Science.gov

Sample records for 404-4 industrial gas

  1. 48 CFR 1515.404-4 - Profit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Profit. 1515.404-4 Section 1515.404-4 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 1515.404-4 Profit. This section implements FAR 15.404-4 and prescribes the...

  2. 48 CFR 1515.404-4 - Profit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Profit. 1515.404-4 Section 1515.404-4 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 1515.404-4 Profit. This section implements FAR 15.404-4 and prescribes the...

  3. 48 CFR 1515.404-4 - Profit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Profit. 1515.404-4 Section 1515.404-4 Federal Acquisition Regulations System ENVIRONMENTAL PROTECTION AGENCY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 1515.404-4 Profit. This section implements FAR 15.404-4 and prescribes the...

  4. 48 CFR 15.404-4 - Profit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Profit. 15.404-4 Section 15.404-4 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 15.404-4 Profit. (a) General. This subsection prescribes policies for establishing...

  5. 48 CFR 15.404-4 - Profit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Profit. 15.404-4 Section 15.404-4 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 15.404-4 Profit. (a) General. This subsection prescribes policies for establishing...

  6. 48 CFR 15.404-4 - Profit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Profit. 15.404-4 Section 15.404-4 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 15.404-4 Profit. (a) General. This subsection prescribes policies for establishing...

  7. 48 CFR 1415.404-4 - Profit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Profit. 1415.404-4 Section 1415.404-4 Federal Acquisition Regulations System DEPARTMENT OF THE INTERIOR CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 1415.404-4 Profit. (a) DOI's policy is to use...

  8. 48 CFR 1615.404-4 - Profit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 1615.404-4 Federal Acquisition Regulations System OFFICE OF PERSONNEL MANAGEMENT FEDERAL EMPLOYEES... Contract Pricing 1615.404-4 Profit. (a) When the pricing of FEHB Program contracts is determined by cost analysis, OPM will determine the profit or fee prenegotiation objective (service charge) portion of...

  9. 48 CFR 915.404-4 - Profit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... responsibilities. The statutory limitations on price and fee as set forth in 48 CFR 15.404-4(c)(4)(i) shall be... profit/fee analysis technique designed for a systematic application of the profit factors in 48 CFR 15...) and Bonneville Power Administration (BPA) functions. Pursuant to section 602(d) (13) and (20) of...

  10. 48 CFR 415.404-4 - Profit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... negotiation is based on cost analysis. (2) The following types of acquisitions are exempt from the... CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 415.404-4 Profit. (a)(1) USDA will use a...) Termination settlements; and (v) Cost-plus-award-fee contracts; (b) Unless otherwise restricted by...

  11. 48 CFR 915.404-4 - Profit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... responsibilities. The statutory limitations on price and fee as set forth in 48 CFR 15.404-4(c)(4)(i) shall be... profit/fee analysis technique designed for a systematic application of the profit factors in 48 CFR 15...) and Bonneville Power Administration (BPA) functions. Pursuant to section 602(d) (13) and (20) of...

  12. 48 CFR 915.404-4 - Profit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... responsibilities. The statutory limitations on price and fee as set forth in 48 CFR 15.404-4(c)(4)(i) shall be... profit/fee analysis technique designed for a systematic application of the profit factors in 48 CFR 15...) and Bonneville Power Administration (BPA) functions. Pursuant to section 602(d) (13) and (20) of...

  13. 48 CFR 915.404-4 - Profit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... responsibilities. The statutory limitations on price and fee as set forth in 48 CFR 15.404-4(c)(4)(i) shall be... profit/fee analysis technique designed for a systematic application of the profit factors in 48 CFR 15...) and Bonneville Power Administration (BPA) functions. Pursuant to section 602(d) (13) and (20) of...

  14. 48 CFR 915.404-4-71-2 - Limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Limitations. 915.404-4-71-2 Section 915.404-4-71-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-71-2 Limitations....

  15. 36 CFR 404.4 - Access to information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Access to information. 404.4 Section 404.4 Parks, Forests, and Public Property AMERICAN BATTLE MONUMENTS COMMISSION PROCEDURES AND GUIDELINES FOR COMPLIANCE WITH THE FREEDOM OF INFORMATION ACT § 404.4 Access to information. (a) The American Battle Monuments Commission...

  16. 48 CFR 915.404-4-70-7 - Alternative techniques.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in 915.404-4-71. (b) Profit and fee to be paid on contracts under the threshold stated at 48 CFR 15... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Alternative techniques. 915.404-4-70-7 Section 915.404-4-70-7 Federal Acquisition Regulations System DEPARTMENT OF...

  17. 48 CFR 915.404-4-70-7 - Alternative techniques.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Alternative techniques. 915.404-4-70-7 Section 915.404-4-70-7 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-70-7...

  18. 48 CFR 915.404-4-70-7 - Alternative techniques.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in 915.404-4-71. (b) Profit and fee to be paid on contracts under the threshold stated at 48 CFR 15... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Alternative techniques. 915.404-4-70-7 Section 915.404-4-70-7 Federal Acquisition Regulations System DEPARTMENT OF...

  19. 48 CFR 915.404-4-70-7 - Alternative techniques.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in 915.404-4-71. (b) Profit and fee to be paid on contracts under the threshold stated at 48 CFR 15... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Alternative techniques. 915.404-4-70-7 Section 915.404-4-70-7 Federal Acquisition Regulations System DEPARTMENT OF...

  20. 48 CFR 915.404-4-70-7 - Alternative techniques.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in 915.404-4-71. (b) Profit and fee to be paid on contracts under the threshold stated at 48 CFR 15... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Alternative techniques. 915.404-4-70-7 Section 915.404-4-70-7 Federal Acquisition Regulations System DEPARTMENT OF...

  1. 48 CFR 915.404-4-71-2 - Limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Limitations. 915.404-4-71-2 Section 915.404-4-71-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-71-2 Limitations. Amounts payable under construction and...

  2. 48 CFR 915.404-4-70-3 - Documentation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Documentation. 915.404-4-70-3 Section 915.404-4-70-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-70-3...

  3. 48 CFR 915.404-4-71-5 - Fee schedules.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 915.404-4-71-6, provide maximum fee levels for construction and construction management contracts. The... consideration associated with the subcontractor effort under construction management contracts. (See 915.404-4... forth the base for construction management contracts: Construction Management Contracts Schedule...

  4. 48 CFR 915.404-4-71-5 - Fee schedules.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 915.404-4-71-6, provide maximum fee levels for construction and construction management contracts. The... consideration associated with the subcontractor effort under construction management contracts. (See 915.404-4... forth the base for construction management contracts: Construction Management Contracts Schedule...

  5. 48 CFR 915.404-4-71-5 - Fee schedules.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 915.404-4-71-6, provide maximum fee levels for construction and construction management contracts. The... consideration associated with the subcontractor effort under construction management contracts. (See 915.404-4... forth the base for construction management contracts: Construction Management Contracts Schedule...

  6. 48 CFR 915.404-4-71-5 - Fee schedules.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 915.404-4-71-6, provide maximum fee levels for construction and construction management contracts. The... consideration associated with the subcontractor effort under construction management contracts. (See 915.404-4... forth the base for construction management contracts: Construction Management Contracts Schedule...

  7. 48 CFR 915.404-4-71-6 - Fee base.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Fee base. 915.404-4-71-6 Section 915.404-4-71-6 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... in the Construction Contracts Schedule and Construction Management Contracts Schedule represents...

  8. 48 CFR 915.404-4-71-6 - Fee base.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Fee base. 915.404-4-71-6 Section 915.404-4-71-6 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... in the Construction Contracts Schedule and Construction Management Contracts Schedule represents...

  9. 48 CFR 915.404-4-71-6 - Fee base.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Fee base. 915.404-4-71-6 Section 915.404-4-71-6 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... in the Construction Contracts Schedule and Construction Management Contracts Schedule represents...

  10. 48 CFR 915.404-4-71-6 - Fee base.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Fee base. 915.404-4-71-6 Section 915.404-4-71-6 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND... in the Construction Contracts Schedule and Construction Management Contracts Schedule represents...

  11. 48 CFR 915.404-4-71-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false General. 915.404-4-71-1 Section 915.404-4-71-1 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND...) Reward contractors based on the complexity of work; (2) Reward contractors who demonstrate and...

  12. 48 CFR 915.404-4-70-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., facilities investment, and special factors as set forth in this subpart. (b) Commercial (profit) organization. Profit or fee prenegotiation objectives for contracts with commercial (profit) organizations shall be... CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-70-1 General. (a) Objective. It is...

  13. 48 CFR 915.404-4-70-2 - Weighted guidelines system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Weighted guidelines system. 915.404-4-70-2 Section 915.404-4-70-2 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-70-2 Weighted guidelines system. (a) To properly...

  14. 48 CFR 915.404-4-71-3 - Factors for determining fees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Factors for determining fees. 915.404-4-71-3 Section 915.404-4-71-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-71-3 Factors for determining fees. (a) The...

  15. 48 CFR 915.404-4-71-3 - Factors for determining fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Factors for determining fees. 915.404-4-71-3 Section 915.404-4-71-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-71-3 Factors for determining fees. (a) The...

  16. 48 CFR 915.404-4-71-3 - Factors for determining fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Factors for determining fees. 915.404-4-71-3 Section 915.404-4-71-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-71-3 Factors for determining fees. (a) The...

  17. 48 CFR 915.404-4-71-3 - Factors for determining fees.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Factors for determining fees. 915.404-4-71-3 Section 915.404-4-71-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-71-3 Factors for determining fees. (a) The...

  18. 48 CFR 915.404-4-71-3 - Factors for determining fees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Factors for determining fees. 915.404-4-71-3 Section 915.404-4-71-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-71-3 Factors for determining fees. (a) The...

  19. 48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Considerations affecting fee amounts. 915.404-4-71-4 Section 915.404-4-71-4 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-71-4 Considerations affecting fee amounts....

  20. 48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Considerations affecting fee amounts. 915.404-4-71-4 Section 915.404-4-71-4 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-71-4 Considerations affecting fee amounts....

  1. 48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Considerations affecting fee amounts. 915.404-4-71-4 Section 915.404-4-71-4 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-71-4 Considerations affecting fee amounts....

  2. 48 CFR 14.404-4 - Restrictions on disclosure of descriptive literature.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of descriptive literature. 14.404-4 Section 14.404-4 Federal Acquisition Regulations System FEDERAL... Contract 14.404-4 Restrictions on disclosure of descriptive literature. When a bid is accompanied by descriptive literature (as defined in 2.101), and the bidder imposes a restriction that prevents the...

  3. 48 CFR 27.404-4 - Contractor's release, publication, and use of data.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., publication, and use of data. 27.404-4 Section 27.404-4 Federal Acquisition Regulations System FEDERAL... Copyrights 27.404-4 Contractor's release, publication, and use of data. (a) In contracts for basic or applied research with universities or colleges, agencies shall not place any restrictions on the conduct of...

  4. 48 CFR 27.404-4 - Contractor's release, publication, and use of data.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., publication, and use of data. 27.404-4 Section 27.404-4 Federal Acquisition Regulations System FEDERAL... Copyrights 27.404-4 Contractor's release, publication, and use of data. (a) In contracts for basic or applied research with universities or colleges, agencies shall not place any restrictions on the conduct of...

  5. 48 CFR 27.404-4 - Contractor's release, publication, and use of data.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Contractor's release, publication, and use of data. 27.404-4 Section 27.404-4 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL CONTRACTING REQUIREMENTS PATENTS, DATA, AND COPYRIGHTS Rights in Data and Copyrights 27.404-4 Contractor's...

  6. 48 CFR 915.404-4-72 - Special considerations for cost-plus-award-fee contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cost-plus-award-fee contracts. 915.404-4-72 Section 915.404-4-72 Federal Acquisition Regulations System....404-4-72 Special considerations for cost-plus-award-fee contracts. (a) When a contract is to be awarded on a cost-plus-award-fee basis several special considerations are appropriate. Fee objectives...

  7. 43 CFR 404.4 - What are the goals of the program?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false What are the goals of the program? 404.4 Section 404.4 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.4 What are the goals of the program? The goals of the program are to:...

  8. GAS INDUSTRY GROUNDWATER RESEARCH PROGRAM

    SciTech Connect

    James A. Sorensen; John R. Gallagher; Steven B. Hawthorne; Ted R. Aulich

    2000-10-01

    The objective of the research described in this report was to provide data and insights that will enable the natural gas industry to (1) significantly improve the assessment of subsurface glycol-related contamination at sites where it is known or suspected to have occurred and (2) make scientifically valid decisions concerning the management and/or remediation of that contamination. The described research was focused on subsurface transport and fate issues related to triethylene glycol (TEG), diethylene glycol (DEG), and ethylene glycol (EG). TEG and DEG were selected for examination because they are used in a vast majority of gas dehydration units, and EG was chosen because it is currently under regulatory scrutiny as a drinking water pollutant. Because benzene, toluene, ethylbenzene, and xylenes (collectively referred to as BTEX) compounds are often very closely associated with glycols used in dehydration processes, the research necessarily included assessing cocontaminant effects on waste mobility and biodegradation. BTEX hydrocarbons are relatively water-soluble and, because of their toxicity, are of regulatory concern. Although numerous studies have investigated the fate of BTEX, and significant evidence exists to indicate the potential biodegradability of BTEX in both aerobic and anaerobic environments (Kazumi and others, 1997; Krumholz and others, 1996; Lovely and others, 1995; Gibson and Subramanian, 1984), relatively few investigations have convincingly demonstrated in situ biodegradation of these hydrocarbons (Gieg and others, 1999), and less work has been done on investigating the fate of BTEX species in combination with miscible glycols. To achieve the research objectives, laboratory studies were conducted to (1) characterize glycol related dehydration wastes, with emphasis on identification and quantitation of coconstituent organics associated with TEG and EG wastes obtained from dehydration units located in the United States and Canada, (2) evaluate

  9. 48 CFR 915.404-4-71 - Profit and fee-system for construction and construction management contracts.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Profit and fee-system for construction and construction management contracts. 915.404-4-71 Section 915.404-4-71 Federal Acquisition... Contract Pricing 915.404-4-71 Profit and fee-system for construction and construction management contracts....

  10. 48 CFR 915.404-4-71 - Profit and fee-system for construction and construction management contracts.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Profit and fee-system for construction and construction management contracts. 915.404-4-71 Section 915.404-4-71 Federal Acquisition... Contract Pricing 915.404-4-71 Profit and fee-system for construction and construction management contracts....

  11. 48 CFR 915.404-4-71 - Profit and fee-system for construction and construction management contracts.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Profit and fee-system for construction and construction management contracts. 915.404-4-71 Section 915.404-4-71 Federal Acquisition... Contract Pricing 915.404-4-71 Profit and fee-system for construction and construction management contracts....

  12. 48 CFR 915.404-4-71 - Profit and fee-system for construction and construction management contracts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Profit and fee-system for construction and construction management contracts. 915.404-4-71 Section 915.404-4-71 Federal Acquisition... Contract Pricing 915.404-4-71 Profit and fee-system for construction and construction management contracts....

  13. 48 CFR 915.404-4-71 - Profit and fee-system for construction and construction management contracts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Profit and fee-system for construction and construction management contracts. 915.404-4-71 Section 915.404-4-71 Federal Acquisition... Contract Pricing 915.404-4-71 Profit and fee-system for construction and construction management contracts....

  14. 48 CFR 915.404-4-70-2 - Weighted guidelines system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... bases representative of the prescribed profit factors cited in 48 CFR 15.404-4(d) and paragraph (d) of... Considerations (Weights applied to total of Profits $ for items 4.a. thru 4.e.) −5 to +5. VII....

  15. 48 CFR 915.404-4-70-2 - Weighted guidelines system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... bases representative of the prescribed profit factors cited in 48 CFR 15.404-4(d) and paragraph (d) of...) Other materials 1 to 3. b. Labor skills: (1) Technical and managerial: (a) Scientific 10 to 20....

  16. 48 CFR 915.404-4-70-2 - Weighted guidelines system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... bases representative of the prescribed profit factors cited in 48 CFR 15.404-4(d) and paragraph (d) of...) Other materials 1 to 3. b. Labor skills: (1) Technical and managerial: (a) Scientific 10 to 20....

  17. 48 CFR 915.404-4-70-2 - Weighted guidelines system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... bases representative of the prescribed profit factors cited in 48 CFR 15.404-4(d) and paragraph (d) of...) Other materials 1 to 3. b. Labor skills: (1) Technical and managerial: (a) Scientific 10 to 20....

  18. Solar/gas industrial process heat assessment

    NASA Astrophysics Data System (ADS)

    Kearney, D. W.

    1982-12-01

    An assessment was conducted of solar/gas industrial process heat systems, including consideration of market applications, the status and cost of applicable solar technologies, potential technical barriers to the efficient interfacing of solar with conventional gas fired equipment, and a detailed evaluation comparing solar/gas systems to competing options.

  19. Natural Gas Industry and Markets

    EIA Publications

    2006-01-01

    This special report provides an overview of the supply and disposition of natural gas in 2004 and is intended as a supplement to the Energy Information Administration's (EIA) Natural Gas Annual 2004 (NGA). Unless otherwise stated, all data and figures in this report are based on summary statistics published in the NGA 2004.

  20. Gas insulated substation equipment for industrial applications

    SciTech Connect

    Kenedy, J.J.

    1984-11-01

    Until recently the only available method for construction of high voltage systems was to use exposed air insulated equipment supported on porcelain columns. The past decade has witnessed the introduction and wide acceptance of compressed gas insulated equipment as a viable alternative to the conventional substation system. The characteristics of gas insulated substations (GIS) and their application for industrial use at service voltages at 69 kV and above are discussed.

  1. 48 CFR 915.404-4-70-5 - Special considerations-contracts with nonprofit organizations (other than educational institutions).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Special considerations-contracts with nonprofit organizations (other than educational institutions). 915.404-4-70-5 Section 915.404-4-70-5 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION...

  2. 48 CFR 915.404-4-70-5 - Special considerations-contracts with nonprofit organizations (other than educational institutions).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Special considerations-contracts with nonprofit organizations (other than educational institutions). 915.404-4-70-5 Section 915.404-4-70-5 Federal Acquisition Regulations System DEPARTMENT OF ENERGY CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION...

  3. Selected technology for the gas industry

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A number of papers were presented at a conference concerned with the application of technical topics from aerospace activities for the gas industry. The following subjects were covered: general future of fossil fuels in America, exploration for fossil and nuclear fuels from orbital altitudes, technology for liquefied gas, safety considerations relative to fires, explosions, and detonations, gas turbomachinery technology, fluid properties, fluid flow, and heat transfer, NASA information and documentation systems, instrumentation and measurement, materials and life prediction, reliability and quality assurance, and advanced energy systems (including synthetic fuels, energy storage, solar energy, and wind energy).

  4. 48 CFR 915.404-4-70-8 - Weighted guidelines application considerations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Weighted guidelines....404-4-70-8 Weighted guidelines application considerations. The Department has developed internal procedures to aid the contracting officer in the application of weighted guidelines and to assure...

  5. 48 CFR 915.404-4-70-8 - Weighted guidelines application considerations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Weighted guidelines....404-4-70-8 Weighted guidelines application considerations. The Department has developed internal procedures to aid the contracting officer in the application of weighted guidelines and to assure...

  6. 48 CFR 915.404-4-70-8 - Weighted guidelines application considerations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Weighted guidelines....404-4-70-8 Weighted guidelines application considerations. The Department has developed internal procedures to aid the contracting officer in the application of weighted guidelines and to assure...

  7. 48 CFR 915.404-4-70-8 - Weighted guidelines application considerations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Weighted guidelines....404-4-70-8 Weighted guidelines application considerations. The Department has developed internal procedures to aid the contracting officer in the application of weighted guidelines and to assure...

  8. 48 CFR 915.404-4-70-8 - Weighted guidelines application considerations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Weighted guidelines....404-4-70-8 Weighted guidelines application considerations. The Department has developed internal procedures to aid the contracting officer in the application of weighted guidelines and to assure...

  9. 43 CFR 404.4 - What are the goals of the program?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) and 1 CFR part 51. The Principles and Guidelines are intended to ensure proper and consistent planning..., DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.4 What are the goals of the program? The goals of the program are to: (a) Assess and address urgent and compelling rural water...

  10. Competitive position of natural gas: Industrial baking

    SciTech Connect

    Minsker, B.S.; Salama, S.Y.

    1988-01-01

    Industrial baking is one of the largest natural gas consumers in the food industry. In 1985, bread, rolls, cookies, and crackers accounted for over 82 percent of all baked goods production. Bread accounting for 46 percent of all production. The baking industry consumed approximately 16 trillion Btu in 1985. About 93 percent was natural gas, while distillate fuel oil accounted for seven percent, and electricity accounted for much less than one percent. The three main types of baking ovens are the single lap, tunnel, and Lanham ovens. In the single lap oven, trays carry the product back and forth through the baking chamber once. The single lap oven is the most common type of oven and is popular due to its long horizontal runs, extensive steam zone, and simple construction. The tunnel oven is slightly more efficient and more expensive that the single lap oven. IN the tunnel oven, the hearth is a motorized conveyor which passes in a straight line through a series of heating zones, with loading and unloading occurring at opposite ends of the oven. The advantages of the tunnel oven include flexibility with respect to pan size and simple, accurate top and bottom heat control. The tunnel oven is used exclusively in the cookie and cracker baking, with the product being deposited directly on the oven band. The most recently developed type of oven is the Lanham oven. The Lanham oven is the most efficient type of oven, with a per pound energy consumption approaching the practical minimum for baking bread. Between one--half and two--thirds of all new industrial baking ovens are Lanham ovens. In the Lanham oven, the product enters the oven near the top of the chamber, spirals down through a series of heating zones, and exits near the bottom of the oven. The oven is gas--fired directly by ribbon burners. 31 refs.

  11. Industrial fuel gas plant project. Phase II. Memphis industrial fuel gas plant. Final report. [U-GAS process

    SciTech Connect

    Not Available

    1983-01-01

    The Industrial Fuel Gas Plant produces a nominal 50 billion Btu/day of product gas. The entire IFG production will be sold to MLGW. Under normal conditions, 20% of the output of the plant will be sold by MLGW to the local MAPCO refinery and exchanged for pipeline quality refinery gas. The MAPCO refinery gas will be inserted into the Memphis Natural Gas Distribution System. A portion (normally 10%) of the IFG output of the plant will be diverted to a Credit Generation Unit, owned by MLGW, where the IFG will be upgraded to pipeline quality (950 Btu/SCF). This gas will be inserted into MLGW's Natural Gas Distribution System. The remaining output of the IFG plant (gas with a gross heating value of 300 Btu/SCF) will be sold by MLGW as Industrial Fuel Gas. During periods when the IFG plant is partially or totally off-stream, natural gas from the Memphis Natural Gas Distribution System will be sent to an air mixing unit where the gas will be diluted to a medium Btu content and distributed to the IFG customers. Drawing 2200-1-50-00104 is the plant block flow diagram showing the process sequence and process related support facilities of this industrial plant. Each process unit as well as each process-related support facility is described briefly.

  12. A Phenomenological Model of Industrial Gas Sensors

    NASA Astrophysics Data System (ADS)

    Woestman, J. T.; Logothetis, E. M.; Shane, M. D.; Brailsford, A. D.

    1997-08-01

    Gas sensors are widely used in industry for applications ranging from air-to-fuel ratio control in combustion processes, including those in automotive engines and industrial furnaces, to leakage detection of inflammable and toxic gases. This presentation reports on a model to describe the response of typical electrochemical solid state gas sensors in environments of air (80% N2 and 20% O_2) and one reducing species such as CO, H2 or CH_4. The goal of the model is to predict the time-dependent sensor output resulting from a time-dependent gas composition. Through a set of coupled differential equations, the model accounts for the flow of the gases into the sensor, their diffusion through a porous spinel coating, their adsorption/desorption on/off a catalytic electrode and their redox reaction on the electrode. The solution of these equations provides an oxygen adatom concentration on the electrode surface. This oxygen concentration is used in the Nernst equation to determine an instantaneous sensor emf and a first order filter is user to account for the time delay associated with the emf generation processes. The model was applied to the operation of an automotive oxygen sensor exposed to mixtures of O2 and CO in N2 and mixtures of O2 and H2 in N_2. Good agreement was found with experimental results under both steady state and dynamic operating conditions.

  13. GRS/industry eastern gas shale data base

    SciTech Connect

    Zielinski, R.E.; Sharer, J.C.

    1982-01-01

    The Gas Resource Information System (GRIS) is a computerized data base that contains historical data on eastern gas shale wells. It contains all those elements which industry feels are important for the evaluation of drilling, completion, stimulation and production techniques for eastern gas shale wells. While GRI will be researching the data on the base to optimize production from the eastern gas shales, it will make GRIS available to industry as a mutually beneficial tool.

  14. Explore Your Future: Careers in the Natural Gas Industry.

    ERIC Educational Resources Information Center

    American Gas Association, Arlington, VA. Educational Services.

    This career awareness booklet provides information and activities to help youth prepare for career and explore jobs in the natural gas industry. Students are exposed to career planning ideas and activities; they learn about a wide variety of industry jobs, what workers say about their jobs, and how the industry operates. Five sections are…

  15. Electricity, Gas and Water Supply. Industry Training Monograph No. 4.

    ERIC Educational Resources Information Center

    Dumbrell, Tom

    Australia's electricity, gas, and water supply industry employs only 0.8% of the nation's workers and employment in the industry has declined by nearly 39% in the last decade. This industry is substantially more dependent on the vocational education and training (VET) sector for skilled graduates than is the total Australian labor market. Despite…

  16. INVENTORY OF METHANE LOSSES FROM THE NATURAL GAS INDUSTRY

    EPA Science Inventory

    The paper gives the second year's results of an ongoing 4-year program undertaken jointly by the Gas Research Institute and the U.S. EPA to assess the methane (CH4) losses from the U.S. natural gas industry. he program's objective is to assess the acceptability of natural gas as ...

  17. Venezuela`s gas industry poised for long term growth

    SciTech Connect

    Croft, G.D.

    1995-06-19

    Venezuela`s enormous gas resource, combined with a new willingness to invite outside investment, could result in rapid growth in that industry into the next century. The development of liquefied natural gas exports will depend on the future course of gas prices in the US and Europe, but reserves are adequate to supply additional projects beyond the proposed Cristobal Colon project. Venezuela`s gas reserves are likely to increase if exploration for nonassociated gas is undertaken on a larger scale. The paper discusses gas reserves in Venezuela, internal gas markets, the potential for exports, competition from Trinidad, LNG export markets, and the encouragement of foreign investment in the gas industry of Venezuela.

  18. 48 CFR 915.404-4-70-5 - Special considerations-contracts with nonprofit organizations (other than educational institutions).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... negotiation, the DOE negotiating official shall calculate the fee as for a contract with a commercial concern... were a commercial concern. When this is the case, the contract file shall be documented to specifically... TYPES CONTRACTING BY NEGOTIATION Contract Pricing 915.404-4-70-5 Special considerations—contracts...

  19. INDUSTRIAL PROCESS PROFILES FOR ENVIRONMENTAL USE: CHAPTER 2. OIL AND GAS PRODUCTION INDUSTRY

    EPA Science Inventory

    The catalog of Industrial Process Profiles for Environmental Use was developed as an aid in defining the environmental impacts of industrial activity in the United States. Entries for each industry are in consistent format and form separate chapters of the study. The oil and gas ...

  20. Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana.

    PubMed

    Kumar, Kanhaiya; Banerjee, Debopam; Das, Debabrata

    2014-01-01

    The present study investigated the feasibility of using Chlorella sorokiniana for CO2 sequestration from industrial flue gas. The flue gas emitted from the oil producing industry contains mostly CO2 and H2S (15.6% (v/v) and 120 mg L(-1), respectively) along with nitrogen, methane, and other hydrocarbons. The high concentration of CO2 and H2S had an inhibitory effect on the growth of C. sorokiniana. Some efforts were made for the maximization of the algal biomass production using different techniques such as diluted flue gas, flue gas after passing through the scrubber, flue gas passing through serially connected photobioreactors and two different reactors. The highest reduction in the CO2 content of inlet flue gas was 4.1% (v/v). Some new pigments were observed in the flue gas sequestered biomass. Fatty acid composition in the total lipid was determined to evaluate its suitability for food, feed, and biofuel. PMID:24292202

  1. 2. PANORAMA OF INDUSTRY: (CLOCKWISE FROM LEFT) USSTEEL COKE GAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. PANORAMA OF INDUSTRY: (CLOCKWISE FROM LEFT) USSTEEL COKE GAS PIPELINE, URR COAL LOADING STATION, CONRAIL PORT PERRY BRIDGE, URR HOT METAL BRIDGE, USSSTEEL EDGAR THOMSON WORKS. - Conrail Port Perry Bridge, Spanning Monongahela River, Elizabeth, Allegheny County, PA

  2. Application of Nanotechnology and Nanomaterials in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Nabhani, Nader; Emami, Milad; Moghadam, A. B. Taghavi

    2011-12-01

    Micro and nano technologies have already contributed significantly to technological advances in a number of industries, including electronics, biomedical, pharmaceutical, materials and manufacturing, aerospace, photography and more recently the energy industries. Micro and nanotechnologies have the potential to introduce revolutionary changes in several areas of the oil and gas industries such as exploration, drilling, production, refining and distribution. For example, nanosensors might provide more detailed and accurate information about reservoirs and smart fluids for enhanced oil recovery (EOR) and drilling. This paper examines and documents applicable nanotechnology base products that can improve the competitiveness of the oil and gas industry. The future challenges of nanotechnology application in the oil and gas industry are also discussed.

  3. Gas Conversion Systems Reclaim Fuel for Industry

    NASA Technical Reports Server (NTRS)

    2015-01-01

    A human trip to Mars will require astronauts to utilize resources on the Red Planet to generate oxygen and fuel for the ride home, among other things. Lakewood, Colorado-based Pioneer Energy has worked under SBIR agreements with Johnson Space Center to develop technology for those purposes, and now uses a commercialized version of the technology to recover oil and gas that would otherwise be wasted at drilling sites.

  4. How is Order 636 affecting the gas distribution industry

    SciTech Connect

    Margossian, K.M. )

    1993-12-01

    This paper is part of a six part series on how interstate gas pipelines have been affected by Order 636. These papers are written in an interview format with different individuals representing the pipeline, natural gas, utility, and regulatory side of this new regulation. The issues deal with how it has affected these industries; how the relationships have changed between suppliers, marketers, distributors, etc.; the risks now involved in marketing, shipping, and buying gas products; and new technology developments have resulted to comply with the new regulations. This paper is an interview with Kenneth M. Magossian, president and chief operating officer of Commonwealth Gas Co. and Hopkinton LNG Corp.

  5. Strategic alliances for the future of the gas industry

    SciTech Connect

    Catell, R.B.

    1993-12-31

    The natural gas industry is in a position to benefit significantly from the inherent environmental advantages of natural gas and access to a large reserves base. Concurrently, the domestic natural gas industry will be undergoing extensive regulatory and structural changes in the coming years as a result of the implementation of FERC Order 636. The competition between fuels is intensifying, and the number of new market players and consumer demands are rising. As all sectors of the industry are facing new risk resulting from changes in access to storage, balancing, excess capacity, capacity release programs, and from the entry of gas marketers and aggregators, companies must increasingly rely on strategic alliances to remain competitive and stable. Strategic alliances are cooperative relationships between gas companies, pipelines, end-users, producers, marketers, as well as government bodies and labor unions. The principal goals of strategic alliances are to reduce risks, leverage resources and competitiveness, achieve long-term objectives, and build flexibility. Brooklyn Union has been involved in strategic alliances in the areas of (1) exploration, production, and supply; (2) transportation and storage; (3) marketing and market development; (4) regulatory and legislative activities; and (5) environmental activities. These alliances have allowed Brooklyn Union to diversify its gas supply, cooperatively support new pipelines, introduce new products and services, retain customers, generate new business, and assist in the enactment of reasonable Federal and State regulations and energy policies. Brooklyn Union recognizes that in the future the natural gas industry must continue to form strategic alliances to better serve the customer. Through strategic alliances the industry can increase the value and importance of natural gas as America`s premier energy source.

  6. Managing greenhouse gas emission in the indian aluminum industry

    NASA Astrophysics Data System (ADS)

    Mahadevan, H.

    2001-11-01

    Fluorocarbons are pollutants that destroy the ozone layer in the upper atmosphere and allow more ultraviolet radiation to reach the surface of the earth. Over-exposure to such radiation damages plants and greatly increases people’s risk of skin cancer. Aluminum refineries and smelters, which consume large amounts of energy, are committed to continuous improvement in greenhouse gas abatement. Although India is under no international pressure to reduce greenhouse gas emissions, the Indian aluminum industry could undertake such a commitment voluntarily. This analysis shows where immediate improvements are possible, and presents a tentative action plan for the industry.

  7. [Urinary tract carcinomas in gas industry employees (author's transl)].

    PubMed

    Manz, A

    1976-01-16

    Arising from a retrospective investigation of the causes of death in active and pensioned employees from the author's sphere of observation, the increased occurence of urinary tract carcinoma in furnace battery and pipe system workers in the gas industry is pointed out. Statistical studies suggest a causal connection between exposure to tar in these jobs and the urinary tract carcinomas. The necessity for industrial medical precautions is commented on. PMID:814428

  8. Case study: City of Industry landfill gas recovery operation

    SciTech Connect

    1981-11-01

    Development of civic, recreation, and conservation facilities throughout a 150-acre site which had been used for waste disposal from 1951 to 1970 is described. The history of the landfill site, the geology of the site, and a test well program to assess the feasibility of recoverying landfill gas economically from the site are discussed. Based on results of the test well program, the City of Industry authorized the design and installation of a full-scale landfill gas recovery system. Design, construction, and operation of the system are described. The landfill gas system provides fuel for use in boilers to meet space heating and hot water demands for site development (MCW)

  9. Daugaz, a computerized data base serving the gas industry

    SciTech Connect

    Uvodic, A.; Collomb, A.; Bizzochi, C.

    1988-01-01

    The computerized documentary data bank Daugaz was created in 1982 by Gaz de France in order to handle the growing number of publications and to make its documentation accessible to the gas industry. Constantly extended, with the help, since 1985, of the French Gas Association, it now includes almost 50 000 written or audiovisual document references relating to gas energy. Daugaz has been accessible on line from outside France since September 1985 and is making promising developments, through fruitful cooperation, with the Ecole Polytechnique de Montreal in Canada for example. Its vocation as an international data bank should be confirmed in the future.

  10. Value of Underground Storage in Today's Natural Gas Industry, The

    EIA Publications

    1995-01-01

    This report explores the significant and changing role of storage in the industry by examining the value of natural gas storage; short-term relationships between prices, storage levels, and weather; and some longer term impacts of the Federal Energy Regulatory Commission's (FERC) Order 636.

  11. Assessment of Industrial VOC Gas-Scrubber Performance

    SciTech Connect

    Saito, H

    2004-02-13

    Gas scrubbers for air-pollution control of volatile organic compounds (VOC) cover a wide range of technologies. In this review, we have attempted to evaluate the single-pass scrubber destruction and removal efficiencies (DREs) for a range of gas-scrubber technologies. We have focused primarily on typical industrial DREs for the various technologies, typical problems, and any DRE-related experiential information available. The very limited literature citations found suggest significant differences between actual versus design performance in some technologies. The potentially significant role of maintenance in maintaining DREs was also investigated for those technologies. An in-depth portrayal of the entire gas scrubbing industry is elusive. Available literature sources suggest significant differences between actual versus design performance in some technologies. Lack of scrubber system maintenance can contribute to even larger variances. ''Typical'' industrial single-pass performance of commonly used VOC gas scrubbers generally ranged from {approx}80 to 99%. Imperfect solid and/or liquid particulates capture (possibly as low as 95% despite design for 99+% capture efficiency) can also lead to VOC releases. Changing the VOC composition in the gas stream without modifying scrubber equipment or operating conditions could also lead to significant deterioration in attainable destruction and removal efficiencies.

  12. Novel industrial application: flammable and toxic gas monitoring in the printing industry

    NASA Astrophysics Data System (ADS)

    Jacobson, Esther; Spector, Yechiel

    1999-12-01

    The present paper describes an Open Path Electro-Optical Gas Monitoring System specifically designed for in-situ on-line monitoring of flammable and toxic atmospheres in the Printing Industry in general, and for air-duct applications in particular. The printing industry posies unique fire hazards due to the variety of toxic and flammable chemical employed in the various printing process. Flammable material such as paper, ink, solvents, thinners, metal powders, cornstarch powders, cloth, synthetic materials are frequently used in the printing industry in several processes such as letter-pressing, lithography, screen printing etc.

  13. Political risk in the international oil and gas industry

    SciTech Connect

    Lax, H.L.

    1984-01-01

    This book examines problems of foreign investment policies faced by oil and gas corporations through an in-depth look at how the political environments confronting them change. Lax describes how to analyze poltical risks as an essential component of corporate decision making in the 1980s-given the changing relationship between host government and company, new resource nationalism, and growing awareness of power in developed and developing countries alike. Contents: 1. Introduction: political risk and corporate decision making. 2. The politicization of oil and gas. 3. Substance and structure of the oil and gas industry. 4. Risks and resources in oil and gas. 5. The nature of political risks. 6. Approaches to political risk analysis. 7. Corporate management of political risk. Bibliography. Index.

  14. Wind tunnel modeling of toxic gas releases at industrial facilities

    SciTech Connect

    Petersen, R.L.

    1994-12-31

    Government agencies and the petroleum, chemical and gas industries in the US and abroad have become increasingly concerned about the issues of toxic gas dispersal. Because of this concern, research programs have been sponsored by these various groups to improve the capabilities in hazard mitigation and response. Present computer models used to predict pollutant concentrations at industrial facilities do not properly account for the effects of structures. Structures can act to trap or deflect the cloud and modify the cloud dimensions, thereby possibly increasing or reducing downwind concentrations. The main purpose of this evaluation was to develop a hybrid modeling approach, which combines wind tunnel and dispersion modeling, to obtain more accurate concentration estimates when buildings or structures affect the dispersion of hazardous chemical vapors. To meet the study objectives, wind tunnel testing was performed on a building cluster typical of two industrial settings where accidental releases of toxic gases might occur. This data set was used to test the validity of the AFTOX and SLAB models for estimating concentrations and was used to develop and test two hybrid models. Two accident scenarios were simulated, an evaporating pool of a gas slightly heavier than air (Hydrazine-N{sub 2}H{sub 4}) and a liquid jet release of Nitrogen Tetroxide (N{sub 2}O{sub 4}) where dense gas dispersion effects would be significant. Tests were conducted for a range of wind directions and wind speeds for two different building configurations (low rise and high rise structures).

  15. [Purification of complicated industrial organic waste gas by complex absorption].

    PubMed

    Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang

    2011-12-01

    Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises. PMID:22468539

  16. Training using multimedia in the oil and gas industry

    SciTech Connect

    Bihn, G.C.

    1997-02-01

    Multimedia is becoming a widely used and accepted tool in general education. From preschool to the university, multimedia is promising and delivering some very impressive results. Its application in specific industry segments, like oil and gas, is expected to proliferate within the very near future. In fact, many titles are already on the market or in development. The objective of this article is to present an overview of the current state of multimedia as used in petroleum industry training and to provide managers with a feel for not only the technology but, more importantly, what benefit the technology is expected to bring to their organization.

  17. Industrial Research of Condensing Unit for Natural Gas Boiler House

    NASA Astrophysics Data System (ADS)

    Ziemele, Jelena; Blumberga, Dagnija; Talcis, Normunds; Laicane, Ilze

    2012-12-01

    In the course of work industrial research was carried out at the boiler plant A/S "Imanta" where a 10MW passive condensing economizer working on natural gas was installed after the 116MW water boiler. The work describes the design of the condensing economizer and wiring diagram. During the industrial experiment, the following measurements were made: the temperature of water before and after the economizer; the ambient temperature; the quantity of water passing through the economizer; heat, produced by the economizer and water boilers. The work summarizes the data from 2010-2011.

  18. Environmental Monitoring and the Gas Industry: Program Manager Handbook

    SciTech Connect

    Gregory D. Gillispie

    1997-12-01

    This document has been developed for the nontechnical gas industry manager who has the responsibility for the development of waste or potentially contaminated soil and groundwater data or must make decisions based on such data for the management or remediation of these materials. It explores the pse of common analytical chemistry instrumentation and associated techniques for identification of environmentally hazardous materials. Sufficient detail is given to familiarize the nontechnical reader with the principles behind the operation of each technique. The scope and realm of the techniques and their constituent variations are portrayed through a discussion of crucial details and, where appropriate, the depiction of real-life data. It is the author's intention to provide an easily understood handbook for gas industry management. Techniques which determine the presence, composition, and quantification of gas industry wastes are discussed. Greater focus is given to traditional techniques which have been the mainstay of modem analytical benchwork. However, with the continual advancement of instrumental principles and design, several techniques have been included which are likely to receive greater attention in fiture considerations for waste-related detection. Definitions and concepts inherent to a thorough understanding of the principles common to analytical chemistry are discussed. It is also crucial that gas industry managers understand the effects of the various actions which take place before, during, and after the actual sampling step. When a series of sample collection, storage, and transport activities occur, new or inexperienced project managers may overlook or misunderstand the importance of the sequence. Each step has an impact on the final results of the measurement process; errors in judgment or decision making can be costly. Specific techniques and methodologies for the collection, storage, and transport of environmental media samples are not described or

  19. Naturally occurring radioactive material in the oil and gas industry

    SciTech Connect

    Steingraber, W.A.

    1994-12-31

    Naturally occurring radioactive material (NORM) has been found in the Earth`s crust and soil, the water we drink, the food we eat, the air we breathe, and the tissues of every living organism. It is relatively easy to determine {open_quotes}concentrations{close_quotes}, or specific activity levels, in the range of 1 part per trillion for radioactive materials. With radioactive elements so abundant and detection possible at such low levels, the presence of NORM in oil and gas operations shouldn`t be surprising. In fact, this presence has been recognized since at least the 1930`s, but the phenomenon received only minimal attention in the United States until the mid-1980`s. At that time regulatory agencies in several oil- and gas-producing states began to focus on NORM in the exploration and production segment of the industry, expressing concern over potential health and safety implications. The most significant aspects of NORM in oil production operations include original source, transport media, composition/radionuclides present, measurement methods, health/safety issues, waste classification, and waste disposal. In addition, I will summarize industry-sponsored NORM data collection and analysis efforts being conducted to aid in development of sound policies and procedures to address environmental, health, and safety issues. Current activities by state and federal regulatory agencies relevant to NORM in the oil and gas industry will also be reviewed.

  20. A guide for the gas and oil industry

    SciTech Connect

    Not Available

    1994-12-01

    This guide has been prepared to assist those in the natural gas and oil industry who may not be familiar with how the Federal government, particularly the U.S. Department of Energy (DOE or Department), does business with private sector companies. Basic information is provided on what DOE is trying to do, why it wants to work with the natural gas and oil industry, how it can work with companies, who to contact, and where to inquire for further information. This last item is noteworthy because it is important for users of this guide to be able to access information about subjects that may interest them. Selected other Federal agencies and their activities related to those of DOE`s Office of Fossil Energy (FE or Fossil Energy) also are included in this document as Appendix A. This guide provides an address and/or phone number for every topic covered to prevent any information impasse. If a question is not adequately answered by the guide, please do not hesitate to contact the appropriate person or office. It is hoped that the information provided in this guide will lead to a better understanding of the mission, roles, and procedures of DOE and result in more and better cooperative working relationships between the natural gas and oil industry and DOE. Such relationships will provide a significant benefit to our Nation`s economic, technological, and energy security.

  1. New models for success emerge for US natural gas industry

    SciTech Connect

    Addy, W.M. ); Hutchinson, R.A. )

    1994-11-14

    Very few companies in the US natural gas industry are confident in their ability to compete effectively in the brave new world of deregulation. Boston Consulting Group recently conducted an internal study to help the industry think about its future and identify models for success in this new environment. The authors examined the historical performance of 800 companies using several shareholder-value indicators, including cash-flow returns on investment, a measure of cash returns on cash invested that correlates closely to share price. Based on that review and discussions with investment managers and industry analysts, the authors were able to focus on a handful of companies that actually have thrived and created value against the difficult landscape of the past decade. Interviews with their senior executives provided important strategic and operational insights.

