2.5–23 times greater than ∼1960 levels. PAH ratios indicate temporal shifts from primarily wood combustion to petrogenic sources that coincide with greater oil sands development. Canadian interim sediment quality guidelines for PAHs have been exceeded since the mid-1980s at the most impacted site. A paleoecological assessment of Daphnia shows that this sentinel zooplankter has not yet been negatively impacted by decades of high atmospheric PAH deposition. Rather, coincident with increases in PAHs, climate-induced shifts in aquatic primary production related to warmer and drier conditions are the primary environmental drivers producing marked daphniid shifts after ∼1960 to 1970. Because of the striking increase in PAHs, elevated primary production, and zooplankton changes, these oil sands lake ecosystems have entered new ecological states completely distinct from those of previous centuries. PMID:23297215

  6. Legacy of a half century of Athabasca oil sands development recorded by lake ecosystems.

    PubMed

    Kurek, Joshua; Kirk, Jane L; Muir, Derek C G; Wang, Xiaowa; Evans, Marlene S; Smol, John P

    2013-01-29

    The absence of well-executed environmental monitoring in the Athabasca oil sands (Alberta, Canada) has necessitated the use of indirect approaches to determine background conditions of freshwater ecosystems before development of one of the Earth's largest energy deposits. Here, we use highly resolved lake sediment records to provide ecological context to ∼50 y of oil sands development and other environmental changes affecting lake ecosystems in the region. We show that polycyclic aromatic hydrocarbons (PAHs) within lake sediments, particularly C1-C4-alkylated PAHs, increased significantly after development of the bitumen resource began, followed by significant increases in dibenzothiophenes. Total PAH fluxes in the modern sediments of our six study lakes, including one site ∼90 km northwest of the major development area, are now ∼2.5-23 times greater than ∼1960 levels. PAH ratios indicate temporal shifts from primarily wood combustion to petrogenic sources that coincide with greater oil sands development. Canadian interim sediment quality guidelines for PAHs have been exceeded since the mid-1980s at the most impacted site. A paleoecological assessment of Daphnia shows that this sentinel zooplankter has not yet been negatively impacted by decades of high atmospheric PAH deposition. Rather, coincident with increases in PAHs, climate-induced shifts in aquatic primary production related to warmer and drier conditions are the primary environmental drivers producing marked daphniid shifts after ∼1960 to 1970. Because of the striking increase in PAHs, elevated primary production, and zooplankton changes, these oil sands lake ecosystems have entered new ecological states completely distinct from those of previous centuries. PMID:23297215

  7. The record of historic earthquakes in lake sediments of Central Switzerland

    NASA Astrophysics Data System (ADS)

    Monecke, Katrin; Anselmetti, Flavio S.; Becker, Arnfried; Sturm, Michael; Giardini, Domenico

    2004-12-01

    Deformation structures in lake sediments in Central Switzerland can be attributed to strong historic earthquakes. The type and spatial distribution of the deformation structures reflect the historically documented macroseismic intensities thus providing a useful calibration tool for paleoseismic investigations in prehistoric lake sediments. The Swiss historical earthquake catalogue shows four moderate to strong earthquakes with moment magnitudes of Mw=5.7 to Mw=6.9 and epicentral intensities of I0=VII to I0=IX that affected the area of Central Switzerland during the last 1000 years. These are the 1964 Alpnach, 1774 Altdorf, 1601 Unterwalden, and 1356 Basel earthquakes. In order to understand the effect of these earthquakes on lacustrine sediments, four lakes in Central Switzerland (Sarner See, Lungerer See, Baldegger See, and Seelisberg Seeli) were investigated using high-resolution seismic data and sediment cores. The sediments consist of organic- and carbonate-rich clayey to sandy silts that display fine bedding on the centimeter to millimeter scale. The sediments are dated by historic climate and environmental records, 137Cs activity, and radiocarbon ages. Deformation structures occur within distinct zones and include large-scale slumps and rockfalls, as well as small-scale features like disturbed and contorted lamination and liquefaction structures. These deformations are attributed to three of the abovementioned earthquakes. The spatial distribution of deformation structures in the different lakes clearly reflects the historical macroseismic dataset: Lake sediments are only affected if they are situated within an area that underwent groundshaking not smaller than intensity VI to VII. We estimate earthquake size by relating the epicentral distance of the farthest liquefaction structure to earthquake magnitude. This relationship is in agreement with earthquake size estimations based on the historical dataset.

  8. Earthquake Records of North Anatolian Fault from Sapanca Lake Sediments, NW Anatolia

    NASA Astrophysics Data System (ADS)

    Yalamaz, Burak; Cagatay, Namık; Acar, Dursun; Demirbag, Emin; Gungor, Emin; Gungor, Nurdan; Gulen, Levent

    2014-05-01

    We determined earthquake records in sediment cores of Sapanca Lake which is a pull-apart basin located along the North Anatolian Fault zone in NW Anatolia. The lake has a maximum depth of 55 m, and a surface area of 46.8 km2, measuring 16 km in E-W and 5 km in N-S directions. A systematic study of the sedimentological, physical and geochemical properties of three water-sediment interface cores, up to 75.7 cm long, located along depth transects ranging from 43 to 51.5 m water depths. The cores were analyzed using Geotek Multi Sensor Core Logger (MSCL) for physical properties, laser particle size analyzer for granulometry, TOC Analyzer for Total Organic Content (TOC) and Total Inorganic Carbon (TIC) analysis, Itrax-XRF Core Scanner for elemental analysis and digital X-RAY Radiography. The geochronology was determined using AMS radiocarbon and radionuclide methods. The Sapanca Lake earthquake records are characterized by mass flow units consisting of grey or dark grey coarse to fine sand and silty mud with sharp basal and transional upper boundaries. The units commonly show normal size grading with their basal parts showing high density, and high magnetic susceptibility and enrichment in one or more elements, such as Si, Ca, Tİ, K, Rb, Zr and Fe, indicative of coarse detrial input. Based on radionuclide and radiocarbon analyses the mass flow units are correlated with 1999 İzmit and Düzce earthquakes (Mw=7.4 and 7.2, respectively) , 1967 Mudurnu earthquake (Mw= 6,8), and 1957 Abant (Mw= 7.1) earthquake. Keywords: Sapanca Lake, North Anatolian Fault, Earthquake, Grain size, Itrax-XRF, MSCL

  9. Sedimentary and Volcanic Records of the Laschamp and Mono Lake Excursions from Australia and New Zealand

    NASA Astrophysics Data System (ADS)

    Ingham, E. M.; Roberts, A. P.; Turner, G. M.; Heslop, D.; Ronge, T.; Conway, C.; Leonard, G.; Townsend, D.; Tiedemann, R.; Lamy, F.; Calvert, A. T.

    2014-12-01

    Geomagnetic excursions are short-lived deviations of the geomagnetic field from the normal range of secular variation. Despite significant advances in geomagnetic excursion research over the past 20 years, fundamental questions remain concerning the typical duration and global morphology of excursional geomagnetic fields. To answer such questions, more high-resolution, chronologically well-constrained excursion records are required, particularly from the Southern Hemisphere. We present preliminary paleomagnetic records of the Laschamp (~41 ka) and Mono Lake (~35 ka) excursions from three marine sediment cores from the Bounty Trough, New Zealand margin, and complementary volcanic records of the Laschamp excursion from lavas of Mt Ruapehu, New Zealand. Relatively high sedimentation rates of 12 - 26 cm/kyr in the Bounty Trough during glacial periods allow identification of excursional field behavior at each of the studied core locations. Each core displays one or two excursional events, with rapid directional swings between stable normal polarity and reversed excursional directions, each associated with coincident relative paleointensity minima. These anomalous paleomagnetic directions are interpreted to represent the Laschamp and Mono Lake excursions, based on a combination of tephrochronology, radiocarbon dating, and cyclostratigraphy (defined from core-scanning X-ray fluorescence and magnetic susceptibility records). Beside these records, we present results from fourteen lava flows, on Mt Ruapehu, for which 40Ar-39Ar dating indicates ages of between 39 and 45 ka. The step heating 40Ar-39Ar experiments produced particularly flat age plateaus, with corresponding 2 s.d. errors mostly approaching 1 kyr. The youngest and oldest flows carry normal polarity magnetization, however six flows, dated between 41 and 43 ka, display transitional field characteristics. Three of these flows display a declination swing of around 180o, which coincides with a previously published

  10. A 1300 Year Sub-Decadally Resolved Hydrologic Record from the Coastal Southwestern United States (Crystal Lake, CA)

    NASA Astrophysics Data System (ADS)

    Palermo, J. A.; Kirby, M. E.

    2015-12-01

    This study presents a 1300 year sub-decadally resolved record of hydrologic variability from coastal southwestern United States (Crystal Lake, CA). Crystal Lake is a small (0.02 km2), alpine landslide dammed lake in the Angeles National Forest of the San Gabriel Mountains. The hydrologically closed lake is the only permanent, freshwater lake in the range; its catchment is small (0.77 km2). In May 2014, lake depth measured 5.5 m, however the spillover point in the southeastern end of the lake indicates a max depth of ~50 m. Two Livingston piston cores were taken in May 2014, 15 m apart in the lake's depocenter. Magnetic susceptibility, LOI 550 °C and 950 °C, and grain size were measured at 1 cm contiguous intervals; C:N ratios and C and N isotopic analyses were measured every 2 cm. In addition, representative allochthonous and autochthonous vegetation were collected within the drainage basin for δ13Corg values. An age model was generated using Bacon v2.2, based on 11 AMS 14C dates of discrete organic matter (i.e. charcoal or wood). Age control for the past 200 years is based on correlation to Rothenberg et al. (2010) core ages. Initial results suggest a history of event sedimentation (large storms) superimposed on multi-decadal to centennial hydrologic changes (wet vs. dry periods) such as the Little Ice Age and the Medieval Climate Anomaly. Additionally, the Crystal Lake record is compared to preexisting regional records to further explore the record's spatial coherence. Mechanisms driving these hydrologic shifts are explored.

  11. Late Holocene Environmental Reconstruction and Flood Records of Lake Bafa, Western Turkey

    NASA Astrophysics Data System (ADS)

    Yalamaz, Burak; Bulkan, Özlem; Namık Çaǧatay, M.; Acar, Dursun

    2016-04-01

    Lake Bafa is a significant inland lake located in the Büyük Menderes River Basin near the Aegean Sea in the horst and graben system of western Turkey. Lake Bafa was part of the ancient Gulf of Latmos that was gradually filled by the prograding sediments of Büyük Menderes River during the Holocene transgression, and resulted in the creation of the Lake in the southern part. The lake is presently located 15 km from the shoreline, 2 m above sea level. It has a maximum depth of 21 m and surface area of 60 km2. We used multi-proxy analyses of a 4.17 m-long core extending back to ca. 2300 years from the central depo centre of the lake. The objectives are to reconstruct the environmental evolution of the Lake Bafa as it changed from a marginal marine to a lacustrine environment, and to investigate the flood records during the past 2300 yrs. The core is composed of three units: an uppermost lacustrine unit, a unit representing marine to lacustrine conditions and a lowermost marine unit. The uppermost lacustrine unit is 1 m-thick, homogenous clayey silt mud layer with relatively high total organic carbon (TOC= 2.5 - 4.5 %), high total inorganic carbon (TIC = 1.8 -4.5 %) and low detrital input (Si, K, Zr, Ti). According to AMS radiocarbon dating, it was deposited over the last 600 yrs under brackish lacustrine conditions. The underlying unit is 2 m-thick, and consists of banded mud layers with relatively low TOC (1.2-4 %) and TIC (1.2-3.5) contents and high detrital input. Its fossil content, with scarce Cardium sp. and Ammonia sp., indicates that it was deposited under brackish water conditions and represents a transition from marine to lacustrine environments. The unit was deposited between ca. 600 and 1750 yrs BP, and includes frequent flood units ranging up to 10 cm-thick fine sand- to clay-bearing coarse silt. The lowermost unit is characterized by relatively high TOC (2-5.5 %), TIC (1.5-3.5 %) contents and high detrital input. With its abundant Cardium sp. and

  12. A diatom record of climate and hydrology for the past 200 KA from Owens Lake, California with comparison to other Breat Basin records

    USGS Publications Warehouse

    Bradbury, J.P.

    1997-01-01

    Diatoms from lake sediments beneath Owens Lake playa, Inyo County, California, document a nearly continuous paleolimnological record of climate and hydrologic change since the penultimate glacial-interglacial cycle based on a chronology established by radiocarbon, tephrochronology, and paleomagnetic control. Freshwater planktic diatoms (especially species of Stephanodiscus), plagioclase feldspar-rich sediments with high magnetic susceptibility, and Juniperus-type pollen characterized the penultimate glaciation at Owens Lake. Saline diatoms dominated in the following interglacial period, and there are several episodes during which freshwater planktic diatoms became abundant between 100 and 50 ka that may represent interstadial climatic conditions. Saline diatoms fell to low values after 50 ka, but warm-season Aulacoseira species indicate episodes of significant summer precipitation in the hydrologic balance of Owens Lake prior to the last glacial maximum. By 25 ka, glacial environments were again characterized by abundant Juniperus, plagioclase feldspar, and Stephanodiscus species. Generally and Holocene climates were recorded in Owens Lake by short-term fluctuations of saline and freshwater diatoms, desiccation, and oolitic sediments barren of diatoms. Comparison to paleoclimate records both north and south of Owens Lake suggest a southerly displacement of storm tracks originating from the Aleutian Low during glacial episodes.

  13. Multi-scale hydroclimate reconstruction using co-located lake and bog records from Maine and comparison with other records from the Northeast US

    NASA Astrophysics Data System (ADS)

    Nolan, C.; Shuman, B. N.; Booth, R.; Jackson, S. T.

    2015-12-01

    Sedimentary lake-level records and ombrotrophic bog water-table depth records both document hydrologic variability over the Holocene. Lake level records have long temporal length (10,000+ years) and fidelity in preserving low-frequency trends and centennial to millennial length events. Hydrologic reconstructions based on peatland testate amoebae assemblage composition are sensitive to moisture variability at interannual to multidecadal time scales and precipitation on the bog surface is the sole moisture input. However, bog records are generally not as long as lake level records and bog development processes can confound centennial to millennial trends. In this study we present and combine new reconstructions from Giles Pond, Aurora, Maine, USA and Caribou Bog, Old Town, ME USA. The lake-level record from Giles Pond extends a network of lake-level records from southern New England that show an orbitally driven long-term trend toward wetter conditions punctuated by low-water phases in the mid- to late-Holocene that each lasted 100 to 400+ years. Some of these low lake level events appear to be synchronous across multiple sites in New England (Newby, et al. 2014 GRL). Preliminary data from Giles Pond suggest that some of these events extended all the way to Maine. Thus, there were New England-wide dry periods within the last 5000 years that lasted more than 100 years. These long low stands are unlike anything observed during the historical period and the interannual to decadal variability during these low stands is poorly understood. This leads to challenges in understanding the modern and future implications of the lake-level record alone. The Caribou Bog record also builds on a network of peatland water-table reconstructions from the Northeast, and contributes higher-resolution hydroclimate information that adds interannual to multidecadal texture to the centennial to millennial variability of the Giles Pond record. Our multiproxy approach allows us to use the

  14. Using LANDSAT to expand the historical record of phytoplankton blooms in Lake Erie

    NASA Astrophysics Data System (ADS)

    Ho, J. C.; Michalak, A. M.; Stumpf, R. P.; Bridgeman, T. B.

    2014-12-01

    Freshwater harmful algal blooms are occurring with increasing frequency worldwide, intensifying the need for deeper understanding of the processes driving bloom formation. Such understanding is a prerequisite for developing management strategies for limiting bloom occurrence. Unfortunately, however, data for developing robust predictive models of bloom formation are lacking. Even in the well-studied Lake Erie, where diatom and cyanobacteria blooms have occurred for several decades in the Western Basin, previous in-situ and remote-sensing data collection efforts have been hampered by spatial and temporal sampling limitations, resulting in a sparse historical record. Leveraging available data to expand the historical record of algal blooms would thus make it possible to better evaluate hypotheses about factors influencing bloom formation. In this work, remotely-sensed observations of phytoplankton obtained using LANDSAT imagery are presented for 1984-2011. Several phytoplankton detection algorithms based on LANDSAT 5 imagery are evaluated during the period also covered by MERIS (2002-2011), which offers a relatively detailed assessment of bloom occurrence over the last decade. The best algorithm is then applied to historical LANDSAT data, and results are used to obtain new information about historical conditions and assess implications for developing improved models of bloom formation. Estimates of historical bloom occurrence and bloom seasonality shed new light on the widely-held view that phosphorus controls and invasive mussels resulted in substantial bloom reductions in the early 1990s. The new estimated records are not consistent with limited in-situ phytoplankton measurements from that period, and provide additional information on bloom occurrence during years with little to no supporting literature. This work demonstrates the potential to unearth new insights about historical phytoplankton blooms in Lake Erie, as well as in freshwater lakes broadly, and is a

  15. Holocene environmental change in southwest Turkey: a palaeoecological record of lake and catchment-related changes

    NASA Astrophysics Data System (ADS)

    Eastwood, W. J.; Roberts, N.; Lamb, H. F.; Tibby, J. C.

    1999-04-01

    Percentage, concentration and accumulation pollen data together with diatom and non-siliceous microfossil data are presented for the site of Gölhisar Gölü (37°8'N, 29°36'E; elevation 930 m), a small intramontane lake in Burdur Province, southwest Turkey. Microfossil assemblages from the longest sediment core (GHA: 813 cm) record changes in local and regional vegetation and lake productivity over the last ˜9500 years. Pollen spectra indicate that vegetation progressed from an open landscape with an increase in arboreal pollen occurring ˜8500 BP to mixed forest comprising oak, pine and juniper until around 3000 BP (Cal ˜1240 BC) when a human occupation phase becomes discernible from the pollen spectra. This occurs shortly after the deposition of a volcanic tephra layer which originated from the Minoan eruption of Santorini (Thera) and radiocarbon dated to 3330±70 yr BP (Cal ˜1600 BC). This human occupation phase is comparable to the Beyşehir Occupation phase recorded at other sites in southwest Turkey and involved forest clearance and the cultivation of fruit trees such as Olea, Juglans, Castanea and Vitis together with arable cereal growing and pastoralism. The presence of pollen types associated with the Beyşehir Occupation phase in deposits above the Santorini tephra layer confirms a Late Bronze Age/early Anatolian Dark Age date for its commencement. Since ˜3000 BP notable changes in aquatic ecology associated with tephra deposition and subsequent nutrient and sediment flux from the lake catchment are recorded. The Beyşehir Occupation phase at Gölhisar Gölü came to an end around 1300 BP (Cla AD ˜700) when pine appears to have become the dominant forest tree.

  16. Lake

    ERIC Educational Resources Information Center

    Wien, Carol Anne

    2008-01-01

    The lake is blue black and deep. It is a glaciated finger lake, clawed out of rock when ice retracted across Nova Scotia in a northerly direction during the last ice age. The lake is narrow, a little over a mile long, and deep, 90 to 190 feet in places according to local lore, off the charts in others. The author loves to swim there, with a sense…

  17. Preliminary tephra-fall records from three lakes in the Anchorage, Alaska area: advances towards a regional tephrochronostratigraphic framework

    NASA Astrophysics Data System (ADS)

    Wallace, K. L.; Kaufman, D. S.; Schiff, C. J.; Kathan, K.; Werner, A.; Hancock, J.; Hagel, L. A.

    2010-12-01

    Sediment cores recovered from three kettle lakes, all within 10 km of Anchorage, Alaska contain a record of tephra fall from major eruptive events of Cook Inlet volcanoes during the past 11250 yr. Prominent tephra layers from multiple cores within each lake were first correlated within each basin using physical properties, major-oxide glass geochemistry, and constrained by bracketing radiocarbon age. Distinct tephra from each lake were then correlated among all three lakes using the same criteria to develop a composite tephrostratigraphic framework for the Anchorage area. Lorraine Lake, the northern-most lake contains 17 distinct tephra layers; Goose Lake, the eastern most lake contains 10 distinct tephra layers; and Little Campbell Lake, to the west, contains 7 distinct tephra layers. Thinner, less-prominent tephra layers, reflecting smaller or more distant eruptions, also occur but are not included as part of this study. Of the 33 tephra layers, only two could be confidently correlated among all three lakes, and four other correlative deposits were recognized in two of the three lakes. The minimum number of unique major tephra-fall events in the Anchorage area is 22 in the past 11200 years, or about 1 event every 500 years. This number underestimates the actual number of eruptions because not attempt was made to locate crypto-tephra. All but perhaps one tephra deposit originated from Cook Inlet volcanoes with the most prolific source being Mount Spurr/Crater Peak, which is accountable for at least 8 deposits. Combining radiocarbon ages to produce an independent age model for each lake is in progress and will aid in confirming correlations and assigning detailed modeled-tephra age and uncertainty to each tephra layer.

  18. Pathogenic fungus Batrachochytrium dendrobatidis in marbled water frog Telmatobius marmoratus: first record from Lake Titicaca, Bolivia.

    PubMed

    Cossel, John; Lindquist, Erik; Craig, Heather; Luthman, Kyle

    2014-11-13

    The pathogenic fungus Batrachochytrium dendrobatidis (Bd) has been associated with amphibian declines worldwide but has not been well-studied among Critically Endangered amphibian species in Bolivia. We sampled free-living marbled water frogs Telmatobius marmoratus (Anura: Leptodactylidae) from Isla del Sol, Bolivia, for Bd using skin swabs and quantitative polymerase chain reactions. We detected Bd on 44% of T. marmoratus sampled. This is the first record of Bd in amphibians from waters associated with Lake Titicaca, Bolivia. These results further confirm the presence of Bd in Bolivia and substantiate the potential threat of this pathogen to the Critically Endangered, sympatric Titicaca water frog T. culeus and other Andean amphibians.

  19. 78 FR 44597 - Notice of Approval of Record of Decision for Stehekin River Corridor Implementation Plan, Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-24

    ... National Park Service Notice of Approval of Record of Decision for Stehekin River Corridor Implementation Plan, Lake Chelan National Recreation Area, North Cascades National Park Service Complex, Washington AGENCY: National Park Service, Interior. ACTION: Notice of Record of Decision. SUMMARY: Pursuant to...

  20. Holocene glacier activity on Kerguelen Island: preliminary results from a novel proglacial lake sediment record

    NASA Astrophysics Data System (ADS)

    Støren, Eivind; Bakke, Jostein; Arnaud, Fabien; Poulenard, Jérôme; Fanget, Bernard; Malet, Emmanuel; Sabatier, Pierre

    2016-04-01

    The Polar-regions are changing rapidly as greenhouse warming is continuing with huge impact on e.g. sea ice extent and snow cover. This change triggers teleconnections to low latitude areas challenging societies and human activity. We have, however, very little quantitative information of past climate in the Polar-regions that can be used to evaluate the potential responses and the response patterns to forcing changes and changes in boundary conditions. Whatever anthropogenic changes may occur in the future, they will be superimposed on, and interact with, natural climate variations due to all the forcing we are aware of. This means we need to better document past climate/environmental variability of the Polar-regions. Especially in the Southern Ocean there are few time series recording past climate due to few suitable land areas and the few Sub-Antarctic Islands is remote and has cumbersome logistics. Continuous terrestrial records from this region are therefore urgently needed for constraining future scenarios from earth system models. Glaciers and ice caps are still ubiquitous in the Polar-regions, although they are rapidly shrinking due to the on-going warming. The continuous sedimentary records produced by glaciers, which are stored in downstream lakes, represent supreme archives of past variability wherefrom quantitative information of key climate system components can be extracted. Kerguelen Island is located within the Antarctic Circumpolar Current and the Southern Westerly wind belt and contains several glaciers and smaller ice caps. Terrestrial archives recording past history of the glaciers at Kerguelen thus have a unique potential to record past changes in oceanic and atmospheric circulation patterns from southern mid-latitudes. Here we present preliminary results from the first distal glacier-fed lake that is sampled from Kerguelen Island. A 2.8 m long sediment core was obtained from Lac Guynemer (121masl.) located at the Peninsule Loranchet at the

  1. First tephrostratigraphic results of the DEEP site record of Lake Ohrid, Macedonia

    NASA Astrophysics Data System (ADS)

    Leicher, N.; Zanchetta, G.; Sulpizio, R.; Giaccio, B.; Wagner, B.; Nomade, S.; Francke, A.; del Carlo, P.

    2015-12-01

    A tephrostratigraphic record covering the Marine Isotope Stages (MIS) 1-15 was established for the DEEP site record of Lake Ohrid (Macedonia/Albania). Major element analyses (SEM-EDS/WDS) were carried out on juvenile fragments extracted from 12 tephra layers and one cryptotephra (OH-DP-0027 to OH-DP-2060). The geochemical analyses of all of these layers suggest an origin from the Italian Volcanic Provinces, including: the Mercato tephra (8.530 ± 0.1 cal a BP) of Somma-Vesuvius, the Y-3 (29.05 ± 0.37 ka cal BP), the Y-5/Campanian Ignimbrite (39.6 ± 0.1 ka), and the X-6 (109 ± 2 ka) of the Campi Flegrei, the P11 of the Pantelleria Island (129 ± 6 ka), the Vico B (162 ± 6 ka) of the Vico volcano, the Pozzolane Rosse (457 ± 2 ka) and the Tufo di Bagni Albule (527 ±2 ka) of the Colli Albani volcanic district, and the Fall A (496 ± 3 ka, here discussed) of the Sabatini volcanic field. Furthermore, a comparison of the Ohrid record with the tephrostratigraphic records of mid-distal archives allowed the recognition of the equivalents of other less known tephra, such as the TM24-a/POP2 (101.8 ka BP) from Lago Grande di Monticchio and the Sulmona basin, the CF-V5/PRAD3225 (~ 162 ka) from the Campo Felice basin and the Adriatic Sea, the SC5 (494 ± 11 ka) from the Mercure basin, and the A11/12 (511 ± 6 ka) from the Acerno basin, whose specific volcanic origins are still poorly defined. For the first time, the Middle Pleistocene tephrostratigraphic framework of Italian volcanoes could be extended beyond Italy to the Balkan Region. The establishment of the tephrostratigraphic framework for the Lake Ohrid record provides important, independent tie-points for the age-depth model of the DEEP site sequence, which is a prerequisite for paleoclimatic and -environmental reconstructions. Furthermore, this age-depth model helps to improve and re-evaluate the chronology of both unknown and dated tephra layers. Thus, the Lake Ohrid record is candidate to become the Rosetta stone

  2. First tephrostratigraphic results of the DEEP site record of Lake Ohrid, Macedonia

    NASA Astrophysics Data System (ADS)

    Leicher, Niklas; Zanchetta, Giovanni; Sulpizio, Roberto; Giaccio, Biagio; Nomade, Sebastien; Wagner, Bernd; Francke, Alexander; Del Carlo, Paola

    2016-04-01

    A tephrostratigraphic record covering the Marine Isotope Stages (MIS) 1-15 was established for the DEEP site record of Lake Ohrid (Macedonia/Albania). Major element analyses (SEM-EDS/WDS) were carried out on juvenile fragments extracted from 12 tephra layers and one cryptotephra (OH-DP-0027 to OH-DP-2060). The geochemical analyses of all of these layers suggest an origin from the Italian Volcanic Provinces, including: the Mercato tephra (8.530 ± 0.1 cal a BP) of Somma-Vesuvius, the Y-3 (29.05 ± 0.37 ka cal BP), the Y 5/Campanian Ignimbrite (39.6 ± 0.1 ka), and the X-6 (109 ± 2 ka) of the Campi Flegrei, the P11 of the Pantelleria Island (129 ± 6 ka), the Vico B (162 ± 6 ka) of the Vico volcano, the Pozzolane Rosse (457 ± 2 ka) and the Tufo di Bagni Albule (527 ±2 ka) of the Colli Albani volcanic district, and the Fall A (496 ± 3 ka, here discussed) of the Sabatini volcanic field. Furthermore, a comparison of the Ohrid record with the tephrostratigraphic records of mid-distal archives allowed the recognition of the equivalents of other less known tephra, such as the TM24-a/POP2 (101.8 ka BP) from Lago Grande di Monticchio and the Sulmona basin, the CF-V5/PRAD3225 (~ 162 ka) from the Campo Felice basin and the Adriatic Sea, the SC5 (494 ± 11 ka) from the Mercure basin, and the A11/12 (511 ± 6 ka) from the Acerno basin, whose specific volcanic origins are still poorly defined. For the first time, the Middle Pleistocene tephrostratigraphic framework of Italian volcanoes could be extended beyond Italy to the Balkan Region. The establishment of the tephrostratigraphic framework for the Lake Ohrid record provides important, independent tie-points for the age-depth model of the DEEP site sequence, which is a prerequisite for paleoclimatic and -environmental reconstructions. Furthermore, this age-depth model helps to improve and re-evaluate the chronology of both unknown and dated tephra layers. Thus, the Lake Ohrid record is candidate to become the template for

  3. Varve deposition and the sediment yield record at three small lakes of the southern Canadian Cordillera

    SciTech Connect

    Desloges, J.R. )

    1994-05-01

    Lacustrine sediments deposited in three small glacier-fed lakes of the southern Canadian Cordillera are derived primarily from subglacial erosion and delivered via short proglacial streams or by direct melting and calving of cirque glaciers. Sediment transport and deposition during early summer is controlled by runoff-generated bottom currents and in the late summer through winter by settling from suspension. This forms distinct rhythmic laminations of silt and clay in distal lake areas. Cesium-137 content in all three lakes indicates that these are varve sediments. Time series of varve thickness covering the interval 1863 to present show distinct declines in sediment yield from 310 to less than 150 t km[sup [minus]2] a[sup [minus]1]. The decline is related to sediment exhaustion following glacier retreat from Little Ice Age maxima and the opening of intervening sediment storage sites. Annual varve thickness is significantly related to fluctuations in summer or late summer temperature highlighting the importance of ice ablation, melt-water runoff, and subglacial sediment sources in controlling deposition rates. Singular climate events, such as autumn storms provide distinctive sedimentary signatures in the varve record. Reconstructed sediment yield for the Little Ice Age is as much as 100% greater than the average Holocene rate. 39 refs., 8 figs., 2 tabs.

  4. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake

    NASA Astrophysics Data System (ADS)

    Sinninghe Damsté, Jaap S.; Ossebaar, Jort; Schouten, Stefan; Verschuren, Dirk

    2012-09-01

    The distribution of isoprenoid and branched glycerol dialkyl glycerol tetraether (GDGT) lipids was studied in the sedimentary record of Lake Challa, a permanently stratified, partly anoxic crater lake on the southeastern slope of Mt. Kilimanjaro (Kenya/Tanzania), to examine if the GDGTs could be used to reconstruct past variation in regional temperature. The study material comprised 230 samples from a continuous sediment sequence spanning the last 25 ka with excellent age control based on high-resolution AMS 14C dating. The distribution of GDGTs showed large variation through time. In some time intervals (i.e., from 20.4 to 15.9 ka BP and during the Younger Dryas, 12.9-11.7 ka BP) crenarchaeol was the most abundant GDGT, whereas at other times (i.e., during the Early Holocene) branched GDGTs and GDGT-0 were the major GDGT constituents. In some intervals of the sequence the relative abundance of GDGT-0 and GDGT-2 was too high to be derived exclusively from lacustrine Thaumarchaeota, suggesting a sizable contribution from methanogens and other archaea. This severely complicated application of TEX86 palaeothermometry in this lake, and limited reliable reconstruction of lake water temperature to the time interval 25-13 ka BP, i.e. the Last Glacial Maximum and the period of post-glacial warming. The TEX86-inferred timing of this warming is similar to that recorded previously in two of the large African rift lakes, while its magnitude is slightly or much higher than that recorded at these other sites, depending on which lake-based TEX86 calibration is used. Application of calibration models based on distributions of branched GDGTs developed for lakes inferred temperatures of 15-18 °C for the Last Glacial Maximum and 19-22 °C for the Holocene. However, the MBT/CBT palaeothermometer reconstructs temperatures as low as 12 °C for a Lateglacial period centred on 15 ka BP. Variation in down-core values of the BIT index are mainly determined by the varying production rate of

  5. High Arctic Temperature Variations During the Past Five Millennia: a Varve Based Record From Lower Murray Lake, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Cook, T. L.; Bradley, R. S.; Stoner, J. S.; Francus, P.

    2008-12-01

    Sediments in Lower Murray Lake, northern Ellesmere Island, Nunavut Canada (81°21'N, 69°32'W) contain annual laminations (varves) which provide a record of sediment accumulation spanning the past 5000+ years. Annual mass accumulation rates in Lower Murray Lake were compared to instrumental climate data, long term records of climatic forcing mechanisms and other regional paleoclimate records which indicate that lake sedimentation is positively correlated with regional melt season temperatures driven by radiative forcing. Lower Murray Lake mass accumulation rates were positively correlated with mean July 600 m free air temperatures at the two nearest permanent weather stations at Alert and Eureka, producing r2 values of 0.61 and 0.50, respectively. Consequently, we suggest that sediment mass accumulation in Lower Murray Lake is dominantly influenced by July temperatures in the upper watershed which have a controlling influence on snowmelt, streamflow and sediment transport into the lake. The lowest rates of sediment accumulation and by inference the coldest periods of the record occurred around varve year 1800 AD and prior to ~4200 varve years ago. In contrast, periods of increased sedimentation, and by inference the warmest conditions, occurred in the 12th, 14th, and 20th centuries, and throughout the middle portion of the record, approximately 1000 to 4200 varve years ago. By calibrating the mass accumulation record in terms of July temperatures we were able to produce a quantitative estimate of the range of past temperature variations at Lower Murray Lake (standard error +/- 1.04 °C). The temperature reconstruction suggests: (1) recent temperatures are ~2.6 °C higher than temperature minima observed during the Little Ice Age, ca. 1800 AD, (2) maximum temperatures during the past 5200 years exceeded modern values by ~0.6 °C, (3) minimum temperatures observed approximately 4900 varve years before present were ~3.5 °C colder than recent conditions.

  6. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions

    PubMed Central

    Michalak, Anna M.; Anderson, Eric J.; Beletsky, Dmitry; Boland, Steven; Bosch, Nathan S.; Bridgeman, Thomas B.; Chaffin, Justin D.; Cho, Kyunghwa; Confesor, Rem; Daloğlu, Irem; DePinto, Joseph V.; Evans, Mary Anne; Fahnenstiel, Gary L.; He, Lingli; Ho, Jeff C.; Jenkins, Liza; Johengen, Thomas H.; Kuo, Kevin C.; LaPorte, Elizabeth; Liu, Xiaojian; McWilliams, Michael R.; Moore, Michael R.; Posselt, Derek J.; Richards, R. Peter; Scavia, Donald; Steiner, Allison L.; Verhamme, Ed; Wright, David M.; Zagorski, Melissa A.

    2013-01-01

    In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak intensity over three times greater than any previously observed bloom. Here we show that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with meteorological conditions in spring 2011, produced record-breaking nutrient loads. An extended period of weak lake circulation then led to abnormally long residence times that incubated the bloom, and warm and quiescent conditions after bloom onset allowed algae to remain near the top of the water column and prevented flushing of nutrients from the system. We further find that all of these factors are consistent with expected future conditions. If a scientifically guided management plan to mitigate these impacts is not implemented, we can therefore expect this bloom to be a harbinger of future blooms in Lake Erie. PMID:23576718

  7. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions.

    PubMed

    Michalak, Anna M; Anderson, Eric J; Beletsky, Dmitry; Boland, Steven; Bosch, Nathan S; Bridgeman, Thomas B; Chaffin, Justin D; Cho, Kyunghwa; Confesor, Rem; Daloglu, Irem; Depinto, Joseph V; Evans, Mary Anne; Fahnenstiel, Gary L; He, Lingli; Ho, Jeff C; Jenkins, Liza; Johengen, Thomas H; Kuo, Kevin C; Laporte, Elizabeth; Liu, Xiaojian; McWilliams, Michael R; Moore, Michael R; Posselt, Derek J; Richards, R Peter; Scavia, Donald; Steiner, Allison L; Verhamme, Ed; Wright, David M; Zagorski, Melissa A

    2013-04-16

    In 2011, Lake Erie experienced the largest harmful algal bloom in its recorded history, with a peak intensity over three times greater than any previously observed bloom. Here we show that long-term trends in agricultural practices are consistent with increasing phosphorus loading to the western basin of the lake, and that these trends, coupled with meteorological conditions in spring 2011, produced record-breaking nutrient loads. An extended period of weak lake circulation then led to abnormally long residence times that incubated the bloom, and warm and quiescent conditions after bloom onset allowed algae to remain near the top of the water column and prevented flushing of nutrients from the system. We further find that all of these factors are consistent with expected future conditions. If a scientifically guided management plan to mitigate these impacts is not implemented, we can therefore expect this bloom to be a harbinger of future blooms in Lake Erie.

  8. A 500 year sediment lake record of anthropogenic and natural inputs to Windermere (English Lake District) using double-spike lead isotopes, radiochronology, and sediment microanalysis.

    PubMed

    Miller, Helen; Croudace, Ian W; Bull, Jonathan M; Cotterill, Carol J; Dix, Justin K; Taylor, Rex N

    2014-07-01

    A high-resolution record of pollution is preserved in recent sediments from Windermere, the largest lake in the English Lake District. Data derived from X-ray core scanning (validated against wavelength dispersive X-ray fluorescence), radiochronological techniques ((210)Pb and (137)Cs) and ultrahigh precision, double-spike mass spectrometry for lead isotopes are combined to decipher the anthropogenic inputs to the lake. The sediment record suggests that while most element concentrations have been stable, there has been a significant increase in lead, zinc, and copper concentrations since the 1930s. Lead isotope down-core variations identify three major contributory sources of anthropogenic (industrial) lead, comprising gasoline lead, coal combustion lead (most likely source is coal-fired steam ships), and lead derived from Carboniferous Pb-Zn mineralization (mining activities). Periods of metal workings do not correlate with peaks in heavy metals due to the trapping efficiency of up-system lakes in the catchment. Heavy metal increases could be due to flood-induced metal inwash after the cessation of mining and the weathering of bedrock in the catchment. The combination of sediment analysis techniques used provides new insights into the pollutant depositional history of Windermere and could be similarly applied to other lake systems to determine the timing and scale of anthropogenic inputs.

  9. Lake-level history of Lake Michigan for the past 12,000 years: the record from deep lacustrine sediments

    USGS Publications Warehouse

    Colman, Steven M.; Forester, Richard M.; Reynolds, Richard L.; Sweetkind, Donald S.; King, John W.; Gangemi, Paul; Jones, Glenn A.; Keigwin, Loyd D.; Foster, David S.

    1994-01-01

    The rise of the early Holocene lake level, controlled primarily by isostatic rebound of the North Bay outlet, resulted in a prominent, planar, transgressive unconformity that eroded most of the shoreline features below present lake level. Superimposed on this overall rise in lake level, a second influx of water from Lake Agassiz temporarily raised lake levels an unknown amount about 9.1 ka. At about 7 ka, lake level may have fallen below the level of the outlet because of sharply drier climate. Sometime between 6 and 5 ka, the character of the lake changed dramatically, probably due mostly to climatic causes, becoming highly undersaturated with respect to calcium carbonate and returning primary control of lake level to the isostatically rising North Bay outlet. Post-Nipissing (about 5 ka) lake level has fallen about 6 m due to erosion of the Port Huron outlet, a trend around which occurred relatively small (± ∼2 m), short-term fluctuations controlled mainly by climatic changes. These cyclic fluctuations are reflected in the sed-imentological and sediment-magnetic properties of the sediments.

  10. A Continuous Record of Indian Summer Monsoon Variability through the Holocene from Lake Sediments in Yunnan, China

    NASA Astrophysics Data System (ADS)

    Hillman, A. L.; Abbott, M. B.; Yu, J.

    2015-12-01

    Continuous terrestrial archives of the Indian Summer Monsoon through the Holocene are lacking, yet critical to providing a long-term perspective of hydroclimate variability. Here we present an 8,000 year sediment record from Xing Yun Lake in Yunnan, China that provides a semi-quantitative estimate of lake level change using stable isotopes of authigenic calcite as well as within-lake productivity using stable isotopes of organic matter. Substantial drops in lake level occur at 6,600 years BP, consistent with previous studies of a weaker monsoon system in the mid-Holocene due to declining summer insolation. Lake levels stabilize at 4,700 years BP and remain steady due to the topography surrounding the lake. From 5,600 to 5,100 and from 4,600 to 4,000 years BP, primary productivity decreases and is coincident with significant regional aridity as well as cooler Western Tropical Pacific sea surface temperatures. Variability in the stable isotopes of both calcite and organic matter after 1,500 years BP is primarily controlled by human activities. This study shows broad agreement with previous work on the Tibetan Plateau and provides one of the first continuous records of lake hydrologic balance from a crucial region affected by the Indian Summer Monsoon.

  11. Quantitative palaeotemperature records inferred from fossil pollen and chironomid assemblages from Lake Gilltjärnen, northern central Sweden

    NASA Astrophysics Data System (ADS)

    Antonsson, Karin; Brooks, Stephen J.; Seppä, Heikki; Telford, Richard J.; Birks, H. John B.

    2006-12-01

    Palaeotemperature reconstructions based on radiocarbon-dated fossil pollen and chironomid stratigraphies obtained from Lake Gilltjärnen provide evidence of climate changes during the last 11 000 years in the boreal zone of northern central Sweden. The records show consistent trends during the early and mid-Holocene, indicating low temperatures at 11 000-10 000 cal. yr BP, followed by a rising trend and a period of maximum values from about 7000 to 4000 cal. yr BP. At 3000 cal. yr BP the chironomid-inferred temperature values rise abruptly, deviating from the late-Holocene cooling trend indicated by the pollen-based reconstruction and most of the other palaeotemperature records from central Scandinavia, probably as a result of local limnological changes in Lake Gilltjärnen and its catchment. Comparison of the present results with a lake-level reconstruction from Lake Ljustjärnen, ca. 100 km southwest of Lake Gilltjärnen, shows that the low early-Holocene temperatures were associated with high lake-levels at 10 500-8500 cal. yr BP, whereas low lake-levels and dry conditions prevailed during the period of high temperatures at between 7500 and 5000 cal.yrBP, probably due to high summer evapotranspiration and lower precipitation. Copyright

  12. Holocene seasonal variability inferred from multiple proxy records from Crevice Lake, Yellowstone National Park, USA

    USGS Publications Warehouse

    Whitlock, Cathy; Dean, Walter E.; Fritz, Sherilyn C.; Stevens, Lora R.; Stone, Jeffery R.; Power, Mitchell J.; Rosenbaum, Joseph R.; Pierce, Kenneth L.; Bracht-Flyr, Brandi B.

    2012-01-01

    A 9400-yr-old record from Crevice Lake, a semi-closed alkaline lake in northern Yellowstone National Park, was analyzed for pollen, charcoal, geochemistry, mineralogy, diatoms, and stable isotopes to develop a nuanced understanding of Holocene environmental history in a region of northern Rocky Mountains that receives both summer and winter precipitation. The limited surface area, conical bathymetry, and deep water (> 31 m) of Crevice Lake create oxygen-deficient conditions in the hypolimnion and preserve annually laminated sediment (varves) for much of the record. Pollen data indicate that the watershed supported a closed Pinus-dominated forest and low fire frequency prior to 8200 cal yr BP, followed by open parkland until 2600 cal yr BP, and open mixed-conifer forest thereafter. Fire activity shifted from infrequent stand-replacing fires initially to frequent surface fires in the middle Holocene and stand-replacing events in recent centuries. Low values of δ18O suggest high winter precipitation in the early Holocene, followed by steadily drier conditions after 8500 cal yr BP. Carbonate-rich sediments before 5000 cal yr BP imply warmer summer conditions than after 5000 cal yr BP. High values of molybdenum (Mo), uranium (U), and sulfur (S) indicate anoxic bottom-waters before 8000 cal yr BP, between 4400 and 3900 cal yr BP, and after 2400 cal yr BP. The diatom record indicates extensive water-column mixing in spring and early summer through much of the Holocene, but a period between 2200 and 800 cal yr BP had strong summer stratification, phosphate limitation, and oxygen-deficient bottom waters. Together, the proxy data suggest wet winters, protracted springs, and warm effectively wet summers in the early Holocene and less snowpack, cool springs, warm dry summers in the middle Holocene. In the late Holocene, the region and lake experienced extreme changes in winter, spring, and summer conditions, with particularly short springs and dry summers and winters during

  13. Chronostratigraphy of the 600,000 year old continental record of Lake Van (Turkey)

    NASA Astrophysics Data System (ADS)

    Stockhecke, Mona; Kwiecien, Ola; Vigliotti, Luigi; Anselmetti, Flavio S.; Beer, Jürg; Çağatay, M. Namik; Channell, James E. T.; Kipfer, Rolf; Lachner, Johannes; Litt, Thomas; Pickarski, Nadine; Sturm, Michael

    2014-11-01

    Lake Van sediment cores from the Ahlat Ridge and Northern Basin drill sites of the ICDP project PALEOVAN contain a wealth of information about past environmental processes. The sedimentary sequence was dated using climatostratigraphic alignment, varve chronology, tephrostratigraphy, argon-argon single-crystal dating, radiocarbon dating, magnetostratigraphy, and cosmogenic nuclides. Based on the lithostratigraphic framework, the different age constraints are compiled and a robust and precise chronology of the 600,000 year-old Lake Van record is constructed. Proxy records of total organic carbon content and sediment color, together with the calcium/potassium-ratios and arboreal pollen percentages of the 166-m-long event-corrected Ahlat Ridge record, mimic the Greenland isotope stratotype (NGRIP). Therefore, the proxy records are systematically aligned to the onsets of interstadials reflected in the NGRIP and synthesized Greenland ice-core stratigraphy. The chronology is constructed using 49 age control points derived from visual synchronization with the Greenland ice-core stratigraphy using the GICC05 timescale, an absolutely-dated speleothem timescale (e.g., Hulu, Sanbao, Linzhu cave) and the Epica Dome C timescale. In addition, the uppermost part of the sequence is complemented with four ages from Holocene varve chronology and three calibrated radiocarbon ages. Furthermore, nine argon-argon ages and a comparison of the relative paleointensity record of the magnetic field with reference curve PISO-1500 confirm the accuracy of the age model. Also the identification of the Laschamp event via measurements of 10Be in the sediment confirms the presented age model. The chronology of the Ahlat Ridge record is transferred to the 79-m-long event-corrected composite record from the Northern Basin and supplemented by additional radiocarbon dating on organic marco-remains. The basal age of the Northern Basin record is estimated at ˜90 ka. The variations of the time series of

  14. Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments.

    PubMed

    Chiaia-Hernandez, Aurea C; Schymanski, Emma L; Kumar, Praveen; Singer, Heinz P; Hollender, Juliane

    2014-11-01

    Sediment cores provide a valuable record of historical contamination, but so far, new analytical techniques such as high-resolution mass spectrometry (HRMS) have not yet been applied to extend target screening to the detection of unknown contaminants for this complex matrix. Here, a combination of target, suspect, and nontarget screening using liquid chromatography (LC)-HRMS/MS was performed on extracts from sediment cores obtained from Lake Greifensee and Lake Lugano located in the north and south of Switzerland, respectively. A suspect list was compiled from consumption data and refined using the expected method coverage and a combination of automated and manual filters on the resulting measured data. Nontarget identification efforts were focused on masses with Cl and Br isotope information available that exhibited mass defects outside the sample matrix, to reduce the effect of analytical interferences. In silico methods combining the software MOLGEN-MS/MS and MetFrag were used for direct elucidation, with additional consideration of retention time/partitioning information and the number of references for a given substance. The combination of all available information resulted in the successful identification of three suspect (chlorophene, flufenamic acid, lufenuron) and two nontarget compounds (hexachlorophene, flucofuron), confirmed with reference standards, as well as the tentative identification of two chlorophene congeners (dichlorophene, bromochlorophene) that exhibited similar time trends through the sediment cores. This study demonstrates that complementary application of target, suspect, and nontarget screening can deliver valuable information despite the matrix complexity and provide records of historical contamination in two Swiss lakes with previously unreported compounds. PMID:25258286

  15. Near east paleomagnetic secular variation recorded in sediments from the Sea of Galilee (Lake Kinneret)

    NASA Astrophysics Data System (ADS)

    Thompson, R.; Turner, G. M.; Stiller, M.; Kaufman, A.

    1985-03-01

    Paleomagnetic records of declination and inclination from sediments recovered from the bed of Lake Kinneret (32.4°N, 35.7°E) have been dated by radiocarbon techniques. The sediments span the last 5000 yr. The changes in inclination down the sediment cores are more pronounced than the declination fluctuations and are repeatable between the three coring sites, which are several kilometers apart. Magnetic susceptibility logs display 13 maxima in the 5-m-long sequences, with a pronounced susceptibility minimum about 1000 yr B.P. Many of the susceptibility maxima and minima can be easily correlated between coring sites and are shown to be dominantly related to changes in sediment carbonate content. The natural remanent magnetization intensity follows a similar pattern to that of susceptibility, and the natural remanence of the Kinneret sediments is presumed to reside in detrital magnetite grains carried into the lake by the river Jordan from the basalt-rich bedrock of the rift floor and the Golan Heights. The 14C chronology is strongly supported by a pollen study in which pronounced changes in the proportion of olive pollen were interpreted as being due to extensive cultivation of olives around Galilee in the Hellenistic and Byzantine periods. The Kinneret paleosecular variation records, if accurately dated, point to a complex spatial pattern of Holocene secular variation with significant variations over distances as small as 1000-2000 km.

  16. Lake sediment record of neo-glacial advances in the southwestern Cordillera Raura, Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Stansell, N. D.; Abbott, M. B.

    2006-12-01

    Radiocarbon dated lake sediments are used to identify the timing of middle and late Holocene glacial advances in the southwestern Cordillera Raura of central Peru. Elemental iron, titanium and calcium data, obtained using scanning X-Ray Fluorescence (XRF), record relative changes in the rate of deposition of titanium/iron-rich versus calcium-rich sediments. Magnetic susceptibility, coulometry and digital color analyses of high- resolution core-scan images complement the XRF data. Combined, the data indicate that glacial advances in the watershed took place from 3320 to 2490 cal. yr BP, 2400 to 2190 cal. yr BP, 1780 to 1385 cal. yr BP and 790 to 270 cal. yr BP. Independent ice core data and lake level records suggest that the advances from 3320 to 2490 and from 2400 to 2190 cal. yr BP took place during colder and drier periods. The advance from 1780 to 1385 cal. yr BP was initially during a cold and drier period from 1780 to 1615 cal. yr BP, followed by a warmer and wetter period from 1615 to 1385 cal. yr BP. Likewise, the advance from 790 to 270 cal. yr BP initially took place during a cold and drier period followed by a cold and wetter period from 620 to 270 cal. yr BP.

  17. Glacial-interglacial continental temperature variability in the Beringian Arctic: the MBT/CBT record of Lake El'gygytgyn

    NASA Astrophysics Data System (ADS)

    Castaneda, I. S.; Finkelstein, D. B.; Phu, V.; Brigham-Grette, J.; Wilkie, K. M.; D'anjou, R. M.; Wei, J. H.; Urann, B. M.

    2012-12-01

    In 2009, deep drilling at El'gygytgyn Crater Lake (Far East Russian Arctic) recovered sediments covering the past 3.6 Ma. These sediments provide the first terrestrial Arctic paleoclimate record spanning the Pliocene-Pleistocene from the largest and oldest unglaciated Arctic lake basin. Lake El'gygytgyn sediments thus offer a unique opportunity to examine high-latitude climate variability beyond the 100 Ka interval captured by Greenland ice core records. In this study we utilize an organic geochemical paleothermometer, the MBT/CBT Index based on branched glycerol dialkyl glycerol tetraethers (GDGTs; Weijers et al., 2007), to examine continental temperature variability during several key time intervals of interest. In particular, we focus on Marine Isotope Stages (MIS) 1-6, MIS 9-11, MIS 31 and during the earliest formation of lacustrine sediments in the impact basin in the middle Pliocene. Previous work on Lake El'gygytgyn sediments has identified MIS 11c and MIS 31 as "super" interglacials, which were characterized by significantly warmer temperatures than at present largely based on pollen spectra and modern analog analysis (Melles et al., 2012). Our results show that relative changes in MBT/CBT-derived temperatures display similar overall patterns of glacial-interglacial climate variability noted in temperature reconstructions from Lake El'gygytgyn (Melles et al., 2012) as well as Greenland ice core records, North Atlantic sea surface temperature records (e.g. Lawrence et al., 2010), and the global benthic δ18O stack (Lisiecki and Raymo, 2005). We demonstrate that MBT/CBT is a sensitive proxy for recording temperature variability at Lake El'gygytgyn. Interestingly, while pronounced warming is noted during interglacials, a number of abrupt and short-lived temperature reversals are also observed within these intervals, such as during MIS 5a and MIS 5e. Overall, we find that MBT/CBT temperatures closely track changes in local summer insolation at 67°N, in

  18. First tephrostratigraphic results of the DEEP site record from Lake Ohrid, Macedonia

    NASA Astrophysics Data System (ADS)

    Leicher, N.; Zanchetta, G.; Sulpizio, R.; Giaccio, B.; Wagner, B.; Nomade, S.; Francke, A.; Del Carlo, P.

    2015-09-01

    A~tephrostratigraphic record covering the Marine Isotope Stages (MIS) 1-15 was established for the DEEP site record of Lake Ohrid (Macedonia/Albania). Major element analyses (SEM-EDS/WDS) were carried out on juvenile fragments extracted from 12 tephra layers (OH-DP-0115 to OH-DP-2060). The geochemical analyses of the glass shards of all of these layers suggest an origin from the Italian Volcanic Provinces. They include: the Y-3 (OH-DP-0115, 26.68-29.42 cal ka BP), the Campanian Ignimbrite/Y-5 (OH-DP-0169, 39.6 ± 0.1 ka), and the X-6 (OH-DP-0404, 109 ± 2 ka) from the Campanian volcanoes, the P-11 of the Pantelleria Island (OH-DP-0499, 129 ± 6 ka), the Vico B (OH-DP-0617, 162 ± 6 ka) from the Vico volcano, the Pozzolane Rosse (OH-DP-1817, 457 ± 2 ka) and the Tufo di Bagni Albule (OH-DP-2060, 527 ± 2 ka) from the Colli Albani volcanic district, and the Fall A (OH-DP-2010, 496 ± 3 ka) from the Sabatini volcanic field. Furthermore, a comparison of the Ohrid record with tephrostratigraphic records of mid-distal archives related to the Mediterranean area, allowed the recognition of the equivalents of other less known tephra layers, such as the TM24-a/POP2 (OH-DP-0404, 101.8 ka) from the Lago Grande di Monticchio and the Sulmona basin, the CF-V5/PRAD3225 (OH-DP-0624, ca. 162 ka) from the Campo Felice basin/Adriatic Sea, the SC5 (OH-DP-1955, 493.1 ± 10.9 ka) from the Mercure basin, and the A11/12 (OH-DP-2017, 511 ± 6 ka) from the Acerno basin, whose specific volcanic sources are still poorly constrained. Additionally, one cryptotephra (OH-DP-0027) was identified by correlation of the potassium XRF intensities from the DEEP site with those from short cores of previous studies from Lake Ohrid. In these cores, a maximum in potassium is caused by glass shards, which were correlated with the Mercato tephra (8.43-8.63 cal ka BP) from Somma-Vesuvius. With the tephrostratigraphic work, a consistent part of the Middle Pleistocene tephrostratigraphic framework of Italian

  19. First tephrostratigraphic results of the DEEP site record from Lake Ohrid (Macedonia and Albania)

    NASA Astrophysics Data System (ADS)

    Leicher, Niklas; Zanchetta, Giovanni; Sulpizio, Roberto; Giaccio, Biagio; Wagner, Bernd; Nomade, Sebastien; Francke, Alexander; Del Carlo, Paola

    2016-04-01

    A tephrostratigraphic record covering the Marine Isotope Stages (MIS) 1-15 was established for the DEEP site record of Lake Ohrid (Macedonia and Albania). Major element analyses (energy dispersive spectroscopy (EDS) and wavelength-dispersive spectroscopy (WDS)) were carried out on juvenile fragments extracted from 12 tephra layers (OH-DP-0115 to OH-DP-2060). The geochemical analyses of the glass shards of all of these layers suggest an origin in the Italian volcanic provinces. They include the Y-3 (OH-DP-0115, 26.68-29.42 ka cal BP), the Campanian Ignimbrite-Y-5 (OH-DP-0169, 39.6 ± 0.1 ka), and the X-6 (OH-DP-0404, 109 ± 2 ka) from the Campanian volcanoes, the P-11 of Pantelleria (OH-DP-0499, 133.5 ± 2 ka), the Vico B (OH-DP-0617, 162 ± 6 ka) from the Vico volcano, the Pozzolane Rosse (OH-DP-1817, 457 ± 2 ka) and the Tufo di Bagni Albule (OH-DP-2060, 527 ± 2 ka) from the Colli Albani volcanic district, and the Fall A (OH-DP-2010, 496 ± 3 ka) from the Sabatini volcanic field. Furthermore, a comparison of the Ohrid record with tephrostratigraphic records of mid-distal archives related to the Mediterranean area allowed the recognition of the equivalents of other less known tephra layers, such as the TM24a-POP2 (OH-DP-0404, 102 ± 2 ka) recognized in the Lago Grande di Monticchio and the Sulmona Basin, the CF-V5-PRAD3225 (OH-DP-0624, ca. 163 ± 22 ka) identified in the Campo Felice Basin and the Adriatic Sea, the SC5 (OH-DP-1955, 493.1 ± 10.9 ka) recognized in the Mercure Basin, and the A11/12 (OH-DP-2017, 511 ± 6 ka) sampled at the Acerno Basin, whose specific volcanic sources are still poorly constrained. Additionally, one cryptotephra (OH-DP-0027) was identified by correlation of the potassium X-ray flourescence (XRF) intensities from the DEEP site with those from a short core of a previous study from Lake Ohrid. In these cores, a maximum in potassium is caused by glass shards, which were correlated with the Mercato tephra (8.43-8.63 ka cal BP) from Somma

  20. Effect of recent climate change on Arctic Pb pollution: a comparative study of historical records in lake and peat sediments.

    PubMed

    Liu, Xiaodong; Jiang, Shan; Zhang, Pengfei; Xu, Liqiang

    2012-01-01

    Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-Ålesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-Ålesund, and the result showed that anthropogenic Pb peaked at 1960s-1970s, and thereafter a significant recovery was observed by a rapid increase of (206)Pb/(207)Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of (206)Pb/(207)Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments.

  1. Environmental Magnetism as an Instrument for Characterizing Paleoclimatic Variations in the Sediment Record of Lake Tanganyika, East Africa.

    NASA Astrophysics Data System (ADS)

    Wetter, L.; Verosub, K.; Acton, G.; Russell, J.

    2004-12-01

    Due to their age and their continuous record of sedimentation, the lacustrine sediments of Lake Tanganyika, East Africa, provide an excellent resource for paleoclimatic research. During an eight-day cruise in July of 2004, participants in the Nyanza Project collected four Kullenburg piston cores in the vicinity of the Kalya horst, a mid-lake topographic high located south of the Mahale Mountains. Thirty meters of core were recovered. Initial lithologic analysis of the cores revealed that they consist of massive silty clay beds alternating with laminated diatomaceous oozes. U-channel samples were collected from the cores in order to obtain a continuous record of paleomagnetic directions recorded by the sediments as well as an environmental record of changes in the composition and concentration of magnetic minerals. In conjunction with other techniques, the directional record will help to provide a chronology for the cores, which are thought to extend well into Marine Isotope Stage 3. This chronology will be used to place the evolution of the lake system and its sedimentary processes within the context of global climate variability. The environmental magnetic record will provide information about both large-scale and small-scale climatic variations. The paleomagnetic and environmental magnetic information obtained from these cores will make it possible to draw definitive conclusions about past climate variations, current atmospheric composition, and the present-day quality of the lake.

  2. Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone

    USGS Publications Warehouse

    Kelsey, H.M.; Nelson, A.R.; Hemphill-Haley, E.; Witter, R.C.

    2005-01-01

    Bradley Lake, on the southern Oregon coastal plain, records local tsunamis and seismic shaking on the Cascadia subduction zone over the last 7000 yr. Thirteen marine incursions delivered landward-thinning sheets of sand to the lake from nearshore, beach, and dune environments to the west. Following each incursion, a slug of marine water near the bottom of the freshwater lake instigated a few-year-to-several-decade period of a brackish (??? 4??? salinity) lake. Four additional disturbances without marine incursions destabilized sideslopes and bottom sediment, producing a suspension deposit that blanketed the lake bottom. Considering the magnitude and duration of the disturbances necessary to produce Bradley Lake's marine incursions, a local tsunami generated by a great earthquake on the Cascadia subduction zone is the only accountable mechanism. Extreme ocean levels must have been at least 5-8 m above sea level, and the cumulative duration of each marine incursion must have been at least 10 min. Disturbances without marine incursions require seismic shaking as well. Over the 4600 yr period when Bradley Lake was an optimum tsunami recorder, tsunamis from Cascadia plate-boundary earthquakes came in clusters. Between 4600 and 2800 cal yr B.P., tsunamis occurred at the average frequency of ??? 3-4 every 1000 yr. Then, starting ???2800 cal yr B.P., there was a 930-1260 yr interval with no tsunamis. That gap was followed by a ???1000 yr period with 4 tsunamis. In the last millennium, a 670-750 yr gap preceded the A.D. 1700 earthquake and tsunami. The A.D. 1700 earthquake may be the first of a new cluster of plate-boundary earthquakes and accompanying tsunamis. Local tsunamis entered Bradley Lake an average of every 390 yr, whereas the portion of the Cascadia plate boundary that underlies Bradley Lake ruptured in a great earthquake less frequently, about once every 500 yr. Therefore, the entire length of the subduction zone does not rupture in every earthquake, and Bradley

  3. Deglaciation and postglacial environmental changes in the Teton Mountain Range recorded at Jenny Lake, Grand Teton National Park, WY

    NASA Astrophysics Data System (ADS)

    Larsen, Darren J.; Finkenbinder, Matthew S.; Abbott, Mark B.; Ofstun, Adam R.

