Science.gov

Sample records for 40h turbidity samples

  1. Implementation guide for turbidity threshold sampling: principles, procedures, and analysis

    Treesearch

    Jack Lewis; Rand Eads

    2009-01-01

    Turbidity Threshold Sampling uses real-time turbidity and river stage information to automatically collect water quality samples for estimating suspended sediment loads. The system uses a programmable data logger in conjunction with a stage measurement device, a turbidity sensor, and a pumping sampler. Specialized software enables the user to control the sampling...

  2. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Turbidity sampling and analytical... § 141.22 Turbidity sampling and analytical requirements. The requirements in this section apply to... the water distribution system at least once per day, for the purposes of making turbidity...

  3. Turbidity threshold sampling for suspended sediment load estimation

    Treesearch

    Jack Lewis; Rand Eads

    2001-01-01

    Abstract - The paper discusses an automated procedure for measuring turbidity and sampling suspended sediment. The basic equipment consists of a programmable data logger, an in situ turbidimeter, a pumping sampler, and a stage-measuring device. The data logger program employs turbidity to govern sample collection during each transport event. Mounting configurations and...

  4. Turbidity-controlled sampling for suspended sediment load estimation

    Treesearch

    Jack Lewis

    2003-01-01

    Abstract - Automated data collection is essential to effectively measure suspended sediment loads in storm events, particularly in small basins. Continuous turbidity measurements can be used, along with discharge, in an automated system that makes real-time sampling decisions to facilitate sediment load estimation. The Turbidity Threshold Sampling method distributes...

  5. Turbidity threshold sampling: Methods and instrumentation

    Treesearch

    Rand Eads; Jack Lewis

    2001-01-01

    Traditional methods for determining the frequency of suspended sediment sample collection often rely on measurements, such as water discharge, that are not well correlated to sediment concentration. Stream power is generally not a good predictor of sediment concentration for rivers that transport the bulk of their load as fines, due to the highly variable routing of...

  6. Turbidity-controlled suspended sediment sampling for runoff-event load estimation

    Treesearch

    Jack Lewis

    1996-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is generally a much better predictor than water discharge. Although it is now possible to collect continuous turbidity data even at remote sites, sediment sampling and load estimation are still conventionally based on discharge. With frequent calibration the relation of turbidity to...

  7. Turbidity and color spectronephelometric measurements in consumable fluid samples

    NASA Astrophysics Data System (ADS)

    Oliveira, Luis; Clemente, M. P.

    2003-10-01

    Spectronephelometric measurement techniques are in the order of the day. We can apply these techniques to monitor the production of consumable fluids and to verify their quality. Products like Wine, Beer and Olive Oil for instance, are widely consumed over the world. These products do have a major role in people"s dietary habits and their quality is of greater concern from day to day. If we can make use of a monitoring system that is able to perform measurements in situ, on line and in real time, then we will obviously have the capacity to improve quality. Particles that are suspended in consumable fluid samples interact with radiation by scattering it in almost all directions. If we can detect this scattered radiation, then we have information on the suspended particles. Making use on some Physical relations, we can transpose this information to physical parameters like Color and Turbidity.

  8. Task Technical and Quality Assurance Plan for the Characterization of the Tank 40H Samples

    SciTech Connect

    Wilmarth, W.R.

    2000-07-12

    The High Level Waste Tank Farms store and process high-level liquid wastes from a number of sources including F- and H-Canyons and a recycle stream from the Defense Waste Processing Facility (DWPF). The deposition of sodium aluminosilicate along with sodium diuranate in the 242-16H evaporator system led to the removal of authorization to process High Level Waste containing DWPF recycle. Therefore, High Level Waste Engineering has requested SRTC to perform analysis of the contents of Tank 40H and associated transfers from sludge washing to ensure silicon levels are sufficiently low to allow processing of the supernate through the 3H Evaporator.

  9. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration

    PubMed Central

    Mull, Bonnie; Hill, Vincent R.

    2015-01-01

    Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recoveringMS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. PMID:23064261

  10. Colorimetric estimation of inorganic phosphate in colored and/or turbid biological samples: assay of phosphohydrolases.