  2. Applications of Nanotechnology in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    Nanotechnology could be used to enhance the possibilities of developing conventional and stranded gas resources and to improve the drilling process and oil and gas production by making it easier to separate oil and gas in the reservoir. Nanotechnology can make the oil and gas industry considerably greener. There are numerous areas in which nanotechnology can contribute to more-efficient, less-expensive, and more-environmentally sound technologies than those that are readily available. We identified the following possibilities of nanotechnology in the petroleum industry: 1-Nanotechnology-enhanced materials that provide strength to increase performance in drilling, tubular goods, and rotating parts. 2- Designer properties to enhance hydro-phobic to enhance materials for water flooding applications. 3- Nano-particulate wetting carried out using molecular dynamics 4- Lightweight materials that reduce weight requirements on offshore platforms 5- Nano-sensors for improved temperature and pressure ratings 6- New imaging and computational techniques to allow better discovery, sizing, and characterization of reservoirs.

  3. Advanced Seal Development for Large Industrial Gas Turbines

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  4. Can a more competitive natural gas industry provide stability

    SciTech Connect

    Hanson, D.A.; Jennings, T.V.; Lemon, J.R.

    1988-01-01

    This paper addresses the question, ''Can a more competitive natural gas industry provide stability.'' When we discuss a free gas market here, we are primarily referring to a market in which flexible, accurate prices are free to adjust to achieve market equilibrium -- a balance of supply and demand. Implied is the lack of wellhead price regulations and the transmission of accurate price signals to both suppliers and end-users. Economic efficiency requires that prices respond to changes in conditions such as the world oil price, such as the world oil price, regional demands (for example, those of the Northeast US), sectoral demands (e.g., those of the electric utilities), and environmental policy (select use of gas for emission control, for example). 11 refs., 2 figs., 1 tab.

  5. Physics-Driven Innovation In the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Poitzsch, Martin

    2014-03-01

    In terms of sheer scale and financial investment and geographical footprint, nothing is bigger than the oil and gas industry. This ``mature industry'' employs a bewildering mix of technologies dating from the 19th century to the 21th. Oil well construction represents one of the largest volume markets for steel tubulars, Portland cement, and high-quality sand. On the other hand, advanced 3D seismic data processing, shaped-charge perforating, and nuclear well logging have consistently driven forward the state of the art in their respective areas of applied science, as much or more so than defense or other industries. Moreover, a surprising number of physicists have made their careers in the oil industry. To succeed at introducing new technology requires understanding which problems most need to be solved. The most esoteric technology can take off in this industry if it honestly offers the best solution to a key problem that is costing millions of dollars in risk or inefficiency. When the right breakthrough solution emerges, the resources to implement it can be almost limitless. However, the prevailing culture is conservative and brutally cost-driven: any cheaper or simpler solution that performs as well will prevail, no matter how inelegant!

  6. 48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for... weight, positively or negatively, for the period of services or length of time involved in the...

  7. 48 CFR 915.404-4-71-4 - Considerations affecting fee amounts.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reactors; atomic particle accelerators; complex laboratories or industrial units especially designed for... weight, positively or negatively, for the period of services or length of time involved in the...

  8. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 15: GAS-ASSISTED GLYCOL PUMPS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  9. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.

    PubMed

    Huang, Guanhua; Chen, Feng; Kuang, Yali; He, Huan; Qin, An

    2016-03-01

    The soaring increase of flue gas emission had caused global warming, environmental pollution as well as climate change. Widespread concern on reduction of flue gas released from industrial plants had considered the microalgae as excellent biological materials for recycling the carbon dioxide directly emitted from exhaust industries. Microalgae also have the potential to be the valuable feedback for renewable energy production due to their high growth rate and abilities to sequester inorganic carbon through photosynthetic process. In this review article, we will illustrate important relative mechanisms in the metabolic processes of biofixation by microalgae and their recent experimental researches and advances of sequestration of carbon dioxide by microalgae on actual industrial and stimulate flue gases, novel photobioreactor cultivation systems as well as the perspectives and limitations of microalgal cultivation in further development. PMID:26695777

  10. Full hoop casing for midframe of industrial gas turbine engine

    DOEpatents

    Myers, Gerald A.; Charron, Richard C.

    2015-12-01

    A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).

  11. Electrical studies for an industrial gas turbine cogeneration facility

    SciTech Connect

    Doughty, R.L.; Kalkstein, E.W. and Co., Newark, DE . Engineering Dept. Parsons Co., Pasadena, CA ); Willoughby, R.D. )

    1989-07-01

    Electrical studies are required to assure the proper integration of a gas-turbine cogeneration facility into an existing industrial-plant electrical system and the connected utility grid. Details of such a study effort are presented, including boundary-limit definition for the system model, individual component modeling, load-flow and short-circuit studies, stability studies, and simulation of on-line isolation from the electric utility during system undervoltage or underfrequency conditions. The impact of the studies on the design process and plant system reliability is discussed.

  12. Operational performance comparisons in the gas processing industry

    SciTech Connect

    Salahor, G.S.

    1996-12-31

    Comparison and benchmarking of operational performance measures in the natural gas processing and gathering industry has helped operators to identify and prioritize improvement initiatives and has led to direct and tangible improvements in operating efficiency. However, proper interpretation and utilization of performance benchmarking data in a complex operation such as gas processing must reflect due consideration of the technical factors which influence the overall economic performance and resource requirements. Plant operators must be able to use the data to understand the key technical influences reflected in their results, and thereby set performance targets commensurate with the structural considerations particular to their facility. Ernst and Young has developed an analytical framework for gas processing and gathering operations incorporating such considerations, and conducted a study involving North American and international participants for the past four years. The information obtained form this work has revealed a wide range of performance results across plants, and has served to challenge much of the conventional wisdom regarding what levels of performance are attainable, and to provide understanding as to how gas processing operational resource requirements are influenced by technical parameters.

  13. Remote Sensing Application in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Sizov, Oleg; Aloltsov, Alexander; Rubtsova, Natalia

    2014-05-01

    The main environmental problems of the Khanty-Mansi Autonomous Okrug (a federal subject of Russia) related to the activities of oil and gas industry (82 active companies which hold 77,000 oil wells). As on the 1st of January 2013 the subject produces more than 50% of all oil in Russia. The principle of environmental responsibility makes it necessary to minimize human impact and ecological impact. One of the most effective tools for environmental monitoring is remote sensing. The main advantages of such approach are: wide coverage of areas of interest, high temporal resolution, precise location, automatic processing, large set of extracted parameters, etc. Authorities of KhMAO are interested in regular detection of the impact on the environment by processing satellite data and plan to increase the coverage from 434.9 to 659.9 square kilometers with resolution not less than 10 m/pixel. Years of experience of our company shows the significant potential to expand the use of such remote sensing data in the solution of environmental problems. The main directions are: monitoring of rational use of associated petroleum gas (detection of all gas flares and volumes of burned gas), monitoring of soil pollution (detection of areas of oil pollution, assess of the extent of pollution, planning of reclamation activities and assessment of their efficiency, detection of potential areas of pipelines corrosion), monitoring of status of sludge pits (inventory of all sludge pits, assessment of their liquidation), monitoring of technogenic impact (detection of changes), upgrading of a geospatial database (topographic map of not less than 1:50000 scale). Implementation of modeling, extrapolation and remote analysis techniques based on satellite images will help to reduce unnecessary costs for instrumental methods. Thus, the introduction of effective remote monitoring technology to the activity of oil and gas companies promotes environmental responsibility of these companies.

  14. A study of white finger in the gas industry.

    PubMed Central

    Walker, D D; Jones, B; Ogston, S; Tasker, E G; Robinson, A J

    1985-01-01

    Men engaged in breaking or reinstating road surfaces are exposed to vibration from mechanical tools. In view of the lack of epidemiological information on vibration white finger in such a population, a survey was carried out to identify the prevalence of symptoms of white finger in a sample of men using these tools in the gas industry and to compare the prevalence with that found in a control group not occupationally exposed to vibration. Altogether 905 men (97%) in the gas industry and 552 men (92%) in the control group were interviewed, using a questionnaire from which the presence or absence of white finger symptoms from all causes was noted. The prevalence of white finger was 9.6% in the group exposed to vibration at work compared with 9.5% in the control group. The prevalence in the former group when adjusted for age differences between the survey and control populations was 12.2%, but this difference did not reach statistical significance. In case the approach of comparing prevalences of white finger from all causes might have obscured any contributory effect of vibration, the prevalence of white finger was examined in relation to the number of years vibrating tools had been used, this being the only measure of exposure to vibration available. No direct association was found between the prevalence of symptoms and number of years vibrating tools had been used. In view of this and the absence of a significant excess of white finger symptoms in the group using vibratory tools, the authors conclude that vibration white finger is not a special problem in the gas industry. Nevertheless, experimental tests carried out on the different types of roadbreakers used in the industry and on different road surfaces indicate that the vibration levels exceed the standards advocated in the draft international standard DIS 5349 (1979) at the lower end of the frequency spectrum. That no particular problem has been found may be due to the relatively short exposures to vibration

  15. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-01-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  16. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-09-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E&P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E&P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E&P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E&P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E&P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  17. Carbon soundings: greenhouse gas emissions of the UK music industry

    NASA Astrophysics Data System (ADS)

    Bottrill, C.; Liverman, D.; Boykoff, M.

    2010-01-01

    Over the past decade, questions regarding how to reduce human contributions to climate change have become more commonplace and non-nation state actors—such as businesses, non-government organizations, celebrities—have increasingly become involved in climate change mitigation and adaptation initiatives. For these dynamic and rapidly expanding spaces, this letter provides an accounting of the methods and findings from a 2007 assessment of greenhouse gas (GHG) emissions in the UK music industry. The study estimates that overall GHG emissions associated with the UK music market are approximately 540 000 t CO2e per annum. Music recording and publishing accounted for 26% of these emissions (138 000 t CO2e per annum), while three-quarters (74%) derived from activities associated with live music performances (400 000 t CO2e per annum). These results have prompted a group of music industry business leaders to design campaigns to reduce the GHG emissions of their supply chains. The study has also provided a basis for ongoing in-depth research on CD packaging, audience travel, and artist touring as well as the development of a voluntary accreditation scheme for reducing GHG emissions from activities of the UK music industry.

  18. Computational sciences in the upstream oil and gas industry.

    PubMed

    Halsey, Thomas C

    2016-10-13

    The predominant technical challenge of the upstream oil and gas industry has always been the fundamental uncertainty of the subsurface from which it produces hydrocarbon fluids. The subsurface can be detected remotely by, for example, seismic waves, or it can be penetrated and studied in the extremely limited vicinity of wells. Inevitably, a great deal of uncertainty remains. Computational sciences have been a key avenue to reduce and manage this uncertainty. In this review, we discuss at a relatively non-technical level the current state of three applications of computational sciences in the industry. The first of these is seismic imaging, which is currently being revolutionized by the emergence of full wavefield inversion, enabled by algorithmic advances and petascale computing. The second is reservoir simulation, also being advanced through the use of modern highly parallel computing architectures. Finally, we comment on the role of data analytics in the upstream industry.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597785

  19. Industrial Raman gas sensing for real-time system control

    NASA Astrophysics Data System (ADS)

    Buric, M.; Mullen, J.; Chorpening, B.; Woodruff, S.

    2014-06-01

    Opportunities exist to improve on-line process control in energy applications with a fast, non-destructive measurement of gas composition. Here, we demonstrate a Raman sensing system which is capable of reporting the concentrations of numerous species simultaneously with sub-percent accuracy and sampling times below one-second for process control applications in energy or chemical production. The sensor is based upon a hollow-core capillary waveguide with a 300 micron bore with reflective thin-film metal and dielectric linings. The effect of using such a waveguide in a Raman process is to integrate Raman photons along the length of the sample-filled waveguide, thus permitting the acquisition of very large Raman signals for low-density gases in a short time. The resultant integrated Raman signals can then be used for quick and accurate analysis of a gaseous mixture. The sensor is currently being tested for energy applications such as coal gasification, turbine control, well-head monitoring for exploration or production, and non-conventional gas utilization. In conjunction with an ongoing commercialization effort, the researchers have recently completed two prototype instruments suitable for hazardous area operation and testing. Here, we report pre-commercialization testing of those field prototypes for control applications in gasification or similar processes. Results will be discussed with respect to accuracy, calibration requirements, gas sampling techniques, and possible control strategies of industrial significance.

  20. Tempo of Argentinian oil and gas industry quickens

    SciTech Connect

    Aalund, L.R.

    1988-08-01

    Exploration and production programs that the Argentinian Government has set in motion are making the country, which will host the next World Petroleum Congress, a more active and visible member of the international oil industry. A high, but possibly diminishing, inflation rate of about 15%/month, external financial debt, and the depressed price of oil are still drags on progress. But there are positive factors at work too. The government has recognized that it is in the country's self interest to entice technologically experienced foreign oil companies to search for and exploit its probably abundant oil and gas resources. The government's primary objective is to add enough output to its some 430,000 b/d production to eliminate crude oil imports. A good start on this will be made early next year when the country's first offshore field begins production.

  1. Mitigation strategies for microbiologically influenced corrosion in gas industry facilities

    SciTech Connect

    Pope, D.H.; Zintel, T.P. ); Cookingham, B.A. ); Howard, D.; Morris, R.G. ); Day, R.A.; Frank, J.R. ); Pogemiller, G.E. )

    1989-01-01

    This paper reports on a study of microbiologically influenced corrosion (MIC) and its mitigation in gas industry facilities. The results show that MIC commonly occurs on both external and internal surfaces of pipes, in down hole tubulars and in process equipment such as separators. Mitigation strategies were tested in side-stream devices at several sites. The results demonstrate that many biocides and corrosion inhibitors are relatively ineffective in controlling the surface microbial populations, at least under the conditions of the tests. Detailed studies with glutaraldehyde demonstrated that reestablishment of surface MIC communities after removal of this biocide was very rapid. Continuous treatment with glutaraldehyde led to the development of surface microbial communities resistant to the effects of the biocide.

  2. Thermal barrier coating on high temperature industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Carlson, N.; Stoner, B. L.

    1977-01-01

    The thermal barrier coating used was a yttria stabilized zirconia material with a NiCrAlY undercoat, and the base engine used to establish improvements was the P&WA FT50A-4 industrial gas turbine engine. The design benefits of thermal barrier coatings include simplified cooling schemes and the use of conventional alloys in the engine hot section. Cooling flow reductions and improved heating rates achieved with thermal barrier coating result in improved performance. Economic benefits include reduced power production costs and reduced fuel consumption. Over the 30,000 hour life of the thermal barrier coated parts, fuel savings equivalent to $5 million are projected and specific power (megawatts/mass of engine airflow) improvements on the order of 13% are estimated.

  3. Active Geophysical Monitoring in Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Bakulin, A.; Calvert, R.

    2005-12-01

    Effective reservoir management is a Holy Grail of the oil and gas industry. Quest for new technologies is never ending but most often they increase effectiveness and decrease the costs. None of the newcomers proved to be a silver bullet in such a key metric of the industry as average oil recovery factor. This factor is still around 30 %, meaning that 70 % of hydrocarbon reserves are left in the ground in places where we already have expensive infrastructure (platforms, wells) to extract them. Main reason for this inefficiency is our inability to address realistic reservoir complexity. Most of the time we fail to properly characterize our reservoirs before production. As a matter of fact, one of the most important parameters -- permeability -- can not be mapped from remote geophysical methods. Therefore we always start production blind even though reservoir state before production is the simplest one. Once first oil is produced, we greatly complicate the things and quickly become unable to estimate the state and condition of the reservoir (fluid, pressures, faults etc) or oilfield hardware (wells, platforms, pumps) to make a sound next decision in the chain of reservoir management. Our modeling capabilities are such that if we know true state of the things - we can make incredibly accurate predictions and make extremely efficient decisions. Thus the bottleneck is our inability to properly describe the state of the reservoirs in real time. Industry is starting to recognize active monitoring as an answer to this critical issue. We will highlight industry strides in active geophysical monitoring from well to reservoir scale. It is worth noting that when one says ``monitoring" production technologists think of measuring pressures at the wellhead or at the pump, reservoir engineers think of measuring extracted volumes and pressures, while geophysicist may think of change in elastic properties. We prefer to think of monitoring as to measuring those parameters of the

  4. Industry disputes administration report on oil and gas leasing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-05-01

    Despite the Obama administration's efforts to make millions of acres of public lands available for oil and gas development, most of the acreage onshore and offshore of the contiguous United States remains idle, according to “Oil and gas lease utilization, onshore and offshore,” a 15 May report issued by the Department of the Interior (DOI). The report, which is being disputed by industry representatives, notes that 72% of the nearly 36 million leased offshore acres currently are inactive and that 50.6% of onshore leased acres (about 20.8 million acres) also are idle. “As part of the Obama administration's all-of- the-above energy strategy, we continue to make millions of acres of public lands available for safe and responsible domestic energy production on public lands and in federal waters,” said DOI secretary Ken Salazar. “These lands and waters belong to the American people, and they expect those energy supplies to be developed in a timely and responsible manner and with a fair return to taxpayers. We will continue to encourage companies to diligently bring production online quickly and safely on public lands already under lease.”

  5. Inhomogeneous feed gas processing in industrial ozone generation.

    PubMed

    Krogh, Fabio; Merz, Reto; Gisler, Rudolf; Müller, Marco; Paolini, Bernhard; Lopez, Jose L; Freilich, Alfred

    2008-01-01

    The synthesis of ozone by means of dielectric barrier discharge (DBD) is extensively used in industry. Ozone generators available on the market differ in ozone production capacities, electrode arrangements and working parameters, but operate with a uniformly distributed filamentary discharge plasma pattern.In the presented work the benefits of inhomogeneous feed gas processing are explored. Causality between power induction, production efficiency and working parameters are investigated. Different electrode arrangements, evenly distributed within a given space parameter, were designed, simulated, manufactured and tested on a representative scale. A finite element model was utilized to simulate an inhomogeneous power induction pattern along the ozone generator tube. The simulation yielded the local power density, the local gas temperature gradient and the relative DBD packing density.Results show that the degree of filamentation turns out to be decisive, indicating a new potential by means of plasma tailoring. An arrangement with a pronounced power induction at the inlet of the ozone generator revealed several advantages over homogeneous plasma processing arrangements, for which an increase in robustness and a reduction in electrical power consumption are achieved. PMID:19092182

  6. Low emissions combustor development for an industrial gas turbine to utilize LCV fuel gas

    SciTech Connect

    Kelsall, G.J.; Smith, M.A. . Coal Research Establishment); Cannon, M.F. . Aero and Technology Products)

    1994-07-01

    Advanced coal-based power generation systems such as the British Coal Topping Cycle offer the potential for high-efficiency electricity generation with minimum environmental impact. An important component of the Topping cycle program is the gas turbine, for which development of a combustion system to burn low calorific value coal derived fuel gas, at a turbine inlet temperature of 1,260 C (2,300 F), with minimum pollutant emissions, is a key R and D issue. A phased combustor development program is underway burning low calorific value fuel gas (3.6--4.1 MJ/m[sup 3]) with low emissions, particularly NO[sub x] derived from fuel-bound nitrogen. The first phase of the combustor development program has now been completed using a generic tubo-annular, prototype combustor design. Tests were carried out at combustor loading and Mach numbers considerably greater than the initial design values. Combustor performance at these conditions was encouraging. The second phase of the program is currently in progress. This will assess, initially, an improved variant of the prototype combustor operating at conditions selected to represent a particular medium sized industrial gas turbine. This combustor will also be capable of operating using natural gas as an auxiliary fuel, to suite the start-up procedure for the Topping Cycle. The paper presents the Phase 1 test program results for the prototype combustor. Design of the modified combustor for Phase 2 of the development program is discussed, together with preliminary combustor performance results.

  7. The new structure of the gas industry in the State of Sao Paulo

    SciTech Connect

    Neto, J.A.J.

    1998-07-01

    The rapidly increasing availability of natural gas is leading to a significant increase in the importance of the gas industry in Brazil. This new era is already causing major changes in the existing gas distribution companies. Gas distribution concessions are a natural monopoly and the growth in demand for this energy source will require that these growing concessions are regulated. The south/south-east of Brazil is the center of the country's industrial base and the State of Sao Paulo is where most of the manufacturing activity is located. In addition, natural gas from Bolivia is scheduled to arrive in the State of Sao Paulo at the end of 1998. These two facts combined will mean major changes in the operations of manufacturing industry and in the gas supply business. Comparing the experience faced by other countries where a competitive environment in the gas industry has been introduced with privatization programs and the dismantlement of monopolies, this paper attempts to look into the future of the natural gas industry in the State of Sao Paulo in respect to the possible regulation that might be applicable, focusing on the new regulatory framework proposed to the gas industry sector and the perspectives for the introduction of the competition in gas industry in the State of Sao Paulo.

  8. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    SciTech Connect

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep; Pfefferle, William

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar Turbines

  9. Evaluation of Fresh Kills landfill gas for industrial applications. Final report, August 1977-March 1980

    SciTech Connect

    Briceland, C.; Bortz, S.; Khinkis, M.J.; Abassi, H.; Waibel, R.T.

    1980-03-01

    This report describes a combined laboratory and field test program carried out at the Fresh Kills Landfill on Staten Island to determine the acceptability of landfill gas as a replacement for natural gas and imported fuels in industrial processes. Landfill gas, created by the natural breakdown of organic materials, is about 50 percent methane. The Fresh Kills gas was tested to gauge its performance, characteristics and heat value, especially in relation to natural gas. The result of the tests were so favorable, that an aggressive program has been initiated statewide to identify landfill sites and potential industrial users for the landfill gas.

  10. A survey of gas-side fouling in industrial heat-transfer equipment

    NASA Technical Reports Server (NTRS)

    Marner, W. J.; Suitor, J. W.

    1983-01-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  11. Advanced solidification processing of an industrial gas turbine engine component

    NASA Astrophysics Data System (ADS)

    Clemens, Mei Ling; Price, Allen; Bellows, Richard S.

    2003-03-01

    This paper will describe the efforts of the Advanced Turbine Airfoil Manufacturing Technology Program sponsored by the U.S. Department of Energy through the Oak Ridge National Laboratory and Howmet Research Corporation. The purpose of the program is to develop single-crystal and directionally solidified casting technologies to benefit Advanced Turbine Systems (ATS) industrial and utility gas turbine engines. The focus is on defining and implementing advanced Vacuum Induction Melting (VIM) furnace enhancements that provide precise control of mold temperatures during solidification. Emphasis was placed on increasing the total magnitude of thermal gradients while minimizing the difference in maximum and minimum gradients produced during the solidification process. Advanced VIM casting techniques were applied to Solar Turbines Incorporated’s Titan 130 First Stage High Pressure Turbine Blade under the ATS program. A comparison of the advanced VIM casting process to the conventional Bridgeman casting process will be presented as it pertains to the thermal gradients achieved during solidification, microstructure, elemental partitioning characterization, and solution heat treat response.

  12. 76 FR 20657 - Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing Take notice that on April 1, 2011, Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg) filed a revised Statement...

  13. 75 FR 56092 - Hattiesburg Industrial Gas Sales, L.L.C; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Hattiesburg Industrial Gas Sales, L.L.C; Notice of Filing September 8, 2010. Take notice that on September 1, 2010, Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg) filed...

  14. 76 FR 78640 - Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing Take notice that on December 9, 2011, Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg) filed in PR12-8-000...

  15. 78 FR 21929 - Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Filing Take notice that on April 1, 2013, Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg) filed to cancel...

  16. Results of Laboratory and Industrial Tests of Periodic-Type Gas Generators

    NASA Astrophysics Data System (ADS)

    Karp, I. N.; P‧yanykh, K. E.; Antoshchuk, T. A.; Lysenko, A. A.

    2015-05-01

    Results of laboratory and industrial tests of periodic-type gas generators burning various solid biofuels have been presented. The tests were carried out with the aim of obtaining producer gas which could totally or partly replace natural gas in power equipment burning gaseous fuel. The energy and environmental characteristics of a boiler unit burning a mixture of producer gas and natural gas have been assessed.

  17. Natural gas in the energy industry of the 21st century

    SciTech Connect

    Cuttica, J.

    1995-12-31

    This paper provides a gas industry perspective on the impacts of restructuring the natural gas and electric industries. The four main implications discussed are: (1) market trends, (2) strategic positioning, (3) significant market implications, and (4) issues for the future. Market trends discussed include transitioning rate of return to market competition and regulatory impacts. Significant market implications for gas-fired generation identified include limited new generation investment, extension of existing plants, and an opportunity for distributed power generation. 12 tabs.

  18. Senate Forum on Shale Gas Development Explores Environmental and Industry Issues

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-06-01

    The U.S. Senate Committee on Energy and Natural Resources brought together industry and environmental leaders for a 23 May forum that focused on industry best practices and environmental concerns related to the current shale gas boom. The boom in shale gas development has been brought about in large part through advances in horizontal drilling and hydraulic fracturing ("fracking") to increase shale oil and gas production.

  19. Projected total energy and natural gas demand in the industrial sector

    SciTech Connect

    Not Available

    1991-04-01

    The results presented summarize a study conducted to provide information on industrial energy use by fuel type, functional end use, industry group, and region (GRI-91/0179). The main objectives of the study were to identify the salient trends in future industrial total energy and natural gas demand and to analyze the basic factors underlying those trends.

  20. Natural Gas Industry Restructuring and EIA Data Collection

    EIA Publications

    1996-01-01

    The Energy Information Administration's (EIA) Reserves and Natural Gas Division has undertaken an in-depth reevaluation of its programs in an effort to improve the focus and quality of the natural gas data that it gathers and reports. This article is to inform natural gas data users of proposed changes and of the opportunity to provide comments and input on the direction that EIA is taking to improve its data.

  1. Information highway: Alliances and their impact on the gas industry. Topical report, November 1993

    SciTech Connect

    Davis, K.W.

    1993-11-01

    The report describes the major developments in digital information networks, the key industry players and their alliances and technologies, and the significance of their activities to the gas industry. The newly-integrated industries involved in creating the 'information highway' are likely to promote standards based on open protocols and accelerate the pace of technology implementation in new products that link home systems and external network systems. Research was conducted using primary and secondary sources, on-line databases, and documentary research. Factors leading to the development of a new communications infrastructure and the alliances driving it were analyzed in order to best define opportunities and interests for the gas industry.

  2. Economic and Technical Assessment of Wood Biomass Fuel Gasification for Industrial Gas Production

    SciTech Connect

    Anastasia M. Gribik; Ronald E. Mizia; Harry Gatley; Benjamin Phillips

    2007-09-01

    This project addresses both the technical and economic feasibility of replacing industrial gas in lime kilns with synthesis gas from the gasification of hog fuel. The technical assessment includes a materials evaluation, processing equipment needs, and suitability of the heat content of the synthesis gas as a replacement for industrial gas. The economic assessment includes estimations for capital, construction, operating, maintenance, and management costs for the reference plant. To perform these assessments, detailed models of the gasification and lime kiln processes were developed using Aspen Plus. The material and energy balance outputs from the Aspen Plus model were used as inputs to both the material and economic evaluations.

  3. Environmental regulatory drivers for industrial natural gas research and development. Final topical report, March 1992-March 1993

    SciTech Connect

    Bluestein, J.; Cheng, R.

    1993-03-01

    The purpose of the report is to analyze opportunities for environmentally driven research and development projects for industrial natural gas use. The report seeks to identify broad trends in current and future environmental regulations, identify those areas of industrial gas use which are most significantly affected and analyze the role of industrial natural gas energy use in response to these implications.

  4. Gas reburn retrofit on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Latham, C.E.; Maringo, G.J.

    1996-01-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, is being retrofitted with the gas reburning technology developed by Babcock & Wilcox (B & W) to reduce NO{sub x} emissions in order to comply with the Title I, ozone nonattainment, of the Clean Air Act Amendments (CAAA) of 1990. The required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit set in New York`s regulation is about 47%. Eastman Kodak and the Gas Research Institute (GRI) are cosponsoring this project. B & W is the prime contractor and contract negotiations with Chevron as the gas supplier are presently being finalized. Equipment installation for the gas reburn system is scheduled for a September 1995 outage. No. 43 Boiler`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow or approximately equivalent to 60 MW{sub e}. Because of the compact boiler design, there is insufficient gas residence time to use pulverized coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Based on successful completion of this gas reburn project, modifying the other three cyclone boilers with gas reburn technology is anticipated. The paper will describe B & W`s gas reburn data from a cyclone-equipped pilot facility (B & W`s Small Boiler Simulator), gas reburn design information specific to Eastman Kodak No. 43 Boiler, and numerical modeling experiences based on the pilot-scale Small Boiler Simulator (SBS) results along with those from a full-scale commercial boiler.

  5. Competitive position of natural gas: Industrial baking and frying. May 1988

    SciTech Connect

    Not Available

    1988-01-01

    The summary of reports GRI-88/0020 and GRI-88/0042 provides the results of studies performed to determine the status of natural gas technologies in the industrial baking and frying markets and to identify R D to enhance the performance of these technologies. The studies indicate that natural gas will continue to be the most economical energy source for industrial baking and frying.

  6. The impact of corrosion on the oil and gas industry

    SciTech Connect

    Kermani, M.B.; Harrop, D.

    1996-08-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety, and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation, and refinery activities.

  7. ESTIMATE OF METHANE EMISSIONS FROM THE U.S. NATURAL GAS INDUSTRY

    EPA Science Inventory

    Global methane from the fossil fuel industries have been poorly quantified and, in many cases, emissions are not well-known even at the country level. Historically, methane emissions from the U.S. gas industry have been based on sparse data, incorrect assumptions, or both. As a r...

  8. Protection of SF/sub 6/ gas insulated substations - Industry survey results

    SciTech Connect

    Akamine, J.K.; Baumgartner, E.A.; Emery, J.T.; Haas, R.W.; Murray, T.J.

    1987-10-01

    This paper summarizes the result of an industry survey of gas insulated equipment practices and develops recommendations where necessary. Tables are included to show the type of gas insulated equipment located at each substation (current transformers, voltage transformers, switches, bus bars, bushings, lightning arresters, and cable end terminations), the equipment configuration (single or three conductors), the type of gas monitoring equipment used (density or pressure), the use of gas monitoring equipment (alarm and/or trip), unique relaying protection applications, and unique operating procedures. Gas insulated circuit breakers are specifically excluded from this survey.

  9. The Mobile Monitoring of fugitive methane emissions from natural gas consumer industries

    EPA Science Inventory

    Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not been quantified yet. This presentation introduces new tools ...

  10. Mobile monitoring of fugitive methane emissions from natural gas consumer industries

    EPA Science Inventory

    Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not yet been well quantified. This presentation introduces new m...

  11. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY: PRODUCTION AND TRANSMISSION EMISSIONS

    EPA Science Inventory

    The paper discusses a co-funded, Gas Research Institute/EPA project to quantify methane emissions to the atmosphere resulting from operations in the natural gas industry. tudy results will measure or calculate all methane emissions, from production at the well and up to, but not ...

  12. Competency Based Education Curriculum for the Orientation and Safety Program of the Oil and Gas Industry.

    ERIC Educational Resources Information Center

    United Career Center, Clarksburg, WV.

    This competency-based education curriculum for teaching the orientation and safety program for the oil and gas industry in West Virginia is organized into seven units. These units cover the following topics: introduction to oil and gas, first aid, site preparation, drilling operations, equipment familiarity, well completion, and preparation for…

  13. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect

    Lee Nelson

    2009-10-01

    This report is a preliminary comparison of conventional and potential HTGR-integrated processesa in several common industrial areas: ? Producing electricity via a traditional power cycle ? Producing hydrogen ? Producing ammonia and ammonia-derived products, such as fertilizer ? Producing gasoline and diesel from natural gas or coal ? Producing substitute natural gas from coal, and ? Steam-assisted gravity drainage (extracting oil from tar sands).

  14. New applications for Coriolis flow and density measurement in the natural gas industry

    SciTech Connect

    Valentine, J.; Keilty, M.

    1995-11-01

    Simultaneous, highly accurate measurement of mass, density and temperature makes the Coriolis instrumentation ideal technology for a wide variety of natural gas applications. This paper describes the technology, discusses the benefits of using Coriolis instrumentation, and describes several applications related to the oil and gas production industries utilizing the Coriolis meter.

  15. Role of gas cooling in tomorrow`s energy services industry

    SciTech Connect

    Hughes, P.J.

    1997-04-01

    This article discusses the marketing approach and opportunities for suppliers and manufacturers of gas cooling equipment to partner with energy service companies (ESCOs). The author`s viewpoint is that in educating and partnering with ESCOs the gas cooling industry enables their technology to reach its potential in the projects that the ESCOs develop.

  16. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  17. EVALUATION OF THE EFFICIENCY OF INDUSTRIAL FLARES: INFLUENCE OF GAS COMPOSITION

    EPA Science Inventory

    The report gives results of a pilot-scale evaluation of the efficiency of industrial flares. The work (1) evaluated the effects of additional gas mixtures on flare stability and efficiency with and without pilot assist and (2) correlated flame stability for the different gas mixt...

  18. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  19. Industry sector analysis Canada: Natural gas pipeline development. Export trade information

    SciTech Connect

    Stark, T.

    1992-08-01

    The analysis focuses on the Canadian natural gas pipeline industry and covers all inputs to natural gas pipeline construction and expansion projects: pipe, compressors, engineering services, tools, miscellaneous industrial supplies, and equipment rental. The Industry Sector Analysis (ISA) contains statistical and narrative information on projected market demand, end-users; receptivity of Canadian consumers to U.S. products; the competitive situation (Canadian production, total import market, U.S. market position, foreign competition, competitive factors), and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). The ISA also contains Key Contact information.

  20. 77 FR 34031 - Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice... Industrial Gas Sales, L.L.C. (Hattiesburg), 9 Greenway Plaza, Suite 2800, Houston, Texas 77046, filed...

  1. 77 FR 70434 - Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice of Offer of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Energy Regulatory Commission Petal Gas Storage, L.L.C., Hattiesburg Industrial Gas Sales, L.L.C.; Notice... Hattiesburg Industrial Gas Sales, L.L.C. (Hattiesburg), filed a Stipulation and Agreement (Settlement..., using the ``eLibrary'' link and is available for review in the Commission's Public Reference Room...

  2. Environmental Conservation. The Oil and Gas Industries, Volume One.

    ERIC Educational Resources Information Center

    National Petroleum Council, Washington, DC.

    Prepared in response to a Department of the Interior request, this report is a comprehensive study of environmental conservation problems as they relate to or have impact on the petroleum industry. It contains the general comments and conclusions of The National Petroleum Council based on an analysis of detailed data. For presentation of key…

  3. The impact of internet-connected control systems on the oil and gas industry

    NASA Astrophysics Data System (ADS)

    Martel, Ruth T.

    In industry and infrastructure today, communication is a way of life. In the oil and gas industry, the use of devices that communicate with the network at large is both commonplace and expected. Unfortunately, security on these devices is not always best. Many industrial control devices originate from legacy devices not originally configured with security in mind. All infrastructure and industry today has seen an increase in attacks on their networks and in some cases, a very dramatic increase, which should be a cause for alarm and action. The purpose of this research was to highlight the threat that Internet-connected devices present to an organization's network in the oil and gas industry and ultimately, to the business and possibly even human life. Although there are several previous studies that highlight the problem of these Internet-connected devices, there remains evidence that security response has not been adequate. The analysis conducted on only one easily discovered device serves as an example of the ongoing issue of the security mindset in the oil and gas industry. The ability to connect to a network through an Internet-connected device gives a hacker an anonymous backdoor to do great damage in that network. The hope is that the approach to security in infrastructure and especially the oil and gas industry, changes before a major catastrophe occurs involving human life.

  4. [Characteristics of industrial noise at the Astrakhan gas processing plant].

    PubMed

    Boĭko, V I; Dotsenko, Iu I; Boĭko, O V

    2011-01-01

    The level and nature of air pollution were studied in various objects of the Astrakhan gas processing plant. The necessity of introducing technical-hygienic, organizational, and medical measures to reduce the adverse effect of the noise on workers is warranted. PMID:21899100

  5. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 10: METERING AND PRESSURE REGULATING STATIONS IN NATURAL GAS TRANSMISSIONS AND DISTRIBUTION

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  6. Fee electricity - a new headache for the gas industry

    SciTech Connect

    Allen, R.

    1980-01-01

    Stray current from underground primary electric cables and electric grounds can occasionally cause unusually high voltages at certain points along gas-distribution systems. Because of the parallel paths and many sources of stray neutral currents, the circuitry and voltage drops are complex. Washington Power's experience shows that (1) bare gas pipe systems remain relatively free of neutral currents because they are grounded along their entire length, (2) plastic and coated-steel pipe systems pick up stray neutral currents through holidays, bare valves, etc., and develop hazardous voltages because the steel pipe or the tracer wire of the plastic pipe is insulated from the soil, (3) pipeline voltages occur in areas having very high soil resistivities because of the poor return circuit for neutral currents back to the electric substation, and (4) the pipelines most distant from the substation experience the highest voltages because those areas contain the greatest imbalance of primary currents.

  7. Environmental compliance tracking for the oil and gas industry

    SciTech Connect

    Thompson, C.C.; Qasem, J.; Killian, T.L.

    1998-12-31

    To meet the demand to track regulatory compliance requirements for oil and gas facilities, C-K Associates, Inc. and Conoco Inc. Natural Gas and Gas Products Department developed a customized relational database. The Compliance Tracking System (CTS), a Microsoft Access database, is designed to insure compliance with all applicable federally-enforceable air quality standards. Currently, compliance is insured through work practices, operating procedures, maintenance, and testing; however, associated documentation may be less formalized, especially for work practice standards and unmanned operations. Title V Operating Permits required by the 1990 Clean Air Act Amendments created the specific need for documentation of such compliance. Title V programs require annual compliance certification and semi-annual reports of compliance monitoring with signature by a responsible official. The CTS compiles applicable standards as well as monitoring, recordkeeping, and reporting requirements. A responsible party (primary and secondary) for each compliance action is assigned. Multiple tickler functions within the system provide notice of upcoming or past-due compliance actions. Systems flexibility is demonstrated through various sort mechanisms. Compliance items can be managed and documented through work orders generated by the CTS. This paper will present how the CTS was developed as an environmental management system and populated for a natural gas plant operating under a Title V permit. The system was expanded to include water quality, waste, and emergency reporting requirements to become a multi-discipline environmental compliance tool for the facility. Regulatory requirements were re-formatted to action items pertinent to field operations. The compliance actions were assigned to fit within current procedures whenever possible. Examples are presented for each media with emphasis on federally-enforceable Title V requirements.

  8. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1990-07-01

    The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

  9. Ternary gas mixtures for high-voltage industrial insulation

    NASA Astrophysics Data System (ADS)

    Pace, M. O.; Chan, C. C.; Christophorou, L. G.

    1981-10-01

    Gas dielectrics for insulating power apparatus, e.g., gas insulated transmission lines (GITL), were evaluated. Particular attention was given to mixtures using large proportions of an electron moderating gas (viz., N2, CHF3, or 1,1,1-C2H3F3) and smaller quantities of two electron attaching gases: SF6 and one fluorocarbon (e.g., c-C4F8). The proportions were sought at which the three gases function best as a team, moderating free electrons from higher to lower energies and there attaching them. Small amounts of the electron attaching additives can drastically raise the dielectric strength of the moderator. Certain combinations of SF6 and fluorocarbons do not produce the undesirable spark by products associated with either SF6 or fluorocarbons alone and also show improved negative polarity impulse breakdown characteristics over pure SF6. Small scale breakdown measurements were made of various ternary mixtures in the GITL geometry. It was found that nitrogen moderates electrons to extremely low energies, where SF6 attaches; the dipolar gases moderate to somewhat higher energies, where some fluorocarbons attach best.

  10. New projects developed by COMOTI in gas industry

    NASA Astrophysics Data System (ADS)

    Nitulescu, Marian; Silivestru, Valentin; Toma, Niculae; Slujitoru, Cristian; Petrescu, Valentin; Leahu, Mihai; Oniga, Ciprian; Ulici, Gheorghe

    2015-08-01

    The paper aims to present two new projects developed by the Romanian Research and Development Institute for Gas Turbines (COMOTI) in partnership with City University of London and GHH-Rand Germany, in the field of screw compressors/expanders. COMOTI passed, in recent years, from being a GHH-Rand licensed manufacturer for a range of oil-injected screw compressors, of CU type, to a new phase of range diversification, approaching screw compressors with a maximum discharge pressure of 45 bara. So, in cooperation with City University and GHH-Rand we design, manufacture and test, with air, in COMOTI test bench the new type of screw compressor named CHP 220. Also, the cooperation with GHH-Rand has resulted in the design, manufacture and air testing on the test bench, and then gas testing - in a gas compression station - for an electric generator driven by a screw expander. This paper presents how the tests were carried out, the experimental data and the interpretation of results

  11. 75 FR 75995 - Request for Comments on Helium-3 Use in the Oil and Natural Gas Well Logging Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... for Comments on Helium-3 Use in the Oil and Natural Gas Well Logging Industry AGENCY: Office of Fossil... and gas well logging industry. DATES: Written comments and information are requested on or before 5 p...-3 for use by the well logging industry in Fiscal Year (FY) 2011 and for projecting the FY...

  12. The Relationship Between Oil and Gas Industry Investment in Alternative Energy and Corporate Social Responsibility

    NASA Astrophysics Data System (ADS)

    Konyushikhin, Maxim

    The U.S. Energy Information Administration forecasted energy consumption in the United States to increase approximately 19% between 2006 and 2030, or about 0.7% annually. The research problem addressed in this study was that the oil and gas industry's interest in alternative energy is contrary to its current business objectives and profit goals. The purpose of the quantitative study was to explore the relationship between oil and gas industry investments in alternative energy and corporate social responsibilities. Research questions addressed the relationship between alternative energy investment and corporate social responsibility, the role of oil and gas companies in alternative energy investment, and why these companies chose to invest in alternative energy sources. Systems theory was the conceptual framework, and data were collected from a sample of 25 companies drawn from the 28,000 companies in the oil and gas industry from 2004 to 2009. Multiple regression and correlation analysis were used to answer the research questions and test hypotheses using corporate financial data and company profiles related to alternative energy investment and corporate social responsibility in terms of oil and gas industry financial support of programs that serve the greater social good. Results indicated significant relationships between alternative energy investment and corporate social responsibility. With an increasing global population with energy requirements in excess of what is available using traditional means, the industry should increase investment in alternative sources. The research results may promote positive social change by increasing public awareness regarding the degree to which oil and gas companies invest in developing alternative energy sources, which might, in turn, inspire public pressure on companies in the oil and gas industry to pursue use of alternative energy.

  13. Open access and transition costs: Will the electric industry transition track the natural gas industry restructuring?

    SciTech Connect

    Santa, D.F. Jr.; Sikora, C.S.

    1994-12-31

    The Energy Policy Act of 1992 (EPAct) marked the first comprehensive energy policy legislation enacted in the United States in over a decade. Title VII of the EPAct amended the Public Utility Holding Company Act of 1935 (PUHCA) and the Federal Power Act (FPA), two New Deal era laws that constitute much of the statutory framework for federal regulation of the electric power industry. These amendments have been hailed as {open_quotes}two notable revisions to previous law that will eventually reshape the electric power business in North America.{close_quotes} While competitive forces already were taking root in the electric power industry prior to the enactment of the EPAct, the new law has been a catalyst for change in the industry and its regulatory environment. Even the EPAct`s authors have been surprised by the pace of change that has occurred in the two years following the statute`s enactment.

  14. Structural and technological changes of greenhouse gas emissions during the transition period in Polish industry

    NASA Astrophysics Data System (ADS)

    Pasierb, Slawomir; Niedziela, Karol; Wojtulewicz, Jerzy

    1996-01-01

    We analyzed the patterns of energy use and greenhouse gas (GHG) emissions in Polish industry arising during the transition from a centrally planned economy to a market economy. A method of analyzing industry energy use and GHG emissions is discussed. Using this method, the impact of changes in industrial production value, the share of specific industry branches in the total industrial production, energy intensity, and the mix of the energy carriers in the 1989 1993 period has been analyzed. The last year of the analyzed period shows favorable trends in efficiency and signs of production structure shift to a less energy-intensive one. Economic reform implemented after 1989, which released energy carriers' prices from government control, had important effects on the industrial sector. Energy efficiency and emission intensity trends of 1992 1994 were favorable; if they continue, production will return to 1989 levels with much lower energy consumption and significantly decreased GHG emissions.