    2016-04-01

    Sediments contained in lake basins positioned along the eastern front of the Teton Mountain Range preserve a continuous and datable record of deglaciation and postglacial environmental conditions. Here, we develop a multiproxy glacier and paleoenvironmental record using a combination of seismic reflection data and multiple sediment cores recovered from Jenny Lake and other nearby lakes. Age control of Teton lake sediments is established primarily through radiocarbon dating and supported by the presence of two prominent rhyolitic tephra deposits that are geochemically correlated to the widespread Mazama (∼7.6 ka) and Glacier Peak (∼13.6 ka) tephra layers. Multiple glacier and climate indicators, including sediment accumulation rate, bulk density, clastic sediment concentration and flux, organic matter (concentration, flux, δ13C, δ15N, and C/N ratios), and biogenic silica, track changes in environmental conditions and landscape development. Sediment accumulation at Jenny Lake began centuries prior to 13.8 ka and cores from three lakes demonstrate that Teton glacier extents were greatly reduced by this time. Persistent ice retreat in Cascade Canyon was slowed by an interval of small glacier activity between ∼13.5 and 11.5 ka, prior to the end of glacial lacustrine sedimentation ∼11.5 ka. The transition to non-glacial sediments marks the onset of Holocene conditions at Jenny Lake and reflects a shift toward warmer summers, increased vegetation cover, and landscape stability in the Tetons. We discuss the Teton lake sediment records within the context of other regional studies in an effort to construct a comprehensive overview of deglaciation and postglacial environmental conditions at Grand Teton National Park.

  4. Late Holocene High Resolution Multi-Proxy Climate and Environmental Records From Lake Van, Eastern Turkey

    NASA Astrophysics Data System (ADS)

    Barlas Simsek, F.; Cagatay, M. N.

    2012-04-01

    Lake Van is the world's largest soda Lake with a surface area of 3522 km2, a water volume of 576 km3 and a maximum water depth of 451m. It is situated in the East Anatolian Highlands of Turkey at (43°E and 38.5°N) at an altitude of 1650m. The lake is characterized by a high pH (~9.8) and annually varved sediments. Four interface cores with lengths of up to 1.4 m and undisturbed top were collected from Lake Van. All cores were analyzed for physical properties using Geotek Multi Sensor Core Logger (MSCL), inorganic elemental analysis using an Itrax XRF core scanner, and total organic carbon (TOC) and inorganic carbon (TIC) analysis using TOC analyzer. Radionuclide (210Pb and 137Cs) analysis and varv-counting were used to establish the chronology, with the two methods providing very conformable results. The varves were counted using 60 µm resolution digital X-ray radiograpic images. An increase in the activity of 137Cs radioisotope in comparison with 210Pb age data gives support for the presence of the record of 1986 Chernobyl nuclear accident. The sedimentation rate varies from 0.4 to 0.7 mm/year at different core sites. Our sedimentary records extend back to about 3600 a BP and are correlatable between the different core sites. Elemental (Ti, Fe, K) and magnetic susceptibility profiles suggest relatively large detrital input occurred over the last 750 a BP, during 1700-1150 a BP, 2150-1700 a BP, 2150-1800 a BP, 2450-2350 a BP, and 3150-2600 a BP, which are interpereted to correspond to wet periods. The intervening periods during 1150-750 a BP, 1800-1700 a BP, and 2350-2150 a BP, 2600-2450 a BP are characterized by low detrital input and high carbonate contents, correponding to relatively dry periods. There also short dry periods at 150 a, BP, 1450-1400 a BP and 2950 a BP within the long wet periods listed above. High organic productivity correponding to >5% TOC in the sediments occurs during 110 a BP, 210 a BP, 460 a BP, 530 a BP, 790 a BP, 1460 a BP, and 1940 a

  5. Drought variability in the Pacific Northwest from a 6,000-yr lake sediment record

    PubMed Central

    Nelson, Daniel B.; Abbott, Mark B.; Steinman, Byron; Polissar, Pratigya J.; Stansell, Nathan D.; Ortiz, Joseph D.; Rosenmeier, Michael F.; Finney, Bruce P.; Riedel, Jon

    2011-01-01

    We present a 6,000-yr record of changing water balance in the Pacific Northwest inferred from measurements of carbonate δ18O and grayscale on a sediment core collected from Castor Lake, Washington. This subdecadally resolved drought record tracks the 1,500-yr tree-ring-based Palmer Drought Severity Index reconstructions of Cook et al. [Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Science 306:1015–1018] in the Pacific Northwest and extends our knowledge back to 6,000 yr B.P. The results demonstrate that low-frequency drought/pluvial cycles, with occasional long-duration, multidecadal events, are a persistent feature of regional climate. Furthermore, the average duration of multidecadal wet/dry cycles has increased since the middle Holocene, which has acted to increase the amplitude and impact of these events. This is especially apparent during the last 1,000 yr. We suggest these transitions were driven by changes in the tropical and extratropical Pacific and are related to apparent intensification of the El Niño Southern Oscillation over this interval and its related effects on the Pacific Decadal Oscillation. The Castor Lake record also corroborates the notion that the 20th century, prior to recent aridity, was a relatively wet period compared to the last 6,000 yr. Our findings suggest that the hydroclimate response in the Pacific Northwest to future warming will be intimately tied to the impact of warming on the El Niño Southern Oscillation. PMID:21368149

  6. Drought variability in the Pacific Northwest from a 6,000-yr lake sediment record.

    PubMed

    Nelson, Daniel B; Abbott, Mark B; Steinman, Byron; Polissar, Pratigya J; Stansell, Nathan D; Ortiz, Joseph D; Rosenmeier, Michael F; Finney, Bruce P; Riedel, Jon

    2011-03-01

    We present a 6,000-yr record of changing water balance in the Pacific Northwest inferred from measurements of carbonate δ(18)O and grayscale on a sediment core collected from Castor Lake, Washington. This subdecadally resolved drought record tracks the 1,500-yr tree-ring-based Palmer Drought Severity Index reconstructions of Cook et al. [Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Science 306:1015-1018] in the Pacific Northwest and extends our knowledge back to 6,000 yr B.P. The results demonstrate that low-frequency drought/pluvial cycles, with occasional long-duration, multidecadal events, are a persistent feature of regional climate. Furthermore, the average duration of multidecadal wet/dry cycles has increased since the middle Holocene, which has acted to increase the amplitude and impact of these events. This is especially apparent during the last 1,000 yr. We suggest these transitions were driven by changes in the tropical and extratropical Pacific and are related to apparent intensification of the El Niño Southern Oscillation over this interval and its related effects on the Pacific Decadal Oscillation. The Castor Lake record also corroborates the notion that the 20th century, prior to recent aridity, was a relatively wet period compared to the last 6,000 yr. Our findings suggest that the hydroclimate response in the Pacific Northwest to future warming will be intimately tied to the impact of warming on the El Niño Southern Oscillation.

  7. Late Glacial and Holocene environmental history of Wielkopolska region (western Poland) recorded in sediments of Strzeszyńskie Lake and Kierskie Lake

    NASA Astrophysics Data System (ADS)

    Pleskot, Krzysztof; Szczuciński, Witold; Tjallingii, Rik; Makohonienko, Mirosław; Nowaczyk, Norbert; Brauer, Achim

    2016-04-01

    The growing amount of publications concerning reconstructions of Late Glacial and Holocene environment based on analysis of lake sediments gives us robust insight into general patterns of that record. However, it is still challenging to decipher processes and events that occurred on local scale, as they record may be strongly affected by the type, catchment, size and depth of a lake. Therefore in the present study we focus on application of sedimentological and geochemical methods in order to reveal environmental history from two neighbouring lakes located within city of Poznań, Wielkopolska (western Poland). The lake sediments analysis cover Late Glacial and Holocene in case of smaller Strzeszyńskie Lake (SL) and the last 8 ka in deeper Kierskie Lake (KL). The study is based on two 8.5 (SL) and 14 (KL) m long sediment cores, which were described and analyzed in thin sections and on smear slides. The relative chemical composition variations within the cores were measured using an X-ray fluorescence (XRF). Moreover, the cores were measured for magnetic susceptibility and sampled for pollen analysis. The chronology has been established by a AMS 14C dating of bulk samples of lake sediments. To assess the reservoir effect, selected samples were analyzed for soluble and residual carbon fractions. Our results suggest the onset of authigenic sedimentation in SL in Allerød. The sediments from this period are characterized by high organic matter and low carbonate content. This trend changed into opposite at the beginning of the Younger Dryas, while at its termination sediments again became more organic. The transition to Holocene is marked by spread of Betula forest, gradual increase in magnetic susceptibility and Ca content together with decreasing organic matter and clastic input. During Preboreal and Boreal period the relatively stable conditions was noted. Then, ca. 8.5 ka BP, sharp decrease in magnetic susceptibility occurred coincided with deciduous forest

  8. Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China.

    PubMed

    Yuan, Guo-Li; Liu, Chen; Chen, Long; Yang, Zhongfang

    2011-01-15

    The temporal and spatial distribution of heavy metals (Cd, Hg, Pb, As and Cr) in Poyang Lake, the largest freshwater lake (3050 km(2)) in China, were studied based on the sedimentary profiles. For this purpose, eight sedimentary cores were selected which located at lake area, outfall of lake and the main branch rivers, respectively. High-resolution profiles with interval 2 cm were used for analyzing the concentration of metals, and the ages of them were determined by (210)Pb and (137)Cs isotopic dating. While studying the change of metals concentration with the age in profile, it is found that the concentration of them in sediments was influenced not only by the sources in history but also by the sediment types. Based on this detailed work, the inventory and burden of heavy metals per decade were estimated in lake area during the past 50 years. Significantly, rivers-contribution ratio per decade was estimated to distinguish each river's contribution of heavy metals into lake while river-flux in history and metals concentration in profiles were considered as calculating factors. So, our research provides a proof to well understand the sedimentary history and the inputting history of heavy metals from main rivers into an inland lake.

  9. Late Holocene paleoclimate records from Lakes Sibaya and Verlorenvlei, South Africa.

    NASA Astrophysics Data System (ADS)

    Stager, J. Curt; Neumann, Frank; Chase, Brian M.; Meadows, Michael E.; Fitzpatrick, Jason; Hazzard, Matt; King, Christiaan; Madson, Jerome; White, Jay

    2010-05-01

    Detailed, continuous paleoclimatic records of the late Holocene are relatively uncommon in the southern hemisphere, and the environmental interpretations of some important southern records remain unresolved. Such issues have hindered the understanding of continental and hemispheric-scale climatic processes, including the roles of solar variability, ENSO, and latitudinal positions of key weather systems, in the long-term evolution of tropical climates. Sediment cores from two widely separated lakes on the South African coast now shed additional light on precipitation variability in the region as well as on the interpretation of existing records from other sites that are located farther inland. Lake Sibaya, in the northeastern sector, receives most of its rain during austral summers and can be influenced by latitudinal shifts in the position of the ITCZ; its climatic history may therefore be informative for the understanding of unusual precipitation patterns during the late Holocene that have been reported from equatorial East Africa. Verlorenvlei, in the southwestern sector, receives most of its rain during austral winters and is well situated to register latitudinal shifts in the positions of mid-latitude westerly storm tracks which, in turn, are sensitive to atmospheric and marine conditions around Antarctica. Comparing sedimentary records from these two sites can therefore be helpful in testing the hypothesis that synchronous changes in low- and mid-latitude weather systems have occurred during the late Holocene, presumably in response to solar variability or other disruptions of large-scale air and ocean circulation patterns. In this presentation, diatom, pollen, and sedimentological data from Sibaya and Verlorenvlei are used to address the nature and origins of climatic changes in tropical and southernmost Africa during the last 1500 years. In addition, because the variability of lacustrine conditions at these two sites appears to be primarily the result of

  10. The last millenia sedimentary record of Lake Esponja, Northern Chilean Patagonia

    NASA Astrophysics Data System (ADS)

    Fagel, Nathalie; Araneda, Alberto; Alvarez, Denisse; Perfetti-Bolaño, Alessandra; Billy, Isabelle; Martinez, Philippe; Schmidt, Sabine; Urrutia, Roberto

    2016-04-01

    We evaluate the climate and environmental variability of Northern Chilean Patagonia during the Last Millennia, using a multi-proxy analysis of a sediment core from Lago Esponja (45°09'S, 72°08'W). The lake is located in the region of Aysen del General Carlos Ibanez del Campo, in NW Patagonia. The study focuses on a multiproxy analysis of sedimentary records. The longest core (150 cm long) was collected in 2014 at 40 m depth. The sediment, which is composed of light brown organic-rich clayey silt, was analyzed for sedimentology (grain size, magnetic susceptibility organic matter and biogenic silica content), mineralogy (X-ray diffraction) and geochemistry (elemental and isotopic analyses of C and N, XRF core-scaner at 1 mm resolution). The radiocarbon ages, measured on 3 macro-remains, demonstrate that the core covers the last 6.700 years. The sedimentation rate ranges between 0.1 mm/yr in the lower section (100-150 cm) and 0.4 mm/yr in the upper meter. Visual descriptions and Scopix radiographies show that the sediment record is finely laminated except a massive decimetric coarser and darker layer corresponding to a tephra (estimated age 700AD±50). Magnetic susceptibility (confirmed by scopix radiographies) highlights the presence of 8 additional millimetric tephra layers. The biogenic silica content of the sediment is low (mean 5%). Diatom assemblage is dominated by benthic and acidophilous species, with high saprobic values. None marked changes were observed regarding the dynamic of the lake. The high organic matter content (mean 15%) and its high C/N ratio (12.7) throughout the core indicate inputs of allochtonous and terrestrial organic matter. Such parameters present high sediment variability also marked by changes in the chemical composition. The laminations reflect changes in the allochtonous sedimentary inputs, with high terrestrial inputs during wetter conditions in relation with the Westerlies. The sedimentary records of Lago Esponja will be compared

  11. A 2000-year palaeoflood record from northwest England from lake sediments

    NASA Astrophysics Data System (ADS)

    Schillereff, Daniel; Chiverrell, Richard; Macdonald, Neil; Hooke, Janet

    2014-05-01

    Greater insight into the relationship between climatic fluctuations and the frequency and magnitude of precipitation events over recent centuries is crucial in the context of future warming and projected intensification of hydrological extremes. However, the detection of trends in flood frequency and intensity is not a straightforward task as conventional flood series derived from instrumental sources rarely span sufficiently long timescales to capture the most extreme events. Usefully, the geomorphic effects of extreme hydrological events can be effectively recorded in upland lake basins as efficient sediment trapping preserves discharge-related proxy indicators (e.g., particle size). Provided distinct sedimentary signatures of historic floods are discernable and the sediment sequence can be well-constrained in time, these lacustrine archives offer a valuable data resource. We demonstrate that a series of sediment cores (3 - 5 m length) from Brotherswater, northwest England, contain numerous coarse-grained laminations, discerned by applying high-resolution (0.5 cm) laser granulometry, which are interpreted as reflecting a palaeoflood record extending to ~2000 yr BP. The presence of thick facies which exhibit inverse grading underlying normal grading, most likely reflecting the waxing and waning of flood-induced hyperpycnal flows, supports our palaeoflood interpretation. Data from an on-going sediment trapping protocol at Brotherswater that shows a relationship between river discharge (recorded via short-term lake level change representing flood events) and the calibre of particles captured in the traps lends further support to our interpretation. Well-constrained chronologies were constructed for the cores through integrating radionuclide (210Pb, 137Cs, 241Am, 14C) dating within a Bayesian age-depth modelling protocol. Geochemical markers of known-age that reflect phases of local point-source lead (Pb) mining were used to resolve time periods where radiocarbon

  12. Stable isotope record from Seneca Lake, New York: Evidence for a cold paleoclimate following the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Anderson, William T.; Mullins, Henry T.; Ito, Emi

    1997-02-01

    A radiocarbon controlled stable isotope record from Seneca Lake, New York, has defined a relatively cold paleoclimate (10.1 8.2 ka) that was younger, and regionally of greater magnitude, than the well-known Younger Dryas cold interval. These new isotope results are supported by published pollen records, from throughout the Great Lakes region, that also define a relatively cold paleoclimate at this time. This cold paleoclimate occurred during global meltwater pulse IB when large volumes of cold, isotopically light (low δ18O) meltwater flowed into the Great Lakes from the rapidly retreating Laurentide ice sheet. The discharge of cold glacial meltwaters into the Great Lakes during pulse IB suppressed downwind summer temperatures in the Finger Lakes region and provided a source of isotopically light precipitation. Published proxy data from Greenland, Norway, and Alaska also record relatively cold paleoclimates following the Younger Dryas, suggesting widespread Northern Hemisphere cooling as a direct result of the rapid melting of the Laurentide ice sheet between 10 and 8 ka.

  13. Spatial distribution and historical records of mercury sedimentation in urban lakes under urbanization impacts.

    PubMed

    Li, Hong-Bo; Yu, Shen; Li, Gui-Lin; Deng, Hong; Xu, Bo; Ding, Jing; Gao, Jin-Bo; Hong, You-Wei; Wong, Ming-Hung

    2013-02-15

    China is assumed one of the largest contributors to the world's total mercury (Hg) emissions, with a rapid increase in anthropogenic Hg emissions. However, little is known about Hg fate and transport in urban areas of China. In this study, total Hg contents in surface (0-5 cm) sediments from lakes in 14 parks (3 in the central urban core (CUC) area, 5 in the developed urban (DDU) area, 2 in the developing urban (DIU) area, and 4 in the suburban (SU) area) and (210)Pb-dated sediment cores from lakes in 5 parks (3 in the CUC and 2 in the DDU) in Shanghai were assessed to compare current patterns (urbanization effect) with the historical records of Hg emissions over the past century. Total Hg content in surface sediments showed a clear urbanization pattern. Dated sediment cores revealed a 2-3 fold increase in total Hg content, while Hg fluxes exponentially increased from ~1900 to present and accelerated since 1990 when China's economy and urbanization booms started. Anthropogenic Hg fluxes in post-2000 ranged from 253 to 1452 μg m(-2) yr(-1), 2-7 times greater than preindustrial (pre-1900) Hg fluxes. Total Hg and Pb contents in both surface sediments and sediment cores were highly correlated and Hg flux in sediment cores also significantly correlated with annual coal consumption in the period 1949-2008. The significant correlations suggest that coal combustion is a major source of Hg emission in Shanghai.

  14. A millennium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes.

    PubMed

    Cooke, Colin A; Abbott, Mark B; Wolfe, Alexander P; Kittleson, John L

    2007-05-15

    To date, information concerning pre-Colonial metallurgy in South America has largely been limited to the archaeological record of artifacts. Here, we reconstruct a millennium of smelting activity in the Peruvian Andes using the lake-sediment stratigraphy of atmospherically derived metals (Pb, Zn, Cu, Ag, Sb, Bi, and Ti) and lead isotopic ratios (206Pb/ 207Pb) associated with smelting from the Morococha mining region in the central Peruvian Andes. The earliest evidence for metallurgy occurs ca. 1000 A.D., coinciding with the fall of the Wari Empire and decentralization of local populations. Smelting during this interval appears to have been aimed at copper and copper alloys, because of large increases in Zn and Cu relative to Pb. A subsequent switch to silver metallurgy under Inca control (ca. 1450 to conquest, 1533 A.D.) is indicated by increases in Pb, Sb, and Bi, a conclusion supported by further increases of these metals during Colonial mining, which targeted silver extraction. Rapid development of the central Andes during the 20th century raised metal burdens by an order of magnitude above previous levels. Our results represent the first evidence for pre-Colonial smelting in the central Peruvian Andes, and corroborate the sensitivity of lake sediments to pre-Colonial metallurgical activity suggested by earlier findings from Bolivia. PMID:17547165

  15. A millennium of metallurgy recorded by lake sediments from Morococha, Peruvian Andes.

    PubMed

    Cooke, Colin A; Abbott, Mark B; Wolfe, Alexander P; Kittleson, John L

    2007-05-15

    To date, information concerning pre-Colonial metallurgy in South America has largely been limited to the archaeological record of artifacts. Here, we reconstruct a millennium of smelting activity in the Peruvian Andes using the lake-sediment stratigraphy of atmospherically derived metals (Pb, Zn, Cu, Ag, Sb, Bi, and Ti) and lead isotopic ratios (206Pb/ 207Pb) associated with smelting from the Morococha mining region in the central Peruvian Andes. The earliest evidence for metallurgy occurs ca. 1000 A.D., coinciding with the fall of the Wari Empire and decentralization of local populations. Smelting during this interval appears to have been aimed at copper and copper alloys, because of large increases in Zn and Cu relative to Pb. A subsequent switch to silver metallurgy under Inca control (ca. 1450 to conquest, 1533 A.D.) is indicated by increases in Pb, Sb, and Bi, a conclusion supported by further increases of these metals during Colonial mining, which targeted silver extraction. Rapid development of the central Andes during the 20th century raised metal burdens by an order of magnitude above previous levels. Our results represent the first evidence for pre-Colonial smelting in the central Peruvian Andes, and corroborate the sensitivity of lake sediments to pre-Colonial metallurgical activity suggested by earlier findings from Bolivia.

  16. Multiproxy Records of Indo-Pacific Climate and Environmental Change from Lake Towuti, Indonesia, Since 60 Kyr BP

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Vogel, H.; Bijaksana, S.; Konecky, B. L.; Wicaksono, S. A.; Costa, K.; Wattrus, N. J.; Melles, M.

    2014-12-01

    Lake Towuti is a large tectonic lake in central Sulawesi, Indonesia that provides a unique opportunity to reconstruct climate and terrestrial environments in the heart of the Indo-Pacific warm pool. Long-term climate variations in this region are governed by a complex interplay between the Australasian monsoons and the ENSO system forced by changing insolation, sea level, ice sheets, and greenhouse gas concentrations. Existing reconstructions suggest heterogeneous responses of Indonesian climate to these forcings, highlighting the need for new long records of regional hydrology. We have developed multiproxy datasets from Lake Towuti and nearby lakes that provide continuous, detailed, and reproducible paleoenvironmental records spanning the past 60 kyr BP. Elemental tracers of terrestrial runoff and compound-specific stable isotope records of vegetation show that wet conditions and rainforest ecosystems persisted during Marine Isotope Stage 3 and the Holocene, and were interrupted by severe drying between 33 and 15 kyr BP when high-latitude ice sheets expanded and global temperatures cooled. This chronology of change implies that central Indonesian hydroclimate varies strongly in response to high-latitude climate forcing. New vegetation records from nearby lakes confirm these findings, but suggest the amplitude of glacial-interglacial changes in vegetation were weaker at high altitude, with important implications for the heterogeneity among Indonesian climate reconstructions. New lithologic and trace element records from Lake Towuti further document the significance of climate changes at the MIS3, 2, and 1 boundaries to Lake Towuti's paleolimnology, heat budget, and seasonal mixing. High-resolution seismic reflection data from Lake Towuti constrain the maximum depth of lake level lowstands during MIS2. Hydrological modeling suggests that precipitation was reduced by at least 50% at that time, an amplitude at or above the upper limits of precipitation changes

  17. Continental climate response to orbital forcing from biogenic silica records in Lake Baikal

    USGS Publications Warehouse

    Colman, Steven M.; Peck, J.A.; Karabanov, E.B.; Carter, Susan J.; Bradbury, J.P.; King, J.W.; Williams, D.F.

    1995-01-01

    CHANGES in insolation caused by periodic changes in the Earth's orbital parameters provide the primary forcing for global ice ages1-6. But it is not clear to what extent the climates in continental interiors are controlled directly by regional variations in insolation and to what extent they are driven instead by the highly nonlinear response of the oceans and ice sheets. Here we investigate this question using the record of biogenic silica in Lake Baikal as a proxy for climate change in this high-latitude mid-continental region. We find a good correlation between this record and that of marine oxygen isotopes4. Over the past 250 kyr the Baikal record exhibits both a strongly nonlinear component (manifested in a 100-kyr periodicity) and weaker direct-insolation components (manifested in the 41-kyr (obliquity) and 23- and 19-kyr (precession) orbital cycles). These results show that even though extreme continental climates such as this are influenced directly by insolation variations, they are dominated by the nonlinear rhythm of the oceans and ice sheets.

  18. Asian dust transport during the last century recorded in Lake Suigetsu sediments

    NASA Astrophysics Data System (ADS)

    Nagashima, Kana; Suzuki, Yoshiaki; Irino, Tomohisa; Nakagawa, Takeshi; Tada, Ryuji; Hara, Yukari; Yamada, Kazuyoshi; Kurosaki, Yasunori

    2016-03-01

    Asian dust has a significant impact on the natural environment. Its variability on multiple timescales modulates the ocean biogeochemistry and climate. We demonstrate that temporal changes in the deposition flux of Aeolian dust recorded in sediments from Lake Suigetsu, central Japan, during the last century exhibit a continuous decreasing trend and a decadal-scale decrease in 1952-1974. The former decreasing trend can be explained by a decrease in the dust storm frequency at source regions due to the warming of Mongolia in the twentieth century, suggesting future decrease of Asian dust transport with further warming in Mongolia. Decadal-scale decrease of Aeolian dust is explained by weaker westerlies in lower latitudes in central Japan, reflecting a weaker Aleutian Low during the corresponding period. Decadal-scale westerly change probably causes north-south shifts of the dominant dust transport path, which affects subarctic northern Pacific Ocean biogeochemistry by changing the micronutrient iron supply.

  19. A multi-proxy record of Lateglacial climatic and environmental changes from Lake Mondsee (Upper Austria)

    NASA Astrophysics Data System (ADS)

    Lauterbach, S.; Brauer, A.; Dulski, P.; Schettler, G.; Milecka, K.; Hüls, M.; Andersen, N.; Namiotko, T.; Danielopol, D. L.; von Grafenstein, U.

    2009-04-01

    Within the frame of the ESF EuroCLIMATE project DecLakes (Decadal Holocene and Lateglacial variability of the oxygen isotopic composition in precipitation over Europe reconstructed from deep-lake sediments), the sediment record of pre-alpine Lake Mondsee (Upper Austria) has been investigated with a special focus on the Lateglacial. The use of a multi-proxy approach, including microfacies analysis, high-resolution -XRF element scanning, stable isotope analyses on valves of benthic ostracods, carbon geochemistry and analysis of pollen and ostracods enables the identification of major climatic fluctuations during this period. Furthermore, the parallel sampling strategy allows direct comparison of sensitivity of different proxies to climatic and environmental changes. The basal clastic-detrital facies of the profile is dominated by proglacial varves. The gradual onset of biochemical calcite precipitation is paralleled by a rapid shift in oxygen isotope ratios of benthic ostracod valves which marks the abrupt warming at the onset of the Lateglacial Interstadial. However, the allochthonous sediment input from the catchment shows no rapid shift but a gradual decrease. During the Allerød biozone sedimentation is dominated by homogeneous endogenic calcite with a very low detrital component. At the onset of the Younger Dryas cold period a marked decrease in oxygen isotope ratios within ca. 100 years occurs, followed by a reduction in the amount of endogenic calcite and the increase of detrital flux with a lag of about 100 years. The clear vegetational shift towards higher proportions of herbs and Juniperus and the frequency increase of detrital event layers lag the ^18O signal by about 250 years. In contrast, the rapid Holocene warming within 20-30 years is well reflected by the parallel ^18O rise and the establishment of a vegetation adapted to a warmer climate with the onset of massive calcite precipitation and the cessation of detrital input lagging by only few decades

  20. Holocene record of glacier variability from lake sediments reveals tripartite climate history for Svalbard

    NASA Astrophysics Data System (ADS)

    van der Bilt, Willem; Bakke, Jostein; Vasskog, Kristian; D`Andrea, William; Bradley, Raymond; Olafsdottir, Sædis

    2016-04-01

    The Arctic is responding sensitively to ongoing global climate change, warming and moistening faster than any other region on the planet. Holocene proxy paleoclimate time series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. Glaciers rapidly respond to climate shifts as demonstrated by their current demise around the world. This response has a composite climate signature, marked by shifts in hydroclimate (winter precipitation) as well as (summer) temperature. Attendant changes in glacier size are recorded by variations in glacigenic rock flour that may be deposited in downstream lakes. Here, we present a Holocene reconstruction of glacier activity, based on sediments from Hajeren, a glacier-fed lake on northwest Spitsbergen in the High Arctic Svalbard archipelago. Owing to undisturbed sediments and robust age control, we could resolve variability on a sub-centennial scale. To ensure the accurate detection of glacier activity, we applied a toolbox of physical, magnetic and geochemical proxies in conjunction with multivariate statistics. Our findings indicate a three-stage Holocene climate history for Svalbard, driving by melt water pulses, episodic Atlantic cooling and a decline in orbitally driven summer insolation. Correspondence between inferred advances, including a Holocene glacier maximum around 9.5 ka BP, suggests forcing by the melting LIS during the Early Holocene. Following a late Holocene Thermal Maximum around 7.4 ka BP, glaciers disappeared from the catchment. Glaciers reformed around 4.2 ka BP during the regional onset of the Neoglacial, supporting previous findings. This transition did, however, not mark the onset of persistent glacier activity in the catchment, but a series of centennial-scale cycles of growth and decay, including events around 3.3 and 1.1 ka BP. As orbitally driven insolation declined towards the present, the glaciation threshold

  1. The Tulare Lake Project: A 35,000-year record of lake level constraining precipitation and stream discharge from the southern Sierra Nevada of California, USA

    NASA Astrophysics Data System (ADS)

    Negrini, R. M.

    2015-12-01

    Building upon earlier works by Harding (1949), Atwater et al. (1986) and Davis (1999), research centered at CSU Bakersfield over the past 15 years has generated a high resolution paleoclimate history with water resource implications for one of the world's great agricultural centers, the San Joaquin Valley of California. Lake level is based upon aerial mapping of geomorphological features (e.g., sand spits and shorelines), lithologic features exposed in trenches from opposite sides of the lake basin (e.g., marsh deposits), and proxy data from core (e.g., clay %). Age control was provided by radiocarbon dating of charcoal, mussel shells, and bulk organic matter and by paleomagnetic secular variation dating. From oldest to youngest, highlights include: 1. millennial-scale variations at the base of the record, 2. evidence for avulsion of the Kings River into Tulare Lake at or near the time of maximum glaciation in the Sierra Nevada as predicted by Weissman et al. (2005), 3. lake-level changes during the early and middle Holocene that vary in tune with eastern Pacific sea-surface temperatures from marine core records. This includes an unusually wet period starting at 12,500 cal B.P. followed by a dramatic, rapid drop in lake level at 7,500 cal B.P. Evidence for the former feature includes geochemical (leaf wax n-alkane markers for grass) and petrographic (grass phytolith) data. The latter feature represents an abrupt decrease in Sierran Stream discharge equal to several millions of acre-ft/yr. 4. A centuries-long increase in lake level commencing in the 13th or 14th century based on both lake-level reconstructions from the LBDA of Cook et al. (2010) and dated fine-grained sediments exposed in high-elevation trenches (Negrini et al., 2006), 5. A flood deposit identified in the uppermost sediments exposed in the southeastern edge of the lake that has a radiocarbon age consistent with that of an early 17th century flood found in the sediments of the Santa Barbara Channel

  2. Do High-elevation Lakes Record Variations in Snowfall and Atmospheric Rivers in the Sierra Nevada of California?

    NASA Astrophysics Data System (ADS)

    Ashford, J.; Sickman, J. O.; Lucero, D. M.

    2014-12-01

    Understanding the underlying causes of interannual variation in snowfall and extreme hydrologic events in the Sierra Nevada is hampered by short instrumental records and the difficulties in reconstructing climate using a traditional paleo-record such as tree-rings. New paleo proxies are needed to provide a record of snowpack water content and extreme precipitation events over millennial timescales which can be used to test hypotheses regarding teleconnections between Pacific climate variability and water supply and flood risk in California. In October 2013 we collected sediment cores from Pear Lake (z = 27 m), an alpine lake in Sequoia National Park. The cores were split and characterized by P-wave velocity, magnetic susceptibility and density scanning. Radiocarbon dates indicate that the Pear Lake cores contain a 13.5K yr record of lake sediment. In contrast to other Sierra Nevada lakes previously cored by our group, high-resolution scanning revealed alternating light-dark bands (~1 mm to 5 mm thick) for most of the Pear Lake core length. This pattern was interrupted at intervals by homogenous clasts (up to 75 mm thick) ranging in grain size from sand to gravel up to 1 cm diameter. We hypothesize that the light-dark banding results from the breakdown of persistent hypolimnetic anoxia during spring snowmelt and autumn overturn. We speculate that the thicknesses of the dark bands are controlled by the duration of anoxia which in turn is controlled by the volume and duration of snowmelt. The sand to gravel sized clasts are most likely associated with extreme precipitation events resulting from atmospheric rivers intersecting the southern Sierra Nevada. We hypothesize that centimeter-sized clasts are deposited in large avalanches and that the sands are deposited in large rain events outside of the snow-cover period.

  3. A varved lake sediment record from Finland: between the North Atlantic Oscillation and Siberian High Pressure Cell

    NASA Astrophysics Data System (ADS)

    Saarni, Saija; Saarinen, Timo

    2015-04-01

    Varved lake sediments are widely used for paleoclimatological and paleoenvironmental studies. The advantages of such records are precise time control, which enables high resolution studies of even seasonal scale, and the length of the records extending potentially beyond thousands of years. The clastic organic varved sediments from a small boreal Lake Kalliojärvi (area 0.15 km2, maximum depth 12 m) in Central Finland, record environmental change and snow accumulation history for more than two thousand years. The high quality sediments of the Lake Kalliojärvi are laminated until the present day and reflect the annual circulation of boreal zone. A single varve year consists of two laminae that are composed of i) minerogenic clasts and ii) amorphous organic matter and microfossils. Total varve thickness was measured, and the accumulation of minerogenic and organic matter were analyzed using digital image analysis. The major element composition of the lake sediments was also determined using micro X-ray fluorescence (µ-XRF). The clastic laminae are interpreted as a proxy for catchment erosion, reflecting spring floods triggered by snow melt. Qualitative comparison of minerogenic matter accumulation and reconstructed North Atlantic Oscillation (NAO) phases reveal correspondence between the two records. Positive NAO conditions occur simultaneously with increased minerogenic lamina thicknesses which suggest that the changes in snow accumulation are induced by NAO. However, there are indications that the strong Siberian High Pressure Cell (SHPC) prevailing on eastern Scandinavia may be important for Scandinavian climate via blocking the westerly winds. Strong SHCP potentially leads to colder winter temperatures in Finland and increased ice formation. Stronger and prolonged ice cover in lake environments cause prolonged water column stratification and increased oxygen deficiency which is related to an increased Fe/Mn ratio. This study discusses the importance of NAO and

  4. Late Quaternary Lake History of Hala Lake, Qinghai Province, China, Evidenced by Ostracod Assemblages and Sediment Properties in Multiple Sediment Records

    NASA Astrophysics Data System (ADS)

    YAN, Dada; Wuennemann, Bernd

    2014-05-01

    Hala Lake, a closed 65 m deep lake basin in the western Qilian Mountains, Qinghai Province, is considered a monitor of climate-driven hydrological and environmental changes during the past 24 kyr BP. The distribution patterns of ostracod assemblages, sediment-geochemical properties in four sediment records from different water depths and the unique limnological setting (green algae layer between 25 and 32 m water depth and seasonally anoxic conditions) enabled us to reconstruct four major phases of centennial-scale water depth fluctuations from the global Last Glacial Maximum (ca. 24 kyr BP) to the Present. Our results show that Hala Lake experienced a very shallow and small water body during the LGM and Late Glacial under cold and dry climate conditions. Rapid increase of water depth and contemporaneous lake expansion started at around 15 kyr BP (Phase I), most likely as a result of glacier melt due to the onset of climate warming. The lake reached >45 m water depth at around 13.5 kyr BP, followed by a decline (5-6 m) during the Younger Dryas spell (ca. 12 kyr BP), which may be attributed to a short-term return to cooler and drier conditions. During the early Holocene (Phase II), water depth increased again towards lake highstands close to its present level. Besides continued glacier melt supply, we assume that summer monsoon effective moisture contributed to the overall water budget, but remained relatively unstable, favoring water depth fluctuations of about 10-15 m. A pronounced lower water depth falls into the period between 9 and 8 kyr BP, perhaps the result of weak monsoon influence or its complete absence, although the warming trend continued towards its optimum at ca. 8-7 kyr BP. A distinct mass flow, most likely triggered by an earthquake, occurred during a lake lowstand between 8.1 kyr BP and 7.0 kyr BP. The mid-Holocene (Phase III) was characterized by deepened water between 7.5 and 4.5 kyr BP, interrupted by short-term declines at around 7 and 6

  5. A late Holocene record of trace metal deposition in lake sediments near Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Beal, S. A.; Kelly, M. A.; Jackson, B. P.; Osterberg, E. C.; Stroup, J. S.; Baker, R. A.

    2010-12-01

    Records of atmospheric metal deposition have been used extensively in the Northern Hemisphere to examine historical events ranging from the evolution of ancient metallurgy to climatic change. Establishing such a record in tropical South America is pertinent due to ongoing questions about the metallurgical history of pre-colonial Andean civilizations, recent atmospheric pollution levels, and late Holocene climate variability. Here we present a late Holocene record of the Ag, As, Cd, Co, Cu, Hg, Ni, Pb, Sr, Zn, and Pb isotopic compositions of atmospheric deposition from three 1.5 m-long lake cores and one 5 m-long bog core recovered near Quelccaya Ice Cap (13.9 °S), in the southeastern Peruvian Andes. The bog core, representing deposition from the present to at least 2415 yr BP, records relatively stable concentrations of As, Co, Cu, Hg, Ni, Pb, Sr, and Zn between 2415 (±78) and 916 (±29) yr BP. However, Ag and Cd exhibit brief gradual enrichments over background levels by factors of 6 and 11, respectively, shortly after 2415 (±78) yr BP as a possible result of ancient metallurgy. Sometime following the 916 (±29) yr BP date, Ag, As, Cd, Cu, Hg, Ni, Pb, and Sr abruptly become enriched by factors of 10, 37, 11, 11, 47, 6, 16, and 24, respectively, possibly from anthropogenic sources and/or the 1600 AD eruption of Huaynaputina in southern Peru. These enrichments are concurrent with a shift in 206Pb/207Pb to 1.182 from background levels of 1.213 (±0.002, n=20). A subsequent quiescent period in metal concentrations is marked by a brief return to background 206Pb/207Pb values, followed by erratic 206Pb/207Pb values yet decreased metal concentrations in the most recent sediments. Only Hg is enriched over background levels, by a factor of 3, in the most recent sediment. Forthcoming higher-resolution data from the three lake cores will utilize pre-industrial lead isotope ratios and Ti, Zr, and REE fluxes to examine past variability of the El Niño-Southern Oscillation

  6. Holocene record of precipitation seasonality from lake calcite δ18O in the central Rocky Mountains, United States

    USGS Publications Warehouse

    Anderson, Lesleigh

    2011-01-01

    A context for recent hydroclimatic extremes and variability is provided by a ~10 k.y. sediment carbonate oxygen isotope (??18O) record at 5-100 yr resolution from Bison Lake, 3255 m above sea level, in northwestern Colorado (United States). Winter precipitation is the primary water source for the alpine headwater lake in the Upper Colorado River Basin and lake water ??18O measurements reflect seasonal variations in precipitation ??18O. Holocene lake water ??18O variations are inferred from endogenic sedimentary calcite ??18O based on comparisons with historic watershed discharge records and tree-ring reconstructions. Drought periods (i.e., drier winters and/or a more rain-dominated seasonal precipitation balance) generally correspond with higher calcite ??18O values, and vice-versa. Early to middle Holocene ??18O values are higher, implying a rain-dominated seasonal precipitation balance. Lower, more variable ??18O values after ca. 3500 yr ago indicate a snow-dominated but more seasonally variable precipitation balance. The middle to late Holocene ??18O record corresponds with records of El Ni??o Southern Oscillation intensification that supports a teleconnection between Rocky Mountain climate and North Pacific sea-surface temperatures at decade to century time scales. ?? 2011 Geological Society of America.

  7. Brotherswater, English Lake District: a record of organic and inorganic sediment flux over the past two millenia

    NASA Astrophysics Data System (ADS)

    Schillereff, D.; Chiverrell, R.; Boyle, J.; Macdonald, N.; Hooke, J.

    2012-04-01

    Lake sediments have long been recognised as efficient recorders of geomorphic change through time and they also function as a proportionally large carbon sink within the global C cycle. However, calculating carbon budgets for lake basins can prove challenging due to the spatially variable pattern of sediment accumulation within the basin and the heterogeneous nature of the organic matter accumulating on the lake floor, which can comprise autogenic organic material, eroded soil organic floccules and plant biomass from the catchments. High-resolution (0.5 cm) particle size, geochemical and thermogravimetric data for a series of abyssal lake sediment cores (3 - 5 m length) are used to examine the relationship between hydrological conditioning, sediment dynamics and particulate carbon flux over the past 2000 years for a small upland catchment in the English Lake District (Brotherswater). Core correlation using geochemical and mineral magnetic profiles has facilitated the identification of the spatial pattern of inorganic and organic sediment accumulation within the lake. A well-constrained chronology has been developed, incorporating radionuclide (210Pb, 137Cs and 14C) dating and elemental signatures which reflect the mining history of the catchment (e.g., Pb, Ba and Zn). The role of climatic fluctuations and human activity (e.g., the Little Ice Age, agricultural intensification during Roman and Viking periods) in controlling catchment-to-lake sediment flux is well studied in northwest England, and these phases are reflected in inorganic geochemical markers (e.g., Sr, Zr, K) in the lake sediment cores. Recently accumulated sediments yield geochemical signatures of substantial heavy metal flux (lead, zinc and barium) associated with intensive mining in the catchment, while numerous coarse-grained facies are visible within the silt-dominated lake sediment matrix, which are interpreted as reflecting late-Holocene high-magnitude flood events. Using thermogravimetric (TGA

  8. A late quaternary record of eolian silt deposition in a maar lake, St. Michael Island, western Alaska

    USGS Publications Warehouse

    Muhs, D.R.; Ager, T.A.; Been, J.; Bradbury, J.P.; Dean, W.E.

    2003-01-01

    Recent stratigraphic studies in central Alaska have yielded the unexpected finding that there is little evidence for full-glacial (late Wisconsin) loess deposition. Because the loess record of western Alaska is poorly exposed and not well known, we analyzed a core from Zagoskin Lake, a maar lake on St. Michael Island, to determine if a full-glacial eolian record could be found in that region. Particle size and geochemical data indicate that the mineral fraction of the lake sediments is not derived from the local basalt and is probably eolian. Silt deposition took place from at least the latter part of the mid-Wisconsin interstadial period through the Holocene, based on radiocarbon dating. Based on the locations of likely loess sources, eolian silt in western Alaska was probably deflated by northeasterly winds from glaciofluvial sediments. If last-glacial winds that deposited loess were indeed from the northeast, this reconstruction is in conflict with a model-derived reconstruction of paleowinds in Alaska. Mass accumulation rates in Zagoskin Lake were higher during the Pleistocene than during the Holocene. In addition, more eolian sediment is recorded in the lake sediments than as loess on the adjacent landscape. The thinner loess record on land may be due to the sparse, herb tundra vegetation that dominated the landscape in full-glacial time. Herb tundra would have been an inefficient loess trap compared to forest or even shrub tundra due to its low roughness height. The lack of abundant, full-glacial, eolian silt deposition in the loess stratigraphic record of central Alaska may be due, therefore, to a mimimal ability of the landscape to trap loess, rather than a lack of available eolian sediment. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  9. Climatic and volcanic forcing revealed in a 50,000-year diatom record from Lake Massoko, Tanzania

    NASA Astrophysics Data System (ADS)

    Barker, Philip; Williamson, David; Gasse, Françoise; Gibert, Elisabeth

    2003-11-01

    The interactions between climatic and volcanic forcing on diatom communities contained in a 50,000-year sedimentary sequence from Lake Massoko, Tanzania, were examined. At the century scale, 19 discrete tephra inputs to the lake isolated the sedimentary nutrient supply and shifted the diatom communities to those tolerant of low phosphorus levels, whereas at the millennial scale, diatom-inferred shifts in precipitation-evaporation based on conductivity optima and diatom life-form ratios were broadly similar to lake-level reconstructions from Lake Rukwa, Lake Malawi, and others in the region. Some fluctuations of Lake Massoko are consistent with the precession-driven changes in insolation, but the major climate shifts do not relate directly to orbital forcing of summer insolation south of the equator and show more consistency with records from the equatorial and northern tropics that receive rainfall from the passing of the intertropical convergence zone. Sea surface temperatures are strongly correlated to multimillennial-scale climate patterns over this region of Africa.

  10. Stable isotope record in annually laminated lake sediments from Lake Żabińskie (NE Poland) for the last millennium.

    NASA Astrophysics Data System (ADS)

    Gabryś, Alicja; Piotrowska, Natalia; Tylmann, Wojciech; Bonk, Alicja; Filipiak, Janusz; Wacnik, Agnieszka; Hernandez-Almeida, Ivan; Grosjean, Martin

    2015-04-01

    Stable isotope record of carbon (13C) and oxygen (18O) has been analysed from an annually laminated sediment from Lake Zabinskie (Mazurian Lakeland, NE Poland) with high resolution (1-3 yrs). The sediment layers which were formed in each year during the last millennium contain information about environmental changes in the past. The calcite layers are formed in lake sediment in warm months of the year, therefore the reconstruction of summer climate variables in the past is potentially possible. The investigation of correlation between isotope dataset and instrumental climate data for years 1897-2008 AD confirmed that theory. The record of temperature, precipitation and SPEI (Standardised Precipitation Evaporation Index) coefficient, which is a combination of both temperature and precipitation, was tested. The strongest linear correlations were found for most samples for June, July, August (JJA) months but in some cases the correlation coefficient was stronger when also May was taken into account. For the whole 120-yrs series the correlation between δ18O and average JJA temperature is 0.007, average JJA precipitation is 0.16 and average JJA SPEI is 0.20. Analyzing the results for 1897-2008 we can distinguish period 1960-2008 with relevantly stronger correlations: R(temperature) = 0.19, R(precipitation) = 0.20 and R(SPEI) = 0.45. This period is connected with cessation of human activity close to Lake Zabinskie. Reconstruction of climate variables for the last millennium was made using transfer function obtained for calibration period (1897-2008). Reconstructions showed that known climate extremes like Medieval Warm Period, Little Ice Age with Sporer (1420-1570), Maunder (1645-1715) and Dalton (1790-1820) Minimum was recorded in sediment from Lake Zabinskie. The presented study is a part of the project "Climate of northern Poland during the last 1000 years: Constraining the future with the past (CLIMPOL)", funded within Polish-Swiss Research Programme. http://www.climpol.ug.edu.pl

  11. Reinvestigation of age model for relative paleointensity stack and application to Lake Baikal record

    NASA Astrophysics Data System (ADS)

    Oda, H.

    2014-12-01

    The age model for relative paleointensity stack PISO-1500 (Channell et al., 2009) is based on IODP U1308 from North Atlantic. Channell et al. (2008) developed the age model for U1308 by correlating the benthic oxygen isotope curve with LR04 oxygen isotope stack (Lisiecki&Raymo, 2005). LR04 stack is known as oxygen isotope stack for benthic foraminifarra, whose age model is dependent on ice volume model with a certain time lag. On the other hand, Caballero-Gill et al. (2012) developed an absolute age model based on U-Th dating for stalagmites from China and correlated the oxygen isotope curve with that on planctonic foraminiferra for a deep-sea core from South China Sea. The age model based on absolute dating for stalagmite was then transfered to oxygen isotope curve of benthic forraminiferra for the same core. This enables to provide absolute age model on PISO-1500 for the past 350 kyrs. The resulting modified PISO-1500 was applied on paleomagnetic records from Lake Baikal to provide an age model based on relative paleointensity. Finally, this age model was compared with alternative age model based on correlation of biogenic silica record with insolation at the site (Prokopenko et al., 2006) and the reason for the discrepancy will be discussed.

  12. Paleo-earthquakes of diverse magnitude recorded at the Salt Lake site, the Haiyuan Fault, China

    NASA Astrophysics Data System (ADS)

    Liu, J.; Shao, Y.; Klinger, Y.; Xie, K.; Yuan, D.; Lei, Z.

    2013-12-01

    Paleoseismology provides routinely fundamental data for earthquake recurrence models, by revealing past ground-breaking events that stopped at different levels in layered soft sediments. Paleo-earthquakes recognized in trenches are often unknown in size, vaguely defined as surface-breaking events, but often explicitly or implicitly assumed to be similar in size when calculating earthquake recurrence interval in seismic hazard assessment of the studied fault. Here, we show data that challenge this basic underlying premise. At the Salt Lake site on the active left-lateral Haiyuan fault, northeastern Tibetan plateau, a sequence of remarkably high-resolution stratigraphy recorded at least four events since 1500 A.D., constrained by AMS C14 dating. A comparison with regional historical earthquake accounts shows that they are a mix of events of disparaging magnitudes. Except the most recent earthquake of M~8 in 1920 A.D., three earlier events, occurred in 1760 A.D., 1638 A.D., 1597 A.D. respectively, are smaller in magnitude, M~6 to M~7. Our results thus show that events order of magnitude difference in rupture length and seismic moment can be recorded at a single site, contrary to conventional definition of paleoseimic recurrence interval, which assumes simple large characteristic magnitude for recurring events.

  13. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka

    PubMed Central

    An, Zhisheng; Colman, Steven M.; Zhou, Weijian; Li, Xiaoqiang; Brown, Eric T.; Jull, A. J. Timothy; Cai, Yanjun; Huang, Yongsong; Lu, Xuefeng; Chang, Hong; Song, Yougui; Sun, Youbin; Xu, Hai; Liu, Weiguo; Jin, Zhangdong; Liu, Xiaodong; Cheng, Peng; Liu, Yu; Ai, Li; Li, Xiangzhong; Liu, Xiuju; Yan, Libin; Shi, Zhengguo; Wang, Xulong; Wu, Feng; Qiang, Xiaoke; Dong, Jibao; Lu, Fengyan; Xu, Xinwen

    2012-01-01

    Two atmospheric circulation systems, the mid-latitude Westerlies and the Asian summer monsoon (ASM), play key roles in northern-hemisphere climatic changes. However, the variability of the Westerlies in Asia and their relationship to the ASM remain unclear. Here, we present the longest and highest-resolution drill core from Lake Qinghai on the northeastern Tibetan Plateau (TP), which uniquely records the variability of both the Westerlies and the ASM since 32 ka, reflecting the interplay of these two systems. These records document the anti-phase relationship of the Westerlies and the ASM for both glacial-interglacial and glacial millennial timescales. During the last glaciation, the influence of the Westerlies dominated; prominent dust-rich intervals, correlated with Heinrich events, reflect intensified Westerlies linked to northern high-latitude climate. During the Holocene, the dominant ASM circulation, punctuated by weak events, indicates linkages of the ASM to orbital forcing, North Atlantic abrupt events, and perhaps solar activity changes. PMID:22943005

  14. Abrupt Transitions in Climate Throughout the Holocene from a Lake Sediment Record in se Greenland

    NASA Astrophysics Data System (ADS)

    de Wet, G.; Bradley, R. S.; Balascio, N. L.

    2012-12-01

    Arctic climate variability over the Holocene has been both extensive and, at times, abrupt. Current understanding of these changes is still quite limited with few high-resolution paleoclimate records available for this period. In order to place observed and predicted 21st century climate change in perspective, reliable and highly resolved paleo-reconstructions of Arctic climate are essential. Using an 8.5 m sediment core from Nanerersarpik Lake, this project will characterize climate changes during the Holocene, including the deglacial transition, the rapid changes that are known to have occurred around 8,200 years ago, the transition from Holocene thermal maximum (HTM) to the colder Neoglacial period, and intervals of abrupt climate change during the late Holocene such as the Medieval Warm Period and Little Ice Age. The 8.5 m sediment core from Nanerersarpik contains a dense gray clay in the lower 0.5m. The upper 8.0m of sediment is light brown and organic-rich with centimeter to half-centimeter laminations, interrupted by mass-movement events. Paleoenvironmental conditions have been interpreted using magnetic susceptibility, grain size, biogenic silica, TOC, C/N, and δ13Corg, as well as with high-resolution spectral reflectance and scanning XRF profiles. These parameters allow us to interpret changes in autochthonous productivity and clastic input throughout the Holocene. A chronology for the record has been established using 210Pb and 11 radiocarbon dates. Cryptotephra analysis will also be carried out to improve the chronology during the Late Holocene. The age-model indicates Nanerersarpik Lake contains an ~8,500-yr sediment record with a linear age/depth relationship and a sedimentation rate of 0.1cm/yr, allowing for potentially decadal scale resolution of environmental changes. Preliminary results show an abrupt transition from dense glacial clay to laminated organic rich sediment near the base of the core. This is interpreted as marking the retreat of

  15. Paleo-climate and paleo-environment reconstruction based on a high-resolution, multi-proxy Holocene lake record from Lake Urmia (NW Iran)

    NASA Astrophysics Data System (ADS)

    Haghipour, Negar; Eglinton, Timothy; McIntyre, Cameron; Darvishi Khatooni, Javad; Hunziker, Daniela; mohammadi, Ali

    2016-04-01

    Lake Urmia, in northwest Iran, is the largest saline lake in the Middle East with a surface area of ~ 5000km2. Historical documents indicate its existence since at least 2000 years BC, and palynological investigation of a 100 m-long core suggest it contains a sedimentary record spanning the last 200 ka. Despite this potential as an archive of paleo-climate and paleo-environmental information, to date there has been no molecular organic geochemical investigation or precise dating of these sediments. We present lake sediment core data on both geochemical proxies and sediment lipid biomarkers on two cores form different part of the Lake. Each core has 10m length and covers Holocene time scale. The age model based on calibrated radiocarbon dates shows variation of sedimentation rates between early and middle Holocene and a sudden increase in late Holocene. This is interpreted as a sudden event and mass movement. Downcore results on bulk measurements (TOC, δ13C and C/N) give evidence for a warmer and wetter climates between 0.5 and 3 kyr BP. Phytoplankton biomarkers were most abundant in this period, indicating high phytoplankton productivity. Further gradual shift to cooler and drier episodes occur between 3.5 and 7Kyr Bp, decrease in phytoplankton productivity indicating cooler climate and show terrestrial signal. The coolest and drier conditions occurred between 7-10.3 Kyr BP. This is in agreement with Carbon and Hydrogen isotopic composition of n-alkonic acids.

  16. A Holocene Sediment Record of Phosphorus Accumulation in Shallow Lake Harris, Florida (USA) Offers New Perspectives on Recent Cultural Eutrophication

    PubMed Central

    Kenney, William F.; Brenner, Mark; Curtis, Jason H.; Arnold, T. Elliott; Schelske, Claire L.

    2016-01-01

    We studied a complete Holocene sediment record from shallow (zmax = 9.7 m) Lake Harris, Florida (USA) to infer the historical development of the lake and its current eutrophic status. We used 210Pb and 14C to date the 5.9-m sediment sequence (core LH-6-13) and determined accumulation rates for bulk sediment, organic matter, calcium carbonate, phosphorus fractions and biogenic silica fractions. The chronology of changes in sediment characteristics for LH-6-13 is consistent with the general paleoenvironmental framework established by core studies from other Florida lakes. Lake Harris began to fill with water in the early Holocene, ca. 10,680 cal a BP. A shift from carbonate-dominated to organic-rich sediments ca. 5,540 cal a BP corresponds to a transition to wetter climate in the middle Holocene. A rapid increase in diatom biogenic silica concentrations and accumulation rates ca. 2,600 cal a BP signals that the lake had deepened to its modern limnetic state. In LH-6-13, an up-core decrease in rates of accumulation for several sediment variables indicates time-course oligotrophication of the lake through the Holocene. In near-surface sediments, abrupt increases in the accumulation rates of these same variables indicate progressive cultural eutrophication after ca. AD 1900. Comparison of the modern state of Lake Harris to its condition 50–100 years ago provides a measure of the impact of recent cultural eutrophication. Because the pre-disturbance trajectory of this lake was one of oligotrophication, the true impact of cultural eutrophication is even greater than what is inferred from the changes over the past century. PMID:26789518

  17. A Holocene Sediment Record of Phosphorus Accumulation in Shallow Lake Harris, Florida (USA) Offers New Perspectives on Recent Cultural Eutrophication.

    PubMed

    Kenney, William F; Brenner, Mark; Curtis, Jason H; Arnold, T Elliott; Schelske, Claire L

    2016-01-01

    We studied a complete Holocene sediment record from shallow (zmax = 9.7 m) Lake Harris, Florida (USA) to infer the historical development of the lake and its current eutrophic status. We used (210)Pb and (14)C to date the 5.9-m sediment sequence (core LH-6-13) and determined accumulation rates for bulk sediment, organic matter, calcium carbonate, phosphorus fractions and biogenic silica fractions. The chronology of changes in sediment characteristics for LH-6-13 is consistent with the general paleoenvironmental framework established by core studies from other Florida lakes. Lake Harris began to fill with water in the early Holocene, ca. 10,680 cal a BP. A shift from carbonate-dominated to organic-rich sediments ca. 5,540 cal a BP corresponds to a transition to wetter climate in the middle Holocene. A rapid increase in diatom biogenic silica concentrations and accumulation rates ca. 2,600 cal a BP signals that the lake had deepened to its modern limnetic state. In LH-6-13, an up-core decrease in rates of accumulation for several sediment variables indicates time-course oligotrophication of the lake through the Holocene. In near-surface sediments, abrupt increases in the accumulation rates of these same variables indicate progressive cultural eutrophication after ca. AD 1900. Comparison of the modern state of Lake Harris to its condition 50-100 years ago provides a measure of the impact of recent cultural eutrophication. Because the pre-disturbance trajectory of this lake was one of oligotrophication, the true impact of cultural eutrophication is even greater than what is inferred from the changes over the past century.

  18. Pre-aged plant waxes in tropical lake sediments and their influence on the chronology of molecular paleoclimate proxy records

    NASA Astrophysics Data System (ADS)

    Douglas, Peter M. J.; Pagani, Mark; Eglinton, Timothy I.; Brenner, Mark; Hodell, David A.; Curtis, Jason H.; Ma, Keith F.; Breckenridge, Andy

    2014-09-01

    Sedimentary records of plant-wax hydrogen (δDwax) and carbon (δ13Cwax) stable isotopes are increasingly applied to infer past climate change. Compound-specific radiocarbon analyses, however, indicate that long time lags can occur between the synthesis of plant waxes and their subsequent deposition in marginal marine sediments. The influence of these time lags on interpretations of plant-wax stable isotope records is presently unconstrained, and it is unclear whether such time lags also affect lacustrine sediments. We present compound-specific radiocarbon (14Cwax) data for n-alkanoic acid plant waxes (n-C26 to n-C32) from: (1) a sediment core from Lake Chichancanab, Yucatan Peninsula, Mexico, (2) soils in the Lake Chichancanab catchment, and (3) surface sediments from three other lakes in southeastern Mexico and northern Guatemala. 14Cwax ages in the surface sediments are consistently older than modern, and may be negatively correlated with mean annual precipitation and positively correlated with lake catchment area. 14Cwax ages in soils surrounding Lake Chichancanab increase with soil depth, consistent with deep, subsoil horizons being the primary source of lacustrine aged plant waxes, which are likely delivered to lake sediments through subsurface transport. Plant waxes in the Lake Chichancanab core are 350-1200 years older than corresponding ages of bulk sediment deposition, determined by 14C dates on terrestrial plant macrofossils in the core. A δDwax time series is in closer agreement with other regional proxy hydroclimate records when a plant-wax 14C age model is applied, as opposed to the macrofossil-based core chronology. Inverse modeling of plant-wax age distribution parameters suggests that plant waxes in the Lake Chichancanab sediment core derive predominantly from millennial-age soil carbon pools that exhibit relatively little age variance (<200 years). Our findings demonstrate that high-temporal-resolution climate records inferred from stable isotope

  19. Southern Westerly Winds submit to the ENSO regime: A multiproxy paleohydrology record from Lake Dobson, Tasmania

    NASA Astrophysics Data System (ADS)

    Rees, Andrew B. H.; Cwynar, Les C.; Fletcher, Michael-Shawn

    2015-10-01

    The El Niño-Southern Oscillation (ENSO) and Southern Westerly Winds (SWW) profoundly influence synoptic-scale climate in the Southern Hemisphere. Although many studies have invoked either phenomenon to explain trends in proxy data, few have demonstrated the transition from a climate dominated by SWW flow to one controlled by El Niño activity, which is postulated to have occurred after 5 cal ka BP in the mid-latitudes of the Southern Hemisphere. Tasmania, southeast Australia, is ideally situated to detect changes in both of these climatic controls. Currently, El Niño and La Niña events result in drier and wetter conditions island-wide, respectively, with the greatest impact in the north. Further, Tasmania houses north-south trending mountain ranges near its western coast. As a result, areas west of the mountains exhibit a positive correlation between SWW flow and precipitation, while eastern regions possess either no or a negative relationship. Here, we present data from chironomid remains, charcoal, and geochemical proxies to investigate the paleohydrological history of Lake Dobson, a site located in Mount Field National Park, Tasmania. The proxies revealed three broad periods: (1) an early Holocene (11.5-8.3 cal kyr BP) characterised by generally high rainfall, the occurrence of irregular fires, and elevated charcoal influx at 11.4 and 10.2 cal ka BP - conditions compatible with attenuated SWW flow over the site; (2) an ambiguous mid-Holocene (8.3-5 cal kyr BP) that marks the transition from a SWW- to ENSO-dominated climate; and (3) a relatively dry and stable late Holocene (5 cal kyr BP to present) that is consistent with the onset of a climate controlled by ENSO activity (i.e., characterised by a more mean El Niño climate state). The proxy record of Lake Dobson highlights the teleconnections between the equatorial Pacific and southern Australasia.

  20. Annual and Longer Sedimentary Rhythms of the Organic Rock Record of Titan's Circumpolar Seas and Lakes

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Tan, S. P.; Marion, G. M.; Jennings, D. E.; Mastrogiuseppe, M.; Adidharma, H.

    2014-12-01

    eccentricity, the circumpolar climate and annual range of the seasonal cycle will change, forcing responses in rainfall rates, erosion rates, and the composition of lakes and seas. Thus, sediment deposit sequences—layered organic rock strata—in the circumpolar regions will record past climate changes due to long-term cycles as well as annual periodicity.