    PubMed

    Upreti, G C

    1984-03-01

    A simple method of inorganic phosphate determination for colored and/or turbid biological samples is described. The procedure is mild, and so is suitable for routine phosphohydrolase assays. Following deproteinization by ice-cold trichloroacetic (or silicotungstic) acid, the sample was treated with acid-washed charcoal to remove interference due to color. The phosphate in the colorless supernatant was assayed either by measuring the phosphomolybdate spectrophotometrically at 310 nm, following its extraction in organic solvents or by a modified Fiske and Subbarow method. The turbidity interference in the latter case was eliminated either by centrifugation, by sodium dodecyl sulfate treatment, or by extraction of reduced phosphomolybdate blue color by cyclohexanone. Though deproteinization by silicotungstic acid eliminated the turbidity problem, its use in conjunction with charcoal treatment was not convenient.

  11. Off-confocal Raman spectroscopy (OCRS) for subsurface measurements in layered turbid samples

    NASA Astrophysics Data System (ADS)

    Khan, Khan Mohammad; Ghosh, Nirmalya; Majumder, Shovan Kumar

    2016-09-01

    We report, for the first time, the development of a depth-sensitive Raman spectroscopy system for investigating subsurface depths in a layered turbid sample using the concept of varying Raman collection zones, while keeping the point of illumination fixed on the surface of the target sample. The system makes use of a conventional confocal Raman configuration and realizes the variation in Raman collection zones employing off-confocal detection. This is effected by moving the tip of the Raman detection fiber (acting as the pinhole aperture) from the focus of the Raman collection objective either by taking the point of detection away from the objective (along its axis) or bringing it closer to the objective (along the same axis), thereby essentially offering two ways of enabling subsurface interrogation at a given time. Another important attraction of the approach is that it can be used for analyzing layered turbid samples at depths beyond the reach of the conventional confocal Raman, though not at the cost of any further modifications in its instrumentation. Furthermore, the illumination point remains fixed on the sample surface and no adjustment is required in the sample arm, which indeed are significant advantages for depth-sensitive measurements in situ from layered turbid samples, particularly those having irregular surfaces (like biological tissues). The ability of the system to recover Raman spectra of the subsurface layer was demonstrated using a layered non-biological phantom and a biological tissue sample.

  12. Ultra-deep imaging of turbid samples by enhanced photon harvesting

    NASA Astrophysics Data System (ADS)

    Crosignani, Viera; Dvornikov, Alexander; Gratton, Enrico

    2013-02-01

    We constructed an advanced detection system for two-photon fluorescence microscopy that allows us to image in biological tissue and tissue phantoms up to the depth of a few mm with micron resolution. The innovation lies in the detection system which is much more sensitive to low level fluorescence signals than the fluorescence detection configuration used in conventional two-photon fluorescence microscopes. A wide area photocathode photomultiplier tube (PMT) was used to detect fluorescence photons directly from a wide (1 inch diameter) area of the turbid sample, as opposed to the photon collection by the microscope objective which can only collect light from a relatively small area of the sample. The optical path between the sample and the photocathode is refractive index matched to curtail losses at the boundaries due to reflections. The system has been successfully employed in the imaging of tissue phantoms simulating brain optical properties and in biological tissues, such as murine small intestine, colon, tumors, and other samples. The system has in-depth fluorescence lifetime imaging (FLIM) capabilities and is also highly suitable for SHG signal detection, such as collagen fibers and muscles, due to the intrinsically forward-directed propagation of SHG photons.

  13. Toxicity testing of marine, terrestrial, solid, liquid, clear, and turbid samples

    SciTech Connect

    Sabate, R.W.; Stiffey, A.V.; Dewailly, E.L.

    1994-12-31

    A novel, patented toxicity testing procedure that compares the light generated by the naturally bioluminescent marine dinoflagellate alga, Pyrocystis lunula, in the presence of toxins, to light from a non-toxic control, is sensitive in parts per billion to all substances considered toxic to which it has been subjected: chemical warfare agents, metals, detergents, pesticides, herbicides, anticancer drugs, oil-well drilling fluids and produced waters, marine antifouling paints, and others. Preparation and testing time is less than eight hours. Variability is 10% or less. Solids and turbid or darkly colored samples can be tested without correction. Small sample substrates (10 to 50{mu}l) in the buffered 3ml test medium do not significantly affect pH or salinity, which permits testing of marine or terrestrial samples without special preparation. Also, the organism is insensitive to selected solvents for lipophyllic test substances. EC{sub 50} of sodium lauryl (dodecyl) sulphate is 3.7 ppm, and correlation with the Mysid LC{sub 50} EPA 30,000 ppm toxicity limit is 63% light inhibition.