  15. Occupational exposures in the oil and gas extraction industry: State of the science and research recommendations.

    PubMed

    Witter, Roxana Z; Tenney, Liliana; Clark, Suzanne; Newman, Lee S

    2014-07-01

    The oil and gas extraction industry is rapidly growing due to horizontal drilling and high volume hydraulic fracturing (HVHF). This growth has provided new jobs and economic stimulus. The industry occupational fatality rate is 2.5 times higher than the construction industry and 7 times higher than general industry; however injury rates are lower than the construction industry, suggesting injuries are not being reported. Some workers are exposed to crystalline silica at hazardous levels, above occupational health standards. Other hazards (particulate, benzene, noise, radiation) exist. In this article, we review occupational fatality and injury rate data; discuss research looking at root causes of fatal injuries and hazardous exposures; review interventions aimed at improving occupational health and safety; and discuss information gaps and areas of needed research. We also describe Wyoming efforts to improve occupational safety in this industry, as a case example. PMID:24634090

  16. Occupational Exposures in the Oil and Gas Extraction Industry: State of the Science and Research Recommendations

    PubMed Central

    Witter, Roxana Z.; Tenney, Liliana; Clark, Suzanne; Newman, Lee S.

    2015-01-01

    The oil and gas extraction industry is rapidly growing due to horizontal drilling and high volume hydraulic fracturing (HVHF). This growth has provided new jobs and economic stimulus. The industry occupational fatality rate is 2.5 times higher than the construction industry and 7 times higher than general industry; however injury rates are lower than the construction industry, suggesting injuries are not being reported. Some workers are exposed to crystalline silica at hazardous levels, above occupational health standards. Other hazards (particulate, benzene, noise, radiation) exist. In this article, we review occupational fatality and injury rate data; discuss research looking at root causes of fatal injuries and hazardous exposures; review interventions aimed at improving occupational health and safety; and discuss information gaps and areas of needed research. We also describe Wyoming efforts to improve occupational safety in this industry, as a case example. PMID:24634090

  17. Mineral-wool industry: opportunities for natural gas technologies. Topical report, January-July 1987

    SciTech Connect

    Not Available

    1988-05-01

    To quantify the opportunities for natural gas and identify technological advances needed to capture such opportunities, the mineral-wool industry was analyzed with respect to the principal companies, their capabilities, and markets. The mineral-wool industry is stable with a slightly declining market. Of its market segments, only commercial acoustic insulation (which is currently dominant) is likely to be affected by growth in the next ten years. The principal process is based on treatment of blast-furnace slags in a cupola furnace using coke as the fuel and reducing agent. Expanded use of gas, as a substitute for coke, would eliminate environmental problems and expand the latitude of suitable raw materials. The study provides insights into the mineral-wool industry and identifies factors that may constitute bases for future usage of natural gas.

  18. First Operating Results of a Dynamic Gas Bearing Turbine in AN Industrial Hydrogen Liquefier

    NASA Astrophysics Data System (ADS)

    Bischoff, S.; Decker, L.

    2010-04-01

    Hydrogen has been brought into focus of industry and public since fossil fuels are depleting and costs are increasing dramatically. Beside these issues new high-tech processes in the industry are in need for hydrogen at ultra pure quality. To achieve these requirements and for efficient transportation, hydrogen is liquefied in industrial plants. Linde Gas has commissioned a new 5.5 TPD Hydrogen liquefier in Leuna, Germany, which has been engineered and supplied by Linde Kryotechnik. One of the four expansion turbines installed in the liquefaction process is equipped with dynamic gas bearings. Several design features and operational characteristics of this application will be discussed. The presentation will include results of efficiency and operational reliability that have been determined from performance tests. The advantages of the Linde dynamic gas bearing turbine for future use in hydrogen liquefaction plants will be shown.

  19. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    SciTech Connect

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  20. FIRST OPERATING RESULTS OF A DYNAMIC GAS BEARING TURBINE IN AN INDUSTRIAL HYDROGEN LIQUEFIER

    SciTech Connect

    Bischoff, S.; Decker, L.

    2010-04-09

    Hydrogen has been brought into focus of industry and public since fossil fuels are depleting and costs are increasing dramatically. Beside these issues new high-tech processes in the industry are in need for hydrogen at ultra pure quality. To achieve these requirements and for efficient transportation, hydrogen is liquefied in industrial plants. Linde Gas has commissioned a new 5.5 TPD Hydrogen liquefier in Leuna, Germany, which has been engineered and supplied by Linde Kryotechnik. One of the four expansion turbines installed in the liquefaction process is equipped with dynamic gas bearings. Several design features and operational characteristics of this application will be discussed. The presentation will include results of efficiency and operational reliability that have been determined from performance tests. The advantages of the Linde dynamic gas bearing turbine for future use in hydrogen liquefaction plants will be shown.

  1. A biological process effective for the conversion of CO-containing industrial waste gas to acetate.

    PubMed

    Kim, Tae Wan; Bae, Seung Seob; Lee, Jin Woo; Lee, Sung-Mok; Lee, Jung-Hyun; Lee, Hyun Sook; Kang, Sung Gyun

    2016-07-01

    Acetogens have often been observed to be inhibited by CO above an inhibition threshold concentration. In this study, a two-stage culture consisting of carboxydotrophic archaea and homoacetogenic bacteria is found to be effective in converting industrial waste gas derived from a steel mill process. In the first stage, Thermococcus onnurineus could grow on the Linz-Donawitz converter gas (LDG) containing ca. 56% CO as a sole energy source, converting the CO into H2 and CO2. Then, in the second stage, Thermoanaerobacter kivui could grow on the off-gas from the first stage culture, consuming the H2 and CO in the off-gas completely and producing acetate as a main product. T. kivui alone could not grow on the LDG gas. This work represents the first demonstration of acetate production using steel mill waste gas by a two-stage culture of carboxydotrophic hydrogenogenic microbes and homoacetogenic bacteria. PMID:27106591

  2. Natural gas from seaweed: is near-term R and D funding by the US gas industry warranted

    SciTech Connect

    Gopalakrishnan, C.

    1985-10-01

    This paper is the result of a study of critical factors the Gas Research Institute needed to consider in deciding whether to continue R and D funding of a Marine Biomass Project (MBP). The mission of this project is to determine the commercial feasibility of large marine biomass farms for methane conversion and to develop such farms if they prove viable. The paper develops a macroanalytic framework for R and D decision making in an innovative but high-cost and high-risk method of natural gas production. It identifies and analyzes principal factors having significant bearing on the US natural gas industry and against this background examines implications for R and D funding of the MBP. The study is based on an extensive review of secondary data sources on the economics and technology of natural gas production supplemented by personal discussions with a number of experts. This paper suggests that decisions on near-term R and D funding of the MBP should be based on careful study of the current, continuing, and projected developments in the US natural gas industry as a whole rather than on narrow and short-term considerations. 16 references, 6 tables.

  3. Information highway and the gas industry: A threat or opportunity. Topical report, March 1995

    SciTech Connect

    Davis, K.W.

    1995-03-01

    This topical report discusses the likely infrastructure and services of the information highway, or I-Way, and examines I-Way activities already being undertaken by major players in the communications and energy industries. The report outlines the threats and opportunities to gas utilities that are posed by the development of a national information infrastructure. Research was conducted using primary and secondary sources, on-line databases, and documentary research. Competitive factors are analyzed and innovative technology trials are examined both theoretically and through the use of case studies. Specific competitive threats and business opportunities for the gas industry are discussed.

  4. Advanced coal-fueled industrial cogeneration gas turbine system

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  5. Gas househeating survey: 1982. 35th annual survey gas utility industry US

    SciTech Connect

    German, M.I.; Itteilag, R.L.; Paule, J.; Schafer, J.C.

    1983-01-01

    The results of the 35th Annual Gas Househeating Survey conducted by the American Gas Association using data collected for 1982, as well as projected data for 1983, provide a comprehensive portrait of the residential gas market by state and region, including customers, fuel prices, anticipated inventory additions from new homes and conversions, and existing requirements on new customer hook-ups. A total of 161 gas utility companies, serving 89% of the nation's residential gas customers responded to this year's survey. The information provided by these utilities was expanded to obtain the state and national totals. Individual company data are listed by region and state in Appendices 1 and 2. Some tabular data may not add to totals due to rounding. 1 figure, 9 tables.

  6. Advanced ceramic coating development for industrial/utility gas turbines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Stetson, A. R.

    1982-01-01

    A program was conducted with the objective of developing advanced thermal barrier coating (TBC) systems. Coating application was by plasma spray. Duplex, triplex and graded coatings were tested. Coating systems incorporated both NiCrAly and CoCrAly bond coats. Four ceramic overlays were tested: ZrO2.82O3; CaO.TiO2; 2CaO.SiO2; and MgO.Al2O3. The best overall results were obtained with a CaO.TiO2 coating applied to a NiCrAly bond coat. This coating was less sensitive than the ZrO2.8Y2O3 coating to process variables and part geometry. Testing with fuels contaminated with compounds containing sulfur, phosphorus and alkali metals showed the zirconia coatings were destabilized. The calcium titanate coatings were not affected by these contaminants. However, when fuels were used containing 50 ppm of vanadium and 150 ppm of magnesium, heavy deposits were formed on the test specimens and combustor components that required frequent cleaning of the test rig. During the program Mars engine first-stage turbine blades were coated and installed for an engine cyclic endurance run with the zirconia, calcium titanate, and calcium silicate coatings. Heavy spalling developed with the calcium silicate system. The zirconia and calcium titanate systems survived the full test duration. It was concluded that these two TBC's showed potential for application in gas turbines.

  7. Vulnerability of industrial natural-gas markets to electricity and coal: a context for R and D planning. Working paper

    SciTech Connect

    Lerner, M.O.; Kothari, V.S.; Salama, S.Y.

    1982-11-01

    Current trends in electric- and coal-technology developments and the outlook for natural-gas prices indicate the possibility of strong competition and possible natural-gas market-share losses in the industrial sector. The report develops an initial classification of industrial energy-consuming processes and estimates the extent to which future natural-gas consumption in each class is vulnerable to competition from electricity and coal. The discussion also addresses reasons why specific gas markets are considered vulnerable.

  8. Competitive position of natural gas: industrial baking. Topical report, December 1986-January 1988

    SciTech Connect

    Minsker, B.S.; Salama, S.Y.

    1988-01-01

    To quantify the competitive position of natural gas in industrial baking, market profiles were developed to define current technologies (single lap, tunnel, and Lanham ovens are predominant) and to characterize the applications and use of each technology in industrial baking. Important cost and performance parameters were identified and validated through interviews with industry representatives. Two areas of research that could improve technologies' effectiveness are advanced burner controls activated based on oven load that could reduce product loss, the largest coast associated with the oven, and cogeneration, which could penetrate the baking market if the high capital costs associated with existing equipment could be reduced.

  9. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  10. Energy and cost total cost management discussion: The global gas industry

    SciTech Connect

    Batten, R.M.

    1995-09-01

    Gas has emerged as one of the most desirable fuels for a wide range of applications that previously have been supplied by oil, coal, or nuclear energy. Compared to these, it is environmentally clean and burns at efficiencies far in excess of competitive fuels. The penetration of gas as the fuel of choice in most parts of the world is still modest. This is particularly true in newly-developed countries that are engaged in rapid industrialization and where rates of growth in the gross domestic products are two or three times greater than in the Organization for Economic Cooperation and Development (OECD) countries. I will not attempt here to survey the world gas scene comprehensively. I will, however, attempt to focus on some aspects of the industry that could be the trigger points for global development. These triggers are occurring all along the gas chain, by which I mean the entire process of bringing gas to the customer from discovery through delivery. The chain includes exploration and production, power generation, transmission, and distribution. I describe an industry that is on the verge of truly global status, which is fast overcoming the remaining obstacles to transnational trade, and which has unusually exciting long-term prospects. It does have a good way to go before it achieves the maturity of the international oil industry, but in the last few years there has been a tremendous growth of confidence among both investors and users. The global gas industry is certainly developing at a fast pace, and the world can only benefit from the wider availability of this clean, economic, and efficient hydrocarbon.

  11. Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)

    SciTech Connect

    1980-03-01

    This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

  12. Surface characterization of industrial fibers with inverse gas chromatography.

    PubMed

    van Asten, A; van Veenendaal, N; Koster, S

    2000-08-01

    Inverse gas chromatography (IGC) was applied for the determination of the surface characteristics of Tenax carbon fibers and Akzo Nobel Twaron fibers. Furthermore, IGC procedures for the determination of dispersive and acid-base interactions were validated. The data show that too high values for the dispersive component of the surface energy are obtained when the adsorption area occupied by a single adsorbed n-alkane molecule is estimated from parameters of the corresponding liquid. Comparable values are obtained when the Doris-Gray methodology (area per methylene unit) or measured probe areas are employed. For the fibers studied in this work meaningful Gibbs energy values of the acid-base interaction were only obtained with the polarizability approach. When the dispersive interaction of the polar probes with the fiber surface was scaled to the n-alkane interaction via surface tension, the boiling point, or the vapor pressure of the probes often negative acid-base interaction energies were found. From the temperature dependence of the Gibbs energy, the enthalpy of the acid-base interactions of various probes with the carbon and Twaron aramid fibers was determined. However, from these enthalpy values no meaningful acid-base surface parameters could be obtained. Generally, the limited accuracy with which these parameters can be obtained make the usefulness of this procedure questionable. Also the Gibbs energy data of acid-base interaction can provide a qualitative basis to classify the acidity-basicity of the fiber surface. This latter approach requires only a limited data set and is sufficiently rapid to enable the use of IGC as a screening tool for fibers at a production site. For several polar probes significant concentration effects on carbon fibers were observed. At very low probe loadings the interaction with the fiber surface suddenly increases. This effect is caused by the heterogeneity of the interaction energy of the active sites at the surface. A simple

  13. THE USE OF INDUSTRIAL HYGIENE SAMPLERS FOR SOIL-GAS MEASUREMENT

    EPA Science Inventory

    This report describes a field evaluation of a passive-sampling technique for soil-gas surveying. The system uses a sampler, consisting of an industrial hygiene organic vapor monitor inside a metal sampling manifold, buried at a depth of approximately 0.3 meters (1 foot). Samplers...

  14. THE ADIPIC ACID ENHANCED FLUE GAS DESULFURIZATION PROCESS FOR INDUSTRIAL BOILERS. VOLUME 1. FIELD TEST RESULTS

    EPA Science Inventory

    The report gives results of an evaluation of the effect of adding adipic acid on the SO2 removal of a wet limestone flue gas desulfurization (FGD) system on a coal-fired industrial boiler at Rickenbacker Air National Guard Base near Columbus, OH. Emission data were collected in a...

  15. Integration of High-Temperature Gas-Cooled Reactors into Industrial Process Applications

    SciTech Connect

    Lee Nelson

    2011-09-01

    This report is a summary of analyses performed by the NGNP project to determine whether it is technically and economically feasible to integrate high temperature gas cooled reactor (HTGR) technology into industrial processes. To avoid an overly optimistic environmental and economic baseline for comparing nuclear integrated and conventional processes, a conservative approach was used for the assumptions and calculations.

  16. Curbing Air Pollution and Greenhouse Gas Emissions from Industrial Boilers in China

    SciTech Connect

    Shen, Bo; Price, Lynn K; Lu, Hongyou; Liu, Xu; Tsen, Katherine; Xiangyang, Wei; Yunpeng, Zhang; Jian, Guan; Rui, Hou; Junfeng, Zhang; Yuqun, Zhuo; Shumao, Xia; Yafeng, Han; Manzhi, Liu

    2015-10-28

    China’s industrial boiler systems consume 700 million tons of coal annually, accounting for 18% of the nation’s total coal consumption. Together these boiler systems are one of the major sources of China’s greenhouse gas (GHG) emissions, producing approximately 1.3 gigatons (Gt) of carbon dioxide (CO2) annually. These boiler systems are also responsible for 33% and 27% of total soot and sulfur dioxide (SO2) emissions in China, respectively, making a substantial contribution to China’s local environmental degradation. The Chinese government - at both the national and local level - is taking actions to mitigate the significant greenhouse gas (GHG) emissions and air pollution related to the country’s extensive use of coal-fired industrial boilers. The United States and China are pursuing a collaborative effort under the U.S.-China Climate Change Working Group to conduct a comprehensive assessment of China’s coal-fired industrial boilers and to develop an implementation roadmap that will improve industrial boiler efficiency and maximize fuel-switching opportunities. Two Chinese cities – Ningbo and Xi’an – have been selected for the assessment. These cities represent coastal areas with access to liquefied natural gas (LNG) imports and inland regions with access to interprovincial natural gas pipelines, respectively.

  17. Derivatives and Risk Management in the Petroleum, Natural Gas, and Electricity Industries

    EIA Publications

    2002-01-01

    In February 2002 the Secretary of Energy directed the Energy Information Administration (EIA) to prepare a report on the nature and use of derivative contracts in the petroleum, natural gas, and electricity industries. Derivatives are contracts ('financial instruments') that are used to manage risk, especially price risk.

  18. THE ADIPIC ACID ENHANCED FLUE GAS DESULFURIZATION PROCESS FOR INDUSTRIAL BOILERS. VOLUME 2. TECHNICAL ASSESSMENT

    EPA Science Inventory

    The report gives results of an evaluation of an adipic acid enhanced limestone flue gas desulfurization (FGD) system on industrial boilers at Rickenbacker Air National Guard Base. The SO2 removal efficiency with the adipic acid averaged 94.3% over a 30-day period. This represents...

  19. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 14: GLYCOL DEHYDRATORS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  20. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 13: CHEMICAL INJECTION PUMPS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  1. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 6: VENTED & COMBUSTION SOURCE SUMMARY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  2. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 9: UNDERGROUND PIPELINES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  3. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 4: STATISTICAL METHODOLOGY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  4. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 5: ACTIVITY FACTORS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  5. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 11: COMPRESSOR DRIVER EXHAUST

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  6. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 2: TECHNICAL REPORT

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  7. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 8: EQUIPMENT LEAKS

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  8. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 1: EXECUTIVE SUMMARY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  9. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 12: PNEUMATIC DEVICES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  10. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 3: GENERAL METHODOLOGY

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  11. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 7: BLOW AND PURGE ACTIVITIES

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  12. Environmental permitting overview: Prepared for the Memphis Industrial Fuel Gas Demonstration Plant

    SciTech Connect

    Not Available

    1980-07-01

    This overview briefly describes the background of the Industrial Fuel Gas Demonstration Program (IFGDP), locates and describes the plant and its processes, and summarizes the existing site environment, the activities required for construction and the expected environmental impacts of the project. The IFGDP will convert 3158 tons per day of high-sulfur eastern bituminous coal into 171 million standard cubic feet (SCF) of industrial fuel gas (IFG) with a heating value of 300 +- 30 Btu per SCF. Most of this gas (approximately 90 percent) will be distributed directly to industrial customers within the Memphis area. The remaining gas will be upgraded to the approximate heating value of natural gas (950 Btu per SCF). This upgraded gas, called subsitute natural gas (SNG), will flow into the existing MLGW gas system. The IFGDP will be located on a peninsula of land near the confluence of the Mississippi River and Lake McKellar within the limits of the City of Memphis, Tennessee. Impacts from construction of the IFGDP will be limited to the displacement of wildlife from the site and pipeline routes, slight increases (less than 9 inches) in maximum flood heights along existing nearby flood protection structures on the south shore of Lake McKellar, temporary disturbances of aquatic species and water quality during dredging operations, removal of vegetation from the site (including wetland species), potential increases in air quality particulate concentrations due to fugitive emissions and an increase in local employment and income. Operational impacts from the IFGDP are expected to occur mainly in the areas of air quality, water quality, and socio-economics. (DMC)

  13. Trends in high performance compressors for petrochemical and natural gas industry in China

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyang; Li, Liansheng

    2015-08-01

    Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.

  14. Human factors engineering in oil and gas--a review of industry guidance.

    PubMed

    Robb, Martin; Miller, Gerald

    2012-01-01

    Oil and gas exploration and production activities are carried out in hazardous environments in many parts of the world. Recent events in the Gulf of Mexico highlight those risks and underline the importance of considering human factors during facility design. Ergonomic factors such as machinery design, facility and accommodation layout and the organization of work activities have been systematically considered over the past twenty years on a limited number of offshore facility design projects to a) minimize the occupational risks to personnel, b) support operations and maintenance tasks and c) improve personnel wellbeing. During this period, several regulators and industry bodies such as the American Bureau of Shipping (ABS), the American Society of Testing and Materials (ASTM), the UK's Health and Safety Executive (HSE), Oil and Gas Producers (OGP), and Norway's Petroleum Safety Authority (PSA) have developed specific HFE design standards and guidance documents for the application of Human Factors Engineering (HFE) to the design and operation of Oil and Gas projects. However, despite the existence of these guidance and recommended design practise documents, and documented proof of their value in enhancing crew safety and efficiency, HFE is still not well understood across the industry and application across projects is inconsistent. This paper summarizes the key Oil and Gas industry bodies' HFE guidance documents, identifies recurring themes and current trends in the use of these standards, provides examples of where and how these HFE standards have been used on past major offshore facility design projects, and suggests criteria for selecting the appropriate HFE strategy and tasks for future major oil and gas projects. It also provides a short history of the application of HFE to the offshore industry, beginning with the use of ASTM F 1166 to a major operator's Deepwater Gulf of Mexico facility in 1990 and the application of HFE to diverse world regions. This

  15. Fundamentals of gas flow in shale; What the unconventional reservoir industry can learn from the radioactive waste industry

    NASA Astrophysics Data System (ADS)

    Cuss, Robert; Harrington, Jon; Graham, Caroline

    2013-04-01

    Tight formations, such as shale, have a wide range of potential usage; this includes shale gas exploitation, hydrocarbon sealing, carbon capture & storage and radioactive waste disposal. Considerable research effort has been conducted over the last 20 years on the fundamental controls on gas flow in a range of clay-rich materials at the British Geological Survey (BGS) mainly focused on radioactive waste disposal; including French Callovo-Oxfordian claystone, Belgian Boom Clay, Swiss Opalinus Clay, British Oxford Clay, as well as engineered barrier material such as bentonite and concrete. Recent work has concentrated on the underlying physics governing fluid flow, with evidence of dilatancy controlled advective flow demonstrated in Callovo-Oxfordian claystone. This has resulted in a review of how advective gas flow is dealt with in Performance Assessment and the applicability of numerical codes. Dilatancy flow has been shown in Boom clay using nano-particles and is seen in bentonite by the strong hydro-mechanical coupling displayed at the onset of gas flow. As well as observations made at BGS, dilatancy flow has been shown by other workers on shale (Cuss et al., 2012; Angeli et al. 2009). As well as experimental studies using cores of intact material, fractured material has been investigated in bespoke shear apparatus. Experimental results have shown that the transmission of gas by fractures is highly localised, dependent on normal stress, varies with shear, is strongly linked with stress history, is highly temporal in nature, and shows a clear correlation with fracture angle. Several orders of magnitude variation in fracture transmissivity is seen during individual tests. Flow experiments have been conducted using gas and water, showing remarkably different behaviour. The radioactive waste industry has also noted a number of important features related to sample preservation. Differences in gas entry pressure have been shown across many laboratories and these may be

  16. Supply chain management and economic valuation of real options in the natural gas and liquefied natural gas industry

    NASA Astrophysics Data System (ADS)

    Wang, Mulan Xiaofeng

    My dissertation concentrates on several aspects of supply chain management and economic valuation of real options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportations, ocean LNG shipping logistics, and downstream storage. Chapter 1 briefly introduces the natural gas and LNG industries, and the topics studied in this thesis. Chapter 2 studies how to value U.S. natural gas pipeline network transport contracts as real options. It is common for natural gas shippers to value and manage contracts by simple adaptations of financial spread option formulas that do not fully account for the implications of the capacity limits and the network structure that distinguish these contracts. In contrast, we show that these operational features can be fully captured and integrated with financial considerations in a fairly easy and managerially significant manner by a model that combines linear programming and simulation. We derive pathwise estimators for the so called deltas and structurally characterize them. We interpret them in a novel fashion as discounted expectations, under a specific weighing distribution, of the amounts of natural gas to be procured/marketed when optimally using pipeline capacity. Based on the actual prices of traded natural gas futures and basis swaps, we show that an enhanced version of the common approach employed in practice can significantly underestimate the true value of natural gas pipeline network capacity. Our model also exhibits promising financial (delta) hedging performance. Thus, this model emerges as an easy to use and useful tool that natural gas shippers can employ to support their valuation and delta hedging decisions concerning natural gas pipeline network transport capacity contracts. Moreover, the insights that follow from our data analysis have broader significance and implications in terms of the management of real options beyond our specific application. Motivated by current developments

  17. SEASAT demonstration experiments with the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.; Balon, J. E.

    1979-01-01

    Despite its failure, SEASAT-1 acquired a reasonable volume of data that can be used by industrial participants on a non-real-time basis to prove the concept of microwave sensing of the world's oceans from a satellite platform. The amended version of 8 experimental plans are presented, along with a description of the satellite, its instruments, and the data available. Case studies are summarized for the following experiments: (1) Beaufort Sea oil, gas, and Arctic operations; (2) Labrador Sea oil, gas, and sea ice; (3) Gulf of Mexico pipelines; (4) U.S. East Coast offshore oil and gas; (5) worldwide offshore drilling and production operations; (6) Equatorial East Pacific Ocean mining; (7) Bering Sea ice project; and (8) North Sea oil and gas.

  18. Rolls-Royce`s Trent industrial gas turbine moves to market

    SciTech Connect

    Wadman, B.

    1997-01-01

    The Rolls-Royce Trent industrial gas turbine, derived from the aircraft Trent 800 engine, is making significant progress in initial unit production and application at Rolls-Royce Gas Turbine Engines Canada Inc., located in Montreal. This paper discusses the design, development and application of this very high output aeroderivative gas turbine. The combustor section for the Trent has been designed for dry low-emission (DLE) performance, and the combustion system is designed primarily for natural gas, but dual-fuel versions are also offered with water-injection for liquid fuel emission control. There are eight individual combustors, the design of which is based on a premixed, lean burn, series staged concept developed by Rolls-Royce to simultaneously reduce both NO{sub x} and CO. 4 figs.

  19. The shale gas revolution from the viewpoint of a former industry insider.

    PubMed

    Bamberger, Michelle; Oswald, Robert

    2015-02-01

    This is an interview conducted with an oil and gas worker who was employed in the industry from 1993 to 2012. He requested that his name not be used. From 2008 to 2012, he drilled wells for a major operator in Bradford County, Pennsylvania. Bradford County is the center of the Marcellus shale gas boom in Northeastern Pennsylvania. In 2012, he formed a consulting business to assist clients who need information on the details of gas and oil drilling operations. In this interview, the worker describes the benefits and difficulties of the hard work involved in drilling unconventional gas wells in Pennsylvania. In particular, he outlines the safety procedures that were in place and how they sometimes failed, leading to workplace injuries. He provides a compelling view of the trade-offs between the economic opportunities of working on a rig and the dangers and stresses of working long hours under hazardous conditions. PMID:25082393

  20. Microbiologically influenced corrosion in the natural gas industry. Annual report, January 1991-December 1991. Executive summary

    SciTech Connect

    Pope, D.H.

    1991-12-01

    The report presents results of 1991 work in the Gas Research Institute's program on microbiologically influenced corrosion (MIC) in the gas industry. A mechanistic model for MIC was developed which incorporated metallurgical, biological, chemical, andoperational factors. Supporting data from laboratory and field studies can be used with the MIC model to make informed choices regarding mitigation measures. Studies on coatings demonstrated the susceptibility of some coatings to accelerated disbondment due to MIC bacteria as well as cathodic disbondment at higher CP levels. Field and laboratory tests demonstrated that CP of sufficient potential, applied immediately and maintained throughout the test, combined with particular local enviornmental conditions protects against MIC. Targeted chemical biocide treatments (only at sites most likely to have internal MIC) performed in operating gas industry facilities resulted in more effective control at lower cost and reduced environmental and personnel exposure to toxic chemicals. A field guide for internal MIC/MIC mitigation, an instructional video tape on MIC in the gas industry, and a new field kit for the measurement of chemical species important to assessment of MIC and CP were developed.

  1. Solid waste generation from oil and gas industries in United Arab Emirates.

    PubMed

    Elshorbagy, Walid; Alkamali, Abdulqader

    2005-04-11

    Solid wastes generated from oil and gas industrial activities are very diverse in their characteristics, large in their amounts and many of which are hazardous in nature. Thus, quantifying and characterizing the generated amounts in association with their types, classes, sources, industrial activities, and their chemical and biological characteristics is an obvious mandate when evaluating the possible management practices. This paper discusses the types, amounts, generation units, and the factors related to solid waste generation from a major oil and gas field in the United Arab Emirates (Asab Field). The generated amounts are calculated based on a 1-year data collection survey and using a database software specially developed and customized for the current study. The average annual amount of total solid waste generated in the studied field is estimated at 4061 t. Such amount is found equivalent to 650 kg/capita, 0.37 kg/barrel oil, and 1.6 kg/m3 of extracted gas. The average annual amount of hazardous solid waste is estimated at 55 t and most of which (73%) is found to be generated from gas extraction-related activities. The majority of other industrial non-hazardous solid waste is generated from oil production-related activities (41%), The present analysis does also provide the estimated generation amounts per waste type and class, amounts of combustible, recyclable, and compostable wastes, and the amounts dumped in uncontrolled way as well as disposed into special hazardous landfill facilities. The results should help the decision makers in evaluating the best alternatives available to manage the solid wastes generated from the oil and gas industries. PMID:15811669

  2. Human resource needs and development for the gas industry of the future

    SciTech Connect

    Klass, D.L.

    1991-01-01

    The natural gas industry will confront many challenges in the 1990s and beyond, one of which is the development of human resources to meet future needs. An efficient, trained work force in this era of environmental concern, high technology, and alternative fuels is essential for the industry to continue to meet the competition and to safely deliver our product and service to all customers. Unfortunately, during this period there will be an increasing shortfall of technical personnel to replace those lost to attrition and a steady decline in the availability of new employees who are able to read, write, and perform simple math. Technological and government developments that will impact the industry and the skill levels needed by the industry employees are reviewed. In-house and external training of professional and nonprofessional personnel and the benefits and disadvantages of selected advanced training methods are discussed. Recommendations are presented that can help improve the training of gas industry employees to meet future needs. 22 refs.

  3. An electromagnetic cavity sensor for multiphase measurement in the oil and gas industry

    NASA Astrophysics Data System (ADS)

    Al-Hajeri, S.; Wylie, S. R.; Stuart, R. A.; Al-Shamma'a, A. I.

    2007-07-01

    The oil and gas industry require accurate sensors to monitor fluid flow in pipelines in order to manage wells efficiently. The sensor described in this paper uses the different relative permittivity values for the three phases: oil, gas and water to help determine the fraction of each phase in the pipeline, by monitoring the resonant frequencies that occur within an electromagnetic cavity. The sensor has been designed to be non-intrusive. This is advantageous, as it will prevent the sensor being damaged by the flow through the pipeline and allow pigging, the technique used for cleaning rust and wax from the inside of the pipeline using blades or brushes.

  4. Current assessment of the potential of dielectric gas mixtures for industrial applications

    NASA Astrophysics Data System (ADS)

    Bouldin, D. W.; James, D. R.; Pace, M. O.; Christophorou, L. G.

    1984-04-01

    The need for more efficient, economical electrical power transmission and distribution has given impetus to the investigation of new insulating gases. Since no single gas meets all of the multiple needs and operating conditions that exist in power apparatus, mixtures were studied with the goal of tailoring the dielectric for a specific application by exploiting the properties of the component gases. Research results on dielectric gas mixtures and assesses the potential of such mixtures for industrial applications are reviewed. The topics considered include electrical breakdown characteristics, physical and chemical properties, and economics.

  5. Membrane Distillation Bioreactor (MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater reclamation.

    PubMed

    Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G

    2015-12-01

    A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed. PMID:25262945

  6. Antitrust Enforcement in the Electricity and Gas Industries: Problems and Solutions for the EU

    SciTech Connect

    Leveque, Francois

    2006-06-15

    Antitrust enforcement in the electricity and gas industries raises specific problems that call for specific solutions. Among the issues: How can the anticompetitive effects of mergers be assessed in a changing regulatory environment? Should long-term agreements in energy purchasing be prohibited? What are the benefits of preventive action such as competition advocacy and market surveillance committees? Should Article 82 (a) of the EC Treaty be used to curb excessive pricing?. (author)

  7. Water Use by Texas Oil and Gas Industry: A Look towards the Future

    NASA Astrophysics Data System (ADS)

    Nicot, J.; Ritter, S. M.; Hebel, A. K.

    2009-12-01

    The Barnett Shale gas play, located in North Texas, has seen a relatively quick growth in the past decade with the development of new “frac” (aka, fracture stimulation) technologies needed to create pathways to produce gas from the very low permeability shales. This technology uses a large amount of fresh water (millions of gallons in a day or two on average) to develop a gas well. Now operators are taking aim at other shale gas plays in Texas including the Haynesville, Woodford, and Pearsall-Eagle Ford shales and at other tight formation such as the Bossier Sand. These promising gas plays are likely to be developed at an even steeper growth rate. There are currently over 12,000 wells producing gas from the Barnett Shale with many more likely to be drilled in the next couple of decades as the play expands out of its core area. Despite the recent gas price slump, thousands more wells may be drilled across the state to access the gas resource in the next few years. As an example, a typical vertical and horizontal well completion in the Barnett Shale consumes approximately 1.2 and 3.0 to 3.5 millions gallons of fresh water, respectively. This could raise some concerns among local communities and other surface water and groundwater stakeholders. We present a preliminary analysis of future water use by the Texas oil and gas industry and compare it to projections of total water use, including municipal use and irrigation. Maps showing large increase in total number of well completions in the Barnett Shale (black dots) from 1998 to 2008. Operators avoided the DFW metro area (center right on the map) until recently. Also shown are the structural limits of the Barnett Shale on its eastern boundaries.

  8. Managing produced water from coal seam gas projects: implications for an emerging industry in Australia.

    PubMed

    Davies, Peter J; Gore, Damian B; Khan, Stuart J

    2015-07-01

    This paper reviews the environmental problems, impacts and risks associated with the generation and disposal of produced water by the emerging coal seam gas (CSG) industry and how it may be relevant to Australia and similar physical settings. With only limited independent research on the potential environmental impacts of produced water, is it necessary for industry and government policy makers and regulators to draw upon the experiences of related endeavours such as mining and groundwater extraction accepting that the conclusions may not always be directly transferrable. CSG is widely touted in Australia as having the potential to provide significant economic and energy security benefits, yet the environmental and health policies and the planning and regulatory setting are yet to mature and are continuing to evolve amidst ongoing social and environmental concerns and political indecision. In this review, produced water has been defined as water that is brought to the land surface during the process of recovering methane gas from coal seams and includes water sourced from CSG wells as well as flowback water associated with drilling, hydraulic fracturing and gas extraction. A brief overview of produced water generation, its characteristics and environmental issues is provided. A review of past lessons and identification of potential risks, including disposal options, is included to assist in planning and management of this industry. PMID:25783163

  9. Spontaneous Anti-Stokes Raman Probe for Gas Temperature Measurements in Industrial Furnaces

    NASA Astrophysics Data System (ADS)

    Zikratov, George; Yueh, Fang-Yu; Singh, Jagdish P.; Norton, O. Perry; Kumar, R. Arun; Cook, Robert L.

    1999-03-01

    A compact, pulsed Nd:YAG laser-based instrument has been built to measure in situ absolute gas temperatures in large industrial furnaces by use of spontaneous anti-Stokes Raman scattering. The backscattering configuration was used to simplify the optics alignment and increase signal-to-noise ratios. Gated signal detection significantly reduced the background emission that is found in combustion environments. The anti-Stokes instead of the Stokes component was used to eliminate contributions to spectra from cold atmospheric nitrogen. The system was evaluated in a methane air flame and in a bench-top oven, and the technique was found to be a reliable tool for nonintrusive absolute temperature measurements with relatively clean gas streams. A water-cooled insertion probe was integrated with the Raman system for measurement of the temperature profiles inside an industrial furnace. Gas temperatures near 1500 1800 K at atmospheric pressure in an industrial furnace were inferred by fitting calculated profiles to experimental spectra with a standard deviation of less than 1% for averaging times of 200 s. The temperatures inferred from Raman spectra are in good agreement with data recorded with a thermocouple probe.

  10. Hybrid neural prediction and optimized adjustment for coke oven gas system in steel industry.

    PubMed

    Zhao, Jun; Liu, Quanli; Wang, Wei; Pedrycz, Witold; Cong, Liqun

    2012-03-01

    An energy system is the one of most important parts of the steel industry, and its reasonable operation exhibits a critical impact on manufacturing cost, energy security, and natural environment. With respect to the operation optimization problem for coke oven gas, a two-phase data-driven based forecasting and optimized adjusting method is proposed, where a Gaussian process-based echo states network is established to predict the gas real-time flow and the gasholder level in the prediction phase. Then, using the predicted gas flow and gasholder level, we develop a certain heuristic to quantify the user's optimal gas adjustment. The proposed operation measure has been verified to be effective by experimenting with the real-world on-line energy data sets coming from Shanghai Baosteel Corporation, Ltd., China. At present, the scheduling software developed with the proposed model and ensuing algorithms have been applied to the production practice of Baosteel. The application effects indicate that the software system can largely improve the real-time prediction accuracy of the gas units and provide with the optimized gas balance direction for the energy optimization. PMID:24808550

  11. Field testing of a probe to measure fouling in an industrial flue gas stream

    SciTech Connect

    Sohal, M.S.

    1990-11-01

    The US Department of Energy, Office of Industrial Technology sponsors work in the area of measuring and mitigating fouling in heat exchangers. This report describes the design and fabrication of a gas-side fouling measuring device, and its testing in an industrial environment. The report gives details of the probe fabrication, material used, controllers, other instrumentation required for various measurements, and computer system needed for recording the data. The calibration constants for measuring the heat flux with the heat fluxmeter were determined. The report also describes the field test location, the tests performed, the data collected, and the data analysis. The conclusions of the tests performed were summarized. Although fouling deposits on the probe were minimal, the tests proved that the probe is capable of measuring the fouling in a harsh industrial environment. 17 refs., 19 figs., 5 tabs.

  12. Essays on the industrial composition of Texas oil and gas production

    NASA Astrophysics Data System (ADS)

    Peters, Genevieve Lynn

    This dissertation examines the changes in Texas oil and gas production from 1970--1996. Chapter II applies the survivor technique to the 300 largest oil producing firms in Texas for the years 1970--1996. The survivor technique is a powerful method to determine the efficient scale of production in a competitive industry. While previous applications of the survivor technique did not yield conclusive findings, Texas oil production is a competitive industry for which the technique provides clear results. Specifically, the technique shows that firms producing more than 100,000 barrels of oil per day in Texas have higher opportunity costs of production. Chapter III describes the size distribution of firms in Texas oil production. The Pareto distribution is found to correctly describe the size distribution of the 300 largest firms producing oil in Texas from 1970--1996, while the lognormal distribution is conclusively rejected. The k-firm concentration ratio reveals that Texas oil production became relatively less concentrated over this period. A simple relationship between the concentration ratio and the parameters of the Pareto distribution is defined and estimates of the Pareto distribution parameters are used to show that the size distribution of firms did not change significantly over the period 1970--1996. The fourth chapter analyses the impact of the changes in the regulatory environment of the Texas natural gas industry. In 1970, natural gas producers faced a quagmire of regulations governing the sale and price of their gas. Today, natural gas is a commodity traded freely in spot and futures markets. This chapter examines the pattern of production that resulted from this changing regulatory environment by examining the behavior of nine natural gas producing firms in Texas over the period 1970--1996. Each of these firms appeared on the list of the Texas top four natural gas producers at least once over this period. The analysis reveals that the majors have

  13. Novel technology for flame and gas detection in the petrochemical industry

    NASA Astrophysics Data System (ADS)

    Spector, Yechiel; Jacobson, Esther

    1999-01-01

    A reliable and high performance novel method of flame and gas optical spectral analysis was developed to meet the specific flame and gas detection of the petrochemical industry. Petrochemical industries, especially the offshore and unmanned areas in onshore refineries, pose a major safety hazard with respect to potential explosions and fire events. Unwanted fuel spills or fugitive flammable vapor clouds, migrating along congested pipe lines and hot production areas may cause upon ignition significant loss or damage. To help prevents events like the catastrophic fire that destroyed the offshore oil platform Piper Alpha in July 1988, a reliable and fast gas and flame detection system can be used to trigger effective risk management actions. The present paper describes a patented method of Triple Optical Spectral Analysis employed for the detection of various gases in the air according to their unique 'spectral finger print' absorption characteristics of radiation, as well as for analysis of emission and absorption radiation from combustion processes for flame detection purpose. The method has been applied in the development of unique gas and flame monitoring system designed for 'high risk - harsh/extreme weather conditions continuous operation'. These systems have been recently installed on several offshore platforms and oil rigs as well as on 'floating production Storage and Offloading' - FPSO vessels. The systems advantages and limitations as well as several installations and test data are presented. Various atmospheric conditions as well as false alarm stimulus are discussed.

  14. Petroleum industry in Illinois, 1984. Oil and gas developments. Waterflood operations

    SciTech Connect

    Van Den Berg, J.; Treworgy, J.D.; Elyn, J.R.

    1986-01-01

    The report includes statistical information regarding the petroleum industry in Illinois during 1984. Illinois produced 28,873,000 barrels of crude oil in 1984. The value of this crude is estimated to be $830 million. New test holes drilled for oil and gas numbered 2732 - 4.1% more than in 1983. These tests resulted in 1575 oil wells, 21 gas wells, and 1136 dry holes. In addition, 28 former dry holes were reworked or deepened and completed as producers, and 9 former producers were reworked or deepened and completed as producers in new pay zones. In oil and gas exploration and development, including service wells and structure tests, total footage drilled in 1984 was 6,868,485 feet, 5.5% more than in 1983. Ten oil fields, 50 new pay zones in fields, and 51 extensions to fields were discovered in 1984.

  15. Current and future water needs of the shale gas industry in Texas

    NASA Astrophysics Data System (ADS)

    Nicot, J.

    2010-12-01

    The Barnett Shale gas play, located in North Texas, has seen a relatively quick growth in the past decade with the development of new “frac” technologies needed to create pathways to produce gas from the very low permeability shales. More plays such as the Haynesville, Woodford, and Eagle Ford are coming online at a steeper rate than the Barnett did, even including the small dip in activity due to the recent economic slowdown. A typical horizontal well completion consumes over 3 millions gallons of fresh water in a very short time (days). The trend in the industry is to increase the length of laterals with an increased water use. Vertical well completion also typically consumes in excess of 1 million gallons. There are currently over 14,000 completed shale gas wells in the State of Texas and many more will be drilled in the next decades. If tight-gas completions are included, the volume of water used is even larger, raising some concerns among local communities and other groundwater stakeholders. However, the volume remains low on average compared to irrigation demand, although locally it can lead to conflicts. Nevertheless, the industry is improving its water footprint by increased recycling, developing alternative sources of water (brackish, treatment plants) and more efficient additives, and other innovative strategies. This paper presents current shale gas water use in Texas compiled from various sources as well as water use projections for the next decades based on recent data and our understanding of shale gas geology. The map shows the 30,000+ wells frac'ed in the past 5 years in Texas

  16. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report

    SciTech Connect

    Sutton, W.H.

    1997-06-30

    This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

  17. Convergence of natural gas and electricity industries means change, opportunity for producers in the U. S

    SciTech Connect

    Dar, V.K. Jefferson Gas Systems Inc., Arlington, VA )

    1995-03-13

    The accelerating deregulation of natural gas and electricity distribution is the third and most powerful wave of energy deregulation coursing through North America. The first wave (1978--92) provided the impetus for sculpting competitive markets in energy production. The second (1986--95) is now breaking to fashion competitive bulk logistical and wholesale consumption markets through open access on and unbundling of gas pipeline and storage capacity and high voltage transmission capacity. The third wave, the deregulation of gas and electric retail markets through open access and nondiscriminatory, unbundled local gas and electric distribution tariffs, began in the early 1990s. It will gather momentum for the next 5 years and crest at the turn of the century, affecting and molding almost $300 billion/year in retail energy sales. The transformation will have these strategic implications: (1) the convergent evolution of the gas and electric industries; (2) severe margin compression along the energy value chain from wellhead to busbar to the distribution pipes and wires; and (3) the rapid emergency of cyberspace retailing of energy products and services. The paper discusses merchant plants, convergence and producers, capital flows, producer federations, issues of scale, and demand, margins, and value.

  18. Pennsylvania's technologically enhanced, naturally occurring radioactive material experiences and studies of the oil and gas industry.