  1. Preliminary Record of Holocene Storm Events in the Finger Lakes, NY

    NASA Astrophysics Data System (ADS)

    Curtin, T. M.; Morgan, C. K.; Petrick, B. F.; Davin, L. I.; Rogers, C. E.; Crocker, M. L.; Loddengaard, K.; Baker, A. P.

    2006-12-01

    Terrigenous sediment deposited in three of the Finger Lakes of New York, Seneca, Keuka, and Canandaigua, preserve evidence for major storm events over the past ~13 ka. A combination of analytical techniques was used for ten cores, including visual inspection, magnetic susceptibility, loss-on-ignition, and grain size to identify these storm events. Storm layers are characterized by coincident coarse siliciclastic mean grain size, high % sand content, and more terrestrial plant macrofossils than the surrounding mud. The combination of sedimentological analyses with radiocarbon dating allows for development of a paleostorm chronology for each lake and comparison of the timing of the storm layers to determine if they were deposited synchronously or not. The number (10-31), thickness (0.1-6 cm), and grain size characteristics (1-37% sand) of the layers present in each core varies widely. As a result, single storm-related event deposition does not appear to have been synchronous among the three lake basins. However, there is temporal clustering of events. The greatest number of storm layers occurs in two distinct intervals, between ~13 and ~8.2 ka and ~4.6 and 0 ka. During the early to mid-Holocene, the number of events was high. We infer that a period of increased storminess occurred when the average climate of the region became warmer and wetter. Between ~8.2 and ~4.6 ka, when the average climate in North America was warm and dry, the number, thickness, and average mean grain size of the terrigenous layers decreased. After ~4.6 ka, the number of storms appears to have gradually increased as a result of a shift in the southern extent of the jet stream. The thickest, sandiest layers were deposited beginning at ~700 yrs BP and is associated with the climate of the Little Ice Age and Medieval Warming Period. The increase in the number, thickness, and sand content is especially apparent at ~290 yrs BP and is coincident the onset of widespread erosion due to deforestation

  2. Sedimentary record of polycyclic aromatic hydrocarbons and DDTs in Dianchi Lake, an urban lake in Southwest China.

    PubMed

    Guo, Jian-yang; Wu, Feng-chang; Liao, Hai-qing; Zhao, Xiao-li; Li, Wen; Wang, Jing; Wang, Li-fang; Giesy, John P

    2013-08-01

    Unique time trends of polycyclic aromatic hydrocarbons (PAHs) and dichlorodiphenyltrichloroethanes (DDTs) were found in a dated sediment core from Dianchi Lake (DC), an urban lake in Southwest China. The temporal trend of PAHs in DC was not only different from those in China's coastline and remote lakes of China, but also different from those in more developed countries. Identification of sources suggested that PAHs in DC originated primarily from domestic combustion of coal and biomass. However, a change of source from low- and moderate-temperature combustion to high-temperature combustion processes was observed. Different from those in China's coastline and some developed countries, the temporal trend of DDTs in DC mirrored the historical usage of DDTs in China, with erosion of soils and surface runoff from its drainage area the most likely routes of DDT introduction to the lake. Rapid urbanization and industrialization in its catchment, effective interception of point-source pollution, and changes in sources of energy during the last few decades have significantly influenced the vertical profiles of PAHs in DC.

  3. Drivers of Deglacial and Holocene Sub-Antarctic Climate Variability Inferred from South Georgia Lake Sediment Records

    NASA Astrophysics Data System (ADS)

    Davies, S. J.; Rosqvist, G. N.; Leng, M. J.; Moreton, S. G.

    2013-12-01

    South Georgia (54-55°S, 36-38°W) straddles the boundary between Southern Hemisphere temperate and polar climatic regimes, lying 350km south of the Antarctic convergence and to the north of the present winter sea ice limit. Lake sediments from the island present a unique opportunity to identify the response of the terrestrial environment to major climatic shifts following deglaciation. Together with evidence of glacier fluctuations, lacustrine archives provide an important link between Antarctic ice core and Southern Ocean palaeoclimate records. Here, we present geochemical records from the sediments of two lakes on the Barff and Tonsberg peninsulas, spanning the transition from Termination I and through the Holocene. Our lake records, from the Tonsberg and Barff peninsulas on the north of the island, reveal a dramatic terrestrial response, but of opposite sign, to changes in the North Atlantic during Heinrich Stadial 1 (HS1), the Bolling/Allerod (B/A) interval and Younger Dryas (YD), indicating a strong link between terrestrial sub-Antarctic and the Northern Hemisphere during deglaciation. The sediments support evidence from elsewhere in the region that the Southern Hemisphere westerlies shifted southwards during the early Holocene. Enhanced precipitation maintained a glacier in the upper catchment of the Barff lake between 12 and 8.5 cal. ka BP, whilst increased summer temperatures are inferred from higher organic carbon values. Aquatic productivity in the Barff lake peaks between 7 and 4 cal ka BP, coincident with evidence from marine records indicating increased sea ice and lower SSTs. This pattern is best explained by changing seasonality of local insolation, which appears to have become the dominant control on the climate of South Georgia during the Holocene.

  4. Records of polychlorinated biphenyls (PCBs) in sediments of four remote Chilean Andean Lakes.

    PubMed

    Pozo, Karla; Urrutia, Roberto; Barra, Ricardo; Mariottini, Michela; Treutler, Hanns-Christian; Araneda, Alberto; Focardi, Silvano

    2007-01-01

    Sediment cores from four Chilean lakes along the Andes Chain (Chungará, Laja, Castor and Venus) were analysed in order to investigate PCB concentrations and distributions in sediment samples. Sediment cores were analysed for PCBs using gas chromatography (GC-ECD/MS) and radioisotopically dated using 210Pb. Organic carbon content (OC) and 210Pb fluxes were also measured. Results showed that sediment PCB concentrations (ngg(-1) d.w.) at Lake Chungará (1.2 +/- 1) in northern Chile, Laja (5 +/- 4) in central, and in Lake Castor (3.5 +/- 4) in southern Chile (the eastern side of the Andes Mountain) were lower than sediments collected from Lake Venus (64 +/- 30) located in southern Chile (the western side) which contained 15-fold higher concentrations of PCBs. The percentage (%) of organic carbon was variable and showed a high range of values in the sediment fluctuating from 2% (Lake Laja) to 22% (Lake Chungará). Analysis of 210Pb fluxes, presented a decrease trend following Lake Laja>Castor>Chungará with a positive correlation with rainfall at each site. Sedimentation rates in Lake Castor (1846 gm(-2)yr(-1)) were higher than at Chungará (748 gm(-2)yr(-1)) and Lake Laja (508 gm(-2)yr(-1)). Focusing factor (FF) is used as a tool to elucidate PCB input in the aquatic ecosystem. FF were lower (<1) for the shallower lakes (Lakes Chungará and Castor). This study provides background levels of PCBs at remote lakes in Chile. Differences in geographical characteristics (orographic effect) might play an important role in the arrival of PCBs, particularly into the southern lakes. PCB fluxes indicated deposition of PCBs in recent sediments is higher than in previous years with peaks of PCB between 1991 and 1998. The continuing increase of PCB inputs in remote Chilean lakes, could be associated with long range atmospheric transport (LRAT). PMID:17049964

  5. Reinterpretation of the exposed record of the last two cycles of Lake Bonneville, Western United States

    USGS Publications Warehouse

    Scott, W.E.; McCoy, W.D.; Shroba, R.R.; Rubin, M.

    1983-01-01

    A substantially modified history of the last two cycles of Lake Bonneville is proposed. The Bonneville lake cycle began prior to 26,000 yr B.P.; the lake reached the Bonneville shoreline about 16,000 yr B.P. Poor dating control limits our knowledge of the timing of subsequent events. Lake level was maintained at the Bonneville shoreline until about 15,000 yr B.P., or somewhat later, when catastrophic downcutting of the outlet caused a rapid drop of 100 m. The Provo shoreline was formed as rates of isostatic uplift due to this unloading slowed. By 13,000 yr B.P., the lake had fallen below the Provo level and reached one close to that of Great Salt Lake by 11,000 yr B.P. Deposits of the Little Valley lake cycle are identified by their position below a marked unconformity and by amino acid ratios of their fossil gastropods. The maximum level of the Little Valley lake was well below the Bonneville shoreline. Based on degree of soil development and other evidence, the Little Valley lake cycle may be equivalent in age to marine oxygenisotope stage 6. The proposed lake history has climatic implications for the region. First, because the fluctuations of Lake Bonneville and Lake Lahontan during the last cycle of each were apparently out of phase, there may have been significant local differences in the timing and character of late Pleistocene climate changes in the Great Basin. Second, although the Bonneville and Little Valley lake cycles were broadly synchronous with maximum episodes of glaciation, environmental conditions necessary to generate large lakes did not exist during early Wisconsin time. ?? 1983.

  6. Earthquakes of moderate magnitude recorded at the Salt Lake paleoseimic site on the Haiyuan Fault, China

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Shao, Yanxiu; Xie, Kejia; Klinger, Yann; Lei, Zhongsheng; Yuan, Daoyang

    2013-04-01

    The active left-lateral Haiyuan fault is one of the major continental strike-slip faults in the Tibetan Plateau. The last large earthquake occurred on the fault is the great 1920 M~8 Haiyuan earthquake with a 230-km-long surface rupture and maximum surface slip of 11 m (Zhang et al., 1987). Much less known is its earthquake recurrence behavior. We present preliminary results on a paleoseismic study at the Salt Lake site, at a shortcut pull-apart basin, within the section that broke in 1920. 3D excavation at the site exposed 7 m of fine-grained and layered stratigraphy and ample evidence of 6-7 paleoseismic events. AMS dating of charcoal fragments constrains that the events occurred during the past 3600 years. Of these, the youngest 3-4 events are recorded in the top 2.5m section of distinctive thinly-layered stratigraphy of alternating reddish well-sorted granule sand and light gray silty fine sand. The section has been deposited since ~1550 A.D., suggesting 3-4 events occurred during the past 400 years, and an average recurrence interval of less than 150 years, surprisingly short for the Haiyuan fault, with a slip rate of arguably ~10 mm/yr or less. A comparison of paleoseismic with historical earthquake record is possible for the Haiyuan area, a region with written accounts of earthquake effects dated back to 1000 A.D.. Between 1600 A.D. and present, each of the four paleoseismic events can be correlated to one historically recorded event, within the uncertainties of paleoseismic age ranges. Nonetheless, these events are definitely not 1920-type large earthquakes, because their shaking effects were only recorded locally, rather than regionally. More and more studies show that M5 to 6 events are capable of causing ground deformation. Our results indicate that it can be misleading to simply use the time between consecutive events as the recurrence interval at a single paleoseismic site, without information of event size. Mixed events of different magnitudes in the

  7. Glacial to Holocene climate changes in the SE Pacific. The Raraku Lake sedimentary record (Easter Island, 27°S)

    NASA Astrophysics Data System (ADS)

    Sáez, Alberto; Valero-Garcés, Blas L.; Giralt, Santiago; Moreno, Ana; Bao, Roberto; Pueyo, Juan J.; Hernández, Armand; Casas, David

    2009-12-01

    Easter Island (SE Pacific, 27°S) provides a unique opportunity to reconstruct past climate changes in the South Pacific region based on terrestrial archives. Although the general climate evolution of the south Pacific since the Last Glacial Maximum (LGM) is coherent with terrestrial records in southern South America and Polynesia, the details of the dynamics of the shifting Westerlies, the South Pacific Convergence Zone and the South Pacific Anticyclone during the glacial-interglacial transition and the Holocene, and the large scale controls on precipitation in tropical and extratropical regions remain elusive. Here we present a high-resolution reconstruction of lake dynamics, watershed processes and paleohydrology for the last 34 000 cal yrs BP based on a sedimentological and geochemical multiproxy study of 8 cores from the Raraku Lake sediments constrained by 22 AMS radiocarbon dates. This multicore strategy has reconstructed the sedimentary architecture of the lake infilling and provided a stratigraphic framework to integrate and correlate previous core and vegetation studies conducted in the lake. High lake levels and clastic input dominated sedimentation in Raraku Lake between 34 and 28 cal kyr BP. Sedimentological and geochemical evidences support previously reported pollen data showing a relatively open forest and a cold and relatively humid climate during the Glacial period. Between 28 and 17.3 cal kyr BP, including the LGM period, colder conditions contributed to a reduction of the tree coverage in the island. The coherent climate patterns in subtropical and mid latitudes of Chile and Eastern Island for the LGM (more humid conditions) suggest stronger influence of the Antarctic circumpolar current and an enhancement of the Westerlies. The end of Glacial Period occurred at 17.3 cal kyr BP and was characterized by a sharp decrease in lake level conducive to the development of major flood events and erosion of littoral sediments. Deglaciation (Termination

  8. Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level

    NASA Astrophysics Data System (ADS)

    Gillies, Robert R.; Chung, Oi-Yu; Simon Wang, S.-Y.; DeRose, R. Justin; Sun, Yan

    2015-10-01

    Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover less than a century, forecasting the predominant yet under-represented decadal variability of the GSL level with such relatively short instrumental records poses a challenge. To overcome data limitations, this study assesses two options: (1) developing a model using the observational GSL elevation record of 137 years to predict itself; (2) incorporating the recently reconstructed GSL elevation that utilized 576 years worth of tree-ring records into the predictive model. It was found that the statistical models that combined the tree-ring reconstructed data with the observed data outperformed those that did not, in terms of reducing the root mean squared errors. Such predictive models can serve as a means toward practical water risk management.

  9. Stable isotope record of Holocene climate and ecological change from brine shrimp cyst chitin for the Great Salt Lake, UT

    NASA Astrophysics Data System (ADS)

    Nielson, K. E.; Bowen, G. J.

    2009-12-01

    We present a record of oxygen and hydrogen isotopes in brine shrimp cysts from the Great Salt Lake, a terminal lake in the Great Basin, US. Water balance for the region is influenced by strength of the El Niño in Pacific and by the strength of the summer monsoon. Brine shrimp cysts are a novel proxy for isotope reconstruction, and allow reconstruction of water isotopes (oxygen, hydrogen) and ecology (hydrogen). Oxygen isotopes in chitin respond to water, while both diet and growth water contribute to hydrogen isotopes, allowing reconstruction of both environmental and ecological information from a single molecule. Values of δ18O decrease from about +15‰ to about +11‰ over course of the 8000 year record. This may suggest the importance of snow melt increased over the Holocene, or it may suggest lake is larger today than it was in mid-Holocene. Hydrogen isotopes are relatively stable for most of record, fluctuating around -140‰. Modeled hydrogen isotopes in food, also stable in the beginning of the record at about -150‰, become much heavier, shifting toward about -75‰ starting about 5000 ybp. This may suggest a shift from a primarily aquatic diet in the Mid-Holocene to a diet with a greater contribution of terrestrial material later in the Holocene. These observations agree broadly with previous inferences of a warm Mid-Holocene and associated low terrestrial productivity, followed by a more moist, and consequently more productive Late Holocene.

  10. A New, Continuous 5400 Yr-long Paleotsunami Record from Lake Huelde, Chiloe Island, South Central Chile.

    NASA Astrophysics Data System (ADS)

    Kempf, P.; Moernaut, J.; Vandoorne, W.; Van Daele, M. E.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2014-12-01

    After the last decade of extreme tsunami events with catastrophic damage to infrastructure and a horrendous amount of casualties, it is clear that more and better paleotsunami records are needed to improve our understanding of the recurrence intervals and intensities of large-scale tsunamis. Coastal lakes (e.g. Bradley Lake, Cascadia; Kelsey et al., 2005) have the potential to contain long and continuous sedimentary records, which is an important asset in view of the centennial- to millennial-scale recurrence times of great tsunami-triggering earthquakes. Lake Huelde on Chiloé Island (42.5°S), Chile, is a coastal lake located in the middle of the Valdivia segment, which is known for having produced the strongest ever instrumentally recorded earthquake in 1960 AD (MW: 9.5), and other large earthquakes prior to that: i.e. 1837 AD, 1737 AD (no report of a tsunami) and 1575 AD (Lomnitz, 1970, 2004, Cisternas et al., 2005). We present a new 5400 yr-long paleotsunami record with a Bayesian age-depth model based on 23 radiocarbon dates that exceeds all previous paleotsunami records from the Valdivia segment, both in terms of length and of continuity. 18 events are described and a semi-quantitative measure of the event intensity at the study area is given, revealing at least two predecessors of the 1960 AD event in the mid to late Holocene that are equal in intensity. The resulting implications from the age-depth model and from the semi-quantitative intensity reconstruction are discussed in this contribution.

  11. Quantifying magnitude and frequency of recent extreme floods using a 600 year lake sediment record from the UK

    NASA Astrophysics Data System (ADS)

    Chiverrell, Richard; Sear, David; Warburton, Jeff; Schillereff, Daniel; Macdonald, Neil

    2016-04-01

    Flooding in northwest England has been reconstructed from the coarse grained units preserved in lake sediment sequences at Bassenthwaite Lake, a record that includes the floods of December 2015 (Storm Desmond) and November 2009 and shows they were the most extreme in over 600 years. The inception and propagation of a lake sediment flood event horizon in the aftermath of the December 2015 storms in the UK will be explored. Linking our new sediment palaeoflood series to river discharges, the first assessment of flood frequency and magnitude based on lake sediments for the UK, shows that recent disastrous flooding in northern England was more extreme than revealed by standard hydrological approaches, making these events the rarest (Recurrence Interval >1:10000 years) ever recorded in the UK. Particle size characteristics of flood laminations, after correction for variations in the stability of catchment sediment sources, were correlated on a hydrodynamic basis with recorded river flows. The particle size flood record is underpinned by a robust chronology to CE1420 derived from radionuclide (Pb210, Am241, and Cs137) dating and correlation to the rich history of metal (Pb, Zn, Ba and Cu) mining in the catchment accurately recorded in the sediment geochemistry. The sediment palaeoflood series reveals five flood rich periods (CE 1460-1500, 1580-1680, 1780-1820, 1850-1925, 1970-present), and these correspond with positive phases of reconstructed winter NAOI and other Atlantic circulation patterns. The hydro-climatology of the extreme events (top 1% of floods) in our series, show that 67% of floods have occurred in the 21st Century during a period of prolonged warmer northern Hemisphere temperatures and positive NAOI winter index. Climate model ensemble outputs for the Northern hemisphere forecast increased frequency and magnitude of positive NAOI, and warmer air temperatures; we infer from this that there will also be an increase in the frequency of extreme floods and

  12. A frozen record of density-driven crustal overturn in lava lakes: The example of Kilauea Iki 1959

    USGS Publications Warehouse

    Stovall, W.K.; Houghton, B.F.; Harris, A.J.L.; Swanson, D.A.

    2009-01-01

    Lava lakes are found at basaltic volcanoes on Earth and other planetary bodies. Density-driven crustal foundering leading to surface renewal occurs repeatedly throughout the life of a lava lake. This process has been observed and described in a qualitative sense, but due to dangerous conditions, no data has been acquired to evaluate the densities of the units involved. Kilauea Iki pit crater in Hawai'i houses a lava lake erupted during a 2 month period in 1959. Part of the surface of the Kilauea Iki lake now preserves the frozen record of a final, incomplete, crustal-overturn cycle. We mapped this region and sampled portions of the foundering crust, as well as overriding and underlying lava, to constrain the density of the units involved in the overturn process. Overturn is driven by the advance of a flow front of fresh, low-density lava over an older, higher density surface crust. The advance of the front causes the older crust to break up, founder, and dive downwards into the lake to expose new, hot, low-density lava. We find density differences of 200 to 740 kg/m3 between the foundering crust and over-riding and under-lying lava respectively. In this case, crustal overturn is driven by large density differences between the foundering and resurfacing units. These differences lead, inevitably, to frequent crustal renewal: simple density differences between the surface crust and underlying lake lava make the upper layers of the lake highly unstable. ?? Springer-Verlag 2008.

  13. East African mid-Holocene wet-dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift

    NASA Astrophysics Data System (ADS)

    Garcin, Yannick; Melnick, Daniel; Strecker, Manfred R.; Olago, Daniel; Tiercelin, Jean-Jacques

    2012-05-01

    The 'wet' early to mid-Holocene of tropical Africa, with its enhanced monsoon, ended with an abrupt shift toward drier conditions and was ultimately replaced by a drier climate that has persisted until the present day. The forcing mechanisms, the timing, and the spatial extent of this major climatic transition are not well understood and remain the subject of ongoing research. We have used a detailed palaeo-shoreline record from Lake Turkana (Kenya) to decipher and characterise this marked climatic transition in East Africa. We present a high-precision survey of well-preserved palaeo-shorelines, new radiocarbon ages from shoreline deposits, and oxygen-isotope measurements on freshwater mollusk shells to elucidate the Holocene moisture history from former lake water-levels in this climatically sensitive region. In combination with previously published data our study shows that during the early Holocene the water-level in Lake Turkana was high and the lake overflowed temporarily into the White Nile drainage system. During the mid-Holocene (~ 5270 ± 300 cal. yr BP), however, the lake water-level fell by ~ 50 m, coeval with major episodes of aridity on the African continent. A comparison between palaeo-hydrological and archaeological data from the Turkana Basin suggests that the mid-Holocene climatic transition was associated with fundamental changes in prehistoric cultures, highlighting the significance of natural climate variability and associated periods of protracted drought as major environmental stress factors affecting human occupation in the East African Rift System.

  14. Historical records of polycyclic aromatic hydrocarbon deposition in a shallow eutrophic lake: Impacts of sources and sedimentological conditions.

    PubMed

    Li, Chaocan; Huo, Shouliang; Yu, Zhiqiang; Guo, Wei; Xi, Beidou; He, Zhuoshi; Zeng, Xiangying; Wu, Fengchang

    2016-03-01

    Sediment core samples collected from Lake Chaohu were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) to assess the spatial and temporal distributions of the PAHs during lacustrine sedimentary processes and regional economic development. Assessing the PAH sedimentary records over an approximately 100-year time span, we identified two stages in the PAH inputs and sources (before the 1970s and after the 1970s) in the eastern lake region near a village, whereas three stages (before the 1950s, 1950s-1990s and after the 1990s) were identified in the western lake region near urban and industrial areas. Rapid increases in the PAH depositional fluxes occurred during the second stage due to increased human activities in the Lake Chaohu basin. The composition and isomeric ratios of the PAHs revealed that pyrolysis is the main source of PAHs in this lake. Strong positive relationships between PAH concentration and the total organic carbon concentration, sediment grain size (<4μm), as well as the local population and Gross Domestic Product indicated that the sedimentary conditions impact the depositional characteristics of the PAHs; simultaneously, socioeconomic activities, such as energy consumption and the levels of urban industrialization and civilization, affect both the composition and abundance of the PAHs. PMID:26969073

  15. Bonneville basin shoreline records of a large lake during Marine Isotope Stage 16

    NASA Astrophysics Data System (ADS)

    Nishizawa, Shizuo; Currey, Donald R.; Brunelle, Andrea; Sack, Dorothy

    2012-12-01

    The occurrence of the 650,000-year-old Rye Patch Dam tephra within shoreline sedimentary sequences suggests the presence of a large lake in the Bonneville basin in North America during Marine Isotope Stage (MIS) 16. The observed shoreline sedimentology and stratigraphy indicate that the lake was expanding when the air-fall ash landed onto the lake water. The minimum estimated surface area of the 650 ka lake almost equals that of Lake Bonneville during the Provo stage in late MIS 2. The magnitude of the 650 ka large lake implies that the climatic and hydrologic conditions in the Bonneville basin during early MIS 16 might have been comparable to those in late MIS 2.

  16. Neoglaciation and climate change recorded in sediments from Lake Lutacocha in the Cordillera Raura, Peru

    NASA Astrophysics Data System (ADS)

    Stansell, N.; Abbott, M.; Rodbell, D. T.

    2009-12-01

    Radiocarbon dated lake sediments were used to identify neoglacial advances in the Cordillera Raura (10°S) of Peru. Sediments were measured using scanning X-ray fluorescence for bulk sediment geochemistry, and coulometry for organic carbon and calcium carbonate content. Terrigenous sediments were fingerprinted by comparing the geochemistry of bulk sediment with that of bedrock and till samples collected within the watershed. Higher terrigenous input is interpreted as coinciding with a change in sediment source and increased ice cover relative to modern from ~3100 to 2400, 1700 to 1100 and 800 to 150 cal yr BP. The long-term, Holocene pattern of glaciations in the Cordillera Raura was probably driven by changes in moisture availability, and the short-term ice advances that punctuate the record were likely enhanced by cooling events. The peak neoglacial advance in the Lutacocha watershed occurred at ~ 300 cal yr BP, during the Little Ice Age (LIA), when equilibrium-line altitudes (ELAs) were 190 m lower, conditions were wetter and temperature was ~1.1 ±0.2°C colder than modern.

  17. A 640 kyr geomagnetic and palaeoclimatic record from Lake Baikal sediments

    NASA Astrophysics Data System (ADS)

    Kravchinsky, Vadim A.; Evans, Michael E.; Peck, John A.; Sakai, Hideo; Krainov, Mikhail A.; King, John W.; Kuzmin, Mikhail I.

    2007-07-01

    Magnetic remanence vectors for 1737 samples from two ~100 m cores of Lake Baikal sediments are reported along with complete magnetic susceptibility profiles obtained from a pass-through system. Chronological control is established by means of two independent correlations; first, by matching susceptibility variations to the oceanic oxygen isotope record and second, by matching the relative palaeointensity variations to the SINT-800 global reference curve. These both imply an average deposition rate of 15 cm kyr-1 and a basal age of ~640 ka. Spectral analysis reveals the presence of Milankovitch signals at ~100 kyr (eccentricity), ~41 kyr (obliquity) and ~23 and ~19 kyr (precession). Stable remanence vectors are almost all of normal polarity. The few exceptions comprise brief intervals of low and/or negative inclinations which probably represent geomagnetic excursions. However, these are far less numerous than the high sedimentation rate would lead one to expect. Furthermore, only four of them can be readily matched to the-still poorly understood-global pattern. These are the Laschamp, the Albuquerque, the Iceland Basin and perhaps the West Eifel excursions which occurred at ~38 000, ~146 000, at 180 000-190 000 and at 480 000-495 000 yr ago, respectively.

  18. The preglacial sediment record of Lake Ladoga, Russia - first results from a seismic survey and sediment coring in 2013

    NASA Astrophysics Data System (ADS)

    Melles, Martin; Krastel, Sebastian; Fedorov, Grigory; Subetto, Dmitry A.; Savelieva, Larisa A.; Andreev, Andrej; Wagner, Bernd

    2014-05-01

    The new German-Russian project PLOT (Paleolimnological Transect) aims at investigating the Late Quaternary climatic and environmental history along a more than 6000 km long longitudinal transect crossing northern Eurasia. Special emphasis is put on the preglacial history. For this purpose shallow and deep seismic surveys shall be carried out on five lakes, which potentially host preglacial sediment records, followed by sediment coring based on the results of the seismic campaigns. The well-studied Lake El'gygytgyn represents the eastern-most location of the transect and acts as reference site. Within the scope of a pilot phase for the PLOT project, funded by the German Federal Ministry of Education and Research, we were able to investigate Lake Ladoga, which is located close to St. Petersburg at the western end of the transect. Lake Ladoga is the largest lake in Europe, covering an area of almost 18.000 km2. The modern sedimentation as well as the late glacial and Holocene history of the lake were already studied in detail over the past decades. The older, preglacial lake history, however, is only rudimentary known from a core transect drilled in the southern lake in the 1930th. The cores of up to about 60 m length were only briefly described and are not existing any more. The results from these cores, known from unpublished reports only, suggest the existence of marine sediments of presumably Eemian age, representing a time when Lake Lagoga was part of a precursor of the Baltic Sea, which had a connection via Ladoga and Onega Lakes to the White Sea and further to the Arctic Ocean. In late August/early September 2013 we carried out a seismic survey on Lake Ladoga using a Mini-GI-Gun and a 32-channel seismic streamer. In total, 1500 km of seismic profiles were measured, covering most parts of the lake. The seismic lines typically show acoustically well stratified Holocene muds overlaying rather transparent postglacial varves. These sediment successions can reach

  19. First record of Mylagaulid rodents (Rodentia, Mammalia) from the Miocene of Eastern Siberia (Olkhon Island, Baikal Lake, Irkutsk Region, Russia).

    PubMed

    Tesakov, A S; Lopatin, A V

    2015-01-01

    A new genus and species of rodent, Lamugaulus olkhonensis, belonging to the subfamily Promylagaulinae of the family Mylagaulidae, is described on the basis of isolated teeth from the Khalagay Formation of the Lower Miocene Tagay locality (Olkhon island, Lake Baikal, Irkutsk Region). This is the first record of mylagaulids in Eastern Siberia, significantly expanding the data on the distribution of this mainly North American group of rodents in Asia and showing its presence outside the Central Asian arid zone.

  20. First record of trypanosomes from the blood of sculpins (Cottus ricei and C. cognatus) from Lake Superior, WI, USA

    USGS Publications Warehouse

    Pronina, Svetlana V.; Pronin, Nikolai M.; Selgeby, Jim H.

    1999-01-01

    During parasitological research of fishes in Lake Superior (USA) in August-September 1994, infection with trypanosomes of the blood of sculpins (Cottus ricei and C. cognatus) was recorded for the first time. The descriptions of three morphological groups of the genus Trypanosoma: T. sp. I, found in blood of C. ricei, T. sp. II and T. sp. III from blood of C. cognatus, have been provided.

  1. Holocene Climate and Catchment-Specific Responses to Climate Change, Recorded in a Transect of Icelandic Lakes

    NASA Astrophysics Data System (ADS)

    Geirsdottir, A.; Axford, Y.; Florian, C. R.; Miller, G. H.; Crump, S. E.; Larsen, D. J.; Olafsdóttir, S.; Thordarson, T.; Blair, C.

    2015-12-01

    Holocene paleoclimate reconstructions from the northern North Atlantic landmasses exhibit greater responses to climate forcings than other Arctic regions presumably tied to changes in North Atlantic ocean-atmosphere circulation. Here we present an overview of high-resolution, precisely dated and PSV synchronized Holocene lake sediment records on Iceland, where we employ diverse proxies at sites spanning a broad modern climate gradient, from the presently glaciated highlands to the coastal lowlands. Despite substantial differences in catchment specific processes that influence each lake record, the multi-proxy reconstructions over the last 10 ka show remarkably consistent trends, especially throughout the mid to late Holocene cooling related to the slow decrease in summer insolation. Of particular note are highly non-linear abrupt departures of centennial scale summer cold periods such as at 5.5 ka, ~4.2 ka; ~3.0 ka, ~1.5 ka, 0.7 ka, and 0.2 ka. Some of the abrupt shifts may be related to Icelandic volcanism influencing catchment stability, but the lack of a full recovery to pre-existing values after the perturbation suggests increased periglacial activity, decreased vegetation cover, and glacier growth in Iceland. That these shifts reflect regional climate changes is also supported by contemporaneous shifts documented elsewhere in the northern North Atlantic region. Although timing and abruptness of these shifts is similar between our Icelandic lake records, their magnitude can differ substantially. Regional-scale factors such as volcanism likely modulate climatic responses to radiative forcing; and at the same time, local watershed characteristics like vegetation cover and soil properties produce site-specific environmental responses to climate change. Our Icelandic lake records provide opportunities to observe the precise timing of local climate shifts and corresponding environmental responses, and thus to disentangle these effects.

  2. Initial Geochemistry Data of the Lake Ohrid (Macedonia, Albania) DEEP -Site Sediment Record: The ICDP Scopsco Drilling Project

    NASA Astrophysics Data System (ADS)

    Francke, A.; Wagner, B.; Sulpizio, R.; Zanchetta, G.; Leicher, N.; Gromig, R.; Krastel, S.; Lindhorst, K.; Wilke, T.

    2014-12-01

    Ancient lakes, with sediment records spanning >1 million years, are very rare. The UNESCO World Heritage site of Lake Ohrid on the Balkans is thought to be the oldest lake in Europe. With 212 endemic species described to date, it is also a hotspot of evolution. In order to unravel the geological and evolutionary history of the lake, an international group of scientists, conducted a deep drilling campaign in spring 2013 under the umbrella of the ICDP SCOPSCO project (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid). Overall, about 2,100 m of sediments were recovered from four drill sites. At the main drill site (DEEP-site) in central parts of the lake where seismic data indicated a maximum sediment fill of ca. 700 m, a total of more than 1,500 m of sediments were recovered until a penetration depth of 569 m. Currently, core opening, core description, XRF and MSCL scanning, sub-sampling (16 cm resolution), and inorganic and organic geochemical as well as sedimentological analyses of the sediment cores from the DEEP site are in progress at the University of Cologne. Previous studies at Lake Ohrid have shown that interglacial periods are characterized by high TIC and TOC contents, likely associated with high contents of calcite and organic matter in the sediments. In contrast, during glacial periods negligible TIC and low TOC contents correspond to high K counts indicating enhanced supply of clastic material. Similar patterns can be observed in the biogeochemical analyses of the subsamples and in the XRF data of the DEEP site record. Following these variations on a glacial-interglacial time scale, TIC and TOC data obtained from the subsamples and from core catcher samples indicate that the DEEP site sequence provides a 1.2 million year old continuous record of environmental and climatological variability in the Balkan Region. The age control can be further improved by first findings of macroscopic tephra horizons. Peaks in K, Sr, Zr, and magnetic

  3. Record of seismotectonic events in siliceous cyanobacterial sediments (Magadi cherts), Lake Magadi, Kenya

    NASA Astrophysics Data System (ADS)

    Behr, H.-J.; Röhricht, C.

    The Quaternary sediments of Lake Magadi in the Kenya Rift include large volumes of chert. Before their lithification, these siliceous sediments underwent very strong deformation, as recorded by diapirism with pillow-chert mounds, extrusion along dykes and fault ramps, horizontal liquefaction slides with brecciation, slumping, as well as petee-, flow- and shear structures. Eugster (1969) considered these structures to have resulted from desiccation of Na-silicate precipitates (magadiite) that were deposited over wide areas and were several metres thick. Magadiite can remain soft over long periods; therefore, these ``Magadi-type cherts'' are called the type examples of inorganic cherts. However, field observations and microbiological studies of the cherts show that real inorganic cherts are rare at the type locality of Magadi-type cherts. Most of the cherts are older than the High Magadi Beds and developed from flat-topped calcareous bioherms of Pleurocapsa, Gloecocapsa, and other coccoid cyanobacteria, thinly bedded filamentous microbial mats, stromatolites, bacterial slimes, diatoms, Dascladiacea colonies and other organic matter. Silicification occurred from a silicasol via opal-A to opal-C with final recrystallisation to a chert of quartzine composition. The metabolic processes of cyanobacteria controlled the pH and influenced the dissolution-precipitation mechanism. Collapse, liquefaction and extrusion of the pre-lithified siliceous matrix was caused by seismotectonic rift activity, which activated fault scarplets and large-scale dyke systems. It led to liquefaction and other earthquake-induced structures along the fault ramps and on tilted blocks. Concentrated silicasols were generated by the interaction of alkaline waters with volcanic detritus, coupled with biochemical processes. After liquefaction and extrusion, the material solidified by spontaneous crystallisation in an environment that was characterised by highly variable pH and salinity. The Lake Magadi

  4. First seismic survey of Lake Saint-Jean (Québec, Canada): sedimentary record of the last deglaciation

    NASA Astrophysics Data System (ADS)

    Nutz, Alexis; Schuster, Mathieu; Ghienne, Jean-François; Raphaël, Certain; Nicolas, Robin; Claude, Roquin; Frédéric, Bouchette; Cousineau Pierre, A.

    2015-04-01

    complexity. It is notably worth noting that the transition from glacial to post-glacial periods is well marked by an abrupt change in depositional dynamics. In addition, this work highlights an original lacustrine sedimentary system which is not straightforward notably because of the importance of erosion, by-pass and intermittent deposition over most of the lakefloor. As it deals with both glacial environments and lake systems, this works is of interest for all those concerned by the geological record of both the transition from glacial to post-glacial periods and the lacustrine environments.

  5. A late Pleistocene and Holocene record of vegetation and climate from an alpine lake from west-central Colorado (USA)

    NASA Astrophysics Data System (ADS)

    Jimenez-Moreno, G.; Anderson, R. S.

    2010-12-01

    Here we present a detailed pollen and magnetic susceptibility (MS) data from a sediment core from an alpine lake in west-central Colorado, which records changes in vegetation and sedimentation for the latest Pleistocene and Holocene. This record shows that a subalpine Picea and Abies parkland grew around the lake during the latest Pleistocene (YD) and early Holocene. Subsequently, a pine forest, probably including bristlecone and lodgepole pines (Pinus aristata and P. contorta) developed around the lake, indicating warming, which occurred throughout the early and middle Holocene, lasting until ca. 4.5 - 3.5 ka, when the warmest and summer-wettest conditions were apparent. A decrease in Pinus and, on the other hand, increases in Artemisia and piñon pine (P. edulis) indicate a progressive climate cooling and enhanced winter precipitation that occurred until today. These long-term climatic trends correlate to changes in summer insolation. Millennial-scale variability observed in the pollen record co-varies with changes in MS indicating that the sedimentation is also influenced by climate variability.

  6. The 1.5-ka varved record of Lake Montcortès (southern Pyrenees, NE Spain)

    NASA Astrophysics Data System (ADS)

    Corella, Juan Pablo; Brauer, Achim; Mangili, Clara; Rull, Valentí; Vegas-Vilarrúbia, Teresa; Morellón, Mario; Valero-Garcés, Blas L.

    2012-09-01

    The karstic Lake Montcortès sedimentary sequence spanning the last 1548 yr constitutes the first continuous, high-resolution, multi-proxy varved record in northern Spain. Sediments consist of biogenic varves composed of calcite, organic matter and detrital laminae and turbidite layers. Calcite layer thickness and internal sub-layering indicate changes in water temperature and seasonality whereas the frequency of detrital layers reflects rainfall variability. Higher temperatures occurred in Lake Montcortès in AD 555-738, 825-875, 1010-1322 and 1874-present. Lower temperatures and prolonged winter conditions were recorded in AD 1446-1598, 1663-1711 and 1759-1819. Extreme and multiple precipitation events dominated in AD 571-593, 848-922, 987-1086, 1168-1196, 1217-1249, 1444-1457, 1728-1741 and 1840-1875, indicating complex hydrological variability in NE Spain since AD 463. The sedimentary record of Lake Montcortès reveals a short-term relation between rainfall variability and the detrital influx, pronounced during extended periods of reduced anthropogenic influences. In pre-industrial times, during warm climate episodes, population and land use increased in the area. After the onset of the industrialization, the relationship between climate and human activities decoupled and population dynamics and landscape modifications were therefore mostly determined by socio-economic factors.

  7. Using Kettle Lake Records to Date and Interpret Holocene Ash Deposition in Upper Cook Inlet, Anchorage, AK

    NASA Astrophysics Data System (ADS)

    Werner, A.; Kathan, K. M.; Kaufman, D. S.; Hancock, J. R.; Waythomas, C. F.; Wallace, K. L.

    2004-12-01

    Fourteen sediment cores recovered from three kettle lakes (Goose, Little Campbell and Lorraine) near Anchorage, AK were used to document and date Holocene volcanic ash deposition in the upper Cook Inlet area. Small lakes (<0.5 km2) with small (<1.5 km2), low relief (<50 m), and well-vegetated drainage areas were selected in order to minimize ash remobilization by mass wasting and fluvial processes. The resulting stratigraphic records are interpreted as primary terpha-fall stratigraphies. Relative to the surrounding lacustrine sediments, the ash layers exhibit low organic-matter content (as determined by loss-on-ignition, LOI), high magnetic susceptibility (MS), increased density (X-radiographs), and bubble-wall glass shards. Some ash layers are up to 1 cm thick (macrotephra) consisting of pure glass, some occur as light bands, while others (microtephra) can only be located using non-visual techniques (MS, LOI and X-radiography). The thinnest microtephras observed occur either as discrete (1 mm) layers or diffuse laminations composed of tephra mixed with ambient lake sediment. Forty-five AMS C-14 dates on terrestrial macro fossils were used to constrain sedimentation-rate models for the cores, and to assign absolute ages to ash units. Comparison of inferred tephra ages corroborates our intra and inter basin stratigraphic correlations (+/- 200 yrs) based on physical and MS stratigraphy. Ten out of 12 macrotephras can be confidently correlated among all three lakes, whereas, two of the prominent tephras occur in one basin but not in the others. This suggests subtle differences in ash plume extents or differences in tephra preservation between lakes. A total of 24 Holocene ash units (12 macro and 12 micro) have been recognized and dated in the Anchorage area, suggesting an ash-fall frequency of about 2.4/1000 yrs. By comparison, historical records suggest more frequent ash-fall events (120/1000 yrs). Our data indicate that, either the ash layers are not consistently

  8. A list of Michigan Corixidae (Hemiptera) with four new state records from the Great Lakes of Michigan

    USGS Publications Warehouse

    Chordas, Stephen W.; Hudson, Patrick L.

    1999-01-01

    Corisella tarsalis, Sigara lineata, Trichocorixa borealis, and Trichocorixa kanza were recently identified from Michigan and constitute new state records. These four species were collected from two of the Great Lakes or their connecting rivers and increase the number of corixids for Michigan to 47 species. We newly report the genus Corisella for Michigan. Although most abundant in the western United States and Canada, scattered Corisella records in the Midwest (Wisconsin, Ohio and Ontario, Canada) indicated there was a good probability of its occurrence in Michigan. Finally, we provide an updated list of Michigan Corixidae.

  9. Findings of historical Icelandic (Askja AD 1875) tephras in varved lake records from Lake Tiefer See and Lake Czechowskie: a new potential for synchronizing the recent environmental history in NE Germany and N central Poland

    NASA Astrophysics Data System (ADS)

    Wulf, Sabine; Dräger, Nadine; Ott, Florian; Serb, Johanna; Brauer, Achim

    2014-05-01

    Identification of remnants of volcanic ashes (tephras) intercalated in lake sediments has become a crucial point for dating purposes and for synchronization of different sediment records. During the Late Glacial and the Holocene Northeastern Germany and Northern-central Poland were episodically impacted by ash clouds of larger eruptions from Icelandic volcanoes (e.g. Saksunarvatn, 10.2 cal ka BP, and Vedde Ash, 12.1 cal ka BP); the most recent ones in 2010 and 2011 occurred from rather low-scale eruptions from Eyjafjallajökull and Grimsvötn resulting in an interruption of air traffic and local deposition of fine grained ash. We have started an intense search for traces of these volcanic ashes (cryptotephras) and other historic Icelandic tephras in two annually laminated palaeoclimate records, Lake Tiefer See (NE Germany) and Lake Czechowskie (N central Poland), in order to verify the 14C supported varve chronologies of these sequences. Lake Czechowskie and Lake Tiefer See are both located within the terminal moraine of the Pomeranian ice advance of the last glaciation and encompass continuous sediment records since the Late Glacial. First results of tephrochronological investigations revealed a cryptotephra finding of the rhyolitic Askja AD 1875 ash in both sequences. The Phreatoplinian Askja AD 1875 eruption is considered as the largest Icelandic eruption in history, comparable with the 1991-Pinatubo eruption. Due to strong westerly winds the Askja AD 1875 Tephra was distributed towards the east as evidenced by documentary records and occurrences in numerous peat bogs in Norway and Sweden. A tentative finding was reported from Grambower Moor in N Germany suggesting a subsequent southward moving ash cloud over Sweden (van den Bogaard and Schmincke, 2002). With the ultra-distal cryptotephra findings in Lake Tiefer See and Lake Czechowskie, ca. 2060 km and 2300 km SE of the Icelandic source, respectively, we can confirm the southward ash dispersal and provide an

  10. Stratified tephra records from lake sediment archives: Holocene eruptions of the Virunga Volcanic Province, East African Rift

    NASA Astrophysics Data System (ADS)

    Lane, Christine; Scholz, Christopher; Poppe, Sam; Schmid, Martin; Ross, Kelly Ann

    2016-04-01

    Lake sediments preserve rare stratified records of explosive volcanism, often with accompanying chronological controls or climatostratigraphic detail. In proximal areas where outcrop stratigraphies are complex, exposures isolated and sediments frequently eroded, the lacustrine archive provides a means to check the order of events and identify additional eruptions not preserved on land. The visible volcanic ash (tephra) record within lake sediments may be limited by eruption volume, distance from source and high sedimentation rates. A more complete eruption history can be detected through the study of non-visible tephra layers. Such "cryptotephra" records may be revealed through non-destructive core-scanning methods, such as XRF-scanning or magnetic susceptibility measurements, or by more thorough laboratory processes and microscopic analysis. Compositional analysis of tephra glass shards using WDS-EPMA and LA-ICP-MS provide a means to provenance eruptions, to cross-correlate between multiple sediment cores, and to establish connections between the lacustrine record and proximal outcrops. Here we present the results of such a "tephrostratigraphic" approach applied to the Holocene volcanic record of the Virunga Volcanic Province (VVP). More than 10 explosive volcanic eruptions, attributed to multiple volcanic centres, are evidenced over the last 12,000 years. This unique insight into the frequency of explosive eruptions from the VVP, demonstrates the potential of visible and cryptotephra investigations in lacustrine sediment archives as a means of studying past, present and future volcanic hazards.

  11. A 900-year pollen-inferred temperature and effective moisture record from varved Lake Mina, west-central Minnesota, USA

    NASA Astrophysics Data System (ADS)

    St. Jacques, Jeannine-Marie; Cumming, Brian F.; Smol, John P.

    2008-04-01

    Drought is endemic to the North American Great Plains, causing severe economic consequences. However, instrumental climate data only exist from ca AD 1890, and limited tree-ring, paleolimnological, archeological and eolian records document the last two millennia. To address this lack of monitoring and paleoclimatic data, the pollen preserved in the varved sediments of Lake Mina, Minnesota, on the northeastern border of the Great Plains, were analyzed. May and February mean monthly temperatures and "annual precipitation minus potential evapotranspiration" were reconstructed at a 4-year resolution using a pre-settlement pollen-climate calibration set. The period of the so-called Little Ice Age (LIA) (AD 1500-1870) was colder than the Medieval Climate Anomaly (MCA) (AD 1100-1500) in west-central Minnesota. Winter temperatures in the LIA declined more than summer ones. The pollen record suggests that the LIA occurred in three phases: an initial cold phase from AD 1505 to AD 1575, a warmer phase, and then a very cold phase from AD 1625 to AD 1775. There were severe droughts detected in the Lake Mina record from AD 1660 to AD 1710 and AD 1300 to AD 1400, suggesting that high-resolution pollen records can detect events previously defined from the tree-ring records. This latter century-scale drought is concurrent with the widely reported "AD 1250-1400 mega-drought", which exceeds the severity of 20th century droughts.

  12. Fingerprinting of glacial silt in lake sediments yields continuous records of alpine glaciation (35–15 ka), western USA

    USGS Publications Warehouse

    Rosenbaum, Joseph G.; Reynolds, Richard L.; Colman, Steven M.

    2012-01-01

    Fingerprinting glacial silt in last glacial-age sediments from Upper Klamath Lake (UKL) and Bear Lake (BL) provides continuous radiocarbon-dated records of glaciation for the southeastern Cascade Range and northwestern Uinta Mountains, respectively. Comparing of these records to cosmogenic exposure ages from moraines suggests that variations in glacial flour largely reflect glacial extent. The two areas are at similar latitudes and yield similar records of glacial growth and recession, even though UKL lies less than 200 km from the ocean and BL is in the continental interior. As sea level began to fall prior to the global Last Glacial Maximum (LGM), existing glaciers in the UKL area expanded. Near the beginning of the global LGM (26.5 ka), the BL record indicates onset of glaciation and UKL-area glaciers underwent further expansion. Both records indicate that local glaciers reached their maximum extents near the end of the global LGM, remained near their maxima for ~1000 yr, and underwent two stages of retreat separated by a short period of expansion.

  13. Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa

    NASA Astrophysics Data System (ADS)

    Berke, Melissa A.; Johnson, Thomas C.; Werne, Josef P.; Grice, Kliti; Schouten, Stefan; Sinninghe Damsté, Jaap S.

    2012-11-01

    New molecular proxies of temperature and hydrology are helping to constrain tropical climate change and elucidate possible forcing mechanisms during the Holocene. Here, we examine a ˜14,000 year record of climate variability from Lake Victoria, East Africa, the world's second largest freshwater lake by surface area. We determined variations in local hydroclimate using compound specific δD of terrestrial leaf waxes, and compared these results to a new record of temperature utilizing the TEX86 paleotemperature proxy, based on aquatic Thaumarchaeotal membrane lipids. In order to assess the impact of changing climate on the terrestrial environment, we generated a record of compound specific δ13C from terrestrial leaf waxes, a proxy for ecosystem-level C3/C4 plant abundances, and compared the results to previously published pollen-inferred regional vegetation shifts. We observe a general coherence between temperature and rainfall, with a warm, wet interval peaking ˜10-9 ka and subsequent gradual cooling and drying over the remainder of the Holocene. These results, particularly those of rainfall, are in general agreement with other tropical African climate records, indicating a somewhat consistent view of climate over a wide region of tropical East Africa. The δ13C record from Lake Victoria leaf waxes does not appear to reflect changes in regional climate or vegetation. However, palynological analyses document an abrupt shift from a Poaceae (grasses)-dominated ecosystem during the cooler, arid late Pleistocene to a Moraceae-dominated (trees/shrubs) landscape during the warm, wet early Holocene. We theorize that these proxies are reflecting vegetation in different locations around Lake Victoria. Our results suggest a predominantly insolation-forced climate, with warm, wet conditions peaking at the maximum interhemispheric seasonal insolation contrast, likely intensifying monsoonal precipitation, while maximum aridity coincides with the rainy season insolation and the

  14. Modelling past and future sediment transfer in catchment-lake systems using integrated records of environmental change

    NASA Astrophysics Data System (ADS)

    Smith, Hugh; Sellami, Haykel; Sangster, Heather; Riley, Mark; Chiverrell, Richard; Boyle, John

    2016-04-01

    Agricultural change has caused significant environmental impacts with the onset of modern practices and intensification over the past century. In response, many current policy and management initiatives aim to reduce soil erosion and river pollution by fine sediment. However, there is a lack of detailed, longer-term baseline information extending beyond the instrumental record against which to measure the success or otherwise of such efforts. Furthermore, future reductions in the magnitude of impacts on soil erosion achievable under a changing climate remain unclear. Here, we provide an overview of an integrated approach for reconstructing impacts from past agricultural change based on social and environmental records coupled with multi-model simulations of catchment erosion and lake sediment dating. We aim to model soil erosion and sediment transfer responses to climatic variability and land use changes spanning the last ca. 100 years using variants of the RUSLE and Morgan-Morgan-Finney models. The study focuses on six lake catchments in Britain which cover a range of agricultural environments from intensively-farmed lowlands to upland catchments subject to lower-intensity livestock grazing. Land use reconstructions are based on historic aerial photography (1940s-2000s) and satellite-derived land cover maps (1990-2007) in combination with annual parish-level agricultural census data (1890s-1970s) and farmer interviews. Radionuclide dating of lake sediments coupled with pollen analysis provides independent data on decadal sedimentation rates and vegetation cover for comparison with model outputs and land use reconstructions. This combination of social and environmental records, soil erosion modelling and dating of lake sedimentary archives forms a powerful platform from which to project impacts from future agricultural scenarios under a changing climate.

  15. Age model for a continuous, ca 250-ka Quaternary lacustrine record from Bear Lake, Utah-Idaho

    USGS Publications Warehouse

    Colman, Steven M.; Kaufman, D.S.; Bright, Jordon; Heil, C.; King, J.W.; Dean, W.E.; Rosenbaum, J.G.; Forester, R.M.; Bischoff, J.L.; Perkins, Marie; McGeehin, J.P.

    2006-01-01

    The Quaternary sediments sampled by continuous 120-m-long drill cores from Bear Lake (Utah-Idaho) comprise one of the longest lacustrine sequences recovered from an extant lake. The cores serve as a good case study for the construction of an age model for sequences that extend beyond the range of radiocarbon dating. From a variety of potential age indicators, we selected a combination of radiocarbon ages, one magnetic excursion (correlated to a standard sequence), and a single Uranium-series age to develop an initial data set. The reliability of the excursion and U-series data require consideration of their position with respect to sediments of inferred interglacial character, but not direct correlation with other paleoclimate records. Data omitted from the age model include amino acid age estimates, which have a large amount of scatter, and tephrochronology correlations, which have relatively large uncertainties. Because the initial data set was restricted to the upper half of the BL00-1 core, we inferred additional ages by direct correlation to the independently dated paleoclimate record from Devils Hole. We developed an age model for the entire core using statistical methods that consider both the uncertainties of the original data and that of the curve-fitting process, with a combination of our initial data set and the climate correlations as control points. This age model represents our best estimate of the chronology of deposition in Bear Lake. Because the age model contains assumptions about the correlation of Bear Lake to other climate records, the model cannot be used to address some paleoclimate questions, such as phase relationships with other areas.

  16. Lake Biel sediment record during the last 7500 years and impact of the Aare river deviation in 1878 AD.

    NASA Astrophysics Data System (ADS)

    Jeannet, Alice; Corella, Juan Pablo; Reusch, Anna; Kremer, Katrina; Girardclos, Stéphanie

    2013-04-01

    Lake sediments are excellent archives of environmental and climate changes as well as human impact on lake- and river-systems. Lake Biel is a medium-sized peri-alpine lake (Switzerland) with a maximum depth of 74 m and lies at 429 m asl. Our study focuses on the south-west basin, where the lake sedimentation was naturally mainly controlled by autochthonous sedimentation, and is now, since the artificial Aare river deviation through the Hagneck canal in 1878 AD, under the strong influence of water and sediment input from its catchment. A 10.05-m-long composite sediment sequence, cored in 2011 at 52 m water depth, was built from two cores retrieved with an Uwitec system. The cored sedimentary sequence begins in 1975 and spans the last 7500 years, as dated by seven 14C analyses and 210Pb/137Cs activity profiles. Magnetic susceptibility and density were measured with a Geotek MSCL at 0.5 cm resolution, granulometry with a CILAS grain sizer every 10 cm and X-ray fluorescence measurements were carried out using an Avaatech core scanner at 1-cm resolution. Lake Biel sediment record is subdivided in four main units. The lowest Unit A (651-1005 cm; 7355 to 5075 BP), with dark greyish clayey silty laminated layers and sedimentation rates between 0.10 to 0.29 cm/yr, shows stable low values for almost all proxies, excepted for allochtonous elements which increase between 7000-6000 BP. By analogy with Unit C facies (see below), Unit A is interpreted as influenced by the Aare river which probably flew into the south-west basin at that time. Unit B1 (651-343 cm, 5075 to 2036 BP) has lower sedimentation rate (0.10 cm/yr), high Ca/Ti ratio, light sediment color, constant clayey silty grain size and varying elemental profiles which point to the dominant influence of autochtonous lake processes influenced by climate. From the beginning of Unit B2 (343-147 cm, 2036 to 1878 AD) sediment grain size increases which possibly reflects a human influence over the lake system. The greatest

  17. Possible Climatic Signal Recorded by Alkenone Distributions in Sediments from Freshwater and Saline Lakes on the Skarvsnes and Skallen Areas, Antarctica

    NASA Astrophysics Data System (ADS)

    Sawada, K.; Takeda, M.; Takano, Y.

    2014-12-01

    The distribution of long-chain (C37 - C39) alkenones in marine sediment has been well documented to record paleo-sea surface temperatures. The alkenones were also found in sediments of terrestrial saline lakes, and recently the calibrations of alkenone unsaturation indices - temperature have been established in continental areas. Furthermore, these biomarkers have been identified in lacustrine sediments on high-latitudinal terrestrial areas such as Greenland and Antarctica. In the present study, the alkenones were identified in the lacustrine sediment cores in freshwater (Lake Naga-ike) and saline lakes (Lake Suribati and Lake Funazoko) on the Skarvsnes, and a saline lake (Lake Skallen Oh-ike) on the Skallen, Antarctica. Here, we report that the alkenone distribution in the Antarctic lakes was examined as paleotemperature proxy. C37-C38 Tetra- and tri-unsaturated alkenones and C37 tetra- and tri-unsaturated alkenoates are identified in all sediment samples. The C37 di-unsaturated (C37:2) alkenones can be identified in sediments of surface layers (0-15 cm) of Lake Naga-ike and layers of 160-190 cm depth, in which age is ca. 3000 years BP by 14C dating, in Lake Skallen Ohike, and alkenone unsaturation index (UK37) is analyzed from these sediments. By using a calibration obtained from a culture strain Chrysotila lamellosa as reported by Nakamura et al. (2014), paleotemperatures are calculated to be 9.2-15ºC in surface sediments of Lake Naga-ike and 6.8-8.6ºC in Lake Skallen Oh-ike, respectively. The estimated temperatures are concordant with summer temperature of lake waters observed in Lake Naga-ike. Also, the highest concentrations of the alkenones and alkenoates are observed in deeper (older) sediment layers from Lake Naga-ikes, which has not been connected the ocean and intruded sea water. This implies that the alkenones are originated from indigenous biological organism(s) in Antarctic lake water. The class distributions (unsaturation ratios) of alkenones

  18. An 825-year long varve record from Lillooet Lake, British Columbia, and its potential as a flood proxy

    NASA Astrophysics Data System (ADS)

    Heideman, Marit; Menounos, Brian; Clague, John J.

    2015-10-01

    Lillooet River in southwest British Columbia has produced damaging floods many times during the past century. The floods are recorded in Lillooet Lake, into which the river flows, as anomalously thick clastic varves. In order to determine whether an 825-year long varve record obtained from 12 percussion and vibracores can be used as flood proxy, we compare river discharge records dating back to 1914 to the thickness of the varves deposited during the same time period. Correlations between varve thickness and a variety of historical discharge measures are low to moderate for the periods 1914-2004 (r2 = 0.37) and 1914-1945 (r2 = 0.40), but higher for the period 1946-2004 (r2 = 0.55). The best correlation (r2 = 0.55) is between maximum fall discharge and varve thickness during the most recent period (1946-2004). Varve thickness for the earlier period of hydrometric data (1914-1946), which is a time of rapid glacier retreat and warmer temperatures in British Columbia, is best explained with a discharge proxy combining nival runoff, glacier runoff, and maximum fall discharge. Landslides, glacier fluctuations, river dyking, artificial lowering of Lillooet Lake, as well as lag effects of storms are responsible for the considerable unexplained variance in the relation between discharge measures and varve thickness over the historic period. The cores contain many anomalously thick varves, some of which we attribute to previously dated prehistoric landslides in the watershed or to local landslides into the lake. We conclude that many historic and prehistoric floods are faithfully recorded as anomalously thick clastic varves, but that other processes operating in the watershed preclude using this record as a reliable paleo-flood proxy.

  19. Verlorenvlei - The first continuous Holocene high-resolution lake sediment record from the Winter Rainfall Zone of South Africa

    NASA Astrophysics Data System (ADS)

    Haberzettl, T.; Kasper, T.; Lederer, M.; Wündsch, M.; Frenzel, P.; Zabel, M.; Kirsten, K. L.; Meadows, M. E.; Quick, L. J.; St-Onge, G.; Maeusbacher, R.

    2015-12-01

    Verlorenvlei is a coastal lake in the Winter Rainfall Zone of the Western Cape Province of South Africa. Up to now several attempts have been made to recover sediment cores from this lake. However, no continuous high-resolution record covering large parts of the Holocene has been available so far. Within the project RAIN (Regional Archives for Integrated iNvestigations) it was possible to recover a 14.2 m paired parallel core from the central part of Verlorenvlei. Investigations on recent surface sediment distributions (elemental composition and grain sizes) indicate that this sediment core is very well suited for paleoenvironmental reconstructions. Using a set of 23 radiocarbon ages, a chronology for the past 9,000 cal BP was established which suggests continuous sedimentation over this period. Preliminary lithological and geochemical investigations show that this record can be used for sea level reconstructions as the lake was periodically inundated by the ocean during the past 9,000 cal BP. This is recorded in distinctly elevated Ca and Sr contents as well as the occurrence of marine indicator species (snail and mussel shells) in parts of the sediment core. Thin, pale grey layers of fine sediment occurring at various sediment depths seem to reflect event related deposits. In terms of lithology, geochemical and magnetic composition, the upper 50 cm clearly differ from the rest of the record and indicate increased sediment supply from the catchment, which is likely linked to anthropogenic farming activities. In conclusion, the newly recovered sediment record from Verlorenvlei offers excellent potential for a detailed, high-resolution reconstruction of sea level changes, climate variations and anthropogenic impact during the past 9,000 cal BP in an area in which natural archives are very scarce or poorly dated.

  20. Mixing it Up: A Record of Holocene Climate Change in Non-Annually Laminated Sediment of Seneca Lake, NY

    NASA Astrophysics Data System (ADS)

    Rogers, C. E.; Curtin, T. M.

    2005-12-01

    The mid to late Holocene climate record was examined in two cores that represent distal sedimentation in Seneca Lake, one of 11 Finger Lakes in western New York. Laminated sediments, ~5 m thick, were collected from the middle of the lake at 131-137 m water depths. These sites were selected because they preserve a continuous record of changes in the hydrologic balance and sedimentary processes. Variations in grain size and fabric at 50-100-cm intervals were observed and represent time periods of hundreds to thousands of years. The combination of magnetic susceptibility, loss-on-ignition, grain size analysis by laser diffraction, and grain fabric analysis using thin sections allow us to reconstruct the evolution of the lake since deglaciation and to compare and contrast paleoclimate indicator data. Variations in the type of sedimentary fabrics preserved are coincident with variations in geochemical and sedimentological indicators of environmental conditions that may have occurred in response to fluctuations in the hydrologic balance and circulation and/or overturn. Laterally continuous, thin, black laminae rich in organic matter and possibly minute grains of iron sulfides accumulated during the mid Holocene Hypsithermal (~9-7 ka). Presence of black laminae may signify a steady supply of organic matter and an absence of oxygen, at least below the sediment-water interface if not in the lower part of the water column. Coincident with finely laminated sediment are the coarsest mean grain sizes. Three 2-6 cm thick sand beds occur in one core, suggesting that an influx of water and sediment occurred during intense storms. A combination of warmer surface water and influx of freshwater from storms during the Hypsithermal may have influenced the turnover history of the lake by stabilizing the water column. Absence of overturn would result in depletion of nutrients in surface waters, a decrease in primary productivity, and a decrease in oxygen at the bottom of the lake as a

  1. Lake Sediment Records as an Indicator of Holocene Fluctuations of Quelccaya Ice Cap, Peru and Regional Climate

    NASA Astrophysics Data System (ADS)

    Stroup, J. S.; Kelly, M. A.; Lowell, T. V.; Beal, S. A.; Smith, C. A.; Baranes, H. E.