  14. Dense sampled transmission matrix for high resolution angular spectrum imaging through turbid media via compressed sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jang, Hwanchol; Yoon, Changhyeong; Choi, Wonshik; Eom, Tae Joong; Lee, Heung-No

    2016-03-01

    We provide an approach to improve the quality of image reconstruction in wide-field imaging through turbid media (WITM). In WITM, a calibration stage which measures the transmission matrix (TM), the set of responses of turbid medium to a set of plane waves with different incident angles, is preceded to the image recovery. Then, the TM is used for estimation of object image in image recovery stage. In this work, we aim to estimate highly resolved angular spectrum and use it for high quality image reconstruction. To this end, we propose to perform a dense sampling for TM measurement in calibration stage with finer incident angle spacing. In conventional approaches, incident angle spacing is made to be large enough so that the columns in TM are out of memory effect of turbid media. Otherwise, the columns in TM are correlated and the inversion becomes difficult. We employ compressed sensing (CS) for a successful high resolution angular spectrum recovery with dense sampled TM. CS is a relatively new information acquisition and reconstruction framework and has shown to provide superb performance in ill-conditioned inverse problems. We observe that the image quality metrics such as contrast-to-noise ratio and mean squared error are improved and the perceptual image quality is improved with reduced speckle noise in the reconstructed image. This results shows that the WITM performance can be improved only by executing dense sampling in the calibration stage and with an efficient signal reconstruction framework without elaborating the overall optical imaging systems.

  15. Holographic quantitative imaging of sample hidden by turbid medium or occluding objects

    NASA Astrophysics Data System (ADS)

    Bianco, V.; Miccio, L.; Merola, F.; Memmolo, P.; Gennari, O.; Paturzo, Melania; Netti, P. A.; Ferraro, P.

    2015-03-01

    Digital Holography (DH) numerical procedures have been developed to allow imaging through turbid media. A fluid is considered turbid when dispersed particles provoke strong light scattering, thus destroying the image formation by any standard optical system. Here we show that sharp amplitude imaging and phase-contrast mapping of object hidden behind turbid medium and/or occluding objects are possible in harsh noise conditions and with a large field-of view by Multi-Look DH microscopy. In particular, it will be shown that both amplitude imaging and phase-contrast mapping of cells hidden behind a flow of Red Blood Cells can be obtained. This allows, in a noninvasive way, the quantitative evaluation of living processes in Lab on Chip platforms where conventional microscopy techniques fail. The combination of this technique with endoscopic imaging can pave the way for the holographic blood vessel inspection, e.g. to look for settled cholesterol plaques as well as blood clots for a rapid diagnostics of blood diseases.

  16. Effect of particles on the recovery of cryptosporidium oocysts from source water samples of various turbidities.

    PubMed

    Feng, Yao Yu; Ong, Say Leong; Hu, Jiang Yong; Song, Lian Fa; Tan, Xiao Lan; Ng, Wun Jern

    2003-04-01

    Cryptosporidium parvum can be found in both source and drinking water and has been reported to cause serious waterborne outbreaks which threaten public health safety. The U.S. Environmental Protection Agency has developed method 1622 for detection of Cryptosporidium oocysts present in water. Method 1622 involves four key processing steps: filtration, immunomagnetic separation (IMS), fluorescent-antibody (FA) staining, and microscopic evaluation. The individual performance of each of these four steps was evaluated in this study. We found that the levels of recovery of C. parvum oocysts at the IMS-FA and FA staining stages were high, averaging more than 95%. In contrast, the level of recovery declined significantly, to 14.4%, when the filtration step was incorporated with tap water as a spiking medium. This observation suggested that a significant fraction of C. parvum oocysts was lost during the filtration step. When C. parvum oocysts were spiked into reclaimed water, tap water, microfiltration filtrate, and reservoir water, the highest mean level of recovery of (85.0% +/- 5.2% [mean +/- standard deviation]) was obtained for the relatively turbid reservoir water. Further studies indicated that it was the suspended particles present in the reservoir water that contributed to the enhanced C. parvum oocyst recovery. The levels of C. parvum oocyst recovery from spiked reservoir water with different turbidities indicated that particle size and concentration could affect oocyst recovery. Similar observations were also made when silica particles of different sizes and masses were added to seeded tap water. The optimal particle size was determined to be in the range from 5 to 40 micro m, and the corresponding optimal concentration of suspended particles was 1.42 g for 10 liters of tap water.