    PubMed

    Allard, David J

    2015-02-01

    This presentation provides an overview of the Commonwealth of Pennsylvania's experiences and ongoing studies related to technologically enhanced, naturally occurring radioactive material (TENORM) in the oil and gas industry. It has been known for many years that Pennsylvania's geology is unique, with several areas having relatively high levels of natural uranium and thorium. In the 1950s, a few areas of the state were evaluated for commercial uranium production. In the late 1970s, scoping studies of radon in homes prompted the Pennsylvania Department of Environmental Protection (DEP) Bureau of Radiation Protection (BRP) to begin planning for a larger state-wide radon study. The BRP and Oil and Gas Bureau also performed a TENORM study of produced water in the early 1990s for a number of conventional oil and gas wells. More recently, BRP and the Bureau of Solid Waste developed radiation monitoring regulations for all Pennsylvania solid waste disposal facilities. These were implemented in 2001, prompting another evaluation of oil and gas operations and sludge generated from the treatment of conventionally produced water and brine but mainly focused on the disposal of TENORM solid waste in the state's Resource Conservation and Recovery Act Subtitle D landfills. However, since 2008, the increase in volumes of gas well wastewater and levels of Ra observed in the unconventional shale gas well flow-back fracking water has compelled DEP to fully re-examine these oil and gas operations. Specifically, with BRP in the lead, a new TENORM study of oil and gas operations and related wastewater treatment operations has been initiated (), supported by an American National Standards Institute standard on TENORM () and a U.S. Government Accountability Office report on shale resource development and risks (). This study began in early 2013 and will examine the potential public and worker radiation exposure and environmental impact as well as re-evaluate TENORM waste disposal. This

  19. EPA compromises consistency in its coastal oil and gas industry cost-effectiveness analysis

    SciTech Connect

    Veil, J.A.

    1997-08-01

    The US Environmental Protection Agency (EPA) conducts a cost-effectiveness (CE) analysis to estimate the cost of complying with each newly proposed set of industrial effluent limitation guidelines (ELGs). CE is defined as the incremental annualized cost of a pollution control option in an industry per incremental pound equivalent (PE) of pollutant removed annually by that control options. EPA`s guidelines for conducting the CE analysis require that all costs be expressed in 1981 dollars so that comparison to other industries can be done on a consistent basis. In the results of its CE analyses, EPA presents information showing $/PE values for all the industries for which it has done the CE analysis. These examples indicate that EPA is interested in maintaining consistency and comparability. EPA is not legally bound by the results of a CE analysis; however, if the $/PE for a proposed ELG is calculated to be significantly higher than the $/PEs for other comparable ELGs, EPA might reconsider its proposal. EPA`s approach of using an expanded pollutant list and revised weighting factors probably generates a more accurate estimate of the PEs removed for the coastal oil and gas industry, but in doing so, EPA loses the ability to equitably compare this CE analysis to the CE analyses that have been done for other industries. This shortcoming is particularly obvious since the offshore Ce analysis, evaluating a nearly identical waste stream, was completed just two years earlier. Given EPA`s concern over consistency and comparability to other industries, it may be appropriate to modify this approach for the coastal CE analysis. Another alternative that would allow EPA to reflect the newest toxicological information and still preserve consistency and comparability would be to recalculate all earlier CE analyses whenever new weighting factors are developed.

  20. Supply chain management and economic valuation of real options in the natural gas and liquefied natural gas industry

    NASA Astrophysics Data System (ADS)

    Wang, Mulan Xiaofeng

    My dissertation concentrates on several aspects of supply chain management and economic valuation of real options in the natural gas and liquefied natural gas (LNG) industry, including gas pipeline transportations, ocean LNG shipping logistics, and downstream storage. Chapter 1 briefly introduces the natural gas and LNG industries, and the topics studied in this thesis. Chapter 2 studies how to value U.S. natural gas pipeline network transport contracts as real options. It is common for natural gas shippers to value and manage contracts by simple adaptations of financial spread option formulas that do not fully account for the implications of the capacity limits and the network structure that distinguish these contracts. In contrast, we show that these operational features can be fully captured and integrated with financial considerations in a fairly easy and managerially significant manner by a model that combines linear programming and simulation. We derive pathwise estimators for the so called deltas and structurally characterize them. We interpret them in a novel fashion as discounted expectations, under a specific weighing distribution, of the amounts of natural gas to be procured/marketed when optimally using pipeline capacity. Based on the actual prices of traded natural gas futures and basis swaps, we show that an enhanced version of the common approach employed in practice can significantly underestimate the true value of natural gas pipeline network capacity. Our model also exhibits promising financial (delta) hedging performance. Thus, this model emerges as an easy to use and useful tool that natural gas shippers can employ to support their valuation and delta hedging decisions concerning natural gas pipeline network transport capacity contracts. Moreover, the insights that follow from our data analysis have broader significance and implications in terms of the management of real options beyond our specific application. Motivated by current developments

  1. Industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Youwen; Liu, Cheng; Xie, Pinhua; Hartl, Andreas; Chan, Kalok; Tian, Yuan; Wang, Wei; Qin, Min; Liu, Jianguo; Liu, Wenqing

    2016-03-01

    SO2 variability over a large concentration range and interferences from other gases have been major limitations in industrial SO2 emission monitoring. This study demonstrates accurate industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm. The proposed analyzer features a large dynamic measurement range and correction of interferences from other coexisting infrared absorbers such as NO, CO, CO2, NO2, CH4, HC, N2O, and H2O. The multichannel gas analyzer measures 11 different wavelength channels simultaneously to correct several major problems of an infrared gas analyzer including system drift, conflict of sensitivity, interferences among different infrared absorbers, and limitation of measurement range. The optimized algorithm uses a third polynomial instead of a constant factor to quantify gas-to-gas interference. Measurement results show good performance in the linear and nonlinear ranges, thereby solving the problem that the conventional interference correction is restricted by the linearity of the intended and interfering channels. The results imply that the measurement range of the developed multichannel analyzer can be extended to the nonlinear absorption region. The measurement range and accuracy are evaluated through experimental laboratory calibration. Excellent agreement was achieved, with a Pearson correlation coefficient (r2) of 0.99977 with a measurement range from approximately 5 to 10 000 ppmv and a measurement error of less than 2 %. The instrument was also deployed for field measurement. Emissions from three different factories were measured. The emissions of these factories have been characterized by different coexisting infrared absorbers, covering a wide range of concentration levels. We compared our measurements with commercial SO2 analyzers. Overall, good agreement was achieved.

  2. Considerations concerning the physical heat-recovery of raw coke-oven gas in an industrial pilot-station

    SciTech Connect

    Paunescu, L.; Gaba, A.

    1998-12-31

    The paper presents the conception and realization obtained by the research team at the Metallurgical Researches Institute in an industrial pilot-station on the field of the physical heat-recovery of raw coke-oven gas.

  3. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan

    SciTech Connect

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-10-15

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy

  4. Use of optimization modeling to evaluate industrial waste reduction options: Application to a sour gas plant

    SciTech Connect

    Roberge, H.D. ); Sikora, R.P. ); Baetz, B.W. . Dept. of Civil Engineering)

    1994-01-01

    This note reports on a study of waste reduction options for the upstream oil and gas industry and involves the application of a waste reduction optimization model to a generic sour gas plant. The waste reduction optimization model is meant as an aid for decision-making relating to the implementation of waste reduction options. The generic facility was developed from process knowledge provided by industry members of a project steering committee, as well as waste management information from industry manuals and represents a facility of average capacity and typical configuration. Several waste minimization options were modeled for selected waste streams. The selected streams were chosen based upon waste flows and disposal costs and their potential for waste reduction. The results of the modeling for the generic sour gas plant have shown that a set of cost-effective waste reduction options exist, there is significant potential for reducing the total quantity of waste to be managed and disposed of, and that implementation of the options would lead to considerable cost savings. The value and usefulness of the modeling approach lie not only in the generated results, but also in the fact that to construct the model, relevant waste flows and every possible manner that these waste flows can be minimized or processed are systematically identified. Once modeled, the parameters can be readily manipulated to determine various possible waste management strategies. To effectively use the modeling approach, the waste reduction team should have knowledge of the plant processes, existing waste management practices and costs, information on potential waste reduction options and technologies, as well as experience in mathematical modeling and analysis.

  5. Investigating the Connections between Oil and Gas Industry Affiliation and Climate Change Concerns

    NASA Astrophysics Data System (ADS)

    Schrader, S. M.; Bunnell, D.; Danielson, C.; Borglum, S.

    2012-12-01

    In addition to the research on scientific aspects of climate change, significant work has also been done on the perception of climate change among various sectors of the population. This is an important area of research as in many cases the science policy of a country is a function of the popular sentiment. One area of interest is the relationship between education, specifically in related areas such as earth sciences and engineering, to one's views on climate change. While research has shown that there is a correlation between higher education and an acceptance of human caused climate change, this work looks into the question more specifically. The question asked here is: given a group of people with education and experience in the earth sciences, does the area of employment affect how they view the issue? In other words, does an engineer or geoscientist working in the oil and gas industry look at the data relating to climate change in the same way an equivalently educated engineer or geoscientist working in another field does? An understanding of whether or not employment in the oil and gas industry has a similar effect on views of climate change as political or religious ideologies may help in fostering communication between disciplines and working together for solutions. In order to look at this question, a survey is being conducted of members in the petroleum engineering community. The survey is designed along the lines of similar surveys to measure the respondents understanding of, concern with, and beliefs about climate change. It also includes other correlating factors such as political and religious views. A second group of engineers in fields that typically place them outside of the oil and gas industry are being surveyed as a control group. The results will determine whether individuals with similar educational backgrounds look at the data connected with climate change differently based on the field in which they work, and if so, are there other

  6. Corporate Diversity Programs and Gender Inequality in the Oil and Gas Industry

    PubMed Central

    Williams, Christine L.; Kilanski, Kristine; Muller, Chandra

    2014-01-01

    Since the 1980s, major U.S. corporations have embraced diversity as a management strategy to increase the number of women in top jobs. Diversity management programs include targeted recruitment, hiring, and promotions policies; mentoring programs; affinity groups; and diversity training. Few of these programs have proven effective in achieving gender diversity in the corporate world, despite their widespread popularity. To explore the reasons for this, the authors investigate the experiences of women scientists in the oil and gas industry who are targeted by these programs. In-depth interviews reveal possible reasons why these programs fail to achieve their intended goals. The authors find that these programs can paradoxically reinforce gender inequality and male dominance in the industry. The authors discuss alternative approaches for addressing gender inequality in work organizations and conclude with implications of their findings for corporate approaches to promoting diversity and for future research. PMID:25558125

  7. Industrial fuel gas demonstration plant program. License agreements for proprietary processes. (Deliverable No. 30)

    SciTech Connect

    1980-01-01

    The proprietary processes included within the Industrial Fuel Gas Demonstration Plant are listed. Draft license agreements covering the use of these processes, with the exception of the Westfield Process (Conoco), have been included at the end of this document. Except for the Claus Process (Amoco) all draft license agreements will be executed directly between MLGW and the licensor. All the draft license agreements provided have been prepared by the licensors after preliminary discussions. Presently these agreements are being reviewed by MLGW for acceptability. As stated above, the Amoco Sulfur Recovery Process will be covered by an existing agreement between Standard Oil and FWEC. Suitable clauses have been provided under Tab V. These clauses will be incorporated into the MLGW/FWEC subcontract for the protection of MLGW, FWEC, and licensor. At this writing the Industrial Team has no secrecy agreement executed with Conoco Methanation Company (Westfield Methanation Process) nor has any draft license agreement been transmitted by Conoco.

  8. Strategies implemented by the textile industry in response to natural-gas curtailments

    SciTech Connect

    Schreibeis, R.L.

    1980-01-01

    An examination is made of specific activities undertaken by textile firms in North and South Carolina and Georgia to insulate themselves against production losses resulting from natural gas curtailments. Results of the research effort focusing on investigating patterns or trends of precautionary activities undertaken by the textile industry in response to fuel interruptions are presented. Chapter II delineates the scope of the project, research design, and nature of the textile industry. One hundred candidate firms for detailed study were identified and 34 discussed their alternate fuel strategies. Information obtained was analyzed by means of two statistical analysis techniques. Methods employed and results are described in Chapter III. Overall results are presented in Chapter IV. Variations in the strategies implemented by various concerns were accounted for in terms of geographic location, plant size, plant type, and the duration and extent of curtailment impacts. Ranges of expenditures for short- and long-term strategies are identified.

  9. Commitment to and preparedness for sustainable supply chain management in the oil and gas industry.

    PubMed

    Wan Ahmad, Wan Nurul K; Rezaei, Jafar; Tavasszy, Lóránt A; de Brito, Marisa P

    2016-09-15

    Our current dependency on the oil and gas (O&G) industry for economic development and social activities necessitates research into the sustainability of the industry's supply chains. At present, studies on sustainable supply chain management (SSCM) practices in the industry do not include firm-internal factors that affect the sustainability strategies employed by different functional areas of its supply chains. Our study aims to address this gap by identifying the relevant internal factors and exploring their relationship with SSCM strategies. Specifically, we discuss the commitment to and preparedness for sustainable practices of companies that operate in upstream and downstream O&G supply chain. We study the impact of these factors on their sustainability strategies of four key supply chain functions: supplier management, production management, product stewardship and logistics management. The analyses of data collected through a survey among 81 companies show that management preparedness may enhance sustainable supply chain strategies in the O&G industry more than commitment does. Among the preparedness measures, management of supply chain operational risks is found to be vital to the sustainability of all supply chain functions except for production management practices. The findings also highlight the central importance of supplier and logistics management to the achievement of sustainable O&G supply chains. Companies must also develop an organizational culture that encourages, for example, team collaboration and proactive behaviour to finding innovative sustainability solutions in order to translate commitment to sustainable practices into actions that can produce actual difference to their SSCM practices. PMID:27233046

  10. System definition and analysis gas-fired industrial advanced turbine systems

    SciTech Connect

    Holloway, G.M.

    1997-05-01

    The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

  11. Torrefaction of cedarwood in a pilot scale rotary kiln and the influence of industrial flue gas.

    PubMed

    Mei, Yanyang; Liu, Rujie; Yang, Qing; Yang, Haiping; Shao, Jingai; Draper, Christopher; Zhang, Shihong; Chen, Hanping

    2015-02-01

    Torrefaction of cedarwood was performed in a pilot-scale rotary kiln at various temperatures (200, 230, 260 and 290°C). The torrefaction properties, the influence on the grindability and hydroscopicity of the torrefied biomass were investigated in detail as well as the combustion performance. It turned out that, compared with raw biomass, the grindability and the hydrophobicity of the torrefied biomass were significantly improved, and the increasing torrefaction temperature resulted in a decrease in grinding energy consumption and an increase in the proportion of smaller-sized particles. The use of industrial flue gas had a significant influence on the behavior of cedarwood during torrefaction and the properties of the resultant solid products. To optimize the energy density and energy yield, the temperature of torrefaction using flue gas should be controlled within 260°C. Additionally, the combustion of torrefied samples was mainly the combustion of chars, with similar combustion characteristics to lignite. PMID:25497055

  12. Gas distribution industry survey: Costs of installation, maintenance and repair, and operations, version 1. Topical report, December 1993-March 1995

    SciTech Connect

    Biederman, N.

    1996-05-01

    The U.S. natural gas distribution industry spends $40 - $45 billion each year to buy gas and deliver it to the customers and to expand and renew the distribution piping system. More than half of these expenditures are paid to suppliers and transporters of gas. The way in which the balance (nearly $18 billion) is spent is controlled by the local gas distribution companies. This research is aimed to provide a better understanding of how and why these costs are incurred. It is based on interviews with 24 gas distribution companies and the data collected on a wide variety of maintenance, installation, and operations activities.

  13. The role of IRP in the natural gas industry: A case study

    SciTech Connect

    Wright, J.A.; Brockman, L.; Herman, P.

    1994-09-29

    The natural gas industry has changed radically over the last decade. The Federal Energy Regulatory Commission`s Order 636 completed plans to unbundle interstate pipeline services and create open access for distribution companies and their customers. There has also been increasing competition for local distribution companies (LDCs) from fuel oil, electricity and unregulated energy service companies. Meanwhile, the Energy Policy Act of 1992 includes provisions that encourage energy efficiency and promote reliance on competitive forces. In response to these changes, coupled with growing environmental concerns and the need for increased energy efficiency, a number of state public utility commissions and LDCs took an interest in integrated resource planning (IRP) for gas utilities. Gas IRP was in its formative stages and a variety of regulatory approaches were being considered when this project began. In response, this project originated with the total project scope being to define, implement and institutionalize an IRP process for the Gas Customer Service Business Unit of Niagara Mohawk Power Corporation (NMGas).

  14. 17 CFR 229.1201 - (Item 1201) General instructions to oil and gas industry-specific disclosures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... required tables. (c) The definitions in Rule 4-10(a) of Regulation S-X (17 CFR 210.4-10(a)) shall apply for... instructions to oil and gas industry-specific disclosures. 229.1201 Section 229.1201 Commodity and Securities... Disclosure by Registrants Engaged in Oil and Gas Producing Activities § 229.1201 (Item 1201)...

  15. 17 CFR 229.1201 - (Item 1201) General instructions to oil and gas industry-specific disclosures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... required tables. (c) The definitions in Rule 4-10(a) of Regulation S-X (17 CFR 210.4-10(a)) shall apply for... instructions to oil and gas industry-specific disclosures. 229.1201 Section 229.1201 Commodity and Securities... Disclosure by Registrants Engaged in Oil and Gas Producing Activities § 229.1201 (Item 1201)...

  16. 17 CFR 229.1201 - (Item 1201) General instructions to oil and gas industry-specific disclosures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... required tables. (c) The definitions in Rule 4-10(a) of Regulation S-X (17 CFR 210.4-10(a)) shall apply for... instructions to oil and gas industry-specific disclosures. 229.1201 Section 229.1201 Commodity and Securities... Disclosure by Registrants Engaged in Oil and Gas Producing Activities § 229.1201 (Item 1201)...

  17. 17 CFR 229.1201 - (Item 1201) General instructions to oil and gas industry-specific disclosures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... required tables. (c) The definitions in Rule 4-10(a) of Regulation S-X (17 CFR 210.4-10(a)) shall apply for... instructions to oil and gas industry-specific disclosures. 229.1201 Section 229.1201 Commodity and Securities... Disclosure by Registrants Engaged in Oil and Gas Producing Activities § 229.1201 (Item 1201)...

  18. CRITERIA POLLUTANT EMISSIONS FROM INTERNAL COMBUSTION ENGINES IN THE NATURAL GAS INDUSTRY VOLUME II. APPENDICES A-I

    EPA Science Inventory

    The report summarizes emission factors for criteria pollutants (NOx, CO, CH4, C2H6, THC, NMHC, and NMEHC) from stationary internal combustion engines and gas turbines used in the natural gas industry. The emission factors were calculated from test results from five test campaigns...

  19. How a Physicist Can Add Value In the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Poitzsch, Martin

    2011-03-01

    The talk will focus on some specific examples of innovative and fit-for-purpose physics applied to solve real-world oil and gas exploration and production problems. In addition, links will be made to some of the skills and areas of practical experience acquired in physics education and research that can prove invaluable for success in such an industrial setting with a rather distinct and unique culture and a highly-collaborative working style. The oil and gas industry is one of the largest and most geographically and organizationally diverse areas of business activity on earth; and as a `mature industry,' it is also characterized by a bewildering mix of technologies dating from the 19th century to the 21st. Oil well construction represents one of the largest volume markets for steel tubulars, Portland cement, and high-quality sand. On the other hand, 3D seismic data processing, shaped-charge perforating, and nuclear well logging have consistently driven forward the state of the art in their respective areas of applied science, as much or more so than defense or other industries. Moreover, a surprising number of physicists have made their careers in the oil industry. To be successful at introducing new technology requires understanding which problems most need to be solved. The most exotic or improbable technologies can take off in this industry if they honestly offer the best solution to a real problem that is costing millions of dollars in risk or inefficiency. On the other hand, any cheaper or simpler solution that performs as well would prevail, no matter how inelegant! The speaker started out in atomic spectroscopy (Harvard), post-doc'ed in laser cooling and trapping of ions for high-accuracy time and frequency metrology (NIST), and then jumped directly into Drilling Engineering with Schlumberger Corp. in Houston. Since then, his career has moved through applied electromagnetics, geological imaging, nuclear magnetic resonance logging, some R and D portfolio

  20. A program to develop the domestic natural gas industry in Indonesia: Case history of two World Bank projects

    SciTech Connect

    Klass, D.L. ); Khwaja, S. )

    1991-01-01

    Indonesia depends heavily on revenues from the export of LNG and oil, the availability of which appears to be decreasing. It is therefore making a strong effort to accelerate development of a domestic natural gas industry. A high priority has been given to the conversion of power plants and city gas systems, including local industries and commercial facilities, from liquid fuels to natural gas. This will release more oil for export, help to meet the objectives of Repelita V, and provide substantial environmental benefits. The World Bank recently provided loans to the Indonesian Government for two projects that are aimed at substituting natural gas for oil and manufactured gas in domestic markets. One project involves expansion of the gas distribution systems of Indonesia's natural gas utility (PGN) in three cities: Jakarta and Bogor in Java, and Medan in Sumatra. The project also includes training programs for PGN staff and an energy pricing policy study to be carried out by Indonesia's Ministry of Mines and Energy. The second project involves expansion of the supply of natural gas for Surabaya and twelve other towns in its vicinity in East Java, and further expansion of Medan's supply system. Technical assistance will be provided to enhance the skills ofPGN and the Ministry of Mines and Energy, and a Gas Technology Unit similar to the Institute of Gas Technology will be established at Indonesia's Research and Development Center for Oil and Gas (LEMIGAS) in Jakarta. 14 refs., 3 figs., 11 tabs.

  1. Mobile monitoring of fugitive methane emissions from natural gas consumer industries

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Albertson, J. D.; Gaylord, A.; von Fischer, J.; Rudek, J.; Thoma, E. D.

    2015-12-01

    Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not been quantified yet. This presentation introduces new tools for estimating emission rates from mobile methane measurements, and examines results from recent field measurements conducted downwind of several industrial plants using a specialized vehicle equipped with fast response methane sensor. Using these data along with local meteorological data measured by a 3-D sonic anemometer, a Bayesian approach is applied to probabilistically infer methane emission rates based on a modified Gaussian dispersion model. Source rates are updated recursively with repeated traversals of the downwind methane plume when the vehicle was circling around the targeted facilities. Data from controlled tracer release experiments are presented and used to validate the approach. With access via public roads, this mobile monitoring method is able to quickly assess the emission strength of facilities along the sensor path. This work is developing the capacity for efficient regional coverage of potential methane emission rates in support of leak detection and mitigation efforts.

  2. Assessing drivers of export orientation in the subsea oil and gas industry.

    PubMed

    Aarstad, Jarle; Pettersen, Inger Beate; Jakobsen, Stig-Erik

    2015-01-01

    The purpose of this short study was to identify the drivers of export orientation of firms in the subsea oil and gas industry in Western Norway. As the oil fields in the North Sea are approaching a stage of maturity, gaining knowledge of these drivers is crucial. An online survey was conducted of firms operating in the subsea oil and gas industry in the region. Consistent with previous research, the data reveal that product innovation and a majority share of international ownership increase firms' export rates. The use of instrumental variables indicates that both product innovation and international ownership are causes of subsea petroleum exports. The study moreover finds that subcontractors have a lower rate of direct exports than system providers, but international ownership in particular boosts subcontractors' export rates, probably by decreasing their market dependency on regional system providers. A clear recommendation for managers and stakeholders is that they should encourage foreign investments throughout the value chain. The results of such a strategy appear to be especially positive for subcontractors. PMID:26261761

  3. Use of tracer gas technique for industrial exhaust hood efficiency evaluation--where to sample?

    PubMed

    Hampl, V; Niemelä, R; Shulman, S; Bartley, D L

    1986-05-01

    A tracer gas technique using sulfur hexafluoride (SF6) was developed for the evaluation of industrial exhaust hood efficiency. In addition to other parameters, accuracy of this method depends on proper location of the sampling probe. The sampling probe should be located in the duct at a minimum distance from the investigated hood where the SF6 is dispersed uniformly across the duct cross section. To determine the minimum sampling distance, the SF6 dispersion in the duct in fully developed turbulent flow was studied at four duct configurations frequently found in industry: straight duct, straight duct-side branch, straight duct-one elbow, and straight duct-two elbows combinations. Based on the established SF6 dispersion factor, the minimum sampling distances were determined as follows: for straight duct, at least 50 duct diameters; for straight duct-side branch combination, at least 25 duct diameters; for straight duct-one elbow combination, 7 duct diameters; and for straight duct-two elbow combination, 4 duct diameters. Sampling at (or beyond) these distances minimizes the error caused by the non-homogeneous dispersion of SF6 in the duct and contributes to the accuracy of the tracer gas technique. PMID:3717012

  4. Second-Generation Pressurized Fluidized Bed Combustion: Small gas turbine industrial plant study

    SciTech Connect

    Shenker, J.; Garland, R.; Horazak, D.; Seifert, F.; Wenglarz, R.

    1992-07-01

    Second-Generation Pressurized Fluidized Bed Combustion (PFBC) plants provide a coal-fired, high-efficiency, combined-cycle system for the generation of electricity and steam. The plants use lime-based sorbents in PFB combustors to meet environmental air standards without back-end gas desulfurization equipment. The second-generation system is an improvement over earlier PFBC concepts because it can achieve gas temperatures of 2100{degrees}F and higher for improved cycle efficiency while maintaining the fluidized beds at 1600{degrees}F for enhanced sulfur capture and minimum alkali release. Second-generation PFBC systems are capable of supplying the electric and steam process needs of industrial plants. The basic second-generation system can be applied in different ways to meet a variety of process steam and electrical requirements. To evaluate the potential of these systems in the industrial market, conceptual designs have been developed for six second-generation PFBC plants. These plants cover a range of electrical outputs from 6.3 to 41.5 MWe and steam flows from 46,067 to 442,337 lb/h. Capital and operating costs have been estimated for these six plants and for equivalent (in size) conventional, coal-fired atmospheric fluidized bed combustion cogeneration plants. Economic analyses were conducted to compare the cost of steam for both the second-generation plants and the conventional plants.

  5. Implications of deregulation in natural gas industry on utility risks and returns

    NASA Astrophysics Data System (ADS)

    Addepalli, Rajendra P.

    This thesis examines the changes in risk and required return on capital for local distribution utility companies in the increasingly competitive natural gas industry. The deregulation in the industry impacts the LDCs in several ways. First, with the introduction of competition consumers have been given choices among suppliers besides the traditional monopoly, the local utility, for purchasing their natural gas supply needs. Second, with the introduction of competition, some of the interstate pipelines were stuck with 'Take Or Pay' contracts and other costs that resulted in 'stranded costs', which have been passed on to customers of the pipeline including the LDCs. Third, the new obligation for the LDCs to purchase gas from the market, as opposed to buying it from pipelines and passing on the costs to its customers, brought opportunities and risks as well. Finally, with the introduction of competition, in some states LDCs have been allowed to enter into unregulated ventures to increase their profits. In the thesis we first develop a multifactor model (MFM) to explain historical common stock returns of individual utilities and of utility portfolios. We use 'rolling regression' analysis to analyze how different variables explain the variation in stock returns over time. Second, we conduct event studies to analyze the events in the deregulation process that had significant impacts on the LDC returns. Finally we assess the changes in risk and required return on capital for the LDCs over a 15 year time frame, covering the deregulation period. We employ four aspects in the examination of risk and return profile of the utilities: measuring (a) changes in required return on common equity and Weighted Average Cost of Capital, (b) changes in risk premium (WACC less an interest rate proxy), (c) changes in utility bond ratings, and (d) changes in dividend payments, new debt and equity issuances. We perform regression analysis to explain the changes in the required WACC using

  6. Benzene and total hydrocarbon exposures in the upstream petroleum oil and gas industry.

    PubMed

    Verma, D K; Johnson, D M; McLean, J D

    2000-01-01

    Occupational exposures to benzene and total hydrocarbons (THC) in the Canadian upstream petroleum industry are described in this article. A total of 1547 air samples taken by 5 oil companies in various sectors (i.e., conventional oil/gas, conventional gas, heavy oil processing, drilling and pipelines) were evaluated and summarized. The data includes personal long- and short-term samples and area long-term samples. The percentage of samples over the occupational exposure limit (OEL) of 3.2 mg/m3 or one part per million for benzene, for personal long-term samples ranges from 0 to 0.7% in the different sectors, and area long-term samples range from 0 to 13%. For short-term personal samples, the exceedance for benzene is at 5% with respect to the OEL of 16 mg/m3 or five parts per million in the conventional gas sector and none in the remaining sectors. THC levels were not available for all sectors and had limited data points in others. The percentage exceedance of the OEL of 280 mg/m3 or 100 parts per million for THC as gasoline ranged from 0 to 2.6% for personal long-term samples. It is recommended that certain operations such as glycol dehydrators be carefully monitored and that a task-based monitoring program be included along with the traditional long- and short-term personal exposure sampling. PMID:10782197

  7. A study of pneumatic conveying of gas-solid flow for industrial application

    NASA Astrophysics Data System (ADS)

    Al-Khateeb, Khalid A. S.; Tasnim, Rumana; Khan, Sheroz; Mohammod, Musse; Arshad, Atika; Shobaki, Mohammed M.; Haider, Samnan; Saquib, Nazmus; Rahman, Tawfilur

    2013-12-01

    The complicated nature of gas-solids' physical properties have challenged the researchers over past decades who have led their efforts in developing its' flow sensing and measurement methods. The term 'gas-solid flow' signifies dilute- or dense-phase flow with a very little concentration of solids. For conducting such flow measurement, generally velocity profile and volumetric concentration of the flow particles being conveyed are needed to be measured. An important application of gas-solid flow has taken root in the form of biomass flow in pneumatic conveying systems, and its' online measurement has proven to be an exigent research pursuit. Additionally the other applications have been explored in power plants, food, chemical and automobiles industries as well. This paper aims at exploring the evolution of flow measurement methods along with a brief explanation on existing fundamental sensing techniques. Furthermore, the most recent patents developed for such measurements in pneumatic conveying pipelines are scrutinized along with their concomitant pros and cons.

  8. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    SciTech Connect

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  9. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    SciTech Connect

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  10. A desiccant/steam-injected gas-turbine industrial cogeneration system

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

    1993-01-01

    An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

  11. A desiccant/steam-injected gas-turbine industrial cogeneration system

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Karvelas, D.E.; Teotia, A.P.S.

    1993-12-31

    An integrated desiccant/steam-injected gas-turbine system was evaluated as an industrial cogenerator for the production of electricity and dry, heated air for product drying applications. The desiccant can be regenerated using the heated, compressed air leaving the compressor. The wet stream leaves the regenerator at a lower temperature than when it entered the desiccant regenerator, but with little loss of energy. The wet stream returns to the combustion chamber of the gas-turbine system after preheating by exchanging heat with the turbine exhaust strewn. Therefore, the desiccant is regenerated virtually energy-free. In the proposed system, the moisture-laden air exiting the desiccant is introduced into the combustion chamber of the gas-turbine power system. This paper discusses various possible design configurations, the impact of increased moisture content on the combustion process, the pressure drop across the desiccant regenerator, and the impact of these factors on the overall performance of the integrated system. A preliminary economic analysis including estimated potential energy savings when the system is used in several drying applications, and equipment and operating costs are also presented.

  12. Cattle and the oil and gas industry in Alberta: A literature review with recommendations for environmental management

    SciTech Connect

    1996-12-31

    The purpose of this report is to bring together a review of published information on the potential effects of upstream oil and gas industry operations on the cattle industry in Alberta, some indication of the probability of occurrence of these effects, and recommendations on how they might be avoided or mitigated. Based on reviews of scientific papers and industry good-practice manuals, the report describes: The sources and quantities of environmental contaminants generated by Alberta`s oil and gas industry, including normal operations, accidental releases, and the effects of aging infrastructure; the chemical composition of the products, materials, and wastes associated with the industry; the fate and transport of the contaminants through air, water, and soil; cattle operations in Alberta; the toxicology of oil and gas industry contaminants in cattle; and selected Alberta case studies of accidental releases and planned experiments. Conclusions and recommendations deal with critical information gaps and strategies for the sustainable management of cattle and oil/gas operations in the province.

  13. On-line combustion monitoring on dry low NOx industrial gas turbines

    NASA Astrophysics Data System (ADS)

    Rea, S.; James, S.; Goy, C.; Colechin, M. J. F.

    2003-07-01

    To reduce the NOx emissions levels produced by industrial gas turbines most manufacturers have adopted a lean premixed approach to combustion. Such combustion systems are susceptible to combustion-driven oscillations, and much of the installed modern gas turbines continue to suffer from reduced reliability due to instability-related problems. The market conditions which now exist under the New Electricity Trading Arrangements provide a strong driver for power producers to improve the reliability and availability of their generating units. With respect to low-emission gas turbines, such improvements can best be achieved through a combination of sophisticated monitoring, combustion optimization and, where appropriate, plant modifications to reduce component failure rates. On-line combustion monitoring (OLCM) provides a vital contribution to each of these by providing the operator with increased confidence in the health of the combustion system and also by warning of the onset of combustion component deterioration which could cause significant downstream damage. The OLCM systems installed on Powergen's combined cycle gas turbine plant utilize high-temperature dynamic pressure transducers mounted close to the combustor to enable measurement of the fluctuating pressures experienced within the combustion system. Following overhaul, a reference data set is determined over a range of operating conditions. Real-time averaged frequency spectra are then compared to the reference data set to enable identification of abnormalities. Variations in the signal may occur due to changes in ambient conditions, fuel composition, operating conditions, and the onset of component damage. The systems on Powergen's plant have been used successfully to detect each of the above, examples of which are presented here.

  14. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.; Miller, B.G.; Scaroni, A.W.; McGowan, J.G.

    1995-12-31

    The development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 and the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment. Economics may one day dictate that it makes sense to replace oil or natural gas with coal in boilers that were originally designed to burn these fuels. The objective of the current program is to demonstrate the technical and economic feasibility of retrofitting a gas/oil designed boiler to burn micronized coal. In support of this overall objective, the following specific areas were targeted: A coal handling/preparation system that can meet the technical requirements for retrofitting microfine coal on a boiler designed for burning oil or natural gas; Maintaining boiler thermal performance in accordance with specifications when burning oil or natural gas; Maintaining NOx emissions at or below 0.6 lb/MBtu; Achieving combustion efficiencies of 98% or higher; and Calculating economic payback periods as a function of key variables. The overall program has consisted of five major tasks: (1) A review of current state-of-the-art coal firing system components; (2) Design and experimental testing of a prototype HEACC burner; (3) Installation and testing of a HEACC system in a commercial retrofit application; (4) Economic evaluation of the HEACC concept for retrofit applications; and (5) Long term demonstration under commercial user demand conditions. This paper will summarize the latest key experimental results (Task 3) and the economic evaluation (Task 4) of the HEACC concept for retrofit applications. 28 figs., 6 tabs.

  15. Development of a Database Program for Managing Drilling Data in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Suh, J.; Choi, Y.; Park, H.; Choe, J.

    2008-12-01

    This study presents a prototype of database program for managing drilling data for the oil and gas industry. The characteristics of petrophysical data from drilling cores were categorized to define the schema of database system such as data fields in tables, the relationships between those tables and key index fields to create the relationships. And many types of drilling reports and previous drilling database systems were reviewed to design of relational database program. Various algorithms of logging tool were analyzed to offer many kinds of function for user. Database program developed in this study provides well-organized graphic user interfaces for creating, editing, querying, exporting and visualizing the drilling data as well as for interchanging data with a spreadsheet such as MS-Excel.

  16. Applications of Seasat to the offshore oil, gas and mining industries

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Robinson, A. C.

    1977-01-01

    The NASA satellite Seasat-A (to be launched in 1978) has applications to the offshore oil, gas, and mining industries including: (1) improvements in weather and wave forecasting, (2) studies of past wind and wave statistics for planning design requirements, and (3) monitoring ice formation, breakup, and movement in arctic regions. The primary geographic areas which will be monitored by Seasat-A include: the Beaufort Sea, the Labrador Sea, the Gulf of Mexico, the U.S. east coast, West Africa, Equatorial East Pacific, the Gulf of Alaska, and the North Sea. Seasat-A instrumentation used in ocean monitoring consists of a radar altimeter, a radar scatterometer, a synthetic aperture radar, a microwave radiometer, and a visible and infrared radiometer. The future outlook of the Seasat program is planned in three phases: measurement feasibility demonstration (1978-1980), data accessibility/utility demonstration (1980-1983), and operational system demonstration (1983-1985).

  17. Development of a transonic front stage of an axial flow compressor for industrial gas turbines

    SciTech Connect

    Katoh, Y.; Ishii, H.; Tsuda, Y.; Yanagida, M. . Mechanical Engineering Research Lab.); Kashiwabara, Y. . Dept. of Mechanical Systems Engineering)

    1994-10-01

    This paper describes the aerodynamic blade design of a highly loaded three-stage compressor, which is a model compressor for the front stage of an industrial gas turbine. Test results are presented that confirm design performance. Some surge and rotating stall measurement results are also discussed. The first stator blade in this test compressor operates in the high subsonic range at the inlet. To reduce the pressure loss due to blade surface shock waves, a shock-free airfoil is designed to replace the first stator blade in an NACA-65 airfoil in a three-stage compressor. Comparison of the performance of both blades shows that the shock-free airfoil blade reduces pressure loss. This paper also presents some experimental results for MCA (multicircular arc) airfoils, which are used for first rotor blades.

  18. Enhancement of methane gas production using an industrial waste in anaerobic digestion

    SciTech Connect

    Fradkin, L.; Kremer, F.

    1980-01-01

    One method of recycling that may aid in the solution of the current energy problems is anaerobic digestion. Chromium shavings are a solid waste produced by the leather tanning industry. Chromium can block enzymatic systems or interfere with essential cellular metabolites of most oxidizing bacteria. In general, heavy metals coagulate and precipitate proteins, many of which are denatured by this action. This study examines the effects on anaerobic digestion of chromium shavings from leather tanning. Leather chrome shavings contain proteins, nitrogen, and fats. These shavings were added to two of three digesters at various rates. The methane gas production of the experimental units improved significantly compared to the control. In addition, the presence of a toxic loading or change of feed had no harmful effect on the digester performance.

  19. Enhancement of methane gas production using an industrial waste in anaerobic digestion

    SciTech Connect

    Fradkin, L.; Kremer, F.

    1980-12-01

    One method of recycling that may aid in the solution of the current energy problems is anaerobic digestion. Chromium shavings are a solid waste produced by the leather tanning industry. Chromium can block enzymatic systems or interfere with essential cellular metabolites of most oxidizing bacteria. In general, heavy metals coagulate and precipitate proteins, many of which are denatured by this action. This study examines the effects on anaerobic digestion of chromium shavings from leather tanning. Leather chrome shavings contain proteins, nitrogen, and fats. These shavings were added to two of three digesters at various rates. The methane gas production of the experimental units improved significantly compared to the control. In addition, the presence of a toxic loading or change of feed had no harmful effect on the digester performance.

  20. Industry tests of NASA ceramic thermal barrier coating. [for gas turbine engine applications

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Stepka, F. S.

    1979-01-01

    Ceramic thermal barrier coating (TBC) system was tested by industrial and governmental organizations for a variety of aeronautical, marine, and ground-based gas turbine engine applications. This TBC is a two-layer system with a bond coating of nickel-chromium-aluminum-yttrium (Ni-16Cr-6Al-0.6Y, in wt. percent) and a ceramic coating of yttria-stabilized zirconia (ZrO2-12Y2O3, in wt. percent). Seven tests evaluated the system's thermal protection and durability. Five other tests determined thermal conductivity, vibratory fatigue characteristics, and corrosion resistance of the system. The information presented includes test results and photographs of the coated parts. Recommendations are made for improving the coating procedures.

  1. Timing and Institutions: Determinants of the Ownership Structure in the Oil and Gas Industry in Canada and Norway

    NASA Astrophysics Data System (ADS)

    Didier, Thomas

    In response to 1973 oil shock, both the Canadian and Norwegian states expanded public corporate ownership in the oil and gas industry. This thesis questions why the public share of total corporate ownership in the oil industry was greater in Norway than in Canada, and why Petro-Canada was privatized completely while Statoil was not. Two hypotheses are tested from a historical institutionalist perspective. First, the timing of oil development determined whether the private sector would establish itself as the dominant player in the oil and gas industry (in Canada) or not (in Norway) before the 1973 oil shock triggered government interest in public corporate ownership. Second, overlapping jurisdiction over oil resources (in Canada) undermined the effectiveness of mechanisms of reproduction of public corporate ownership. In Norway, the later discovery of oil thus gave the state a stronger bargaining position relative to the oil industry, and in a unitary state the uncontroversial redistributional activities of Statoil attracted more vested interests.

  2. Enterprise Risk Management in the Oil and Gas Industry: An Analysis of Selected Fortune 500 Oil and Gas Companies' Reaction in 2009 and 2010

    ERIC Educational Resources Information Center

    Rogers, Violet C.; Ethridge, Jack R.

    2016-01-01

    In 2009, four of the top ten Fortune 500 companies were classified within the oil and gas industry. Organizations of this size typically have an advanced Enterprise Risk Management system in place to mitigate risk and to achieve their corporations' objectives. The companies and the article utilize the Enterprise Risk Management Integrated…

  3. The feasibility of effluent trading in the oil and gas industry

    SciTech Connect

    Veil, J.A.

    1997-09-01

    In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades, for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.

  4. Application of food industry waste to agricultural soils mitigates green house gas emissions.

    PubMed

    Rashid, M T; Voroney, R P; Khalid, M

    2010-01-01

    Application of organic waste materials such as food processing and serving industry cooking oil waste (OFW) can recycle soil nitrate nitrogen (NO(3)-N), which is otherwise prone to leaching after the harvest of crop. Nitrogen (N) recycling will not only reduce the amount of N fertilizer application for corn crop production but is also expected to mitigate green house gas (GHG) emissions by saving energy to be used for the production of the same amount of industrial fertilizer N required for the growth of corn crop. Application of OFW at 10Mg solid ha(-1)y(-1) conserved 68 kg N ha(-1)y(-1) which ultimately saved 134 L diesel ha(-1)y(-1), which would otherwise be used for the production of fertilizer N as urea. Average fossil energy substitution value (FESV) of N conserved/recycled was calculated to be 93 US$ ha(-1)y(-1), which is about 13 million US$y(-1). Potential amount of GHG mitigation through the application of OFW to agricultural soils in Canada is estimated to be 57 Gg CO(2)Eq y(-1). PMID:19765979

  5. Greenhouse Gas and Carbon Profile of the U.S. Forest Products Industry Value Chain

    PubMed Central

    2010-01-01

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004−2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity generation) emissions from manufacturing and methane emissions from landfilled products. Forest carbon stocks in forests supplying wood to the industry were found to be stable or increasing. Increases in the annual amounts of carbon removed from the atmosphere and stored in forest products offset about half of the total value chain emissions. Overall net transfers to the atmosphere totaled 91.8 and 103.5 TgCO2-eq. in 1990 and 2005, respectively, although the difference between these net transfers may not be statistically significant. Net transfers were higher in 2005 primarily because additions to carbon stored in forest products were less in 2005. Over this same period, energy-related manufacturing emissions decreased by almost 9% even though forest products output increased by approximately 15%. Several types of avoided emissions were considered separately and were collectively found to be notable relative to net emissions. PMID:20355695

  6. Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators

    SciTech Connect

    Chmielewski, Andrzej G.; Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej; Licki, Janusz

    2003-08-26

    Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

  7. Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej; Licki, Janusz

    2003-08-01

    Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

  8. Development of a Low NOx Medium-Sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect

    2009-11-01

    Solar Turbines Inc., in collaboration with Pennsylvania State University and the University of Southern California, will develop injector technologies for gas turbine use of high-hydrogen content renewable and opportunity fuels derived from coal, biomass, industrial process waste, or byproducts. This project will develop low-emission technology for alternate fuels with high-hydrogen content, thereby reducing natural gas requirements and lowering carbon intensity.

  9. Health Impact Assessments, Regulation, and the Unconventional Gas Industry in the UK: Exploiting Resources, Ideology, and Expertise?