    2012-12-01

    The past fluctuations of Quelccaya Ice Cap, (QIC; 13°S, 70°W, 5200 m asl) located in the southeastern Peruvian Andes, provide a record of tropical climate since the last glacial-interglacial transition. A detailed surficial geomorphic record of past glacial extents developed over the last several decades (e.g. Mercer and Palacios 1977; Buffen et al. 2009; Kelly et al. 2012 accepted) demonstrates that QIC is a dynamic glacial system. These records show that the ice cap was larger than present and retreating by ~11,500 yr BP, and smaller than present between ~7,000 and ~4,600 yr BP. The most recent advance occurred during the late Holocene (Little Ice Age;LIA), dated with 10Be surface exposure ages (510±90 yrs (n = 8)) (Stroup et al. in prep.). This overrode earlier deposits obscuring a complete Holocene record; we aim to address the gaps in glacial chronology using the sedimentary record archived in lakes. We retrieved two sets cores (8 and 5 m-long) from Laguna Challpacocha (13.91°S, 70.86°W, 5040 m asl), a lake that currently receives meltwater from QIC. Four radiocarbon ages from the cores suggest a continuous record dating to at least ~10,500 cal. yr BP. Variations in magnetic susceptibility, percent organic and inorganic carbon, bulk density, grayscale and X-ray fluorescence chemistry indicate changes in the amount of clastic sediment deposition. We interpret clastic sediments to have been deposited from ice cap meltwater, thus indicating more extensive ice. Clastic sediments compose the top of the core from 4 to 30 cm depth, below there is a sharp transition to organic sediments radiocarbon dated to (500±30 and 550±20 cal. yr BP). The radiocarbon ages are similar to the 10Be dated (LIA) glacial position. At least three other clastic units exist in the core; dating to ~2600-4300, ~4800-7300 and older then ~10,500 cal. yr BP based on a linear age model with four radiocarbon dates. We obtained two, ~4 m long, cores from Laguna Yanacocha (13.95°S,70.87

  2. Variation in aeolian environments recorded by the particle size distribution of lacustrine sediments in Ebinur Lake, northwest China.

    PubMed

    Ma, Long; Wu, Jinglu; Abuduwaili, Jilili

    2016-01-01

    Particle size analysis of lacustrine core sediments and atmospheric natural dust were conducted in the drainage area of Ebinur Lake in arid northwest China. Using a combination of (137)Cs and (210)Pb dating, a continuous record of aeolian transportation to the lake sediments and related factors over about the past 150 years was analyzed. Factor analysis revealed the particle-size distributions of riverine and aeolian sediments composed of the terrigenous materials of the lake deposits. Compared with the grain-size distributions of natural dust samples, the results showed that the coarser particle size fraction of lake sediments was mainly derived from the sediments that had experienced aeolian transport to the drainage surface, and the finer sediments came from hydraulic inputs. Then, the method of variations in particle-size standard deviation was used to extract the grain size intervals with the highest variability along a sedimentary sequence. The coarser grain-size populations dominated the variation patterns of the sedimentary sequence. During the last 150 years, strong intensity aeolian transportation occurred during three periods, 1915-1935, 1965-1975 and since the beginning of the 2000s. The climate was dry around 1910s-1930s in this region associated with the appropriate dynamic condition, which provided the enhanced source materials and wind power for the aeolian dust transport. Since 1950s, the climate controlled the foundation of aeolian dust transport, and the aeolian dust transport won't be increased under the humid climate. PMID:27217996

  3. Variation in aeolian environments recorded by the particle size distribution of lacustrine sediments in Ebinur Lake, northwest China.

    PubMed

    Ma, Long; Wu, Jinglu; Abuduwaili, Jilili

    2016-01-01

    Particle size analysis of lacustrine core sediments and atmospheric natural dust were conducted in the drainage area of Ebinur Lake in arid northwest China. Using a combination of (137)Cs and (210)Pb dating, a continuous record of aeolian transportation to the lake sediments and related factors over about the past 150 years was analyzed. Factor analysis revealed the particle-size distributions of riverine and aeolian sediments composed of the terrigenous materials of the lake deposits. Compared with the grain-size distributions of natural dust samples, the results showed that the coarser particle size fraction of lake sediments was mainly derived from the sediments that had experienced aeolian transport to the drainage surface, and the finer sediments came from hydraulic inputs. Then, the method of variations in particle-size standard deviation was used to extract the grain size intervals with the highest variability along a sedimentary sequence. The coarser grain-size populations dominated the variation patterns of the sedimentary sequence. During the last 150 years, strong intensity aeolian transportation occurred during three periods, 1915-1935, 1965-1975 and since the beginning of the 2000s. The climate was dry around 1910s-1930s in this region associated with the appropriate dynamic condition, which provided the enhanced source materials and wind power for the aeolian dust transport. Since 1950s, the climate controlled the foundation of aeolian dust transport, and the aeolian dust transport won't be increased under the humid climate.

  4. High-resolution sedimentary record of the last deglaciation from a high-altitude lake in Ethiopia

    NASA Astrophysics Data System (ADS)

    Tiercelin, J.-J.; Gibert, E.; Umer, M.; Bonnefille, R.; Disnar, J.-R.; Lézine, A.-M.; Hureau-Mazaudier, D.; Travi, Y.; Keravis, D.; Lamb, H. F.

    2008-03-01

    Sedimentological and geochemical studies conducted on a 15.82-m long core collected from Lake Garba Guracha (Ethiopia) associated with a precise AMS- 14C time-scale document a unique record of the sedimentary processes linked to the progressive retreat of a high-altitude glacier in the Bale Mountains since 17,000 yr cal BP. Lake sedimentation is interpreted as the result of discharges of meltwater and glaciogenic sediment which progressively filled the accommodation space generated by glacier retreat within the basin. Monogenic sediment originated from glacial erosion of the trachytic tuff forming the cirque floor. Ice melting ended progressively between 12,600 and 11,800 cal BP, as suggested by the decrease in sedimentation energy followed by a sharp change in sedimentary facies. From 11,800 cal BP, the lake reached its maximum development and clastic input was replaced by organic-rich sedimentation. This relates to a major increase of lake productivity, which lasted up to 4500 cal BP. From this period, a lowering in productivity reflects the widespread dryness which occurred throughout the East African tropics.

  5. Anchistropus spp. (Crustacea: Cladocera: Chydoridae): a new distribution record for Lake Erie

    USGS Publications Warehouse

    Evans, Marlene S.; Hiltunen, Jarl K.; Schloesser, Donald W.

    1990-01-01

    This note extends the known Great Lakes distribution of Anchistropus sp. from Lake Michigan, Huron, Superior, and St. Clair to Rondeau Harbor in Lake Erie. Anchistropus sp. was collected in benthic samples where it occurred as epibionts on hydra. Previous studies, which are briefly reviewed, have noted the parasitic nature of Anchistropus. Although only one species of Anchistropus (A. minor) is known from North America, our specimens cannot be positively identified as that species: the structure of the postabdomen and first leg differs from the original taxonomic description of A. minor. Others have noted differences between the original description of A. minor and the morphology of specimens collected over the succeeding years.

  6. A model of the 4000-year paleohydrology (δ18O) record from Lake Salpetén, Guatemala

    NASA Astrophysics Data System (ADS)

    Rosenmeier, Michael F.; Brenner, Mark; Hodell, David A.; Martin, Jonathan B.; Curtis, Jason H.; Binford, Michael W.

    2016-03-01

    A simple mass-balance model provides insights into the influence of catchment vegetation changes and climate variability on the hydrologic and stable oxygen isotope (δ18O) evolution of Lake Salpetén, in the Maya Lowlands of northern Guatemala. Model simulations for the last 4000 years incorporate pollen-inferred changes in vegetation cover and account for 75% of the variance observed in the biogenic carbonate δ18O record from a long lake sediment core. Vegetation-driven hydrologic changes, however, failed to capture the full range of late Holocene sediment core δ18O variability. The model requires incorporation of additional shifts in catchment vegetation cover, inclusion of regional precipitation changes, or likely both, to explain the fluctuations observed in the lake core oxygen isotope record. Climatic interpretation of the model results suggests that there was relatively greater moisture availability between about 2400 and 1800 years ago, but increased δ18O values centered at ~ 3300, 2900, 500, and 200 calendar years before present (cal yr BP) indicate abrupt precipitation decreases. There is evidence for protracted aridity between 1500 and 800 cal yr BP.

  7. New records of late Holocene tephras from Lake Futalaufquen (42.8°S), northern Patagonia

    NASA Astrophysics Data System (ADS)

    Daga, Romina; Ribeiro Guevara, Sergio; Arribére, María

    2016-03-01

    In regions with limited knowledge of the historical volcanic record, like remote areas in the Andean Southern Volcanic Zone, the definition of reliable age-depth models for lake sequences represents a valuable tool for tephra layers dating. In Lake Futalaufquen (42.8°S), Northern Patagonia, a short sedimentary sequence was extracted after the AD 2008 Chaitén eruption with the purpose to analyze the records of volcanic eruptions at these poorly studied latitudes. The sequence was dated by 210Pb, 137Cs, and 14C techniques. Five tephras were identified for the last 1600 years, restricted to the last 5 centuries. Sedimentology, morphology, and geochemical properties allowed the characterization of the tephras and their correlation with tephras recently identified proximal to the sources, mainly from Chaitén and Huequi volcanoes, and Michinmahuida accessory cones, representing the first distal records reported of these tephras. Furthermore, tephras modeled ages obtained by the sequence age-depth model shrink the ages for the volcanic events, like a potential cycle of activity from Michinmauida accessory cones during AD 1530 ± 55, one eruption from Huequi volcano at AD 1695 ± 50, and a possible recent eruption from Chaitén at AD 1775 ± 40. Additionally, the work contributes to improve the regional volcanic records knowledge, basic for volcanic hazard assessment.

  8. Lake ice records used to detect historical and future climatic changes

    USGS Publications Warehouse

    Robertson, Dale M.; Ragotzkie, R.A.; Magnuson, John J.

    1992-01-01

    With the relationships between air temperature and freeze and break up dates, we can project how the ice cover of Lake Mendota should respond to future climatic changes. If warming occurs, the ice cover for Lake Mendota should decrease approximately 11 days per 1 °C increase. With a warming of 4 to 5 °C, years with no ice cover should occur in approximately 1 out of 15 to 30 years.

  9. Finely laminated 4000 yr sediment record from Lake Bolatau (Bukovina, Romania) - implications for palaeolimnology and erosion history

    NASA Astrophysics Data System (ADS)

    Németh, Alexandra; Kern, Zoltán; Mindrescu, Marcel; Grădinaru, Ionela; Bozsó, Gábor; Németh, Tibor; Bihari, Árpád; Fekete, József

    2014-05-01

    Geochemical and sedimentological analyses of lacustrine sediments are a valuable tool for understanding the dynamics of local and regional climate over various time scales. This study focuses on Lake Bolatau located at 1137 m a.s.l. in Obcina Feredeului, one of the flysch nappes at to the Northern Romanian Carpathians. The lake was first mentioned in a scientific study in 1964, whereby the landslide dam origin was initially suggested, but there remained no evidence whatsoever of the age of the lake, albeit the first recorded historical reference to Lake Bolatau was in 1806 (Mindrescu et al. 2013). From this currently eutrophic lake sediment two finely laminated lake sediment cores were extracted (winter 2013), of which one core was over 3 m long. Both cores were subsequently cut into 1 cm-long items of which we selected various batches of samples for specific analyses. Petrographic thin sections from the cores were examined under polarization microscope and BSE microscope. An age-depth model for the Bolatau sediment record was established based on 8 AMS radiocarbon dates from terrestrial macrofossils and the double peaks (i.e. mid-1960s: global fallout maximum; 1986: Chernobyl accident) of the 137Cs flux. The onset of the lacustrine sedimentation is estimated at ~4.6 ka cal BP. There was no abrupt change in the rate of sedimentation, after its onset however the geochemical and sedimentological properties of the sediments changed through time. While vivanite or pyrite doesn't precipitate today XRD results indicated that there were several time intervals when environmental conditions were favorable for that. We identified syn-sedimentary and authigenic form of pyrite based on Wilkin et al. (1996). The presence of syn-sedimentary pyrite means that oxic-anoxic interface was often in the water column. XRF results obtained from the upper 60 cm suggest that Fe actively migrated and precipitated in the organic matter rich layers due to the often anoxic environment. We

  10. Reconstructing Late Pleistocene air temperature variability based on branched GDGTs in the sedimentary record of Llangorse Lake (Wales)

    NASA Astrophysics Data System (ADS)

    Maas, David; Hoek, Wim; Peterse, Francien; Akkerman, Keechy; Macleod, Alison; Palmer, Adrian; Lowe, John

    2015-04-01

    This study aims to provide a temperature reconstruction of the Lateglacial sediments of Llangorse Lake. A new temperature proxy is used, based on the occurrence of different membrane lipids of soil bacteria (de Jonge et al., 2014). Application of this proxy on lacustrine environments is difficult because of in situ (water column) production and co-elution of isomers. Pollen analysis provides a palynological record that can be used for biostratigraphical correlation to other records. Llangorse Lake lies in a glacial basin just northeast of the Brecon Beacons in Powys, South Wales. The lake is located upstream in the Afon Llynfi valley, at the edge of the watershed of the River Wye. The lake consists of two semi-separated basins with a maximum water depth of 7.5 m, arranged in an L-shape with a surface area of roughly 1.5 km2. Previous studies have focused on the Holocene development of the lake and its surrounding environment (Jones et al., 1985). This study focuses on the deglacial record that appeared to be present in the basal part of the sequence. The lake was cored in the September, 2014 with a manual operated 3 m piston corer from a small coring platform. Overlapping cores were taken to form a continuous 12 m core, spanning the Holocene and the Lateglacial sediments. Six adjacent Lateglacial core segments from the southern basin of Llangorse lake were scanned for their major element composition using XRF scanning at 5 mm resolution to discern changes in sediment origin. Furthermore, loss on ignition (LOI) analysis was used to determine the changes in organic content of the sediments. Subsamples of the Lateglacial sedimentary record were analyzed for the occurrence of different bacterial membrane lipids (brGDGTs: branched glycerol dialkyl glycerol tetraethers) by means of HPLC-MS (high performance liquid chromatography and mass spectrometry) using two silica columns to achieve proper separation of isomers (de Jonge et al., 2013). Air temperatures are

  11. Initial geochemistry data of the Lake Ohrid (Macedonia, Albania) "DEEP" site sediment record: The ICDP SCOPSCO drilling project

    NASA Astrophysics Data System (ADS)

    Francke, Alexander; Wagner, Bernd; Krastel, Sebastian; Lindhorst, Katja; Mantke, Nicole; Klinghardt, Dorothea

    2014-05-01

    Lake Ohrid, located at the border of Macedonia and Albania is about 30 km long, 15 km wide and up to 290 m deep. Formed within a tectonic graben, Lake Ohrid is considered to be the oldest lake in Europe. The ICDP SCOPSCO (Scientific Collaboration of Past Speciation Conditions in Lake Ohrid) deep drilling campaign at Lake Ohrid in spring 2013 aimed (a) to obtain more precise information about the age and origin of the lake, (b) to unravel the seismotectonic history of the lake area including effects of major earthquakes and associated mass wasting events, (c) to obtain a continuous record containing information on volcanic activities and climate changes in the central northern Mediterranean region, and (d) to better understand the impact of major geological/environmental events on general evolutionary patterns and shaping an extraordinary degree of endemic biodiversity as a matter of global significance. Drilling was carried out by DOSECC (Salt Lake City, USA) using the DLDS (Deep Lake Drilling System) with a hydraulic piston corer for surface sediments and rotation drilling for harder, deeper sediments. Overall, about 2,100 m of sediment were recovered from 4 drill sites. At the "DEEP" site in the center of the lake, seismic data indicated a maximum sediment fill of ca. 700 m, of which the uppermost 568 m sediment were recovered. Initial data from core catcher samples and on-site susceptibility measurements indicate that the sediment sequence covers more than 1.2 million years and provides a continuous archive of environmental and climatological variability in the area. Currently, core opening, core description, XRF and MSCL -scanning, core correlation, and sub-sampling of the sediment cores from the "DEEP" site is conducted at the University of Cologne. High-resolution geochemical data obtained from XRF-scanning imply that the sediments from the "DEEP" site are highly sensitive to climate and environmental variations in the Balkan area over the last few glacial

  12. The effect of municipal wastewater effluent on nitrogen levels in Onondaga Lake, a 36-year record.

    PubMed

    Effler, Steven W; O'Donnel, Susan M; Prestigiacomo, Anthony R; O'Donnell, David M; Gelda, Rakesh K; Matthews, David A

    2010-01-01

    This work presents a retrospective analysis of long-term trends in loading of forms of nitrogen (N) from the Metropolitan Syracuse Wastewater Treatment Plant (Metro), N concentrations in the receiving urban lake (Onondaga Lake, New York), and related water quality status for the period from 1972 to 2007. The history of the evolution of treatment and discharge at Metro, as it affected N loading, is reviewed and forms the basis for identification of five regimes during which unifying conditions of loading and in-lake conditions prevailed. Changes in industrial waste inputs have complicated the effects of upgrades in treatment at Metro from primary (until 1978) to advanced (starting in 2004). Current N loading from Metro is approximately 35% lower than the peak levels observed in the late 1980s to late 1990s, but the areal rate to the lake remains extremely high (approximately 97 g/m(2).y), representing approximately 75% of the overall N load. Implementation of year-round nitrification treatment has resulted in transformation of the composition of the N load from Metro from ammonia (T-NH3) to nitrate (NO3(-)) dominance. High N concentrations have prevailed in the upper waters of the lake throughout the study period with averages of total N ranging from 2.6 to 4.3 mg/L for the five regimes. Total N levels and partitioning among the forms in the lake generally have tracked Metro loading conditions for the five regimes. The effects of Metro loading on seasonal in-lake patterns are demonstrated to be modified by both hydrologic inputs from tributaries and in-lake operation of biochemical processes. Resolution of these effects is supported by application of both empirical and dynamic mass balance models. Water quality problems related to high concentrations of forms of N are documented, including (1) augmentation of dissolved oxygen depletion during fall mixing from in-lake nitrification events, enabled by high T-NH3 levels; (2) violations of ammonia toxicity limits; and

  13. Molecular Radiocarbon Dating of Tropical Lake Sediments: Insights into the Chronology of Leaf Wax Stable Isotope Records

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Pagani, M.; Eglinton, T. I.; Brenner, M.; Curtis, J. H.; Hodell, D. A.

    2010-12-01

    Leaf wax δD and δ13C measurements in marine and lacustrine sediment cores are promising proxies for past climatic and environmental change. However, a number of studies of marine sediments indicate centennial to millennial scale offsets between the radiocarbon ages of leaf waxes and the age of surrounding sediments due to long-term storage of these lipids in soils. These offsets present a complication for the interpretation of leaf wax stable isotope records that has not been thoroughly addressed. We present leaf wax δD, δ13C and Δ14C values for a sediment core from Lake Chichancanab in southeastern Mexico. This lake was previously studied using mineralogical (gypsum) and carbonate isotopic (δ18O) climate proxies, which indicated a sequence of severe droughts from 750 to 1000 AD, coincident with the collapse of the Classic Maya civilization. A suite of leaf wax δD values was plotted against the original sediment core chronology, which was developed using radiocarbon dates on terrestrial macrofossils. The leaf wax results also indicated major hydrological variability over the past 3000 years, but were not temporally coherent with the other climate proxy records. Leaf wax radiocarbon ages are 400 to 1200 years older than terrestrial macrofossil radiocarbon ages from the same depths, suggesting that leaf waxes are retained in the watershed for extended periods prior to deposition in the lake. We fit a 2nd-order polynomial equation to the depth profile of leaf wax radiocarbon ages (r2 =0.99) and refit the leaf wax δD profile to this “leaf wax age model”. This approach yielded much greater coherence with mineralogical and carbonate isotopic proxy records, including evidence for a period of severe drought (35‰ D-enrichment) from 750 to 1000 A.D. Our results indicate that long-term storage of leaf waxes in drainage basin soils can lead to temporal inaccuracies in leaf wax stable isotope records. These inaccuracies, however, can be corrected using a

  14. A 4500-year ostracod record from Lake Shkodra (Albania): palaeoenvironmental and palaeoclimatic reconstruction using a multi proxy approach.

    NASA Astrophysics Data System (ADS)

    Mazzini, Ilaria; Gliozzi, Elsa; Koci, Rexhep; Zanchetta, Giovanni; Baneschi, Ilaria; Sadori, Laura; Giardini, Marco; Van Welden, Aurelien; Bushati, Salvatore

    2013-04-01

    During September 2003 several cores were retrieved from the Albanian side of Lake Shkodra. Among them, a 7,8 m long composite core (SK13) has been selected for multidisciplinary analysis: ostracods, characeae, pollen, CaCO3 content and stable isotopes. The chronological framework of SK13 was established through the recognition of four well-dated tephra layers and four 14C accelerator mass spectrometry measurements; the sedimentation rate has been calculated as an average of 0.2 cm a -1(Sulpizio et al 2010, Van Welden et al. 2008). Ostracods have been recovered from 337 samples of 2cm3 in volume, collected almost continuously along the cores. Each sample corresponds to ca. 10 years. Ostracods are abundant and well preserved in all samples, represented by adults and juveniles. On the whole, 13 species have been recovered with different frequencies. Among them, some are endemic of the lake (Candona montenigrina, and Limnocythere scutariense), others are known from other Balcanic lakes and are recorded for the first time in Shkodra (Paralimnocythere georgevitschi in Lake Ohrid, Candona paionica and Candona "angulata" meridionalis in Lake Dorjan). The remaining taxa (Darwinula stevensoni, Pseudocandona marchica, Cypria ophtalmica, Ilyocypris gibba, Cypridopsis vidua, and Metacypris cordata, Cyclocypris sp. and Zonocypris sp.) are widely distributed in central and southern Europe, but signalled for the first time in Albania. The faunal composition is quite homogeneous, with the percentages of the different species varying along the sediment core. The main change occurs at about 1200 cal a BP, where 8 ostracod species disappear and the frequency of the remaining 5 species dramatically increases. This major change reflects the CaCO3 trend with its major peak around 1200 cal a BP. On the contrary, the Characeae display an opposite behaviour, occurring continuously from the base of the core until about 1200 cal a BP, when they as well disappear. The δ18Oc record shows

  15. Methane turnover and environmental change from Holocene biomarker records in a thermokarst lake in Arctic Alaska

    USGS Publications Warehouse

    Elvert, Marcus; Pohlman, John; Becker, Kevin W.; Gaglioti, Benjamin V.; Hinrichs, Kai-Uwe; Wooller, Matthew J.

    2016-01-01

    Arctic lakes and wetlands contribute a substantial amount of methane to the contemporary atmosphere, yet profound knowledge gaps remain regarding the intensity and climatic control of past methane emissions from this source. In this study, we reconstruct methane turnover and environmental conditions, including estimates of mean annual and summer temperature, from a thermokarst lake (Lake Qalluuraq) on the Arctic Coastal Plain of northern Alaska for the Holocene by using source-specific lipid biomarkers preserved in a radiocarbon-dated sediment core. Our results document a more prominent role for methane in the carbon cycle when the lake basin was an emergent fen habitat between ~12,300 and ~10,000 cal yr BP, a time period closely coinciding with the Holocene Thermal Maximum (HTM) in North Alaska. Enhanced methane turnover was stimulated by relatively warm temperatures, increased moisture, nutrient supply, and primary productivity. After ~10,000 cal yr BP, a thermokarst lake with abundant submerged mosses evolved, and through the mid-Holocene temperatures were approximately 3°C cooler. Under these conditions, organic matter decomposition was attenuated, which facilitated the accumulation of submerged mosses within a shallower Lake Qalluuraq. Reduced methane assimilation into biomass during the mid-Holocene suggests that thermokarst lakes are carbon sinks during cold periods. In the late-Holocene from ~2700 cal yr BP to the most recent time, however, temperatures and carbon deposition rose and methane oxidation intensified, indicating that more rapid organic matter decomposition and enhanced methane production could amplify climate feedback via potential methane emissions in the future.

  16. Polychlorinated biphenyls in urban lake sediments from wuhan, central China: occurrence, composition, and sedimentary record.

    PubMed

    Yang, Zhifeng; Shen, Zhenyao; Gao, Fan; Tang, Zhenwu; Niu, Junfeng; He, Ya

    2009-01-01

    Nine surface sediments and a dated sediment core collected from urban lakes in Wuhan, Central China, were analyzed to investigate the concentrations, occurrence, composition, and depositional fluxes of polychlorinated biphenyls (PCBs). The concentrations of SigmaPCB (the sum of 39 congeners) in surface sediments ranged from 0.90 to 46.14 ng g(-1) dry weight. Only in Longyang Lake and Nantaizi Lake did concentrations of SigmaPCB exceed the effects range low value. The concentrations of SigmaPCB in the sediment core varied from 1.3 to 43.1 ng g(-1). The profile of SigmaPCB concentrations closely reflected the changes in production and usage of PCBs in this region, and the profiles of SigmaPCB fluxes were similar to those of SigmaPCB concentrations, except for a distinct decrease in SigmaPCB fluxes after about 1998. This was possibly due to more large-scale cases of land use and increasingly rapidly urban development occurring in China since 2000, resulting in increased lake sediment fluxes but reduced SigmaPCB fluxes. The results suggest that urban run-off and wet deposition leaching PCBs off the land and into the lake may be the most important source of PCBs in Donghu Lake. Sedimentary profiles for PCB congeners showed a decrease in concentrations in the following order: penta approximately hexa- > tetra- > tri- > hepta-PCBs. The relative abundances of tri- and tetra-PCBs in the core accounted for more than 80% of the total PCBs detected in sediments deposited before their first commercial use, suggesting the post-depositional mobilization of less chlorinated PCB congeners in the sediment core. This is the first study to estimate the spatial and historical trends of PCBs in subtropical urban lakes.

  17. Paleomagnetic record from Academician Ridge, Lake Baikal: a reversal excursion at the base of marine oxygen isotope stage 6

    NASA Astrophysics Data System (ADS)

    Oda, H.; Nakamura, K.; Ikehara, K.; Nakano, T.; Nishimura, M.; Khlystov, O.

    2002-08-01

    Paleomagnetic and rock-magnetic studies on a hydraulic piston core (Ver98-1, St.6) from Academician Ridge, Lake Baikal showed the occurrence of a reversal excursion at 670-696 cm depth, which is at the base of marine oxygen isotope stage 6. A correlation of X-ray CT values, as a proxy of relative density, to the marine oxygen isotope record provides an age of 177-183 ka for this reversal excursion. It can be correlated with other excursion records from Lake Baikal, found in Core 287-K2 from Academician Ridge [King et al., Russ. Geol. Geophys. 34 (1993) 148-162] and in core BDP93-1 drilled on the Buguldeika saddle [BDP-93, Quat. Int. 37 (1997) 3-17]. We correlate the Lake Baikal reversal excursion with a well documented excursion in the Brunhes Chron, the Iceland Basin event (186-189 ka) from ODP Sites 983 and 984 in the North Atlantic [Channell, J. Geophys. Res. 104 (1999) 22937-22951]. Also the relative paleointensity record agrees well with that from ODP Site 983 [Channell, J. Geophys. Res. 104 (1999) 22937-22951]. The Lake Baikal excursion and the Iceland Basin event correspond to the minimum of relative intensity at 188 ka in Sint-800 [Guyodo and Valet, Nature 399 (1999) 249-252]. We argue that it is distinct from the Jamaica/Pringle Falls excursion, estimated at 205-215 ka [Langereis et al., Geophys. J. Int. 129 (1997) 75-94]. This is supported by the recalibration of the age of another excursion found in Core St.16 in Lake Baikal [Sakai et al., Bull. Nagoya Univ. Furukawa Mus. 13 (1997) 11-22] with an age of ˜223 ka, which is close to the age of the Jamaica/Pringle Falls excursion, as suggested earlier [King et al., Russ. Geol. Geophys. 34 (1993) 148-162]. The VGP path of the reversal excursion (177-183 ka) consists of a southward swing through the North Atlantic, followed by a loop through Africa and the Indian Ocean. The path morphology is similar to that of the Iceland Basin event from the North Atlantic [Channell, J. Geophys. Res. 104 (1999) 22937-22951].

  18. Ecosystem responses during Late Glacial period recorded in the sediments of Lake Łukie (East Poland)

    NASA Astrophysics Data System (ADS)

    Zawiska, Izabela; Słowiński, Michał; Correa-Metrio, Alex; Obremska, Milena; Luoto, Tomi; Nevalainen, Liisa; Woszczyk, Michał; Milecka, Krystyna

    2014-05-01

    The main objectives of this study was to reconstruct climate impact on the functioning of Lake Łukie and its catchment (Łęczna Włodawa Lake District, East European Plain) during Late Glacial period. In order to reconstruct climatic fluctuations and corresponding ecosystem responses, we analysed lake sediments for pollen, subfossil Cladocera, plant macrofossils and chemical composition of the sediment. Of these, plant macrofossils and Cladocera were used to infer minimum and mean July temperatures and ordination analysis was used to examine biotic community shifts. Multiproxy analyses of late-glacial sediments of Lake Łukie clearly show that the main driver of aquatic and terrestrial ecosystems as well as geomorphological processes in the catchment was climate variation. The history of the lake initiated during the Older Dryas. In that period, Łęczna Włodawa Lake District was covered by open habitats dominated by grasses (Poaceae), humid sites were occupied by tundra plant communities with less clubmoss (Selaginella selaginoides), dry sites by dominated by steppe-like vegetation with light-demanding species such as Helianthemum, Artemisia, Chenopodiaceae, and juniper bushes (Juniperus). Cold climate limited the growth and development of organisms in the lake, Cladocera community species composition was poor, with only few species present there all the time. During this time period, permafrost was still present in the ground limiting infiltration of rainwater and causing high erosion in the catchment area. Surface runoff is confirmed by the presence of sclerotia of Cenococcum geophilum and high terrigenous silica content. The warming of the early Allerød caused a remarkable change in the natural environment of this area. This is in accordance with the temperature rise reconstructed with the use of plant macrofossils though the Cladocera reconstruction did not recorded the rise than. This temperature increase resulted in turnover of vegetation in the

  19. Lake sediments record prehistoric lead pollution related to early copper production in North America.

    PubMed

    Pompeani, David P; Abbott, Mark B; Steinman, Byron A; Bain, Daniel J

    2013-06-01

    The mining and use of copper by prehistoric people on Michigan's Keweenaw Peninsula is one of the oldest examples of metalworking. We analyzed the concentration of lead, titanium, magnesium, iron, and organic matter in sediment cores recovered from three lakes located near mine pits to investigate the timing, location, and magnitude of ancient copper mining pollution. Lead concentrations were normalized to lithogenic metals and organic matter to account for processes that can influence natural (or background) lead delivery. Nearly simultaneous lead enrichments occurred at Lake Manganese and Copper Falls Lake ∼8000 and 7000 years before present (yr BP), indicating that copper extraction occurred concurrently in at least two locations on the peninsula. The poor temporal coherence among the lead enrichments from ∼6300 to 5000 yr BP at each lake suggests that the focus of copper mining and annealing shifted through time. In sediment younger than ∼5000 yr BP, lead concentrations remain at background levels at all three lakes, excluding historic lead increases starting ∼150 yr BP. Our work demonstrates that lead emissions associated with both the historic and Old Copper Complex tradition are detectable and can be used to determine the temporal and geographic pattern of metal pollution. PMID:23621800

  20. An 11 000-year-long record of fire and vegetation history at Beaver Lake, Oregon, central Willamette Valley

    USGS Publications Warehouse

    Walsh, Megan K.; Pearl, Christopher A.; Whitlock, Cathy; Bartlein, Patrick J.; Worona, Marc A.

    2010-01-01

    High-resolution macroscopic charcoal and pollen analysis were used to reconstruct an 11??000-year-long record of fire and vegetation history from Beaver Lake, Oregon, the first complete Holocene paleoecological record from the floor of the Willamette Valley. In the early Holocene (ca 11??000-7500 calendar years before present [cal??yr??BP]), warmer, drier summers than at present led to the establishment of xeric woodland of Quercus, Corylus, and Pseudotsuga near the site. Disturbances (i.e., floods, fires) were common at this time and as a result Alnus rubra grew nearby. High fire frequency occurred in the early Holocene from ca 11??200-9300??cal??yr??BP. Riparian forest and wet prairie developed in the middle Holocene (ca 7500??cal??yr??BP), likely the result of a decrease in the frequency of flooding and a shift to effectively cooler, wetter conditions than before. The vegetation at Beaver Lake remained generally unchanged into the late Holocene (from 4000??cal??yr??BP to present), with the exception of land clearance associated with Euro-American settlement of the valley (ca 160??cal??yr BP). Middle-to-late Holocene increases in fire frequency, coupled with abrupt shifts in fire-episode magnitude and charcoal composition, likely indicate the influence anthropogenic burning near the site. The paleoecological record from Beaver Lake, and in particular the general increase in fire frequency over the last 8500??years, differs significantly from other low-elevation sites in the Pacific Northwest, which suggests that local controls (e.g., shifts in vegetation structure, intensification of human land-use), rather than regional climatic controls, more strongly influenced its environmental history. ?? 2010 Elsevier Ltd.

  1. A Holocene Lake Record from Laguna Del Maule (LdM) in the Chilean Andes: Climatic and Volcanic Controls on Lake Depositional Dynamics

    NASA Astrophysics Data System (ADS)

    Valero-Garces, B. L.; Frugone Alvarez, M.; Barreiro-Lostres, F.; Carrevedo, M. L.; Latorre Hidalgo, C.; Giralt, S.; Maldonado, A.; Bernárdez, P.; Prego, R.; Moreno-Caballud, A.

    2014-12-01

    Central Chile is a tectonically active, drought-prone region sensitive to latitudinal variations in large-scale cold fronts associated with fluctuations of the Pacific subtropical high. Holocene high-resolution records of climate and volcanic events could help inform more on the frequency of extensive droughts as well as volcanic and seismic hazards. LdM is a high altitude, volcanic lake located in the Transition Southern Volcanic Zone (~36°S, 2200 m.a.s.l). The LdM volcanic field is a very seismically and volcanically active zone in the Andes, with several caldera-forming eruptions over the last 1.5 Ma, and intense postglacial activity. In 2013, we recovered over 40 m of sediment cores at four sites of LdM and collected > 20 km of seismic lines. The cores were imaged, their physical and geochemical properties analysed with a Geotek MSCL and XRF scanner respectively, and sampled for TOC, TIC, TS, TN, BioSi, and bulk mineralogy. The chronology was constructed with a Bayesian age-depth model including 210Pb-137Cs, the Quizapú volcanic ash (1932 AD) and 17 AMS 14C dates. The 4.8 m long composite sequence spans the Late glacial and Holocene.Sediments are massive to banded, quartz and plagioclase-rich silts with variable diatom (BioSi, 15- 30 %) and organic matter content (TOC, 1-5 %). Four main units have been defined based on sedimentological and geochemical composition. The transition from Unit 4 to 3 is ascribed to the onset of the Holocene; Unit 2 spans the mid Holocene, and Unit 1 the last 4 ka. Higher (lower) TOC, Br/Ti and Fe/Mn ratios in units 1 and 3 (2 and 4) suggest higher (lower) organic productivity in the lake and dominant oxic (anoxic) conditions at the bottom of the lake. Up to 17 ash and lapilli layers mark volcanic events, mostly grouped in units 1 and 3. Periods of higher lake productivity (units 1 and 3) are synchronous to higher frequency of volcanic events. Some climate transitions (LIA, 4ka, 8ka and 11ka) are evident in the LdM sequence

  2. Aggregating Hydrometeorological Data from International Monitoring Networks Across Earth's Largest Lake System to Quantify Uncertainty in Historical Water Budget Records, Improve Regional Water Budget Projections, and Differentiate Drivers Behind a Recent Record-Setting Surge in Water Levels

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Bruxer, J.; Smith, J.; Hunter, T.; Fortin, V.; Clites, A. H.; Durnford, D.; Qian, S.; Seglenieks, F.

    2015-12-01

    Resolving and projecting the water budget of the North American Great Lakes basin (Earth's largest lake system) requires aggregation of data from a complex array of in situ monitoring and remote sensing products that cross an international border (leading to potential sources of bias and other inconsistencies), and are relatively sparse over the surfaces of the lakes themselves. Data scarcity over the surfaces of the lakes is a particularly significant problem because, unlike Earth's other large freshwater basins, the Great Lakes basin water budget is (on annual scales) comprised of relatively equal contributions from runoff, over-lake precipitation, and over-lake evaporation. Consequently, understanding drivers behind changes in regional water storage and water levels requires a data management framework that can reconcile uncertainties associated with data scarcity and bias, and propagate those uncertainties into regional water budget projections and historical records. Here, we assess the development of a historical hydrometeorological database for the entire Great Lakes basin with records dating back to the late 1800s, and describe improvements that are specifically intended to differentiate hydrological, climatological, and anthropogenic drivers behind recent extreme changes in Great Lakes water levels. Our assessment includes a detailed analysis of the extent to which extreme cold winters in central North America in 2013-2014 (caused by the anomalous meridional upper air flow - commonly referred to in the public media as the "polar vortex" phenomenon) altered the thermal and hydrologic regimes of the Great Lakes and led to a record setting surge in water levels between January 2014 and December 2015.

  3. Paleohydrologic record from lake brine on the southern High Plains, Texas

    USGS Publications Warehouse

    Sanford, W.E.; Wood, W.W.

    1995-01-01

    The timing of changes in the stage and salinity of Double Lakes of Lynn County, Texas, was estimated using dissolved-chloride profiles across an underlying shale layer. Lake conditions over the past 30 to 50 ka can be inferred from the chloride profiles by using the advective velocity of the pore water through the shale and an appropriate coefficient of molecular diffusion. The profiles suggest that net-evaporative conditions existed over the southern High Plains for the past 50 ka; a period of increasing salinity in the lake began at ~20 ka and reached current levels at ~5 ka. In addition, deflationary conditions were present for at least 4 ka, and likely began or were accelerated during the most recent altithermal period at ~5 ka. -from Authors

  4. Holocene evolution of the River Nile drainage system as revealed from the Lake Dendi sediment record, central Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Wagner, B.; Viehberg, F. A.; Wennrich, V.; Junginger, A.; Kolvenbach, A.; Rethemeyer, J.; Schaebitz, F.; Schmiedl, G. H.

    2015-12-01

    A 12 m long sediment sequence from Dendi Crater lakes, located on the central Ethiopian Plateau, was analysed with sedimentological and geochemical methods to reconstruct the regional environmental history. Bulk organic carbon samples from 23 horizons throughout the sequence were used for AMS radiocarbon dating and indicate that the sediment sequence spans the last ca. 12 cal kyr BP. Microscope analyses and sedimentological data reveal three tephra layers, of which the most prominent layer with a thickness of ~2 m was deposited at 10.2 cal kyr BP and probably originates from an eruption of the Wenchi crater 12 km to the west of the Dendi lakes. Sedimentological data of the pelagic deposits indicate shifts in erosion and rainfall throughout the record. A decrease in Ca and Sr at 11.6 cal kyr BP is related to the shift of less humid condition during the Younger Dryas (YD) to the return to full humid conditions of the African Humid Period (AHP). Single thin horizons with high carbonate content or high Ti and K imply that short spells of dry conditions and significantly increased rainfall superimpose the generally more humid conditions during the AHP. The end of the AHP is gradual. Relatively stable and less humid conditions characterised the Dendi Crater lakes until around 3.9 cal kyr BP. A highly variable increase in clastic matter over the last 1500 years indicates higher erosion due to short-term variations in precipitation within the Dendi catchment. Overall, the sediment record suggests moderate change of precipitation during the Holocene, which is probably due to their exposed location in the Ethiopian highlands. The data from the Dendi Crater lakes show, in concert with other records from the Nile catchment and the Eastern Mediterranean Sea (EMS), that the Blue Nile provided the main freshwater source for maintaining EMS stratification and sapropel S1 formation between ca. 10.0 and 8.7 cal kyr BP. Subsequent aridification is recorded from equatorial East Africa

  5. The bounding-surfaces record of a barrier spit from Huangqihai Lake, North China: implications for coastal barrier boundary hierarchy

    NASA Astrophysics Data System (ADS)

    Shan, Xin; Yu, Xinghe; Clift, Peter D.; Wang, Tianyi; Tan, Chengpeng; Jin, Lina

    2016-09-01

    Ground-penetrating radar and trenching studies of a barrier spit on the north shore of Huangqihai Lake were made, that reveal important implications for the coastal washover barrier boundary hierarchy and interpretations of this depositional record. A four-fold hierarchy bounding-surface model, representing different levels of impact and genesis, is defined. Each level of the hierarchy is enclosed by a distinct kind of surface characterized by different ground-penetrating radar reflection features, sedimentary characteristics (color, grain size, sorting, rounding and sedimentary structures) and origin. We suggest that this hierarchical model can be applied to any coastal washover barrier deposits.

  6. Ecosystem regimes and responses in a coupled ancient lake system from MIS 5b to present: the diatom record of lakes Ohrid and Prespa

    NASA Astrophysics Data System (ADS)

    Cvetkoska, Aleksandra; Jovanovska, Elena; Francke, Alexander; Tofilovska, Slavica; Vogel, Hendrik; Levkov, Zlatko; Donders, Timme H.; Wagner, Bernd; Wagner-Cremer, Friederike

    2016-05-01

    We reconstruct the aquatic ecosystem interactions since the last interglacial period in the oldest, most diverse, hydrologically connected European lake system, by using palaeolimnological diatom and selected geochemistry data from Lake Ohrid "DEEP site" core and equivalent data from Lake Prespa core, Co1215. Driven by climate forcing, the lakes experienced two adaptive cycles during the last 92 ka: "interglacial and interstadial" and "glacial" cycle. The short-term ecosystems reorganizations, e.g. regime shifts within these cycles substantially differ between the lakes, as evident from the inferred amplitudes of variation. The deeper Lake Ohrid shifted between ultra oligo- and oligotrophic regimes in contrast to the much shallower Lake Prespa, which shifted from a deeper, (oligo-) mesotrophic to a shallower, eutrophic lake and vice versa. Due to the high level of ecosystem stability (e.g. trophic state, lake level), Lake Ohrid appears relatively resistant to external forcing, such as climate and environmental change. Recovering in a relatively short time from major climate change, Lake Prespa is a resilient ecosystem. At the DEEP site, the decoupling between the lakes' response to climate change is marked in the prolonged and gradual changes during the MIS 5/4 and 2/1 transitions. These response differences and the lakes' different physical and chemical properties may limit the influence of Lake Prespa on Lake Ohrid. Regime shifts of Lake Ohrid due to potential hydrological change in Lake Prespa are not evident in the data presented here. Moreover, a complete collapse of the ecosystems functionality and loss of their diatom communities did not happen in either lake for the period presented in the study.

  7. Paleoearthquakes in the puget sound region recorded in sediments from lake washington, u.s.a.

    PubMed

    Karlin, R E; Abella, S E

    1992-12-01

    Holocene sediments in Lake Washington contain a series of turbidites that were episodically deposited throughout the lake. The magnetic signatures of these terrigenous layers are temporally and areally correlatable. Large earthquakes appear to have triggered slumping on the steep basin walls and landslides in the drainage area, resulting in turbidite deposition. One prominent turbidite appears to have been deposited about 1100 years ago as the result of a large earthquake. Downcore susceptibility patterns suggest that near-simultaneous slumping occurred in at least three separate locations, two of which now contain submerged forests. Several other large earthquakes may have occurred in the last 3000 years. PMID:17742527

  8. Past seismic activity in Eastern Anatolia recorded over several glacial/interglacial cycles in the sediments of Lake Van

    NASA Astrophysics Data System (ADS)

    Stockhecke, M.; Anselmetti, F.; Sturm, M.

    2012-12-01

    Lake sediments document besides paleoenvironmental and paleoclimate conditions also paleoseismic activity through various forms of deformation structures. These are especially visible in finely-laminated sediments. Being situated in a tectonically active region, the partly annually-laminated sedimentary sequence of the terminal Lake Van, recovered in 2010 under the context of the ICDP Paleovan project, shows dozens of earthquake-triggered microdeformations that document past seismic events of the last half a million years. Lithological and multiproxy analysis revealed that the Lake Van's depositional conditions varied in correspondence to Milankovitch and sub-Milankovitch cycles. Glacial/stadial and interglacial/interstadial conditions were recorded continuously over the last half a million years excluding two discontinuities, which indicate major hydrological and geomorphological changes in Lake Van's early history. Two sites were drilled 10 km apart: A primary drill site, situated on a ridge, covers the entire lake history since its initial transgression in the middle Pleistocene; A secondary drill site, located in a more shallow northern basin, covers the past 90'000 years. Multiple coring at both drill sites allows to establish two almost complete 220 m and 145 m long composite sections, respectively. Observing deformation structures in multiple parallel cores at each site is used as a criteria to distinguish 'true' paleoseismic deformation structures from potential drilling artifacts. Deformation structures consist of i) silt-filled vertical fractures, ii) microfaults with displacements at cm-scale, iii) microfolds, iv) liquefaction structures (mushroom, pseudonodules), iv) disturbed varve laminations and v) mixed layers. While the ridge site records the paleoseismic events as microdeformations, the northern basinal site rather records seismic events through the deposition of seismo-turbidites. In some cases, individual earthquake events can even be identified

  9. Controlling factors on a paleo-lake oxygen isotope record (Yammoûneh, Lebanon) since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Develle, Anne-Lise; Herreros, Julien; Vidal, Laurence; Sursock, Alexandre; Gasse, Françoise

    2010-04-01

    Late Quaternary paleoclimatic changes in the Levant are difficult to extract from carbonate oxygen isotope records partly because the factors controlling the terrestrial δ 18O signals are not fully understood in this region characterized by sharp climatic gradients. Here, we address this purpose by presenting the first 14C-dated isotope record from the northern Levant. The record is based on oxygen isotopes from ostracod shells from lacustrine-palustrine deposits accumulated in a small karstic, hydrologically open basin (Yammoûneh), located on the eastern flank of Mount Lebanon. We have first constructed a composite isotopic record obtained from three different ostracod taxa. This yields an oxygen isotope record of ostracods (δ ost) related to the most widespread species ( Ilyocypris inermis), and converted to δ 18O values coeval with calcite precipitated in equilibrium (δ C) with the lake water (δ L). As with other records from the Mediterranean region, the Yammoûneh profile shows maximum and minimum δ C values during the LGM and the early Holocene, respectively, and a slight late Holocene increase. In order to discuss the potential causes of the observed δ 18O values fluctuations (e.g., changes in the isotopic composition of the moisture source, temperature, precipitation minus evaporation (P-E) balance, or atmospheric circulation), we tentatively reconstruct the lake water isotope composition by correcting the δ C values for lake water temperature using regional paleotemperature estimates. Inferred δ L values were then corrected for the isotopic composition of the Eastern Mediterranean sea surface water (the moisture source) derived from planktonic foraminifera δ 18O values corrected for alkenone-based sea surface temperature. Our study suggests that Holocene δ L fluctuations are primarily linked to changes in the sea surface water composition (source effect) amplified by enhanced inland rainfall during the early Holocene. During the LGM, low δ L

  10. Assessment of quantitative Holocene temperature reconstructions based on multiple proxies from the sediment record of Lake Loitsana, Sokli, NE Finland

    NASA Astrophysics Data System (ADS)

    Shala, S.; Helmens, K. F.; Luoto, T. P.; Salonen, J. S.; Väliranta, M.; Weckström, J.

    2014-12-01

    Four biotic proxies (pollen, plant macrofossils chironomids and diatoms) are employed to quantitatively reconstruct variations in mean July air temperatures (Tjul) at Lake Loitsana, NE Finland, during the Holocene. The aim: assessing the reliability of these temperature reconstructions and the timing of highest Tjul. The reconstructed Tjul values are evaluated in relation to local-scale/site-specific processes associated to the Holocene lake development at Loitsana, as these factors have been shown to significantly influence the fossil assemblages found in the Lake Loitsana sediments. Our study shows that the reconstructions are influenced, at least to some extent, by local factors, and highlights the benefit of using multi-proxy data in Holocene climate reconstructions. While pollen-based temperatures follow the classical trend of gradually increasing early Holocene Tjul with a mid-Holocene maximum July warming, the aquatic/wetland assemblages reconstruct higher than present Tjul already during the early Holocene, i.e. at the peak of summer insolation. We conclude that the relatively low early Holocene July temperatures recorded by the terrestrial pollen are the result of site-specific factors possibly combined with a delayed response of the terrestrial ecosystem compared to the aquatic ecosystem.

  11. Quantifying Sediment Delivery History in Mediterranean Mountain Watersheds from Lake Records (Iberian Range, Spain)

    NASA Astrophysics Data System (ADS)

    Valero-Garcés, Blas; Barreiro-Lostres, Fernando; Moreno, Ana; González-Sampériz, Penélope; Giralt, Santiago; Nadal-Romero, Estela

    2016-04-01

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains with long history of human occupation and strong seasonality of hydrological regimes. Monitoring studies in experimental catchments in the Pyrenees have identified main controlling factors on erosion dynamics but, because of the short time span, they do not integrate the diverse temporal and spatial variability of these environments. We propose a novel strategy based on multi-proxy analyses of lake sediments aimed to quantify sediment delivery and erosion dynamics. Karstic lakes in the Iberian Range (Spain) provide the opportunity to reconstruct the depositional evolution of Mediterranean mountain watersheds and to evaluate the response to both, anthropogenic and climate forcings during the last millennia. Precipitation (rainfall intensity, seasonality, runoff production) and land cover (forest area, degraded areas, land uses) are key factors controlling erosion in both experimental and lake catchments. Values for Minimum Denuded Mass (Mdc) and Total Denudation Rate (DRt) measured in experimental catchments and reconstructed from lake sequences are comparable. In both settings, most sediment yield occurs during flooding events. The reconstructed sediment delivery to the lakes during flood events spans several orders or magnitude (less than 100 T to 98000 T) and the denudation rate ranges from 6 to 480 T km-2 yr-1. Reconstructed mass denudation values per event in the forested lake catchments are similar (less than 30 T km-2 yr-1) to sediment yields from a high altitude experimental watershed. Flood sediment yield values from an abandoned farmland experimental catchment (69 T km2) are in the lower range of lake watersheds (from 60 to 480 T km-2 yr-1). No lake watershed has reached the values documented for the badland catchment (3094 T km-2). These results underline the punctuated nature of sediment dynamics in Mediterranean landscapes at decadal and centennial scales. Major

  12. Stable isotopes and sediments from Pickerel Lake, South Dakota, USA: A 12ky record of environmental changes

    USGS Publications Warehouse

    Schwalb, A.; Dean, W.E.

    1998-01-01

    Sedimentological parameters and stable O- and C-isotopic composition of marl and ostracode calcite selected from a 17.7-m-long core from the 8-m-deep center of Pickerel Lake, northeastern South Dakota, provide one of the longest (ca. 12ky) paleoenvironmental records from the northern Great Plains. The late Glacial to early Holocene climate in the northern Great Plains was characterized by changes from cold and wet to cold and dry, and back to cold and wet conditions. These climatic changes were controlled by fluctuations in the positions of the Laurentide ice sheet and the extent of glacial Lake Agassiz. We speculate that the cold and dry phase may correspond to the Younger Dryas event. A salinity maximum was reached between 10.3 and 9.5 ka, after which Pickerel Lake shifted from a system controlled by atmospheric changes to a system controlled by groundwater seepage that might have been initiated by the final withdrawal of Glacial Lake Agassiz. A prairie lake was established at approximately 8.7 ka, and lasted until about 2.2 ka. During this mid-Holocene prairie period, drier conditions than today prevailed, interrupted by periods of increased moisture at about 8, 4, and 2.2 ka. Prairie conditions were more likely dry and cool rather than dry and warm. The last 2.2 ka are characterized by higher climatic variability with 400-yr aridity cycles including the Medieval Warm Period and the Little Ice Age. Although the signal of changing atmospheric circulation is overprinted by fluctuations in the positions of the ice sheet and glacial Lake Agassiz during the late Glacial-Holocene transition, a combination of strong zonal circulation and strong monsoons induced by the presence of the ice sheet and high insolation may have provided mechanisms for increased precipitation. Zonal flow introducing dry Pacific air became more important during the prairie period but seems to have been interrupted by short periods of stronger meridional circulation with intrusions of moist air

  13. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change.

    PubMed

    Stolarski, Jarosław; Bosellini, Francesca R; Wallace, Carden C; Gothmann, Anne M; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-01-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry. PMID:27302371

  14. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change

    NASA Astrophysics Data System (ADS)

    Stolarski, Jarosław; Bosellini, Francesca R.; Wallace, Carden C.; Gothmann, Anne M.; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D.; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-06-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry.

  15. A reconstruction of temperature, ice volume and atmospheric CO2 over the past 40 million years

    NASA Astrophysics Data System (ADS)

    Vutukuri, H. R.

    2012-02-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing method. Colloids are typically defined as objects having at least one dimension in the size range of a few nanometers to several micrometers that form a dispersed phase when suspended in a continuum phase. As a result of Brownian motion, the colloidal particles are able to explore configurational space, and eventually reach the equilibrium configuration that minimizes the free energy. An important feature of the colloidal particles is the possibility of controlling the size, shape, and composition. The assembly of colloidal particles has long been a rich and continuously growing area of materials science, with great potential for a broad range of applications including electronics, optics, and biotechnology. Within this field, the bulk of the research has been devoted to studying the assembly of isotropic spherical particles. Recently, there has been growing interest in the design of more complex structures to see how such a change in microstructure could influence certain material properties, especially optical properties, but also to answer the demand for more realistic model systems for molecular analogues. In this thesis, we used external electric fields to impart anisotropy into systems consisting of both isotropic and an-isotropic particles. If there is a mismatch in permittivity between the particles and the suspending medium, the colloids acquire an induced dipole moment. A major advantage of this approach is that the interactions are tunable and fully reversible. Moreover, a large number of parameters can be used to control and tune particle interactions and subsequent self-assembly in AC electric fields, including field strength and frequency, particle shape, particle and solvent dielectric properties. Interestingly, the relatively simple anisotropic dipolar interaction already gives rise to several new phases in a uniaxial field. We developed methods to produce model systems that are essentially colloidal analogues of polymer chains in all three stiffness regimes that can be observed on a single particle level, even in concentrated systems without using molecular tracers. Moreover, we obtained control over the length, and the flexibility of the bead chains. We exploited our simple thermal sintering method further for bonding polymeric colloidal particles after they have been assembled into various three-dimensional structures. Next, we discussed the generality of our method by implementing this method to close and non-close packed structures. We used our thermal annealing method to synthesize more complex shape particles such as rhombic dodecahedron particles and also we discuss the stability of the particles. We controlled the lateral position of the strings of particles with micrometer-scale precision by a combination of structured wall and electric dipoles. We investigated the self-assembly of gold nano-sheets as a function of salt in electric fields. Finally, we studied the effect of external electric fields on the phase behavior of sharp-edged colloidal cubes using optical microscopy and Monte Carlo simulations.

  16. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change

    PubMed Central

    Stolarski, Jarosław; Bosellini, Francesca R.; Wallace, Carden C.; Gothmann, Anne M.; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D.; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-01-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry. PMID:27302371

  17. Changing of dominant atmospheric circulation since LGM recorded by a lake core in the central Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Wang, J.; Lu, X.; Daut, G.; Kasper, T.; Haberzettl, T.; Schwalb, A.; Maeusbacher, R.

    2013-12-01

    The mechanism of climate changes and some abrupt events on the Tibetan Plateau since LGM exists many uncertainties. Further understanding is possibly provided by a continue lake core records in the Nam Co (4718 asl, 2015 km2) on the central Tibetan Plateau. The 11m long core collected in 90m deep water area has a well age-depth distribution according to 32 14C dating data. 24-19 kaBP, higher Pediastrum suggested a shallow water condition. 19-16.5kaBP, decreased Pediastrum and Cyperaceae suggested water depth increasing and wetland reducing. Pinus, Picea and Abies were over than 30% during 24-16.5 kaBP, implying a different climate condition than it at present. 16.5-14.2 kaBP, humidity was enhanced according to Cyperaceae, Gramineae, Artemisia and Chenopodiacen. Pinus, Picea and Abies were less than 10%, suggesting climate shifted in lake area. 14.2-13.2 kaBP, Fe/Mn, Ca and Sr/Ba indicated water depth increase while total pollen concentration (TPC) and TOC (endogenesis source) reflected temperature rising. 13.2-11.5 kaBP, cold-dry climate was reflected by lake volume changing based upon Fe/Mn, Ca, Sr/Ba and Pediastrum, and the decreasing of TOC and TCP. 11.5-8.5 kaBP, a good water and heat condition was indicated by pollen assemblages and geochemistry, and the best period was within 10.2-9.3 kaBP. 8.5-5.8 kaBP, the best water-heat condition gradually weakened according to decreased TCP but stable TOC. After 5.8 kaBP, climate tended to be dry. In general, there were not only existed several climatic change events in the Nam Co lake area, but also occurred climatic type shifting since LGM.

  18. [Over One Hundred Year Sediment Record of Polycyclic Aromatic Hydrocarbons in the Lake Bosten, Xinjiang].

    PubMed

    Shen, Bei-bei; Wu, Jing-lu; Zhao, Zhong-hua; Zeng, Hai-ao; Jin, Miao

    2016-02-15

    The vertical distributions of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated from a sediment core in the Lake Bosten, Xinjiang. Meanwhile, the possible source and risk assessment of PAHs in Lake Bosten were also discussed. The total PAHs concentration in the sediment core ranged from 37.5 ng x g(-1) to 184.5 ng x g(-1), and Naphthalene and Phenanthrene were the dominant compounds throughout the core. Over the one hundred year, the vertical profile of PAHs underwent significant changes around 1950s. The vertical distributions of PAHs had little change and low molecular weight PAHs were dominant PAHs before 1950s. Since then, the high molecular weight PAHs appeared and increased with fluctuations. A sharp increase in PAHs level and individuals was observed especially after 1990s and a maximum was found in the surface sediment. The results suggested PAHs in Lake Bosten were from the local sources, which were dominated by the low temperature combustion. Besides, the abundance of PAHs from high temperature combustion processes, such as combustion of industrial coal and vehicle emission, increased significantly in recent years. However, based on the results of risk assessment, the PAHs may not induce adverse biological effects on the aquatic ecosystem in Lake Bosten.

  19. Glacial lake deltas in New England record continuous, not delayed, postglacial rebound

    NASA Astrophysics Data System (ADS)

    Hooke, Roger LeBaron; Ridge, John Charles

    2016-05-01

    Deltas formed in Lake Hitchcock, a glacial lake that developed in the Connecticut River Valley, New England, between ˜18.3 and 12.5 ka. The heights of topset/foreset contacts of these deltas presently increase northward, linearly, at rate of ˜0.9 m/km. Others have interpreted this as indicating that isostatic rebound did not begin until after the lake drained, several kiloyears after glacial retreat began. However, (non-elastic) adjustment of Earth's lithosphere to changing loads is known to occur on time scales of years. Late-glacial shoreline features elsewhere in New England also increase in elevation with distance from the LGM margin at ˜0.9 m/km, suggesting that this is a result of fundamental properties of the crust and mantle, and independent of the history of glacier retreat. On the basis of a numerical model of flexure of the lithosphere beneath a circular load, we suggest that deflection of the lithosphere is remarkably linear in a zone 50-200 km wide between the retreating ice margin and a forebulge, and that initial rebound of this zone is spatially quite uniform for some kiloyears before differential rebound starts. Thus, lake shorelines, formed over a period of some centuries during deglaciation would, today, rise linearly northward.

  20. Sedimentary geochemical record of human-induced environmental changes in the Lake Brunnsviken watershed, Sweden

    SciTech Connect

    Routh, J.; Meyers, P. A.; Gustafsson, O.; Baskaran, M.; Hallberg, R.; Schoeldstroem, A.

    2004-07-01

    Environmental changes in Lake Brunnsviken, its watershed, and the greater Stockholm region since the middle of the nineteenth century have left interpretable geochemical imprints in the bottom sediments. These human-induced perturbations within the lake's watershed included agriculture, urbanization, sewage and industrial disposal, and water column aeration. Smaller {delta}{sup 15}N{sub total} values, high organic carbon mass accumulation rates, low C:N ratios, and larger {delta}{sup 13}C{sub org} values identify periods of increased nutrient delivery and elevated primary productivity in the lake. C:S ratios that change from high to low trace the transition from an oxic hypolimnion to an anoxic one during the periods of high productivity. Accumulations of redox-sensitive trace elements increase during the anoxic period and are further magnified during a time of industrial waste discharge into the lake. A recent decrease in black carbon concentrations in sediments reflects the conversion from wood and coal to cleaner forms of energy.

  1. The Oligocene Creede Formation, Colorado: The sedimentary record of a deep lake within a resurgent caldera

    SciTech Connect

    Larsen, D.; Smith, G.A. . Dept. of Earth and Planetary Sciences)

    1993-04-01

    The Oligocene Creede Formation is the sedimentary fill of the Creede caldera in the Tertiary San Juan volcanic field in southern Colorado. Scientific drill core and outcrop studies of Creede strata allow an evaluation of the post-collapse sedimentary environments present within a caldera. Although the Creede Formation is structurally disrupted, correlation of fallout tuffs in exposed strata to those in the cores has clarified stratigraphic relationships. Following ash-fallout from the caldera-forming eruption, up to 121 meters of coarse grained debris-flow strata and rockfall debris with interstratified basinward ephemeral lake deposits were deposited. The presence of pseudomorphs after ikaite and up-section increase in carbonate facies suggest that the lake water was somewhat alkaline and cold (near freezing), and evolved chemically with time. A late-stage drop in lake level combined with integration of basin-feeding drainages and decreased subsidence lead to basinward progradation of coarser deltaic and lacustrine fan deposits. Sedimentation patterns suggest that subsidence occurred largely in the northern half of the caldera, and decreased late in the lake's history allowing the basin to fill with sediment.