  17. Determination of color of turbid waters

    USGS Publications Warehouse

    Lamar, W.L.

    1949-01-01

    A convenient procedure for determining the color of turbid waters, using the principle of precipitation of turbidity by the electrolyte calcium chloride, is described. Because the stable turbidity of many surface waters cannot be completely precipitated by conventional centrifuging alone, this procedure presents a means of flocculating the turbidity without affecting the true color of the water. In the determination of true color of turbid samples one of the most prevalent errors is caused by the reading of color on samples not completely free of turbidity. Pertinent data are presented on color and turbidity of waters as related to the principles involved in the determination of color.

  18. Radiometry of water turbidity measurements

    NASA Technical Reports Server (NTRS)

    Mccluney, W. R.

    1974-01-01

    An examination of a number of measurements of turbidity reported in the literature reveals considerable variability in the definitions, units, and measurement techniques used. Many of these measurements differ radically in the optical quantity measured. The radiometric basis of each of the most common definitions of turbidity is examined. Several commercially available turbidimeters are described and their principles of operation are evaluated radiometrically. It is recommended that the term turbidity be restricted to measurements based upon the light scattered by the sample with that scattered by standard suspensions of known turbidity. It is also recommended that the measurement procedure be standardized by requiring the use of Formazin as the turbidity standardizing material and that the Formazin Turbidity Unit (FTU) be adopted as the standard unit of turbidity.

  19. New Approach to Purging Monitoring Wells: Lower Flow Rates Reduce Required Purging Volumes and Sample Turbidity

    EPA Science Inventory

    It is generally accepted that monitoring wells must be purged to access formation water to obtain “representative” ground water quality samples. Historically anywhere from 3 to 5 well casing volumes have been removed prior to sample collection to evacuate the standing well water...

  20. New Approach to Purging Monitoring Wells: Lower Flow Rates Reduce Required Purging Volumes and Sample Turbidity

    EPA Science Inventory

    It is generally accepted that monitoring wells must be purged to access formation water to obtain “representative” ground water quality samples. Historically anywhere from 3 to 5 well casing volumes have been removed prior to sample collection to evacuate the standing well water...

  1. Decoupling scattering and absorption of turbid samples using a simple empirical relation between coefficients of the Kubelka-Munk and radiative transfer theories.

    PubMed

    Gaonkar, Harshavardhan Ashok; Kumar, Dinesh; Ramasubramaniam, Rajagopal; Roy, Arindam

    2014-05-01

    Efforts are underway to better understand the absorption properties of micro- and nano-sized particles due to their potential in various photonic applications. However, most of these particles exhibit strong scattering in the spectral regions of interest in addition to absorption. Due to strong interference from scattering, the absorption of these turbid samples cannot be directly measured using conventional spectroscopy techniques. The optical properties of these particles are also different from that of the bulk due to quantum confinement and plasmon resonance effects and cannot be inferred from their bulk properties. By measuring the total transmittance and total reflectance (diffuse and collimated) of turbid samples and using an empirical relation between the coefficients of the Kubelka-Munk and radiative transfer theories, we have demonstrated a method to calculate the absorption and reduced scattering coefficients of turbid samples. This method is capable of extracting the absorption coefficient of turbid samples with an error of 2%. Using this method, we have decoupled the specific absorption and specific reduced scattering coefficients of commercially available micro-sized iron oxide particles. The current method can be used to measure the optical properties of irregularly shaped particle dispersions, which are otherwise difficult to estimate theoretically.

  2. The accuracy of a commercial spectrophotometer with single integrating sphere for measuring optical properties of turbid sample

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Wen, Xiang; Xu, ZhuDi; Zhu, Dan

    2010-02-01

    A commercial spectrophotometer with an integrating sphere is widely used to measure the spectra of transmittance and reflectance of turbid sample, and then the optical properties can be deduced by inverse adding-doubling algorithm. Unfortunately, the accuracy of the measurement is not been elucidated completely. What's more, for the system, there still exists some other limits, i.e., the incident light is not collimated and size of light spot is too large compared with the sample port. Thus, the purpose of our study is to evaluate the accuracy of the commercial spectrophotometer with an integrating sphere for measuring optical properties of tissue phantom. Two phantom materials, Intralipid and Evans blue, and the mixture of these two, were chosen for the experiments. Mie theory was also introduced to calculate the reduced scattering coefficient according to the particle size distribution. The results show that the phantom measurement in conjunction with IAD algorithm enable the determination of scattering coefficient μs' to be better than 5% accuracy, absorption coefficient μa to be better than 10% accuracy when the optical depth of sample is between 1 and 10, and the albedo is bigger than 0.4. For scattering of samples during 1-5 mm-1, the error of μs' is smaller than 4%; whereas for absorbing of samples >0.4 mm-1, the maximum error is smaller than 8.3%. Therefore, spectrophotometer with an integrating sphere technique combined IAD algorithm is applicable for the measurements of optical properties for most tissue, and its repeatability and accuracy is good in proper scope of the optical depth and albedo.