    PubMed

    Watterson, Andrew; Dinan, William

    2016-02-01

    Health impact assessments (HIAs) across the globe may be used by governments and industries to secure approval for unconventional gas extraction developments. HIA is an umbrella term that covers an array of health review and assessment practices, ranging from the very general to quite specific and technical health studies. Our concern in this paper is principally with the specialist end of the HIA continuum and particularly its application to unconventional gas extraction in the UK. We outline the context within which HIAs in unconventional gas extraction may be conducted. We then explain what HIAs may do. HIAs are often commissioned from consultancy companies to assess unconventional gas extraction project risks and benefits and propose mitigation measures. Communities can rarely afford HIAs in the planning process and may consider them biased when commissioned by vested interests. The oil and gas industry uses these techniques for its own ends. Hiring experts, be they specialist consultants, researchers, lobbyists, ex-government officials, or regulators, to influence planning and regulation is a well-tried tactic and structural advantage exploited by industry in seeking license to operate. Equitable and ethical HIA principles are urgently needed in the UK in relation to unconventional gas to secure the integrity and probity of the emerging regulatory system and address concerns regarding unregulated practitioners. PMID:26531123

  10. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and analysis

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Wyung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II (GOM JIP Leg II) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gas hydrates under various geologic conditions and to understand the geologic controls on the occurrence of gas hydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gas hydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gas hydrate in nature: From using electrical resistivity and acoustic logs to identify gas hydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gas hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gas hydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP Leg II effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  11. Characterization of industrial waste from a natural gas distribution company and management strategies: a case study of the East Azerbaijan Gas Company (Iran).

    PubMed

    Taghipour, Hassan; Aslhashemi, Ahmad; Assadi, Mohammad; Khodaei, Firoz; Mardangahi, Baharak; Mosaferi, Mohammad; Roshani, Babak

    2012-10-01

    Although a fundamental prerequisite for the successful implementation of any waste management plan is the availability of sufficient and accurate data, there are few available studies regarding the characterization and management of gas distribution company waste (GDCW). This study aimed to characterize the industrial waste generated by the East Azerbaijan Gas Distribution Company (EAGDC) and to present environmental management strategies. The EAGDC serves 57 cities and 821 villages with a total population of more than 2.5 million as well as numerous industrial units. The methodology of this study was based on a checklist of data collected from each zone of the company, site visits (observation), and quantity and quality analysis according to the formal data available from different zones. The results indicate that more than 35 different kinds of industrial solid waste are generated in different industrial installations. The most important types of generated waste include empty barrels (including mercaptans, diesel fuel, deionized waters and oil), faulty gas meters and regulators, a variety of industrial oils, sleeves, filter elements and faulty pipes, valves and fittings. The results indicated that, currently, GDCW is generally handled and disposed of with domestic waste, deposited in companies' installation yards and stores or, sometimes, recycled through non-scientific approaches that can create health risks to the public and the environment, even though most of the GDCW was determined to be recyclable or reusable materials. This study concludes that gas distribution companies must pay more attention to source reduction, recycling and reusing of waste to preserve natural resources, landfill space and the environment. PMID:22683949

  12. The state of the oil and gas industry in 1992 from the viewpoint of an independent producer

    SciTech Connect

    Pitts, L.F. )

    1992-12-01

    Independent oil and natural gas producers perceive their industry today in a variety of ways. One of the most encouraging guideposts has been the obvious enthusiasm that is creeping back into conversations between independent producers. Most surviving oil and gas producers are seeing transitions in the industry today that give new hope. There are several reasons which make one highly optimistic about what independents can expect to gain over the next few years: (1) demand for oil and gas is increasing; (2) drilling costs are reasonable; (3) The reserves found per foot is increasing, principally because operators are studying prospects more carefully and are taking advantage of more technology such as 3-D seismic; (4) the passage of the Energy Policy Act of 1992 provides a glimmer of cooperation from the federal government; (5) nearly every segment of the gas industry is working to expand the market for natural gas, and the new administration is on record as favoring accelerated development of domestic energy; and (6) the general economy shows some signs of picking up.

  13. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    SciTech Connect

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  14. Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry

    NASA Astrophysics Data System (ADS)

    Al Jaafari, Khaled Ali

    Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a

  15. Hot corrosion of ceramic-coating materials for industrial/utility gas turbines

    SciTech Connect

    Barkalow, R.H.

    1981-01-01

    Furnace hot corrosion tests of yttria-stabilized zirconia (YSZ) and other candidate ceramic coating materials were run under combinations of temperature, salt deposits, and gaseous environments know to cause severe hot corrosion of state-of-the-art metallic coatings for industrial/utility gas turbines. Specimens were free-standing ceramic coupons and ceramic-coated IN 792. X-ray fluorescence and diffraction data on free-standing YSZ coupons showed surface yttrium loss and cubic-to-monoclinic transformation as a result of exposure to liquid salt and SO/sub 3/. Greater destabilization was observed at the lower of two test temperatures (704 and 982/sup 0/C), and destabilization increased with increasing SO/sub 3/ pressure and V-containing salt deposits. The data suggest that hot corrosion of YSZ can occur by a type of acidic dissolution of Y/sub 2/O/sub 3/ from the ZrO/sub 2/ solid solution. In spite of the greater surface destabilization at 704/sup 0/C, the bond coat and substrate of YSZ-coated IN 792 were not attacked at 704/sup 0/C but severely corroded at 982/sup 0/C. These results show that degradation of ceramic-coated metallic components can be more strongly influenced by the porosity of the microstructure and fluidity of the liquid salt than by the chemical stability of the ceramic coating material in the reactive environment. Other ceramic materials (SiO/sub 2/, Si/sub 3/N/sub 4/, ZrSiO/sub 2/, and mullite), concurrently exposed to the same conditions which produced significant destabilization of YSZ, showed no evidence of reaction at 704/sup 0/C but noticeable corrosion at 982/sup 0/C. Also, the high temperature corrosion was greater in air than in SO/sub 3/-containing gases. These trends suggest that hot corrosion of the silicon-containing ceramics was basic in nature, and such materials have potential for good resistance to chemical decomposition under the acidic conditions characteristics of industrial/utility gas turbines.

  16. Characteristics and photochemical potentials of volatile organics emission from stack exhaust gas of industrial processes

    SciTech Connect

    Hsu, Y.C.; Tsai, J.H.; Lin, T.C.; Cheng, C.C.; Huang, Y.H.

    1999-07-01

    The main objective of this project was to measure the main volatile organic compounds (VOCs) in stack gas from the downstream petrochemical plants. Six pollution sources of industrial processes, including Acrylonitrile-Butadiene-Styrene (ABS), Vinyl Chloride(VC), Polyvinyl Chloride (PVC), Acrylic Resin, para-Terephthalic Acid (PTA) and Polyurethane (PU) synthetic manufacturing processes, were measured by using USEPA Method 18. The concentration and emission rate database of twenty-seven VOCs has been established. Fifty-two selected stacks were sampled and analyzed for VOCs. Analysis of emission factors and characteristics of the twenty-seven VOCs in these stacks show that the emission characteristics are various among different industrial processes. The order of the single-stack VOCs average emission factor are ABS (1.109 lbs VOCs/ton-ABS; 22 stacks) {gt} Acrylic Resin (0.651 lbs VOCs/ton-acrylic resin; 7 stacks) {gt} PU Synthetic (0.606 lbs VOCs/ton-PU synthetic; 4 stacks) {gt} PTA (0.054 lbs VOCs/ton-PTA; 4 stacks) {gt} PVC (0.014 lbs VOCs/ton-PVC; 11 stacks) {gt} VC ({lt} 0.001; 4 stacks) manufacturing processes. The emission factors of VOC in AP-42 database for the processes of are 5 to 40 times higher than those of VOCs in this research. Because of the equipment of pollutant control setting up before the emitted exhaust gas, their average emission factors in these measured processes are almost lower than those of VOCs in AP-42 database. Compared with the characteristics of VOCs, there is little similarity in VOC characteristics for the stacks of six processes between the results from this research and the data from US EPA SPECIATE data system. Furthermore, according to maximum incremental reactivities (MIR) of VOCs probed into photochemical reaction potentials, the results show that those of PTA manufacturing process have an ozone formation potential of 2.33 g O{sub 3}/g VOCs, which is higher than other processes.

  17. Technological change, depletion and environmental policy in the offshore oil and gas industry

    NASA Astrophysics Data System (ADS)

    Managi, Shunsuke

    Technological change is central to maintaining standards of living in modern economies with finite resources and increasingly stringent environmental goals. Successful environmental policies can contribute to efficiency by encouraging, rather than inhibiting, technological innovation. However, little research to date has focused on the design and implementation of environmental regulations that encourage technological progress, or in insuring productivity improvements in the face of depletion of natural resources and increasing stringency of environmental regulations. This study models and measures productivity change, with an application to offshore oil and gas production in the Gulf of Mexico using Data Envelopment Analysis. This is an important application because energy resources are central to sustaining our economy. The net effects of technological progress and depletion on productivity of offshore oil and gas production are measured using a unique field-level set of data of production from all wells in the Gulf of Mexico over the time period from 1946--1998. Results are consistent with the hypothesis that technological progress has mitigated depletion effects over the study period, but the pattern differs from the conventional wisdom for nonrenewable resource industries. The Porter Hypothesis was recast, and revised version was tested. The Porter Hypothesis states that well designed environmental regulations can potentially contribute to productive efficiency in the long run by encouraging innovation. The Porter Hypothesis was recast to include market and nonmarket outputs. Our results support the recast version of Porter hypothesis, which examine productivity of joint production of market and environmental outputs. But we find no evidence for the standard formulation of the Porter hypothesis, that increased stringency of environmental regulation lead to increased productivity of market outputs and therefore increased industry profits. The model is used to

  18. INTERNAL REPAIR OF GAS PIPLINES SURVEY OF OPERATOR EXPERIENCE AND INDUSTRY NEEDS REPORT

    SciTech Connect

    Ian D. Harris

    2003-09-01

    A repair method that can be applied from the inside of a gas transmission pipeline (i.e., a trenchless repair) is an attractive alternative to conventional repair methods since the need to excavate the pipeline is precluded. This is particularly true for pipelines in environmentally sensitive and highly populated areas. The objectives of the project are to evaluate, develop, demonstrate, and validate internal repair methods for pipelines; develop a functional specification for an internal pipeline repair system; and prepare a recommended practice for internal repair of pipelines. The purpose of this survey is to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. A total of fifty-six surveys were sent to pipeline operators. A total of twenty completed surveys were returned, representing a 36% response rate, which is considered very good given the fact that tailored surveys are known in the marketing industry to seldom attract more than a 10% response rate. The twenty survey responses produced the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water (e.g., lakes and swamps) in difficult soil conditions, under highways, under congested intersections, and under railway crossings. All these areas tend to be very difficult and very costly if, and where, conventional excavated repairs may be currently used. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to solve a leak or other problem in a water/river crossing. (3) The typical travel distances required can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). In concept, these groups require pig-based systems; despooled umbilical systems could be considered for the first two groups

  19. Market assessment: Natural gas opportunities within the evolving US plastics industry. Final report, August 1995-October 1995

    SciTech Connect

    Bean, C.E.

    1995-11-01

    A market assessment was performed to investigate broad opportunity for gas fired technologies within the plastics processing industry. This market assessment is being utilized to assist in development of future planning efforts by the gas industry with respect to research and development within this strategic end-use market. Key findings from the assessment relative to the `state` of the industry include: (1) plastics processing market is growing at 5 percent annually, (2) electrotechnologies control over 95 percent of energy consumption within plastics processing with process heat load representing approximately 30 percent of total energy load (a significant amount of process heat demand satisfied via indirect heat via motor load), (3) total energy load within plastics processing is approximately 280 trillion BTU.

  20. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  1. Examining Convergence in the Cultural Value Orientations of Norwegians in the Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Teague, Jennifer

    There is much debate in Norway as to whether Norwegian cultural values are being diluted by the increasing influx of international organizations. Little empirical work has been done to assess the effect of employment by international organizations on the cultural values of Norwegians. The aim of this study was to determine if individuals retain cultural values closest to their own nationality or the nationality of their employing organization. This objective was accomplished by comparing cultural value dimensions of Norwegians employed in organizations headquartered in one of five countries. Recruitment emails were sent to 612 possible participants and 160 individuals completed the survey completely, resulting in a sample size of N=160, a response rate of 26%. From the completed surveys, cultural dimension scores were calculated for each individual and group in the areas of power distance, individualism, masculinity, and uncertainty avoidance. Using those cultural dimension scores, three groups of one-way ANOVA tests were run in accordance with the parameters of each of three research questions. Comparing Norwegians employed in local government or a Norwegian oil and gas company, a significant difference existed only for uncertainty avoidance (p=.0074). Comparing cultural dimension scores of Norwegians employed in local government with those employed by one of four internationally-headquartered oil companies resulted in significant differences in scores for power distance (p=.0007), individualism (p=.0000), and uncertainty avoidance (p=.0000); however, there was not a statistically significant difference in masculinity scores between the two groups (p=.0792). Comparing cultural dimension scores of Norwegians employed in a Norwegian oil and gas company with those employed by one of four internationally-headquartered oil and gas companies also resulted in statistically significant differences in scores for power distance (p=.0015), individualism (p=.0000), and

  2. Image is all: Deregulation, restructuring and reputation in the natural gas industry

    SciTech Connect

    1997-09-01

    Does image affect how one views his local utility company--or energy supplier? Does one value his utility companies more if one sees a lot of image advertising and public relations stories about community involvement, environmental action and charitable work? Or does one view utilities as faceless and anonymous entities that provide necessary services one thinks little about until there`s a problem? And, more important, what is the role of utility image in an era of deregulation, as companies begin a new scramble for customers? To find an answer to these questions, American Gas and Christopher Bonner Consultants conducted a survey of A.G.A. member companies to learn what, if anything, utility companies are doing in the areas of image assessment and change. The survey was sent to more than 200 A.G.A. member companies; written responses were received from 35. In addition, 13 follow-up telephone interviews were conducted, including four with companies that had not responded in writing. The picture that emerges if of an industry that is starting to pay greater and greater attention to image. And, as utilities reorganize and redefine themselves, they are also reexamining the ways they communicate with key audiences, including employees, customers, legislators, the financial community and the news media.

  3. Selection of an industrial natural-gas-fired advanced turbine system - Task 3A

    SciTech Connect

    Holloway, G.M.

    1997-05-01

    TASK OBJECTIVES: Identify a gas-fueled turbine and steam system which will meet the program goals for efficiency - and emissions. TECHNICAL GOALS AND REQUIREMENTS: Goals for the Advanced Turbine System Program (ATS) where outlined in the statement of work for five basic categories: Cycle Efficiency - System heat rate to have a 15% improvement over 1991 vintage systems being offered to the market. Environmental No post-combustion devices while meeting the following parameter targets: (1) Nitrous Oxide (NO{sub x}) emissions to equal 8 parts per million dry (ppmd) with 15% oxygen. (2) Carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions to equal 20 parts per million(ppmd) each. Cost of electricity to be 10 percent less when compared to similar 1991 systems. Fuel Flexibility Have to ability to burn coal or coal derived fuels without extensive redesign. Reliability, Availability, Maintainability Reliability, availability and maintainability must be comparable to modern advanced power generation systems. For all cycle and system studies, analyses were done for the following engine system ambient conditions: Temperature - 59F; Altitude - Sea Level; Humidity - 60%. For the 1991 reference system, GE Aircraft Engines used its LM6OOO engine product offering for comparison of the Industrial System parameters developed under this program.

  4. On the Mechanical Behavior of a New Single-Crystal Superalloy for Industrial Gas Turbine Applications

    NASA Astrophysics Data System (ADS)

    Sato, Atsushi; Moverare, Johan J.; Hasselqvist, Magnus; Reed, Roger C.

    2012-07-01

    The mechanical behavior of a new single-crystal nickel-based superalloy for industrial gas turbine (IGT) applications is studied under creep and out-of-phase (OP) thermomechanical fatigue (TMF) conditions. Neutron diffraction methods and thermodynamic modeling are used to quantify the variation of the gamma prime ( γ') strengthening phase around the γ' solvus temperature; these aid the design of primary aging heat treatments to develop either uniform or bimodal microstructures of the γ' phase. Under creep conditions in the temperature range 1023 K to 1123 K (750 °C to 850 °C), with stresses between 235 to 520 MPa, the creep performance is best with a finer and uniform γ' microstructure. On the other hand, the OP TMF performance improves when the γ' precipitate size is larger. Thus, the micromechanical degradation mechanisms occurring during creep and TMF are distinct. During TMF, localized shear banding occurs with the γ' phase penetrated by dislocations; however, during creep, the dislocation activity is restricted to the matrix phase. The factors controlling TMF resistance are rationalized.

  5. The NEPA mandate and federal regulation of the natural gas industry. [NEPA (National Environmental Policy Act)

    SciTech Connect

    Hoecker, J.J.

    1992-01-01

    Utility regulators increasingly take responsibility for the [open quotes]extemalities[close quotes] associated with their decisions, meaning the economic and social costs related to rate decisions or other kinds of authorizations. Yet, when Congress adopted the National Environmental Policy Act of 1969 (NEPA), it intervened to ensure protection of the natural environment, not from abuses by the citizenry but from the activities of the federal government itself. Comprised of action forcing procedures, NEPA was designed to infuse the decisional processes of federal agencies with a broad awareness of the environmental consequences of their actions. NEPA encourages decisionmakers to counterbalance the organic statutory and political missions of their departments or agencies with a sensitivity to the ecological consequences of their directives and authorizations. This paper examines how the requirements of NEPA have fared in the environment of classical public utility regulation at the Federal Energy Regulatory Commission. Commission proceedings did not evidence any widely held opinion that economic regulation of the gas industry is hostile to the NEPA process.

  6. Applications for fiber optic sensing in the upstream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Baldwin, Chris S.

    2015-05-01

    Fiber optic sensing has been used in an increasing number of applications in the upstream oil and gas industry over the past 20 years. In some cases, fiber optic sensing is providing measurements where traditional measurement technologies could not. This paper will provide a general overview of these applications and describe how the use of fiber optic sensing is enabling these applications. Technologies such as Bragg gratings, distributed temperature and acoustic sensing, interferometric sensing, and Brillouin scattering will be discussed. Applications for optic sensing include a range of possibilities from a single pressure measurement point in the wellbore to multizone pressure and flow monitoring. Some applications make use of fully distributed measurements including thermal profiling of the well. Outside of the wellbore, fiber optic sensors are used in applications for flowline and pipeline monitoring and for riser integrity monitoring. Applications to be described in this paper include in-flow profiling, well integrity, production monitoring, and steam chamber growth. These applications will cover well types such as injectors, producers, hydraulic fracturing, and thermal recovery. Many of these applications use the measurements provided by fiber optic sensing to improve enhanced oil recovery operations. The growing use of fiber optic sensors is providing improved measurement capabilities leading to the generation of actionable data for enhanced production optimization. This not only increases the recovered amount of production fluids but can also enhance wellbore integrity and safety.

  7. Regional resource depletion and industry activity: The case of oil and gas in the Gulf of Mexico

    USGS Publications Warehouse

    Attanasi, E.D.

    1986-01-01

    Stable and declining oil and gas prices have changed the industry's price expectations and, along with depletion of promising exploration prospects, has resulted in reduced exploration. Even with intensive additional exploration, production in most U.S. areas is expected to decline. What does this imply for the drilling and petroleum industry suppliers in particular regions? How should planners in government and the private sector project and incorporate the consequences of these changes in their strategies? This paper answers these questions for the industry operating in the offshore Gulf of Mexico. Future oil and gas production, as well as demand for offshore drilling and production facilities, are shown to depend on the size distribution of undiscovered fields, their associated production costs, and oil and gas prices. Declining well productivity is a consequence of development of progressively smaller fields so that long-run drilling demand should not decline in proportion to the expected production decline. Calculations show a substantial payoff to the drilling industry, in terms of potential demand increases, if it can develop and implement cost reducing technologies. Implications of these results for other offshore producing areas such as the North Sea are also discussed. ?? 1986.

  8. Advanced industrial gas turbine technology readiness demonstration. Quarterly technical progress report No. 12, 1 December 1979-29 February 1980

    SciTech Connect

    Schweitzer, J. K.; Reeves, G. B.

    1980-03-20

    The component technology base required for improved industrial gas turbine conversion efficiency is discussed. Specific goals are to demonstrate the high-pressure compressor and turbine cooling technologies required to achieve industrial gas turbine efficiencies of 34 to 36% simple cycle and 45 to 48% in combined cycle operation while reducing the number of compressor and turbine parts 80% over state-of-the-art units. The approach involves combining some of the most advanced aircraft turbine cooling and high-pressure compressor technology with the simplicity and ruggedness required of industrial engines to achieve not only improved performance, but also increased durability and low initial cost. The program currently consists of two phases. Phase I, which has been completed, included the conceptual definition of an industrial gas turbine capable of meeting the above goals and the aerothermodynamic designs of compressor and turbine component test rigs. Phase II, which is in progress, consists of component validation testing of the high-pressure compressor and turbine cooling designs which evolved in Phase I. During this quarter, work continued on Phase II, Task III - Compressor Rig Assembly and Test. Assembly of the compressor rig has been completed and final preparation of the rig for transporting to the test facility is in progress.

  9. Computer Aided Design of Advanced Turbine Airfoil Alloys for Industrial Gas Turbines in Coal Fired Environments

    SciTech Connect

    G.E. Fuchs

    2007-12-31

    Recent initiatives for fuel flexibility, increased efficiency and decreased emissions in power generating industrial gas turbines (IGT's), have highlighted the need for the development of techniques to produce large single crystal or columnar grained, directionally solidified Ni-base superalloy turbine blades and vanes. In order to address the technical difficulties of producing large single crystal components, a program has been initiated to, using computational materials science, better understand how alloy composition in potential IGT alloys and solidification conditions during processing, effect castability, defect formation and environmental resistance. This program will help to identify potential routes for the development of high strength, corrosion resistant airfoil/vane alloys, which would be a benefit to all IGT's, including small IGT's and even aerospace gas turbines. During the first year, collaboration with Siemens Power Corporation (SPC), Rolls-Royce, Howmet and Solar Turbines has identified and evaluated about 50 alloy compositions that are of interest for this potential application. In addition, alloy modifications to an existing alloy (CMSX-4) were also evaluated. Collaborating with SPC and using computational software at SPC to evaluate about 50 alloy compositions identified 5 candidate alloys for experimental evaluation. The results obtained from the experimentally determined phase transformation temperatures did not compare well to the calculated values in many cases. The effects of small additions of boundary strengtheners (i.e., C, B and N) to CMSX-4 were also examined. The calculated phase transformation temperatures were somewhat closer to the experimentally determined values than for the 5 candidate alloys, discussed above. The calculated partitioning coefficients were similar for all of the CMSX-4 alloys, similar to the experimentally determined segregation behavior. In general, it appears that computational materials science has become a

  10. Reduce Natural Gas Use in Your Industrial Process Heating Systems Trifold

    SciTech Connect

    2010-06-25

    This DOE Industrial Technologies Program fact sheet describes ten effective ways to save energy and money in industrial process heating systems by making some changes in equipment, operations, and maintenance.

  11. Upstream Financial Review of the Global Oil and Natural Gas Industry

    EIA Publications

    2016-01-01

    This analysis focuses on financial and operating trends of the oil and natural gas production business segment, often referred to as upstream operations, of 42 global oil and natural gas producing companies

  12. Natural Gas Compression Technician: Apprenticeship Course Outline. Apprenticeship and Industry Training. 5311.1

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Natural Gas Compression Technician apprenticeship program is a certified journeyperson who will be able to install, commission, maintain and repair equipment used to gather store and transmit natural gas. Advanced Education and Technology has prepared this course outline in partnership with the Natural Gas Compression…

  13. Overview of the effect of Title III of the 1990 Clean Air Act Amendments on the natural gas industry

    SciTech Connect

    Child, C.J.

    1995-12-31

    The regulation of hazardous air pollutants by Title III of the Clean Air Act Amendments of 1990 has a potential wide-ranging impact for the natural gas industry. Title III includes a list of 189 hazardous air pollutants (HAPs) which are targeted for reduction. Under Title III, HAP emissions from major sources will be reduced by the implementation of maximum achievable control technology (MACT) standards. If the source is defined as a major source, it must also comply with Title V (operating permit) and Title VII (enhanced monitoring) requirements. This presentation will review Title III`s effect on the natural gas industry by discussing the regulatory requirements and schedules associated with MACT as well as the control technology options available for affected sources.

  14. Contribution of heat transfer to turbine blades and vanes for high temperature industrial gas turbines. Part 1: Film cooling.

    PubMed

    Takeishi, K; Aoki, S

    2001-05-01

    This paper deals with the contribution of heat transfer to increase the turbine inlet temperature of industrial gas turbines in order to attain efficient and environmentally benign engines. High efficiency film cooling, in the form of shaped film cooling and full coverage film cooling, is one of the most important cooling technologies. Corresponding heat transfer tests to optimize the film cooling effectiveness are shown and discussed in this first part of the contribution. PMID:11460641

  15. Field Test Report: NETL Portable Raman Gas Composition Monitor - Initial Industrial tests at NETL and General Electric (GE)

    SciTech Connect

    Michael, Buric; Jessica, Mullen; Steven, Woodruff; Ben, Chorpening

    2012-02-24

    NETL has developed new technology which enables the use of Raman spectroscopy in the real-time measurement of gas mixtures. This technology uses a hollow reflective metal-lined capillary waveguide as a gas sampling cell which contains the sample gas, and efficiently collects optical Raman scattering from the gas sample, for measurement with a miniature spectrometer. The result is an optical Raman “fingerprint” for each gas which is tens or hundreds of times larger than that which can be collected with conventional free-space optics. In this manner, the new technology exhibits a combination of measurement speed and accuracy which is unprecedented for spontaneous Raman measurements of gases. This makes the system especially well-suited to gas turbine engine control based on a-priori measurement of incoming fuel composition. The system has been developed to produce a measurement of all of the common components of natural gas, including the lesser nitrogen, oxygen, carbon-dioxide, and carbon monoxide diluents to better than 1% concentration accuracy each second. The objective of this task under CRADA 10-N100 was to evaluate the capability of a laser Raman capillary gas sensor for combustion fuels. A portable version of the Raman gas sensor, constructed at NETL, was used for field-trials conducted in a cooperative research effort at a GE facility. Testing under the CRADA was performed in 5 parts. Parts 1-4 were successful in testing of the Raman Gas Composition Monitor with bottled calibration gases, and in continuous monitoring of several gas streams at low pressure, in comparison with an online mass spectrometer. In part 5, the Raman Gas Composition Monitor was moved outdoors for testing with high pressure gas supplies. Some difficulties were encountered during industrial testing including the condensation of heavy hydrocarbons inside the sample cell (in part 5), communication with the GE data collection system, as well as some drift in the optical noise

  16. Continuous emission monitoring technologies applicable to the natural gas transmission industry. Topical report, September 1993-September 1994

    SciTech Connect

    1995-04-01

    All major sources of nitrogen oxide (NOx) and carbon monoxide (CO) emissions must obtain operating permits under Title V of the 1990 Clean Air Act Amendments. Each permit application must contain a plan for monitoring emissions that will demonstrate the source`s compliance with its permitted emission limits. Several established methods for demonstrating compliance are available, including the use of continuous emission monitoring (CEM) systems--sampling and analytical equipment that allows gaseous emissions to be measured directly and continuously. In response to pending regulations, the Gas Research Institute recently sponsored a study on the types of CEM systems currently available to the natural gas industry for continuously monitoring NOx and CO emissions. The report describes various advantages and disadvantages of using particular types of continuous monitoring equipment for reciprocating engines and gas turbines.

  17. Study of the outlook for the development of the gas industry in Russia and analysis of risk associated with this process

    NASA Astrophysics Data System (ADS)

    Eliseeva, O. A.; Luk'yanova, A. S.; Tarasov, A. E.

    2010-12-01

    The gas industry in Russia will develop under conditions of the persistence of existing risks and emergence of the new ones caused by the world financial crisis, increased uncertainty in estimating world prices for natural gas, together with disturbed balance between interests of gas producers and consumers, and threat of loss of the competitiveness of Russian natural gas on foreign markets. In this context, in choosing a strategy of the development of the gas industry and its production-and-financial program, it is necessary to carry out a risk analysis of optimum decisions. Specific features of carrying out a risk analysis and results of the risk analysis of strategic decisions that would provide enhanced steadiness and the effectiveness of the development of the gas industry under conditions of the uncertainty of both external and internal factors are presented.

  18. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    SciTech Connect

    Price, Lynn; de la Rue du Can, Stephane; Lu, Hongyou; Horvath, Arpad

    2010-05-21

    The 2006 California Global Warming Solutions Act calls for reducing greenhouse gas (GHG) emissions to 1990 levels by 2020. Meeting this target will require action from all sectors of the California economy, including industry. The industrial sector consumes 25% of the energy used and emits 28% of the carbon dioxide (CO{sub 2}) produced in the state. Many countries around the world have national-level GHG reduction or energy-efficiency targets, and comprehensive programs focused on implementation of energy efficiency and GHG emissions mitigation measures in the industrial sector are essential for achieving their goals. A combination of targets and industry-focused supporting programs has led to significant investments in energy efficiency as well as reductions in GHG emissions within the industrial sectors in these countries. This project has identified program and policies that have effectively targeted the industrial sector in other countries to achieve real energy and CO{sub 2} savings. Programs in Ireland, France, The Netherlands, Denmark, and the UK were chosen for detailed review. Based on the international experience documented in this report, it is recommended that companies in California's industrial sector be engaged in a program to provide them with support to meet the requirements of AB32, The Global Warming Solution Act. As shown in this review, structured programs that engage industry, require members to evaluate their potential efficiency measures, plan how to meet efficiency or emissions reduction goals, and provide support in achieving the goals, can be quite effective at assisting companies to achieve energy efficiency levels beyond those that can be expected to be achieved autonomously.

  19. Gas-turbine industry prepares to become base-load supplier

    SciTech Connect

    Hansen, T.

    1996-04-01

    Gas-turbine technology has entered a new era; the simple-cycle units of yesterday are making room for new, highly sophisticated combined-cycle units. In July 1949, the first U.S. commercial power generation gas turbine was installed at Oklahoma Gas and Electric Co.`s Belle Isle Station. This unit was a General Electric (GE) MS3000 heavy-duty gas turbine rated at 3,5000 kW. In 1994, more than 900 gas turbines totaling over 33,000 MW were ordered worldwide, according to Power-Data Group, LaJolla, Calif. These figures show just how far gas turbines have come in less than 50 years. Today, simple-cycle units rated at up to 150 MW (with efficiencies around 35 percent) and combined-cycle units rated at over 200 MW (approaching 60-percent efficiency) are up and running.

  20. Scaling characteristics of the aerodynamics and low-NOx properties of industrial natural gas burners: The scaling 400 study. Part 3. The 30kw test results

    SciTech Connect

    Driscoll, J.F.; Dahm, W.J.A.; Wu, M.S.

    1993-08-15

    The objective of the SCALING 400 study is to assist in the development of new ultra-low NOx natural gas burners for industrial and utility operations so as to maintain and expand future demand for natural gas as the fuel of choice for clean combustion applications. The study is determining the scaling characteristics of near-burner aerodynamics and low-NOx properties of industrial natural gas burners, thereby yielding valuable new engineering information on the scaling of natural gas burners to contribute to the development of new low-NOx designs.

  1. Toxic Acid Gas Absorber Design Considerations for Air Pollution Control in Process Industries

    ERIC Educational Resources Information Center

    Manyele, S. V.

    2008-01-01

    This paper analyses the design parameters for an absorber used for removal of toxic acid gas (in particular sulfur dioxide) from a process gas stream for environmental health protection purposes. Starting from the equilibrium data, Henry's law constant was determined from the slope of the y-x diagram. Based on mass balances across the absorber,…

  2. Industrial SO2 emissions monitoring using a portable multi-channel gas analyzer with an optimized retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Sun, Y. W.; Liu, C.; Xie, P. H.; Hartl, A.; Chan, K. L.; Tian, Y.; Wang, W.; Qin, M.; Liu, J. G.; Liu, W. Q.

    2015-12-01

    In this paper, we demonstrate achieving accurate industrial SO2 emissions monitoring using a portable multi-channel gas analyzer with an optimized retrieval algorithm. The introduced analyzer features with large dynamic measurement range and correction of interferences from other co-existing infrared absorbers, e.g., NO, CO, CO2, NO2, CH4, HC, N2O and H2O. Both effects have been the major limitations of industrial SO2 emissions monitoring. The multi-channel gas analyzer measures 11 different wavelength channels simultaneously in order to achieve correction of several major problems of an infrared gas analyzer, including system drift, conflict of sensitivity, interferences among different infrared absorbers and limitation of measurement range. The optimized algorithm makes use of a 3rd polynomial rather than a constant factor to quantify gas-to-gas interference. The measurement results show good performance in both linear and nonlinear range, thereby solving the problem that the conventional interference correction is restricted by the linearity of both intended and interfering channels. The result implies that the measurement range of the developed multi-channel analyzer can be extended to the nonlinear absorption region. The measurement range and accuracy are evaluated by experimental laboratory calibration. An excellent agreement was achieved with a Pearson correlation coefficient (r2) of 0.99977 with measurement range from ~5 ppmv to 10 000 ppmv and measurement error <2 %. The instrument was also deployed for field measurement. Emissions from 3 different factories were measured. The emissions of these factories have been characterized with different co-existing infrared absorbers, covering a wide range of concentration levels. We compared our measurements with the commercial SO2 analyzers. The overall good agreements are achieved.

  3. Socioeconomic impacts of natural gas curtailments: a study of the textile industry in the southeastern United States. Final report

    SciTech Connect

    Jennings, D.M.

    1980-01-01

    A study was undertaken to identify the effects of fuel curtailments in the textile industry in North and South Carolina. Regional economic and social structures were affected with natural gas curtailments in 1976 and 1977. This document presents results of the effects of production shutdown resulting from the curtailments. Chapter II presents background information on the pipelines that service the region. Chapters III and IV describe the affected communities and the observed increase in government expenditures to counteract the impacts. Chapter V contains a complete list of textile plants in the study area that had to either work under abbreviated schedules or close entirely during the winter of 1976-1977. Attention was given to economic impacts at the industrial level that may have been attributable to the curtailment. Chapter VI covers these topics. In some instances, textile mills have relocated their plant facilities because they could not be guaranteed continuous fuel service at their original site. These data are the main concern of Chapter VII. Chapter VIII concentrates on social impacts; many facilities which provide services essential to human needs were subjected to gas curtailments so that the critical energy supplies could be diverted to industry. Chapter VIII also discusses an interesting geographic separation between social and economic impacts.

  4. Air toxics regulations and their potential impact on the natural gas industry. Topical report, June 1991-October 1992

    SciTech Connect

    Fillo, J.P.; Harkov, R.; Koraido, S.M.; Olsakovsky, A.C.

    1992-10-01

    The objective of this effort was to perform an assessment of the potential impacts of air toxics regulations on the natural gas industry. Natural gas industry operations were reviewed to identify potential sources of air toxics emissions and representative compounds that may be emitted, as one basis for the evaluation. Legislation that regulate air toxics exist at the federal and state levels. The federal review addressed primarily the Clean Air Act (CAA), specifically the air toxics provisions under Title III of the 1990 CAA Amendments. Other relevant federal regulations were reviewed, including OSHA, TSCA, CERCLA, SARA Title III, and RCRA. Regulations for three bellweather states (i.e., Texas, New Jersey, California) were reviewed to assess relevant state air toxics regulations. Natural gas operations have the potential to emit air toxics, including benzene, toluene, ethylbenzene, and xylene (BTEX) emissions from glycol dehydration vents, products of incomplete combustion from compressor engines, fugitive emissions from facility equipment, and secondary emissions from storage and waste treatment facilities.

  5. Gas prices and fuel efficiency in the U.S. automobile industry: Policy implications of endogenous product choice

    NASA Astrophysics Data System (ADS)

    Gramlich, Jacob Pleune

    I develop, estimate, and utilize an economic model of the U.S. automobile industry. I do so to address policy questions concerning automotive fuel efficiency (the relationship between gasoline used and distance traveled). Fuel efficiency has played a prominent role in our domestic energy policy for over 30 years. Recently it has received even more attention due to rising gas prices and concern over the environment and energy dependence. The model gives quantitative predictions for market fuel efficiency at various gas prices and taxes. The model makes contributions that are both methodological and policy based, and the two chapters of the dissertation focus on each in turn. The first chapter discusses the economic model of the U.S. automobile industry. The model allows firms to choose the fuel efficiency of their new vehicles, which allows me to predict fuel efficiency responses to policy and market conditions. These predictions were not possible with previous economic models which held fuel efficiency fixed. In the model, consumers care more about fuel efficiency when gas prices are high, and firms face a technological tradeoff between providing fuel efficiency and other quality. The level of the gas price, therefore, working through consumer demand, shifts firms' optimal locations along this technology frontier. Demand is nested logit, supply is differentiated products oligopoly, and data are from the U.S. automobile market from 1971-2007. In addition to endogenizing product choice, I also contribute to the modeling literature by relaxing restrictive identifying assumptions and obtaining more realistic estimates of fuel efficiency preference. The model predicts sales declines and compositions from the summer of 2008 with reasonable success. The second chapter discusses two counterfactual policy scenarios: maintained summer 2008 gas prices, and achieving 35 mpg (miles per gallon). At 3.43 per gallon (the summer 2008 price, 23% above 2007), the model predicts

  6. On the simulation of industrial gas dynamic applications with the discontinuous Galerkin spectral element method

    NASA Astrophysics Data System (ADS)

    Hempert, F.; Hoffmann, M.; Iben, U.; Munz, C.-D.

    2016-06-01

    In the present investigation, we demonstrate the capabilities of the discontinuous Galerkin spectral element method for high order accuracy computation of gas dynamics. The internal flow field of a natural gas injector for bivalent combustion engines is investigated under its operating conditions. The simulations of the flow field and the aeroacoustic noise emissions were in a good agreement with the experimental data. We tested several shock-capturing techniques for the discontinuous Galerkin scheme. Based on the validated framework, we analyzed the development of the supersonic jets during different opening procedures of a compressed natural gas injector. The results suggest that a more gradual injector opening decreases the noise emission.

  7. Industrial Fuel Gas Demonstration Plant Program: staffing plan. Deliverable No. 34

    SciTech Connect

    1980-05-01

    This report describes the staffing plans of each industrial team member during final design and construction of the IFGDP. The internal organization of each team member, including the delegation of authority and responsibility within the structure, is discussed. The primary function of the various organizational units are also identified. In addition, a brief summary of the Phase II role of each industrial partner is included. The overall Phase II organization chart is attached.

  8. Effect of asphaltene deposition on the internal corrosion in the oil and gas industry

    SciTech Connect

    Palacios T, C.A.; Morales, J.L.; Viloria, A.

    1997-08-01

    Crude oil from Norte de Monagas field, in Venezuela, contains large amounts of asphaltenes. Some of them are very unstable with a tendency to precipitate. Because liquid is carried over from the separation process in the flow stations, asphaltenes are also present in the gas gathering and transmission lines, precipitating on the inner wall of pipelines. The gas gathering and transmission lines contain gas with high partial pressures of CO{sub 2}, some H{sub 2}S and are water saturated; therefore, inhibitors are used to control internal corrosion. There is uncertainty on how inhibitors perform in the presence of asphaltene deposition. The purpose of this paper is to describe the causes that enhance asphaltene deposition in gas pipelines and present some results from an ongoing research project carried out by the Venezuelan Oil Companies.

  9. SEASAT economic assessment. Volume 3: Offshore oil and natural gas industry case study and generalization

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The economic benefits of improved ocean condition, weather and ice forecasts by SEASAT satellites to the exploration, development and production of oil and natural gas in the offshore regions are considered. The results of case studies which investigate the effects of forecast accuracy on offshore operations in the North Sea, the Celtic Sea, and the Gulf of Mexico are reported. A methodology for generalizing the results to other geographic regions of offshore oil and natural gas exploration and development is described.

  10. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1996-12-31

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn technology developed by the Babcock and Wilcox (B and W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be consideredd. The paper will describe B and W`s gas reburn data from a cyclone-equipped pilot facility (B and W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  11. NO{sub x} control using natural gas reburn on an industrial cyclone boiler

    SciTech Connect

    Farzan, H.; Maringo, G.J.; Beard, C.T.; Weed, G.E.; Pratapas, J.

    1997-07-01

    Eastman Kodak Company`s cyclone boiler (Unit No. 43), located in Rochester, New York, has been retrofitted with the gas reburn. technology developed by the Babcock & Wilcox (B&W) Company to reduce NO{sub x} emissions in order to comply with the New York State regulations adopted in conformance with the Title I of the Clean Air Act Amendments (CAAA) of 1990. At the peak load, the ozone nonattainment required NO{sub x} reduction from baseline levels necessary to meet the presumptive limit for cyclone boilers in this regulation is 56%. Eastman Kodak Company and the Gas Research Institute (GRI) are co-sponsoring this project. Chevron has supplied the natural gas. Equipment installation for the gas reburn system was performed in a September 1995 outage. Boiler No. 43`s maximum continuous rating (MCR) is 550,000 pounds per hour of steam flow (or approximately equivalent to 60 MW{sub e}). Because of the compact boiler design, there is insufficient furnace residence time to use coal or oil as the reburn fuel, thus making it a prime candidate for gas reburn. Kodak currently has four cyclone boilers. Contingent upon successful completion of this gas reburn project, modification of Kodak`s other cyclone boilers to include reburn technology will be considered. The paper will describe B&W`s gas reburn data from a cyclone-equipped pilot facility (B&W`s Small Boiler Simulator), gas reburn system design, manufacturing, and installation information specific to Kodak`s Unit No. 43. In addition, the paper will discuss numerical modeling and the full-scale commercial boiler test results.

  12. The impact of the Sarbanes Oxley Act on auditing fees: An empirical study of the oil and gas industry

    NASA Astrophysics Data System (ADS)

    Ezelle, Ralph Wayne, Jr.

    2011-12-01

    This study examines auditing of energy firms prior and post Sarbanes Oxley Act of 2002. The research explores factors impacting the asset adjusted audit fee of oil and gas companies and specifically examines the effect of the Sarbanes Oxley Act. This research analyzes multiple year audit fees of the firms engaged in the oil and gas industry. Pooled samples were created to improve statistical power with sample sizes sufficient to test for medium and large effect size. The Sarbanes Oxley Act significantly increases a firm's asset adjusted audit fees. Additional findings are that part of the variance in audit fees was attributable to the market value of the enterprise, the number of subsidiaries, the receivables and inventory, debt ratio, non-profitability, and receipt of a going concern report.

  13. 20 Years History of Fundamental Research on Gas Cluster Ion Beams, and Current Status of the Applications to Industry

    NASA Astrophysics Data System (ADS)

    Yamada, Isao

    2006-11-01

    This paper reviews the development of gas cluster ion beam (GCIB) technology, including the generation of cluster beams, fundamental characteristics of cluster ion to solid surface interactions, emerging industrial applications, and identification of some of the significant events which occurred as the technology has evolved into what it is today. More than 20 years have passed since the author first began to explore feasibility of processing by gas cluster ion beams at the Ion Beam Engineering Experimental Laboratory of Kyoto University. Processes employing ions of gaseous material clusters comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications.

  14. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

    1991-07-01

    Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

  15. Technological Change and Its Labor Impact in Five Energy Industries. Coal Mining/Oil and Gas Extraction/Petroleum Refining/Petroleum Pipeline Transportation/Electric and Gas Utilities.

    ERIC Educational Resources Information Center

    Bureau of Labor Statistics (DOL), Washington, DC.

    This bulletin appraises major technological changes emerging in five American industries (coal mining, oil and gas extraction, petroleum refining, petroleum pipeline transportation, and electric and gas utilities) and discusses the impact of these changes on productivity and occupations over the next five to ten years. Its separate reports on each…

  16. Study on the turbine vane and blade for a 1500 C class industrial gas turbine

    NASA Astrophysics Data System (ADS)

    Amagasa, S.; Shimomura, K.; Kadowaki, M.; Takeishi, K.; Kawai, H.; Aoki, S.; Aoyama, K.

    1994-07-01

    This paper describes the summary of a three-year development program for the first-stage stationary vane and rotating blade for the next generation, 1500 C class, high-efficiency gas turbine. In such a high-temperature gas turbine, the first turbine vane and blade are the most important hot parts. Full-coverage film cooling (FCFC) is adopted for the cooling scheme, and directionally solidified (DS) nickel base superalloy and thermal barrier coating (TBC) will be used to prolong the creep and thermal fatigue life. The concept of the cooling configuration, fundamental cascade test results, and material test results will be presented.

  17. Experiences of the Application of Hot Gas Filtration to Industrial Processes

    SciTech Connect

    Lloyd, B.T.

    2002-09-18

    Hot Gas Filtration (HGF) is defined as the dry scrubbing of gaseous process effluent above 250 degrees. The potential applications for this technology can be found in Atmospheric Pollution Control (APC) and In-Line Equipment Protection (ILETP). In recent years novel rigid refractory filter media have emerged with several advantages over conventional fabric bag filters and other particulate arrestment systems e.g. electrostatic precipitators. A study has been made of the effect of a wide range of operational conditions, including gas volume and velocity, temperature, particle size distribution, and organic/moisture content, in real process situations on filter elements performance and life expectancy.