  2. Glacial lake deltas in New England record continuous, not delayed, postglacial rebound

    NASA Astrophysics Data System (ADS)

    Hooke, Roger LeBaron; Ridge, John Charles

    2016-05-01

    Deltas formed in Lake Hitchcock, a glacial lake that developed in the Connecticut River Valley, New England, between ∼18.3 and 12.5 ka. The heights of topset/foreset contacts of these deltas presently increase northward, linearly, at rate of ∼0.9 m/km. Others have interpreted this as indicating that isostatic rebound did not begin until after the lake drained, several kiloyears after glacial retreat began. However, (non-elastic) adjustment of Earth's lithosphere to changing loads is known to occur on time scales of years. Late-glacial shoreline features elsewhere in New England also increase in elevation with distance from the LGM margin at ∼0.9 m/km, suggesting that this is a result of fundamental properties of the crust and mantle, and independent of the history of glacier retreat. On the basis of a numerical model of flexure of the lithosphere beneath a circular load, we suggest that deflection of the lithosphere is remarkably linear in a zone 50-200 km wide between the retreating ice margin and a forebulge, and that initial rebound of this zone is spatially quite uniform for some kiloyears before differential rebound starts. Thus, lake shorelines, formed over a period of some centuries during deglaciation would, today, rise linearly northward.

  3. First record of Neoergasilus japonicus (Poecilostomatoida: Ergasilidae), a parasitic copepod new to the Laurentian Great Lakes

    USGS Publications Warehouse

    Hudson, Patrick L.; Bowen, Charles A.

    2002-01-01

    The parasitic copepod Neoergasilus japonicus, native to eastern Asia, was first collected from 4 species of fish (fathead minnow, Pimephales promelas; largemouth bass, Micropterus salmoides; pumpkinseed sunfish, Lepomis gibbosus; and yellow perch, Perca flavescens) in July 1994 in Saginaw Bay, Lake Huron, Michigan. Further sampling in the bay in 2001 revealed infections on 7 additional species (bluegill, Lepomis macrochirus; carp, Cyprinus carpio; channel catfish, Ictalurus punctatus; goldfish, Carassius auratus; green sunfish, Lepomis cyanellus; rock bass, Ambloplites rupestris; and smallmouth bass, Micropterus dolomieu). An additional 21 species examined in 2001 were devoid of the parasite. A limited collection of fish from Lake Superior (n = 8) and Lake Michigan (n = 46) in 1994 showed no infection. Neoergasilus japonicus is most frequently found attached to the dorsal fin and, in decreasing frequency, on the anal, tail, pelvic, and pectoral fins. Prevalence generally ranged from 15 to 70 and intensity from 1 to 10. The greatest number of copepods on a single host was 44. The copepod Neoergasilus japonicus appears to disperse over long distances rather quickly, spreading across Europe in 20 yr and then moving on to North America over a span of 10 yr. Its main vehicle of transport and introduction into the Great Lakes is probably exotic fish hosts associated with the fish-culture industry.

  4. New Records and Range Extensions for Several Chironomid Genera from Lake Superior

    EPA Science Inventory

    Five genera of chironomids have been reported for the first time in Lake Superior. Chironomids are small flying insects with a sediment-dwelling aquatic larval stage. The chironomids were collected by scientists at the Mid-Continent Ecology Division as part of a research program ...

  5. [Over One Hundred Year Sediment Record of Polycyclic Aromatic Hydrocarbons in the Lake Bosten, Xinjiang].

    PubMed

    Shen, Bei-bei; Wu, Jing-lu; Zhao, Zhong-hua; Zeng, Hai-ao; Jin, Miao

    2016-02-15

    The vertical distributions of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated from a sediment core in the Lake Bosten, Xinjiang. Meanwhile, the possible source and risk assessment of PAHs in Lake Bosten were also discussed. The total PAHs concentration in the sediment core ranged from 37.5 ng x g(-1) to 184.5 ng x g(-1), and Naphthalene and Phenanthrene were the dominant compounds throughout the core. Over the one hundred year, the vertical profile of PAHs underwent significant changes around 1950s. The vertical distributions of PAHs had little change and low molecular weight PAHs were dominant PAHs before 1950s. Since then, the high molecular weight PAHs appeared and increased with fluctuations. A sharp increase in PAHs level and individuals was observed especially after 1990s and a maximum was found in the surface sediment. The results suggested PAHs in Lake Bosten were from the local sources, which were dominated by the low temperature combustion. Besides, the abundance of PAHs from high temperature combustion processes, such as combustion of industrial coal and vehicle emission, increased significantly in recent years. However, based on the results of risk assessment, the PAHs may not induce adverse biological effects on the aquatic ecosystem in Lake Bosten. PMID:27363137

  6. Stable carbon and oxygen isotope record of central Lake Erie sediments

    USGS Publications Warehouse

    Tevesz, M.J.S.; Spongberg, A.L.; Fuller, J.A.

    1998-01-01

    Stable carbon and oxygen isotope data from mollusc aragonite extracted from sediment cores provide new information on the origin and history of sedimentation in the southwestern area of the central basin of Lake Erie. Sediments infilling the Sandusky subbasin consist of three lithologic units overlying glacial deposits. The lowest of these is a soft gray mud overlain by a shell hash layer containing Sphaerium striatinum fragments. A fluid mud unit caps the shell hash layer and extends upwards to the sediment-water interface. New stable isotope data suggest that the soft gray mud unit is of postglacial, rather than proglacial, origin. These data also suggest that the shell hash layer was derived from erosional winnowing of the underlying soft gray mud layer. This winnowing event may have occurred as a result of the Nipissing flood. The Pelee-Lorain moraine, which forms the eastern boundary of the Sandusky subbasin, is an elevated area of till capped by a sand deposit that originated as a beach. The presence of both the shell hash layer and relict beach deposit strengthens the interpretation that the Nipissing flood was a critical event in the development of the southwestern area of the central basin of Lake Erie. This event, which returned drainage from the upper lakes to the Lake Erie basin, was a dominant influence on regional stratigraphy, bathymetry, and depositional setting.

  7. Paleohydrologic record of spring deposits in and around Pleistocene pluvial Lake Tecopa, southeastern California

    USGS Publications Warehouse

    Nelson, Stephen T.; Karlsson, Haraldur R.; Paces, James B.; Tingey, David G.; Ward, Stephen; Peters, Mark T.

    2001-01-01

    Tufa (spring) deposits in the Tecopa basin, California, reflect the response of arid groundwater regimes to wet climate episodes. Two types of tufa are represented, informally defined as (1) an easily disaggregated, fine-grained mixture of calcite and quartz (friable tufa) in the southwest Tecopa Valley, and (2) hard, vuggy micrite, laminated carbonate, and carbonate-cemented sands and gravels (indurated tufa) along the eastern margin of Lake Tecopa. High δ18OVSMOW (Vienna standard mean ocean water) water values, field relations, and the texture of friable tufa suggest rapid nucleation of calcite as subaqueous, fault- controlled groundwater discharge mixed with high-pH, hypersaline lake water. Variations between δ18OVSMOW and δ13CPDB (Peedee belemnite) values relative to other closed basin lakes such as the Great Salt Lake and Lake Lahontan suggest similarities in climatic and hydrologic settings. Indurated tufa, also fault controlled, formed mounds and associated feeder systems as well as stratabound carbonate-cemented ledges. Both deposits represent discharge of deeply circulated, high total dissolved solids, and high pCO2 regional groundwater with kinetic enrichments of as much as several per mil for δ18OVSMOW values. Field relations show that indurated tufa represents episodic discharge, and U-series ages imply that discharge was correlated with cold, wet climate episodes. In response to both the breaching of the Tecopa basin and a modern arid climate, most discharge has changed from fault-controlled locations near basin margins to topographic lows of the Amargosa River drainage at elevations 30–130 m lower. Because of episodic climate change, spring flows may have relocated from basin margin to basin center multiple times.

  8. Human-climate interactions in the central Mediterranean region during the last millennia: The laminated record of Lake Butrint (Albania)

    NASA Astrophysics Data System (ADS)

    Morellón, Mario; Anselmetti, Flavio S.; Ariztegui, Daniel; Brushulli, Brunhilda; Sinopoli, Gaia; Wagner, Bernd; Sadori, Laura; Gilli, Adrian; Pambuku, Arben

    2016-03-01

    Lake Butrint (39°47 N, 20°1 E) is a ca. 21 m deep, coastal lagoon located in SW Albania where finely-laminated sediments have been continuously deposited during the last millennia. The multi-proxy analysis (sedimentology, high-resolution elemental geochemistry and pollen) of a 12 m long sediment core, supported by seven AMS radiocarbon dates and 137Cs dating, enable a precise reconstruction of the environmental change that occurred in the central Mediterranean region during the last ∼4.5 cal kyrs BP. Sediments consist of triplets of authigenic carbonates, organic matter and clayey laminae. Fluctuations in the thickness and/or presence of these different types of seasonal laminae indicate variations in water salinity, organic productivity and runoff in the lake's catchment, as a result of the complex interplay of tectonics, anthropogenic forcing and climate variability. The progradation of the Pavllo river delta, favoured by variable human activity from the nearby ancient city of Butrint, led to the progressive isolation of this hydrological system from the Ionian Sea. The system evolved from an open bay to a restricted lagoon, which is consistent with archaeological data. An abrupt increase in mass-wasting activity between 1515 and 1450 BC, likely caused by nearby seismic activity, led to the accumulation of 24 homogenites, up to 17 cm thick. They have been deposited during the onset of finely laminated sedimentation, which indicates restricted, anoxic bottom water conditions and higher salinity. Periods of maximum water salinity, biological productivity, and carbonate precipitation coincide with warmer intervals, such as the early Roman Warm Period (RWP) (500 BC-0 AD), the Medieval Climate Anomaly (MCA) (800-1400 AD) and recent times (after 1800 AD). Conversely, lower salinity and more oxic conditions, with higher clastic input were recorded during 1400-500 BC, the Late Roman and the Early Medieval periods (0-800 AD) and during the Little Ice Age (1400-1800 AD

  9. High-resolution record of cyclic climatic change during the past 4 ka from Lake Turkana, Kenya

    SciTech Connect

    Halfman, J.D.; Johnson, T.C.

    1988-06-01

    Profiles of carbonate content and lamination thickness in an 11.3 m core from Lake Turkana are interpreted as a record of climatic change for the past 4 ka. On a time scale of millennia, the data agree with other paleohydrologic records from sub-Saharan east Africa. Time-series analysis of both data sets reveal periods of about 270, 200, 165, and 100 yr. The thickness data suggest additional periods of about 78, 44, 31, 25, and possibly 20 yr. The sediments consist of laminated light and dark couplets, which are interpreted as a response to an average 4-yr variability in the hydrology of the Ethiopian Plateau. The authors suggest that this may be a feedback from the El Nino-Southern Oscillation.

  10. Climatic oscillations in central Italy during the Last Glacial-Holocene transition: the record from Lake Accesa

    NASA Astrophysics Data System (ADS)

    Magny, Michel; de Beaulieu, Jacques-Louis; Drescher-Schneider, Ruth; Vannière, Boris; Walter-Simonnet, Anne-Véronique; Millet, Laurent; Bossuet, Gilles; Peyron, Odile

    2006-05-01

    This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake-level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial-early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north-central Italy). On the basis of an age-depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas-Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700-11 650 cal. yr BP. Four sub-millennial scale cooling phases were recognised from pollen data at ca. 14 300-14 200, 13 900-13 700, 13 400-13 100 and 11 350-11 150 cal.yrBP. The last three may be Mediterranean equivalents to the Older Dryas (GI-1d), Intra-Allerød (GI-1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice-core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra-Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake-level record shows that the sub-millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2ka cold reversal. Copyright

  11. Climatic-change implications from long-term (1823-1994) ice records for the Laurentian Great Lakes

    USGS Publications Warehouse

    Assel, R.A.; Robertson, D.M.; Hoff, M.H.; Selgeby, J.H.

    1995-01-01

    Long-term ice records (1823-1994) from six sites in different parts of the Laurentian Great Lakes region were used to show the type and general timing of climatic changes throughout the region. The general timing of both freeze-up and ice loss varies and is driven by local air temperatures, adjacent water bodies and mixing, and site morphometry. Grand Traverse Bay and Buffalo Harbor represent deeper-water environments affected by mixing of off-shore waters; Chequamegon Bay, Memnominee, Lake Mendota, and Toronto Harbor represent relatively shallow-water, protected environments. Freeze-up dates gradually become later and ice-loss dates gradually earlier from the start of records to the 1890s in both environments, marking the end of the 'Little Ice Age.' After this, freeze-up dates remained relatively constant suggesting little change in early-winter air temperatures during the 20th century. Ice-loss dates at Grand Traverse Bay and Buffalo Harbor (but not at the other sites) became earlier during the 1940s and 1970s and became later during the 1960s. The global warming of the 1980s was marked by a trend toward earlier ice-loss dates in both environments.

  12. A detailed 2,000-year late holocene pollen record from lower Pahranagat Lake, Southern Nevada, USA

    SciTech Connect

    Hemphill, M.L.; Wigand, P.E.

    1995-09-01

    Preliminary analysis of 128 pollen samples and seven radiocarbon dates from a 5-meter long, 10-cm diameter sediment core retrieved from Lower Pahranagat Lake (elevation - 975 in), Lincoln County, Nevada, gives us a rare, continuous, record of vegetation change at an interval of every 14 years over the last 2,000 years. During this period increasing Pinus (pine) pollen values with respect to Juniperus Ouniper pollen values reflect the increasing dominance of pinyon in southern Nevada woodlands during the last 2,000 years. Today Pinus pollen values indicate that pinyon pine is more frequent in the southern Great Basin since the end of the Neoglacial 2,000 years ago. During the same time frame, a general decrease in Poaceae (grass) pollen values with respect to Artemisia (sagebrush) pollen values reflect the general trend of increasing dominance of steppe and desert scrub species with respect to grasses. Variations in these two species reflect not only the generally more xeric nature of climate during the last 2,000 years, but also periods of summer shifted rainfall - 1,500 years ago that encouraged both a period of grass and pinyon expansion. The ratio of aquatic to littoral pollen types indicates generally deeper water conditions 2 to 1 ka and more variable, but predominately more marshy, conditions at the site during most of the last 1 ka. Investigation of ostracodes from the same record being conducted by Dr. R. Forester at the USGS corroborate the pollen record by evidencing shifts between open and closed hydrologic systems including lake, marsh and even stream habitats. Analysis of an additional 10 meters of core recovered in the summer of 1994 with a basal date of 5.6 ka promises to provide the best record of middle through late Holocene vegetation and climate history for southern Nevada.

  13. Diatom-inferred Holocene record of moisture variability in Lower Bear Lake, San Bernardino Mountains, California, USA

    NASA Astrophysics Data System (ADS)

    Starratt, S.; Kirby, M. E.

    2014-12-01

    Although Holocene diatom records from southern California lakes have been difficult to obtain, diatoms have been found in Lower Bear Lake (LBL) sediments, providing a 9200-year hydroclimatological record for the San Bernardino Mountains. Based on several physical and chemical properties as well as gastropod and ostracod assemblages. Kirby et al. (2012, QSR,46:57-65) inferred nine decadal to multi-centennial pluvial episodes (five major (PE-V to PE-I), four minor (PE-IIIa-c, PE-IIa) in sediment core BBLVC05-1 (34o15'20" N, 116o55'20" W; 4.5 m long). Here, we consider the implications of this new diatom data. The diatom record shows a gradual increase in salinity during the Holocene, corroborating the inference of decreasing lake size made by Kirby et al. (2012). The longest pluvial (PE-V; 9170?-8250 cal yr BP), is dominated by small fragilaroid taxa, indicating fresh, slightly alkaline waters. An increase in halophilic taxa at ~8700 cal yr BP suggests a several-decades-long drier interval within the pluvial. PE-IV (7000-6400 cal yr BP) is dominated by benthic taxa, including relatively high numbers of epiphytic taxa, indicating an increase in aquatic macrophytes. The abundance of Aulacoseira in PE-IV and PE-III (3350-3000 cal yr BP) suggests increased turbulence due to increased storminess. PE-III and PE-II (850-700 cal yr BP) contain greater abundances of benthic (epiphytic) and halophilic species, although the latter never dominate the assemblage. PE-I (500-476 cal yr BP) was not sampled. Aerophilic taxa comprise up to 3% of the assemblage during pluvial events suggesting increased erosion during those periods and the presence of symbiotic species throughout the record indicates nitrogen-depleted waters. The diatom data generally support the occurrence of multiple pluvials over the Holocene with the most sustained occurring in the early Holocene. Furthermore, the diatom data suggest LBL likely diminished in size through the Holocene becoming more saline in the

  14. A quantitative ~1ky lake level record of Lake Prespa (SW Balkans) derived from beach ridge sediments: implications for hydro-climatic changes from the Medieval Climate Anomaly to the present

    NASA Astrophysics Data System (ADS)

    van der Schriek, Tim; Giannakopoulos, Christos

    2016-04-01

    We present the first quantitative lake stage record of Prespa that covers the past millennium, based on the singular isthmus beach ridge complex, allowing numerical reconstruction of precipitation-driven inflow changes during the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Mediterranean precipitation change, based on lake-proxy reconstructions, shows a distinct W-E pattern over the past millennium. Generally, the West experienced drier conditions during the MCA and wetter conditions during the LIA; the East experienced opposite conditions. This pattern is linked to the multi-decadal North Atlantic Oscillation (NAO) Winter Index: positive phases are associated with drier (wetter) and negative phases with wetter (drier) conditions in the W (E) Mediterranean. The SW Balkans is located at the juncture of proposed boundary between these contrasting climate and hydrological domains. It is not clear which, if any, of these patterns reflects past precipitation changes in the region, given the lack of detailed palaeo-hydrological data. The beach ridge complex that underlies the entire isthmus separating Lakes Mikri- and Megali Prespa offers a unique opportunity to address this question. High, oblique, sediment-supply allows the formation and preservation of beach ridges that register the annual water level fluctuations of Lake Megali Prespa which are driven by wet season precipitation and contain a strong NAO-signal. Modern beach-ridge sediment facies were calibrated against observed lake levels, thus allowing the reliable determination of past lake levels from the geological record. Lake surface area variation was found to be a more reliable indicator of hydro-climate change than water level fluctuations as the latter are strongly influenced by lake bathymetry. Accordingly, surface areas were calculated for different water levels to enable the conversion of lake level stage-indicators to quantitative inflow estimates. The isthmus profile reveals a "high

  15. Late Holocene Indian summer monsoon variations recorded at Lake Erhai, Southwestern China

    NASA Astrophysics Data System (ADS)

    Xu, Hai; Zhou, Xinying; Lan, Jianghu; Liu, Bin; Sheng, Enguo; Yu, Keke; Cheng, Peng; Wu, Feng; Hong, Bin; Yeager, Kevin M.; Xu, Sheng

    2015-03-01

    In this study we report changes in Indian summer monsoon (ISM) intensity during the past ~ 3500 yr inferred from proxy indices at Lake Erhai, southwestern China. Both the pollen concentrations and other proxy indices, including sediment grain size, total organic carbon contents (TOC), and elemental contents (e.g., Fe, Al), clearly indicate a long term decreasing trend in ISM intensity over the late Holocene. During the period from approximately AD 750 to AD 1200, pollen concentrations of conifer and broadleaf trees, and herbs reached the lowest levels over the past ~ 3500 yr; while the pollen percentages of both herbs and broadleaf trees increased, suggesting a significant medieval drought. The grain size, TOC, and elemental contents also support an arid climate during the medieval period. The Little Ice Age (LIA) at Lake Erhai was characterized as cold and wet. The medieval and LIA climatic patterns at Lake Erhai were similar to those over most of the ISM areas, but anti-phase with those over East Asian summer monsoon (EASM) areas. We suspect that sea surface temperature variations in the Indo-Pacific oceans and the related land-sea thermal contrasts may be responsible for such hydroclimatic differences between EASM and ISM areas.

  16. A 150-year record of phytoplankton community succession controlled by hydroclimatic variability in a tropical lake

    NASA Astrophysics Data System (ADS)

    Afrifa Yamoah, Kweku; Callac, Nolwenn; Fru, Ernest Chi; Wohlfarth, Barbara; Wiech, Alan; Chabangborn, Akkaneewut; Smittenberg, Rienk H.

    2016-07-01

    Climate and human-induced environmental change promote biological regime shifts between alternate stable states, with implications for ecosystem resilience, function, and services. While these effects have been shown for present-day ecosystems, the long-term response of microbial communities has not been investigated in detail. This study assessed the decadal variations in phytoplankton communities in a ca. 150 year long sedimentary archive of Lake Nong Thale Prong (NTP), southern Thailand using a combination of bulk geochemical analysis, quantitative polymerase chain reaction (qPCR) and lipid biomarkers techniques including compound-specific hydrogen isotope analysis as a proxy for precipitation. Relatively drier and by inference warmer conditions from ca. 1857 to 1916 Common Era (CE) coincided with a dominance of the green algae Botryococcus braunii, indicating lower nutrient levels in the oxic lake surface waters, possibly related to lake water stratification. A change to higher silica (Si) input around 1916 CE was linked to increased rainfall and concurs with an abrupt takeover by diatom blooms lasting for 50 years. These were increasingly outcompeted by cyanobacteria from the 1970s onwards, most likely because of increased levels of anthropogenic phosphate and a reduction in rainfall. Our results showcase that the multi-proxy approach applied here provides an efficient way to track centennial-scale limnological, geochemical and microbial change, as influenced by hydroclimatic and anthropogenic forcing.

  17. A Late Glacial to Holocene record of environmental change from Lake Dojran (Macedonia, Greece)

    NASA Astrophysics Data System (ADS)

    Francke, A.; Wagner, B.; Leng, M. J.; Rethemeyer, J.

    2013-02-01

    A Late Glacial to Holocene sediment sequence (Co1260, 717 cm) from Lake Dojran, located at the boarder of the F.Y.R. of Macedonia and Greece, has been investigated to provide information on climate variability in the Balkan region. A robust age-model was established from 13 radiocarbon ages, and indicates that the base of the sequence was deposited at ca. 12 500 cal yr BP, when the lake-level was low. Variations in sedimentological (H2O, TOC, CaCO3, TS, TOC/TN, TOC/TS, grain-size, XRF, δ18Ocarb, δ13Ccarb, δ13Corg) data were linked to hydro-acoustic data and indicate that warmer and more humid climate conditions characterised the remaining period of the Younger Dryas until the beginning of the Holocene. The Holocene exhibits significant environmental variations, including the 8.2 and 4.2 ka cooling events, the Medieval Warm Period and the Little Ice Age. Human induced erosion processes in the catchment of Lake Dojran intensified after 2800 cal yr BP.

  18. Carbon and oxygen isotopic records from Lake Tuosu over the last 120 years in the Qaidam Basin, Northwestern China: The implications for paleoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Li, Xiangzhong; Zhou, Xin; Liu, Weiguo; Wang, Zheng; He, Yuxin; Xu, Liming

    2016-06-01

    Isotopic compositions of total organic carbon (TOC) and authigenic carbonate in lakes have been widely used to reconstruct paleoclimatic changes and the depositional environments of lake sediments. However, since these proxies are often controlled by multiple environmental factors, detailed examinations of modern environmental processes is necessary before further applying them into paleoclimatic studies, especially in arid/semi-arid northwestern China. Here we generate High-resolution multi-proxy sedimentary records from Lake Tuosu, a hydrologically closed, saline and alkaline lake located at the north margin of the Qaidam Basin, through analysis of carbon isotope of TOC, and δ18O and δ13C values of ostracods over the last 120 years. Together with the meteorological data (precipitation and temperature), lake area record, and other tree-ring evidence, we examine how these sedimentary indices respond to changes in hydrologic balance and climate at interannual to decadal timescales. We found that sedimentary δ13Corg values resemble the variation of lake areas of Lake Tuosu over the last 40 years, suggesting that δ13Corg values would be an ideal indicator of lake area/level fluctuations and thus effective moisture variations (precipitation vs. evaporation). However, ostracod δ18O, which was previously used as proxies of effective precipitation, is not well correlated with δ13Corg values in Lake Tuosu. Therefore, the changes of ostracod δ18O values cannot be straightforwardly explained as the effective precipitation. Instead, the isotopic composition of carbonate would be additionally controlled by other factors including isotopic compositions of input water and drainage pattern.

  19. Biogeochemical variability during the past 3.6 million years recorded by FTIR spectroscopy in the sediment record of Lake El'gygytgyn, Far East Russian Arctic

    NASA Astrophysics Data System (ADS)

    Meyer-Jacob, C.; Vogel, H.; Gebhardt, A. C.; Wennrich, V.; Melles, M.; Rosén, P.

    2014-01-01

    A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9-56.5%), total organic carbon (TOC; n = 309; gradient: 0-2.9%), and total inorganic carbon (TIC; n= 152; gradient: 0-0.4%) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El'gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2CV = 0.86-0.91 and low root mean square error of cross-validation (RMSECV) (3.1-7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El'gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6-3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was ~3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial-interglacial cycles during the Quaternary.

  20. Mid-late Holocene climate and vegetation in northeastern part of the Altai Mountains recorded in Lake Teletskoye

    NASA Astrophysics Data System (ADS)

    Rudaya, Natalia; Nazarova, Larisa; Novenko, Elena; Babich, Valery; Kalugin, Ivan; Daryin, Andrei

    2015-04-01

    We report the first high-resolution (with intervals ca. 20-50 years) late-Holocene (4200 yr BP) pollen record from Lake Teletskoye, Altai Mountains, obtained from the underwater Ridge of Sofia Lepneva in 2006 (core Tel 2006). The study presents (i) the results of palynological analysis of Tel 2006; (ii) the results of spectral analysis of natural cycles based on the periodical fluctuation of taiga-biome curve; and (iii) quantitative reconstructions of the late-Holocene regional vegetation, woody coverage and climate in northern part of the Altai Mountains in order to define place of Northeast Altai on the map of the late-Holocene Central Asian environmental history. Late Holocene vegetation of the northeastern part of Altai recorded in Tel 2006 core is characterized by spread of dark-coniferous forest with structure similar to modern. Dominant trees, Siberian pine (Pinus sibirica) and Siberian fir (Abies sibirica), are the most ecological sensitive taxa between Siberian conifers (Shumilova, 1962), that as a whole suggests mild and humid climatic conditions during last 4200 years. However, changes of pollen taxa percentages and results of numerical analysis reveal pronounced fluctuation of climate and vegetation. Relatively cool and dry stage occurred prior to ca. 3500 cal yr BP. Open vegetation was widespread in the region with maximum deforestation and minimal July temperatures between 3800-3500 cal yr BP. Steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae could grow on the open sites around Lake Teletskoye. Reconstructed woody coverage is very low and varies between 29-35%. After ca. 3500 cal yr BP the area of dark-coniferous mountain taiga has significantly enlarged with maximums of woody coverages and taiga biome scores between ca. 2470-1040 cal yr BP. In the period of ~3500-2500 cal yr BP the averages July temperatures increased more than 1 0C. Climate became warmer and wetter. During last millennium (after 1040 cal yr BP) average July

  1. Late Holocene Multiproxy Record (Palynology, Stable Isotope and Multi-Element Geochemistry) of Lake Santa Maria del Oro, Western Mesoamerica.

    NASA Astrophysics Data System (ADS)

    Lozano, S.; Caballero, M.; Rodriguez, A.; Roy, P.; Sosa, S.

    2007-05-01

    We present the palynological, stable isotope and major element (ITRAX X-Ray fluorescence) data from a 850-cm sediment sequence from the deepest part of lake Santa María del Oro (SMO) in order to document changes in the climatic and limnological conditions and in the vegetation for the last ca. 5000 yr. SMO is a crater lake of (750 m asl, 2 km diam.) located in a tropical sub-humid climate (1250 mm/yr, average annual temperature 21° C) at the transition between the temperate central Mexican highlands and the arid northern regions. Tropical deciduous forests which loose their leaves for 8 months in a year and the tropical oak forests are the main plant communities in the lake catchments. The western part of Mesoamerica is the cradle of maize (Zea mays ssp. mays ) agriculture; this region is probably one of the two centers of maize domestication based on the presence of one of its closets wild relative teosinte (Zea mays ssp. parviglumis ). Chronology was established with 8 AMS radiocarbon dates. Sediments are finely laminated, with some intervals dominated by black and brown clayey silt and others by brown clayey silt and calcareous silt. In some levels, laminae are characterized by silts and fine sands. Authigenic carbonate laminations are formed during the summer season, when the highest temperatures are reached in the area. Throughout the pollen analysis, teosinte pollen and maize pollen was recorded. The major element concentration (Ca and Ti) in the bulk sediments was analyzed by ITRAX multi-element scanner and the isotopic data (δ13C and δ18O) in authigenic carbonates by mass spectrometer. Ca and Ti ITRAX intensities were calibrated to mass % by using the linear relationship between ITRAX intensity and mass % obtained through conventional XRF analysis. Preliminary pollen data of SMO sediments indicates abundant pollen of teosinte from ca. 2000 to 100 BC and maize presence at ca. 1300 BC and ca. 900 BC along with high charcoal particle concentrations

  2. A High-Resolution Late Holocene Record of Rainfall From Lake Edward, Equatorial Africa: Linkages Between the African and Indian Monsoons

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Johnson, T. C.

    2005-12-01

    High-resolution analyses of the chemical composition of calcite and the biogenic silica content of sediments from piston cores spanning the past 3,500 years from Lake Edward, Uganda-Congo, document multidecadal to millennial-scale climate variability in the heart of equatorial Africa. Major drought events in the Lake Edward record occur at about 500, 850, 1500, ~2000, and 2700 cal yr BP, in addition to numerous other events of lesser magnitude/duration. Comparison of our record to other Holocene records of African lake levels suggests that most of these intervals of drought affected most of equatorial East Africa. However, wet conditions at about 500 cal yrs BP at sites to the east of Lake Edward could indicate spatial heterogeneity within the African continent during the "Little Ice Age", which could have resulted from complex interactions between the African (Atlantic) and Indian Ocean monsoons. Spectral analysis of our drought record, sampled at a 3-year step, shows evidence for numerous multidecadal to century-scale drought periods in the region. The periodicities observed do not appear linked to solar forcing; rather, periods of ~125, ~70, ~28, and ~18 years apparent in our record as well as other records from the Indian Ocean basin may arise from climate variability internal to the tropical oceans, in particular the Indo-Pacific. Lastly, the Lake Edward record suggests that the climate of equatorial Africa has been unusually stable and generally wet for the past ca. 100 years. This stability appears unusual in light of the considerable climate variability suggested by our record for the past several millennia, a finding with clear implications for East African societies.

  3. 76 FR 45605 - Notice of Application for a Recordable Disclaimer of Interest for Lands Underlying Whitefish Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-29

    ... Underlying Whitefish Lake and Its Outlet in Alaska AGENCY: Bureau of Land Management, Interior. ACTION... Whitefish Lake and its outlet in southwestern Alaska. The State asserts that Whitefish Lake and its outlet... to the State at the time of statehood (1959). The lake and its outlet are partially within...

  4. Late-glacial and Holocene record of vegetation and climate from Cynthia Bay, Lake St Clair, Tasmania

    NASA Astrophysics Data System (ADS)

    Hopf, F. V. L.; Colhoun, E. A.; Barton, C. E.

    2000-10-01

    A Late-glacial-Holocene pollen record was obtained from a 3.96 m sediment core taken from Lake St Clair, central Tasmania. Modern vegetation and pollen analyses formed the basis for interpretation of the vegetation and climate history. Following deglaciation and before ca. 18450 yr BP Podocarpus lawrencei coniferous heath and Astelia-Plantago wet alpine herbfield became established at Lake St Clair. A distinct Poaceae-Plantago peak occurs between 18450 and 11210 yr BP and a mean annual temperature depression from ca. 6.2°C to 3°C below present is inferred for this period. The marked reduction in Podocarpus and strong increase of Poaceae suggests reduced precipitation levels during the period of widespread deglaciation (ca. 18.5-11 kyr BP). The local Late Pleistocene-Holocene non-forest to forest biostratigraphical boundary is dated at 11.2 kyr BP. It is characterised by expansion of the subalpine taxa Athrotaxis/Diselma with Nothofagus gunnii, and by the establishment of Nothofagus cunninghamii with Eucalyptus spp. A Phyllocladus bulge prior to the expansion of Nothofagus cunninghamii, reported at other Tasmanian sites, is not present at Lake St Clair. Nothofagus cunninghamii cool temperate rainforest peaked at 7800 yr BP, probably under wetter climatic conditions than present. The maximum development of rainforest in the early-middle Holocene may indicate that the temperature was slightly warmer than present, but the evidence is not definitive. The expansion of Eucalyptus spp. and Poaceae after 6000 yr BP may be partly a disclimax effect as a result of Aboriginal burning, but appears also to reflect reduced precipitation. The changes in vegetation and inferred climate can be explained by major changes in synoptic patterns of southern Australia and the adjacent southwest Pacific.

  5. A 37,000-year environmental magnetic record of aeolian dust deposition from Burial Lake, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Dorfman, J. M.; Stoner, J. S.; Finkenbinder, M. S.; Abbott, M. B.; Xuan, C.; St-Onge, G.

    2015-11-01

    Environmental magnetism and radiocarbon dating of Burial Lake sediments constrain the timing and magnitude of regional aeolian deposition for the Noatak region of western Arctic Alaska for the last ˜37,000 years. Burial Lake (68.43°N, 159.17°W, 21.5 m water depth) is optimally located to monitor regional dust deposition because it is perched above local drainage and isolated from glacial processes. Cores collected in the summer of 2010 were studied through the application of magnetizations and progressive alternating field (AF) demagnetization of u-channel samples, with additional data provided by computed tomography (CT) derived density, hysteresis measurements, isothermal remanent magnetization (IRM) acquisition experiments, organic carbon content, biogenic silica, physical grain size, radiocarbon dating of wood, seeds, and plant macrofossils, point source magnetic susceptibility, and X-ray fluorescence (XRF). With similar magnetic properties to regional Alaskan loess deposits, low coercivity, highly magnetic material deposited during the late-Pleistocene contrasts with a high coercivity, weakly magnetic component found throughout the record, consistent with locally-derived detritus. The relative proportion of low coercivity to high coercivity magnetic material, defined by the S-Ratios, is used to reconstruct the regional input of dust to the basin over time. A four-fold decrease in the low coercivity component through the deglacial transition is interpreted to reflect diminished dust input to the region. Comparisons with potential sources of dust show that the timing of deposition in Burial Lake is largely consistent with general aridity, lack of vegetative cover, and increased windiness, rather than glacial advances or retreats. The influence from subaerial exposure of continental shelves cannot be ruled out as a significant far-field source of dust to interior Alaska during the Last Glacial Maximum (LGM), but is unlikely to have been the sole source, or to

  6. Seven thousand years of records on the mining and utilization of metals from lake sediments in central China.

    PubMed

    Lee, Celine S L; Qi, Shi-Hua; Zhang, Gan; Luo, Chun-Ling; Zhao, Lu Y L; Li, Xiang-Dong

    2008-07-01

    A 268 cm section of sediment core from Liangzhi Lake in Hubei province in central China was used to assess the use and accumulation of metals in the lake in the past 7,000 years. The concentrations of trace metals, including Cu, Pb, Ni, and Zn, and major elements, Ca, Fe, and Mg, in a 14C- dated segment of sediment core were analyzed. Historical trends on the input of metals to Liangzhi Lake from around 5000 BC to the present were recorded in the sediments, representing about 7,000 years of history on the mining and utilization of metals in central China. The concentrations of Cu, Ni, Pb, and Zn increased gradually from about 3000 +/- 328 BC, indicating the start of the Bronze Age in ancient China. During the period 467 +/- 257 to 215 +/- 221 AD, there was a rapid increase in the concentrations of these metals in the sediments, indicating enormous inputs of these metals at that time. This era corresponded to China's Warring States Period (475- 221 BC) and the early Han Dynasty (206 BC-220 AD), during which copper and lead were extensively used in making bronze articles such as vessels, tools, and weapons. From 1880 +/- 35 AD to the early 1900s, there was also a significant increase in the concentrations of metals such as Cu, Ni, and Pb, which probably reflected the metal emissions and utilization during the early period of industrial development and weapon manufacture during the wars in China. The Pb isotopic analysis showed that the surface and subsurface sediments had lower 206Pb/207Pb and 208Pb/ 207Pb ratios than the deeper layers, reflecting the additional input of Pb from mining activities that took place during the Bronze Age era and in modern times. This study provides direct evidence of the environmental impact of the mining and utilization of metals in the last 7,000 years in one of the important regions of Chinese civilization.

  7. Millennial-scale Hydrological Fluctuations in Western Mediterranean During the Last 20 ka: The Sedimentary Record of Lake Estanya (NE Spain)

    NASA Astrophysics Data System (ADS)

    Morellon, M.; Valero-Garcés, B.; Moreno, A.; Gonzalez-Samperiz, P.; Rico, M.; Corella, J.; Mata, P.; Martin-Puertas, C.; Anselmetti, F.; Ariztegui, D.; Schnelmann, M.

    2007-12-01

    The impact of North Atlantic changes in Western Mediterranean Sea has been widely documented by marine records (Cacho et al., 2001; Martrat et al., 2004 and 2007; Moreno et al., 2005). Although this teleconnection has also been recorded in several mountain records of northern Spain (Allen et al., 1996; Leira and Santos, 2002; González-Samperiz et al., 2006), the environmental effects and the hydrological amplitude of these fluctuations in continental, low-land areas of Iberian Peninsula are still poorly understood. The multi-proxy study of sediment cores from karstic Lake Estanya (Pre-Pyrenees, NE Spain) provides the first continuous record of the hydrological evolution in this area during the deglaciation. The chronological model, based on 14 AMS radiocarbon dates shows an age of ca. 20,000 calendar years BP for the base of the sequence. Seismic stratigraphy revealed a sedimentary filling up to 15 m thick consisting on three main units identifiable through the lake basin and deposited during the Lateglacial, Early-to-Mid Holocene and Late Holocene, respectively. Sediment analyses have been carried out in cores from the deepest area of the lake. Sedimentary facies have been defined after the integration of sedimentological and mineralogical proxies (X-ray diffraction and SEM), high-resolution analyses of light elements (Al, Si, P, S, K, Ca, Ti, Mn and Fe) by XRF core-scanner and stable isotope analyses of ostracods, carbonate phases and organic matter. Increased run-off and higher lake levels are interpreted from massive, clastic facies while more concentrated waters and shallower conditions were more frequent during deposition of laminated and organogenic gypsum-rich facies. Lateglacial sequence shows fluctuating but shallow lake conditions followed by a large increase in water availability during the Early Holocene and lowered lake levels and arid conditions for the Mid-to-Late Holocene (4.2 - 0.8 ka). Fluctuating but higher lake levels occurred during the last

  8. Timing of atmospheric precipitation in the Zagros Mountains inferred from a multi-proxy record from Lake Mirabad, Iran

    NASA Astrophysics Data System (ADS)

    Stevens, Lora R.; Ito, Emi; Schwalb, Antje; Wright, Herbert E.

    2006-11-01

    A sediment core 7.2 m long from Lake Mirabad, Iran, was examined for loss-on-ignition, mineralogy, oxygen-isotopic composition of authigenic calcite, and trace-element composition of ostracodes to complement earlier pollen and ostracode-assemblage studies. Pollen, ostracode-inferred lake level, and high Sr/Ca ratios indicate that the early Holocene (10000 to 6500 cal yr BP) was drier than the late Holocene. Low δ18O values during this interval are interpreted as resulting from winter-dominated precipitation, characteristic of a Mediterranean climate. Increasing δ18O values after 6500 cal yr BP signal a gradual increase in spring rains, which are present today. A severe 600-yr drought occurred at ca. 5500 cal yr BP, shortly after the transition from pistachio-almond to oak forest. During the late Holocene, two milder droughts occurred at about 1500 and 500 cal yr BP. Within the resolution of the record, no drought is evident during the collapse of the Akkadian empire (4200-3900 cal yr BP). Rather, a decrease in δ18O values to early-Holocene levels may indicate the return to a Mediterranean precipitation regime.

  9. Late Pleistocene paleoclimatic history documented by an oxygen isotope record from carbonate sediments in Qarhan Salt Lake, NE Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Fan, QiShun; Ma, HaiZhou; Wei, HaiCheng; Shan, FaShou; An, FuYuan; Xu, LiMing; Madsen, David B.

    2014-05-01

    Late Pleistocene paleoclimatic variability on the northeastern Qinghai-Tibetan Plateau (NE QTP) was reconstructed using a chronology based on AMS 14C and 230Th dating results and a stable oxygen isotopic record. These are derived from lake carbonates in a 102-m-long Qarhan sediment core (ISL1A) collected from the eastern Qaidam Basin. Previous research indicates that the δ18O values of lacustrine carbonates are mainly controlled by the isotopic composition of lake water, which in turn is a function of regional P/E balance and the proportion of precipitation that is monsoon-derived on the NE QTP. Modern isotopic observations indicate that the δ18O values of lake carbonates in hyper-arid Qaidam Basin are more positive during the warm and wet period. Due to strong evaporation and continental effect in this basin, the positive δ18O values in the arid region indicate drier climatic conditions. Based on this interpretation and the δ18O record of fine-grained lake carbonates and dating results in ISL1A, the results imply that drier climatic conditions in the Qarhan region occurred in three intervals, around 90-80 ka, 52-38 ka and 10-9 ka, which could correspond to late MIS 5, middle MIS 3 and early Holocene, respectively. These three phases were almost coincided with low lake level periods of Gahai, Toson and Qinghai Lakes (to the east of Qarhan Lake) influenced by ASM on the orbital timescales. Meanwhile, there was an episode of relatively high δ18O value during late MIS 3, suggesting that relatively dry climatic condition in this period, rather than “a uniform Qarhan mega-paleolake” spanning the ˜44 to 22 ka period. These results insight into the understanding of “the Greatest Lake Period” on the QTP.

  10. Isotopic and hydrologic responses of small, closed lakes to climate variability: Comparison of measured and modeled lake level and sediment core oxygen isotope records

    NASA Astrophysics Data System (ADS)

    Steinman, Byron A.; Abbott, Mark B.; Nelson, Daniel B.; Stansell, Nathan D.; Finney, Bruce P.; Bain, Daniel J.; Rosenmeier, Michael F.

    2013-03-01

    Simulations conducted using a coupled lake-catchment isotope mass balance model forced with continuous precipitation, temperature, and relative humidity data successfully reproduce (within uncertainty limits) long-term (i.e., multidecadal) trends in reconstructed lake surface elevations and sediment core oxygen isotope (δ18O) values at Castor Lake and Scanlon Lake, north-central Washington. Error inherent in sediment core dating methods and uncertainty in climate data contribute to differences in model reconstructed and measured short-term (i.e., sub-decadal) sediment (i.e., endogenic and/or biogenic carbonate) δ18O values, suggesting that model isotopic performance over sub-decadal time periods cannot be successfully investigated without better constrained climate data and sediment core chronologies. Model reconstructions of past lake surface elevations are consistent with estimates obtained from aerial photography. Simulation results suggest that precipitation is the strongest control on lake isotopic and hydrologic dynamics, with secondary influence by temperature and relative humidity. This model validation exercise demonstrates that lake-catchment oxygen isotope mass balance models forced with instrumental climate data can reproduce lake hydrologic and isotopic variability over multidecadal (or longer) timescales, and therefore, that such models could potentially be used for quantitative investigations of paleo-lake responses to hydroclimatic change.

  11. Environmental legacy of copper metallurgy and Mongol silver smelting recorded in Yunnan Lake sediments.

    PubMed

    Hillman, Aubrey L; Abbott, Mark B; Yu, JunQing; Bain, Daniel J; Chiou-Peng, TzeHuey

    2015-03-17

    Geochemical measurements on well-dated sediment cores from Lake Er (Erhai) are used to determine the timing of changes in metal concentrations over 4500 years in Yunnan, a borderland region in southwestern China noted for rich mineral deposits but with inadequately documented metallurgical history. Our findings add new insight into the impacts and environmental legacy of human exploitation of metal resources in Yunnan history. We observe an increase in copper at 1500 BC resulting from atmospheric emissions associated with metallurgy. These data clarify the chronological issues related to links between the onset of Yunnan metallurgy and the advent of bronze technology in adjacent Southeast Asia, subjects that have been debated for nearly half a century. We also observe an increase from 1100 to 1300 AD in a number of heavy metals including lead, silver, zinc, and cadmium from atmospheric emissions associated with silver smelting. Culminating during the rule of the Mongols, known as the Yuan Dynasty (1271-1368 AD), these metal concentrations approach levels three to four times higher than those from industrialized mining activity occurring within the catchment today. Notably, the concentrations of lead approach levels at which harmful effects may be observed in aquatic organisms. The persistence of this lead pollution over time created an environmental legacy that likely contributes to known issues in modern day sediment quality. We demonstrate that historic metallurgical production in Yunnan can cause substantial impacts on the sediment quality of lake systems, similar to other paleolimnological findings around the globe. PMID:25685905

  12. Environmental legacy of copper metallurgy and Mongol silver smelting recorded in Yunnan Lake sediments.

    PubMed

    Hillman, Aubrey L; Abbott, Mark B; Yu, JunQing; Bain, Daniel J; Chiou-Peng, TzeHuey

    2015-03-17

    Geochemical measurements on well-dated sediment cores from Lake Er (Erhai) are used to determine the timing of changes in metal concentrations over 4500 years in Yunnan, a borderland region in southwestern China noted for rich mineral deposits but with inadequately documented metallurgical history. Our findings add new insight into the impacts and environmental legacy of human exploitation of metal resources in Yunnan history. We observe an increase in copper at 1500 BC resulting from atmospheric emissions associated with metallurgy. These data clarify the chronological issues related to links between the onset of Yunnan metallurgy and the advent of bronze technology in adjacent Southeast Asia, subjects that have been debated for nearly half a century. We also observe an increase from 1100 to 1300 AD in a number of heavy metals including lead, silver, zinc, and cadmium from atmospheric emissions associated with silver smelting. Culminating during the rule of the Mongols, known as the Yuan Dynasty (1271-1368 AD), these metal concentrations approach levels three to four times higher than those from industrialized mining activity occurring within the catchment today. Notably, the concentrations of lead approach levels at which harmful effects may be observed in aquatic organisms. The persistence of this lead pollution over time created an environmental legacy that likely contributes to known issues in modern day sediment quality. We demonstrate that historic metallurgical production in Yunnan can cause substantial impacts on the sediment quality of lake systems, similar to other paleolimnological findings around the globe.

  13. Biogenic silica records from the BDP93 drill site and adjacent areas of the Selenga Delta, Lake Baikal, Siberia

    USGS Publications Warehouse

    Colman, Steven M.; Peck, J.A.; Hatton, J.; Karabanov, E.B.; King, J.W.

    1999-01-01

    Biogenic silica contents of sediments on the lower Selenga Delta and Buguldeika saddle in Lake Baikal show distinct fluctuations that reflect changes in diatom productivity, and ultimately, climate. The pattern of the upper 50 m of the section, dating from about 334 ka, is similar to that of the marine oxygen-isotope record, increasingly so as the younger sediments become progressively finer grained and less locally derived with time. The last two interglaciations are marked by biogenic silica abundances similar to those of the Holocene. The equivalent of marine oxygen-isotope stage 3 is distinctly intermediate in character between full glacial and full interglacial biogenic silica values. Following near-zero values during the last glacial maximum, biogenic silica began to increase at about 13 ka. The rise in biogenic silica to Holocene values was interrupted by an abrupt decrease during Younger Dryas time, about 11 to 10 14C ka.

  14. Megabreccias, Early Lakes, and Duration of Resurgence Recorded in Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Goff, F.; Goff, C. J.; Phillips, E. H.; Kyle, P. R.; McIntosh, W. C.; Chipera, S.; Gardner, J. N.

    2003-12-01

    New 1:24,000 scale geologic mapping combined with previous and ongoing geoscientific studies are revealing significant new findings on intracaldera stratigraphy and structure, initial development of intracaldera lakes, and the duration of resurgence within the ca. 1.25 Myr Valles caldera. The caldera is about 22 km in diameter and contains a resurgent dome that is a northeast-trending oval roughly11 x 9 km in dimension. Maximum resurgence (uplift) was more than 1000 m, during which the dome split into three principal segments herein named the Redondo Peak, Redondo Border, and Valle San Luis segments. These segments are separated from each other by long, narrow grabens herein called the Redondo Creek, Jaramillo Creek, and San Luis Creek grabens. Differential uplift accompanied by intense faulting has exposed large, rootless megabreccia (Mbx) blocks composed of precaldera rocks submerged in densely welded, intracaldera upper Bandelier Tuff. The largest Mbx blocks are roughly 0.2 to 2.0 km long and consist primarily of Abo Fm (Permian), Gallisteo Fm (?) (Eocene), Santa Fe Group (Miocene), Paliza Canyon Fm (late Miocene) and lower Bandelier Tuff (ca. 1.62 Ma). Deep geothermal wells drilled within the Redondo Creek graben from 1970 to 1983 penetrate as much as 2032 m of intracaldera Bandelier Tuff and post-Bandelier rocks before intersecting caldera floor rocks (average = 1646 m, n = 23 wells). Evidence that a lake developed within the caldera depression is preserved in finely laminated lacustrine beds and rhyolitic, hydromagmatic tuffs that overlie intracaldera Bandelier Tuff on the resurgent dome. The lacustrine rocks contain organic remains and the hydromagmatic tuffs contain accretionary lapilli. In some locations, lacustrine and hydromagmatic rocks are interbedded. Earliest post-caldera rhyolite lavas (Deer Canyon Member) display occasional pepperite and pillow textures. Many lavas contain significant amounts of fine, opalized flow breccia indicating interaction

  15. A 13,500 Year Record of Holocene Climate, Fire and Vegetation from Swan Lake, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Wahl, D.; Anderson, L.; Miller, D. M.; Rosario, J. J.; Starratt, S.; McGeehin, J. P.; Bright, J. E.

    2015-12-01

    Modern climate dynamics in the western US are largely determined by a combination of two factors: 1) the strength and position of midlatitude pressure systems, which, in turn, are responsible for the generation and trajectory of winter storms, and 2) the strength of the North America Monsoon (NAM) which brings summer precipitation northward in response to northern hemisphere warming. Paleoclimate records from the Great Basin of the western US suggest some coherence in the timing of major climatic shifts during the Holocene. However, knowledge of the timing and magnitude of these changes at local scales, which can help explain the relative contribution of midlatitude winter storms vs. NAM, is lacking in many places. Here we present new data that constrain the timing and magnitude of late glacial and Holocene climate variability in the northeastern Great Basin, provide insight into past spatial variability of precipitation patterns in the western US, and improve our understanding of regional scale influences on Great Basin climate. In 2011, a 7.65 m sediment core was raised from Swan Lake, a small wetland located in southeastern Idaho that was formed in the spillway channel created by the catastrophic flooding of Lake Bonneville ~18 ka BP. Pollen, charcoal, clumped isotope, diatom, ostracod, and sedimentological data are used to reconstruct vegetation, fire history, and lake level/groundwater flux over the last 13,500 years. Age control is provided by 19 AMS radiocarbon determinations, which are reported as thousands of calibrated years before present (ka BP). This effort builds on earlier work by Bright (1966) who reported on pollen, macrofossils, and sediment type from Swan Lake. Our data suggest cool and wet conditions prevailed until around 12.3 ka BP, after which a drying trend begins. The early Holocene was marked by a warmer, drier climate, which persisted until around 6.2 ka BP. Moister conditions after 6.2 ka BP likely resulted from a combination of enhanced

  16. Lake sediment isotope records of hydroclimatic changes in the Pacific Northwest over the last two thousand years

    NASA Astrophysics Data System (ADS)

    Steinman, B. A.; Abbott, M.; Mann, M. E.; Ortiz, J. D.

    2012-12-01

    Recent drought conditions and greater water demand caused by population expansion are placing increasing stress on the ecosystems and economies of western North America. Variations in drought frequency and intensity in this region are primarily controlled by the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), which affect precipitation and temperature on interannual to centennial timescales. During the Little Ice Age (LIA) and Medieval Climate Anomaly (MCA) the tropical Pacific Ocean was likely characterized by shifts toward more El Niño and La Niña like mean state conditions, respectively, which produced changes in water availability that have no historic precedent. Here we report isotopic evidence (sediment δ18O records) from 9 lakes in the southern Yukon, central British Columbia, and the northwestern United States indicating that the LIA was a time of exceptional dryness in the Pacific Northwest and that the MCA was relatively wetter. We compare the lake sediment isotope data to synoptic ocean-atmosphere paleoproxy datasets as well as records of external forcing (i.e., solar and volcanic) that span the last 1-2 thousand years to ascertain the influence of climate system responses to external forcing on precipitation-evaporation balance in western North America. Modeling and proxy data comparisons have described links between the mean state of the tropical Pacific Ocean and radiative forcing on multi-decadal to centennial time scales during the middle and late Holocene. Analysis of proxy data including tree rings and speleothems have documented connections between inferred solar activity maxima, La Niña like conditions in the tropical Pacific and reduced water availability in the American southwest. Lake sediment δ18O data from the Pacific Northwest evince a pattern opposite that of the southwest in which periods of greater solar activity correspond with wetter hydroclimatic conditions, and vice versa, similar to the observed

  17. Mid-late Holocene climate and vegetation in northeastern part of the Altai Mountains recorded in Lake Teletskoye

    NASA Astrophysics Data System (ADS)

    Rudaya, Natalia; Nazarova, Larisa; Novenko, Elena; Babich, Valery; Kalugin, Ivan; Daryin, Andrei

    2015-04-01

    We report the first high-resolution (with intervals ca. 20-50 years) late-Holocene (4200 yr BP) pollen record from Lake Teletskoye, Altai Mountains, obtained from the underwater Ridge of Sofia Lepneva in 2006 (core Tel 2006). The study presents (i) the results of palynological analysis of Tel 2006; (ii) the results of spectral analysis of natural cycles based on the periodical fluctuation of taiga-biome curve; and (iii) quantitative reconstructions of the late-Holocene regional vegetation, woody coverage and climate in northern part of the Altai Mountains in order to define place of Northeast Altai on the map of the late-Holocene Central Asian environmental history. Late Holocene vegetation of the northeastern part of Altai recorded in Tel 2006 core is characterized by spread of dark-coniferous forest with structure similar to modern. Dominant trees, Siberian pine (Pinus sibirica) and Siberian fir (Abies sibirica), are the most ecological sensitive taxa between Siberian conifers (Shumilova, 1962), that as a whole suggests mild and humid climatic conditions during last 4200 years. However, changes of pollen taxa percentages and results of numerical analysis reveal pronounced fluctuation of climate and vegetation. Relatively cool and dry stage occurred prior to ca. 3500 cal yr BP. Open vegetation was widespread in the region with maximum deforestation and minimal July temperatures between 3800-3500 cal yr BP. Steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae could grow on the open sites around Lake Teletskoye. Reconstructed woody coverage is very low and varies between 29-35%. After ca. 3500 cal yr BP the area of dark-coniferous mountain taiga has significantly enlarged with maximums of woody coverages and taiga biome scores between ca. 2470-1040 cal yr BP. In the period of ~3500-2500 cal yr BP the averages July temperatures increased more than 1 0C. Climate became warmer and wetter. During last millennium (after 1040 cal yr BP) average July

  18. Late Quaternary water depth changes in Hala Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records

    NASA Astrophysics Data System (ADS)

    Yan, Dada; Wünnemann, Bernd

    2014-07-01

    Late Pleistocene and Holocene climate dynamics along the marginal belt of the East Asian Summer Monsoon in China and their responses to hydrological cycles in lake basins of the Tibetan Plateau are still a matter of scientific discussion. Hala Lake, a closed 65 m deep lake basin in the western Qilian Mountains, Qinghai Province, is considered a monitor of climate-driven hydrological and environmental changes during the past 24 kyr BP. The distribution patterns of ostracod assemblages, stable isotopes, sediment-geochemical properties in four sediment records from different water depths and their combination with the unique limnological setting enabled us to reconstruct four major phases of centennial-scale water depth fluctuations from the global Last Glacial Maximum (ca 24 kyr BP) to the Present. Our results show that Hala Lake experienced a very shallow and small water body during the LGM and Lateglacial under cold and dry climate conditions. Rapid increase of water depth and contemporaneous lake expansion started at around 14 kyr BP (Phase I), most likely as a result of glacier melt due to the onset of climate warming. The lake reached >45 m water depth at around 13.5 kyr BP. Reduced water depth during the Younger Dryas spell (ca 12 kyr BP) may be attributed to a short-term return to cooler and drier conditions. During the early Holocene (Phase II), water depth increased further toward lake highstands close to its present level, with a highest lake level of up to 9 m above the present lakestand at 8.0-7.8 kyr BP. Besides continued glacier melt supply, we assume that summer monsoon effective moisture contributed to the overall water budget, but remained relatively unstable, favoring water depth fluctuations. A pronounced lower water depth falls into the period between 9.2 and 8.1 kyr BP, perhaps the result of weak monsoon influence or its complete absence, although the warming trend continued toward its optimum at ca 8-7 kyr BP. A distinct mass flow, most likely

  19. Historical records of mercury in southern latitudes over 1600 years: Lake Futalaufquen, Northern Patagonia.

    PubMed

    Daga, Romina; Ribeiro Guevara, Sergio; Pavlin, Majda; Rizzo, Andrea; Lojen, Sonja; Vreča, Polona; Horvat, Milena; Arribére, María

    2016-05-15

    Mercury is released to the environment from natural and anthropogenic sources, and through atmospheric transport is distributed globally. Lake Futalaufquen (42.8°S) is an oligotrophic lake located in Los Alerces National Park (Northern Patagonia), providing a remote and unpolluted study system. A lacustrine sedimentary sequence revealed 1600 years of Hg deposition, identifying natural baselines and marked peaks not correlated with long-range atmospheric transport. Organic matter and catchment erosion were discarded as Hg drivers. Natural background, pre-1300 CE Hg concentrations, ranged between 27 and 47 ng g(-1) (accumulation rates from 8 to 15μg m(-2) y(-1)). From 1300 CE on, the Hg background profile did not follow the generally increasing Hg pattern observed in both Southern and Northern Hemisphere since pre-industrial times. It was not until the last century that a 1.6-fold increase is observed in the Hg accumulation rate, considered among the lowest increments in southern South America. Noteworthy local/regional sources of Hg for this area, along with global transport, are forest fires and volcanic activity. Between approx. 1340 and 1510 CE, sharp increase in Hg concentration and accumulation rate (up to 204 ng g(-1) and 51 μg m(-2) y(-1), respectively) were clearly associated with extended fire episodes. Furthermore, high Hg peaks during the last 300 years were associated with volcanic eruptions in northernmost Patagonia together with fairly irregular fire episodes, caused by anthropogenic burning by settling population in the Andes. PMID:26938317

  20. Exploring the Stable Isotope Record of Lake Carpenter: A Lacustrine Sequence in the Aptian-Albian Cretaceous Cedar Mountain Formation, Utah, USA

    NASA Astrophysics Data System (ADS)

    Montgomery, E.; Al-Suwaidi, A. H.; Suarez, M. B.; Kirkland, J. I.; Suarez, C. A.

    2014-12-01

    The Cedar Mountain Formation (CMF) represents the earliest deposition of terrestrial Cretaceous strata in the USA, recording significant changes in biota and climate. Understanding these transitions requires improved time constraints and high-resolution proxy records. Here we present new δ13C (organic carbon & carbonate) chemostratigraphic record of a lacustrine sequence in a locality named "Lake Carpenter", near Moab, Utah. Lake Carpenter (LC) comprises interbedded limestone and mudstone units of the Ruby Ranch Member of the CMF. Results of the chemostratigraphy are constrained by detrital zircons from the section allowing correlation of the chemostratigraphy to the carbon isotope segments C9 to C11 (Bralower et al., 1999) spanning the Late Aptian to Early Albian, and supported by previous litho- and chemostratigraphic work in the CMF. δ13Corg values show a pronounced negative stepped excursion, of -6‰ with values reaching -32.3 ‰ occurring in conjunction with an increase in TOC. This negative excursion is followed by a positive recovery, with values of ~-25‰ and relatively low TOC. δ13Ccarb records positive values, up to +8‰, in the lowermost part of the section (< ~7m) followed by a decrease to ~-7 ‰. δ18Ocarb over this interval records values between -2 and -4‰ followed by a decrease to ~-7‰. The lowermost portion of the LC section is indicative of relatively deep lacustrine environment in which organic carbon burial influenced the δ13C of dissolved inorganic carbon (DIC) in the lake. This lower δ13C of DIC may be due to increased upwelling and/or turnover and recycling of organic carbon in the lake. Variability of δ13Ccarb and δ18Ocarb values may reflect changes in water supply to the lake, or climatic variability resulting in the lake drying out. δ13Corg values may be affected by local lake dynamics, including variations in organic carbon storage and changes in algal productivity, perhaps also indicative of changes in nutrient

  1. Annual-Resolution Precipitation Record of Lake Suigetsu Based on Lamina Thickness and Its Chemical Composition during the Last 350 Year

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Tada, R.; Irino, T.; Yamada, K.; Nagashima, K.; Nakagawa, T.

    2014-12-01

    Lake Suigetsu sediment has distinct lamination since ca. 1664 A.D. when Urami trench was cut to lower the lake level that increased because of the closure of the outlet due to the 1660 A.D. earthquake. Approximately 3 m deep Urami Trench allowed intrusion of brackish water that caused density stratification within the lake and development euxinic bottom water. This distinct parallel lamination is considered as varves, but previous "varve"counting fails to prove its annual origin. In this study, we sampled top several tens of centimeter of the Lake Suigetsu sediment using Limnos Sediment Sampler. A high-resolution age-depth model based on radioisotopes 137Cs and 210Pb profiles and 14C dating are compared with the age-depth model based on varve counting. The two curves agreed within the error that is less than 10 years at the bottom. Thus, the lamination is proved to be varves. This age model allows us to examine annual-resolution record of river discharge, eolian dust flux, and seismic events. Lamination is generally from 1 to 2 mm thick, dark gray in color and rich in diatom. In addition, there are a few thicker (>2mm) lamina characterized with sharp and slightly erosional at the bottom and gradational at the top. Based on these characteristics, we call them "Event layers". Light gray Event layers are common in the Suigetsu sediments, and interpreted as representing flood events although supporting evidence is insufficient. We correlated them to contemporary observational precipitation record. These light gray Event layers are well correlated to the historical record of the flood disasters in Lake Suigetsu within +/_ 3 years during the past 70 years. Assuming these light gray event layers represents flood events, we fine-tuned the age-depth model and examined the correlation between precipitation record and flux of detrital materials estimated from the sedimentary record. The result will be presented and implication will be discussed.