  3. Self-referencing fiber-optic fluorescence sensor for turbid samples

    SciTech Connect

    Tipton, T.L.; Vogt, B.S.

    1998-06-01

    The present study is part of a project on the application of fluorescence sensors to the monitoring of jet fuels in ground water. A novel single-fiber optical sensor was developed to measure solute fluorescence and to estimate a correction factor to compensate for the signal attenuation caused by suspended particles. The latter was effected using a reference fluorescer mounted beyond the end of the fiber tip. This sensor is intended for monitoring of contaminants in model aquifers and is adaptable to field use. The suspensions tested were Ca-montmorillonite, polystyrene latex beads, and silica. A tracer dye was used as the test analyte so that sorption of the sample onto the suspended particles would be negligible. The relationship between the reference fluorescence attenuation and the analyte attenuation agreed approximately with geometric prediction and could be determined without knowledge of the particle size distribution or the type of particles used. The results indicated that corrected solute fluorescence intensities could be obtained by successively sending an analyte excitation wavelength and a reference excitation wavelength into the fiber-optic sensor.

  4. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  5. Relations between continuous real-time turbidity data and discrete suspended-sediment concentration samples in the Neosho and Cottonwood Rivers, east-central Kansas, 2009-2012

    USGS Publications Warehouse

    Foster, Guy M.

    2014-01-01

    The Neosho River and its primary tributary, the Cottonwood River, are the primary sources of inflow to the John Redmond Reservoir in east-central Kansas. Sedimentation rate in the John Redmond Reservoir was estimated as 743 acre-feet per year for 1964–2006. This estimated sedimentation rate is more than 80 percent larger than the projected design sedimentation rate of 404 acre-feet per year, and resulted in a loss of 40 percent of the conservation pool since its construction in 1964. To reduce sediment input into the reservoir, the Kansas Water Office implemented stream bank stabilization techniques along an 8.3 mile reach of the Neosho River during 2010 through 2011. The U.S. Geological Survey, in cooperation with the Kansas Water Office and funded in part through the Kansas State Water Plan Fund, operated continuous real-time water-quality monitors upstream and downstream from stream bank stabilization efforts before, during, and after construction. Continuously measured water-quality properties include streamflow, specific conductance, water temperature, and turbidity. Discrete sediment samples were collected from June 2009 through September 2012 and analyzed for suspended-sediment concentration (SSC), percentage of sediments less than 63 micrometers (sand-fine break), and loss of material on ignition (analogous to amount of organic matter). Regression models were developed to establish relations between discretely measured SSC samples, and turbidity or streamflow to estimate continuously SSC. Continuous water-quality monitors represented between 96 and 99 percent of the cross-sectional variability for turbidity, and had slopes between 0.91 and 0.98. Because consistent bias was not observed, values from continuous water-quality monitors were considered representative of stream conditions. On average, turbidity-based SSC models explained 96 percent of the variance in SSC. Streamflow-based regressions explained 53 to 60 percent of the variance. Mean squared

  6. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery.

    PubMed

    Lee, Ming-Wei; Hung, Cheng-Hung; Liao, Jung-Li; Cheng, Nan-Yu; Hou, Ming-Feng; Tseng, Sheng-Hao

    2014-10-01

    In this paper, we demonstrate that a scanning MEMS mirror can be employed to create a linear gradient line source that is equivalent to a planar source. This light source setup facilitates the use of diffusion models of increased orders of approximation having closed form solution, and thus enhance the efficiency and accuracy in sample optical properties recovery. In addition, compared with a regular planar light source, the linear gradient line source occupies much less source area and has an elevated measurement efficiency. We employed a δ-P1 diffusion equation with a closed form solution and carried out a phantom study to understand the performance of this new method in determining the absorption and scattering properties of turbid samples. Moreover, our Monte Carlo simulation results indicated that this geometry had probing depths comparable to those of the conventional diffuse reflectance measurement geometry with a source-detector separation of 3 mm. We expect that this new source setup would facilitate the investigating of superficial volumes of turbid samples in the wavelength regions where tissue absorption coefficients are comparable to scattering coefficients.