  18. ESTIMATES OF GLOBAL GREENHOUSE GAS EMISSIONS FROM INDUSTRIAL AND DOMESTIC WASTEWATER TREATMENT

    EPA Science Inventory

    The report summarizes the findings of field tests and provides emission factors for methane (CH4) and nitrous oxide (N2O) from wastewater treatment (WWT). It also includes country-specific activity data on industrial and domestic WWT which were used to develop country-specific em...

  19. EVALUATION OF THE EFFICIENCY OF INDUSTRIAL FLARES: FLARE HEAD DESIGN AND GAS COMPOSITION

    EPA Science Inventory

    The report gives continued Phase 4 results of a research program to quantify emissions from, and efficiencies of, industrial flares. Initial results were limited to tests conducted burning propane/nitrogen mixtures in pipe flares without pilot light stabilization. The work report...

  20. Microfine coal firing results from a retrofit gas/oil-designed industrial boiler

    SciTech Connect

    Patel, R.; Borio, R.W.; Liljedahl, G.

    1995-11-01

    Under US Department of Energy, Pittsburgh Energy Technology Center (PETC) support, the development of a High Efficiency Advanced Coal Combustor (HEACC) has been in progress since 1987 at the ABB Power Plant Laboratories. The initial work on this concept produced an advanced coal firing system that was capable of firing both water-based and dry pulverized coal in an industrial boiler environment.

  1. ADIPIC ACID ENHANCED FLUE GAS DESULFURIZATION PROCESS FOR INDUSTRIAL BOILERS. VOLUME 2. TECHNICAL ASSESSMENT. PROJECT SUMMARY

    EPA Science Inventory

    The SO sub 2 removal efficiency with the adipic acid averaged 94.3% over a 30-day period, representing a significant improvement in the performance of the system using only limestone. Economic calculations for an industrial boiler adipic-acid-enhanced limestone FGD system indicat...

  2. Impact of postconsumer recycling initiatives on industrial energy demand-opportunities and threats for natural gas. Final report, December 1991-June 1993

    SciTech Connect

    Artz, N.; Kinkelaar, M.; Kirk, M.

    1993-01-01

    The rapid change in municipal solid waste and industrial waste management practices in the U.S. could have significant impact on industrial energy demand and ultimately, natural gas demand. The study examines the impact of increased rates of postconsumer recycling and waste used as fuel on industrial natural gas demand for the time period 1990 to 2005. Increased postconsumer recycling and waste used as fuel are projected to decrease natural gas demand in the U.S. by 29 trillion Btu per year by 1995 and over 71 trillion Btu by 2005. Increased ferrous scrap use in electric are furnaces and postconsumer plastics recycling are projected to cause the most significant loss in natural gas demand.

  3. Recovery of ammonia nitrogen in livestock and industrial wastes using gas permeable membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New waste management methods are needed that can protect the environment and allow manure management to switch back to a recycling view of manure handling. We investigated the use of gas-permeable membranes as components of new processes to capture and recover the ammonia in the liquid manures or in...

  4. Internalizing production externalities: A structural estimation of real options in the upstream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Muehlenbachs, Lucija

    There are hundreds of thousands of crude oil and natural gas wells across North America that are currently not producing oil or gas. Many of these wells have not been permanently decommissioned to meet environmental standards for permanent closure, but are in an inactive state that enables them to be more easily reactivated. Some of these wells have been in this inactive state for more than sixty years which begs the question of whether they will ever contribute to our energy supply, or whether they are being left inactive because the environmental remediation costs are prohibitively high. I estimate a structural model of optimal well operations over time and under uncertainty to determine what conditions or policies might push any of the inactive wells out of the hysteresis in which they reside. The model is further used to forecast production from existing wells and recoverable reserves from existing pools. The estimation uses data on production decisions from 84 thousand conventional oil and gas wells and estimates of the remaining reserves of 47 thousand pools. As the producer's decision depends on their subjective belief for how prices and recoverable reserves change over time, I also estimate the probability of changes in prices and recovery technology. I model increases and decreases in the estimated recoverable reserves to depend on price, and predict that natural gas reserves are more responsive to changes in price than conventional oil reserves. Under high prices there is potential for large increases in gas reserves, however this is not the case for oil reserves when the oil price is high. And likewise, under low prices, gas reserves decrease more than oil reserves. The dynamic programming model predicts that with only a drastic, arguably implausible, increase in prices and recovery rates will there be a significant increase in the number of inactive wells that are reactivated. If ideal conditions are not enough to induce well reactivation then this

  5. Market entry mode and competency building of Western oil companies in the Russian up stream oil and gas industry

    NASA Astrophysics Data System (ADS)

    Stephenson, Paul M.

    This dissertation investigated the market entry and competency building strategies within the context of the Russian oil and gas industry. The study was designed to be of interest to business practitioners and academics given the growing importance of fossil fuel in the energy balance of the global economy and the importance of Russia as a supplier and purchaser in the international market. The study's mixed methodology provides an understanding on the environmental factors that are postulated to impact foreign direct investment flow into Russia and the oil and gas sector. A case study of a fictitiously named Western-Russo oil company was conducted to provide a deep understanding of how capability is viewed by Russian and Western employees and the factors that influences the implementation of a successful competency development program. The case was centered on the development of a Well-Site supervisor group within a Western-Russian oil company. Findings of the study showed that there was no correlation between corruption and foreign direct investment inflow into the Russian economy. The findings also showed that both Russian and Western employees in the oil and gas industry are less focused on nontechnical competency development issues, that Western employees are more orientated towards the bottom-line than Russian employees, and that both groups see operational management as a core competency. In the area of financial management and technology application, there were significant differences in the viewpoint of both groups. Western employees saw a stronger need for financial management and less need for technology application when compared to their Russian counterparts. The results have implications for Western business contemplating entering the Russian oil and gas industry. Western firms need to understand the key drivers that will help them overcome the social and cultural barriers between Western and Russian employees. The role of the company leader is very

  6. Competition in the natural gas pipeline industry: An economic policy analysis

    SciTech Connect

    Gallick, E.C.

    1993-01-01

    The Federal Energy Regulatory Commission (FERC) currently regulates the price at which natural gas can be sold by regulated interstate natural gas pipelines. Whether pipelines should be deregulated depends, to an important extent, on the competitive nature of the market. The key question is whether pipelines can successfully raise price (i.e., the transport fee) and reduce output if the market is deregulated. In most natural gas pipeline markets, there are a small number of current suppliers. Opponents of deregulation argue that the unrestrained market power of pipelines in many local markets will introduce inefficiencies in the sale of natural gas. Implicit in their arguments is a narrow view of competition: the number of current suppliers. The competitive effect of potential entry is largely ignored. These commentators would argue that without potential entry, it may be true that the net social cost of deregulation exceeds the costs of maintaining present regulation. A study was conducted to determine the extent to which potential entry might constrain the exercise of market power by natural gas pipelines if price and entry regulation is removed. Potential entrants are defined in the context of antitrust markets. That is, these markets are consistent with the Department of Justice (DOJ) Merger Guidelines. The study attempts to quantify the effects of potential entry on the market power of current suppliers. The selection of potential entrants therefore considers a number of factors (such as the size of the nearby supplier and the distance to the market) that are expected to affect the likelihood of collision in a deregulated market. The policy implications of the study are reviewed.

  7. Advanced industrial gas turbine technology readiness demonstration program. Phase II. Final report: compressor rig fabrication assembly and test

    SciTech Connect

    Schweitzer, J. K.; Smith, J. D.

    1981-03-01

    The results of a component technology demonstration program to fabricate, assemble and test an advanced axial/centrifugal compressor are presented. This work was conducted to demonstrate the utilization of advanced aircraft gas turbine cooling and high pressure compressor technology to improve the performance and reliability of future industrial gas turbines. Specific objectives of the compressor component testing were to demonstrate 18:1 pressure ratio on a single spool at 90% polytropic efficiency with 80% fewer airfoils as compared to current industrial gas turbine compressors. The compressor design configuration utilizes low aspect ratio/highly-loaded axial compressor blading combined with a centrifugal backend stage to achieve the 18:1 design pressure ratio in only 7 stages and 281 axial compressor airfoils. Initial testing of the compressor test rig was conducted with a vaneless centrifugal stage diffuser to allow documentation of the axial compressor performance. Peak design speed axial compressor performance demonstrated was 91.8% polytropic efficiency at 6.5:1 pressure ratio. Subsequent documentation of the combined axial/centrifugal performance with a centrifugal stage pipe diffuser resulted in the demonstration of 91.5% polytropic efficiency and 14% stall margin at the 18:1 overall compressor design pressure ratio. The demonstrated performance not only exceeded the contract performance goals, but also represents the highest known demonstrated compressor performance in this pressure ratio and flow class. The performance demonstrated is particularly significant in that it was accomplished at airfoil loading levels approximately 15% higher than that of current production engine compressor designs. The test results provide conclusive verification of the advanced low aspect ratio axial compressor and centrifugal stage technologies utilized.

  8. Technologically Enhanced Naturally Occurring Radioactive Materials (TENORM) in the Oil and Gas Industry: A Review.

    PubMed

    Doyi, Israel; Essumang, David Kofi; Dampare, Samuel; Glover, Eric Tetteh

    2016-01-01

    Radiation is part of the natural environment: it is estimated that approximately 80 % of all human exposure comes from naturally occurring or background radiation. Certain extractive industries such as mining and oil logging have the potential to increase the risk of radiation exposure to the environment and humans by concentrating the quantities of naturally occurring radiation beyond normal background levels (Azeri-Chirag-Gunashli 2004). PMID:26670035

  9. The potential near-source ozone impacts of upstream oil and gas industry emissions.

    PubMed

    Olaguer, Eduardo P

    2012-08-01

    Increased drilling in urban areas overlying shale formations and its potential impact on human health through decreased air quality make it important to estimate the contribution of oil and gas activities to photochemical smog. Flares and compressor engines used in natural gas operations, for example, are large sources not only of NOx but also offormaldehyde, a hazardous air pollutant and powerful ozone precursor We used a neighborhood scale (200 m horizontal resolution) three-dimensional (3D) air dispersion model with an appropriate chemical mechanism to simulate ozone formation in the vicinity ofa hypothetical natural gas processing facility, based on accepted estimates of both regular and nonroutine emissions. The model predicts that, under average midday conditions in June, regular emissions mostly associated with compressor engines may increase ambient ozone in the Barnett Shale by more than 3 ppb beginning at about 2 km downwind of the facility, assuming there are no other major sources of ozone precursors. Flare volumes of 100,000 cubic meters per hour ofnatural gas over a period of 2 hr can also add over 3 ppb to peak 1-hr ozone somewhatfurther (>8 km) downwind, once dilution overcomes ozone titration and inhibition by large flare emissions of NOx. The additional peak ozone from the hypothetical flare can briefly exceed 10 ppb about 16 km downwind. The enhancements of ambient ozone predicted by the model are significant, given that ozone control strategy widths are of the order of a few parts per billion. Degrading the horizontal resolution of the model to 1 km spuriously enhances the simulated ozone increases by reducing the effectiveness of ozone inhibition and titration due to artificial plume dilution. PMID:22916444

  10. Risk Assessment Related to Atmospheric Polycyclic Aromatic Hydrocarbons in Gas and Particle Phases near Industrial Sites

    PubMed Central

    Ramírez, Noelia; Cuadras, Anna; Marcé, Rosa Maria

    2011-01-01

    Background: Inhalation is one of the main means of human exposure to polycyclic aromatic hydrocarbons (PAHs) because of their ubiquitous presence in the atmosphere. However, most studies have considered only PAHs found in the particle phase and have omitted the contribution of the gas-phase PAHs to the risk. Objective: We estimated the lifetime lung cancer risk from PAH exposure by inhalation in people living next to the largest chemical site in Southern Europe and the Mediterranean area. Methods: We determined 18 PAHs in the atmospheric gas and particle phase. We monitored the PAHs for 1 year in three locations near the chemical site in different seasons. We used toxic equivalence factors to calculate benzo[a]pyrene (BaP) equivalents (BaP-eq) for individual PAHs and applied the World Health Organization unit risk (UR) for BaP (UR = 8.7 × 10–5) to estimate lifetime cancer risks due to PAH exposures. Results: We observed some spatial and seasonal variability in PAH concentrations. The contribution of gas-phase PAHs to the total BaP-eq value was between 34% and 86%. The total estimated average lifetime lung cancer risk due to PAH exposure in the study area was 1.2 × 10–4. Conclusions: The estimated risk was higher than values recommended by the World Health Organization and U.S. Environmental Protection Agency but lower than the threshold value of 10–3 that is considered an indication of definite risk according to similar risk studies. The results also showed that risk may be underestimated if the contributions of gas-phase PAHs are not considered. PMID:21478082

  11. Hydrodynamic modeling for corrosion control in the oil and gas industry

    SciTech Connect

    Palacios, C.A.; Morales, J.L.

    1995-10-01

    This article describes a methodology used to select and establish corrosion control programs. These include corrosion rate predictions using well known correlations for flowing systems, materials selection, optimization of inhibitors and corrosion monitoring techniques. The methodology characterizes internal corrosion phenomenon integrating the hydrodynamic conditions of the flow (flow velocities, flow pattern, liquid holdups, and where the condensation is taking place within a pipeline) with those that predict corrosion rates. It can be applied in the whole oil/gas production system, including subsurface and surface equipment. The methodology uses single and two phase flow modeling techniques to: (1) optimize the entire production system to obtain the most efficient objective flow rate, taking into consideration the corrosive/erosive nature of the produced fluids and (2) characterize the corrosion nature of oil and gas transmission lines. As an example of its use, a characterization of corrosion nature of a gas transmission line is described. The hydrodynamic simulation was performed using commercially available simulators, and the corrosion rates were determined using published correlations. Results using this methodology allowed for corrosion control strategies, protection and monitoring criteria, and inhibition optimization.

  12. Corrosion in the Oil and Gas Industry: An Increasing Challenge for Materials

    NASA Astrophysics Data System (ADS)

    Perez, Teresa E.

    2013-08-01

    Important reserves of oil and gas, which are left to be discovered and produced, are mainly concentrated in challenging locations and under severe conditions [i.e., high pressure (HP)/high temperature (HT)]. The HP/HT plus the presence of aggressive environments mean a highly demanding scenario for tubes used in producing oil and gas [oil country tubular goods (OCTG)]. Material property requirements include high mechanical properties at ambient and high temperatures (e.g., as high up to 200-250°C). Additionally, if H2S is present, resistance to sulfide stress cracking may be required, depending also on other environmental conditions. Even without H2S, contents of CO2, chlorides, and high temperatures and pressures can represent a risk of high corrosion rates. The improvement of some of the required properties of the materials (e.g., steels) can mean the impairment of other properties. Consequently, a careful balance is required and limits exist for the individual modification of the properties. The present article focuses on the two main environmental deterioration problems in the oil and gas business: (I) sulfide stress cracking and (II) CO2 corrosion. A description of the acting mechanisms and the effect of environmental and material factors are presented. Selection criteria and current material limitations are also discussed.

  13. The value of underground storage in today`s natural gas industry

    SciTech Connect

    1995-03-01

    The report consists of three chapters and four appendices. Chapter 1 provides basic information on the role of storage in today`s marketplace where natural gas is treated as a commodity. Chapter 2 provides statistical analyses of the relationship between storage and spot prices on both a monthly and daily basis. For the daily analysis, temperature data were used a proxy for storage withdrawals, providing a new means of examining the short-term relationship between storage and spot prices. Chapter 3 analyzes recent trends in storage management and use, as well as plans for additions to storage capacity. It also reviews the status of the new uses of storage resulting from Order 636, that is, market-based rates and capacity release. Appendix A serves as a stand-along primer on storage operations, and Appendix B provides further data on plans for the expansion of storage capacity. Appendix C explains recent revisions made to working gas and base gas capacity on the part of several storage operators in 1991 through 1993. The revisions were significant, and this appendix provides a consistent historical data series that reflects these changes. Finally, Appendix D presents more information on the regression analysis presented in Chapter 2. 19 refs., 21 figs., 5 tabs.

  14. Future efficiency growth - a historic crossroads for the gas turbine industry

    SciTech Connect

    Touchton, G.; Cohn, A.

    1996-12-31

    In the 1980s, the efficiencies of the best gas turbine/steam turbine combined-cycle plants were in the 47-50% (LHV) range. Now there are operating plants with efficiencies of 55%, and plants being installed or announced are projected to achieve efficiencies in the 58-60% range. The major determinant of plant efficiency gain has been the improvement of gas turbine components-primarily the expander turbine and compressor. Firing temperatures have risen from under 2000F (1100C) to over 2600F (1430C), while pressure ratios-which were about 10:1-have risen to as high as 30:1. However, progress along this road is becoming ever more difficult, especially because of the necessity of meeting more stringent NOx emission requirements. In a historic shift, manufacturers are turning toward the technology path less traveled-more novel and complex cycles. The latest ABB gas turbine series, the GT24 and GT26, utilize high temperature reheat combustion, the GE 7H and 9H utilize closed-circuit steam cooling, and the CHAT cycle utilizes humidification. This paper shows that by properly combining these techniques, plants can achieve significant further efficiency improvement while maintaining NOx emissions at present levels.

  15. Automated analyser for monitoring the contents of hydrocarbons in gas emitted from exploratory bore-holes in the gas and oil industry

    PubMed Central

    Janicki, Wacław; Żwan, Paweł; Namieśnik, Jacek

    2003-01-01

    An automated analyser for total hydrocarbon contents and hydrocarbon composition (from methane to pentanes) was constructed and tested in both laboratory and field exploitation. It used two-channel analysis: continuous measurements of total hydrocarbon contents and periodic (90 or 150 s) composition analysis after separation of hydrocarbons on a gas chromatographic column. Flame ionization detectors were used in both channels. A simple 16-bit analogue-to-digital converter was used (4.8, practically four orders of magnitude), while the full measuring range (six orders of magnitude) was ensured by automatic dilution of the sample (or standard) with clean air. Full control of the operating (calibration/analyses) cycle was performed by microcomputer. An external programme, based on a computer provided with full information on the instrument operating conditions, presents the results of calibrations/analyses and enables them to be archived in a standard database used in the oil/gas drilling industry (N-LAB) by providing a suitable link. The instrument measuring range was 1 ppm to 100% with precision not worse than 5% at the detection limit. The analyser can operate autonomously for two months, recalibrating itself daily. PMID:18924624

  16. Automated analyser for monitoring the contents of hydrocarbons in gas emitted from exploratory bore-holes in the gas and oil industry.

    PubMed

    Janicki, Wacław; Chrzanowski, Wojciech; Zwan, Paweł; Namieśnik, Jacek

    2003-01-01

    An automated analyser for total hydrocarbon contents and hydrocarbon composition (from methane to pentanes) was constructed and tested in both laboratory and field exploitation. It used two-channel analysis: continuous measurements of total hydrocarbon contents and periodic (90 or 150 s) composition analysis after separation of hydrocarbons on a gas chromatographic column. Flame ionization detectors were used in both channels. A simple 16-bit analogue-to-digital converter was used (4.8, practically four orders of magnitude), while the full measuring range (six orders of magnitude) was ensured by automatic dilution of the sample (or standard) with clean air. Full control of the operating (calibration/analyses) cycle was performed by microcomputer. An external programme, based on a computer provided with full information on the instrument operating conditions, presents the results of calibrations/analyses and enables them to be archived in a standard database used in the oil/gas drilling industry (N-LAB) by providing a suitable link. The instrument measuring range was 1 ppm to 100% with precision not worse than 5% at the detection limit. The analyser can operate autonomously for two months, recalibrating itself daily. PMID:18924624

  17. Gulf of Mexico Gas Hydrate Joint Industry Project Leg II logging-while-drilling data acquisition and anaylsis

    USGS Publications Warehouse

    Collett, Timothy S.; Lee, Myung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.

    2012-01-01

    One of the objectives of the Gulf of MexicoGasHydrateJointIndustryProjectLegII (GOM JIP LegII) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gashydrates under various geologic conditions and to understand the geologic controls on the occurrence of gashydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gashydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gashydrate in nature: From using electrical resistivity and acoustic logs to identify gashydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gashydrate reservoirs and the distribution and concentration of gashydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gashydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gashydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP LegII effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.

  18. Thermal barrier coatings for thermal insulation and corrosion resistance in industrial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Vogan, J. W.; Hsu, L.; Stetson, A. R.

    1981-01-01

    Four thermal barrier coatings were subjected to a 500-hour gas turbine engine test. The coatings were two yttria stabilized zirconias, calcium ortho silicate and calcium meta titanate. The calcium silicate coating exhibited significant spalling. Yttria stabilized zirconia and calcium titanate coatings showed little degradation except in blade leading edge areas. Post-test examination showed variations in the coating due to manual application techniques. Improved process control is required if engineering quality coatings are to be developed. The results indicate that some leading edge loss of the coating can be expected near the tip.

  19. Evaluation of microextraction/capillary column gas chromatography for monitoring industrial outfalls

    SciTech Connect

    Thielen, D.R.; Olsen, G.; Davis, A.; Bajor, E.; Stefanovski, J.; Chodkowski, J.

    1987-01-01

    Microextraction and capillary-column gas chromatography techniques are applied to plant discharge streams for repetitive wastewater discharge permit analyses. This combination allows the analyst to reduce sample preparation since microextraction replaces both purge-and-trap for volatiles and microextraction for semi-volatiles. An additional advantage is the elimination of a concentration step, which is ,ften a major contributor to low method recoveries. The overall procedure is shown to be more precise than purge-and-trap but slightly less precise than conventional extraction. The results of each method are shown to be equivalent.

  20. Experimental Evaluation the Effectiveness of Water Mist Fire Extinguishing Systems at Oil and Gas Industry

    NASA Astrophysics Data System (ADS)

    Nyashina, G. S.; Medvedev, V. V.; Shevyrev, S. A.; Vysokomornaya, O. V.

    2016-02-01

    Currently mist water is one of the most promising areas of fire protection. We performed an experimental study of phase transformations drops of water mist (range 50 - 500 microns) in motion in a high-temperature (500 - 2000 K) typical products of combustion of petroleum products (gasoline, kerosene, acetone, alcohol). We used high speed (the speed of shooting at least 105 frames per second) and optical methods of recording streams of liquid and gas medium. We determined the effect of the parameters of the test process (the initial temperature and the initial droplet size) at the rate of evaporation of atomized water under these conditions.

  1. Risk perception and safety in the UK offshore oil and gas industry

    SciTech Connect

    Flin, R.H.; Mearns, K.; Gordon, R.P.E.; Fleming, M.T.

    1996-12-31

    This paper presents a selection of the final results from a study of risk perception and safety attitudes in workers on UKCS offshore oil and gas platforms, which was sponsored by the HSE Offshore Safety Division, Amerada Hess, British Gas, BP, Conoco, Elf Enterprise and Total Oil Marine. The study was designed in conjunction with Dr Rundmo of Trondheim University who was carrying out a matched survey with Norwegian offshore workers for the Norwegian Petroleum Directorate`. A representative sample of 622 UKCS workers on six production platforms were surveyed about their job characteristics, perceived risks, safety attitudes, safety satisfaction, accidents and injuries and the Safety Case. The results indicate that the relative feelings of safety in relation to major hazards (e.g. explosion, blow-out) are aligned with QRA calculations. In general, the workforce feel safe but are aware of the hazards in their environment. Further analyses and statistical modelling indicates that organizational factors (e.g. management commitment to safety, safety attitudes) have the greatest direct effect on workers perception of risk and their satisfaction with safety measures. The British and Norwegian data sets are now being merged and preliminary findings will be mentioned. To explore the emerging issues further, a new study on human factors in UK offshore safety has just been launched with the support of OSD, OCA and six operating and contractor companies. A brief outline will be presented.

  2. An embedded boundary method for the modeling of unsteady combustion in an industrial gas-fired furnace

    SciTech Connect

    Pember, R.B.; Almgren, A.S.; Crutchfield, W.Y.; Howell, L.H.; Bell, J.B.; Colella, P.; Beckner, V.E.

    1995-10-18

    A new methodology for the modeling of unsteady, nonpremixed, axisymmetric reacting flow in industrial furnaces is presented. The method is an extension of previous work by the authors to complex geometries, multistep kinetics mechanisms, and realistic properties, especially thermochemical data. The walls of the furnace are represented as an embedded boundary in a uniform, rectangular grid. The grid then consists of uniform rectangular cells except at the furnace wall where irregular (mixed) cells may be present. We use finite volume differencing techniques for the convective, viscous, and radiative heat transport terms in the mixed cells, while a finite element-based technique is used to solve the elliptic equation arising from the low-Mach number formulation. Results from the simulation of an experimental natural gas-fired furnace are shown.

  3. A conceptual framework and practical guide for assessing fitness-to-operate in the offshore oil and gas industry.

    PubMed

    Griffin, Mark A; Hodkiewicz, Melinda R; Dunster, Jeremy; Kanse, Lisette; Parkes, Katharine R; Finnerty, Dannielle; Cordery, John L; Unsworth, Kerrie L

    2014-07-01

    The paper outlines a systemic approach to understanding and assessing safety capability in the offshore oil and gas industry. We present a conceptual framework and assessment guide for understanding fitness-to-operate (FTO) that builds a more comprehensive picture of safety capability for regulators and operators of offshore facilities. The FTO framework defines three enabling capitals that create safety capability: organizational capital, social capital, and human capital. For each type of capital we identify more specific dimensions based on current theories of safety, management, and organizational processes. The assessment guide matches specific characteristics to each element of the framework to support assessment of safety capability. The content and scope of the FTO framework enable a more comprehensive coverage of factors that influence short-term and long-term safety outcomes. PMID:24393216

  4. Effect of pressure and fuel-air unmixedness on NO{sub x} emissions from industrial gas turbine burners

    SciTech Connect

    Biagioli, Fernando; Guethe, Felix

    2007-10-15

    The effect of fuel-air unmixedness on NO{sub x} emissions from industrial lean premixed gas turbine burners fueled with natural gas is analyzed in the pressure range from 1 to 30 bar. The analysis is based on a model where NO{sub x} production is split, according to a Damkoehler number criterion, into a ''prompt'' (fast) contribution generated within the very narrow instantaneous heat release region (flamelet) and a ''postflame'' (slow) one, generated in the combustion products. Using GRI3.0 chemical kinetics, it is found that (a) the prompt NO{sub x} contribution is approximately a factor of 3 less sensitive to adiabatic flame temperature variations than postflame NO{sub x} and (b) prompt and postflame NO{sub x} change with pressure respectively according to an exponent {alpha}{sub PR}{approx_equal}-0.45 and {alpha}{sub PF}{approx_equal}0.67. It is shown that total NO{sub x} emissions change from being mostly of prompt type at 1 bar to being mostly of postflame type at 30 bar, so that the effect of fuel-air unmixedness on NO{sub x} emissions significantly increases with increasing pressure. The combination of these findings yields a negative NO{sub x} pressure exponent under fully premixed conditions across a rather large range of equivalence ratios but a positive one for levels of fuel-air unmixedness typical of industrial burners. This result is confirmed by the application of the NO{sub x} model in the large eddy simulation of the ALSTOM EV double cone burner, which gives, in line with experimental data, an NO{sub x} pressure exponent growing, with equivalence ratio, from {approx_equal}0.1 to {approx_equal}0.67. (author)

  5. The California greenhouse gas initiative and its implications to the automotive industry

    SciTech Connect

    Smith, B. C.; Miller, R. T.; Center for Automotive Research

    2006-05-31

    CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to

  6. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: Recent updates

    SciTech Connect

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-22

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2) in order to mimic atmospheric conditions. Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  7. Energy direct inputs and greenhouse gas emissions of the main industrial trawl fishery of Brazil.

    PubMed

    Port, Dagoberto; Perez, Jose Angel Alvarez; de Menezes, João Thadeu

    2016-06-15

    This study provides first-time estimates of direct fuel inputs and greenhouse gas emissions produced by the trawl fishing fleet operating off southeastern and southern Brazil. Analyzed data comprised vessel characteristics, landings, fishing areas and trawling duration of 10,144 fishing operations monitored in Santa Catarina State from 2003 to 2011. Three main fishing strategies were differentiated: 'shrimp trawling', 'slope trawling' and 'pair trawling'. Jointly these operations burned over 141.5millionl of diesel to land 342.3millionkg of fish and shellfish. Annually, 0.36-0.48l were consumed for every kg of catch landed. Because all fishing strategies relied on multispecific catches to raise total incomes, estimates of fuel use intensity were generally low but increased 316-1025% if only nominal targets were considered. In nine years, trawling operations emitted 104.07GgC to the atmosphere, between 36,800-49,500tons CO2 per year. PMID:27068561

  8. Energy direct inputs and greenhouse gas emissions of the main industrial trawl fishery of Brazil.

    PubMed

    Port, Dagoberto; Perez, Jose Angel Alvarez; de Menezes, João Thadeu

    2014-11-15

    This study provides first-time estimates of direct fuel inputs and greenhouse gas emissions produced by the trawl fishing fleet operating off southeastern and southern Brazil. Analyzed data comprised vessel characteristics, landings, fishing areas and trawling duration of 10,144 fishing operations monitored in Santa Catarina State from 2003 to 2011. Three main fishing strategies were differentiated: 'shrimp trawling', 'slope trawling' and 'pair trawling'. Jointly these operations burned over 9.1 million liters of diesel to land 342.3 million kilograms of fish and shellfish. Annually, 0.023-0.031 l were consumed for every kg of catch landed. Because all fishing strategies relied on multispecific catches to raise total incomes, estimates of fuel use intensity were generally low but increased 200-900% if only nominal targets were considered. In nine years, trawling operations emitted 6.69 GgC to the atmosphere, between 2300 and 3300 tons CO2 per year. PMID:25173595

  9. The Northwest Infrared (NWIR) gas-phase spectral database of industrial and environmental chemicals: recent updates

    NASA Astrophysics Data System (ADS)

    Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sharpe, Steven W.; Sams, Robert L.; Tonkyn, Russell G.

    2014-05-01

    With continuing improvements in both standoff- and point-sensing techniques, there is an ongoing need for high-quality infrared spectral databases. The Northwest Infrared Database (NWIR) contains quantitative, gas-phase infrared spectra of nearly 500 pure chemical species that can be used for a variety of applications such as atmospheric monitoring, biomass burning studies, etc. The data, recorded at 0.1 cm-1 resolution, are pressure broadened to one atmosphere (N2). Each spectrum is a composite composed of multiple individual measurements. Recent updates to the database include over 60 molecules that are known or suspected biomass-burning effluents. Examples from this set of measurements will be presented and experimental details will be discussed in the context of the utility of NWIR for environmental applications.

  10. Advanced coal-fueled industrial cogeneration gas turbine system particle removal system development

    SciTech Connect

    Stephenson, M.

    1994-03-01

    Solar Turbines developed a direct coal-fueled turbine system (DCFT) and tested each component in subscale facilities and the combustion system was tested at full-scale. The combustion system was comprised of a two-stage slagging combustor with an impact separator between the two combustors. Greater than 90 percent of the native ash in the coal was removed as liquid slag with this system. In the first combustor, coal water slurry mixture (CWM) was injected into a combustion chamber which was operated loan to suppress NO{sub x} formation. The slurry was introduced through four fuel injectors that created a toroidal vortex because of the combustor geometry and angle of orientation of the injectors. The liquid slag that was formed was directed downward toward an impaction plate made of a refractory material. Sixty to seventy percent of the coal-borne ash was collected in this fashion. An impact separator was used to remove additional slag that had escaped the primary combustor. The combined particulate collection efficiency from both combustors was above 95 percent. Unfortunately, a great deal of the original sulfur from the coal still remained in the gas stream and needed to be separated. To accomplish this, dolomite or hydrated lime were injected in the secondary combustor to react with the sulfur dioxide and form calcium sulfite and sulfates. This solution for the sulfur problem increased the dust concentrations to as much as 6000 ppmw. A downstream particulate control system was required, and one that could operate at 150 psia, 1850-1900{degrees}F and with low pressure drop. Solar designed and tested a particulate rejection system to remove essentially all particulate from the high temperature, high pressure gas stream. A thorough research and development program was aimed at identifying candidate technologies and testing them with Solar`s coal-fired system. This topical report summarizes these activities over a period beginning in 1987 and ending in 1992.

  11. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission.

    PubMed

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2015-08-01

    Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. PMID:25982876

  12. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process

    NASA Astrophysics Data System (ADS)

    Feng, Jicheng; Biskos, George; Schmidt-Ott, Andreas

    2015-10-01

    Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure non-agglomerated “singlet” nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials.

  13. Toward industrial scale synthesis of ultrapure singlet nanoparticles with controllable sizes in a continuous gas-phase process

    PubMed Central

    Feng, Jicheng; Biskos, George; Schmidt-Ott, Andreas

    2015-01-01

    Continuous gas-phase synthesis of nanoparticles is associated with rapid agglomeration, which can be a limiting factor for numerous applications. In this report, we challenge this paradigm by providing experimental evidence to support that gas-phase methods can be used to produce ultrapure non-agglomerated “singlet” nanoparticles having tunable sizes at room temperature. By controlling the temperature in the particle growth zone to guarantee complete coalescence of colliding entities, the size of singlets in principle can be regulated from that of single atoms to any desired value. We assess our results in the context of a simple analytical model to explore the dependence of singlet size on the operating conditions. Agreement of the model with experimental measurements shows that these methods can be effectively used for producing singlets that can be processed further by many alternative approaches. Combined with the capabilities of up-scaling and unlimited mixing that spark ablation enables, this study provides an easy-to-use concept for producing the key building blocks for low-cost industrial-scale nanofabrication of advanced materials. PMID:26511290

  14. Pore- and fracture-filling gas hydrate reservoirs in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Green Canyon 955 H well

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.

    2012-01-01

    High-quality logging-while-drilling (LWD) downhole logs were acquired in seven wells drilled during the Gulf of MexicoGasHydrateJointIndustryProjectLegII in the spring of 2009. Well logs obtained in one of the wells, the GreenCanyon Block 955Hwell (GC955-H), indicate that a 27.4-m thick zone at the depth of 428 m below sea floor (mbsf; 1404 feet below sea floor (fbsf)) contains gashydrate within sand with average gashydrate saturations estimated at 60% from the compressional-wave (P-wave) velocity and 65% (locally more than 80%) from resistivity logs if the gashydrate is assumed to be uniformly distributed in this mostly sand-rich section. Similar analysis, however, of log data from a shallow clay-rich interval between 183 and 366 mbsf (600 and 1200 fbsf) yielded average gashydrate saturations of about 20% from the resistivity log (locally 50-60%) and negligible amounts of gashydrate from the P-wave velocity logs. Differences in saturations estimated between resistivity and P-wave velocities within the upper clay-rich interval are caused by the nature of the gashydrate occurrences. In the case of the shallow clay-rich interval, gashydrate fills vertical (or high angle) fractures in rather than fillingpore space in sands. In this study, isotropic and anisotropic resistivity and velocity models are used to analyze the occurrence of gashydrate within both the clay-rich and sand dominated gas-hydrate-bearing reservoirs in the GC955-Hwell.

  15. Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992

    SciTech Connect

    LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

    1992-06-01

    This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

  16. The more they stay the same. [Managing change in the electric power and natural gas industries

    SciTech Connect

    Wilson, W.P.

    1994-02-15

    The mindset of some senior utility executives can be summarized with three of the most dangerous words in the business vocabulary: Wait and see. That's the major conclusion of a firm's recent survey of 18 senior executives at 10 utilities in the Rocky Mountain, West Coast, and Western Canadian regions. While many executives spoke about change, only two companies were fundamentally transforming their old ways of doing business and introducing genuine innovations. The authors discovered a perception that change in the utility business would be gradual and could be effectively managed through cautious, incremental steps. This go-slow attitude was described by the president of one innovative utility: [open quotes]Some of my peers do not have a clue regarding the acceleration of change in the marketplace.[close quotes] Another respondent characterized his company's response as [open quotes]a hesitant transition.[close quotes] This hesitancy is matched by a slowness to study and adapt successful management practices from other industries practices such as supplier partnerships, cross-training and team building, and more strategic use of information technology. The NIH ([open quotes]Not Invented Here[close quotes]) Syndrome was evident throughout most of the interviews. This article highlights the results of those interviews.

  17. Crises Management in the Oil and Gas Industry: The Niger Delta Experience

    NASA Astrophysics Data System (ADS)

    Odemene, Glory C.

    The Niger Delta crises escalated beyond the borders of the Nigerian nation to become an issue that affected individuals and corporations around the world. This study led to the discovery of how the local crises escalated with international implications. This discovery was accomplished by addressing how the Niger Delta crises escalated from villages to international scenes, with notable impacts on the environment, health, safety, security, and financial segments of local, international, private, and corporate entities. Using Sweeny's crisis decision theory and Lazarus and Folkman's coping theory, the study considered the coping strategies of community members, the decisions, and actions they took in response to the management approaches of the government and the oil and gas companies (OGCs). This qualitative study utilized historical narrative to collect data by interviewing 4 participants who lived and worked in the region during the crises. NVivo was used for manual and automatic coding of data, as well as for categorization and connection of codes. Content analysis of identified codes and categories revealed the themes and trends in the experiences narrated by participants. Findings include the root causes, trend of escalation, and management strategies of the government and the OGCs that influenced the crises. These findings will help to influence policies and practices in the region and enhance effective management of current and emerging conflicts, with possibilities of restoring stability and security in the areas and in the nation at large.

  18. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    PubMed

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty. PMID:26241377

  19. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    SciTech Connect

    Joseph Rabovitser

    2009-06-30

    , pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

  20. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the U.S. pulp and paper industry

    SciTech Connect

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the U.S. (U.S. EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the U.S. This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then

  1. Opportunities to improve energy efficiency and reduce greenhouse gas emissions in the US pulp and paper industry

    SciTech Connect

    Martin, Nathan; Anglani, N.; Einstein, D.; Khrushch, M.; Worrell, E.; Price, L.K.

    2000-07-01

    The pulp and paper industry accounts for over 12% of total manufacturing energy use in the US (US EIA 1997a), contributing 9% to total manufacturing carbon dioxide emissions. In the last twenty-five years primary energy intensity in the pulp and paper industry has declined by an average of 1% per year. However, opportunities still exist to reduce energy use and greenhouse gas emissions in the manufacture of paper in the US This report analyzes the pulp and paper industry (Standard Industrial Code (SIC) 26) and includes a detailed description of the processes involved in the production of paper, providing typical energy use in each process step. We identify over 45 commercially available state-of-the-art technologies and measures to reduce energy use and calculate potential energy savings and carbon dioxide emissions reductions. Given the importance of paper recycling, our analysis examines two cases. Case A identifies potential primary energy savings without accounting for an increase in recycling, while Case B includes increasing paper recycling. In Case B the production volume of pulp is reduced to account for additional pulp recovered from recycling. We use a discount rate of 30% throughout our analysis to reflect the investment decisions taken in a business context. Our Case A results indicate that a total technical potential primary energy savings of 31% (1013 PJ) exists. For case A we identified a cost-effective savings potential of 16% (533 PJ). Carbon dioxide emission reductions from the energy savings in Case A are 25% (7.6 MtC) and 14% (4.4 MtC) for technical and cost-effective potential, respectively. When recycling is included in Case B, overall technical potential energy savings increase to 37% (1215 PJ) while cost-effective energy savings potential is 16%. Increasing paper recycling to high levels (Case B) is nearly cost-effective assuming a cut-off for cost-effectiveness of a simple payback period of 3 years. If this measure is included, then the

  2. Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels

    SciTech Connect

    Srinivasan, Ram

    2013-07-31

    This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15

  3. SiC based MOSFET transistors for high temperature industrial gas sensing applications

    NASA Astrophysics Data System (ADS)

    Lloyd Spetz, Anita

    2000-03-01

    Field effect sensors based on silicon carbide have been demonstrated for industrial applications at high temperatures and in rough environments. Metal insulator silicon carbide, MISiC, Schottky diode devices as well as FET transistor devices that can be operated up to 700°C are presented. For high operation temperatures the sensors respond within milliseconds to a change between an oxidizing and reducing atmosphere, and cylinder specific monitoring of a combustion engine has been demonstrated. Changing the temperature and the type of gate metal gives sensors with diverse response patterns to different components in e.g. exhaust gases and flue gases. Sensor devices operating around 300°C with some selectivity to nitric oxide in synthetic diesel exhaust gases are presented. At a higher temperature, about 500°C, some selectivity to HC is found in synthetic petrol exhausts. Boilers of the size 0.5 - 5 MW constitute a potential market for combustion monitoring sensors. We have demonstrated MISiC devices with high selectivity to carbon monoxide in flue gases. References: Fast responding air/fuel sensor for individual cylinder control, A. Baranzahi, P. Tobias, A. Lloyd Spetz, I Lundström, P. Mårtensson, M. Glavmo, A. Göras, J. Nytomt, P. Salomonsson, and H. Larsson, SAE Technical Paper Series 972940, Combustion and Emisson Formation in SI Engines, (SP-1300) (1997) 231-240. MISiC Schottky Diodes as NOx sensors in simulated exhausts, H. Svenningstorp, P. Tobias, C. Wijk, I. Lundström, P. Salomonsson, L.-G. Ekedahl, and A. Lloyd Spetz, proc. Eurosensors XIII, The Hague, The Netherlands, September 12-15, pp. 501-504, 1999. Measurements with MISiC and MOS sensors in flue gases, L. Unéus, P. Ljung, M. Mattsson, P. Mårtenssson, R. Wigren, P. Tobias, I. Lundström, L-G. Ekedahl and A. Lloyd Spetz, proc. Eurosensors XIII, The Hague, The Netherlands, September 12-15, pp. 521-524, 1999.

  4. Development of a tunable diode laser absorption sensor for online monitoring of industrial gas total emissions based on optical scintillation cross-correlation technique.

    PubMed

    Zhang, Zhirong; Pang, Tao; Yang, Yang; Xia, Hua; Cui, Xiaojuan; Sun, Pengshuai; Wu, Bian; Wang, Yu; Sigrist, Markus W; Dong, Fengzhong

    2016-05-16

    We report the first application of gas total emission using a DFB diode laser for gas concentration measurements combined with two LEDs for gas velocity measurements. In situ gas total emissions and particle density measurements in an industrial pipeline using simultaneous tunable diode laser absorption spectroscopy (TDLAS) and optical scintillation cross-correlation technique (OSCC) are presented. Velocity mean values obtained are 7.59 m/s (OSCC, standard deviation is 1.37 m/s) and 8.20 m/s (Pitot tube, standard deviation is 1.47 m/s) in a steel plant pipeline for comparison. Our experiments demonstrate that the combined system of TDLAS and OSCC provides a new versatile tool for accurate measurements of total gas emissions. PMID:27409967

  5. PROCEEDINGS: EPA'S (ENVIRONMENTAL PROTECTION AGENCIES) INDUSTRY BRIEFING ON THE ORGANIC-ACID-ENHANCED LIMESTONE FGD (FLUE GAS DESULFURIZATION) PROCESS HELD AT SAN ANTONIO, TEXAS ON JULY 19, 1984

    EPA Science Inventory

    The proceedings document presentations made during an EPA-sponsored industry briefing, July 19, 1984, in San Antonio, TX. The briefing dealt with the status of EPA's research activities on the organic-acid-enhanced limestone flue gas desulfurization (FGD) process. Subjects covere...

  6. ENVIRONMENTAL PROTECTION AGENCY (EPA) EVALUATION OF WATER PLANT LIME SLUDGE IN AN INDUSTRIAL BOILER FGD (FLUE GAS DESULFURIZATION) SYSTEM AT RICKENBACKER AFB

    EPA Science Inventory

    The report gives results of a September 1978-February 1979 test program to evaluate lime water softening waste sludge as an alternate reagent for a flue gas desulfurization (FGD) system on an industrial boiler at Rickenbacker Air Force Base, Ohio. The study also included assessin...

  7. 48 CFR 15.404-4 - Profit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... objective in price negotiations based on cost analysis. (1) Profit or fee prenegotiation objectives do not... those acquisitions that require cost analysis; and (ii) May prescribe specific exemptions for situations... negotiation is not based on cost analysis, contracting officers are not required to analyze profit. (2)...

  8. 48 CFR 315.404-4 - Profit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... are defined as those business entities organized and operated exclusively for charitable, scientific... of cooperation (both business and technical), compliance with previous contract requirements, and... involving: Small businesses; HUBZone small businesses; service-disabled, veteran-owned small businesses;...