  2. Climate and lake-level history of the northern altiplano, Bolivia, as recorded in holocene sediments of the Rio Desaguadero

    USGS Publications Warehouse

    Baucom, P.C.; Rigsby, C.A.

    1999-01-01

    Strata exposed in terraces and modern cutbanks along the Rio Desaguadero contain a variety of lithofacies that were deposited in four distinct facie??s associations. These facie??s associations document a history of aggradation and downcutting that is linked to Holocene climate change on the Altiplano. Braided-stream, meandering-stream, deltaic and shoreline, and lacustrine sediments preserved in multi-level terraces in the northern Rio Desaguadero valley record two high-water intervals: one between 4500 and 3900 yr BP and another between 2000 and 2200 yr BP. These wet periods were interrupted by three periods of fluvial downcutting, centered at approximately 4000 yr BP, 3600 yr BP, and after 2000 yr BP. Braided-river sediments preserved in a single terrace level in the southern Rio Desaguadero valley record a history of nearly continuous fluvial sedimentation from at least 7000 yr BP until approximately 3200 yr BP that was followed by a single episode (post-3210 yr BP) of downcutting and lateral migration. The deposition and subsequent fluvial downcutting of the northern strata was controlled by changes in effective moisture that can be correlated to Holocene water-level fluctuations of Lake Titicaca. The deposition and dissection of braided-stream sediments to the south are more likely controlled by a combination of base-level change and sediment input from the Rio Mauri. Copyright ??1999, SEPM (Society for Sedimentar)- Geology).

  3. Climate and lake-level history of the northern Altiplano, Bolivia, as recorded in Holocene sediments of the Rio Desaguadero

    SciTech Connect

    Baucom, P.C.; Rigsby, C.A.

    1999-05-01

    Strata exposed in terraces and modern cutbanks along the Rio Desaguadero contain a variety of lithofacies that were deposited in four distinct facies associations. These facies associations document a history of aggradation and downcutting that is linked to Holocene climate change on the Altiplano. Braided-stream, meandering-stream, deltaic and shoreline, and lacustrine sediments preserved in multi-level terraces in the northern Rio Desaguadero valley record two high-water intervals: one between 4,500 and 3,900 yr BP and another between 2,000 and 2,200 yr BP. These wet periods were interrupted by three periods of fluvial downcutting, centered at approximately 4,000 yr BP, 3,600 yr BP, and after 2,000 yr BP. Braided-river sediments preserved in a single terrace level in the southern Rio Desaguadero valley record a history of nearly continuous fluvial sedimentation from at least 7,000 yr BP until approximately 3,200 yr BP that was followed by a single episode (post-3,210 yr BP) of down-cutting and lateral migration. The deposition and subsequent fluvial downcutting of the northern strata was controlled by changes in effective moisture that can be correlated to Holocene water-level fluctuations of Lake Titicaca. The deposition and dissection of braided-stream sediments to the south are more likely controlled by a combination of base-level change and sediment input from the Rio Mauri.

  4. The Mono Lake geomagnetic excursion recorded in loess: Its application as time marker and implications for its geomagnetic nature

    NASA Astrophysics Data System (ADS)

    Hambach, U.; Hark, M.; Zeeden, C.; Reddersen, B.; Zöller, L.; Fuchs, M.

    2009-04-01

    One of the youngest and worldwide documented geomagnetic excursions in the Brunhes Chron is the Mono Lake excursion (MLE). It has been detected in marine and terrestrial sedimentary archives as well as in lavas. Recent age determinations and age estimates for the MLE centre around an age interval of approximately 31 - 34 ka. Likewise the Laschamp excursion the MLE goes along with a distinct peak in cosmogenic radionuclides in ice cores and sedimentary archives. It provides therefore an additional geomagnetic time marker for various geoarchives to synchronise different climate archives. Here we report on a detailed record of the MLE from a loess site at Krems, Lower Austria. The site is situated on the southern slope of the Wachtberg hill in the vicinity of the old city centre of Krems. The archive comprises Middle to Upper Würmian (Late Pleistocene) loess in which an Upper Palaeolithic (Early Gravettian) cultural layer is embedded. The most spectacular finds are a double infant burial found in 2005 and a single burial discovered in 2006 (Einwögerer et al., 2006). Generally, archaeological findings show an extraordinarily good preservation due to embedding in rapidly sedimented loess (Händel et al., 2008). The about 10 m thick loess pile consists of calcareous sandy, coarse silt which is rich in mica indicating local sources. It is well stratified with brownish horizons representing embryonic soils pointing to incipient pedogenesis. Some of the pedo-horizons show occasionally indications of minor erosion and bedding-parallel sediment transport, but no linear erosional features. Pale greyish horizons are the result of partial gleying under permafrost conditions. No strong pedogenesis including decalcification and clay formation is present. The cultural layer is still covered by more than 5 m of loess, and dated by radiocarbon to ~27 ka 14C BP (Einwögerer et al., 2006). Below this layer up to 2.5 m of loess resting on Lower Pleistocene fluvial gravels are

  5. Sedimentary records of sewage pollution using faecal markers in contrasting peri-urban shallow lakes.

    PubMed

    Vane, C H; Kim, A W; McGowan, S; Leng, M J; Heaton, T H E; Kendrick, C P; Coombs, P; Yang, H; Swann, G E A

    2010-12-15

    Sewage contamination in shallow lake sediments is of concern because the pathogens, organic matter and nutrients contribute to the deterioration of the water-bodies' health and ecology. Sediment cores from three shallow lakes (Coneries, Church and Clifton Ponds) within Attenborough nature reserve located downstream of sewage treatment works were analysed for TOC, C/N, δ(13)C, δ(15)N, bacterial coliforms and faecal sterols. (210)Pb and (137)Cs activities were used to date the sediments. Elemental analysis suggests that the source of organic matter was algal and down profile changes in δ(13)C indicate a possible decrease in productivity with time which could be due to improvements in sewage treatment. δ(15)N for Coneries Pond are slightly higher than those observed in Church or Clifton and are consistent with a sewage-derived nitrate source which has been diluted by non-sewage sources of N. The similarity in δ(15)N values (+12 ‰ to +10 ‰) indicates that the three ponds were not entirely hydrologically isolated. Analysis by gas chromatography/mass spectrometry (GC/MS) reveals that Coneries Pond had sterol concentrations in the range 20 to 30 μg/g (dry wt.), whereas, those from Clifton and Church Ponds were lower. The highest concentrations of the human-sourced sewage marker 5β-coprostanol were observed in the top 40 cm of Coneries Pond with values up to 2.2 μg/g. In contrast, Church and Clifton Pond sediments contain only trace amounts throughout. Down-profile comparison of 5β-coprostanol/cholesterol, 5β-coprostanol/(5β-coprostanol+5α-cholestanol) and 5β-epicoprostanol/coprostanol as well as 5α-cholestanol/cholesterol suggests that Coneries Pond has received appreciable amounts of faecal contamination. Examination of 5β-stigmastanol (marker for herbivorous/ruminant animals) down core concentrations suggests a recent decrease in manure slurry input to Coneries Pond. The greater concentration of β-sitosterol in sediments from Church and Clifton Ponds

  6. Reconstruction of the West Pacific ENSO precipitation anomaly using the compound-specific hydrogen isotopic record of marine lake sediments of Palau

    NASA Astrophysics Data System (ADS)

    Smittenberg, R. H.; Sachs, J. P.; Dawson, M. N.

    2004-12-01

    There is still much uncertainty whether the El Niño Southern Oscillation (ENSO) will become stronger or more frequent in a warming global climate. A principal reason for this uncertainty stems from a glaring lack of paleoclimate data in the equatorial Pacific, which hampers model validation. To partly resolve this data deficiency, sediments of three marine anoxic lakes were cored in Palau, an island group that lies in the heart of the West Pacific Warm Pool. The lakes contain seawater that seeps through fissures in the surrounding karst, and they are permanently stratified due to fresh water input provided by the year-round wet climate (map 1970-2000 = 3.7m). During ENSO events, however, the islands suffer from drought. The surface water hydrogen isotopic compositions in the lakes are sensitive to the relative proportions of D-depleted rainwater and D-enriched seawater, and are therefore sensitive to ENSO events. The lake surface water H/D values are recorded by algal and bacterial biomarkers that are preserved well in the highly organic and anoxic sediments, which accumulate relatively fast (mean 1 mm/yr). Ongoing down core measurement will eventually result in a precipitation proxy record of the islands. To obtain endmember D/H values, a comprehensive set of water samples from sea, lakes and rain water was obtained, as well as suspended particulate matter. Higher plant biomarker D/H values derived from the jungle vegetation surrounding the lakes may render supporting climatic proxy data, being influenced by evapotranspiration. Some lakes are inhabited by millions of jellyfish (Mastigias) that live in symbiosis with zooxanthellae. The jellyfish of one of the investigated lakes disappeared completely after the last large ENSO event in 1998 (returning in 2000-01), and a correlation is suggested. To reconstruct the history of jellyfish occurrence, jellyfish and sedimentary lipids were extracted and compared. In addition to a possible ENSO proxy record, this

  7. A multi-proxy intercomparison of environmental change in two maar lake records from central Turkey during the last 14 ka

    NASA Astrophysics Data System (ADS)

    Roberts, C. Neil; Allcock, Samantha L.; Arnaud, Fabien; Dean, Jonathan R.; Eastwood, Warren J.; Jones, Matthew D.; Leng, Melanie J.; Metcalfe, Sarah E.; Malet, Emmanuel; Woodbridge, Jessie; Yiǧitbaşıoǧlu, Hakan

    2016-04-01

    Individual palaeoenvironmental records are a combination of regional-scale (e.g. climatic) and local factors. In order to separate these signals, we compare multiple proxies from two nearby maar lake records, on the assumption that common signals are due to regional-scale forcing. On the other side, we infer that residual signals are likely to be local and site-specific, rather than reflecting regional climate changes. A new core sequence from Nar lake has been dated by varve counting and U-Th as covering the last 13,800 years (Dean et al., 2015; Roberts et al., 2016). Periods of marked dryness are associated with peaks in Mg/dolomite, elevated Diatom-Inferred Electrical Conductivity, an absence of laminated sediments, and low Quercus/chenopod ratios. These conditions occurred during the Late-Glacial stadial, at 4.3-3.7 and 3.2-2.6 ka BP. Wet phases occurred during the early Holocene and again 1.5-0.6 ka, characterised by negative δ18O values, calcite precipitation, high Ca/Sr ratios, a high % of planktonic diatoms, laminated sediments, and high Quercus/chenopod ratios. Comparison with the independently dated record from Eski Acıgöl (Roberts et al., 2001) shows good correspondence for many proxies, especially for δ18O. A ranking of multiple proxies shows the worst correspondence is for clastic lithogenic elements (e.g. Ti flux). Differences between the two lake records are caused by basin infilling at Eski Acıgöl, which fails to register climatic changes during the last 2 ka, and to catchment erosion and increased flux of lithogenic elements into Nar lake; this is catchment-specific and primarily anthropogenic rather than climatic in origin. In separating a regional signal from site-specific "noise", two lakes may therefore be better than one. Dean, J.R. et al. 2015 Eastern Mediterranean hydroclimate over the late glacial and Holocene, reconstructed from the sediments of Nar lake, central Turkey, using stable isotopes and carbonate mineralogy. Quaternary

  8. Late Pliocene and Early Pleistocene vegetation history of northeastern Russian Arctic inferred from the Lake El'gygytgyn pollen record

    NASA Astrophysics Data System (ADS)

    Andreev, A. A.; Tarasov, P. E.; Wennrich, V.; Raschke, E.; Herzschuh, U.; Nowaczyk, N. R.; Brigham-Grette, J.; Melles, M.

    2014-05-01

    The 318 m thick lacustrine sediment record from Lake El'gygytgyn, northeastern Russian Arctic cored by the international El'gygytgyn Drilling Project provides unique opportunities for the time-continuous reconstruction of the regional paleoenvironmental history for the past 3.6 Myr. Pollen studies of the lower 216 m of the lacustrine sediments demonstrate their value as an excellent archive of vegetation and climate changes during the Late Pliocene and Early Pleistocene. About 3.5-3.35 Myr BP, the vegetation at Lake El'gygytgyn, now an area of tundra was dominated by spruce-larch-fir-hemlock forests. After ca. 3.35 Myr BP dark coniferous taxa gradually disappeared. A very pronounced environmental change took place ca. 3.31-3.28 Myr BP, corresponding to the Marine Isotope Stage (MIS) M2, when treeless tundra- and steppe-like habitats became dominant in the regional vegetation. Climate conditions were similar to those of Late Pleistocene cold intervals. Numerous coprophilous fungi spores identified in the pollen samples suggest the presence of grazing animals around the lake. Following the MIS M2 event, larch-pine forests with some spruce mostly dominated the area until ca. 2.6 Myr BP, interrupted by colder and drier intervals ca. 3.043-3.025, 2.935-2.912, and 2.719-2.698 Myr BP. At the beginning of the Pleistocene, ca. 2.6 Myr BP, noticeable climatic deterioration occurred. Forested habitats changed to predominantly treeless and shrubby environments, which reflect a relatively cold and dry climate. Peaks in observed green algae colonies (Botryococcus) around 2.53, 2.45, 2.32-2.305, 2.20 and 2.16-2.15 Myr BP suggest a spread of shallow water environments. A few intervals (i.e., 2.55-2.53, ca. 2.37, and 2.35-2.32 Myr BP) with a higher presence of coniferous taxa (mostly pine and larch) document some relatively short-term climate ameliorations during Early Pleistocene glacial periods.

  9. An improved chronology for the Lateglacial palaeoenvironmental record of Lake Haemelsee, Germany: challenges for independent site comparisons

    NASA Astrophysics Data System (ADS)

    Lane, Christine; Brauer, Achim; Ramsey Christopher, Bronk; Engels, Stefan; Haliuc, Aritina; Hoek, Wim; Hubay, Katalin; Jones, Gwydion; Sachse, Dirk; Staff, Richard; Turner, Falko; Wagner-Cremer, Frederike

    2016-04-01

    Exploring temporal and spatial variability of environmental response to climatic changes requires the comparison of widespread palaeoenvironmental sequences on their own, independently-derived, age models. High precision age-models can be constructed using statistical methods to combine absolute and relative age estimates measured using a range of techniques. Such an approach may help to highlight otherwise unrecognised uncertainties, where a single dating method has been applied in isolation. Radiocarbon dating, tephrochronology and varve counting have been combined within a Bayesian depositional model to build a chronology for a sediment sequence from Lake Haemelsee (Northern Germany) that continuously covers the entire Lateglacial and early Holocene. Each of the dating techniques used brought its own challenges. Radiocarbon dates provide the only absolute ages measured directly in the record, however a low macrofossil content led to small sample sizes and a limited number of low precision dates. A floating varved interval provided restricted but very precise relative dating for sediments covering the Allerød to Younger Dryas transition. Well-spaced, visible and crypto- tephra layers, including the widespread Laacher See , Vedde Ash, Askja-S and Saksunarvatn tephra layers, allow absolute ages for the tephra layers established in other locations to be imported into the Haemelsee sequence. These layers also provide multiple tie-lines that allow the Haemelsee sequences to be directly compared at particular moments in time, and within particular intervals, to other important Lateglacial archives. However, selecting the "best" published tephra ages to use in the Haemelsee age model is not simple and risks biasing comparison of the palaeoenvironmental record to fit one or another comparative archive. Here we investigate the use of multiple age models for the Haemelsee record, in order to retain an independent approach to investigating the environmental transitions of

  10. Stromatolites provide a terrestrial record of a ~35ka warming event in Walker Lake, a remnant of the Pleistocene Lake Lahontan (Western Nevada, USA)

    NASA Astrophysics Data System (ADS)

    Juarez Rivera, M.; Agić, H.; Ward, L.; Kerrigan, Z.; Petryshyn, V. A.; Frantz, C. M.; Tripati, A.; Corsetti, F. A.; Spear, J. R.

    2014-12-01

    Walker Lake is a closed-basin remnant of the large Pleistocene glacial Lake Lahontan that has experienced drastic changes in water level. Carbonate structures, such as stromatolites, precipitated from the lake and were studied as potential sources for historical climate change. A 16.7 cm long stromatolite was collected from a paleoshoreline approximately 58 meters above the present Walker Lake surface elevation. Radiocarbon dating revealed that the stromatolite spans approximately 2,000 years of growth, from 35,540 to 33,580 Calibrated YBP (IntCal13). Distinct laminae were drilled along the growth axis, and the resulting powders were collected for clumped isotope analyses, which uses the amount of heavy CO2 "clumps" (13C-18O-16O, or ∆47) generated from the dissolution of carbonate in acid to measure the temperature of formation of a rock. Using this method, we tracked the change in lake temperature and δ18Ofluid during stromatolite formation. Our results show that the stromatolite experienced an overall increase in temperature and δ18Ofluid values during the course of accretion. The resulting data were input to a Rayleigh distillation model for water evaporation in order to estimate the magnitude of lake level and volume fluctuations. Our modeling results show that, during the course of stromatolite accretion, the lake experienced a volume decrease of ~5 Km3, corresponding to lake level fall of ~14 meters. This study shows that lacustrine material (such as stromatolites or other tufas) can potentially be used to reconstruct the timing and magnitude of terrestrial climate change during important transitions in Earth history.

  11. A late Holocene metal record of Andean climate and anthropogenic activity in lake sediments near Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Beal, S. A.; Kelly, M. A.; Jackson, B. P.; Stroup, J. S.; Osterberg, E. C.

    2011-12-01

    The tropical hypothesis maintains that major changes in global climate are motivated by phenomena based at tropical latitudes. Evidence for this hypothesis lies in: modern-day observations of El Niño Southern Oscillation (ENSO); East African lake sediment records of Intertropical Convergence Zone (ITCZ) position that precede high-latitude changes; and the potential for ITCZ shifts to cause major CO2 degassing from the Southern Ocean. In order to improve the understanding of these phenomena we present an ~1800 year record of atmospheric metal deposition in a lake sediment core near Quelccaya Ice Cap, Peru (13.9 °S). In June, 2010 we collected a 1.45 meter-long core from Yanacocha - a small, closed-basin tarn that has been isolated from glacial input since ~11,200 BP. The chronology for the core is based on 4 of 6 AMS 14C dates on aquatic macrofossils and one sharp Zr/Ti anomaly at 36 cm, likely derived from the 350 BP eruption of Huaynaputina. We completely digested organic-rich core samples at 1 cm resolution using HNO3, HCl, and HF in a closed-vessel microwave system, and then analyzed the digestates for 67 metals by inductively coupled plasma mass spectrometry. Here we show fluxes of lithogenic metals (Fe, Nb, Ti, and Zr) that reflect changes in wind strength and aridity, fluxes of lithogenic metal isotopes (REEs and Pb) that reflect wind direction, and enrichment factors (EFs) of metals (Ag, As, Cd, Cu, Hg, and Pb) that reflect anthropogenic activity. Five episodic peaks in lithogenic metal fluxes, centered around 1800, 1300, 900, 600, and 100 yrs BP, are thought to result from either drier or windier conditions, potentially caused by a northern ITCZ position or a more persistent El Niño state. The provenance of atmospheric deposition, evidenced by REE ratios (light REEs / heavy REEs), suggest that high lithogenic fluxes are associated with a change in wind direction, possibly caused by a change in the ENSO state, which will be explored with forthcoming Pb

  12. The history of Cesium-137 liquid emissions by Mühleberg Nuclear Power Plant (Switzerland) is recorded in Lake Biel sediments

    NASA Astrophysics Data System (ADS)

    Girardclos, Stéphanie; Faessler, Jérôme; Loizeau, Jean-Luc; Zehringer, Markus

    2014-05-01

    Lake sediments record changes happening in their upstream river catchment and regional environment which includes traces of artificial radionuclides emissions deriving from human activities. 137Cs emissions started worldwide in the early 1950's and peaked in 1963-64 due to nuclear bomb tests in the high atmosphere. A second 137Cs activity peak, due to the 1986 Chernobyl catastrophe is recorded in sediment archives from central Europe. These two events (1963/64 and 1986) serve routinely as time markers for recent lake records. Nuclear Power Plants (NPPs) are often constructed along river course for cooling purposes. Since 1972, Mühleberg NPP (central Switzerland) lies 18 km upstream Lake Biel and releases radioactive liquid emissions into the Aare river which adds to the diffuse - above mentioned - radioactive pollution, as revealed by Albrecht et al. (1995; 1998) and recently confirmed by Thevenon et al. (2013) from Lake Biel sediments. The water of Lake Biel is used as drinking water for ca. 60'000 inhabitants and its outflowing water is further used by downstream cities lying on the Aare-Rhine course such as Basel (200'000 inhab.) In this study, the 137Cs activity curve of a 90-cm-long sediment core (BIE10-8), retrieved in April 2010 from the central Lake Biel basin at ca. 50 m depth, and measured by gamma ray spectrometry using high resolution germanium detectors, confirms previous work and reveals a new peak for the year 1998-2000, as observed by Thevenon et al. (2013). This peak is most certainly due to Mühleberg NPP as shown by the good correlation with declared 137Cs liquid emissions indicating a significant increase in 1998-99. Decay corrected activity data, converted into 137Cs fluxes, point to water pollution by Mühleberg NPP in 1975-1985 as being similar to those linked to the catastrophic events in 1963-64 and 1986 (about 75%). As former study showed that Lake Biel sediments scavenge only a portion of the total radionuclide in water, i.e. 30-55% for

  13. Late Holocene subalpine lake sediments record a multi-proxy shift to increased aridity at 3.65 kyr BP, following a millennial-scale neopluvial interval in the Lake Tahoe watershed and western Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Noble, Paula; Zimmerman, Susan; Ball, Ian; Adams, Kenneth; Maloney, Jillian; Smith, Shane

    2016-04-01

    A mid Holocene dry period has been reported from lake records in the Great Basin and Sierra Nevada, yet the spatial and temporal extent of this interval is not well understood. We present evidence for a millennial-scale interval of high winter precipitation (neopluvial) at the end of the mid Holocene in the Lake Tahoe-Pyramid Lake watershed in the northern Sierra Nevada that reached its peak ˜3.7 kcal yr BP. A transect of 4 cores recovered from Fallen Leaf Lake in the Tahoe Basin were dated using AMS14C on plant macrofossils, and analyzed using scanning XRF, C and N elemental and stable isotope measurements, and diatoms as paleoclimate proxies. Fallen Leaf Lake is a deep glacially-derived lake situated in the Glen Alpine Valley at an elevation of 1942m, ˜45 m above the level of Lake Tahoe. In Fallen Leaf Lake, the end of the neopluvial is dated at 3.65 ± 0.09 kcal yr BP, and is the largest post-glacial signal in the cores. The neopluvial interval is interpreted to be a period of increased snowpack in the upper watershed, supported by depleted g δ13Corg (-27.5) values, negative baseline shifts in TOC and TN, lower C:N, and high abundances of Aulacoseira subarctica, a winter-early spring diatom. Collectively, these proxies indicate cooler temperatures, enhanced mixing, and/or shortened summer stratification resulting in increased algal productivity relative to terrestrial inputs. The neopluvial interval ends abruptly at 3.65 ka, with a change from mottled darker opaline clay to a homogeneous olive clay with decreased A. subarctica and opal, and followed by a 50% reduction in accumulation rates. After this transition δ13Corg becomes enriched by 2‰ and TOC, TN, and C:N all show the start of positive trends that continue through the Holocene. Pyramid Lake is an endorheic basin situated at the terminal end of the watershed, and inflow arrives from the Lake Tahoe basin via the Truckee River. At Pyramid Lake, existing ages on paleo-shorelines indicate a significant

  14. Late-Quaternary Environmental Change in the Sierra Nevada: A 19,000-Year Sedimentary Organic Matter Record From Swamp Lake, Yosemite National Park, California

    NASA Astrophysics Data System (ADS)

    Street, J. H.; Anderson, R. S.; Starratt, S. W.; Paytan, A.

    2007-12-01

    Paleoclimate and environmental change in California over the last several millennia have received intensive study, in part because future climate warming in this drought-vulnerable region is likely to be expressed most acutely through rearrangements in the hydrological cycle (e.g., changes in the amount and timing of precipitation, snowmelt, and runoff). The 19,000-year sedimentary record from Swamp Lake, a small mid-elevation (1554 m) lake in the central Sierra Nevada, provides a rare opportunity to examine the relationships among climate variability, drought, and ecosystem response over a longer timeframe, spanning deglaciation and the Holocene, including several periods in which the Sierra Nevada is thought to have been warmer and drier than the present. Lake sedimentary organic matter (SOM) preserves paleoenvironmental information in a variety of elemental, isotopic, molecular, and microfossil indicators. In this study we utilize carbon and nitrogen elemental abundances and isotopic compositions (δ13C, δ15N) of bulk organic matter, along with measurements of biogenic silica (BSi), diatom and pollen assemblages, and magnetic susceptibility to reconstruct changes in lake productivity, organic matter sources, and plant and algal community composition in relation to climatic variables. We will also present preliminary measurements of the hydrogen isotope ratios (δD) of specific biomarker compounds extracted from the sediment, providing more direct information about the hydrologic status of the lake and watershed. In addition to tracing the post-glacial recovery and Holocene evolution of Sierra Nevada ecosystems, the Swamp Lake SOM record contains significant millennial- and century-scale variability that may correspond to periods of enhanced/suppressed ENSO activity.

  15. Extreme events in the sedimentary record of maar Lake Pavin: Implications for natural hazards assessment in the French Massif Central

    NASA Astrophysics Data System (ADS)

    Chassiot, Léo; Chapron, Emmanuel; Di Giovanni, Christian; Albéric, Patrick; Lajeunesse, Patrick; Lehours, Anne-Catherine; Meybeck, Michel

    2016-06-01

    A set of sedimentary cores, high resolution swath bathymetry and subbottom profiler data provides new insights on sedimentary processes in meromictic maar Lake Pavin, France. Three sedimentary environments (i.e., littoral, plateau and basin) have been identified in the lake from sediment composition using bulk organic geochemistry and the analysis of hydroacoustic images. Various forms of rapidly deposited layers (RDLs) have been identified and radiocarbon dated. An up to date stratigraphy of sedimentary events matching coeval RDLs across the lake is presented and illustrates a wide range of natural hazards linked to Lake Pavin during the last 2000 years. In AD 600, a sudden lake outburst triggered a slump deposit along with a 9 m lake-level drop that drove shifts in sedimentary organic matter composition. Outside the lake, outburst flood deposits have been described downstream and provide sedimentary evidence for this event. The lake-level drop also favored the generation of gravity reworking processes, as shown by (1) a regional earthquake-triggered large slope failure on the plateau connected to a mass-wasting deposit in the basin dated to AD 1300, and (2) a succession of turbidites in AD 1825 and AD 1860 contemporaneous to two historic earthquakes, suggesting that this lake is sensitive to earthquakes with a minimum epicentral intensity of V. Finally, past observations of lake water color changes in AD 1783 and AD 1936, similar to reports in other meromictic lakes, match iron-rich deposits identified in maar lake sediments and suggest that Lake Pavin could have undergone limnic eruptions.

  16. A ~13,000 year history of glacial variability in the tropical Andes recorded in lake sediments from the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Stansell, N. D.; Rodbell, D. T.; Mark, B. G.; Sedlak, C. M.

    2012-04-01

    Pro-glacial lake sediments from Peru contain continuous records of climatic variability spanning the Holocene. Here we present results from multiple alpine lake basins along an east-west transect through the Peruvian Andes that contain high-resolution records of clastic sediment variability for the last ~13,000 years. Radiocarbon-dated sediment cores were measured by scanning X-ray Fluorescence, and for magnetic susceptibility, carbon content, biogenic silica and calcium carbonate concentrations. Samples of bedrock and sediments from glacial moraines in the watersheds were analyzed using ICP-MS in order to fingerprint and trace the source of glacial sediments deposited in the lakes. Preliminary results indicate that glaciers retreated after after ~13,000 cal yr BP and remained less extensive during the remaining late Glacial Stage and early Holocene. Gradually increasing clastic sediments through most of the remaining Holocene indicate that glaciers became progressively larger, or more erosive, during the last ~10,000 years. This overall Holocene trend of increasing glacier extent was interrupted by a pronounced decrease in clastic sediments from ~2500 to 550 cal yr BP, and glaciers then advanced again during the Little Ice Age (~550 to 70 cal yr BP). Periods of ice advance in the Peruvian Andes generally correspond to times of increased moisture-balance and lower temperatures that are recorded in other regional, terrestrial proxy records.

  17. A high resolution Late Glacial to Holocene record of climatic and environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack; Francke, Alexander; Leng, Melanie; Vane, Chris; Wagner, Bernd

    2015-04-01

    Lake Ohrid (Macedonia/Albania) is one of the world's oldest lakes and is renowned for its high degree of biological diversity. It is the target site for the ICDP SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) project, an international research initiative to study the links between geology, environment and the evolution of endemic taxa. In 2011 a 10-meter core was recovered from the western shore of Lake Ohrid adjacent to the Lini Peninsula. Here we present high-resolution stable isotope and geochemical data from this core through the Late Glacial to Holocene to reconstruct past climate and hydrology (TIC, δ18Ocalcite, δ13Ccalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock-Eval pyrolysis). The data identify 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC, TOC and higher isotope values, (2) the early to mid-Holocene characterised by higher TOC, TOC/N and lower δ18Ocalcite, and (3) the late Holocene which shows a marked decrease in TIC and TOC. In general there is an overall trend of increasing δ18Ocalcite from 9 ka to present, suggesting progressive aridification through the Holocene, which is consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the SCOPSCO project cores recovered in spring-summer 2013 dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  18. A high-resolution Late Glacial to Holocene record of environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Francke, Alexander; Leng, Melanie J.; Vane, Christopher H.; Wagner, Bernd

    2015-09-01

    Lake Ohrid (Macedonia/Albania) is the oldest extant lake in Europe and exhibits an outstanding degree of endemic biodiversity. Here, we provide new high-resolution stable isotope and geochemical data from a 10 m core (Co1262) through the Late Glacial to Holocene and discuss past climate and lake hydrology (TIC, δ13Ccalcite, δ18Ocalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock Eval pyrolysis). The data identifies 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC and TOC contents, (2) the early to mid-Holocene characterised by high TOC and increasing TOC/N and (3) the Late Holocene-Present which shows a marked decrease in TIC and TOC. In general, an overall trend of increasing δ18Ocalcite from 9 ka to present suggests progressive aridification through the Holocene, consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of past Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the International Continental scientific Drilling Program Scientific Collaboration On Past Speciation Conditions in Lake Ohrid project cores recovered in spring-summer 2013, potentially dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  19. Continuous lake-sediment records of glaciation in the Sierra Nevada between 52,600 and 12,500 14C yr B.P.

    USGS Publications Warehouse

    Benson, L.V.; May, Howard M.; Antweiler, R.C.; Brinton, T.I.; Kashgarian, Michaele; Smoot, J.P.; Lund, S.P.

    1998-01-01

    The chemistry of the carbonate-free clay-size fraction of Owens Lake sediments supports the use of total organic carbon and magnetic susceptibility as indicators of stadial-interstadial oscillations. Owens Lake records of total organic carbon, magnetic susceptibility, and chemical composition of the carbonate-free, clay-size fraction indicate that Tioga glaciation began ~24,500 and ended by ~13,600 14C yr B.P. Many of the components of glacial rock flour (e.g., TiO2, MnO, BaO) found in Owens Lake sediments achieved maximum values during the Tioga glaciation when valley glaciers reached their greatest extent. Total organic carbon and SiO2 (amorphous) concentrations reached minimum values during Tioga glaciation, resulting from decreases in productivity that accompanied the introduction of rock flour into the surface waters of Owens Lake. At least 20 stadial-interstadial oscillations occurred in the Sierra Nevada between 52,600 and 14,000 14C yr B.P. Total organic carbon data from a Pyramid Lake sediment core also indicate oscillations in glacier activity between >39,500 and ~13,600 14C yr B.P. Alpine glacier oscillations occurred on a frequency of ???1900 yr in both basins, suggesting that millennial-scale oscillations occurred in California and Nevada during most of the past 52,600 yr.

  20. The depositional records of two coastal lakes in south-central Chile (Lago Lanalhue and Lago Lleu Lleu, 38°S): Active forearc tectonics and climate variability

    NASA Astrophysics Data System (ADS)

    Echtler, H. P.; Stefer, S.; Moernaut, J.; Melnick, D.; Arz, H. W.; Lamy, F.; Haug, G. H.

    2008-12-01

    On millennial time scales, the southern Chilean active margin is not only characterized by active tectonics and subduction-related coastal deformation, but also influenced by pronounced variations in the prevailing climate conditions. Here we focus on the depositional records of two coastal lakes in the southern part of the Arauco Peninsula (38°S, Lago Lanalhue and Lago Lleu Lleu), an area very sensitive to changes in both climate and tectonics. For the present study, we used a multi-proxy approach including seismic reflection surveys, sedimentological, mineralogical, and geochemical analyses, supported by radiocarbon dating. Seismic reflection analyses reveal that Lago Lanalhue and Lago Lleu Lleu developed within former river valleys that once drained into the Pacific Ocean. During the early Holocene, the ancient rivers were dammed by rising sills due to inverse faulting and tectonic uplift, turning first into marginal-marine lagoonal systems and subsequently evolving into lakes. On the basis of sedimentological analyses and radiocarbon dating, the different stages of the lakes development have been reconstructed in consideration of the regional tectonic and climatic history. The comparison of the transitions between different stratigraphic units with contemporaneous variations in the global sea level, allowed the calculation of Holocene uplift rates. These are about twenty times higher for the upraised sills than for the lakes themselves. Therefor, we interpret the sills to be the surface expression of a blind thrust associated with a prominent inverse fault (Morguilla Fault) controlling uplift and folding of the Arauco Peninsula. Geochemical data from the lacustrine part of the sedimentary sequences reveal a continuous record of the middle to late Holocene regional climate history. The results indicate more arid conditions during the middle Holocene and more humid conditions during the late Holocene. An additional increase in climate variability is recorded

  1. Lake Prespa palaeoenvironment since the MIS 5: a continuous record from a mid-altitude site on modern human's way to Europe.

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, K.; Aufgebauer, A.; Schäbitz, F.; Wagner, B.

    2012-04-01

    Lake Prespa is situated in the Balkans (40°57'50'' N, 20°58'41'' E) along the eastern trajectory of modern human dispersal. A long (c. 18m) composite sediment core was investigated using geophysical, geochemical and pollen analyses. This study aims to reconstruct the palaeoenvironment and palaeoclimate from a mid-altitude (849m asl) site and evaluate their implications in the migration of our ancestors from Africa to Europe. The age-depth model, based on radiocarbon dating and tephrochronology, indicates continuous sedimentation reaching back to MIS 5. According to the pollen record, the wider Lake Prespa catchment sustained refugial temperate tree populations throughout this period. Following the decline of woodlands at the end of MIS 5, pollen concentration and TOC percentages retain relatively low values until the onset of the Holocene when closed forest formations dominated the landscape signaling the establishment of a warmer and moister climate. Distinct fluctuations of arboreal relative percentages coupled with the occurrence of TIC and Mn peaks can be tentatively correlated to Heinrich events. Climatic oscillations are sensitively recorded in the Lake Prespa sediments at a sub-millennial scale permitting a detailed reconstruction of the regional palaeoenvironment, as well as correlations with other regional and global climate archives. This project is part of the Collaborative Research Center 806: "Our Way To Europe; Culture-Environment Interaction and Human Mobility in the Late Quaternary" (www.sfb806.de). Keywords: Lake Prespa, Balkans, eastern Mediterranean, pollen analysis, palaeolimnology, modern human dispersal

  2. Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Xingqi; Herzschuh, Ulrike; Wang, Yongbo

    2016-04-01

    Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium.

  3. Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau

    PubMed Central

    Li, Kai; Liu, Xingqi; Herzschuh, Ulrike; Wang, Yongbo

    2016-01-01

    Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium. PMID:27091591

  4. Cold event at 8200 yr B.P. recorded in annually laminated lake sediments in eastern Europe

    NASA Astrophysics Data System (ADS)

    Veski, Siim; Seppä, Heikki; Ojala, Antti E. K.

    2004-08-01

    A quantitative annual mean temperature reconstruction from an annually laminated lake-sediment sequence in Estonia, eastern Europe, shows a distinct cold period at 8400 8080 yr B.P. (= before A.D. 2000); the timing is consistent with that seen in the Greenland ice-core data and various high-resolution records from western Europe. During maximal cooling at 8250 8150 yr B.P., the annual mean temperature in Estonia was ˜2.0 °C colder than prior to and ˜3.0 °C colder than after the cooling. The pollen-stratigraphic and sedimentological data suggest especially cold and snowy winter conditions. The duration and amplitude of the cold event agree with the modeled impact of a sudden freshening of the North Atlantic surface water and subsequent perturbation of the thermohaline circulation. Provided that the cold event was caused by a pulse of freshwater—from the melting Laurentide Ice Sheet—to the North Atlantic, the results indicate a strong teleconnection between the North Atlantic oceanic forcing and the east European climate at least up to long 26°E, mediated probably by the changing intensity of the zonal atmospheric circulation.

  5. Rapid climate fluctuations over the past millennium: evidence from a lacustrine record of Basomtso Lake, southeastern Tibetan Plateau.

    PubMed

    Li, Kai; Liu, Xingqi; Herzschuh, Ulrike; Wang, Yongbo

    2016-01-01

    Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium. PMID:27091591

  6. Lead isotope ratios in six lake sediment cores from Japan Archipelago: Historical record of trans-boundary pollution sources.

    PubMed

    Hosono, Takahiro; Alvarez, Kelly; Kuwae, Michinobu

    2016-07-15

    Sediment cores from six lakes situated from north to south on the Japanese Archipelago were collected during 2009-2010 to investigate the hypothesis that deposition of lead (Pb) was coming from East Asia (including China, South Korea and eastern part of Russia). Accumulation rates and ages of the lake sediment were estimated by the (210)Pb constant rate of supply model and (137)Cs inputs to reconstruct the historical trends of Pb accumulation. Cores from four lakes located in the north and central Japan, showed clear evidence of Pb pollution with a change in the (206)Pb/(207)Pb and (208)Pb/(207)Pb ratios in the recent sediment as compared to the deeper sediment. Among the six studied lakes, significant inputs of anthropogenic lead emissions were observed at Lake Mikazuki (north Hokkaido in north Japan), Lake Chokai (north of Honshu), and Lake Mikuriga (central part of Honshu). Pb isotopic comparison of collected core sediment and previously reported data for wet precipitation and aerosols from different Asian regions indicate that, before 1900, Pb accumulated in these three lakes was not affected by trans-boundary sources. Lake Mikazuki started to receive Pb emissions from Russia in early 1900s, and during the last two decades, this lake has been affected by trans-boundary Pb pollution from northern China. Lake Chokai has received Pb pollutant from northern China since early 1900s until 2009, whereas for the Lake Mikuriga the major Pb contaminant was transported from southern China during the past 100years. The results of our study demonstrate that Japan Archipelago has received trans-boundary Pb emissions from different parts of East Asian region depending on location, and the major source region has changed historically. PMID:27058126

  7. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    USGS Publications Warehouse

    Anderson, Lesleigh; Max Berkelhammer,; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.

    2016-01-01

    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean–atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north–south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean–atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean–atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north–south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean–atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the

  8. Lake oxygen isotopes as recorders of North American Rocky Mountain hydroclimate: Holocene patterns and variability at multi-decadal to millennial time scales

    NASA Astrophysics Data System (ADS)

    Anderson, Lesleigh; Berkelhammer, Max; Barron, John A.; Steinman, Byron A.; Finney, Bruce P.; Abbott, Mark B.

    2016-02-01

    Lake sediment oxygen isotope records (calcium carbonate-δ18O) in the western North American Cordillera developed during the past decade provide substantial evidence of Pacific ocean-atmosphere forcing of hydroclimatic variability during the Holocene. Here we present an overview of 18 lake sediment δ18O records along with a new compilation of lake water δ18O and δ2H that are used to characterize lake sediment sensitivity to precipitation-δ18O in contrast to fractionation by evaporation. Of the 18 records, 14 have substantial sensitivity to evaporation. Two records reflect precipitation-δ18O since the middle Holocene, Jellybean and Bison Lakes, and are geographically positioned in the northern and southern regions of the study area. Their comparative analysis indicates a sequence of time-varying north-south precipitation-δ18O patterns that is evidence for a highly non-stationary influence by Pacific ocean-atmosphere processes on the hydroclimate of western North America. These observations are discussed within the context of previous research on North Pacific precipitation-δ18O based on empirical and modeling methods. The Jellybean and Bison Lake records indicate that a prominent precipitation-δ18O dipole (enriched-north and depleted-south) was sustained between ~ 3.5 and 1.5 ka, which contrasts with earlier Holocene patterns, and appears to indicate the onset of a dominant tropical control on North Pacific ocean-atmosphere dynamics. This remains the state of the system today. Higher frequency reversals of the north-south precipitation-δ18O dipole between ~ 2.5 and 1.5 ka, and during the Medieval Climate Anomaly and the Little Ice Age, also suggest more varieties of Pacific ocean-atmosphere modes than a single Pacific Decadal Oscillation (PDO) type analogue. Results indicate that further investigation of precipitation-δ18O patterns on short (observational) and long (Holocene) time scales is needed to improve our understanding of the processes that drive

  9. Stage fluctuations of Wisconsin lakes

    USGS Publications Warehouse

    House, Leo B.

    1985-01-01

    This report describes lake-stage fluctuations of 83 gaged lakes in Wisconsin and presents techniques for estimating stage fluctuation at ungaged lakes. Included are stage information at 83 lakes and stage-frequency data for 32 of these lakes that had sufficient record for analysis. Lakes are classified by a hydrologic-topographic lake classification scheme as ground-water flowthrough (GWF) lakes, surface-water drainage (SWD) lakes, and surface-water flow-through (SWF) lakes. Lakes within the same class were found to have similar water-level fluctuations. The lake-stage records indicate that most annual maximums occur during the months of May and June for all three classes. Annual minimum lake levels generally occur in September for surface-water drainage lakes, in March for surface-water flowthrough lakes, and in November for ground-water flow-through lakes. Data for each lake include location, period of water-level record, hydrologic classification, drainage area, surface area, lake volume, maximum depth, long-term mean stage and its standard deviation, maximum and minimum observed lake stage, and the average annual lake-stage fluctuation.

  10. The missing piece: sediment records in remote Mountain lakes confirm glaciers being secondary sources of persistent organic pollutants.

    PubMed

    Schmid, Peter; Bogdal, Christian; Blüthgen, Nancy; Anselmetti, Flavio S; Zwyssig, Alois; Hungerbühler, Konrad

    2011-01-01

    After atmospheric deposition and storage in the ice, glaciers are temporary reservoirs of persistent organic pollutants (POPs). Recently, the hypothesis that melting glaciers represent secondary sources of these pollutants has been introduced by investigations of the historical trend of POPs in a dated sediment core from the proglacial Alpine Lake Oberaar. Here, the hypothesis is further confirmed by the comparison of sediment data gathered from two Alpine lakes with a glaciated and a nonglaciated hydrological catchment. The two lakes (Lake Engstlen and Lake Stein in the Bernese Alps in Switzerland) are situated only 8 km apart at similar altitude and in the same meteorological catchment. In the nonglacial lake sediment of Lake Engstlen, PCBs and DDT (polychlorinated biphenyls and dichlorodiphenyl trichloroethane) levels culminated with the historic usage of these chemicals some 30-50 years ago. In the glacial Lake Stein, this peak was followed by a reincrease in the 1990s, which goes along with the accelerated melting of the adjacent glacier. This study confirms the hypothesis of glaciers being a secondary source of these pollutants and is in accordance with the earlier findings in Lake Oberaar.

  11. Synchronous climate-driven regime shifts at the onset of the Holocene inferred from diatom records in lakes of the Greater Yellowstone region

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Stone, J.; Fritz, S. C.

    2013-12-01

    Diatom records covering the late-glacial and early Holocene periods were recovered from three lakes in different areas of Yellowstone National Park to investigate the impacts of large-scale climatic change on aquatic ecosystem evolution following deglaciation. All lakes show synchronous diatom community shifts from the dominance of tychoplanktic Fragilaria species to benthic species in the interval of 11,300-11500 cal yr BP, indicating a regional decrease in effective moisture. The synchroneity of changes in diatom community structure suggests the influence of overlying large-scale climatic change on lacustrine ecosystems. A major shift in the same interval also is evident in other proxy records, such as pollen and charcoal, throughout the Yellowstone region at the late-glacial/early-Holocene transition. This suggests that the summer insolation maximum induced a widespread and rapid reorganization of ecosystem structure and function.

  12. Episodes of environmental stability versus instability in Late Cenozoic lake records of Eastern Africa.

    PubMed

    Trauth, Martin H; Bergner, Andreas G N; Foerster, Verena; Junginger, Annett; Maslin, Mark A; Schaebitz, Frank

    2015-10-01

    Episodes of environmental stability and instability may be equally important for African hominin speciation, dispersal, and cultural innovation. Three examples of a change from stable to unstable environmental conditions are presented on three different time scales: (1) the Mid Holocene (MH) wet-dry transition in the Chew Bahir basin (Southern Ethiopian Rift; between 11 ka and 4 ka), (2) the MIS 5-4 transition in the Naivasha basin (Central Kenya Rift; between 160 ka and 50 ka), and (3) the Early Mid Pleistocene Transition (EMPT) in the Olorgesailie basin (Southern Kenya Rift; between 1.25 Ma and 0.4 Ma). A probabilistic age modeling technique is used to determine the timing of these transitions, taking into account possible abrupt changes in the sedimentation rate including episodes of no deposition (hiatuses). Interestingly, the stable-unstable conditions identified in the three records are always associated with an orbitally-induced decrease of insolation: the descending portion of the 800 kyr cycle during the EMPT, declining eccentricity after the 115 ka maximum at the MIS 5-4 transition, and after ∼ 10 ka. This observation contributes to an evidence-based discussion of the possible mechanisms causing the switching between environmental stability and instability in Eastern Africa at three different orbital time scales (10,000 to 1,000,000 years) during the Cenozoic. This in turn may lead to great insights into the environmental changes occurring at the same time as hominin speciation, brain expansion, dispersal out of Africa, and cultural innovations and may provide key evidence to build new hypotheses regarding the causes of early human evolution. PMID:26024566

  13. Episodes of environmental stability versus instability in Late Cenozoic lake records of Eastern Africa.

    PubMed

    Trauth, Martin H; Bergner, Andreas G N; Foerster, Verena; Junginger, Annett; Maslin, Mark A; Schaebitz, Frank

    2015-10-01

    Episodes of environmental stability and instability may be equally important for African hominin speciation, dispersal, and cultural innovation. Three examples of a change from stable to unstable environmental conditions are presented on three different time scales: (1) the Mid Holocene (MH) wet-dry transition in the Chew Bahir basin (Southern Ethiopian Rift; between 11 ka and 4 ka), (2) the MIS 5-4 transition in the Naivasha basin (Central Kenya Rift; between 160 ka and 50 ka), and (3) the Early Mid Pleistocene Transition (EMPT) in the Olorgesailie basin (Southern Kenya Rift; between 1.25 Ma and 0.4 Ma). A probabilistic age modeling technique is used to determine the timing of these transitions, taking into account possible abrupt changes in the sedimentation rate including episodes of no deposition (hiatuses). Interestingly, the stable-unstable conditions identified in the three records are always associated with an orbitally-induced decrease of insolation: the descending portion of the 800 kyr cycle during the EMPT, declining eccentricity after the 115 ka maximum at the MIS 5-4 transition, and after ∼ 10 ka. This observation contributes to an evidence-based discussion of the possible mechanisms causing the switching between environmental stability and instability in Eastern Africa at three different orbital time scales (10,000 to 1,000,000 years) during the Cenozoic. This in turn may lead to great insights into the environmental changes occurring at the same time as hominin speciation, brain expansion, dispersal out of Africa, and cultural innovations and may provide key evidence to build new hypotheses regarding the causes of early human evolution.

  14. Two times lowering of lake water at around 48 and 38 ka, caused by possible earthquakes, recorded in the Paleo-Kathmandu lake, central Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Sakai, Harutaka; Fujii, Rie; Sugimoto, Misa; Setoguchi, Ryoko; Paudel, Mukunda Raj

    2016-02-01

    Sedimentary facies and micro-fossil analyses, and AMS14C dating were performed in order to reveal the water-level fall events and draining process of the lake (Paleo-Kathmandu Lake) that existed in the past in the Central Nepal Himalaya. The sedimentary facies change from the lacustrine Kalimati Formation to the deltaic Sunakothi Formation in the southern and central Kathmandu basin, and the abrupt and prominent increase of phytoliths Bambusoideae and Pediastrum, and contemporaneous decrease of sponge spicule and charcoal grains around 48 and 38 ka support the lowering of water level at these times. According to the pollen analysis, both events occurred under rather warm and wet climate, thus supporting that they were triggered by tectonic cause and not by climate change. The first event might be linked to a possible occurrence of a large earthquake with an epicenter in the vicinity of the Paleo-Kathmandu Lake. The occurrence of a mega landslide in Langtang area close to the north of the Kathmandu Valley producing pseudotachylite dated at 51 ± 13 ka could be linked to this earthquake. Finally, the water was completely drained out from the remnant lake at the central part of the Kathmandu basin by ca.12 ka.

  15. Fine Resolution Analysis of Lake Malawi Sediment Record Shows No Significant Climatic Impacts from the Mount Toba Super-Eruption of ~75ky

    NASA Astrophysics Data System (ADS)

    Jackson, L. J.; Stone, J.; Cohen, A. S.

    2014-12-01

    Debate over long, and short-term climatic impacts of the Mt. Toba super-eruption circa 75ky is often focused on East Africa. A severe drop in anatomically modern human populations has been hypothesized to be synchronous with a volcanic winter caused by the Toba super-eruption. If the Toba eruption caused a volcanic winter in East Africa, climatologically-sensitive ecosystems, such as Lake Malawi and its immediate watershed should show a direct and observable response in the sediment record. Cooler temperatures would cause a reduction of density contrast between epilimnion and hypolimnion waters, allowing for increased mixing and oxygenation of normally anoxic bottom waters. Enhanced mixing would cause noticeable changes in lake fly and algal communities. Cooler temperatures might also affect precipitation and the fire regime in the surrounding watershed. We analyzed two Lake Malawi cores at the finest practical resolution. Core 2A-10H-2 was analyzed in less than 6-year intervals and core 1C-8H-1 in 7-year intervals surrounding the Youngest Toba Tephra (YTT) for microfaunal abundance and variability, sediment composition, and evidence of changes in the occurrence of fires or watershed precipitation. Our analysis included point counts of diatoms and other algae, lake flies, charcoal, and siliciclastics. Changes in microfossil assemblage, variability, and abundance, as well as sediment composition around the YTT in Core 2A and 1C do not indicate that increased mixing or cooler temperatures occurred in either the central or northern basins of Lake Malawi. Similarly, charcoal counts do not suggest a change in fire regime. Our results indicate that at a subdecadal scale there was no substantial response in Lake Malawi or its immediate watershed to the Mt. Toba super-eruption, in contrast to predictions from the volcanic winter hypothesis.

  16. 1960 Valdivia earthquake tsunami deposits from two coastal lakes and preliminary results for an extended paleotsunami record of South-Central Chile

    NASA Astrophysics Data System (ADS)

    Kempf, Philipp; Moernaut, Jasper; Vandoorne, Willem; Van Daele, Maarten; Strasser, Michael; Pino, Mario; Urrutia, Roberto; De Batist, Marc

    2013-04-01

    After the large number of victims and the vast damage to infrastructure by tsunamis in the last decade the probabilistic risk evaluation and precautions need to be reconsidered. This reconsideration has to include more detailed studies on recent tsunamis and tsunamis from the historic and pre-historic record to avoid redundancy. Deposits of the 1960 Valdivia Earthquake tsunami and four of its local predecessors were previously identified in the sedimentary record at the estuary of Rio Maullín, (41°S) South-Central Chile (Cisternas et al., 2005). Here, we present side-scan sonar data, pinger seismic data and a multi-proxy analysis of sediment cores of up to 9 m length from two coastal lakes on La Isla Grande de Chiloé (42°S): i.e. Lago Cucao and Lago Huelde. These lakes have 1.2 km and 1.1 km wide and 10 m and 5 m high barriers between the Pacific coast and their shoreline, respectively. Data coverage is ensured by core transects, which correlate to the acoustic datasets. The good spatial control on the data allows a detailed understanding of the distribution of the tsunami deposits in the lakes. The 1960 tsunami hit the West coast of Chiloé with two to four large waves of 10 to 20 m run-up height, inundating both lakes. Multi-layered sand sheet deposits mirror the repeated inundation of wave trains in the otherwise organic-rich lake sediment record. We describe the link between the tsunami wave and its deposit and show two preliminary paleotsunami records comprising 15 events dating back to 3930 ± 90 cal yr BP, thus potentially extending the current paleotsunami record of the Valdivia seismic segment further back in time by at least 2000 years. References Cisternas, M., Atwater, B.F., Torrejon, F., Sawai, Y., Machuca, G., Lagos, M., Eipert, A., Youlton, C., Salgado, I., Kamataki, T., Shishikura, M., Rajendran, C.P., Malik, J.K., Rizal, Y., Husni, M., 2005. Predecessors of the giant 1960 Chile earthquake. Nature 437, 404-407.

  17. Record of late Pleistocene glaciation and deglaciation in the southern Cascade Range. I. Petrological evidence from lacustrine sediment in Upper Klamath Lake, southern Oregon

    USGS Publications Warehouse

    Reynolds, R.L.; Rosenbaum, J.G.; Rapp, J.; Kerwin, M.W.; Bradbury, J.P.; Colman, S.; Adam, D.

    2004-01-01

    Petrological and textural properties of lacustrine sediments from Upper Klamath Lake, Oregon, reflect changing input volumes of glacial flour and thus reveal a detailed glacial history for the southern Cascade Range between about 37 and 15 ka. Magnetic properties vary as a result of mixing different amounts of the highly magnetic, glacially generated detritus with less magnetic, more weathered detritus derived from unglaciated parts of the large catchment. Evidence that the magnetic properties record glacial flour input is based mainly on the strong correlation between bulk sediment particle size and parameters that measure the magnetite content and magnetic mineral freshness. High magnetization corresponds to relatively fine particle size and lower magnetization to coarser particle size. This relation is not found in the Buck Lake core in a nearby, unglaciated catchment. Angular silt-sized volcanic rock fragments containing unaltered magnetite dominate the magnetic fraction in the late Pleistocene sediments but are absent in younger, low magnetization sediments. The finer grained, highly magnetic sediments contain high proportions of planktic diatoms indicative of cold, oligotrophic limnic conditions. Sediment with lower magnetite content contains populations of diatoms indicative of warmer, eutrophic limnic conditions. During the latter part of oxygen isotope stage 3 (about 37-25 ka), the magnetic properties record millennial-scale variations in glacial-flour content. The input of glacial flour was uniformly high during the Last Glacial Maximum, between about 21 and 16 ka. At about 16 ka, magnetite input, both absolute and relative to hematite, decreased abruptly, reflecting a rapid decline in glacially derived detritus. The decrease in magnetite transport into the lake preceded declines in pollen from both grass and sagebrush. A more gradual decrease in heavy mineral content over this interval records sediment starvation with the growth of marshes at the margins

  18. Climate variability in south-eastern Australia over the last 1500 years inferred from the high-resolution diatom records of two crater lakes

    NASA Astrophysics Data System (ADS)

    Barr, Cameron; Tibby, John; Gell, Peter; Tyler, Jonathan; Zawadzki, Atun; Jacobsen, Geraldine E.

    2014-07-01

    Climates of the last two millennia have been the focus of numerous studies due to the availability of high-resolution palaeoclimate records and the occurrence of divergent periods of climate, commonly referred to as the ‘Medieval Climatic Anomaly' and ‘The Little Ice Age'. The majority of these studies are centred in the Northern Hemisphere and, in comparison, the Southern Hemisphere is relatively under-studied. In Australia, there are few high-resolution, palaeoclimate studies spanning a millennium or more and, consequently, knowledge of long-term natural climate variability is limited for much of the continent. South-eastern Australia, which recently experienced a severe, decade-long drought, is one such region. Results are presented of investigations from two crater lakes in the south-east of mainland Australia. Fluctuations in lake-water conductivity, a proxy for effective moisture, are reconstructed at sub-decadal resolution over the past 1500 years using a statistically robust, diatom-conductivity transfer function. These data are interpreted in conjunction with diatom autecology. The records display coherent patterns of change at centennial scale, signifying that both lakes responded to regional-scale climate forcing, though the nature of that response varied between sites due to differing lake morphometry. Both sites provide evidence for a multi-decadal drought, commencing ca 650 AD, and a period of variable climate between ca 850 and 1400 AD. From ca 1400-1880 AD, coincident with the timing of the ‘Little Ice Age', climates of the region are characterised by high effective moisture and a marked reduction in inter-decadal variability. The records provide context for climates of the historical period and reveal the potential for more extreme droughts and more variable climate than that experienced since European settlement of the region ca 170 years ago.

  19. Paleoenvironmental evolution and Asian monsoon variability on the southern Tibetan Plateau during the late Quaternary: A comparison of two lake records

    NASA Astrophysics Data System (ADS)

    Börner, Nicole; Gifty Akita, Lailah; Jochum, Klaus Peter; Plessen, Birgit; Frenzel, Peter; Zhu, Liping; Schwalb, Antje

    2016-04-01

    The Tibetan Plateau affects the global atmospheric circulation and is thus a key region to study the Asian monsoon system. It is also one of the most sensitive areas to global climate change as, for example, the temperature rise is twice the global average (0.4°C per decade [1]). To understand the recent climate change and predict future climate scenarios it is necessary to investigate past climate changes. The comparison of high-resolution multi-proxy records from Nam Co (4719 m a.s.l., 30°40'N, 90°50'E) and Tangra Yumco (4549 m a.s.l., 31°13'N, 86°43'E) aims to infer long term variations in strength and extent of the Asian monsoon system on the southern Tibetan Plateau. Multi-proxy analysis, including the oxygen and carbon isotope signatures of bulk sediments and the chemical composition of ostracod shells (stable isotopes, trace elements), were carried out on two long cores (10.4 m and 11.5 m), covering the past 24,000 years and 18,000 years, respectively, in order to reconstruct lake level changes and related environmental parameters, i.e. salinity, temperature and productivity. The records from Nam Co and Tangra Yumco show high similarity throughout the late Quaternary with small temporal differences in onset and duration of climatic changes. The Last Glacial Maximum is dominated by dry and cold conditions and is followed by gradually increasing temperatures and moisture, only interrupted by a dry phase, which coincides with the "Heinrich 1 event" in the North Atlantic region. A significant transition to wetter conditions and rising lake levels is indicated around 15,500 cal years BP, suggesting a strengthening of summer monsoon precipitation. The Bølling/Allerød is characterized by increased meltwater input, followed by cold and arid conditions during the Younger Dryas. The early Holocene is marked by increasing temperatures and precipitation, being the wettest period within our record, characterized by the highest lake levels, lake stratification and

  20. Long continental pollen record of the last ca. 500 ka in eastern Anatolia - First palynological results from Lake Van cores obtained in 2010

    NASA Astrophysics Data System (ADS)

    Pickarski, N.; Heumann, G.; Litt, T.

    2012-04-01

    Lake Van is located in a climatically sensitive semiarid and tectonically active region in Eastern Anatolia, Turkey. It is a key site to reconstruct terrestrial paleoecology and paleoclimate in the Near East during the Quaternary. Lake Van is the largest soda lake (surface area 3.570 km2) and the fourth largest terminal lake in the world (volume 607 km3). The maximum water depth is 460 m and the maximum length is 130 km WSW-ENE. The present lake level is at an elevation of 1,646 m above mean sea level. The northern and eastern part of Lake Van is mainly characterized by steppe vegetation related to the so-called Irano-Turanian plant geographical territory. In contrast, some remnants of deciduous oak forests can be observed mainly in the Bitlis Massive, SW of the lake. We present preliminary palynological results of a long continental sedimentary record obtained during a coring campaign supported by the International Continental Scientific Drilling Program (ICDP) in summer 2010. The composite profile from the Ahlat Ridge, the most important site for paleoclimatological studies (total length of ca. 218 m), yields a continuous paleoclimate archive encompassing ca. 500.000 years. The record is partly characterized by annually laminated sediments. By using pollen analysis, several glacial and interglacial/ interstadial periods can be observed. The warm stages can be identified based on higher amounts of pollen from thermophilous trees such as deciduous oak. In addition to the current interglacial stage (MIS 1), pronounced warm phases coincide with past interglacials probably correlative to MIS 5, 7, 9 and 11 or 13. Cold stages are characterized by pollen types related to steppe plants such as Artemisia, chenopods and grasses. The glacial-interglacial cycles as reflected in the palynological data are in broad agreement with those of stable oxygen isotope analyses based on autigenic carbonate of the lacustrine sediments (bulk). Caused by the state of the art, more

  1. Sediment-magnetic signature of land-use and drought as recorded in lake sediment from south-central Minnesota, USA

    NASA Astrophysics Data System (ADS)

    Geiss, Christoph E.; Banerjee, Subir K.; Camill, Phil; Umbanhowar, Charles E., Jr.

    2004-09-01

    Sediment magnetic properties of a short core from Sharkey Lake, MN, record the effects of Euroamerican settlement and climate change over the last 150 yr. The onset of European-style farming led to increased erosion, reflected in high values of concentration-dependent parameters such as magnetic susceptibility ( κ), Isothermal Remanent Magnetization (IRM), and Anhysteretic Remanent Magnetization (ARM). These high values are only partially due to increased supply of terrigenous material to the lake, and recent sediment contains an additional component of authigenic fine (single-domain) magnetite, most likely magnetosomes from magnetotactic bacteria. High organic productivity in the lake during the 1920s to 1940s drought increased this authigenic component resulting in highly magnetic fine-grained sediment. A comparison with older Holocene sediment from the same lake shows that, over time, most of the fine magnetic signal is lost after deposition, leading to decreases in magnetization and a bimodal grain size distribution of ultrafine, superparamagnetic grains and coarser multidomain particles, evident from measurements of ARM/IRM ratios, hysteresis measurements, and low-temperature analyses. The effects of dissolution and the superposition of climate and land-use signals complicate the use of recent sediments as modern analogs for sediment magnetic analyses.