  9. 48 CFR 315.404-4 - Profit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... are defined as those business entities organized and operated exclusively for charitable, scientific... of cooperation (both business and technical), compliance with previous contract requirements, and... involving: Small businesses; HUBZone small businesses; service-disabled, veteran-owned small businesses;...

  10. 48 CFR 315.404-4 - Profit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... are defined as those business entities organized and operated exclusively for charitable, scientific... of cooperation (both business and technical), compliance with previous contract requirements, and... involving: Small businesses; HUBZone small businesses; service-disabled, veteran-owned small businesses;...

  11. 48 CFR 315.404-4 - Profit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... are defined as those business entities organized and operated exclusively for charitable, scientific... of cooperation (both business and technical), compliance with previous contract requirements, and... involving: Small businesses; HUBZone small businesses; service-disabled, veteran-owned small businesses;...

  12. 48 CFR 315.404-4 - Profit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... are defined as those business entities organized and operated exclusively for charitable, scientific... of cooperation (both business and technical), compliance with previous contract requirements, and... involving: Small businesses; HUBZone small businesses; service-disabled, veteran-owned small businesses;...

  13. 12 CFR 404.4 - Request requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... employee of Ex-Im Bank familiar with the subject matter of the request to locate the record with a... waiver, Ex-Im Bank shall advise the requester of the requirements of this paragraph. If the requester... Privacy Office shall notify the requester, in writing, that Ex-Im Bank will not process the request. (2)...

  14. 12 CFR 404.4 - Request requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... employee of Ex-Im Bank familiar with the subject matter of the request to locate the record with a... waiver, Ex-Im Bank shall advise the requester of the requirements of this paragraph. If the requester... Privacy Office shall notify the requester, in writing, that Ex-Im Bank will not process the request. (2)...

  15. 48 CFR 915.404-4 - Profit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) and Bonneville Power Administration (BPA) functions. Pursuant to section 602(d) (13) and (20) of the... as those of the BPA, now being performed by DOE are exempt from the 6 percent of cost restriction...

  16. 48 CFR 15.404-4 - Profit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Contract cost risk. (A) This factor measures the degree of cost responsibility and associated risk that the... risks. (B) The contractor assumes the greatest cost risk in a closely priced firm-fixed-price contract...-fixed-price contracts may entail substantially less cost risk than others because, for example,...

  17. 48 CFR 215.404-4 - Profit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... contracts with Federally Funded Research and Development Centers (FFRDCs) (see 215.404-75). There are three... architect-engineer or construction work; (iii) Primarily for delivery of material from subcontractors; or... DEFENSE CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing...

  18. 48 CFR 215.404-4 - Profit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Federally Funded Research and Development Centers (FFRDCs) (see 215.404-75). There are three structured... pricing data threshold (see FAR 15.403-4(a)(1)); (ii) For architect-engineer or construction work; (iii... DEFENSE CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing...

  19. 48 CFR 215.404-4 - Profit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... contracts with Federally Funded Research and Development Centers (FFRDCs) (see 215.404-75). There are three... architect-engineer or construction work; (iii) Primarily for delivery of material from subcontractors; or... DEFENSE CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing...

  20. 48 CFR 215.404-4 - Profit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Federally Funded Research and Development Centers (FFRDCs) (see 215.404-75). There are three structured... pricing data threshold (see FAR 15.403-4(a)(1)); (ii) For architect-engineer or construction work; (iii... DEFENSE CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Contract Pricing...

  1. 48 CFR 215.404-4 - Profit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Profit. (b) Policy. (1) Contracting officers shall use a structured approach for developing a... alternate structured approach. (c) Contracting officer responsibilities. (1) Also, do not perform a profit analysis when assessing cost realism in competitive acquisitions. (2) When using a structured approach,...

  2. Natural gas use for pollution control: Review of data bases for utility and industrial boilers. Topical report, October 1986-May 1987

    SciTech Connect

    Szabo, M.F.; Meyer, C.J.

    1987-07-01

    The purpose of this report is to review a number of publicly available data bases for identifying potential utility and industrial candidates for gas combustion technologies. Examples are provided to show that this information might be useful when combined with a specific set of existing or proposed combustion sources control programs for SO2, NOx, and particulate matter. Section 2 reviews a number of data bases that can be used to identify specific utility/industrial candidates for gas technologies; Section 3 provides examples of how data bases can be used in regional analyses of opportunities for gas technologies in air quality management programs. Example listings are provided in the appendices to this report.

  3. CRADA NFE-08-01456 Evaluation of Alumina-Forming Austenitic Stainless Steel Alloys in Industrial Gas Turbines

    SciTech Connect

    Brady, Michael P; Pint, Bruce A; Unocic, Kinga A; Yamamoto, Yukinori; Kumar, Deepak; Lipschutz, Mark D.

    2011-09-01

    Oak Ridge National Laboratory (ORNL) and Solar Turbines Incorporated (Solar) participated in an in-kind cost share cooperative research and development agreement (CRADA) effort under the auspices of the Energy Efficiency and Renewable Energy (EERE) Technology Maturation Program to explore the feasibility for use of developmental ORNL alumina-forming austenitic (AFA) stainless steels as a material of construction for industrial gas turbine recuperator components. ORNL manufactured lab scale foil of three different AFA alloy compositions and delivered them to Solar for creep properties evaluation. One AFA composition was selected for a commercial trial foil batch. Both lab scale and the commercial trial scale foils were evaluated for oxidation and creep behavior. The AFA foil exhibited a promising combination of properties and is of interest for future scale up activities for turbine recuperators. Some issues were identified in the processing parameters used for the first trial commercial batch. This understanding will be used to guide process optimization of future AFA foil material production.

  4. Coenzyme Q10-containing composition (Immugen) protects against occupational and environmental stress in workers of the gas and oil industry.

    PubMed

    Korkina, Ludmila; Deeva, Irina; Ibragimova, Galina; Shakula, Alexander; Luci, Antonio; De Luca, Chiara

    2003-01-01

    The manual workers of the gas-and-oil extraction industry are exposed to hostile environmental and occupational conditions, resulting in elevated mortality and disability, due to chronic neurological and cardiovascular diseases. We evaluated the degree of oxidative stress, often associated with these pathological features, in the blood of manual and office employees of Russian Siberian extraction plants, and their psycho-physiological conditions. Results showed increased levels of spontaneous (p < 0.05) and PMA-activated (p < 0.01) luminol-dependent chemiluminescence (LDCL) in the white blood cells (WBC), and decreased peroxynitrite levels (p < 0.05) in the group of manual workers, and less markedly in the clerks and technicians working on spot, vs. a control group of city clerks. Superoxide release by WBC, and plasma/WBC membrane ubiquinol levels did not display major differences in the three groups. A relevant percentage of manual/office workers of extraction platforms presented impaired cardiovascular and neurological functions. The short term administration of a nutraceutical formulation based on coenzyme10, vitamin E, selenium, methionine and phospholipids led to significant improvement of cardiovascular parameters and psycho-emotional status, consistent with the normalization of LDCL and peroxynitrite production by WBC, with a good compliance to treatment confirmed by the increased blood levels of ubiquinol. PMID:14695940

  5. Application of dynamic models to estimate greenhouse gas emission by wastewater treatment plants of the pulp and paper industry.

    PubMed

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2013-03-01

    Greenhouse gas (GHG) emission in wastewater treatment plants of the pulp-and-paper industry was estimated by using a dynamic mathematical model. Significant variations were shown in the magnitude of GHG generation in response to variations in operating parameters, demonstrating the limited capacity of steady-state models in predicting the time-dependent emissions of these harmful gases. The examined treatment systems used aerobic, anaerobic, and hybrid-anaerobic/aerobic-biological processes along with chemical coagulation/flocculation, anaerobic digester, nitrification and denitrification processes, and biogas recovery. The pertinent operating parameters included the influent substrate concentration, influent flow rate, and temperature. Although the average predictions by the dynamic model were only 10 % different from those of steady-state model during 140 days of operation of the examined systems, the daily variations of GHG emissions were different up to ± 30, ± 19, and ± 17 % in the aerobic, anaerobic, and hybrid systems, respectively. The variations of process variables caused fluctuations in energy generation from biogas recovery by ± 6, ± 7, and ± 4 % in the three examined systems, respectively. The lowest variations were observed in the hybrid system, showing the stability of this particular process design. PMID:23179218

  6. Analysis of an industrial cogeneration unit driven by a gas engine. Part 1: Experimental testing under full and part-load operating conditions

    SciTech Connect

    De Lucia, M.; Lanfranchi, C.

    1994-12-31

    This paper describes and analyzes an industrial cogeneration plant driven by a gas fueled reciprocating engine installed in a textile factory. It presents the results of experimental testing conducted under full and part-load operating conditions, as well as first-law energy considerations. The experimental tests conducted on the cogeneration unit proved the validity of the plant design and also enabled evaluation of part-load performance, which is the most common operating mode in cogeneration plants in the small-size industries which typical of central Italy.

  7. Laboratory Carburization of Direct-Reduced Iron in CH4-H2-N2 Gas Mixtures, and Comparison with Industrial Samples

    NASA Astrophysics Data System (ADS)

    He, Yining; Pistorius, P. Chris

    2016-06-01

    Iron ore pellets, reduced with hydrogen, were isothermally carburized in CH4-H2-N2 at 823 K, 923 K, and 1023 K (550 °C, 650 °C, and 750 °C). Temperature strongly affected the total carbon concentration after carburization; significant unbound carbon deposited at the highest temperature. For the range of sizes tested (10 to 12 mm), pellet size did not affect carburization. The variability between pellets was much smaller than for industrial pellets; inhomogeneous gas distribution likely affects carburization under large-scale industrial conditions.

  8. Liquid natural gas as a transportation fuel in the heavy trucking industry. Second quarterly progress report, [October 1, 1994-- December 30, 1994

    SciTech Connect

    Sutton, W.H.

    1994-12-01

    Emphasis of this project focuses on LNG research issues in use of liquefied natural as a transportation fuel in heavy trucking industry. These issues maybe categorized as: task 1--direct diesel replacement with LNG fuel; and task 2--short and long term storage. Accomplishments for these tasks are discussed. Task 1 consists of atomization, fundamentals of direct replacement, and distribution of emissions. Task 2 includes modified adsorbents, vent gas, and LNG storage at moderate conditions.

  9. An Approach Using Gas Monitoring to Find the Residual TCE Location in the Unsaturated Zone of Woosan Industrial Complex (WIC), Korea

    NASA Astrophysics Data System (ADS)

    Koh, Y.; Lee, S.; Yang, J.; Lee, K.

    2012-12-01

    An area accommodating various industrial facilities has fairly high probability of groundwater contamination with multiple chlorinated solvents such as trichloroethene (TCE), carbon tetrachloride (CT), and chloroform (CF). Source tracing of chlorinated solvents in the unsaturated zone is an essential procedure for the management and remediation of contaminated area. From the previous study on seasonal variations in hydrological stresses and spatial variations in geologic conditions on a TCE plume, the existence of residual DNAPLs at or above the water table has proved. Since TCE is one of the frequently detected VOCs (Volatile Organic Compounds) in groundwater, residual TCE can be detected by gas monitoring. Therefore, monitoring of temporal and spatial variations in the gas phase TCE contaminant at an industrial complex in Wonju, Korea, were used to find the residual TCE locations. As pilot tests, TCE gas samples collected in the unsaturated zone at 4 different wells were analyzed using SPME (Solid Phase MicroExtraction) fiber and Gas Chromatography (GC). The results indicated that detecting TCE in gas phase was successful from these wells and TCE analysis on gas samples, collected from the unsaturated zone, will be useful for source area characterization. However, some values were too high to doubt the accuracy of the current method, which needs a preliminary lab test with known concentrations. The modified experiment setups using packer at different depths are in process to find residual TCE locations in the unsaturated zone. Meanwhile, several PVD (polyethylene-membrane Passive Vapor Diffusion) samplers were placed under water table to detect VOCs by equilibrium between air in the vial and VOCs in pore water.

  10. Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use

    SciTech Connect

    Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

    2012-07-31

    field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture

  11. Testing and prediction of erosion-corrosion for corrosion resistant alloys used in the oil and gas production industry

    NASA Astrophysics Data System (ADS)

    Rincon, Hernan E.

    The corrosion behavior of CRAs has been thoroughly investigated and documented in the public literature by many researchers; however, little work has been done to investigate erosion-corrosion of such alloys. When sand particles are entrained in the flow, the degradation mechanism is different from that observed for sand-free corrosive environment. There is a need in the oil and gas industry to define safe service limits for utilization of such materials. The effects of flow conditions, sand rate, pH and temperature on the erosion-corrosion of CRAs were widely studied. An extensive experimental work was conducted using scratch tests and flow loop tests using several experimental techniques. At high erosivity conditions, a synergistic effect between erosion and corrosion was observed. Under the high sand rate conditions tested, erosivity is severe enough to damage the passive layer protecting the CRA thereby enhancing the corrosion rate. In most cases there is likely a competition between the rates of protective film removal due to mechanical erosion and protective film healing. Synergism occurs for each of the three alloys examined (13Cr and Super13Cr and 22Cr); however, the degree of synergism is quite different for the three alloys and may not be significant for 22Cr for field conditions where erosivities are typically much lower that those occurring in the small bore loop used in this research. Predictions of the corrosion component of erosion-corrosion based on scratch test data compared reasonably well to test results from flow loops for the three CRAs at high erosivity conditions. Second order behavior appears to be an appropriate and useful model for representing the repassivation process of CRAs. A framework for a procedure to predict penetration rates for erosion-corrosion conditions was developed based on the second order model behavior observed for the re-healing process of the passive film of CRAs and on computational fluid dynamics (CFD) simulations

  12. Isotropic, anisotropic, and borehole washout analyses in Gulf of Mexico Gas Hydrate Joint Industry Project Leg II, Alaminos Canyon well 21-A

    USGS Publications Warehouse

    Lee, Myung W.

    2012-01-01

    Through the use of three-dimensional seismic amplitude mapping, several gas hydrate prospects were identified in the Alaminos Canyon area of the Gulf of Mexico. Two of the prospects were drilled as part of the Gulf of Mexico Gas Hydrate Joint Industry Program Leg II in May 2009, and a suite of logging-while-drilling logs was acquired at each well site. Logging-while-drilling logs at the Alaminos Canyon 21–A site indicate that resistivities of approximately 2 ohm-meter and P-wave velocities of approximately 1.9 kilometers per second were measured in a possible gas-hydrate-bearing target sand interval between 540 and 632 feet below the sea floor. These values are slightly elevated relative to those measured in the hydrate-free sediment surrounding the sands. The initial well log analysis is inconclusive in determining the presence of gas hydrate in the logged sand interval, mainly because large washouts in the target interval degraded well log measurements. To assess gas-hydrate saturations, a method of compensating for the effect of washouts on the resistivity and acoustic velocities is required. To meet this need, a method is presented that models the washed-out portion of the borehole as a vertical layer filled with seawater (drilling fluid). Owing to the anisotropic nature of this geometry, the apparent anisotropic resistivities and velocities caused by the vertical layer are used to correct measured log values. By incorporating the conventional marine seismic data into the well log analysis of the washout-corrected well logs, the gas-hydrate saturation at well site AC21–A was estimated to be in the range of 13 percent. Because gas hydrates in the vertical fractures were observed, anisotropic rock physics models were also applied to estimate gas-hydrate saturations.

  13. THIRTY-DAY FIELD TESTS OF INDUSTRIAL BOILERS: SITE 5 - GAS-FIRED LOW-NOX BURNER

    EPA Science Inventory

    This is a final report on a test program to evaluate the long-term effectiveness of combustion modifications on industrial boilers. During previous programs, short-term tests were performed on industrial boilers to determine the effect of combustion modifications on air pollutant...

  14. Volatile organic compound emissions from the oil and natural gas industry in the Uintah Basin, Utah: oil and gas well pad emissions compared to ambient air composition

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J. B.; Lerner, B. M.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-10-01

    Emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uintah Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and for short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas well pads with collection and dehydration on the well pad were clearly associated with higher mixing ratios than other wells. The comparison of the VOC composition of the emissions from the oil and natural gas well pads showed that gas well pads without dehydration on the well pad compared well with the majority of the data at Horse Pool, and that oil well pads compared well with the rest of the ground site data. Oil well pads on average emit heavier compounds than gas well pads. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  15. New technology for America`s electric power industry. Electrocatalytic gas sensor employing cermet materials, AI analysis, and control methods

    SciTech Connect

    1995-03-01

    Argonne National Laboratory`s cermat sensors use cyclic voltammetry techniques with solid electrolyte sensors to generate unique electrical signatures of gases or gas mixtures `on demand`. Intelligent (neural network) signal-processing algorithms match these signals to a gas library.

  16. Advanced communication systems: A report on fiber optic technology and its possible applications in the gas industry

    NASA Astrophysics Data System (ADS)

    Ziolkowski, C. J.; Rush, W. F.; Saha, N. C.

    1987-08-01

    The applicability of fiber optic technology to the area of natural gas distribution is examined. The basic technology of fiber optics is outlined. Some of the commercially available products are examined. The two areas where fiber optics might be successfully applied to gas distribution needs are the remote control of district pressure regulators and the lease of communication capability to interested parties.

  17. Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains.

    PubMed

    Kumar, Ajay; Demirel, Yasar; Jones, David D; Hanna, Milford A

    2010-05-01

    Thermochemical gasification is one of the most promising technologies for converting biomass into power, fuels and chemicals. The objectives of this study were to maximize the net energy efficiency for biomass gasification, and to estimate the cost of producing industrial gas and combined heat and power (CHP) at a feedrate of 2000kg/h. Aspen Plus-based model for gasification was combined with a CHP generation model, and optimized using corn stover and dried distillers grains with solubles (DDGS) as the biomass feedstocks. The cold gas efficiencies for gas production were 57% and 52%, respectively, for corn stover and DDGS. The selling price of gas was estimated to be $11.49 and $13.08/GJ, respectively, for corn stover and DDGS. For CHP generation, the electrical and net efficiencies were as high as 37% and 88%, respectively, for corn stover and 34% and 78%, respectively, for DDGS. The selling price of electricity was estimated to be $0.1351 and $0.1287/kWh for corn stover and DDGS, respectively. Overall, high net energy efficiencies for gas and CHP production from biomass gasification can be achieved with optimized processing conditions. However, the economical feasibility of these conversion processes will depend on the relative local prices of fossil fuels. PMID:20096571

  18. Effective Biological DeNOx of Industrial Flue Gas by the Mixotrophic Cultivation of an Oil-Producing Green Alga Chlorella sp. C2.

    PubMed

    Chen, Weixian; Zhang, Shanshan; Rong, Junfeng; Li, Xiang; Chen, Hui; He, Chenliu; Wang, Qiang

    2016-02-01

    Nitrogen oxides (NOx) are the components of fossil flue gas that result in the most serious environmental concerns. We previously showed that the biological removal of NOx by microalgae appears superior to traditional treatments. This study optimizes the strategy for the microalgal-based DeNOx of flue gas by fed-batch mixotrophic cultivation. By using actual flue gas fixed salts (FGFS) as the nitrogen supply, the mixotrophical cultivation of the green alga Chlorella sp. C2 with high NOx absorption efficiency was optimized in a stepwise manner in a 5 L bioreactor and resulted in a maximum biomass productivity of 9.87 g L(-1) d(-1). The optimized strategy was further scaled up to 50 L, and a biomass productivity of 7.93 g L(-1) d(-1) was achieved, with an overall DeNOx efficiency of 96%, along with an average nitrogen CR of 0.45 g L(-1) d(-1) and lipid productivity of 1.83 g L(-1) d(-1). With an optimized mixotrophical cultivation, this study further proved the feasibility of using Chlorella for the combination of efficient biological DeNOx of flue gas and microalgae-based products production. Thus, this study shows a promising industrial strategy for flue gas biotreatment in plants with limited land area. PMID:26751001

  19. Pulsed sub-microsecond dielectric barrier discharge treatment of simulated glass manufacturing industry flue gas: removal of SO2 and NOx

    NASA Astrophysics Data System (ADS)

    Khacef, A.; Cormier, J. M.

    2006-03-01

    Experiments were carried out to investigate the removal of SO2 and NOx from simulated glass manufacturing industry flue gas containing O2, N2, NO, NO2, CO2, SO2 and H2O using a sub-microsecond pulsed dielectric barrier discharge (DBD) at atmospheric pressure. Removal efficiencies of SO2 and NOx (NO+NO2) were achieved as a function of gas temperature for two specific energies and two initial NO, NO2 and SO2 concentrations. The higher SO2 and NOx removal efficiencies were achieved in a gas stream containing 163 ppm of SO2, 523 ppm of NO, 49 ppm of NO2, 14% of CO2, 8% of O2, 16% of H2O and N2 as balance. The experimental results were evaluated using the energy cost or W-value (eV/molecule removed). About 100% of SO2 and 36% of NOx were removed at a gas temperature of 100 °C with an energy cost of about 45 eV/molecule removed and 36 eV/molecule removed, respectively. These results indicate that DBD plasmas have the potential to remove SO2 and NOx from gas streams without additives.

  20. An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas.

    PubMed

    Zhu, Xi; Rong, Junfeng; Chen, Hui; He, Chenliu; Hu, Wensheng; Wang, Qiang

    2016-03-01

    The excessive emission of flue gas contributes to air pollution, abnormal climate change, global warming, and sea level rises associated with glacial melting. With the ability to utilize NOx as a nitrogen source and to convert solar energy into chemical energy via CO2 fixation, microalgae can potentially reduce air pollution and relax global warming, while also enhancing biomass and biofuel production as well as the production of high-value-added products. This informatics-based review analyzes the trends in the related literature and in patent activity to draw conclusions and to offer a prospective view on the developments of microalgae for industrial flue gas biosequestration. It is revealed that in recent years, microalgal research for industrial flue gas biosequestration has started to attract increasing attention and has now developed into a hot research topic, although it is still at a relatively early stage, and needs more financial and policy support in order to better understand microalgae and to develop an economically viable process. In comparison with onsite microalgal CO2 capture, microalgae-based biological DeNOx appears to be a more realistic and attractive alternative that could be applied to NOx treatment. PMID:26754812

  1. Estimates of global greenhouse gas emissions from industrial and domestic wastewater treatment. Final report, September 1994-March 1997

    SciTech Connect

    Doorn, M.R.J.; Strait, R.P.; Barnard, W.R.; Eklund, B.

    1997-09-01

    The report summarizes the findings of field tests and provides emission factors for methane (CH4) and nitorus oxide (N2O) from wastewater treatment (WWT). It also includes country-specific activity data on industrial and domestic WWT which were used to develop country-specific emission estimates for CH4 and N2O. The report concludes that WWT is unlikely to be a significant source of volatile organic carbon and carbon dioxide emissions. The biggest contributor to industrial CH4 emissions from WWT is the pulp and paper industry in developing and Eastern European countries. The second principal contributor to CH4 emissions from WWT is the meat and poultry industry. Russia is believed to be the largest contributor. CH4 emissions from untreated domestic wastewater may be many times higher than those of treated wastewater. The report provides rough estimates for global N2O emissions from WWT.

  2. Method of evaluating the impact of ERP implementation critical success factors - a case study in oil and gas industries

    NASA Astrophysics Data System (ADS)

    Gajic, Gordana; Stankovski, Stevan; Ostojic, Gordana; Tesic, Zdravko; Miladinovic, Ljubomir

    2014-01-01

    The so far implemented enterprise resource planning (ERP) systems have in many cases failed to meet the requirements regarding the business process control, decrease of business costs and increase of company profit margin. Therefore, there is a real need for an evaluation of the influence of ERP on the company's performance indicators. Proposed in this article is an advanced model for the evaluation of the success of ERP implementation on organisational and operational performance indicators in oil-gas companies. The recommended method establishes a correlation between a process-based method, a scorecard model and ERP critical success factors. The method was verified and tested on two case studies in oil-gas companies using the following procedure: the model was developed, tested and implemented in a pilot gas-oil company, while the results were implemented and verified in another gas-oil company.

  3. Atmospheric occurrence and gas-particle partitioning of PBDEs at industrial, urban and suburban sites of Thessaloniki, northern Greece: Implications for human health.

    PubMed

    Besis, Athanasios; Voutsa, Dimitra; Samara, Constantini

    2016-08-01

    Air samples were collected during the cold and the warm period of the year 2012 and 2013 at three sites in the major Thessaloniki area, northern Greece (urban-industrial, urban-traffic and urban-background) in order to evaluate the occurrence, profiles, seasonal variation and gas/particle partitioning of polybrominated diphenyl ethers (PBDEs). The mean total concentrations of particle phase ∑12PBDE in the cold season were 28.7, 19.5 and 3.87 pg m(-3) at the industrial, urban-traffic and urban-background site, respectively, dropping slightly in the warm season (23.7, 17.5 and 3.14 pg m(-3)), respectively. The corresponding levels of gas-phase ∑12PBDE were 14.4, 7.15 and 4.73 pg m(-3) in the cold season and 21.2, 11.1 and 6.27 pg m(-3) in the warm season, respectively. In all samples, BDE-47 and BDE-99 were the dominant congeners. Absorption of PBDEs in the organic matter of particles appeared to drive their gas/particle partitioning, particularly in the cold season. The estimated average outdoor workday inhalation exposure to ∑12PBDE in the cold and the warm period followed the order: industrial site (288 and 299 pg day(-1)) > urban-traffic site (178 and 191 pg day(-1)) > urban-background site (58 and 63 pg day(-1)). The exposures to BDE-47, BDE-99, BDE-153 and ∑3PBDE via inhalation, for children outdoor worker and seniors were several orders of magnitude lower than their corresponding oral RfD values. PMID:27179330

  4. Contribution of heat transfer to turbine blades and vanes for high temperature industrial gas turbines. Part 2: Heat transfer on serpentine flow passage.

    PubMed

    Takeishi, K; Aoki, S

    2001-05-01

    The improvement of the heat transfer coefficient of the 1st row blades in high temperature industrial gas turbines is one of the most important issues to ensure reliable performance of these components and to attain high thermal efficiency of the facility. This paper deals with the contribution of heat transfer to increase the turbine inlet temperature of such gas turbines in order to attain efficient and environmentally benign engines. Following the experiments described in Part 1, a set of trials was conducted to clarify the influence of the blade's rotating motion on the heat transfer coefficient for internal serpentine flow passages with turbulence promoters. Test results are shown and discussed in this second part of the contribution. PMID:11460663

  5. Seasonal variations in atmospheric concentrations and gas-particle partitioning of PCDD/Fs and dioxin-like PCBs around industrial sites in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Die, Qingqi; Nie, Zhiqiang; Liu, Feng; Tian, Yajun; Fang, Yanyan; Gao, Hefeng; Tian, Shulei; He, Jie; Huang, Qifei

    2015-10-01

    Gas and particle phase air samples were collected in summer and winter around industrial sites in Shanghai, China, to allow the concentrations, profiles, and gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) to be determined. The total 2,3,7,8-substituted PCDD/F and dl-PCB toxic equivalent (TEQ) concentrations were 14.2-182 fg TEQ/m3 (mean 56.8 fg TEQ/m3) in summer and 21.9-479 fg TEQ/m3 (mean 145 fg TEQ/m3) in winter. The PCDD/Fs tended to be predominantly in the particulate phase, while the dl-PCBs were predominantly found in the gas phase, and the proportions of all of the PCDD/F and dl-PCB congeners in the particle phase increased as the temperature decreased. The logarithms of the gas-particle partition coefficients correlated well with the subcooled liquid vapor pressures of the PCDD/Fs and dl-PCBs for most of the samples. Gas-particle partitioning of the PCDD/Fs deviated from equilibrium either in summer or winter close to local sources, and the Junge-Pankow model and predictions made using a model based on the octanol-air partition coefficient fitted the measured particulate PCDD/F fractions well, indicating that absorption and adsorption mechanism both contributed to the partitioning process. However, gas-particle equilibrium of the dl-PCBs was reached more easily in winter than in summer. The Junge-Pankow model predictions fitted the dl-PCB data better than did the predictions made using the model based on the octanol-air partition coefficient, indicating that adsorption mechanism made dominated contribution to the partitioning process.

  6. Life cycle of meats: an opportunity to abate the greenhouse gas emission from meat industry in Japan.

    PubMed

    Roy, Poritosh; Orikasa, Takahiro; Thammawong, Manasikan; Nakamura, Nobutaka; Xu, Qingyi; Shiina, Takeo

    2012-01-01

    The food industry is one of the world's largest industrial sectors, hence a large contributor of greenhouse gases (GHG) which cause global warming. This study evaluates the life cycle of various types of meat to determine if the GHG emission from the meat industry in Japan could be reduced if the population makes different dietary choices. It was confirmed that the GHG emission of beef was greater than that of pork or chicken. The GHG emission from meat in general also depends on the per capita caloric intake (if meat supplies the recommended animal protein or contributes to it at the present rate). In a healthy and balanced diet (9.2 MJ i.e., 2200 kcal in total, where either mixed meat or chicken or pork or beef contributes 2.2%), the GHG emission is estimated to be 0.28 or 0.17 or 0.15 or 0.77 kg CO₂ eq/person/day, respectively. A change in consumption patterns (from beef to chicken or pork) and the adoption of a healthy and balanced diet would help to abate about 2.5-54.0 million tons (CO₂ eq) produced by the meat industry each year in Japan. PMID:22054588

  7. Methods for the determination of diesel, mineral, and crude oils in offshore oil and gas industry discharges

    SciTech Connect

    Not Available

    1992-12-01

    The document is a compendium of analytical methods which support Subpart A of 40 CFR Part 435, effluent limitations guidelines for the Offshore subcategory of the Oil and Gas Extraction Point-Source Category. Methods 1651, 1654, 1662, and 1663 are discussed.

  8. Natural gas marketing II

    SciTech Connect

    Not Available

    1988-01-01

    This book covers all aspects of gas marketing, from the basic regulatory structure to the latest developments in negotiating agreements and locating markets. Topics include: Federal regulation of the gas industry; Fundamentals of gas marketing contracts; FERC actions encouraging competitive markets; Marketing conditions from the pipelines' perspective; State non-utility regulation of natural gas production, transportation, and marketing; Natural gas wellhead agreements and tariffs; Natural gas processing agreements; Effective management of producer's natural gas contracts; Producer-pipeline litigation; Natural gas purchasing from the perspective of industrial gas users; Gas marketing by co-owners: problems of disproportionate sales, gas balancing, and accounting to royalty owners; Alternatives and new directions in marketing.

  9. Efficiency of buffered aqueous carboxylic acid solutions and organic solvents to absorb SO/sub 2/ from industrial flue gas; solubility data from gas-liquid chromatography

    SciTech Connect

    Sanza, G.J.

    1982-01-01

    Nine adsorbents were examined. These potential candidates for flue gas desulfurization included 1-methyl-2-pyrrolidinone, tri-n-butyl phosphate (TBP), both 0.5 M and 1.0 M solutions of citric acid and glycolic acid, buffered to pH's of 4.5 and 3.8, and pure water. Infinite dilution activity coefficients of SO/sub 2/ were obtained by gas-liquid chromatography in a trial solvent of Nitrobenzene, and then in systems of 1-methyl-2-pyrrolidinone and TBP, independently. The solubility data of SO/sub 2/ was derived and found to be comparable to data obtained from a classical bubble-sparger apparatus. Solubility data was then programmed into an absorber-stripper computer simulator in order to calculate the various concentration and temperature profiles that would exist, the degree of desulfurization, and the steam consumption for all nine systems. Concentrated solutions of citric acid buffered to a low pH exhibited the most favorable conditions for application in direct steam regeneration processes. 1-methyl-2-pyrrolidinone yielded better performance than TBP did with high-pressure indirect steam used for stripping. Comparison between the aqueous solution systems which employed direct steam, and the organic systems which used indirect steam was inconclusive.

  10. Electro-gas-dynamic CO lasers with combustion products: a new scientific direction to the creation of the industrial high-power lasers

    NASA Astrophysics Data System (ADS)

    Baranov, Igor M.

    1997-04-01

    An industrial high-power laser is a technical system to be characterized primarily by the efficiency. For a high-power laser system to become like an industrial one the efficiency must be more than 10%. As is well known a steam-engine has such an efficiency. In welding and in cutting thick materials to provide required power density in a spot for the device with long focus the value of output power of radiation must be no less than 100 kW at beam divergence 10-3 rad. At the present time there is a problem in concurrent fulfillment of the requirements on an output power, the divergence, and the efficiency as well as the requirements on the stability of output parameters, total resource of operation, the safety of operation, and the use of standard components. A line of attack on this problem is proposed by the present author through the use of continuous formation of a CO laser mixture by combustion of a chemical fuel and the use of atmospheric air as a buffer gas (up to 80%), which is cooled in supersonic nozzles followed by excitation in a radio-frequency (rf) electric discharge without an electron gun. A small-scale model system of electrogasdynamic CO laser was used by the present author and his colleagues to demonstrate for the first time the laser radiation was possible in a system with combustion products and air. A technical proposal for a multipurpose self-contained industrial cw high-power CO laser system is proposed. This laser system is based on standard electrical machinery with a gas-turbine drive without ejecting toxic CO into the atmosphere.

  11. A $70/tCO2 greenhouse gas mitigation backstop for China’s industrial and electric power sectors: insights from a comprehensive CCS cost curve

    SciTech Connect

    Dahowski, Robert T.; Davidson, Casie L.; Li, Xiaochun; Wei, Ning

    2012-08-27

    As one of the world's fastest growing economies with abundant coal reserves, China's carbon dioxide (CO2) emissions have doubled in the last decade and are expected to continue growing for the foreseeable future. While the Central Government has been promoting development and growth of cleaner and more efficient energy systems, efforts to reduce carbon emissions from the heavily coal-based economy may require continued and increased development and deployment of carbon dioxide capture and storage (CCS) technologies. This paper presents the first detailed, national-scale assessment of CCS potential across the diverse geographic, geologic, and industrial landscape of China, through the lens of an integrated CCS cost curve. It summarizes the development of a cost curve representing the full chain of components necessary for the capture and geologic storage of CO2 from China's power generation and industrial sectors. Individual component cost estimates are described, along with the optimized source-sink matching of over 1,600 large stationary CO2 sources and 2300 gigatons of CO2 storage capacity within 90 major deep geologic onshore sedimentary sub-basins, to develop a cost curve incorporating CO2 capture, compression, transport, and storage. Results suggest that CCS can provide an important greenhouse gas mitigation option for most regions and industrial sectors in China, able to store more than 80% of emissions from these large CO2 sources (2900 million tons of CO2 annually) at costs less than $70/tCO2 for perhaps a century or more.

  12. An investment-production-regulatory model for firms in the offshore oil and gas industry. [Economic effects of proposed environmental regulations

    SciTech Connect

    Jin Di.

    1991-01-01

    This tripartite study examines the economic consequences of proposed environmental regulations on firms in the OCS oil and gas industry. The background part reviews the major issues associated with OCS oil and gas development and relevant environmental regulatory proposals. In the theoretical part, models are developed using optimal control theory and the theory of nonrenewable resources to analyze the impact of rising compliance cost on firm's behavior in terms of the investment and production rates over time. Finally, in the simulation part, an integrated investment-production-regulatory model is developed to simulate OCS development with and without the proposed environmental regulations. Effects of regulations are measured in terms of an increase in compliance costs and the associated reduction in net profits from oil and gas production. The theoretical results indicate that an increase in compliance costs will alter exploration, development and production rates. The total investments in exploration and development, and oil production will decrease as a result of rising compliance costs for exploration, development and production over the entire planning period.

  13. Extractive leviathan: The role of the government in the relationships between oil and gas industries and indigenous communities in the Arctic regions of Canada, United States and Russia

    NASA Astrophysics Data System (ADS)

    Sidorova, Evgeniia

    This comparative research analyzes the extent to which the governments of Canada, the United States and Russia affect the relationships between the petroleum extractive industries and Indigenous peoples of the Arctic in order to protect Indigenous peoples from the negative impacts of oil and gas extraction. The hypothesis of this study is that the government can protect Indigenous communities only by providing for their participation in decision-making processes about oil and gas development. The comparative analysis showed that in comparison with Canada and the United States, Russia has the worst legal protection of Indigenous peoples in petroleum-extractive regions. The recognition of Aboriginal title by Canada and the U.S. allowed Indigenous communities the best opportunities to be involved in oil and gas development, whereas Russia failed to grant this recognition. Therefore, the recognition of land claims by the government is the best way to protect traditional lands and lifestyles of Indigenous peoples from the negative externalities of petroleum extraction.

  14. International Experience with Key Program Elements of IndustrialEnergy Efficiency or Greenhouse Gas Emissions Reduction Target-SettingPrograms

    SciTech Connect

    Price, Lynn; Galitsky, Christina; Kramer, Klaas Jan

    2008-02-02

    Target-setting agreements, also known as voluntary ornegotiated agreements, have been used by a number of governments as amechanism for promoting energy efficiency within the industrial sector. Arecent survey of such target-setting agreement programs identified 23energy efficiency or GHG emissions reduction voluntary agreement programsin 18 countries. International best practice related to target-settingagreement programs calls for establishment of a coordinated set ofpolicies that provide strong economic incentives as well as technical andfinancial support to participating industries. The key program elementsof a target-setting program are the target-setting process,identification of energy-saving technologies and measures usingenergy-energy efficiency guidebooks and benchmarking as well as byconducting energy-efficiency audits, development of an energy-savingsaction plan, development and implementation of energy managementprotocols, development of incentives and supporting policies, monitoringprogress toward targets, and program evaluation. This report firstprovides a description of three key target-setting agreement programs andthen describes international experience with the key program elementsthat comprise such programs using information from the three keytarget-setting programs as well as from other international programsrelated to industrial energy efficiency or GHG emissionsreductions.

  15. Determination of pesticide residues and related compounds in water and industrial effluent by solid-phase extraction and gas chromatography coupled to triple quadrupole mass spectrometry.

    PubMed

    Martins, Manoel L; Donato, Filipe F; Prestes, Osmar D; Adaime, Martha B; Zanella, Renato

    2013-09-01

    Pollution of drinking water supplies from industrial waste is a result of several industrial processes and disposal practices, and the establishment of analytical methods for monitoring organic compounds related to environmental and health problems is very important. In this work, a method using solid-phase extraction (SPE) and gas chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS) was developed and validated for the simultaneous determination of pesticide residues and related compounds in drinking and surface water as well as in industrial effluent. Optimization of the method was achieved by using a central composite design approach on parameters such as the sample pH and SPE eluent composition. A single SPE consisting of the loading on a polymeric sorbent of 100 mL of sample adjusted to pH 3 and elution with methanol/methylene chloride (10:90, v/v) permitted the obtaining of acceptable recoveries in most cases. The concentration factor associated with sensitivity of the chromatographic analysis permitted the achievement of the method limit of detection values between 0.01 and 0.25 μg L(-1). Recovery assays presented mean recoveries between 70 and 120% for most of the compounds with very good precision, despite the different chemical nature of the compounds analyzed. The selectivity of the method, evaluated through the relative intensity of quantification and qualification ions obtained by GC-QqQ-MS/MS, was considered adequate. The developed method was finally applied to the determination of target analytes in real samples. River water and treated industrial effluent samples presented residues of some compounds, but no detectable residues were found in the drinking water samples evaluated. PMID:23995504

  16. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    SciTech Connect

    Not Available

    1982-01-01

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  17. U.S. Geological Survey and Afghanistan Ministry of Mines and Industry cooperative assessment of Afghanistan's undiscovered oil and gas

    USGS Publications Warehouse

    Wandrey, Craig J.; Ulmishek, Gregory; Agena, Warren; Klett, Timothy R.; Afghanistan Oil and Gas Research Assessment Team

    2006-01-01

    Results of the U.S. Geological Survey and Afghanistan Ministry of Mines and Industry cooperative assessment of undiscovered petroleum resources of northern Afghanistan were first released through this presentation on March 14, 2006, at the Afghan Embassy in Washington, D.C. On March 15 the results were presented in Kabul, Afghanistan. The purpose of the assessment and release of the results is to provide energy data required to implement the rebuilding and development of Afghanistan's energy infrastructure. This presentation includes a summary of the goals, process, methodology, results, and accomplishments of the assessment. It provides context for Fact Sheet 2006-3031, a summary of assessment results provided in the presentations.

  18. Quality user support supporting quality users. [Historical trends and developments in computer support in the oil and gas industry

    SciTech Connect

    Woolley, T.C.

    1994-10-01

    This paper describes how Oryx Energy Co. addressed problems and opportunities created by the explosive growth in computing power and needs coupled with industry contraction. A successful user-support strategy is described. Characteristics of the program include (1) client-driven support, (2) empowerment of highly skilled professionals to fill the support role, (3) routine and ongoing modification of the support plan, (4) use of the support assignment to create highly trained advocates on the line, and (5) integration of the support role to the reservoir management team. Results of the plan include a highly trained work force, stakeholder teams that include support personnel, and global support from a centralized support organization.

  19. [Health and environmental licensing: a methodological proposal for assessment of the impact of the oil and gas industry].

    PubMed

    Barbosa, Eduardo Macedo; Barata, Matha Macedo de Lima; Hacon, Sandra de Souza

    2012-02-01

    Bearing in mind the importance of the impacts of the oil industry on human health, this article seeks to present a methodological proposal for analysis of these aspects in environmental impact assessment studies, based on the established legal parameters and a validated matrix for the hydroelectric sector. The lack of health considerations in the environmental impact assessment was detected in most of the 21 oil production enterprises analyzed, that were licensed in the period from January 1, 2004 through October 30, 2009. The health matrix proved to be an appropriate methodological approach to analyze these aspects in the environmental licensing process, guiding decisions and interventions in socio-environmental management. PMID:22267026

  20. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site

    USGS Publications Warehouse

    Kassotis, Christopher D.; Iwanowicz, Luke; Akob, Denise M.; Cozzarelli, Isabelle M.; Mumford, Adam; Orem, William H.; Nagel, Susan C.

    2016-01-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby.

  1. Endocrine disrupting activities of surface water associated with a West Virginia oil and gas industry wastewater disposal site.

    PubMed

    Kassotis, Christopher D; Iwanowicz, Luke R; Akob, Denise M; Cozzarelli, Isabelle M; Mumford, Adam C; Orem, William H; Nagel, Susan C

    2016-07-01

    Currently, >95% of end disposal of hydraulic fracturing wastewater from unconventional oil and gas operations in the US occurs via injection wells. Key data gaps exist in understanding the potential impact of underground injection on surface water quality and environmental health. The goal of this study was to assess endocrine disrupting activity in surface water at a West Virginia injection well disposal site. Water samples were collected from a background site in the area and upstream, on, and downstream of the disposal facility. Samples were solid-phase extracted, and extracts assessed for agonist and antagonist hormonal activities for five hormone receptors in mammalian and yeast reporter gene assays. Compared to reference water extracts upstream and distal to the disposal well, samples collected adjacent and downstream exhibited considerably higher antagonist activity for the estrogen, androgen, progesterone, glucocorticoid and thyroid hormone receptors. In contrast, low levels of agonist activity were measured in upstream/distal sites, and were inhibited or absent at downstream sites with significant antagonism. Concurrent analyses by partner laboratories (published separately) describe the analytical and geochemical profiling of the water; elevated conductivity as well as high sodium, chloride, strontium, and barium concentrations indicate impacts due to handling of unconventional oil and gas wastewater. Notably, antagonist activities in downstream samples were at equivalent authentic standard concentrations known to disrupt reproduction and/or development in aquatic animals. Given the widespread use of injection wells for end-disposal of hydraulic fracturing wastewater, these data raise concerns for human and animal health nearby. PMID:27073166

  2. NO x and PAHs removal from industrial flue gas by using electron beam technology with alcohol addition

    NASA Astrophysics Data System (ADS)

    Chmielewski, A. G.; Sun, Yong-Xia; Licki, J.; Bułka, S.; Kubica, K.; Zimek, Z.

    2003-06-01

    The removal of NO x and polycyclic aromatic hydrocarbons from flue gas was investigated, as a preliminary test, with alcohol addition by using electron beam irradiation in EPS Kawęczyn. The experimental conditions were the followings: flue gas flow rate 5000 nm 3/h; humidity 4-5%; inlet concentrations of SO 2 and NO x, which were emitted from power station, were 192 and 106 ppm, respectively; ammonia addition was 2.75 m 3/h; alcohol addition was 600 l/h. It was found that below 6 kGy applied doses the NO x removal efficiency increased by 10% in the presence of alcohol as compared to the absence of alcohol; on the other hand, the NO x removal efficiency decreased at doses higher than 10 kGy. In order to understand the behavior of these aromatic hydrocarbons under electron irradiation, unirradiated samples (i.e. as emitted from the coal combustion process, called inlet) and irradiated samples (called outlet) were collected by using a condense bottle connected with an XAD-2 adsorbent and an active carbon adsorbent and were then analyzed by a GC-MS. It was found that using 8 kGy absorbed dose the concentration of aromatic hydrocarbons of small aromatic rings (<3, except acenaphthylene) were reduced, but the concentration of these hydrocarbons of large aromatic rings (⩾4) were increased. A possible mechanism is proposed.