  2. Lake carbonate-δ18 records from the Yukon Territory, Canada: Little Ice Age moisture variability and patterns

    USGS Publications Warehouse

    Anderson, Lesleigh; Finney, Bruce P.; Shapley, Mark D.

    2011-01-01

    A 1000-yr history of climate change in the central Yukon Territory, Canada, is inferred from sediment composition and isotope geochemistry from small, groundwater fed, Seven Mile Lake. Recent observations of lake-water δ18O, lake level, river discharge, and climate variations, suggest that changes in regional effective moisture (precipitation minus evaporation) are reflected by the lake’s hydrologic balance. The observations indicate that the lake is currently 18O-enriched by summer evaporation and that during years of increased precipitation, when groundwater inflow rates to the lake increase, lake-water δ18O values decrease. Past lake-water δ18O values are inferred from oxygen isotope ratios of fine-grained sedimentary endogenic carbonate. Variations in carbonate δ18O, supplemented by those in carbonate and organic δ13C, C/N ratios, and organic carbon, carbonate and biogenic silica accumulation rates, document changes in effective moisture at decadal time scales during the early Little Ice Age period to present. Results indicate that between ∼AD 1000 and 1600, effective moisture was higher than today. A shift to more arid climate conditions occurred after ∼AD 1650. The 19th and 20th centuries have been the driest of the past millennium. Temporal variations correspond with inferred shifts in summer evaporation from Marcella Lake δ18O, a similarly small, stratified, alkaline lake located ∼250 km to the southwest, suggesting that the combined reconstructions accurately document the regional paleoclimate of the east-central interior. Comparison with regional glacial activity suggests differing regional moisture patterns during early and late Little Ice Age advances.

  3. Quantitative reconstruction of the last interglacial vegetation and climate based on the pollen record from Lake Baikal, Russia

    NASA Astrophysics Data System (ADS)

    Tarasov, P.; Granoszewski, W.; Bezrukova, E.; Brewer, S.; Nita, M.; Abzaeva, A.; Oberhänsli, H.

    2005-11-01

    Changes in mean temperature of the coldest ( T c) and warmest month ( T w), annual precipitation ( P ann) and moisture index (α) were reconstructed from a continuous pollen record from Lake Baikal, Russia. The pollen sequence CON01-603-2 (53°57'N, 108°54'E) was recovered from a 386 m water depth in the Continent Ridge and dated to ca. 130 114.8 ky BP. This time interval covers the complete last interglacial (LI), corresponding to MIS 5e. Results of pollen analysis and pollen-based quantitative biome reconstruction show pronounced changes in the regional vegetation throughout the record. Shrubby tundra covered the area at the beginning of MIS 5e (ca. 130 128 ky), consistent with the end of the Middle Pleistocene glaciation. The late glacial climate was characterised by low winter and summer temperatures ( T c ~ -38 to -35°C and T w~11 13°C) and low annual precipitation ( P ann~300 mm). However, the wide spread of tundra vegetation suggests rather moist environments associated with low temperatures and evaporation (reconstructed α~1). Tundra was replaced by boreal conifer forest (taiga) by ca. 128 ky BP, suggesting a transition to the interglacial. Taiga-dominant phase lasted until ca. 117.4 ky BP, e.g. about 10 ky. The most favourable climate conditions occurred during the first half of the LI. P ann reached 500 mm soon after 128 ky BP. However, temperature changed more gradually. Maximum values of T c ~ -20°C and T w~16 17°C are reconstructed from about 126 ky BP. Conditions became gradually colder after ca. 121 ky BP. T c dropped to ~ -27°C and T w to ~15°C by 119.5 ky BP. The reconstructed increase in continentality was accompanied by a decrease in P ann to ~400 420 mm. However, the climate was still humid enough (α~0.9) to support growth of boreal evergreen conifers. A sharp turn towards a dry climate is reconstructed after ca. 118 ky BP, causing retreat of forest and spread of cool grass-shrub communities. Cool steppe dominated the vegetation in the

  4. Sediment delivery and lake dynamics in a Mediterranean mountain watershed: Human-climate interactions during the last millennium (El Tobar Lake record, Iberian Range, Spain).

    PubMed

    Barreiro-Lostres, Fernando; Brown, Erik; Moreno, Ana; Morellón, Mario; Abbott, Mark; Hillman, Aubrey; Giralt, Santiago; Valero-Garcés, Blas

    2015-11-15

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency).

  5. Sediment delivery and lake dynamics in a Mediterranean mountain watershed: Human-climate interactions during the last millennium (El Tobar Lake record, Iberian Range, Spain).

    PubMed

    Barreiro-Lostres, Fernando; Brown, Erik; Moreno, Ana; Morellón, Mario; Abbott, Mark; Hillman, Aubrey; Giralt, Santiago; Valero-Garcés, Blas

    2015-11-15

    Land degradation and soil erosion are key environmental problems in Mediterranean mountains characterized by a long history of human occupation and a strong variability of hydrological regimes. To assess recent trends and evaluate climatic and anthropogenic impacts in these highly human modified watersheds we apply an historical approach combining lake sediment core multi-proxy analyses and reconstructions of past land uses to El Tobar Lake watershed, located in the Iberian Range (Central Spain). Four main periods of increased sediment delivery have been identified in the 8m long sediment sequence by their depositional and geochemical signatures. They took place around 16th, late 18th, mid 19th and early 20th centuries as a result of large land uses changes such as forest clearing, farming and grazing during periods of increasing population. In this highly human-modified watershed, positive synergies between human impact and humid periods led to increased sediment delivery periods. During the last millennium, the lake depositional and geochemical cycles recovered quickly after each sediment delivery event, showing strong resilience of the lacustrine system to watershed disturbance. Recent changes are characterized by large hydrological affections since 1967 with the construction of a canal from a nearby reservoir and a decreased in anthropic pressure in the watershed as rural areas were abandoned. The increased fresh water influx to the lake has caused large biological changes, leading to stronger meromictic conditions and higher organic matter accumulation while terrigenous inputs have decreased. Degradation processes in Iberian Range watersheds are strongly controlled by anthropic activities (land use changes, soil erosion) but modulated by climate-related hydrological changes (water availability, flood and runoff frequency). PMID:26186465

  6. Superfund Record of Decision (EPA Region 5): Lake Sandy Jo/M and M landfill, Lake County, Indiana, September 1986. Final report

    SciTech Connect

    Not Available

    1986-09-26

    The Lake Sandy Jo site is located on the southeast side of the City of Gary in Lake County, Indiana. The site was a former 40-acre water-filled borrow pit that was used as a landfill between 1971 and 1980. Various wastes including construction and demolition debris, garage and industrial wastes, and drums are believed to be in the site. The area surrounding the site is primarily low-density residential property. The pit was filled with ground water and was used for a short time as a recreational lake. The primary contaminants of concern are PAHs, phthalates, and heavy metals, found mainly in soils. The remedial action includes installation of a soil cover over the landfill with drainage blanket to control surface seeps; extension of water mains to affected residents in Gary; onsite consolidation of contaminated sediments ground water and surface water/sediment monitoring; and deed restrictions on landfills property and institutional controls on aquifer use. The estimated capital cost is $4,747,000 with annual OandM costs of $63,000.

  7. Full-vector paleomagnetic secular variation records from latest quaternary sediments of Lake Malawi (10.0°S, 34.3°E)

    NASA Astrophysics Data System (ADS)

    Lund, Steve; Platzman, Ellen; Johnson, Tom

    2016-07-01

    We have conducted a paleomagnetic study of Late Quaternary sediments from Lake Malawi, East Africa, in order to develop a high-resolution record of paleomagnetic secular variation (PSV). This study has recovered PSV records from two cores (3P, 6P) in northern Lake Malawi (10.0°S, 34.3°E). The PSV appears to be recorded in fine-grained detrital magnetite/titanomagnetite grains. Detailed af demagnetization of the natural remanence (NRM) shows that a distinctive characteristic remanence (ChRM) is demagnetized from ∼20 to 80 mT, which decreases simply toward the origin. The resulting directional PSV records for 3P and 6P are easily correlatable with 29 distinct inclination features and 29 declination features. The statistical character of the PSV in both cores is consistent with Holocene PSV noted at other Holocene equatorial sites. Radiocarbon dating of the cores is based on 18 independent radiocarbon dates and four dated stratigraphic horizons that can be correlated into each core. The final directional PSV time series cover the last 24,000 years with an average sediment accumulation rate of ∼30 cm/kyr. We have also developed a relative paleointensity estimate for these PSV records based on normalizing the NRM (after 20 mT af demagnetization) by the SIRM (after 20 mT af demagnetization). Changing sedimentation patterns complicate any attempt to develop a single paleointensity record for the entire core lengths. We have developed a relative paleointensity record for the last 6000 years that has 14 correlatable features including 5 notable peaks in intensity. Three of these peaks are synchronous with paleointensity highs farther north in SE Europe/SW Asia/Egypt but two of the peaks are at times of low paleointensity farther north. We interpret this to indicate that Lake Malawi (10°S) is at least partly under the influence of a different flux-regeneration region of the outer-core dynamo. A relative paleointensity record was also developed for ∼11,000-24,000 YBP

  8. A high-resolution mid-Pleistocene temperature record from Arctic Lake El'gygytgyn: a 50 kyr super interglacial from MIS 33 to MIS 31?

    NASA Astrophysics Data System (ADS)

    de Wet, Gregory A.; Castañeda, Isla S.; DeConto, Robert M.; Brigham-Grette, Julie

    2016-02-01

    Previous periods of extreme warmth in Earth's history are of great interest in light of current and predicted anthropogenic warming. Numerous so called "super interglacial" intervals, with summer temperatures significantly warmer than today, have been identified in the 3.6 million year (Ma) sediment record from Lake El'gygytgyn, northeast Russia. To date, however, a high-resolution paleotemperature reconstruction from any of these super interglacials is lacking. Here we present a paleotemperature reconstruction based on branched glycerol dialkyl glycerol tetraethers (brGDGTs) from Marine Isotope Stages (MIS) 35 to MIS 29, including super interglacial MIS 31. To investigate this period in detail, samples were analyzed with an unprecedented average sample resolution of 500 yrs from MIS 33 to MIS 30. Our results suggest the entire period currently defined as MIS 33-31 (∼1114-1062 kyr BP) was characterized by generally warm and highly variable conditions at the lake, at times out of phase with Northern Hemisphere summer insolation, and that cold "glacial" conditions during MIS 32 lasted only a few thousand years. Close similarities are seen with coeval records from high southern latitudes, supporting the suggestion that the interval from MIS 33 to MIS 31 was an exceptionally long interglacial (Teitler et al., 2015). Based on brGDGT temperatures from Lake El'gygytgyn (this study and unpublished results), warming in the western Arctic during MIS 31 was matched only by MIS 11 during the Pleistocene.

  9. Estimating the regional climate signal in a late Pleistocene and early Holocene lake-sediment δ18O record from Vermont, USA.

    NASA Astrophysics Data System (ADS)

    Mandl, Maximilian Benedict; Shuman, Bryan Nolan; Marsicek, Jeremiah; Grigg, Laurie

    2016-07-01

    We present a new oxygen isotope (δ18O) record from carbonate-rich lake sediments from central Vermont. The record from Twin Ponds spans from 13.5 cal ka BP (1950 AD) to present, but contains a 6 ka long hiatus starting shortly after 7.5 cal ka BP. We compare the record for ca. 13.5-7.5 cal ka BP with published δ18O data from the region after using a Bayesian approach to produce many possible chronologies for each site. Principal component analysis then identified chronologically-robust, multi-site oxygen isotope signals, including negative values during the Younger Dryas, but no significant deviations from the early Holocene mean of the regional records. However, differences among sites indicate significant trends that likely relate to interacting changes in the regional gradients of seasonal temperatures and precipitation as well as moisture sources, moisture pathways, and aridity that were controlled by large-scale climatic controls such as insolation, the progressive decline of the Laurentide Ice Sheet, and changes in oceanic circulation. Centennial shifts punctuate these trends at ca. 9.3 and 8.2 cal ka BP, and reveal that the local character of these short-lived features requires a detailed understanding of lake hydrology and regional isotopic gradients to yield reliable information for regional climate reconstructions.

  10. Paleolimnological records of nitrogen deposition in shallow, high-elevation lakes of Grand Teton National Park, Wyoming, USA

    USGS Publications Warehouse

    Spaulding, Sarah A.; Otu, Megan K.; Wolfe, Alexander P.; Baron, Jill S.

    2015-01-01

    Reactive nitrogen (Nr) from anthropogenic sources has been altering ecosystem function in lakes of the Rocky Mountains, other regions of western North America, and the Arctic over recent decades. The response of biota in shallow lakes to atmospheric deposition of Nr, however, has not been considered. Benthic algae are dominant in shallow, high-elevation lakes and are less sensitive to nutrient inputs than planktonic algae. Because the benthos is typically more nutrient rich than the water column, shallow lakes are not expected to show evidence of anthropogenic Nr. In this study, we assessed sedimentary evidence for regional Nr deposition, sediment chronology, and the nature of algal community response in five shallow, high-elevation lakes in Grand Teton National Park (GRTE). Over 140 diatom taxa were identified from the sediments, with a relatively high species richness of taxa characteristic of oligotrophic conditions. The diatom assemblages were dominated by benthic taxa, especially motile taxa. The GRTE lakes demonstrate assemblage-wide shifts in diatoms, including 1) synchronous and significant assemblage changes centered on ~1960 AD; 2) pre-1960 assemblages differed significantly from post-1960 assemblages; 3) pre-1960 diatom assemblages fluctuated randomly, whereas post- 1960 assemblages showed directional change; 4) changes in δ15N signatures were correlated with diatom community composition. These results demonstrate recent changes in shallow high18 elevation lakes that are most correlated with anthropogenic Nr. It is also possible, however, that the combined effect of Nr deposition and warming is accelerating species shifts in benthic diatoms. While uncertainties remain about the potential synergy of Nr deposition and warming, this study adds shallow lakes to the growing list of impacted high-elevation localities in western North America.

  11. Maar Lake Sediments in the Mediterranean: High-Resolution Archives for Tephra Recording and Paleoenvironmental Reconstruction - a Case Study From Lago Grande di Monticchio (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Negendank, J. F.; Wulf, S.; Brauer, A.; Mingram, J.

    2001-12-01

    Maar lake deposits with sedimentation rates of one or two order of magnitude higher than marine records are excellent archives for the preservation of annual laminations (varves) and thus make available information of the past with a high temporal resolution. In the Mediterranean, such archives are known from maar and crater lakes situated within Quaternary volcanic fields of the Italian Peninsula. Because of the vicinity to high-explosive volcanoes - most of them characterised by numerous tephra producing events during the Late Quaternary - sediments of these sites additionally provide considerable potential for tephrochronological and tephrostratigraphical studies. The maar lake Lago Grande di Monticchio (Mt. Vulture, Basilicata) has turned out to be one of the most suitable sites in Europe. On the one hand, intensive sedimentological, geochemical, palynological and palaeomagnetic studies on numerous laminated sediment cores spanning the last 101 kyr have demonstrated the great potential for palaeoenvironmental reconstruction. The results of these studies indicate a highly variable environment during the last glacial / interglacial cycle with numerous short and abrupt changes, that can be correlated to rapid climate changes recognized in ice-core and deep-sea records. For such comparisons independent chronologies are required. Regarding the sediment record of Lago Grande di Monticchio a varve-supported sedimentation rate chronology has been established based on the counting of annual laminations and interpolation of sedimentation rates for non-varved sections. This chronology has been confirmed by a high-resolution tephrochronology, numerous radiocarbon datings and three 40Ar/39Ar datings on prominent tephra layers. In addition to its value as a high-resolution palaeoclimatic archive, the Monticchio record has become a key position for inter-site correlation in the eastern Mediterranean. This is mainly due to the large number of intercalated tephra layers (n=344

  12. Aeolian sand preserved in Silver Lake: a new signal of Holocene high stands of Lake Michigan

    USGS Publications Warehouse

    Fisher, Timothy G.; Loope, Walter L.

    2005-01-01

    Aeolian sand within lake sediment from Silver Lake, Michigan can be used as a proxy for the timing of high lake levels of Lake Michigan.We demonstrate that the sand record from Silver Lake plotted as percent weight is in-phase with the elevation curve of Lake Michigan since the mid-Holocene Nipissing Phase. Because fluctuations in Lake Michigan's lake level are recorded in beach ridges, and are a response to climate change, the aeolian sand record within Silver Lake is also a proxy for climate change. It appears that increases in dune activity and lake sand are controlled by similar climatic shifts that drive fluctuations in lake level of Lake Michigan. High lake levels destabilize coastal bluffs that drive dune sand instability, and along with greater wintertime storminess, increase niveo-aeolian transport of sand across lake ice. The sand is introduced into the lake each spring as the ice cover melts.

  13. Reflection of global late glacial and Holocene paleoclimate oscillations in the palynological record from bottom sediments of Tavatui Lake (Middle Urals)

    NASA Astrophysics Data System (ADS)

    Maslennikova, A. V.; Udachin, V. N.; Anfilogov, V. N.; Deryagin, V. V.

    2016-06-01

    The palynological analysis of the reliably dated core section of bottom sediments from Tavatui Lake revealed consistency between the chronology and succession of Late Pleistocene and Early Pliocene events (GI-a/b, CS-1, GH-11.2) in the Middle Urals and the North Atlantic region. It is established that the Holocene thermal maximum (5.3-8.0 cal. ka ago) in the Middle Urals was characterized by high temperatures and humidity. The initial stage of the Subboreal cooling was reffered to the interval of 4.5-5.3 cal. ka ago. The data obtained provided grounds for the conclusion that the palynological record in the Tavatui Lake section reflects in detail global and regional climate oscillations, which allows it to be used as a Holocene and late glacial reference section, as well as for predicting the behavior of the natural system of the Middle Urals in response to future climate change.

  14. Macrofossils in Raraku Lake (Easter Island) integrated with sedimentary and geochemical records: towards a palaeoecological synthesis for the last 34,000 years

    NASA Astrophysics Data System (ADS)

    Cañellas-Boltà, N.; Rull, V.; Sáez, A.; Margalef, O.; Giralt, S.; Pueyo, J. J.; Birks, H. H.; Birks, H. J. B.; Pla-Rabes, S.

    2012-02-01

    Macrofossil analysis of a composite 19 m long sediment core from Rano Raraku Lake (Easter Island) was related to litho-sedimentary and geochemical features of the sediment. Strong stratigraphical patterns are shown by indirect gradient analyses of the data. The good correspondence between the stratigraphical patterns derived from macrofossil (Correspondence Analysis) and sedimentary and geochemical data (Principal Component Analysis) shows that macrofossil associations provide sound palaeolimnological information in conjunction with sedimentary data. The main taphonomic factors influencing the macrofossil assemblages are run-off from the catchment, the littoral plant belt, and the depositional environment within the basin. Five main stages during the last 34,000 calibrated years BP (cal yr BP) are characterised from the lithological, geochemical, and macrofossil data. From 34 to 14.6 cal kyr BP (last glacial period) the sediments were largely derived from the catchment, indicating a high energy lake environment with much erosion and run-off bringing abundant plant trichomes, lichens, and mosses into the centre of Raraku Lake. During the early Holocene the infilling of the lake basin and warmer conditions favoured the growth of a littoral plant belt that obstructed terrigenous input. Cladoceran remains and Solanaceae seeds are indicative of reduced run-off and higher values of N and organic C indicate increased aquatic and catchment productivity. From 8.7 to 4.5 cal kyr BP a swamp occupied the entire basin. The increase of Cyperaceae seeds reflects this swamp development and, with oribatid mites and coleopteran remains, indicates a peaty environment and more anoxic conditions in Raraku. At around 4.5 cal kyr BP dry conditions prevented peat growth and there is a sedimentary hiatus. About 800 cal yr BP, peat deposition resumed. Finally, in the last few centuries, a small lake formed within the surrounding swamp. Evidence of human activity is recorded in these

  15. A multi-proxy lake core record from Lago Lungo, Rieti Basin, Lazio, Italy and its relation to human activities in the catchment during the last century

    NASA Astrophysics Data System (ADS)

    Noble, Paula; Tunno, Irene; Mensing, Scott; Piovesan, Gianluca

    2016-04-01

    The lakes of the Rieti Basin have experienced extensive human modification dating back to pre-Roman times, yet lake archives indicate that the most profound changes to the aquatic ecosystem have occurred during the last century. Analysis of the upper ˜120 cm segment of a sediment core from Lago Lungo, dating back to ˜1830 CE, show changes in water quality and hydrologic inflow largely attributed to 20th century reclamation and land use activities. Lago Lungo is a shallow, small, eutrophic, hard water lake situated in an intermontaine alluvial plain ˜90 km NE of Rome. It is one of several remnant lakes in a poorly drained wetland area fed by numerous springs. Reclamation activities over the last century have substantially altered the drainage network affecting water delivery to the lakes and their connectivity. There are 3 interesting signals in the core. First, small Stephanodiscus species, associated with hypereutrophic conditions, appear after 1950, peak ˜1990, and may be attributed to increased use of chemical fertilizers and intensification of local agriculture. Elemental proxies from scanning XRF data (abundances of Ti, Si/Ti, and Ca) are consistent with increased eutrophication starting ˜1950. A decline in Stephanodicsus after 1990 reflects some improvement to the water quality following the lake's incorporation into a nature preserve and creation of a narrow vegetation buffer. Intermittent water quality measurements from 1982 onward corroborate the changes in trophic status interpreted from the core record. Second, a large change in the core stratigraphy, elemental geochemistry, and diatom composition occurs ˜1940 and is associated with several major reclamation efforts, including the rerouting of the Santa Susanna channel, which redirected large volumes of artesian inflows away from the lakes and estuarine system. Upstream, dams on the Turano and Salto rivers were also constructed, further affecting hydrological inflows into the basin. From ˜1900

  16. Phytoliths Used to Investigate the Effects of the Indonesian Mount Toba Super-Eruption (~75 kyr) in East Africa: A Subdecadal Record from Lake Malawi

    NASA Astrophysics Data System (ADS)

    Yost, C. L.; Cohen, A. S.

    2014-12-01

    The recent discovery of cryptotephra visually and chemically matched to the Youngest Toba Tuff (YTT, 75.0 ± 0.9 kyr) in Lake Malawi drill core sediments has spurred renewed interest in this period of time in East Africa. The YTT is the most recent and largest of the four Mount Toba eruptions, and is the only super-eruption to have taken place during the Quaternary. The timing of the YTT approximately coincides with a hypothesized human genetic bottleneck. Several climate models have proposed an episode of global cooling following the YTT; however, the magnitude and duration of the cooling is much debated, ranging from just a few degrees of cooling to a state of volcanic winter. Cored sediments from Lake Malawi provide an excellent record of local variability in the lake's watershed that may be linked to specific climatic events. To investigate the possible effects of the YTT in East Africa, we continuously sampled Lake Malawi drill core 2A-10H-2 at 2-4 mm (~6 yr) intervals above and below the first occurrence of the YTT. Poaceae phytoliths were grouped into plant functional types (C3, C4, xerophytic, mesophytic, arboreal, etc.), revealing mostly subtle changes in terrestrial vegetation over the ~400 yr time period examined. Abrupt increases in concentration values for phytoliths derived from riverine Podostemaceae plants appear to signal increased discharge from rivers draining the surrounding uplands. Perhaps most significant is the increasing trend in burned phytoliths and decreasing trend in tree phytoliths post-YTT. Although there appears to be a very weak cooling signal synchronous with the YTT, the most abrupt terrestrial vegetation changes appear to be better correlated with the deposition of a slightly older cryptotephra horizon derived from the local Rungwe Volcanic Province. A potential complication with this record is the existence of a turbidite pre-YTT that encompasses the Rungwe horizon.

  17. Paleoenvironmental changes during the last 8,500 years recorded in annually laminated sediments from Lake Szurpiły, NE Poland

    NASA Astrophysics Data System (ADS)

    Kinder, Małgorzata; Tylmann, Wojciech; Bubak, Iwona; Enters, Dirk; Kupryjanowicz, Mirosława; Mayr, Christoph; Ohlendorf, Christian; Piotrowska, Natalia; Zolitschka, Bernd

    2014-05-01

    Annually laminated (varved) lake sediments provide a precise time scale for high-resolution paleoenvironmental reconstructions of climatic change and human impact. We reconstructed the environmental changes from Lake Szurpiły (NE Poland) using varve chronology and multi-proxy interdisciplinary approach. Our reconstruction is one of the few for NE Poland and extends the geographical network of laminated lacustrine sediments. This research was supported by the Polish Ministry of Science and Higher Education grants (N N306 275635, N N306 009337, N N306 291639). It is a contribution to the bilateral scientific program "Northern Polish Lake Research" (NORPOLAR). Parallel overlapping sediment cores with total length of 12.38 m and extending back to the Late Glacial were retrieved in 2007. The geochemical (X-ray Fluorescence, CNS, stable isotopes), microscopic (varve thickness and structure), biological (diatoms, pollen) and statistical analyses were applied and combined in an annual scale based on the varve chronology, which was verified by independent radiometric dating (Pb-210, Cs-137 and AMS radiocarbon dating). Due to the large slump, this study focuses on the almost continuously varved uppermost 7.58-m long section of the profile, covering the last 8,500 years. The climate fluctuations were the main cause of the environmental changes during the first 6,000 years. The geochemical record is mainly driven by the lake productivity, oxic conditions and minerogenic input. Although the first evidence of the anthropogenic impact is documented in pollen record at 8,000 BP, the environmental conditions were relatively stable until 2,500 BP, when the human activity increased significantly. Since that time the climatic and human influence are combined and more difficult to disentangle. Three settlement phases separated by natural regeneration of the environment occurred between 2,500-400 BP. The variation of geochemical and pollen data at 400-100 BP reflects climate

  18. The Holocene deglaciation of the Byers Peninsula (Livingston Island, Antarctica) based on the dating of lake sedimentary records

    NASA Astrophysics Data System (ADS)

    Oliva, M.; Antoniades, D.; Giralt, S.; Granados, I.; Pla-Rabes, S.; Toro, M.; Liu, E. J.; Sanjurjo, J.; Vieira, G.

    2016-05-01

    The process of deglaciation in the Antarctic Peninsula region has large implications for the geomorphological and ecological dynamics of the ice-free environments. However, uncertainties still remain regarding the age of deglaciation in many coastal environments, as is the case in the South Shetland Islands. This study focuses on the Byers Peninsula, the largest ice-free area in this archipelago and the one with greatest biodiversity in Antarctica. A complete lacustrine sedimentary sequence was collected from five lakes distributed along a transect from the western coast to the Rotch Dome glacier front: Limnopolar, Chester, Escondido, Cerro Negro and Domo lakes. A multiple dating approach based on 14C, thermoluminescence and tephrochronology was applied to the cores in order to infer the Holocene environmental history and identify the deglaciation chronology in the Byers Peninsula. The onset of the deglaciation started during the Early Holocene in the western fringe of the Byers Peninsula according to the basal dating of Limnopolar Lake (ca. 8.3 cal. ky BP). Glacial retreat gradually exposed the highest parts of the Cerro Negro nunatak in the SE corner of Byers, where Cerro Negro Lake is located; this lake was glacier-free since at least 7.5 ky. During the Mid-Holocene the retreat of the Rotch Dome glacier cleared the central part of the Byers plateau of ice, and Escondido and Chester lakes formed at 6 cal. ky BP and 5.9 ky, respectively. The dating of the basal sediments of Domo Lake suggests that the deglaciation of the current ice-free easternmost part of the Byers Peninsula occurred before 1.8 cal. ky BP.

  19. Records of Local Glacier Variability in Western Greenland During the Holocene From Lake Sediments, Ice-cap-killed Vegetation, and 10Be Dating

    NASA Astrophysics Data System (ADS)

    Schweinsberg, A.; Briner, J. P.; Miller, G. H.; Bennike, O.

    2015-12-01

    Local mountain glaciers and ice caps are common and widespread along the periphery of Greenland and provide valuable paleoclimatic records because they respond sensitively to climate change. In contrast to extensive research on Greenland Ice Sheet (GIS) margin changes, the relative timing of mountain glaciation during the Holocene is poorly documented. Here, we use a multi-proxy approach to document the timing of local glacier advance and retreat throughout the past ~10 ka in western Greenland by combining: (1) proglacial lake sediment analysis, (2) 14C-dating of ice-cap-killed in situ plants, and (3) cosmogenic 10Be dating. Radiocarbon-dated sediment cores from Sikuiui and Pauiaivik lakes, eastern Nuussuaq, provide minimum-limiting ages for local deglaciation of 9.4 ± 0.06 and 8.8 ± 0.16 ka, respectively, and are in agreement with 10Be ages of regional deglaciation that average 10.9 ± 0.7 ka (n=8). Radiocarbon ages (n=54) of in situ plants along retreating cold-based ice cap margins reveal net snowline lowering beginning ~5 ka and are concurrent with the onset of Neoglaciation recorded in both lake systems. Modes of vegetation kill dates highlight distinct ice cap expansion phases at ~3.7, ~3.0, ~1.5 ka, and during the Little Ice Age. The most pronounced snowline lowering event ~4-3 ka is expressed in both lake records by deposition of mineral-rich sediments between ~4.5 and 2.5 ka. Ice cap expansion phases are broadly correlative with elevated minerogenic input in both lakes with some modes in the vegetation ages occurring just prior to increases in mineral-rich sediment input. Published studies of the western GIS margin suggest a major cooling event between ~4.3-3.2 ka, which overlaps with periods of enhanced local glacier activity and ice cap expansion in our dataset. Lastly, the dominant ice cap expansion episode ~3.7 ka in western Greenland is synchronous with a significant snowline lowering event on Baffin Island, suggesting a common climate forcing

  20. Indian Ocean Summer Monsoon (IOSM)-dynamics within the past 4 ka recorded in the sediments of Lake Nam Co, central Tibetan Plateau (China)

    NASA Astrophysics Data System (ADS)

    Kasper, Thomas; Haberzettl, Torsten; Doberschütz, Stefan; Daut, Gerhard; Wang, Junbo; Zhu, Liping; Nowaczyk, Norbert; Mäusbacher, Roland

    2012-04-01

    In September 2008 several cores (68 cm-115 cm length) (water depth: 93 m) were retrieved from Lake Nam Co (southern-central Tibetan Plateau; 4718 m a.s.l.). This study focuses on the interpretation of high-resolution (partly 0.2 cm) data from three gravity cores and the upper part of a 10.4 m long piston core, i.e., the past 4000 cal BP in terms of lake level changes, hydrological variations in the catchment area and consequently variations in monsoon strength. A wide spectrum of sedimentological, geochemical and mineralogical investigations was carried out. Results are presented for XRF core-scans, grain size distribution, XRD-measurements and SEM-image analyses. These data are complemented by an age-depth model using 210Pb and 137Cs analyses as well as eleven AMS-14C-ages. This model is supported by excellent agreement between secular variations determined on one of the gravity cores to geomagnetic field models. This is a significant improvement of the chronology as most catchments of lacustrine systems on the Tibetan Plateau contain carbonates resulting in an unknown reservoir effect for radiocarbon dates. The good correlation of our record to the geomagnetic field models confirms our age-depth model and indicates only insignificant changes in the reservoir effect throughout the last 4 ka. High (summer-) monsoonal activity, i.e. moist environmental conditions, was detected in our record between approximately 4000 and 1950 cal BP as well as between 1480 and 1200 cal BP. Accordingly, lower monsoon activity prevails in periods between the two intervals and thereafter. This pattern shows a good correlation to the variability of the Indian Ocean Summer Monsoon (IOSM) as recorded in a peat bog ˜1000 km in NE direction from Lake Nam Co. This is the first time that such a supra regional homogenous monsoon activity is shown on the Tibetan Plateau and beyond. Finally our data show a significant lake level rise after the Little Ice Age (LIA) in Lake Nam Co which is

  1. Late-Holocene climate change derived from a high-resolution pollen record from varved sediments at Sugan Lake in the Qaidam Basin, northeastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, K.; Yu, Z.; Zhou, A.

    2010-12-01

    A 2700-yr high-resolution pollen record from annually-varved sediments at Sugan Lake in the Qaidam Basin (2793 m a.s.l) was obtained to examine vegetation and climatic change on the NE Tibetan Plateau. Fossil pollen data show that the area was constantly covered by open desert-steppe vegetation dominated by Chenopodiaceae, Artemisia, Poaceae and Ephedra. Artemisia/Chenopodiaceae (A/C) ratios, representing relative abundance of steppe vs. desert plants on the surrounding landscape, suggest large regional moisture fluctuations over the last 2700 years, including (1) a dry and relatively stable climate prior to 300 AD, (2) a relatively wet climate at 300-1200 AD with higher variability at 1100-1200 AD, and (3) a highly unstable climate since 1200 AD, with relatively moist intervals at 1250-1400 AD and at 1700-1800 AD. However, other proxies from the same site (including varve thickness, Chironomid assemblages, and oxygen isotopes of precipitated carbonate) show different or even opposite moisture patterns as inferred from pollen data. This inconsistency and divergence suggest possible different responses of in-lake and watershed processes to the same climate change. For example, increase in freshwater input to the lake from ice melting origined from the surrounding mountains might have contributed to high lake level and moist conditions as interpreted from other proxies, even if there are no increases in precipitation in the low-elevation basin during the same periods. Furthermore, the effective moisture changes in the Basin are opposite in trend with snow accumulation records from Dunde ice core (5325 m a.s.l) and with the monsoon intensity inferred from Dongge Cave, suggesting that the regional topography on the Tibetan Plateau might have played an important role in mediating regional moisture changes. The shift in effective moisture at 1200 AD from stable to more variable conditions as inferred from our pollen data at Sugan Lake is also observed in other

  2. A 3000-year record of ground-rupturing earthquakes along the central North Anatolian fault near Lake Ladik, Turkey

    USGS Publications Warehouse

    Fraser, J.; Pigati, J.S.; Hubert-Ferrari, A.; Vanneste, K.; Avsar, U.; Altinok, S.

    2009-01-01

    The North Anatolian fault (NAF) is a ???1500 km long, arcuate, dextral strike-slip fault zone in northern Turkey that extends from the Karliova triple junction to the Aegean Sea. East of Bolu, the fault zone exhibits evidence of a sequence of large (Mw >7) earthquakes that occurred during the twentieth century that displayed a migrating earthquake sequence from east to west. Prolonged human occupation in this region provides an extensive, but not exhaustive, historical record of large earthquakes prior to the twentieth century that covers much of the last 2000 yr. In this study, we extend our knowledge of rupture events in the region by evaluating the stratigraphy and chronology of sediments exposed in a paleoseismic trench across a splay of the NAF at Destek, ???6:5 km east of Lake Ladik (40.868?? N, 36.121?? E). The trenched fault strand forms an uphill-facing scarp and associated sediment trap below a small catchment area. The trench exposed a narrow fault zone that has juxtaposed a sequence of weakly defined paleosols interbedded with colluvium against highly fractured bedrock. We mapped magnetic susceptibility variations on the trench walls and found evidence for multiple visually unrecognized colluvial wedges. This technique was also used to constrain a predominantly dip-slip style of displacement on this fault splay. Sediments exposed in the trench were dated using both charcoal and terrestrial gastropod shells to constrain the timing of the earthquake events. While the gastropod shells consistently yielded 14 C ages that were too old (by ???900 yr), we obtained highly reliable 14 C ages from the charcoal by dating multiple components of the sample material. Our radiocarbon chronology constrains the timing of seven large earthquakes over the past 3000 yr prior to the 1943 Tosya earthquake, including event ages of (2?? error): A.D. 1437-1788, A.D. 1034-1321, A.D. 549-719, A.D. 17-585 (1-3 events), 35 B.C.-A.D. 28, 700-392 B.C., 912-596 B.C. Our results

  3. A Comparison of Eemian and Holocene Transgressions of the Baltic Sea based on the Sedimentary Record of Lake Ladoga

    NASA Astrophysics Data System (ADS)

    Delusina, I.; Andreev, A.

    2015-12-01

    Two cycles of postglacial transgressions of Baltic Sea could be recognized in the sediments of Lake Ladoga and vicinity: an Eemian (MIS 5e, ca 124-119 kya) and a Holocene with several subsequent stages: Ancylus Lake, Mastogloia Sea and Littorina Sea, starting at ca 9.5 kya BP and existing up to 4 kya BP. New data obtained from deep coring in Lake Ladoga (Andreev et al., 2014) has allowed us to re-visit an old question about the age and nature of sediments at the bottom of Lake Ladoga. The lake is east of the Baltic and provides important information about the marginal stage of Baltic Sea levels, and in particular about differences between the Eemian and Holocene transgressions. Previously Eemian marine sediments have never been found at the bottom of Lake Ladoga although they have been identified along river terraces, in small lakes and as detached lenses. The new coring reached a depth of 22 m, and found marine diatoms that might correspond to the Eemian transgression. As part of the effort to understand these fossils, we have compiled a comprehensive picture of the distribution of Eemian sediments around Lake Ladoga. There is very little published data about these deposits (Miettinen et al., 2014) so we have assembled known, but never published or published only in Russian, data. The number of unpublished marine Eemian sequences exceeds 70. They occur more frequently here than on other Baltic coasts, because of the low position of the eastern Baltic territories above the sea level. This meant that they were not destroyed by isostatic uplift, which resulted in the deposition of thicker layers of sediment than in mountainous Fennoscandia. Typical Eemian sediments comprise a black clay layer with Yoldia arctica, have a monotonous appearance and are easily distinguished from other interglacial sediments. The modern elevation of these sections implies that the elevation of the Eemian Sea could not have exceeded +17 m and probably was very uniform.The Holocene

  4. Mediterranean climate since the Middle Pleistocene: a 640 ka stable isotope record from Lake Ohrid (Albania/Macedonia)

    NASA Astrophysics Data System (ADS)

    Lacey, J. H.; Leng, M. J.; Francke, A.; Sloane, H. J.; Milodowski, A.; Vogel, H.; Baumgarten, H.; Wagner, B.

    2015-08-01

    Lake Ohrid (Macedonia/Albania) is an ancient lake with a unique biodiversity and a site of global significance for investigating the influence of climate, geological and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data on carbonate from the upper ca. 248 m of sediment cores recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project, covering the past 640 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the Total Inorganic Carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle, comprising abundant endogenic calcite through interglacials and being almost absent in glacials, apart from discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to hydroclimate fluctuations on orbital and millennial timescales. We also measured isotopes on authigenic siderite (δ18Os and δ13Cs) and, with the δ18OCc and δ18Os, reconstruct δ18O of lakewater (δ18Olw) through the 640 ka. Overall, glacials have lower δ18Olw when compared to interglacials, most likely due to cooler summer temperatures, a higher proportion of winter precipitation (snowfall), and a reduced inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability through Marine Isotope Stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial, and was isotopically freshest during MIS 9. After MIS 9, the variability between glacial and interglacial δ18Olw is enhanced and the lake became increasingly evaporated through to present day with MIS 5 having the highest average δ18Olw. Our results provide new evidence for long-term climate change in the northern Mediterranean

  5. Northern Mediterranean climate since the Middle Pleistocene: a 637 ka stable isotope record from Lake Ohrid (Albania/Macedonia)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Leng, Melanie J.; Francke, Alexander; Sloane, Hilary J.; Milodowski, Antoni; Vogel, Hendrik; Baumgarten, Henrike; Zanchetta, Giovanni; Wagner, Bernd

    2016-03-01

    Lake Ohrid (Macedonia/Albania) is an ancient lake with unique biodiversity and a site of global significance for investigating the influence of climate, geological, and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data from carbonate over the upper 243 m of a composite core profile recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project. The investigated sediment succession covers the past ca. 637 ka. Previous studies on short cores from the lake (up to 15 m, < 140 ka) have indicated the total inorganic carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial-interglacial cycle. Sediments corresponding to warmer periods contain abundant endogenic calcite; however, an overall low TIC content in glacial sediments is punctuated by discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to palaeoenvironmental change on orbital and millennial timescales. We also measured isotope ratios from authigenic siderite (δ18Os and δ13Cs) and, with the oxygen isotope composition of calcite and siderite, reconstruct δ18O of lake water (δ18Olw) over the last 637 ka. Interglacials have higher δ18Olw values when compared to glacial periods most likely due to changes in evaporation, summer temperature, the proportion of winter precipitation (snowfall), and inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability from marine isotope stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial. Climate conditions became progressively wetter during MIS 11 and MIS 9. Interglacial periods after MIS 9 are characterised by increasingly evaporated and drier conditions through MIS 7, MIS 5

  6. Quantitative reconstructions of mid- to late holocene climate and vegetation in the north-eastern altai mountains recorded in lake teletskoye

    NASA Astrophysics Data System (ADS)

    Rudaya, Natalia; Nazarova, Larisa; Novenko, Elena; Andreev, Andrei; Kalugin, Ivan; Daryin, Andrei; Babich, Valery; Li, Hong-Chun; Shilov, Pavel

    2016-06-01

    We report the first high-resolution (20-50 years) mid- to late Holocene pollen records from Lake Teletskoye, the largest lake in the Altai Mountains, in south-eastern West Siberia. Generally, the mid- to late Holocene (the last 4250 years) vegetation of the north-eastern Altai, as recorded in two studied sediment cores, is characterised by Siberian pine-spruce-fir forests that are similar to those of the present day. A relatively cool and dry interval with July temperatures lower than those of today occurred between 3.9 and 3.6 ka BP. The widespread distribution of open, steppe-like communities with Artemisia, Chenopodiaceae and Cyperaceae reflects maximum deforestation during this interval. After ca. 3.5 ka BP, the coniferous mountain taiga spread significantly, with maximum woody coverage and taiga biome scores between ca. 2.7 and 1.6 ka BP. This coincides well with the highest July temperature (approximately 1 °C higher than today) intervals. A short period of cooling about 1.3-1.4 ka BP could have been triggered by the increased volcanic activity recorded across the Northern Hemisphere. A new period of cooling started around 1100-1150 CE, with the minimum July temperatures occurring between 1450 and 1800 CE.

  7. A 900-Year Diatom and Chrysophyte Record of Spring Mixing and Summer Stratification From Varved Lake Mina, West-Central Minnesota, USA

    NASA Astrophysics Data System (ADS)

    St. Jacques, J.; Cumming, B. F.; Smol, J. P.

    2009-05-01

    A high-resolution, independent pollen-inferred paleoclimate record and direct algal seasonality data from the actual time of sediment deposition are used to interpret the high-resolution diatom and chrysophyte record of varved Lake Mina, west-central Minnesota, USA during AD 1116-2002. This direct algal seasonality information was obtained by a new technique of splitting varves into constituent winter-spring and summer lamina, and separately analyzing the siliceous algae in each layer. Analyses of integrated, continuous four-year diatom and chrysophyte samples from a sedimentary sequence show that the time period AD 1116-1478 (i.e. the Atlantic- centered Medieval Climate Anomaly (MCA)) was characterized by periods of vigorous and prolonged spring mixing, suggesting that ice-out occurred early. However, the warm summer temperatures in the MCA, particularly in a massive drought spanning AD 1300-1400, frequently caused the lake to stratify strongly, leading to nutrient depletion. During AD 1478-1870 (i.e. the Atlantic-centered Little Ice Age (LIA)), Lake Mina was characterized by weak spring circulation and increasing nutrient depletion, suggesting late ice-out conditions. Strong summer stratification and/or nutrient depletion in both time periods is shown by the occurrence of the nutrient-poor oligotrophic taxon Cyclotella pseudostelligera. The diatom and chrysophyte assemblages of the period of Euro-American settlement AD 1870-2002 show higher nutrient availability and increased spring mixing intensity, due to forest clearance and increasingly earlier ice-out (documented in regional historical records).

  8. A Laminated Carbonate Record of Late Holocene Mid-Continental Hydroclimate: Geochemical and Sedimentological Results from Martin Lake, LaGrange County, Indiana

    NASA Astrophysics Data System (ADS)

    Stamps, L. G.; Bird, B. W.; Gilhooly, W., III

    2014-12-01

    Paleoclimate records from the mid-continental United States that span the Holocene with sub-decadal resolution are rare. This is especially true for geochemical records that capture the isotopic composition of precipitation or local precipitation/evaporation balances. As a result, many questions remain about the hydrologic expression of abrupt climate events in this region that today is one of the world's largest agricultural centers. Here, we present sedimentological, geochemical, and chronological data spanning the last 3,000 years from a set of sediment cores from Martin Lake in northeastern Indiana. Today, this kettle lake is hydrologically open with persistent water column stratification and bottom water anoxia. Radiometric dating shows that the lake formed at approximately 16,000 cal yr BP and continuously accumulated sediment thereafter. We focus here on developing a stable isotope record of the late Holocene at decadal resolution to provide a detailed view of precipitation isotopic variability during this time. The Midwest has been influenced by changes in atmospheric circulation patterns throughout the late Holocene, leading to climate events like the Little Ice Age and Medieval Climate Anomaly, which significantly changed temperature and precipitation regimes. The isotopic composition of precipitation in the Midwest has been shown to be heavily influenced by the source of atmospheric moisture as mediated by the Pacific North American mode of atmospheric variability that in turn affects the position of the Polar Front Jetstream. Using high-resolution stable isotope measurements and ultimately climate modeling, we seek to reconstruct the isotopic expression of late Holocene climate events in the mid continental United States and assess the possible relationship with these dominant modes of atmospheric variability. Future work includes extending this reconstruction through the Holocene and increasing the temporal resolution of the data.

  9. An unrecognised Holocene palaeo-lake at the terminus of the Murray-Darling Basin: a palaeo-discharge record and implications for current climate reconstructions

    NASA Astrophysics Data System (ADS)

    De Carli, E.; Hubble, T.; Penny, D.; Petley, D. N.; Clarke, S. L.; Hamilton, R. J.; Gadd, P.; Brand, H.

    2015-12-01

    The 1.073 million km2 Murray-Darling River Basin (MDB) drains 14% of Australia's landmass, incorporates Australia's most economically important agricultural region, and presents one of Australia's most important and contentious water security challenges. The twin Murray and Darling catchments extend from the sub-tropics to the mid latitudes, with catchment precipitation driven by synoptic-scale oceanic-atmospheric processes that include the Australian Monsoon, SAM, IPO, PDO, IOD and ENSO. In this study we report the discovery of a hitherto unrecognised terminal palaeo-lake system 'Lake Mannum' that existed during the middle to late Holocene, as evidenced by an extensive sequence of laminated muds. The deposit contains gray laminae enriched in smectite and Nd/Ti, diagnostic of palaeo-discharges originating from the Darling catchment. These gray laminae are set within olive-black background muds enriched in illite, K and Rb, diagnostic of palaeo-discharges originating from the Murray Catchment. The deposit reflects the hydrological regime of the MDB, representing the first in-situ palaeo-discharge record for the MDB and a proxy record for south-eastern Australia's precipitation and hydroclimate. Given the strong influence of major oceanic-atmospheric synoptic circulation over the river system, variability in MDB discharge and delivery of suspended sediment flux to the continental shelf have been used as proxy indicators for south-eastern Australia's palaeo-climate during the Holocene. The existence of palaeo-lake Mannum at the terminus of the MDB suggests that discharge of terrigenous sediment to the Southern Ocean was strongly suppressed during this time, meaning that Holocene climate reconstructions which rely on the marine sediment record require re-evaluation.

  10. Critical nitrogen deposition loads in high-elevation lakes of the western US inferred from paleolimnological records

    USGS Publications Warehouse

    Saros, J.E.; Clow, D.W.; Blett, T.; Wolfe, A.P.

    2011-01-01

    Critical loads of nitrogen (N) from atmospheric deposition were determined for alpine lake ecosystems in the western US using fossil diatom assemblages in lake sediment cores. Changes in diatom species over the last century were indicative of N enrichment in two areas, the eastern Sierra Nevada, starting between 1960 and 1965, and the Greater Yellowstone Ecosystem, starting in 1980. In contrast, no changes in diatom community structure were apparent in lakes of Glacier National Park. To determine critical N loads that elicited these community changes, we modeled wet nitrogen deposition rates for the period in which diatom shifts first occurred in each area using deposition data spanning from 1980 to 2007. We determined a critical load of 1.4 kg N ha-1 year-1 wet N deposition to elicit key nutrient enrichment effects on diatom communities in both the eastern Sierra Nevada and the Greater Yellowstone Ecosystem. ?? 2010 Springer Science+Business Media B.V.

  11. 7000 year record of lake-level change on the northern Great Plains: A high-resolution proxy of past climate

    SciTech Connect

    Vance, R.E.; Mathewes, R.W. ); Clague, J.J. )

    1992-10-01

    Mineralogical and paleobotanical characteristics of the sedimentary fill in a shallow, saline lake in southeastern Alberta indicate that drought intervals are aperiodic and that climatic extremes unprecedented in historic time occurred earlier during the Holocene, when century-long intervals of repeated, intense droughts alternated with long periods when droughts were rare. Low-water intervals (signifying periods of drought) are recorded by carbonate-rich laminae containing abundant plant fossils indicative of hypersalinity. In contrast, highstands of relatively fresh water (outlining moist periods) are represented by massive, silicate-rich sediment with lower numbers of halophytic indicators.

  12. First record of protozoan parasites in cyprinid fish, Schizothorax niger Heckel, 1838 from Dal lake in Kashmir Himalayas with study on their pathogenesis.

    PubMed

    Dar, Shoaib Ali; Kaur, Harpreet; Chishti, M Z; Ahmad, Fayaz; Tak, Irfan ur Rauf; Dar, Gowhar Hamid

    2016-04-01

    Trichodina heterodentata Duncan, 1977 and Ichthyophthirius multifiliis Fouquet, 1876 obtained from gills during a parasitological survey conducted for the protozoan parasitic fauna of Schizothorax niger a snow trout in Dal Lake, Kashmir, India during the period October 2013 and March 2015. Thirty out of 180 fish were found infected with protozoan parasites. During the study of their pathogenecity the most common deteriorating signs observed in gill tissue were necrosis, hypertrophy, hyperplasia and fusion of secondary lamellae. Prevalence of infection was found to be 16.66%. This is the first record of the protozoan fauna of the schizothoracines from Kashmir valley, India.

  13. Millennial scale Record of Terrestrial Pliocene-Pleistocene warmth from Lake El'gygytgyn, NE Russia: What does it mean for Greenland's Ice Sheet history?

    NASA Astrophysics Data System (ADS)

    Brigham-Grette, J.; Melles, M.; Minyuk, P.; DeConto, R.; Koenig, S. J.; Andreev, A.; Tarasov, P.; Nowaczyk, N.; Wennrich, V.; Cook, T.; Snyder, J. A.; Gebhardt, C.; Coletti, A. J.

    2012-12-01

    The Pliocene-Pleistocene climate evolution of the Arctic must have modulated the glacial history of Greenland. Yet what is known from the terrestrial stratigraphy of Arctic climate change comes from sites that are spatially and temporally fragmented. In 2009, International Continental Deep drilling at Lake El'gygytgyn (67o30' N, 172 o 05' E) recovered lacustrine sediments dating back to 3.58 Ma that now provide the first time-continuous Pliocene-Pleistocene Arctic paleoclimate record of alternating glacial-interglacial change. The warmest and wettest Pliocene interval of the lake record occurs from ~3.58-3.34 Ma and is dominated by exceptional tree pollen implying July temperatures nearly 7-8o C warmer than today with nearly ~3 times the annual precipitation. Atmospheric CO2 levels are estimated to have been 360 to 400 ppm implying exceptionally high climate sensitivity and polar amplification. In fact, pollen spectra and modern analog analysis show an unbroken persistence of summers much warmer and wetter than the last interglacial, MIS 5e until nearly 2.2 Ma with abrupt changes in boreal forest composition at 2.715-2.695, 2.56 ad 2.53 Ma punctuated by an abrupt change in precipitation at 2.94-2.91 Ma. Modeling sensitivity experiments using 300 and 400 ppm CO2 are consistent with sustained forests at Lake El'gygytgyn during this interval and restricted glacial ice over Greenland in both cold and warm boreal summer orbits especially for the PRISM interval. Extreme warmth in the Mid Pliocene Arctic occurs at the same time ANDRILL results suggest the West Antarctic Ice Sheet was non-existent. The Lake El'gygytgyn record includes a strong M2 cooling event in a number of proxies at ~3.3 Ma, with conditions comparable to the early Holocene Thermal Maximum, but not glacial climates. Our reconstructions do not preclude the existence of a Greenland Ice sheet during M2 but are unfavorable for the initiation of ice over parts of North America until after 3.0 Ma. This has

  14. High resolution record of millet cultivation during the Bronze Age around Lake le Bourget (French Alps). Is there any climatic control?

    NASA Astrophysics Data System (ADS)

    Jacob, J.; Disnar, J. R.; Arnaud, F.; Billaud, Y.; Chapron, E.; Sicre, M.-A.; Boscardin, R.

    2009-04-01

    Our understanding of past interactions between the development of human societies, the evolution of climate and associated changes in ecosystems and landscape dynamics is conditioned by the acquisition of high resolution records within which specific tracers allow us estimating variability. The recent development of a molecular biomarker (miliacin) specific of Panicum miliaceum (common millet) associated with the determination of a biomarker allowing to track soil erosion in the sediments of Lake le Bourget (French Alps; [1], [2]) expands the possibilities afforded by organic geochemistry applied to sedimentary archives to unravel these interactions. Within the frame of the Pygmalion project (ANR Blanc, France) we improved the previous miliacin record from Lake le Bourget sediments [1] to reach an infra-decadal resolution for the 2000-600 BC time period that covers the Bronze Age. Miliacin is detected for the first time in sediment samples dated back to ca. 1700 BC, in agreement with the supposed date of introduction of P. miliaceum in the region. Miliacin concentration is low (ca. 20 ng.g-1) during the 1700-1400 BC interval and then rises to values up to 300 ng.g-1 at 850 BC before the strong decrease to 20 ng.g-1 at 750 BC imputable to the abandonment of palaffitic habitats due to a climatic deterioration at the Bronze Age/Iron Age transition. In addition to this general trend, miliacin concentration shows century-scale variations in the 1700-800 BC interval that share similarities with other records. Two periods of miliacin high concentrations at 950 and 850 BC coincide with high densities of dendrochronological dates acquired on wooden piles and with two periods of lake level lowering. The comparison of miliacin evolution in Lake le Bourget with the high resolution alkenone-derived sea surface temperature (SST) record obtained in the North Atlantic off Iceland [3] shows striking coincidences. Previous studies showed that periods of elevated SSTs in this area

  15. Quaternary record of aridity and mean annual precipitation based on δ15N in ratite and dromornithid eggshells from Lake Eyre, Australia.

    PubMed

    Newsome, Seth D; Miller, Gifford H; Magee, John W; Fogel, Marilyn L

    2011-12-01

    The cause(s) of the late Pleistocene megafauna extinction on the Australian continent remains largely unresolved. Unraveling climatic forcing mechanisms from direct or indirect human agents of ecosystem alteration has proven to be extremely difficult in Australia due to the lack of (1) well-dated vertebrate fossils and (2) paleo-environmental and -ecological records spanning the past approximately 100 ka when regional climatic conditions are known to have significantly varied. We have examined the nitrogen isotope composition (δ(15)N) of modern emu (Dromaius novaehollandiae) eggshells collected along a precipitation gradient in Australia, along with modern climatological data and dietary δ(15)N values. We then used modern patterns to interpret an approximately 130-ka record of δ(15)N values in extant Dromaius and extinct Genyornis newtoni eggshells from Lake Eyre to obtain a novel mean annual precipitation (MAP) record for central Australia spanning the extinction interval. Our data also provide the first detailed information on the trophic ecology and environmental preferences of two closely related taxa, one extant and one extinct. Dromaius eggshell δ(15)N values show a significant shift to higher values during the Last Glacial Maximum and Holocene, which we interpret to indicate more frequent arid conditions (<200 mm MAP), relative to δ(15)N from samples just prior to the megafauna extinction. Genyornis eggshells had δ(15)N values reflecting wetter nesting conditions overall relative to those of coeval Dromaius, perhaps indicating that Genyornis was more reliant on mesic conditions. Lastly, the Dromaius eggshell record shows a significant decrease in δ(13)C values prior to the extinction, whereas the Genyornis record does not. Neither species showed a concomitant change in δ(15)N prior to the extinction, which suggests that a significant change in vegetation surrounding Lake Eyre occurred prior to an increase in local aridity.

  16. A High-Resolution Multi-Proxy Lake Sediment Record from Torfdalsvatn Suggests an Enhanced Temperature Gradient Between North and South Iceland During the Early Holocene

    NASA Astrophysics Data System (ADS)

    Florian, Christopher; Geirsdóttir, Áslaug; Miller, Gifford; Axford, Yarrow

    2015-04-01

    Torfdalsvatn (66° 3'41.73"N, 20°23'14.26"W) is a relatively small (0.4 km2) and shallow (z=5.8 m) lake on the Skagi Peninsula of northern Iceland approximately 0.5 km from the modern coastline. This location is ideal for comparison with the many marine core records from the North Iceland Shelf that record variability in the northern extent of the warm Irminger Current, one of the primary controls on regional climate. To develop a record of north Iceland Holocene terrestrial climate, we analyzed a 8.4 m sediment core at 15-30 year resolution from approximately 12 ka to present using multiple proxies including sedimentary pigments, organic carbon flux, carbon to nitrogen ratio and stable isotopes, as well as biogenic silica measured by Fourier Transform Infrared Spectroscopy (FTIR-S). Results show gradual warming during the early Holocene, with stable soil development and peak aquatic productivity not occurring until after 8 ka. Increased aquatic productivity and a stable terrestrial environment between 6 and 2 ka indicate peak Holocene warmth in this interval. Aquatic productivity abruptly decreases at 1.8 ka associated with an increase in minerogenic material from landscape destabilization in the catchment with the onset of late Holocene cooling. At 1ka, the proportion of terrestrially-derived organic matter deposited in the lake sediment increases, indicating significant destabilization of soil horizons due to continued cooling and potential human settlement. This record is in good agreement with composite north Iceland chironomid-inferred July air temperatures from Axford et al. (2007), which show peak summer temperatures occurring between approximately 5 and 2 ka. The time of peak warmth at Torfdalsvatn is associated with peak biogenic carbonate concentration in the marine core MD99-2269, indicating an influx of warm Irminger waters. This is in contrast with Holocene climate records obtained from lakes in south and west Iceland, implying that there was an

  17. A high-resolution diatom-inferred palaeoconductivity and lake level record of the Aral Sea for the last 1600 yr

    NASA Astrophysics Data System (ADS)

    Austin, Patrick; Mackay, Anson; Palagushkina, Olga; Leng, Melanie

    2007-05-01

    Formerly the world's fourth largest lake by area, the Aral Sea is presently undergoing extreme desiccation due to large-scale irrigation strategies implemented in the Soviet era. As part of the INTAS-funded CLIMAN project into Holocene climatic variability and the evolution of human settlement in the Aral Sea basin, fossil diatom assemblages contained within a sediment core obtained from the Aral Sea have been applied to a diatom-based inference model of conductivity ( r2 = 0.767, RMSEP = 0.469 log 10 μS cm - 1). This has provided a high-resolution record of conductivity and lake level change over the last ca. 1600 yr. Three severe episodes of lake level regression are indicated at ca. AD 400, AD 1195-1355 and ca. AD 1780 to the present day. The first two regressions may be linked to the natural diversion of the Amu Darya away from the Aral Sea and the failure of cyclones formed in the Mediterranean to penetrate more continental regions. Human activity, however, and in particular the destruction of irrigation facilities are synchronous with these early regressions and contributed to the severity of the observed low stands.

  18. Linking the10Be continental record of Lake Baikal to marine and ice archives of the last 50 ka: Implication for the global dust-aerosol input

    USGS Publications Warehouse

    Aldahan, A.; Possnert, G.; Peck, J.; King, J.; Colman, S.

    1999-01-01

    We present here a 10Be profile from the continental sediments of Lake Baikal (the world's largest fresh water lake), which, for the first time, shows the ??? 40 ka 10Be enhancement and a pattern that strongly matches those from the marine and ice records for the last 50 ka. This finding provides a new horizon for global and regional correlation of continental archives. Additionally, our VADM-predicted 10Be production confirms and further strengthens a common global cause (geomagnetic field intensity) for the change in atmospheric 10Be over the last 50 ka. We also show that most of the 10Be inventory to the lake has been provided by riverine input, but with a significant addition from direct precipitation and dust-aerosol fallout. We estimate a higher dust-aerosol contribution of 10Be during the Holocene and interstadial stage 3 (22-50 ka) as compared with the glacial period (12-22 ka). Copyright 1999 by the American Geophysical Union.

  19. Biogeochemical properties and diagenetic changes during the past 3.6 Ma recorded by FTIR spectroscopy in the sediment record of Lake El'gygytgyn, Far East Russian Arctic

    NASA Astrophysics Data System (ADS)

    Meyer-Jacob, C.; Vogel, H.; Melles, M.; Rosén, P.

    2013-05-01

    A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9-56.5%), total organic carbon (TOC; n = 309; gradient: 0.02-2.89%), and total inorganic carbon (TIC; n = 153; gradient: 0.01-1.46%) in a 318 m long sediment record with a basal age of 3.6 Ma from Lake El'gygytgyn, Far East Russian Arctic. The developed partial least squares regression (PLSR) models yield high cross-validated (CV) R2CV = 0.85-0.91 and low root mean square error of cross-validation (RMSECV) (2.1-4.3% of the gradient for the different properties). The FTIRS-inferred concentrations of BSi, TOC, and TIC provide an initial insight into the climatic and environmental evolution at Lake El'gygytgyn throughout the late Pliocene and Quaternary showing a considerably high bioproductivity in the lake ecosystem between ~ 3.27-3.54 Ma during the early Pliocene warm period. Moreover, we found that the recorded FTIR spectra contain information on sample burial depth as a result of diagenetic changes (dehydration/dehydroxilation) of certain mineral phases. Despite the indicated post-depositional processes, the calibration models yield good statistical performances showing that general FTIRS models can be developed for several hundred meters long records extending several million years back in time. Our results highlight FTIRS to be a rapid, cost-effective alternative to conventional methods for quantification of biogeochemical properties.

  20. Mid- to late Holocene flood frequency changes in the northeastern Alps as recorded in varved sediments of Lake Mondsee (Upper Austria)

    NASA Astrophysics Data System (ADS)

    Swierczynski, Tina; Lauterbach, Stefan; Dulski, Peter; Delgado, José; Merz, Bruno; Brauer, Achim

    2013-11-01

    Annually laminated (varved) lake sediments with intercalated detrital layers resulting from sedimentary input by runoff events are ideal archives to establish precisely dated records of past extreme runoff events. In this study, the mid- to late Holocene varved sediments of Lake Mondsee (Upper Austria) were analysed by combining sedimentological, geophysical and geochemical methods. This approach allows to distinguish two types of detrital layers related to different types of extreme runoff events (floods and debris flows) and to detect changes in flood activity during the last 7100 years. In total, 271 flood and 47 debris flow layers, deposited during spring and summer, were identified, which cluster in 18 main flood episodes (FE 1-18) with durations of 30-50 years each. These main flood periods occurred during the Neolithic (7100-7050 vyr BP and 6470-4450 vyr BP), the late Bronze Age and the early Iron Age (3300-3250 and 2800-2750 vyr BP), the late Iron Age (2050-2000 vyr BP), throughout the Dark Ages Cold Period (1500-1200 vyr BP), and at the end of the Medieval Warm Period and the Little Ice Age (810-430 vyr BP). Summer flood episodes in Lake Mondsee are generally more abundant during the last 1500 years, often coinciding with major advances of Alpine glaciers. Prior to 1500 vyr BP, spring/summer floods and debris flows are generally less frequent, indicating a lower number of intense rainfall events that triggered erosion. In comparison with the increase of late Holocene flood activity in western and northwestern (NW) Europe, commencing already as early as 2800 yr BP, the hydro-meteorological shift in the Lake Mondsee region occurred much later. These time lags in the onset of increased hydrological activity might be either due to regional differences in atmospheric circulation pattern or to the sensitivity of the individual flood archives. The Lake Mondsee sediments represent the first precisely dated and several millennia long summer flood record for the

  1. Late Quaternary vegetation and environments in the Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh

    NASA Astrophysics Data System (ADS)

    Müller, Stefanie; Tarasov, Pavel E.; Andreev, Andrei A.; Tütken, Thomas; Gartz, Steffi; Diekmann, Bernhard

    2010-08-01

    Here we present a detailed radiocarbon-dated 936 cm long pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) situated in the western part of the Verkhoyansk Mountains, about 140 km south of the Arctic Circle. A set of 53 surface pollen samples representing tundra, cold deciduous forest and taiga was collected in northern and central Yakutia communities to verify the accuracy of the quantitative biome reconstruction method and to obtain a more precise attribution of the identified pollen taxa to the main regional biomes. The adjusted method is then applied to the pollen record from Lake Billyakh to gain a reconstruction of vegetation and environments since about 50.7 kyr BP. The results of the pollen analysis and pollen-based biome reconstruction suggest that herbaceous tundra and steppe communities dominated the area from 50.7 to 13.5 kyr BP. Relatively low pollen concentrations and high percentages of herbaceous pollen taxa (mainly Cyperaceae, Poaceae and Artemisia) likely indicate a reduced vegetation cover and/or lower pollen production. On the other hand, extremely low percentages of drought-tolerant taxa, such as Chenopodiaceae and Ephedra, and the constant presence of various mesophyllous herbaceous ( Thalictrum, Rosaceae, Asteraceae) and shrubby taxa ( Betula sect. Nanae/Fruticosae, Duschekia fruticosa, Salix) in the pollen assemblages prevent an interpretation of the last glacial environments around Lake Billyakh as extremely arid. The lowest pollen percentages of woody taxa and the highest values of Artemisia pollen attest that the 31-15 kyr BP period as the driest and coldest interval of the entire record. A relative high content of taxa representing shrub tundra communities and the presence of larch pollen recorded prior to 31 kyr and after 13.5 kyr BP likely indicate interstadial climate amelioration associated with the middle and latest parts of the last glacial. An increase in pollen percentages of herbaceous taxa around 12 kyr BP

  2. Sedimentary records of trace elements from large European lakes (Switzerland) document historic to recent freshwater pollution and climate-induced runoff variations

    NASA Astrophysics Data System (ADS)

    Thevenon, F.; Wirth, S. B.; Fujak, M.; Poté, J.; Thierry, A.; Chiaradia, M.; Girardclos, S.

    2011-12-01

    Continuous sedimentary records of anthropogenic and natural trace elements determined by ICPMS, from 5 large and deep perialpine lakes from Central Europe (Switzerland), evidence the environmental impacts of industrial fossil fuel pollution. In fact, the greatest increase in heavy metal pollution was registered at all the studied sites following the European industrial revolution of ca. AD 1800; with the highest values during the middle part of the 20th century. On a regional scale, anthropogenic heavy metal input subsequently stopped increasing thanks to remediation strategies such as the implementation of wastewater treatment plants (WWTPs). On the other hand, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century involved the sedimentation of highly contaminated sediments in the area surrounding the WWTP outlet pipe discharge; less than 4 km from the main supply of drinking water of Lausanne (127'000 hab.). Microbial analyses furthermore reveal i) high increase in bacterial densities following the lake eutrophication in the 1970s, and that ii) the related sediments can be considered as a reservoir of antibiotic resistant bacteria/genes (of human origin). We finally compare instrumental hydrological data over the last century with variations of lithogenic trace elements (e.g., titanium) as registered in three large lakes (Brienz, Thun and Bienne) connected by the River Aar. This task allows to better constraining the runoff variations on a regional scale over the last decades for the the River Aar, and its possible increase under warming climate conditions in the European Alps.

  3. Lake sediment multi-taxon DNA from North Greenland records early post-glacial appearance of vascular plants and accurately tracks environmental changes

    NASA Astrophysics Data System (ADS)

    Epp, L. S.; Gussarova, G.; Boessenkool, S.; Olsen, J.; Haile, J.; Schrøder-Nielsen, A.; Ludikova, A.; Hassel, K.; Stenøien, H. K.; Funder, S.; Willerslev, E.; Kjær, K.; Brochmann, C.

    2015-06-01

    High Arctic environments are particularly sensitive to climate changes, but retrieval of paleoecological data is challenging due to low productivity and biomass. At the same time, Arctic soils and sediments have proven exceptional for long-term DNA preservation due to their constantly low temperatures. Lake sediments contain DNA paleorecords of the surrounding ecosystems and can be used to retrieve a variety of organismal groups from a single sample. In this study, we analyzed vascular plant, bryophyte, algal (in particular diatom) and copepod DNA retrieved from a sediment core spanning the Holocene, taken from Bliss Lake on the northernmost coast of Greenland. A previous multi-proxy study including microscopic diatom analyses showed that this lake experienced changes between marine and lacustrine conditions. We inferred the same environmental changes from algal DNA preserved in the sediment core. Our DNA record was stratigraphically coherent, with no indication of leaching between layers, and our cross-taxon comparisons were in accordance with previously inferred local ecosystem changes. Authentic ancient plant DNA was retrieved from nearly all layers, both from the marine and the limnic phases, and distinct temporal changes in plant presence were recovered. The plant DNA was mostly in agreement with expected vegetation history, but very early occurrences of vascular plants, including the woody Empetrum nigrum, document terrestrial vegetation very shortly after glacial retreat. Our study shows that multi-taxon metabarcoding of sedimentary ancient DNA from lake cores is a valuable tool both for terrestrial and aquatic paleoecology, even in low-productivity ecosystems such as the High Arctic.

  4. Holocene Record of Major and Trace Components in the Sediments of an Urban Impoundment on the Mississippi River: Lake Pepin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Dean, Walter E.

    2009-01-01

    Lake Pepin is a natural impoundment formed by damming of the Mississippi River about 9,180 radiocarbon years ago (19,600 calendar years) by an alluvial fan deposited by the Chippewa River, a tributary of the Mississippi in Wisconsin. Unique among 26 Mississippi River impoundments, Lake Pepin has stratigraphically preserved Holocene materials, including pollutants, that have been transported down the Mississippi. This natural Holocene record can then be compared to changes that have occurred since European settlement (ca. AD 1830), and since enactment of clean air and water legislation. The most immediate response to settlement in the sediments of Lake Pepin was an increase in bulk-sediment accumulation rate. This was accompanied by gradual increases in concentrations of phosphorus (P), and organic carbon (OC), followed by dramatic increases in these elements beginning about 1940. The increase in P was far greater than any of the minor fluctuations in P that occurred throughout the Holocene, but the increase in OC was comparable to an increase in OC that occurred in the mid-Holocene. The concentrations of several metals (for example, cadmium [Cd], and lead [Pb]) also are elevated in recent sediments. Increased Cd concentrations lasted only about two decades during the industrial era between World War II and the enactment of clean water standards in the 1970s. Increased Pb emissions, on the other hand, occurred over more than 100 years, first from burning of coal and smelting of lead ores, and then, beginning in the 1930s, burning of leaded gasoline. Concentrations of Pb in the sediments of Lake Pepin decreased to about two times preindustrial levels within a decade of enactment of unleaded gasoline restrictions.

  5. Paleoclimatic record of the late Quaternary from a gravity core sediment of Lake Hovsgol in northern Mongolia

    NASA Astrophysics Data System (ADS)

    Cheong, D.; Kim, B.

    2007-12-01

    Gravity core sediment (HS 7) from Lake Hovsgol(Mongolia) is divided into three sedimentary units on the basis of sediments texture, water contents, occurrence of fossils and sediment color. Unit 1(27¢¦128§¯) is generally massive and is crudely stratified. Ostracods are well preserved over the all interval of Unit1, but diatoms are not well preserved. At Unit2(9¢¦27§¯), mud content is slightly low and lamination is well developed. It is dark greenish gray in the upper part, and dark greenish gray is alternating with light brownish gray in the lower part. Diatom contents increase towards the top and ostracods fragments disappear at the top of Unit 2. Unit3(0¢¦9§¯) is laminated mud in olive gray color. Diatom contents are high but ostracods are not observed in this unit. According to 14C age dating results, we assumed that Unit1 is Pleistocene sediment, Unit2 is sediment of a transitional stage and Unit 3 is Holocene sediment. Chemical composition of trace elements from ostracods show variations through Unit1, especially showing a distinct change at 95¢¦100§¯ interval. It matches to the distribution of ostracod at this interval. Contents of ostracod decrease at the interval and contents of Cytherissa lacustris decrease, but Limnocythere inopinata increase. It was interpreted that warm air was supplied to Lake Hovsgol after LGM(Last Glacial Maximum), causing ice melting. Consequently the bottom environment of Lake Hovsgol experienced some changes as the lake level increased little bit. At the top of Unit 1 appear a lots of pyrite which are arranged in line, and diatoms occure but ostracods are not observed toward the top of Unit 2, and lamination is developed in Unit 2. It means the bottom environment of Lake Hovsgol changed to anoxic condition. At that time, plenty of water was supplied into the lake, resulting in water stratification and cutting off oxygen supply to the bottom of Lake Hovsgol. It made the lake level rise higher, so that the bottom

  6. Early- to Mid-Holocene hydroclimate shifts in tropical East Africa: the multi-proxy sediment record from Lake Rutundu, Kenya

    NASA Astrophysics Data System (ADS)

    De Cort, Gijs; Creutz, Mike; Barao, Lucia; Conley, Daniel; Haug, Gerald; Bodé, Samuel; Blaauw, Maarten; Engstrom, Dan; Verschuren, Dirk

    2015-04-01

    Following the generally arid conditions of the Last Glacial Maximum (LGM), a large part of the African continent experienced the Early to Mid-Holocene as a much more humid period than today. This so-called African Humid Period (AHP) coincided with high summertime insolation over the Northern Hemisphere subtropics, causing invigorated monsoons to create moist conditions over the northern parts of the continent. Similarly, equatorial and even low-latitude southeastern Africa experienced a wetter climate due to the post-glacial increase in atmospheric greenhouse gasses ultimately leading to altered Atlantic and Indian Ocean monsoon dynamics. The timing and abruptness of the onset and ending of the AHP in the different regions of the continent have been the subject of major discussion. On the other hand, shorter-lived climate fluctuations within the AHP have received much less attention, due to a scarcity of well-dated, high-resolution African paleoclimate records spanning the entire Holocene. In this study we used the sediment record of Lake Rutundu, a high-altitude crater lake on Mount Kenya, to document multidecadal to millennial-scale hydroclimate variability on the East African equator from the LGM to the present. A multiproxy approach combining core-surface scanning techniques (magnetic susceptibility, X-ray fluorescence) and close-interval bulk-sediment analyses (organic matter and biogenic Si content, grain size, organic δ15N and δ13C) resulted in a high-resolution record firmly anchored in time by an age model based on 210Pb dating and sixteen calibrated radiocarbon ages. This new Lake Rutundu hydroclimate record confirms that moister conditions following the LGM returned to East Africa ca.16 kyr BP, and it contains a perfectly timed Younger Dryas episode (12.8-11.5 kyr BP) of intermittent drought. We find that the Early- to Mid-Holocene period, which in African records is often described as uniformly wet, was in fact punctuated by three distinct, century

  7. Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East Africa.

    PubMed

    Faith, J Tyler; Tryon, Christian A; Peppe, Daniel J; Beverly, Emily J; Blegen, Nick; Blumenthal, Scott; Chritz, Kendra L; Driese, Steven G; Patterson, David

    2015-06-01

    The opening and closing of the equatorial East African forest belt during the Quaternary is thought to have influenced the biogeographic histories of early modern humans and fauna, although precise details are scarce due to a lack of archaeological and paleontological records associated with paleoenvironmental data. With this in mind, we provide a description and paleoenvironmental reconstruction of the Late Pleistocene Middle Stone Age (MSA) artifact- and fossil-bearing sediments from Karungu, located along the shores of Lake Victoria in western Kenya. Artifacts recovered from surveys and controlled excavations are typologically MSA and include points, blades, and Levallois flakes and cores, as well as obsidian flakes similar in geochemical composition to documented sources near Lake Naivasha (250 km east). A combination of sedimentological, paleontological, and stable isotopic evidence indicates a semi-arid environment characterized by seasonal precipitation and the dominance of C4 grasslands, likely associated with a substantial reduction in Lake Victoria. The well-preserved fossil assemblage indicates that these conditions are associated with the convergence of historically allopatric ungulates from north and south of the equator, in agreement with predictions from genetic observations. Analysis of the East African MSA record reveals previously unrecognized north-south variation in assemblage composition that is consistent with episodes of population fragmentation during phases of limited dispersal potential. The grassland-associated MSA assemblages from Karungu and nearby Rusinga Island are characterized by a combination of artifact types that is more typical of northern sites. This may reflect the dispersal of behavioral repertoires-and perhaps human populations-during a paleoenvironmental phase dominated by grasslands. PMID:25883052

  8. Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East Africa.

    PubMed

    Faith, J Tyler; Tryon, Christian A; Peppe, Daniel J; Beverly, Emily J; Blegen, Nick; Blumenthal, Scott; Chritz, Kendra L; Driese, Steven G; Patterson, David

    2015-06-01

    The opening and closing of the equatorial East African forest belt during the Quaternary is thought to have influenced the biogeographic histories of early modern humans and fauna, although precise details are scarce due to a lack of archaeological and paleontological records associated with paleoenvironmental data. With this in mind, we provide a description and paleoenvironmental reconstruction of the Late Pleistocene Middle Stone Age (MSA) artifact- and fossil-bearing sediments from Karungu, located along the shores of Lake Victoria in western Kenya. Artifacts recovered from surveys and controlled excavations are typologically MSA and include points, blades, and Levallois flakes and cores, as well as obsidian flakes similar in geochemical composition to documented sources near Lake Naivasha (250 km east). A combination of sedimentological, paleontological, and stable isotopic evidence indicates a semi-arid environment characterized by seasonal precipitation and the dominance of C4 grasslands, likely associated with a substantial reduction in Lake Victoria. The well-preserved fossil assemblage indicates that these conditions are associated with the convergence of historically allopatric ungulates from north and south of the equator, in agreement with predictions from genetic observations. Analysis of the East African MSA record reveals previously unrecognized north-south variation in assemblage composition that is consistent with episodes of population fragmentation during phases of limited dispersal potential. The grassland-associated MSA assemblages from Karungu and nearby Rusinga Island are characterized by a combination of artifact types that is more typical of northern sites. This may reflect the dispersal of behavioral repertoires-and perhaps human populations-during a paleoenvironmental phase dominated by grasslands.

  9. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes

    NASA Astrophysics Data System (ADS)

    Löwemark, L.; Chen, H.-F.; Yang, T.-N.; Kylander, M.; Yu, E.-F.; Hsu, Y.-W.; Lee, T.-Q.; Song, S.-R.; Jarvis, S.

    2011-04-01

    X-ray fluorescence (XRF) scanning of unlithified, untreated sediment cores is becoming an increasingly common method used to obtain paleoproxy data from lake records. XRF-scanning is fast and delivers high-resolution records of relative variations in the elemental composition of the sediment. However, lake sediments display extreme variations in their organic matter content, which can vary from just a few percent to well over 50%. As XRF scanners are largely insensitive to organic material in the sediment, increasing levels of organic material effectively dilute those components that can be measured, such as the lithogenic material (the closed-sum effect). Consequently, in sediments with large variations in organic material, the measured variations in an element will to a large extent mirror the changes in organic material. It is therefore necessary to normalize the elements in the lithogenic component of the sediment against a conservative element to allow changes in the input of the elements to be addressed. In this study we show that Al, which is the lightest element that can be measured using the Itrax XRF-scanner, can be used to effectively normalize the elements of the lithogenic fraction of the sediment against variations in organic content. We also show that care must be taken when choosing resolution and exposure time to ensure optimal output from the measurements.

  10. Sensitive response of desert vegetation to moisture change based on a near-annual resolution pollen record from Gahai Lake in the Qaidam Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Yu, Zicheng; Chen, Fahu; Liu, Xiuju; Ito, Emi

    2008-05-01

    We present a 50-year pollen record at near-annual resolution from Gahai Lake in the Qaidam Basin on the northeastern Tibetan Plateau. Chronology of a 22-cm short core was established by 210Pb and 137Cs analysis. The pollen results at 0.5 cm intervals show large changes in Artemisia/Chenopodiaceae (A/C) ratios from < 0.2 to 0.95 in the last 50 years. High (low) A/C ratios represent increase (decrease) in steppe pollen production, which correspond to high (low) relative humidity observed at nearby Delingha weather station. On the basis of good correspondence with instrumental records and carbonate content from Gahai Lake, we conclude that A/C ratio is sensitive to moisture change and can be a very useful index in reconstructing paleoclimate of arid regions. Comparison with pollen and snow accumulation data from Dunde ice core suggests that effective moisture at low and high elevations shows the opposite relationship when mountain precipitation was extremely high, possibly due to topography-induced uplifting and subsiding air dynamics.

  11. Past soil erosion history recorded by lake sediments in mountain areas (north and south French Alps): complex interactions with climatic and human activities

    NASA Astrophysics Data System (ADS)

    Giguet-Covex, C.; Poulenard, J.; Arnaud, F.; Disnar, J.-R.; Sabatier, P.; Wilhelm, B.; Jouffroy-Bapicot, I.; Rey, P.-J.; David, F.; Malet, E.

    2012-04-01

    Erosion rates and patterns are influenced both by hydrological activity and the evolution of soil-vegetation cover. This soil-vegetation cover is in turn impacted by climatic changes and human activities through deforestation, grazing and agriculture. Such land uses are reported in mountain areas since several millennia (the Neolithic or Bronze Age in the Alps). The effects of these activities and climatic changes on erosion and above all on soil cover are relatively few documented. However, a good knowledge of these processes is important to better evaluate the future evolution of soils and the sustainability for agricultural practices, in the context of global change. Because lakes act as traps of erosion products, lake sediments represent interesting continuous archives of past soil evolution and erosion. They provide a unique opportunity to reconstruct at high resolution the soil history over long time periods and thus to determine the timing of changes in response to climate and/or anthropogenic pressures. As a result of the Pygmalion research program, we present the study of two small mountain catchment in north (Lake Anterne, 2063 m asl) and south French Alps (Lake Lauzanier, 2285 m asl), covering the Holocene and the last 1000 years, respectively. To trace the past soil erosion erosion history and bring arguments about the origin of changes, mineral and organic geochemical analyses were performed and combined with quantitative reconstructions of terrigenous inputs. To emphasize our assumptions about the origins of recorded changes, a pluridisciplinary approach (palynology, archaeology...) was also adopted. The study of Lake Anterne shows the second half of the Holocene is characterized by four important phases of erosion. These phases are underlined by high flood frequencies and different geochemical composition of sediments. These geochemical signatures reveal changes of sediment sources related to different erosion patterns. In particular, the first phase

  12. Drosophila muller f elements maintain a distinct set of genomic properties over 40 million years of evolution.

    PubMed

    Leung, Wilson; Shaffer, Christopher D; Reed, Laura K; Smith, Sheryl T; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E J; Machone, Joshua F; Patterson, Seantay D; Price, Amber L; Turner, Bryce A; Robic, Srebrenka; Luippold, Erin K; McCartha, Shannon R; Walji, Tezin A; Walker, Chelsea A; Saville, Kenneth; Abrams, Marita K; Armstrong, Andrew R; Armstrong, William; Bailey, Robert J; Barberi, Chelsea R; Beck, Lauren R; Blaker, Amanda L; Blunden, Christopher E; Brand, Jordan P; Brock, Ethan J; Brooks, Dana W; Brown, Marie; Butzler, Sarah C; Clark, Eric M; Clark, Nicole B; Collins, Ashley A; Cotteleer, Rebecca J; Cullimore, Peterson R; Dawson, Seth G; Docking, Carter T; Dorsett, Sasha L; Dougherty, Grace A; Downey, Kaitlyn A; Drake, Andrew P; Earl, Erica K; Floyd, Trevor G; Forsyth, Joshua D; Foust, Jonathan D; Franchi, Spencer L; Geary, James F; Hanson, Cynthia K; Harding, Taylor S; Harris, Cameron B; Heckman, Jonathan M; Holderness, Heather L; Howey, Nicole A; Jacobs, Dontae A; Jewell, Elizabeth S; Kaisler, Maria; Karaska, Elizabeth A; Kehoe, James L; Koaches, Hannah C; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J; Kus, Jordan E; Lammers, Jennifer A; Leads, Rachel R; Leatherman, Emily C; Lippert, Rachel N; Messenger, Gregory S; Morrow, Adam T; Newcomb, Victoria; Plasman, Haley J; Potocny, Stephanie J; Powers, Michelle K; Reem, Rachel M; Rennhack, Jonathan P; Reynolds, Katherine R; Reynolds, Lyndsey A; Rhee, Dong K; Rivard, Allyson B; Ronk, Adam J; Rooney, Meghan B; Rubin, Lainey S; Salbert, Luke R; Saluja, Rasleen K; Schauder, Taylor; Schneiter, Allison R; Schulz, Robert W; Smith, Karl E; Spencer, Sarah; Swanson, Bryant R; Tache, Melissa A; Tewilliager, Ashley A; Tilot, Amanda K; VanEck, Eve; Villerot, Matthew M; Vylonis, Megan B; Watson, David T; Wurzler, Juliana A; Wysocki, Lauren M; Yalamanchili, Monica; Zaborowicz, Matthew A; Emerson, Julia A; Ortiz, Carlos; Deuschle, Frederic J; DiLorenzo, Lauren A; Goeller, Katie L; Macchi, Christopher R; Muller, Sarah E; Pasierb, Brittany D; Sable, Joseph E; Tucci, Jessica M; Tynon, Marykathryn; Dunbar, David A; Beken, Levent H; Conturso, Alaina C; Danner, Benjamin L; DeMichele, Gabriella A; Gonzales, Justin A; Hammond, Maureen S; Kelley, Colleen V; Kelly, Elisabeth A; Kulich, Danielle; Mageeney, Catherine M; McCabe, Nikie L; Newman, Alyssa M; Spaeder, Lindsay A; Tumminello, Richard A; Revie, Dennis; Benson, Jonathon M; Cristostomo, Michael C; DaSilva, Paolo A; Harker, Katherine S; Jarrell, Jenifer N; Jimenez, Luis A; Katz, Brandon M; Kennedy, William R; Kolibas, Kimberly S; LeBlanc, Mark T; Nguyen, Trung T; Nicolas, Daniel S; Patao, Melissa D; Patao, Shane M; Rupley, Bryan J; Sessions, Bridget J; Weaver, Jennifer A; Goodman, Anya L; Alvendia, Erica L; Baldassari, Shana M; Brown, Ashley S; Chase, Ian O; Chen, Maida; Chiang, Scott; Cromwell, Avery B; Custer, Ashley F; DiTommaso, Tia M; El-Adaimi, Jad; Goscinski, Nora C; Grove, Ryan A; Gutierrez, Nestor; Harnoto, Raechel S; Hedeen, Heather; Hong, Emily L; Hopkins, Barbara L; Huerta, Vilma F; Khoshabian, Colin; LaForge, Kristin M; Lee, Cassidy T; Lewis, Benjamin M; Lydon, Anniken M; Maniaci, Brian J; Mitchell, Ryan D; Morlock, Elaine V; Morris, William M; Naik, Priyanka; Olson, Nicole C; Osterloh, Jeannette M; Perez, Marcos A; Presley, Jonathan D; Randazzo, Matt J; Regan, Melanie K; Rossi, Franca G; Smith, Melanie A; Soliterman, Eugenia A; Sparks, Ciani J; Tran, Danny L; Wan, Tiffany; Welker, Anne A; Wong, Jeremy N; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J; Hoogewerf, Arlene J; Ackerman, Cheri M; Armistead, Isaac O; Baatenburg, Lara; Borr, Matthew J; Brouwer, Lindsay K; Burkhart, Brandon J; Bushhouse, Kelsey T; Cesko, Lejla; Choi, Tiffany Y Y; Cohen, Heather; Damsteegt, Amanda M; Darusz, Jess M; Dauphin, Cory M; Davis, Yelena P; Diekema, Emily J; Drewry, Melissa; Eisen, Michelle E M; Faber, Hayley M; Faber, Katherine J; Feenstra, Elizabeth; Felzer-Kim, Isabella T; Hammond, Brandy L; Hendriksma, Jesse; Herrold, Milton R; Hilbrands, Julia A; Howell, Emily J; Jelgerhuis, Sarah A; Jelsema, Timothy R; Johnson, Benjamin K; Jones, Kelly K; Kim, Anna; Kooienga, Ross D; Menyes, Erika E; Nollet, Eric A; Plescher, Brittany E; Rios, Lindsay; Rose, Jenny L; Schepers, Allison J; Scott, Geoff; Smith, Joshua R; Sterling, Allison M; Tenney, Jenna C; Uitvlugt, Chris; VanDyken, Rachel E; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P; Agbley, Kwabea; Boham, Sampson K; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S; Banker, Roxanne; Bartling, Justina R; Bhatiya, Chinmoy I; Boudoures, Anna L; Christiansen, Lena; Fosselman, Daniel S; French, Kristin M; Gill, Ishwar S; Havill, Jessen T; Johnson, Jaelyn L; Keny, Lauren J; Kerber, John M; Klett, Bethany M; Kufel, Christina N; May, Francis J; Mecoli, Jonathan P; Merry, Callie R; Meyer, Lauren R; Miller, Emily G; Mullen, Gregory J; Palozola, Katherine C; Pfeil, Jacob J; Thomas, Jessica G; Verbofsky, Evan M; Spana, Eric P; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I N; Fitzgibbons, John D; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J; Knouse, Kristin A; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S; Norton, Diana; Pham, Philip; Polk, Jessica W; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D; Scala, Victoria; Schwartz, Nicholas U; Shuen, Jessica A; Xu, Amy; Xu, Thomas Q; Zhang, Yi; Rosenwald, Anne G; Burg, Martin G; Adams, Stephanie J; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J; Robertson, Gregory M; Smith, Samuel I; DiAngelo, Justin R; Sassu, Eric D; Bhalla, Satish C; Sharif, Karim A; Choeying, Tenzin; Macias, Jason S; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E; Alvarez, Consuelo J; Davis, Kristen C; Dunham, Carrie A; Grantham, Alaina J; Hare, Amber N; Schottler, Jennifer; Scott, Zackary W; Kuleck, Gary A; Yu, Nicole S; Kaehler, Marian M; Jipp, Jacob; Overvoorde, Paul J; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques Dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T; Poet, Jeffrey L; Allen, Alica B; Anderson, John E; Barnett, Jason M; Baumgardner, Jordan S; Brown, Adam D; Carney, Jordan E; Chavez, Ramiro A; Christgen, Shelbi L; Christie, Jordan S; Clary, Andrea N; Conn, Michel A; Cooper, Kristen M; Crowley, Matt J; Crowley, Samuel T; Doty, Jennifer S; Dow, Brian A; Edwards, Curtis R; Elder, Darcie D; Fanning, John P; Janssen, Bridget M; Lambright, Anthony K; Lane, Curtiss E; Limle, Austin B; Mazur, Tammy; McCracken, Marly R; McDonough, Alexa M; Melton, Amy D; Minnick, Phillip J; Musick, Adam E; Newhart, William H; Noynaert, Joseph W; Ogden, Bradley J; Sandusky, Michael W; Schmuecker, Samantha M; Shipman, Anna L; Smith, Anna L; Thomsen, Kristen M; Unzicker, Matthew R; Vernon, William B; Winn, Wesley W; Woyski, Dustin S; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J; Aronhalt, Todd; Bellush, James M; Burke, Christa; DeFazio, Steve; Does, Benjamin R; Johnson, Todd D; Keysock, Nicholas; Knudsen, Nelson H; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S; Stagaard, Erica; Starcher, Justin R; Waggoner, Andrew W; Yemelyanova, Anastasia K; Hark, Amy T; Bertolet, Anne; Kuschner, Cyrus E; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E; Smith, Mary A; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S Catherine Silver; Henry, Tyneshia C P; Johnson, Ashlee G; White, Jackie X; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L M; Chau, Kim M; Ward, Alyssa; Regisford, E Gloria C; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M; Bahr, Thomas J; Caesar, Nicole M; Campana, Christopher; Cassidy, Daniel W; Cognetti, Peter A; English, Johnathan D; Fadus, Matthew C; Fick, Cameron N; Freda, Philip J; Hennessy, Bryan M; Hockenberger, Kelsey; Jones, Jennifer K; King, Jessica E; Knob, Christopher R; Kraftmann, Karen J; Li, Linghui; Lupey, Lena N; Minniti, Carl J; Minton, Thomas F; Moran, Joseph V; Mudumbi, Krishna; Nordman, Elizabeth C; Puetz, William J; Robinson, Lauren M; Rose, Thomas J; Sweeney, Edward P; Timko, Ashley S; Paetkau, Don W; Eisler, Heather L; Aldrup, Megan E; Bodenberg, Jessica M; Cole, Mara G; Deranek, Kelly M; DeShetler, Megan; Dowd, Rose M; Eckardt, Alexandra K; Ehret, Sharon C; Fese, Jessica; Garrett, Amanda D; Kammrath, Anna; Kappes, Michelle L; Light, Morgan R; Meier, Anne C; O'Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R; Reilly, Mary T; Robinett, Deirdre; Rossi, Nadine L; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R; Herrick, Douglas A; Khoury, Christopher B; Lea, Charlotte; Louie, Christopher A; Lowell, Shannon M; Reynolds, Thomas J; Schibler, Jeanine; Scoma, Alexandra H; Smith-Gee, Maxwell T; Tuberty, Sarah; Smith, Christopher D; Lopilato, Jane E; Hauke, Jeanette; Roecklein-Canfield, Jennifer A; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R; Flohr, Sarah; Flores, Amanda H; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B; Smith, Jonathan E; Unruh, Anna K; Velasquez, Vicente; Wolski, Matthew W; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T; Moore, Zachary D; Savell, Christopher D; Watson, Reece; Mel, Stephanie F; Anilkumar, Arjun A; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M; Dai, Tiffany; Garbagnati, Giancarlo F; Horton, Lanor S; Kim, Dongyeon; Lau, Joyce H; Liu, James Z; Mach, Sandy D; Phan, Thu A; Ren, Yi; Stapleton, Kenneth E; Strelitz, Jean M; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J; Fafara-Thompson, Antoinette E; Gross, Meleah J; Gygi, Amber M; Jackson, Lesley E; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L; Neely, Jessica; Ogawa, Emmy E; Rich, Ashley; Rogers, Anna; Spencer, J Devin; Stemler, Kristina M; Throm, Allison A; Van Camp, Matt; Weihbrecht, Katie; Wiles, T Aaron; Williams, Mallory A; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M; Bashiri, Azita; Bower, Mindy E; Florian, Kayla A; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S; Karim, Helmet; Mullen, Victor W; Pelchen, Carly E; Yenerall, Paul M; Zhang, Jiayu; Rubin, Michael R; Arias-Mejias, Suzette M; Bermudez-Capo, Armando G; Bernal-Vega, Gabriela V; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G; Martinez-Rodriguez, Javier O; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J; Santiago-Sanabria, Arnaldo J; Senquiz-Gonzalez, Andrea M; delValle, Frank R Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I; Zambrana-Burgos, Joan D; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P; Collado-Méndez, Xavier A; Colón-Cruz, Luis R; Correa-Muller, Ana I; Crooke-Rosado, Jonathan L; Cruz-García, José M; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M; Feliciano-Cancela, Alex J; Gónzalez-Pérez, Valerie M; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N; Laboy-Corales, Ángel L; Llaurador-Caraballo, Gabriela A; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A; Martínez-Traverso, Idaliz M; Medina-Ortega, Kiara N; Méndez-Castellanos, Sonya G; Menéndez-Serrano, Krizia C; Morales-Caraballo, Carol I; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M; Ramírez-Aponte, Edwin G; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S; Rivera-Pagán, Ingrid T; Rivera-Vicéns, Ramón E; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O; Rodríguez-García, Priscila M; Rodríguez-Laboy, Abneris E; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L; Rubio-Marrero, Eva N; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L; Santos-Ramos, Carlos E; Serrano-González, Joseline; Tamayo-Figueroa, Alina M; Tascón-Peñaranda, Edna P; Torres-Castillo, José L; Valentín-Feliciano, Nelson A; Valentín-Feliciano, Yashira M; Vargas-Barreto, Nadyan M; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L; Molleston, Jerome M; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y; Zheng, Yin; Preuss, Mary L; Garcia, Angelica; Juergens, Matt; Morris, Robert W; Nagengast, Alexis A; Azarewicz, Julie; Carr, Thomas J; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L; Adams, Ashley L; Barnard, Brianna K; Cheramie, Martin N; Eime, Anne M; Golden, Kathryn L; Hawkins, Allyson P; Hill, Jessica E; Kampmeier, Jessica A; Kern, Cody D; Magnuson, Emily E; Miller, Ashley R; Morrow, Cody M; Peairs, Julia C; Pickett, Gentry L; Popelka, Sarah A; Scott, Alexis J; Teepe, Emily J; TerMeer, Katie A; Watchinski, Carmen A; Watson, Lucas A; Weber, Rachel E; Woodard, Kate A; Barnard, Daron C; Appiah, Isaac; Giddens, Michelle M; McNeil, Gerard P; Adebayo, Adeola; Bagaeva, Kate; Chinwong, Justina; Dol, Chrystel; George, Eunice; Haltaufderhyde, Kirk; Haye, Joanna; Kaur, Manpreet; Semon, Max; Serjanov, Dmitri; Toorie, Anika; Wilson, Christopher; Riddle, Nicole C; Buhler, Jeremy; Mardis, Elaine R; Elgin, Sarah C R

    2015-03-04

    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25-50%) than euchromatic reference regions (3-11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11-27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4-3.6 vs. 8.4-8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.

  13. Drosophila Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    PubMed Central

    Leung, Wilson; Shaffer, Christopher D.; Reed, Laura K.; Smith, Sheryl T.; Barshop, William; Dirkes, William; Dothager, Matthew; Lee, Paul; Wong, Jeannette; Xiong, David; Yuan, Han; Bedard, James E. J.; Machone, Joshua F.; Patterson, Seantay D.; Price, Amber L.; Turner, Bryce A.; Robic, Srebrenka; Luippold, Erin K.; McCartha, Shannon R.; Walji, Tezin A.; Walker, Chelsea A.; Saville, Kenneth; Abrams, Marita K.; Armstrong, Andrew R.; Armstrong, William; Bailey, Robert J.; Barberi, Chelsea R.; Beck, Lauren R.; Blaker, Amanda L.; Blunden, Christopher E.; Brand, Jordan P.; Brock, Ethan J.; Brooks, Dana W.; Brown, Marie; Butzler, Sarah C.; Clark, Eric M.; Clark, Nicole B.; Collins, Ashley A.; Cotteleer, Rebecca J.; Cullimore, Peterson R.; Dawson, Seth G.; Docking, Carter T.; Dorsett, Sasha L.; Dougherty, Grace A.; Downey, Kaitlyn A.; Drake, Andrew P.; Earl, Erica K.; Floyd, Trevor G.; Forsyth, Joshua D.; Foust, Jonathan D.; Franchi, Spencer L.; Geary, James F.; Hanson, Cynthia K.; Harding, Taylor S.; Harris, Cameron B.; Heckman, Jonathan M.; Holderness, Heather L.; Howey, Nicole A.; Jacobs, Dontae A.; Jewell, Elizabeth S.; Kaisler, Maria; Karaska, Elizabeth A.; Kehoe, James L.; Koaches, Hannah C.; Koehler, Jessica; Koenig, Dana; Kujawski, Alexander J.; Kus, Jordan E.; Lammers, Jennifer A.; Leads, Rachel R.; Leatherman, Emily C.; Lippert, Rachel N.; Messenger, Gregory S.; Morrow, Adam T.; Newcomb, Victoria; Plasman, Haley J.; Potocny, Stephanie J.; Powers, Michelle K.; Reem, Rachel M.; Rennhack, Jonathan P.; Reynolds, Katherine R.; Reynolds, Lyndsey A.; Rhee, Dong K.; Rivard, Allyson B.; Ronk, Adam J.; Rooney, Meghan B.; Rubin, Lainey S.; Salbert, Luke R.; Saluja, Rasleen K.; Schauder, Taylor; Schneiter, Allison R.; Schulz, Robert W.; Smith, Karl E.; Spencer, Sarah; Swanson, Bryant R.; Tache, Melissa A.; Tewilliager, Ashley A.; Tilot, Amanda K.; VanEck, Eve; Villerot, Matthew M.; Vylonis, Megan B.; Watson, David T.; Wurzler, Juliana A.; Wysocki, Lauren M.; Yalamanchili, Monica; Zaborowicz, Matthew A.; Emerson, Julia A.; Ortiz, Carlos; Deuschle, Frederic J.; DiLorenzo, Lauren A.; Goeller, Katie L.; Macchi, Christopher R.; Muller, Sarah E.; Pasierb, Brittany D.; Sable, Joseph E.; Tucci, Jessica M.; Tynon, Marykathryn; Dunbar, David A.; Beken, Levent H.; Conturso, Alaina C.; Danner, Benjamin L.; DeMichele, Gabriella A.; Gonzales, Justin A.; Hammond, Maureen S.; Kelley, Colleen V.; Kelly, Elisabeth A.; Kulich, Danielle; Mageeney, Catherine M.; McCabe, Nikie L.; Newman, Alyssa M.; Spaeder, Lindsay A.; Tumminello, Richard A.; Revie, Dennis; Benson, Jonathon M.; Cristostomo, Michael C.; DaSilva, Paolo A.; Harker, Katherine S.; Jarrell, Jenifer N.; Jimenez, Luis A.; Katz, Brandon M.; Kennedy, William R.; Kolibas, Kimberly S.; LeBlanc, Mark T.; Nguyen, Trung T.; Nicolas, Daniel S.; Patao, Melissa D.; Patao, Shane M.; Rupley, Bryan J.; Sessions, Bridget J.; Weaver, Jennifer A.; Goodman, Anya L.; Alvendia, Erica L.; Baldassari, Shana M.; Brown, Ashley S.; Chase, Ian O.; Chen, Maida; Chiang, Scott; Cromwell, Avery B.; Custer, Ashley F.; DiTommaso, Tia M.; El-Adaimi, Jad; Goscinski, Nora C.; Grove, Ryan A.; Gutierrez, Nestor; Harnoto, Raechel S.; Hedeen, Heather; Hong, Emily L.; Hopkins, Barbara L.; Huerta, Vilma F.; Khoshabian, Colin; LaForge, Kristin M.; Lee, Cassidy T.; Lewis, Benjamin M.; Lydon, Anniken M.; Maniaci, Brian J.; Mitchell, Ryan D.; Morlock, Elaine V.; Morris, William M.; Naik, Priyanka; Olson, Nicole C.; Osterloh, Jeannette M.; Perez, Marcos A.; Presley, Jonathan D.; Randazzo, Matt J.; Regan, Melanie K.; Rossi, Franca G.; Smith, Melanie A.; Soliterman, Eugenia A.; Sparks, Ciani J.; Tran, Danny L.; Wan, Tiffany; Welker, Anne A.; Wong, Jeremy N.; Sreenivasan, Aparna; Youngblom, Jim; Adams, Andrew; Alldredge, Justin; Bryant, Ashley; Carranza, David; Cifelli, Alyssa; Coulson, Kevin; Debow, Calise; Delacruz, Noelle; Emerson, Charlene; Farrar, Cassandra; Foret, Don; Garibay, Edgar; Gooch, John; Heslop, Michelle; Kaur, Sukhjit; Khan, Ambreen; Kim, Van; Lamb, Travis; Lindbeck, Peter; Lucas, Gabi; Macias, Elizabeth; Martiniuc, Daniela; Mayorga, Lissett; Medina, Joseph; Membreno, Nelson; Messiah, Shady; Neufeld, Lacey; Nguyen, San Francisco; Nichols, Zachary; Odisho, George; Peterson, Daymon; Rodela, Laura; Rodriguez, Priscilla; Rodriguez, Vanessa; Ruiz, Jorge; Sherrill, Will; Silva, Valeria; Sparks, Jeri; Statton, Geeta; Townsend, Ashley; Valdez, Isabel; Waters, Mary; Westphal, Kyle; Winkler, Stacey; Zumkehr, Joannee; DeJong, Randall J.; Hoogewerf, Arlene J.; Ackerman, Cheri M.; Armistead, Isaac O.; Baatenburg, Lara; Borr, Matthew J.; Brouwer, Lindsay K.; Burkhart, Brandon J.; Bushhouse, Kelsey T.; Cesko, Lejla; Choi, Tiffany Y. Y.; Cohen, Heather; Damsteegt, Amanda M.; Darusz, Jess M.; Dauphin, Cory M.; Davis, Yelena P.; Diekema, Emily J.; Drewry, Melissa; Eisen, Michelle E. M.; Faber, Hayley M.; Faber, Katherine J.; Feenstra, Elizabeth; Felzer-Kim, Isabella T.; Hammond, Brandy L.; Hendriksma, Jesse; Herrold, Milton R.; Hilbrands, Julia A.; Howell, Emily J.; Jelgerhuis, Sarah A.; Jelsema, Timothy R.; Johnson, Benjamin K.; Jones, Kelly K.; Kim, Anna; Kooienga, Ross D.; Menyes, Erika E.; Nollet, Eric A.; Plescher, Brittany E.; Rios, Lindsay; Rose, Jenny L.; Schepers, Allison J.; Scott, Geoff; Smith, Joshua R.; Sterling, Allison M.; Tenney, Jenna C.; Uitvlugt, Chris; VanDyken, Rachel E.; VanderVennen, Marielle; Vue, Samantha; Kokan, Nighat P.; Agbley, Kwabea; Boham, Sampson K.; Broomfield, Daniel; Chapman, Kayla; Dobbe, Ali; Dobbe, Ian; Harrington, William; Ibrahem, Marwan; Kennedy, Andre; Koplinsky, Chad A.; Kubricky, Cassandra; Ladzekpo, Danielle; Pattison, Claire; Ramirez, Roman E.; Wande, Lucia; Woehlke, Sarah; Wawersik, Matthew; Kiernan, Elizabeth; Thompson, Jeffrey S.; Banker, Roxanne; Bartling, Justina R.; Bhatiya, Chinmoy I.; Boudoures, Anna L.; Christiansen, Lena; Fosselman, Daniel S.; French, Kristin M.; Gill, Ishwar S.; Havill, Jessen T.; Johnson, Jaelyn L.; Keny, Lauren J.; Kerber, John M.; Klett, Bethany M.; Kufel, Christina N.; May, Francis J.; Mecoli, Jonathan P.; Merry, Callie R.; Meyer, Lauren R.; Miller, Emily G.; Mullen, Gregory J.; Palozola, Katherine C.; Pfeil, Jacob J.; Thomas, Jessica G.; Verbofsky, Evan M.; Spana, Eric P.; Agarwalla, Anant; Chapman, Julia; Chlebina, Ben; Chong, Insun; Falk, I.N.; Fitzgibbons, John D.; Friedman, Harrison; Ighile, Osagie; Kim, Andrew J.; Knouse, Kristin A.; Kung, Faith; Mammo, Danny; Ng, Chun Leung; Nikam, Vinayak S.; Norton, Diana; Pham, Philip; Polk, Jessica W.; Prasad, Shreya; Rankin, Helen; Ratliff, Camille D.; Scala, Victoria; Schwartz, Nicholas U.; Shuen, Jessica A.; Xu, Amy; Xu, Thomas Q.; Zhang, Yi; Rosenwald, Anne G.; Burg, Martin G.; Adams, Stephanie J.; Baker, Morgan; Botsford, Bobbi; Brinkley, Briana; Brown, Carter; Emiah, Shadie; Enoch, Erica; Gier, Chad; Greenwell, Alyson; Hoogenboom, Lindsay; Matthews, Jordan E.; McDonald, Mitchell; Mercer, Amanda; Monsma, Nicholaus; Ostby, Kristine; Ramic, Alen; Shallman, Devon; Simon, Matthew; Spencer, Eric; Tomkins, Trisha; Wendland, Pete; Wylie, Anna; Wolyniak, Michael J.; Robertson, Gregory M.; Smith, Samuel I.; DiAngelo, Justin R.; Sassu, Eric D.; Bhalla, Satish C.; Sharif, Karim A.; Choeying, Tenzin; Macias, Jason S.; Sanusi, Fareed; Torchon, Karvyn; Bednarski, April E.; Alvarez, Consuelo J.; Davis, Kristen C.; Dunham, Carrie A.; Grantham, Alaina J.; Hare, Amber N.; Schottler, Jennifer; Scott, Zackary W.; Kuleck, Gary A.; Yu, Nicole S.; Kaehler, Marian M.; Jipp, Jacob; Overvoorde, Paul J.; Shoop, Elizabeth; Cyrankowski, Olivia; Hoover, Betsy; Kusner, Matt; Lin, Devry; Martinov, Tijana; Misch, Jonathan; Salzman, Garrett; Schiedermayer, Holly; Snavely, Michael; Zarrasola, Stephanie; Parrish, Susan; Baker, Atlee; Beckett, Alissa; Belella, Carissa; Bryant, Julie; Conrad, Turner; Fearnow, Adam; Gomez, Carolina; Herbstsomer, Robert A.; Hirsch, Sarah; Johnson, Christen; Jones, Melissa; Kabaso, Rita; Lemmon, Eric; Vieira, Carolina Marques dos Santos; McFarland, Darryl; McLaughlin, Christopher; Morgan, Abbie; Musokotwane, Sepo; Neutzling, William; Nietmann, Jana; Paluskievicz, Christina; Penn, Jessica; Peoples, Emily; Pozmanter, Caitlin; Reed, Emily; Rigby, Nichole; Schmidt, Lasse; Shelton, Micah; Shuford, Rebecca; Tirasawasdichai, Tiara; Undem, Blair; Urick, Damian; Vondy, Kayla; Yarrington, Bryan; Eckdahl, Todd T.; Poet, Jeffrey L.; Allen, Alica B.; Anderson, John E.; Barnett, Jason M.; Baumgardner, Jordan S.; Brown, Adam D.; Carney, Jordan E.; Chavez, Ramiro A.; Christgen, Shelbi L.; Christie, Jordan S.; Clary, Andrea N.; Conn, Michel A.; Cooper, Kristen M.; Crowley, Matt J.; Crowley, Samuel T.; Doty, Jennifer S.; Dow, Brian A.; Edwards, Curtis R.; Elder, Darcie D.; Fanning, John P.; Janssen, Bridget M.; Lambright, Anthony K.; Lane, Curtiss E.; Limle, Austin B.; Mazur, Tammy; McCracken, Marly R.; McDonough, Alexa M.; Melton, Amy D.; Minnick, Phillip J.; Musick, Adam E.; Newhart, William H.; Noynaert, Joseph W.; Ogden, Bradley J.; Sandusky, Michael W.; Schmuecker, Samantha M.; Shipman, Anna L.; Smith, Anna L.; Thomsen, Kristen M.; Unzicker, Matthew R.; Vernon, William B.; Winn, Wesley W.; Woyski, Dustin S.; Zhu, Xiao; Du, Chunguang; Ament, Caitlin; Aso, Soham; Bisogno, Laura Simone; Caronna, Jason; Fefelova, Nadezhda; Lopez, Lenin; Malkowitz, Lorraine; Marra, Jonathan; Menillo, Daniella; Obiorah, Ifeanyi; Onsarigo, Eric Nyabeta; Primus, Shekerah; Soos, Mahdi; Tare, Archana; Zidan, Ameer; Jones, Christopher J.; Aronhalt, Todd; Bellush, James M.; Burke, Christa; DeFazio, Steve; Does, Benjamin R.; Johnson, Todd D.; Keysock, Nicholas; Knudsen, Nelson H.; Messler, James; Myirski, Kevin; Rekai, Jade Lea; Rempe, Ryan Michael; Salgado, Michael S.; Stagaard, Erica; Starcher, Justin R.; Waggoner, Andrew W.; Yemelyanova, Anastasia K.; Hark, Amy T.; Bertolet, Anne; Kuschner, Cyrus E.; Parry, Kesley; Quach, Michael; Shantzer, Lindsey; Shaw, Mary E.; Smith, Mary A.; Glenn, Omolara; Mason, Portia; Williams, Charlotte; Key, S. Catherine Silver; Henry, Tyneshia C. P.; Johnson, Ashlee G.; White, Jackie X.; Haberman, Adam; Asinof, Sam; Drumm, Kelly; Freeburg, Trip; Safa, Nadia; Schultz, Darrin; Shevin, Yakov; Svoronos, Petros; Vuong, Tam; Wellinghoff, Jules; Hoopes, Laura L. M.; Chau, Kim M.; Ward, Alyssa; Regisford, E. Gloria C.; Augustine, LaJerald; Davis-Reyes, Brionna; Echendu, Vivienne; Hales, Jasmine; Ibarra, Sharon; Johnson, Lauriaun; Ovu, Steven; Braverman, John M.; Bahr, Thomas J.; Caesar, Nicole M.; Campana, Christopher; Cassidy, Daniel W.; Cognetti, Peter A.; English, Johnathan D.; Fadus, Matthew C.; Fick, Cameron N.; Freda, Philip J.; Hennessy, Bryan M.; Hockenberger, Kelsey; Jones, Jennifer K.; King, Jessica E.; Knob, Christopher R.; Kraftmann, Karen J.; Li, Linghui; Lupey, Lena N.; Minniti, Carl J.; Minton, Thomas F.; Moran, Joseph V.; Mudumbi, Krishna; Nordman, Elizabeth C.; Puetz, William J.; Robinson, Lauren M.; Rose, Thomas J.; Sweeney, Edward P.; Timko, Ashley S.; Paetkau, Don W.; Eisler, Heather L.; Aldrup, Megan E.; Bodenberg, Jessica M.; Cole, Mara G.; Deranek, Kelly M.; DeShetler, Megan; Dowd, Rose M.; Eckardt, Alexandra K.; Ehret, Sharon C.; Fese, Jessica; Garrett, Amanda D.; Kammrath, Anna; Kappes, Michelle L.; Light, Morgan R.; Meier, Anne C.; O’Rouke, Allison; Perella, Mallory; Ramsey, Kimberley; Ramthun, Jennifer R.; Reilly, Mary T.; Robinett, Deirdre; Rossi, Nadine L.; Schueler, Mary Grace; Shoemaker, Emma; Starkey, Kristin M.; Vetor, Ashley; Vrable, Abby; Chandrasekaran, Vidya; Beck, Christopher; Hatfield, Kristen R.; Herrick, Douglas A.; Khoury, Christopher B.; Lea, Charlotte; Louie, Christopher A.; Lowell, Shannon M.; Reynolds, Thomas J.; Schibler, Jeanine; Scoma, Alexandra H.; Smith-Gee, Maxwell T.; Tuberty, Sarah; Smith, Christopher D.; Lopilato, Jane E.; Hauke, Jeanette; Roecklein-Canfield, Jennifer A.; Corrielus, Maureen; Gilman, Hannah; Intriago, Stephanie; Maffa, Amanda; Rauf, Sabya A.; Thistle, Katrina; Trieu, Melissa; Winters, Jenifer; Yang, Bib; Hauser, Charles R.; Abusheikh, Tariq; Ashrawi, Yara; Benitez, Pedro; Boudreaux, Lauren R.; Bourland, Megan; Chavez, Miranda; Cruz, Samantha; Elliott, GiNell; Farek, Jesse R.; Flohr, Sarah; Flores, Amanda H.; Friedrichs, Chelsey; Fusco, Zach; Goodwin, Zane; Helmreich, Eric; Kiley, John; Knepper, John Mark; Langner, Christine; Martinez, Megan; Mendoza, Carlos; Naik, Monal; Ochoa, Andrea; Ragland, Nicolas; Raimey, England; Rathore, Sunil; Reza, Evangelina; Sadovsky, Griffin; Seydoux, Marie-Isabelle B.; Smith, Jonathan E.; Unruh, Anna K.; Velasquez, Vicente; Wolski, Matthew W.; Gosser, Yuying; Govind, Shubha; Clarke-Medley, Nicole; Guadron, Leslie; Lau, Dawn; Lu, Alvin; Mazzeo, Cheryl; Meghdari, Mariam; Ng, Simon; Pamnani, Brad; Plante, Olivia; Shum, Yuki Kwan Wa; Song, Roy; Johnson, Diana E.; Abdelnabi, Mai; Archambault, Alexi; Chamma, Norma; Gaur, Shailly; Hammett, Deborah; Kandahari, Adrese; Khayrullina, Guzal; Kumar, Sonali; Lawrence, Samantha; Madden, Nigel; Mandelbaum, Max; Milnthorp, Heather; Mohini, Shiv; Patel, Roshni; Peacock, Sarah J.; Perling, Emily; Quintana, Amber; Rahimi, Michael; Ramirez, Kristen; Singhal, Rishi; Weeks, Corinne; Wong, Tiffany; Gillis, Aubree T.; Moore, Zachary D.; Savell, Christopher D.; Watson, Reece; Mel, Stephanie F.; Anilkumar, Arjun A.; Bilinski, Paul; Castillo, Rostislav; Closser, Michael; Cruz, Nathalia M.; Dai, Tiffany; Garbagnati, Giancarlo F.; Horton, Lanor S.; Kim, Dongyeon; Lau, Joyce H.; Liu, James Z.; Mach, Sandy D.; Phan, Thu A.; Ren, Yi; Stapleton, Kenneth E.; Strelitz, Jean M.; Sunjed, Ray; Stamm, Joyce; Anderson, Morgan C.; Bonifield, Bethany Grace; Coomes, Daniel; Dillman, Adam; Durchholz, Elaine J.; Fafara-Thompson, Antoinette E.; Gross, Meleah J.; Gygi, Amber M.; Jackson, Lesley E.; Johnson, Amy; Kocsisova, Zuzana; Manghelli, Joshua L.; McNeil, Kylie; Murillo, Michael; Naylor, Kierstin L.; Neely, Jessica; Ogawa, Emmy E.; Rich, Ashley; Rogers, Anna; Spencer, J. Devin; Stemler, Kristina M.; Throm, Allison A.; Van Camp, Matt; Weihbrecht, Katie; Wiles, T. Aaron; Williams, Mallory A.; Williams, Matthew; Zoll, Kyle; Bailey, Cheryl; Zhou, Leming; Balthaser, Darla M.; Bashiri, Azita; Bower, Mindy E.; Florian, Kayla A.; Ghavam, Nazanin; Greiner-Sosanko, Elizabeth S.; Karim, Helmet; Mullen, Victor W.; Pelchen, Carly E.; Yenerall, Paul M.; Zhang, Jiayu; Rubin, Michael R.; Arias-Mejias, Suzette M.; Bermudez-Capo, Armando G.; Bernal-Vega, Gabriela V.; Colon-Vazquez, Mariela; Flores-Vazquez, Arelys; Gines-Rosario, Mariela; Llavona-Cartagena, Ivan G.; Martinez-Rodriguez, Javier O.; Ortiz-Fuentes, Lionel; Perez-Colomba, Eliezer O.; Perez-Otero, Joseph; Rivera, Elisandra; Rodriguez-Giron, Luke J.; Santiago-Sanabria, Arnaldo J.; Senquiz-Gonzalez, Andrea M.; delValle, Frank R. Soto; Vargas-Franco, Dorianmarie; Velázquez-Soto, Karla I.; Zambrana-Burgos, Joan D.; Martinez-Cruzado, Juan Carlos; Asencio-Zayas, Lillyann; Babilonia-Figueroa, Kevin; Beauchamp-Pérez, Francis D.; Belén-Rodríguez, Juliana; Bracero-Quiñones, Luciann; Burgos-Bula, Andrea P.; Collado-Méndez, Xavier A.; Colón-Cruz, Luis R.; Correa-Muller, Ana I.; Crooke-Rosado, Jonathan L.; Cruz-García, José M.; Defendini-Ávila, Marianna; Delgado-Peraza, Francheska M.; Feliciano-Cancela, Alex J.; Gónzalez-Pérez, Valerie M.; Guiblet, Wilfried; Heredia-Negrón, Aldo; Hernández-Muñiz, Jennifer; Irizarry-González, Lourdes N.; Laboy-Corales, Ángel L.; Llaurador-Caraballo, Gabriela A.; Marín-Maldonado, Frances; Marrero-Llerena, Ulises; Martell-Martínez, Héctor A.; Martínez-Traverso, Idaliz M.; Medina-Ortega, Kiara N.; Méndez-Castellanos, Sonya G.; Menéndez-Serrano, Krizia C.; Morales-Caraballo, Carol I.; Ortiz-DeChoudens, Saryleine; Ortiz-Ortiz, Patricia; Pagán-Torres, Hendrick; Pérez-Afanador, Diana; Quintana-Torres, Enid M.; Ramírez-Aponte, Edwin G.; Riascos-Cuero, Carolina; Rivera-Llovet, Michelle S.; Rivera-Pagán, Ingrid T.; Rivera-Vicéns, Ramón E.; Robles-Juarbe, Fabiola; Rodríguez-Bonilla, Lorraine; Rodríguez-Echevarría, Brian O.; Rodríguez-García, Priscila M.; Rodríguez-Laboy, Abneris E.; Rodríguez-Santiago, Susana; Rojas-Vargas, Michael L.; Rubio-Marrero, Eva N.; Santiago-Colón, Albeliz; Santiago-Ortiz, Jorge L.; Santos-Ramos, Carlos E.; Serrano-González, Joseline; Tamayo-Figueroa, Alina M.; Tascón-Peñaranda, Edna P.; Torres-Castillo, José L.; Valentín-Feliciano, Nelson A.; Valentín-Feliciano, Yashira M.; Vargas-Barreto, Nadyan M.; Vélez-Vázquez, Miguel; Vilanova-Vélez, Luis R.; Zambrana-Echevarría, Cristina; MacKinnon, Christy; Chung, Hui-Min; Kay, Chris; Pinto, Anthony; Kopp, Olga R.; Burkhardt, Joshua; Harward, Chris; Allen, Robert; Bhat, Pavan; Chang, Jimmy Hsiang-Chun; Chen, York; Chesley, Christopher; Cohn, Dara; DuPuis, David; Fasano, Michael; Fazzio, Nicholas; Gavinski, Katherine; Gebreyesus, Heran; Giarla, Thomas; Gostelow, Marcus; Greenstein, Rachel; Gunasinghe, Hashini; Hanson, Casey; Hay, Amanda; He, Tao Jian; Homa, Katie; Howe, Ruth; Howenstein, Jeff; Huang, Henry; Khatri, Aaditya; Kim, Young Lu; Knowles, Olivia; Kong, Sarah; Krock, Rebecca; Kroll, Matt; Kuhn, Julia; Kwong, Matthew; Lee, Brandon; Lee, Ryan; Levine, Kevin; Li, Yedda; Liu, Bo; Liu, Lucy; Liu, Max; Lousararian, Adam; Ma, Jimmy; Mallya, Allyson; Manchee, Charlie; Marcus, Joseph; McDaniel, Stephen; Miller, Michelle L.; Molleston, Jerome M.; Diez, Cristina Montero; Ng, Patrick; Ngai, Natalie; Nguyen, Hien; Nylander, Andrew; Pollack, Jason; Rastogi, Suchita; Reddy, Himabindu; Regenold, Nathaniel; Sarezky, Jon; Schultz, Michael; Shim, Jien; Skorupa, Tara; Smith, Kenneth; Spencer, Sarah J.; Srikanth, Priya; Stancu, Gabriel; Stein, Andrew P.; Strother, Marshall; Sudmeier, Lisa; Sun, Mengyang; Sundaram, Varun; Tazudeen, Noor; Tseng, Alan; Tzeng, Albert; Venkat, Rohit; Venkataram, Sandeep; Waldman, Leah; Wang, Tracy; Yang, Hao; Yu, Jack Y.; Zheng, Yin; Preuss, Mary L.; Garcia, Angelica; Juergens, Matt; Morris, Robert W.; Nagengast, Alexis A.; Azarewicz, Julie; Carr, Thomas J.; Chichearo, Nicole; Colgan, Mike; Donegan, Megan; Gardner, Bob; Kolba, Nik; Krumm, Janice L.; Lytle, Stacey; MacMillian, Laurell; Miller, Mary; Montgomery, Andrew; Moretti, Alysha; Offenbacker, Brittney; Polen, Mike; Toth, John; Woytanowski, John; Kadlec, Lisa; Crawford, Justin; Spratt, Mary L.; Adams, Ashley L.; Barnard,