  3. [The influence of the oil and gas industry on environmental safety and population health in the Khanty-Mansiĭskiĭ Region - Iugra].

    PubMed

    Samutin, N M; Vorob'ev, V O; Butorin, N N

    2013-01-01

    Production activities of oil and gas industry plants are related to technogenic impact on the environment, which has a high environmental risk. This is associated with low levels of environmental orientation of sheer technological processes of exploration and exploitation of hydrocarbons and also used in this technical means, materials and chemical reagents. The main pollutants that deteriorate the toxic characteristics of drilling waste, are the most likely drilling fluids, mud flush agents and chemicals, which enter into their composition. Existing methods of disposal of drilling wastes are not effective, the technology of their use is often violated. Dumping drilling waste into water bodies and burying toxic waste in water protection areas under the guise of processed waste has been observed. In the region there are significantly exceeded the national average values rate of morbidity of allergic, cardiovascular, pulmonary and cancer diseases, mediated by environmental factors and new monofactorial and multifactorial diseases appear. PMID:24340907

  4. The 3-D numerical study of airflow in the compressor/combustor prediffuser and dump diffuser of an industrial gas turbine

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Yang, Tah-Teh

    1993-01-01

    This paper describes the 3D computations of a flow field in the compressor/combustor diffusers of an industrial gas turbine. The geometry considered includes components such as the combustor support strut, the transition piece and the impingement sleeve with discrete cooling air holes on its surface. Because the geometry was complex and 3D, the airflow path was divided into two computational domains sharing an interface region. The body-fitted grid was generated independently in each of the two domains. The governing equations for incompressible Navier-Stokes equations were solved using the finite volume approach. The results show that the flow in the prediffuser is strongly coupled with the flow in the dump diffuser and vice versa. The computations also revealed that the flow in the dump diffuser is highly nonuniform.

  5. Economic benefits of final effluent limitations guidelines and standards for the offshore oil and gas industry. Final report

    SciTech Connect

    Not Available

    1993-01-14

    The report provides an overview of the benefits analysis of the effluent limitation guidelines for offshore oil and gas facilities. Regulatory options were evaluated for two wastestreams: (1) drilling fluids (muds) and cuttings; and (2) produced water. The analysis focuses on the human health-related benefits of the regulatory options considered. These health risk reduction benefits are associated with reduced human exposure to various carcinogenic and noncarcinogenic contaminants, including lead, by way of consumption of shrimp and recreationally caught finfish from the Gulf of Mexico. Most of the health-risk reduction benefits analysis is based upon a previous report (RCG/Hagler, Bailly, January 1991), developed in support of the proposed rulemaking. Recreational, commercial, and nonuse benefits have not been estimated for these regulations, due to data limitations and the difficulty of estimating these values for effluent controls in the open-water marine environment.

  6. FOSSIL FUEL INDUSTRIES

    EPA Science Inventory

    The chapter focuses on methane emissions from the coal and natural gas industries. The petroleum industry is not addressed because of the lack of related quality data. Emission points are identified for each industry, and a discussion of factors affecting emissions is presented. ...

  7. Nothing gets done by doing nothing: in a state of setback, the liquefied natural gas industry seeks revolutionary concepts

    SciTech Connect

    Kelley, R.L.

    1985-09-01

    Basically, LNG is a unique energy product that provides a unique service to users. Unfortunately, the development of cryogenic technology for the production and transportation of LNG has not overcome the drastic changes in the market attitude towards energy pricing and distribution. Furthermore, regulatory authorities have, through attitude and policy, discouraged innovation and inhibited the advancement of cryogenic technology. LNG, as a trade, has become a victim of not only international political and economic manipulation, resulting in unreasonable pricing attitudes by suppliers but it has also become the victim of the never-ending economic and political instability within Third World countries that could potentially be major world suppliers of LNG. The author notes, however, that the future of LNG as an important energy source is not as bleak as one might believe, even after reviewing the events directly responsible for the dismal state of the industry today. He cites and discusses opportunities available in the market place that will support LNG application and make it a viable energy supply source within the next 10 years.

  8. 2,3-Butanediol Production by Acetogenic Bacteria, an Alternative Route to Chemical Synthesis, Using Industrial Waste Gas ▿ †

    PubMed Central

    Köpke, Michael; Mihalcea, Christophe; Liew, FungMin; Tizard, Joseph H.; Ali, Mohammed S.; Conolly, Joshua J.; Al-Sinawi, Bakir; Simpson, Séan D.

    2011-01-01

    2,3-Butanediol (23BD) is a high-value chemical usually produced petrochemically but which can also be synthesized by some bacteria. To date, the best microbial 23BD production rates have been observed using pathogenic bacteria in fermentation systems that depend on sugars as the carbon and energy sources for product synthesis. Here we present evidence of 23BD production by three nonpathogenic acetogenic Clostridium species—Clostridium autoethanogenum, C. ljungdahlii, and C. ragsdalei—using carbon monoxide-containing industrial waste gases or syngas as the sole source of carbon and energy. Through an analysis of the C. ljungdahlii genome, the complete pathway from carbon monoxide to 23BD has been proposed. Homologues of the genes involved in this pathway were also confirmed for the other two species investigated. A gene expression study demonstrates a correlation between mRNA accumulation from 23BD biosynthetic genes and the onset of 23BD production, while a broader expression study of Wood-Ljungdahl pathway genes provides a transcription-level view of one of the oldest existing biochemical pathways. PMID:21685168

  9. The Relationship Between Seismicity and the Oil and Gas Industry in Western Alberta and Eastern B.C.

    NASA Astrophysics Data System (ADS)

    Atkinson, G. M.; Eaton, D. W. S.; Ghofrani, H.; Walker, D.; Cheadle, B.; Schultz, R.; Shcherbakov, R.; Tiampo, K. F.; Gu, Y. J.; Harrington, R. M.; Liu, Y.

    2015-12-01

    Significantly increased production of hydrocarbons in North America is being driven by the development of unconventional resources whose commercial viability, in many cases, depends upon massive subsurface injection of fluids. Although relatively uncommon, elevated pore pressure from fluid injection of any kind can induce earthquake activity by activating slip on a proximal fault. In the western Canada sedimentary basin (which follows the Rocky Mountain foothills region and straddles the border between Alberta and B.C.), we find that hydraulic fracture treatment, wherein fluids are injected under high pressure in long laterally-drilled wells in order to induce localized fracturing of a rock formation, is the primary triggering mechanism of induced seismicity. This contrasts with the central U.S., where most induced seismicity has been attributed to large-scale wastewater injection into deep disposal wells. Our findings are based on a comprehensive statistical analysis of seismicity at the M≥3 level since 1985, along with a complete well database for the region, containing information on many thousands of oil and gas wells. Since 2010, most of the regional earthquakes of M≥3 are correlated in both time and space with hydraulic fracturing. Monte Carlo simulations confirm that the observed correlations are extremely unlikely (<<1%) to have been obtained by chance. Improved understanding of regional variability in fault activation processes, accounting for operational and geological factors, will aid in the development and validation of predictive models for the time-dependent hazards from induced earthquakes.

  10. Process studies for a new method of removing H/sub 2/S from industrial gas streams

    SciTech Connect

    Neumann, D.W.; Lynn, S.

    1986-07-01

    A process for the removal of hydrogen sulfide from coal-derived gas streams has been developed. The basis for the process is the absorption of H/sub 2/S into a polar organic solvent where it is reacted with dissolved sulfur dioxide to form elemental sulfur. After sulfur is crystallized from solution, the solvent is stripped to remove dissolved gases and water formed by the reaction. The SO/sub 2/ is generated by burning a portion of the sulfur in a furnace where the heat of combustion is used to generate high pressure steam. The SO/sub 2/ is absorbed into part of the lean solvent to form the solution necessary for the first step. The kinetics of the reaction between H/sub 2/S and SO/sub 2/ dissolved in mixtures of N,N-Dimethylaniline (DMA)/ Diethylene Glycol Monomethyl Ether and DMA/Triethylene Glycol Dimethyl Ether was studied by following the temperature rise in an adiabatic calorimeter. This irreversible reaction was found to be first-order in both H/sub 2/S and SO/sub 2/, with an approximates heat of reaction of 28 kcal/mole of SO/sub 2/. The sole products of the reaction appear to be elemental sulfur and water. The presence of DMA increases the value of the second-order rate constant by an order of magnitude over that obtained in the glycol ethers alone. Addition of other tertiary aromatic amines enhances the observed kinetics; heterocyclic amines (e.g., pyridine derivatives) have been found to be 10 to 100 times more effective as catalysts when compared to DMA.

  11. [Design of gas and electric rotary furnaces for the glass industry]. Quarterly progress report, September 20--December 20, 1997

    SciTech Connect

    Pochan, D.

    1997-12-31

    The authors have continually stressed that the two most critical material parameters for the success of the rotary furnace are the hearth plate and the molding release powder. Both of these issues have been solidly addressed in this quarter. They have tested the three best candidates for hearth plate material this quarter. Although they had to use the in-house gas furnaces for the testing, one of the materials combines the best heating efficiency with the least sticking tendency. This material will be used for the electric prototype. The molding release powder is mainly used for preventing the glass from adhering to the hearth plate while the glass is softening for pressing. They recently visited several companies in Japan who also repress glass. The release agent that they use is Boron Nitride. They have identified a supplier within New York state, but their concern is the very high price of this material. They are bringing in samples of different grades for experimentation, but the focus continues to be to eliminate the need for any powder. An additional area for material testing was addressed during this quarter. Once the glass is in the tool (mold) for pressing, the glass has the potential to adhere to the metal that the tool and die are made from (usually steel). Both the powder and a spraying of a carbon product are currently used to reduce this problem. Alternate materials for the tooling and/or surface coatings of the steel need to be identified and tested. During this quarter, they conducted some off-site test runs on two candidate coating materials: platinum and titanium.

  12. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico

    NASA Astrophysics Data System (ADS)

    Christian, T. J.; Yokelson, R. J.; Cárdenas, B.; Molina, L. T.; Engling, G.; Hsu, S.-C.

    2010-01-01

    these tracers to estimate BB. Galactosan was the anhydrosugar most closely correlated with BB in this study. Fine particle antimony (Sb) shows initial promise as a garbage burning tracer and suggests that this source could contribute a significant amount of the PM2.5 in the Mexico City metropolitan area. The fuel consumption and emissions due to industrial biofuel use are difficult to characterize regionally. This is partly because of the diverse range of fuels used and the very small profit margins of typical micro-enterprises. Brick making kilns produced low total EFPM2.5 (~1.6 g/kg), but very high EC/OC ratios (6.72). Previous literature on brick kilns is scarce but does document some severe local impacts. Coupling data from Mexico, Brazil, and Zambia, we find that charcoal making kilns can exhibit an 8-fold increase in VOC/CO over their approximately one-week lifetime. Acetic acid emission factors for charcoal kilns were much higher in Mexico than elsewhere. Our dirt charcoal kiln EFPM2.5 emission factor was ~1.1 g/kg, which is lower than previous recommendations intended for all types of kilns. We speculate that some PM2.5 is scavenged in the walls of dirt kilns.

  13. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico

    NASA Astrophysics Data System (ADS)

    Christian, T. J.; Yokelson, R. J.; Cárdenas, B.; Molina, L. T.; Engling, G.; Hsu, S.-C.

    2009-04-01

    estimate BB. Galactosan was the anhydrosugar most closely correlated with BB in this study. Fine particle antimony (Sb) shows initial promise as a garbage burning tracer and suggests that this source could contribute a significant amount of the PM2.5 in the Mexico City metropolitan area. The fuel consumption and emissions due to industrial biofuel use are difficult to characterize regionally. This is partly because of the diverse range of fuels used and the thin margins of typical micro-enterprises. Brick making kilns produced low total EFPM2.5 (~1.6 g/kg), but very high EC/OC ratios (6.72). Previous literature on brick kilns is scarce but does document some severe local impacts. Coupling data from Mexico, Brazil, and Zambia, we find that charcoal making kilns can exhibit an 8-fold increase in VOC/CO over their approximately one-week lifetime. Acetic acid emission factors for charcoal kilns were much higher in Mexico than elsewhere, probably due to the use of tannin-rich oak fuel. Our dirt charcoal kiln EFPM2.5 emission factor was ~1.1 g/kg, which is lower than previous recommendations intended for all types of kilns. We speculate that some PM2.5 is scavenged in the walls of dirt kilns.

  14. Deregulation of the California electric power industry: An analysis of electric and natural gas corporate mergers and their effect on the California electric power market

    NASA Astrophysics Data System (ADS)

    Hornbuckle, James Dixon

    Deregulation of the electric utility industry in California is moving in a direction that places greater reliance on the market forces of competition. Investor owned utilities (IOU's) are using mergers and acquisitions to improve their ability to compete in this new environment. Two large mergers were proposed in 1996 that could affect the California market. The first is between Enron Corporation, a large power marketer and Portland General Corporation, owner of Portland General Electric. The second is between Pacific Enterprises Inc., owner of Southern California Gas Company, the largest natural gas utility in the U. S., and Enova Corporation, owner of San Diego Gas and Electric Company. Understanding the impact of these mergers on the California electric power market is the focus of this study. This study examines hypotheses dealing with: (1) Merger Strategy, (2) Efficiency, and (3) Market Power. Using the Miles and Snow (1978) typology, I develop a strategic orientation model for the merger participants and their competitors. The results suggest a two-stage strategic orientation: (1) regulated core business stage, where the firms follow a Defender strategy, and (2) unregulated business stage, where the firms follow a Prospector strategy. Further, the results show the mergers are consistent with the strategy of Enron and Pacific Enterprises. Event study methodology, dollar gains/losses and market value weighted returns are used to determine if the mergers support the efficiency hypothesis. The evidence suggests the mergers lead to increased competitive advantage through improved efficiency for the participants. The results also suggest the mergers do not harm the rivals. The results of structural changes made by the California Public Utilities Commission (CPUC) in deregulation of the California market and analysis of the mergers by the CPUC and the Public Utility Commission of Oregon suggest that the exercise of market power is not a significant issue. Finally

  15. Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995

    SciTech Connect

    Sutton, W.H.

    1995-12-31

    This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

  16. Fatigue in seafarers working in the offshore oil and gas re-supply industry: effects of safety climate, psychosocial work environment and shift arrangement.

    PubMed

    Hystad, Sigurd W; Saus, Evelyn-Rose; Sætrevik, Bjørn; Eid, Jarle

    2013-01-01

    This study examined the influence of safety climate and psychosocial work environment on the reported fatigue of seafarers working in the offshore oil and gas re-supply industry (n = 402). We found that seafarers who reported high psychological demands and perceived the organisational-level safety climate negatively,reported significantly more mental fatigue, physical fatigue, and lack of energy. In addition, seafarers who reported having high levels of job control reported being significantly less mentally fatigued. We also found some combined effects of safety climate and shift arrangement. Organisational-level safety climate did not influence the levels of physical fatigue in seafarers working on the night shift. On the contrary, seafarers working during the days reported to be more physically fatigued when they perceived the organisational-level climate to be negative compared with the positive. The opposite effect was found for group-level safety climate: seafarers working during the nights reported to be more physically fatigued when they perceived the group-level climate to be negative compared with the positive. The results from this study point to the importance of taking into consideration aspects of the psychosocial work environment and safety climate,and their potential impact on fatigue and safety in the maritime organisations. PMID:23788223

  17. The effects of BaSO₄ loading on OPC cementing system for encapsulation of BaSO₄ scale from oil and gas industry.

    PubMed

    Hussein, O; Utton, C; Ojovan, M; Kinoshita, H

    2013-10-15

    The BaSO4 scales obtained from piping decontamination from oil and gas industries are most often classified as low level radioactive waste. These wastes could be immobilised by stable cement matrix to provide higher safety of handling, transportation, storage and disposal. However, the information available for the effects of the basic formulation such as waste loading on the fundamental properties is still limited. The present study investigated the effect of BaSO4 loading and water content on the properties of OPC-BaSO4 systems containing fine BaSO4 powder and coarse granules. The BaSO4 with different particle size had a marked effect on the compressive strength due to their different effects on hydration products formed. Introduction of fine BaSO4 powder resulted in an increased formation of CaCO3 in the system, which significantly contributed to the compressive strength of the products. Amount of water was important to control the CaCO3 formation, and water to cement ratio of 0.53 was found to be a good level to maintain a low porosity of the products both for fine BaSO4 powder and coarse BaSO4 granule. BaSO4 loading of up to 60 wt% has been achieved satisfying the minimum compressive strength of 5 MPa required for the radioactive wasteforms. PMID:23911824

  18. Final Technical Report HFC Concrete: A Low­Energy, Carbon-Dioxide­Negative Solution for reducing Industrial Greenhouse Gas Emissions

    SciTech Connect

    Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

    2012-05-14

    Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC

  19. Drawing in industrial customers

    SciTech Connect

    Pittman, R. )

    1994-10-01

    Gas companies have long played a role in attracting businesses to their service territories. Along with railroad companies, utilities were among the first to practice economic development, having established departments for these activities as early as the 1920s. Today, firms that want to expand or relocate sat that utilities are a preferred source of information, offering confidentiality, good service, professionalism and reliable data. One thing industrial customers say they want is energy-cost comparisons among different locations around the country. Another issue important to industrial users is the gas company's pricing method. Finally, US industry has taken careful note of the effects of Federal Energy Regulatory Commission Order 636, which unbundled pipeline services. Industrial customers want the same freedom to choose the service they receive and pay for. At the same time, they want some assurance about the reliability of gas supplies, since gas may be coming from several sources at different contract prices and under different terms.

  20. The impact of accounting methods on the association between unexpected earnings and abnormal returns: The case of oil and gas industry

    NASA Astrophysics Data System (ADS)

    Suwardjono

    Full cost (FC) and successful efforts (SE) are two competing accounting methods that account for exploration and development expenditures in oil and gas industry. In 1977, the Financial Accounting Standards Board (FASB) abolished the FC method but the abolishment was overruled by the Securities and Exchange Commission (SEC) in 1978. Many studies have addressed the issue and focused on the market reaction to the uncertain status of the standard rather than on the information content of earnings. This study examines the extent to which the differences in variability of stock price responses to earnings announcements are associated with the FC and SE accounting methods. The purpose of this study is to investigate whether the market reacts differently to the release of earnings by FC and SE firms. The study contributes to the current literature by comparing the earnings response coefficient (ERC) of FC and SE firms and providing an alternative model to measure unexpected earnings. The study examines cross-sectional differences in ERCs associated with firm-characteristics (such as accounting method and size) and compare the results with firm-specific differences in ERCs which have not been used in previous oil and gas studies. The larger sample, the longer sample period, and the different source of data position this study as a triangulation to previous ERC studies. The study finds that pooled cross-sectional estimation results support previous findings that ERCs for SE firms are significantly higher than those for FC firms especially for return intervals before (including) the earnings release date. However, ERCs for FC firms tend to be larger than those for SE firms when firm-specific estimations are performed. For return intervals immediately following the announcement date, the firm-specific ERCs for FC firms are significantly higher than those of SE firms. This study also finds that the unexpected earnings variances are not homogeneous across firms and the firm

  1. Natural Gas Monthly

    EIA Publications

    2016-01-01

    Highlights activities, events, and analyses associated with the natural gas industry. Volume and price data are presented each month for natural gas production, distribution, consumption, and interstate pipeline activities. Producer related activities and underground storage data are also reported.

  2. Integration of a nonmetallic electrostatic precipitator and a wet scrubber for improved removal of particles and corrosive gas cleaning in semiconductor manufacturing industries.

    PubMed

    Kim, Hak-Joon; Han, Bangwoo; Kim, Yong-Jin; Yoa, Seok-Jun; Oda, Tetsuji

    2012-08-01

    To remove particles in corrosive gases generated by semiconductor industries, we have developed a novel non-metallic, two-stage electrostatic precipitator (ESP). Carbon brush electrodes and grounded carbon fiber-reinforced polymer (CFRP) form the ionization stage, and polyvinyl chloride collection plates are used in the collection stage of the ESP The collection performance of the ESP downstream of a wet scrubber was evaluated with KC1, silica, and mist particles (0.01-10 pm), changing design and operation parameters such as the ESP length, voltage, and flow rate. A long-term and regeneration performance (12-hr) test was conducted at the maximum operation conditions of the scrubber and ESP and the performance was then demonstrated for 1 month with exhaust gases from wet scrubbers at the rooftop of a semiconductor manufacturing plant in Korea. The results showed that the electrical and collection performance of the ESP (16 channels, 400x400 mm2) was maintained with different grounded plate materials (stainless steel and CFRP) and different lengths of the ionization stage. The collection efficiency of the ESP at high air velocity was enhanced with increases in applied voltages and collection plate lengths. The ESP (16 channels with 100 mm length, 400x400 mm2x540 mm with a 10-mm gap) removed more than 90% of silica and mistparticles with 10 and 12 kV applied to the ESPat the air velocity of 2 m/s and liquid-to-gas ratio of 3.6 L/m3. Decreased performance after 13 hours ofcontinuous operation was recovered to the initial performance level by 5 min of water washing. Moreover during the 1-month operation at the demonstration site, the ESP showed average collection efficiencies of 97% based on particle number and 92% based on total particle mass, which were achieved with a much smaller specific corona power of 0.28 W/m3/hr compared with conventional ESPs. PMID:22916438

  3. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation

    SciTech Connect

    Feng, D.C.; Yu, Z.J.; Chen, Y.; Qian, Y.

    2009-06-15

    A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recovery to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.

  4. Microwave tumor ablation: cooperative academic-industry development of a high-power gas-cooled system with early clinical results

    NASA Astrophysics Data System (ADS)

    Brace, Christopher L.; Ziemlewicz, Timothy J.; Schefelker, Rick; Hinshaw, J. L.; Lubner, Meghan G.; Lee, Fred T.

    2013-02-01

    Microwave tumor ablation continues to evolve into a viable treatment option for many cancers. Current systems are poised to supplant radiofrequency ablation as the dominant percutaneous thermal therapy. Here is provided an overview of technical details and early clinical results with a high-powered, gas-cooled microwave ablation system. The system was developed with academic-industry collaboration using federal and private funding. The generator comprises three synchronous channels that each produce up to 140W at 2.45GHz. A mountable power distribution module facilitates CT imaging guidance and monitoring and reduces clutter in the sterile field. Cryogenic carbon-dioxide cools the coaxial applicator, permitting a thin applicator profile (~1.5 mm diameter) and high power delivery. A total of 106 liver tumors were treated (96 malignant, 10 benign) from December 2010 to June 2012 at a single academic institution. Mean tumor size +/- standard deviation was 2.5+/-1.3cm (range 0.5-13.9cm). Treatment time was 5.4+/-3.3min (range 1-20min). Median follow-up was 6 months (range 1-16 months). Technical success was reported in 100% of cases. Local tumor progression was noted in 4/96 (4.3%) of malignancies. The only major complication was a pleural effusion that was treated with thoracentesis. Microwave ablation with this system is an effective treatment for liver cancer. Compared to previous data from the same institution, these results suggest an increased efficacy and equivalent safety to RF ablation. Additional data from the lung and kidney support this conclusion.

  5. The effect of economical and technological measures to reduce CO{sub 2} emission from the offshore oil and gas industry in Norway

    SciTech Connect

    Henriksen, B.; Klausen, L.M.; Utseth, A.

    1995-12-31

    As of January 1991 a carbon tax of US$40 per ton of CO{sub 2} was levied on a large part of Norwegian emissions. The purpose of introducing the carbon tax was to encourage operators to limit, by year 2000, the total emissions of CO{sub 2} (both onshore and offshore) to a level not exceeding the 1989 figure of some 35 million ton CO{sub 2}. Today`s tax is US$50 per ton CO{sub 2} However, four years of heavy CO{sub 2} taxation has proved to Norway that national CO{sub 2} emission targets have not been achieved through taxation. CO{sub 2} emissions have, in fact, increased by several percent since 1992. The increase may be in the order of 13% from 1989 to 2000 unless more efficient measures are brought into play The offshore oil and natural gas industry is responsible for approximately 23% of Norwegian CO{sub 2} emissions and for much of the increase experienced from 1989 to date. Consequently there is considerable pressure to reduce the emissions, or rather to curtail the increased emissions. Ministry of the Environment has been concerned about the influence of the carbon tax on emission from the petroleum production on the Norwegian Continental Shelf In 1994 the Norwegian Petroleum Directorate started a project to study this matter. The objective of this project was to analyses the possible short- and long-term effects of higher carbon taxes on the CO{sub 2} emission level, as well as on the production level, in the Norwegian petroleum sector.

  6. Intercomparison between a single particle soot photometer and evolved gas analysis in an industrial area in Japan: Implications for the consistency of soot aerosol mass concentration measurements

    NASA Astrophysics Data System (ADS)

    Miyakawa, T.; Kanaya, Y.; Komazaki, Y.; Taketani, F.; Pan, X.; Irwin, M.; Symonds, J.

    2016-02-01

    Mass concentrations of soot (typically comprising black and elemental carbon; BC and EC, respectively) aerosols, were measured at Yokosuka city, an industrial region in Japan in the early summer of 2014. The results of laser-induced incandescence (LII) and evolved gas analysis (EGA) techniques were compared using a single particle soot photometer (SP2) and semi-continuous elemental/organic carbon analyzer (EC/OC analyzer), respectively. We revisited the procedure of SP2 calibration with a focus on investigating the relationship between LII intensity (SLII) and refractory BC (rBC) mass per particle (mPP) for some BC-proxies in the laboratory, as well as for ambient rBC particles in order to discuss the uncertainty of the SP2. It was found that the mPP-SLII for the fullerene soot and carbon black particles agreed well within 3% and 10%, respectively, with that for ambient rBC particles. This is the first time to suggest the use of carbon black as a reference material. We also found that the mPP-SLII for the aqueous deflocculated Acheson graphite particles with the correction factor given by Baumgardner et al. (2012) was still biased by around +20% to that for ambient rBC particles. EC quantified by the semi-continuous EC/OC analyzer using a thermal-protocol similar to that of Interagency Monitoring of Protected Visual Environments (IMPROVE-like), systematically showed higher concentrations than rBC measured by the SP2. The uncertainties related to SP2 cannot fully account for this difference. This result was likely caused by the contribution of charred organic materials to EC, which can be affected significantly by thermal-protocols for the EGA. The consistency and differences between rBC and EC are discussed with regard to comparing their respective mass concentrations.

  7. Anisotropic models to account for large borehole washouts to estimate gas hydrate saturations in the Gulf of Mexico Gas Hydrate Joint Industry Project Leg II Alaminos 21 B well

    USGS Publications Warehouse

    Lee, M.W.; Collett, T.S.; Lewis, K.A.

    2012-01-01

    Through the use of 3-D seismic amplitude mapping, several gashydrate prospects were identified in the Alaminos Canyon (AC) area of the Gulf of Mexico. Two locations were drilled as part of the Gulf of MexicoGasHydrate Joint Industry Project Leg II (JIP Leg II) in May of 2009 and a comprehensive set of logging-while-drilling (LWD) logs were acquired at each well site. LWD logs indicated that resistivity in the range of ~2 ohm-m and P-wave velocity in the range of ~1.9 km/s were measured in the target sand interval between 515 and 645 feet below sea floor. These values were slightly elevated relative to those measured in the sediment above and below the target sand. However, the initial well log analysis was inconclusive regarding the presence of gashydrate in the logged sand interval, mainly because largewashouts caused by drilling in the target interval degraded confidence in the well log measurements. To assess gashydratesaturations in the sedimentary section drilled in the Alaminos Canyon 21B (AC21-B) well, a method of compensating for the effect of washouts on the resistivity and acoustic velocities was developed. The proposed method models the washed-out portion of the borehole as a vertical layer filled with sea water (drilling fluid) and the apparent anisotropic resistivity and velocities caused by a vertical layer are used to correct the measured log values. By incorporating the conventional marine seismic data into the well log analysis, the average gashydratesaturation in the target sand section in the AC21-Bwell can be constrained to the range of 8–28%, with 20% being our best estimate.

  8. RESULTS FROM THE (1) DATA COLLECTION WORKSHOP, (2) MODELING WORKSHOP AND (3) DRILLING AND CORING METHODS WORKSHOP AS PART OF THE JOINT INDUSTRY PARTICIPATION (JIP) PROJECT TO CHARACTERIZE NATURAL GAS HYDRATES IN THE DEEPWATER GULF OF MEXICO

    SciTech Connect

    Stephen A. Holditch; Emrys Jones

    2002-09-01

    In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as building and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.

  9. Testing and analysis of the impact on engine cycle parameters and control system modifications using hydrogen or methane as fuel in an industrial gas turbine

    NASA Astrophysics Data System (ADS)

    Funke, H. H.-W.; Keinz, J.; Börner, S.; Hendrick, P.; Elsing, R.

    2016-07-01

    The paper highlights the modification of the engine control software of the hydrogen (H2) converted gas turbine Auxiliary Power Unit (APU) GTCP 36-300 allowing safe and accurate methane (CH4) operation achieved without mechanical changes of the metering unit. The acceleration and deceleration characteristics of the engine controller from idle to maximum load are analyzed comparing H2 and CH4. Also, the paper presents the influence on the thermodynamic cycle of gas turbine resulting from the different fuels supported by a gas turbine cycle simulation of H2 and CH4 using the software GasTurb.

  10. 36 CFR 404.4 - Access to information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) The need for consultation, which shall be conducted with all practicable speed, with another agency... need not be his or her sole occupation. A requester within the category (d)(1)(ii) of this section also... circumstances means: (1) The need to search for and collect the requested records from establishments that...

  11. 48 CFR 915.404-4-71-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... awarded a DOE construction or construction management contract shall be paid a profit or fee if requested or solicited. The profit or fee objective for a construction or construction management contract... construction management contracts shall be established in accordance with the appropriate procedures...

  12. 48 CFR 915.404-4-71-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... awarded a DOE construction or construction management contract shall be paid a profit or fee if requested or solicited. The profit or fee objective for a construction or construction management contract... construction management contracts shall be established in accordance with the appropriate procedures...

  13. 48 CFR 915.404-4-70-4 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... demonstration type contracts; (2) Management and operating contracts; (3) Construction contracts; (4) Construction management contracts; (5) Contracts primarily requiring delivery of material supplied...

  14. 48 CFR 915.404-4-70-4 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... expected to exceed the threshold stated at 48 CFR 15.403-4(a)(1), the weighted guidelines need not be used... used— (1) Commercialization and demonstration type contracts; (2) Management and operating contracts; (3) Construction contracts; (4) Construction management contracts; (5) Contracts primarily...

  15. 48 CFR 915.404-4-71-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... awarded a DOE construction or construction management contract shall be paid a profit or fee if requested or solicited. The profit or fee objective for a construction or construction management contract... construction management contracts shall be established in accordance with the appropriate procedures...

  16. 50 CFR 404.4 - Access to Monument.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE... defects or deficiencies that restrict maneuverability or impair normal navigation. (11) Any pollution.... (4) Any pollution incident or goods lost overboard within the Monument, the reporting area, or the...

  17. 50 CFR 404.4 - Access to Monument.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE... deficiencies that restrict maneuverability or impair normal navigation. (11) Any pollution incident or goods... pollution incident or goods lost overboard within the Monument, the reporting area, or the U.S. EEZ....

  18. 50 CFR 404.4 - Access to Monument.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE... defects or deficiencies that restrict maneuverability or impair normal navigation. (11) Any pollution.... (4) Any pollution incident or goods lost overboard within the Monument, the reporting area, or the...

  19. 50 CFR 404.4 - Access to Monument.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE... defects or deficiencies that restrict maneuverability or impair normal navigation. (11) Any pollution.... (4) Any pollution incident or goods lost overboard within the Monument, the reporting area, or the...

  20. 50 CFR 404.4 - Access to Monument.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Wildlife and Fisheries JOINT REGULATIONS (UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE... defects or deficiencies that restrict maneuverability or impair normal navigation. (11) Any pollution.... (4) Any pollution incident or goods lost overboard within the Monument, the reporting area, or the...

  1. 36 CFR 404.4 - Access to information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... office of the FOIA Officer.) (d) Expedited processing. (1) Requests and appeals will be taken out of... separated from the office processing the request; (2) The need to search for, collect, and appropriately... alleged federal government activity, if made by a person primarily engaged in disseminating...

  2. 36 CFR 404.4 - Access to information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... office of the FOIA Officer.) (d) Expedited processing. (1) Requests and appeals will be taken out of... separated from the office processing the request; (2) The need to search for, collect, and appropriately... alleged federal government activity, if made by a person primarily engaged in disseminating...

  3. H. R. 2185: a bill to repeal certain sections of the Powerplant and Industrial Fuel Use Act of 1978 and to repeal the incremental pricing requirements of the Natural Gas Policy Act of 1978. Introduced in the House of Representatives, Ninety-Ninth Congress, First Session, April 23, 1985

    SciTech Connect

    Not Available

    1985-01-01

    The Natural Gas Utilization Act of 1985 (H.R.2185) reflects the finding that there is no longer a need to limit the use of natural gas. However, it is necessary to remove legislative barriers that either limit or prohibit its use by consumers who can now benefit from market forces which affect competitive energy pricing. The bill repeals several portions of the Power Plant and Industrial Fuel Use Act of 1978 to allow industrial and electric power plants to use natural gas. It also repeals those portions of Title II of the Natural Gas Policy Act of 1978 which require incremental pricing.

  4. Resource and hazard implications of gas hydrates in the Northern Gulf of Mexico: Results of the 2009 Joint Industry Project Leg II Drilling Expedition

    USGS Publications Warehouse

    Collett, Timothy S.; Boswell, Ray

    2012-01-01

    In the 1970's, Russian scientists were the first to suggest that gas hydrates, a crystalline solid of water and natural gas, and a historical curiosity to physical chemists, should occur in abundance in the natural environment. Since this early start, the scientific foundation has been built for the realization that gas hydrates are a global phenomenon, occurring in permafrost regions of the arctic and in deep water portions of most continental margins worldwide. Recent field testing programs in the Arctic (Dallimore et al., 2008; Yamamoto and Dallimore, 2008) have indicated that natural gas can be produced from gas hydrate accumulations, particularly when housed in sand-rich sediments, with existing conventional oil and gas production technology (Collett et al., 2008) and preparations are now being made for the first marine field production tests (Masuda et al., 2009). Beyond a future energy resource, gas hydrates in some settings may represent a geohazard. Other studies also indicate that methane released to the atmosphere from destabilized gas hydrates may have contributed to global climate change in the past.

  5. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  6. Volatile organic compound emissions from the oil and natural gas industry in the Uinta Basin, Utah: point sources compared to ambient air composition

    NASA Astrophysics Data System (ADS)

    Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J.; Lerner, B.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.

    2014-05-01

    The emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uinta Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas wells using dry-gas collection, which means dehydration happens at the well, were clearly associated with higher mixing ratios than other wells. Another large source was the flowback pond near a recently hydraulically re-fractured gas well. The comparison of the VOC composition of the emissions from the oil and natural gas wells showed that wet gas collection wells compared well with the majority of the data at Horse Pool and that oil wells compared well with the rest of the ground site data. Oil wells on average emit heavier compounds than gas wells. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.

  7. Natural gas marketing and transportation

    SciTech Connect

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  8. Industrial garnet

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    A general overview of the industrial garnet industry is provided. About 20 percent of global industrial garnet production takes place in the U.S. During 2000, an estimated 300 kt of industrial garnets were produced worldwide. The U.S. is the world's largest consumer of industrial garnet, consuming 56.9 kt in 2000.

  9. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2003-01-01

    Statistics on the production, consumption, cost, trade, and government stockpile of natural and synthetic industrial diamond are provided. The outlook for the industrial diamond market is also considered.

  10. Task 23 - field studies of the occurrence, transport, and fate of mercury at natural gas industry sites. Topical report, May 1, 1992--December 31, 1995

    SciTech Connect

    Sorensen, J.A.; Harju, J.A.; Kuehnel, V.; Charlton, D.S.

    1998-12-31

    The objective of this research project is to define the occurrence, transport, and fate of mercury in air, water, and soil at natural gas production sites that had been instrumented with mercury-based gas flowmeters in the past. The primary focus of this research was initially on determining the potential for mercury contamination in groundwater at these sites. The scope was later broadened to include determinations of the spatial distribution of mercury in soil. Air concentrations were determined solely as a health and safety routine.

  11. Studies on the impact, detection, and control of microbiology influenced corrosion related to pitting failures in the Russian oil and gas industry. Final CRADA report.

    SciTech Connect

    Ehst, D.

    2006-09-30

    The objectives of the Project are: (1) to design effective anti-corrosion preparations (biocides, inhibitors, penetrants and their combinations) for gas- and oil-exploration industries; (2) to study a possibility of development of environmentally beneficial ('green') biocides and inhibitors of the new generation; (3) to develop chemical and microbiological methods of monitoring of sites at risk of corrosion; and (4) to evaluate potentialities in terms of technology, raw materials and material and technical basis to set up a production of effective anti-corrosion preparations of new generation in Russia. During the four years of the project 228 compounds and formulations were synthesized and studied in respect to their corrosion inhibiting activity. A series of compounds which were according to the Bubble tests more efficient (by a factor of 10-100) than the reference inhibitor SXT-1102, some possessing the similar activity or slightly better activity than new inhibitor ??-1154? (company ONDEO/Nalco). Two synthetic routes for the synthesis of mercaptopyrimidines as perspective corrosion inhibitors were developed. Mercaptopyrimidine derivatives can be obtained in one or two steps from cheap and easily available precursors. The cost for their synthesis is not high and can be further reduced after the optimization of the production processes. A new approach for lignin utilization was proposed. Water-soluble derivative of lignin can by transformed to corrosion protective layer by its electropolymerization on a steel surface. Varying lignosulfonates from different sources, as well as conditions of electrooxidation we proved, that drop in current at high anodic potentials is due to electropolymerization of lignin derivative at steel electrode surface. The electropolymerization potential can be sufficiently decreased by an increase in ionic strength of the growing solution. The lignosulfonate electropolymerization led to the considerable corrosion protection effect of

  12. Characterisation of polycyclic aromatic hydrocarbons in flue gas and residues of a full scale fluidized bed combustor combusting non-hazardous industrial waste.

    PubMed

    Van Caneghem, J; Vandecasteele, C

    2014-11-01

    This paper studies the fate of PAHs in full scale incinerators by analysing the concentration of the 16 EPA-PAHs in both the input waste and all the outputs of a full scale Fluidized Bed Combustor (FBC). Of the analysed waste inputs i.e. Waste Water Treatment (WWT) sludge, Refuse Derived Fuel (RDF) and Automotive Shredder Residue (ASR), RDF and ASR were the main PAH sources, with phenanthrene, fluoranthene and pyrene being the most important PAHs. In the flue gas sampled at the stack, naphthalene was the only predominant PAH, indicating that the PAHs in FBC's combustion gas were newly formed and did not remain from the input waste. Of the other outputs, the boiler and fly ash contained no detectable levels of PAHs, whereas the flue gas cleaning residue contained only low concentrations of naphthalene, probably adsorbed from the flue gas. The PAH fingerprint of the bottom ash corresponded rather well to the PAH fingerprint of the RDF and ASR, indicating that the PAHs in this output, in contrast to the other outputs, were mainly remainders from the PAHs in the waste inputs. A PAH mass balance showed that the total PAH input/output ratio of the FBC ranged from about 100 to about 2600 depending on the waste input composition and the obtained combustion conditions. In all cases, the FBC was clearly a net PAH sink. PMID:25002370

  13. Assistance to state underground injection control programs and the oil and gas industry with class 2 injection well data management and technology transfer. Final technical report

    SciTech Connect

    Paque, M.J.

    1995-11-23

    The Underground Injection Practices Research Foundation (UIPRF) administered a grant project funded by the US Department of Energy relating to Class 2 injection well operations in various primacy and direct implementation states throughout the country. This effort provided substantial benefits to state regulatory agencies and oil and gas producing companies. It enhanced the protection of the environment through the protection of ground water resources and improved oil and gas production operations within affected states. This project involved the following accomplishment: (1) Completed the design and installation of the only comprehensive, fully relational PC-Based Oil and Gas regulatory data management system (the Risk Based Data Management System) in the country. Additionally, training and data conversion was conduced and the RBDMS User`s Guide and the RBDMS Administrator`s Guide were completed. (2) State wide Area-Of-Review (AOR) workshop were held in California and Oklahoma and a national three-day workshop was held in Kansas City, Missouri where 24 state oil and gas agencies were represented.

  14. Natural gas annual 1994

    SciTech Connect

    1995-11-17

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1994 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1990 to 1994 for each Census Division and each State. Annual historical data are shown at the national level.

  15. Natural gas annual 1995

    SciTech Connect

    1996-11-01

    The Natural Gas Annual provides information on the supply and disposition of natural gas to a wide audience including industry, consumers, Federal and State agencies, and educational institutions. The 1995 data are presented in a sequence that follows natural gas (including supplemental supplies) from its production to its end use. This is followed by tables summarizing natural gas supply and disposition from 1991 to 1995 for each Census Division and each State. Annual historical data are shown at the national level.

  16. Industrial Minerals

    ERIC Educational Resources Information Center

    Bradbury, James C.

    1978-01-01

    The past year is seen as not particularly good for industrial minerals and for industry in general. Environmental concerns continued to trouble the industry with unacceptable asbestos concentrations and chlorofluorocarbon effects on ozone. A halting U.S. economy also affected industrial progress. (MA)

  17. Industry Employment

    ERIC Educational Resources Information Center

    Occupational Outlook Quarterly, 2012

    2012-01-01

    This article illustrates projected employment change by industry and industry sector over 2010-20 decade. Workers are grouped into an industry according to the type of good produced or service provided by the establishment for which they work. Industry employment projections are shown in terms of numeric change (growth or decline in the total…

  18. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. A review of the state of the global industrial diamond industry in 1999 is presented. World consumption of industrial diamond has increased annually in recent years, with an estimated 500 million carats valued between $650 million and $800 million consumed in 1999. In 1999, the U.S. was the world's largest market for industrial diamond and was also one of the world's main producers; the others were Ireland, Russia, and South Africa. Uses of industrial diamonds are discussed, and prices of natural and synthetic industrial diamond are reported.

  19. Sulfur pollution control. Phase II. The impact of stack gas cleanup on the sulfur mining industry of Texas and Louisiana. Open file report (final)

    SciTech Connect

    Rieber, M.; Barker, J.M.; Worrall, M.

    1981-01-01

    The impacts of various (reduced) levels of Frasch sulfur production on the States of Texas and Louisiana are analyzed. The analytic time basis is 1979. Industry labor and output characteristics are developed on a company and mine basis. State and local impacts (to the level of independent school districts) are developed on a scenario basis. The measures include income, unemployment, and taxes. Some data are presented on energy and water use.

  20. Energy Markets in the United States: The Influence of Politics, Regulations, and Markets on Energy Development in the Oil and Gas and Wind Industries

    NASA Astrophysics Data System (ADS)

    Maguire, Karen Kay

    2011-12-01

    My dissertation focuses on the influence of politics, policies, and markets in determining oil and natural gas and wind energy development. In the first chapter, I examine the role of federal elected political influence and market factors in determining the acres of oil and natural gas leases issued on Bureau of Management (BLM) lands in the western United States between 1978 and 2008. I seek to determine if the political party and ideology of the federal political environment influence the number of acres that are leased and if there is disparate federal political influence in states that have a large amount of federal lands. Using a random effects Tobit model for a 17-state sample of the westernmost states in the contiguous United States, I find that more conservative federal political influence leads to additional leasing. The results are consistent across Senate committee leaders, Senate majority leadership, and the President's office. The further found that the influence of politics on leasing is not stronger in states with more federal lands. In the second chapter, I analyze the influence of state and federal political party changes and market factors on state oil and natural gas permitting. My findings, using a first-differenced empirical model for two samples, a 19-state sample, from 1990--2007, and a 14-state sample, from 1977--2007, indicate that the influence of state political party changes are trumped by economic factors. Oil and gas prices are the main drivers of permitting changes, while the state political party changes for the state legislatures and Governor's office are consistently not significant. In the third chapter I focus on the role of electricity markets and renewable energy regulation in wind development across the United States. My findings, using a random effects Tobit model with a 25-state sample, from 1994--2008, indicate that the implementation of state Renewables Portfolio Standards (RPS), the Federal Production Tax Credit (PTC