  7. The Swift Turbidity Marker

    ERIC Educational Resources Information Center

    Omar, Ahmad Fairuz; MatJafri, Mohd Zubir

    2011-01-01

    The Swift Turbidity Marker is an optical instrument developed to measure the level of water turbidity. The components and configuration selected for the system are based on common turbidity meter design concepts but use a simplified methodology to produce rapid turbidity measurements. This work is aimed at high school physics students and is the…

  8. The Swift Turbidity Marker

    ERIC Educational Resources Information Center

    Omar, Ahmad Fairuz; MatJafri, Mohd Zubir

    2011-01-01

    The Swift Turbidity Marker is an optical instrument developed to measure the level of water turbidity. The components and configuration selected for the system are based on common turbidity meter design concepts but use a simplified methodology to produce rapid turbidity measurements. This work is aimed at high school physics students and is the…

  9. Lookup table-based sampling of the phase function for Monte Carlo simulations of light propagation in turbid media

    PubMed Central

    Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2017-01-01

    Analytical expressions for sampling the scattering angle from a phase function in Monte Carlo simulations of light propagation are available only for a limited number of phase functions. Consequently, numerical sampling methods based on tabulated values are often required instead. By using Monte Carlo simulated reflectance, we compare two existing and propose an improved numerical sampling method and show that both the number of the tabulated values and the numerical sampling method significantly influence the accuracy of the simulated reflectance. The provided results and guidelines should serve as a good starting point for conducting computationally efficient Monte Carlo simulations with numerical phase function sampling. PMID:28663872

  10. Atmospheric turbidity over Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, C. M.; Feng, T. S.

    The atmospheric turbidity over Taiwan is inferred from the measurements of the direct solar irradiance during the period from July 1982 to June 1987. The turbidity over urban sites, which ranges from 0.30 to 0.48 (mean value 0.39), is significantly higher than values observed over suburban (0.21-0.23), rural (0.16-0.18), and high mountain (0.09) sites. The highest turbidity is observed at Taipei where a positive correlation is found between the turbidity and the daily dustfall data. Low wind speed is usually accompanied with high turbidity. When the surface wind intercepts with mountains, the localized circulation initiated by the blocking of airflow may cause efficient accumulation of aerosols and hence the observed high turbidity. The turbidity tends to be inversely proportional to the stability of the planetary boundary layer (PBL); hence there is an increase of turbidity at most stations from early morning to noontime. A positive correlation between turbidity and r.h. (<80%) and dew point temperature is noted; a negative correlation is found between turbidity and visibility. The annual cycle of turbidity is characterized by spring-fall maxima and winter-summer minima, which is different from the cycle of winter-minimum and summer-maximum observed in the temperate zone. The seasonal change of the synoptic weather pattern occurring around Taiwan is proposed to explain the observed annual cycle.

  11. Inverse SORS for detecting a low Raman-active turbid sample placed inside a highly Raman-active diffusely scattering matrix - A feasibility study.

    PubMed

    Khan, Khan Mohd; Dutta, Surjendu B; Krishna, Hemant; Majumder, Shovan K

    2016-09-01

    The broad range of applications of spatially-offset Raman spectroscopy (SORS) were found to involve samples having only marginal differences in Raman cross-sections between the surface and subsurface targets. We report the results of a feasibility study to evaluate the potential of the approach to identify the presence of a very low Raman-active turbid sample placed inside a highly Raman-active diffusely scattering matrix. Paraffin sandwiched tissue blocks prepared by embedding slices of chicken muscle tissue into solid paraffin blocks were employed as representative samples for the study. It was found that in contrast to the several millimetres of probing depth reported in the earlier applications, the Raman signatures of tissue were best recovered when it was located beneath the surface of the paraffin block at a depth of around a millimetre, beyond which the quality of recovery was increasingly poorer. However, the probing depth could be further increased by increasing the thickness of the embedded tissue sections. The results clearly suggest that though the probing depth achievable under the current condition is less than that found in previous applications, nevertheless it is sufficient for various other applications that would not require probing as deep as was required earlier.

  12. Determination of the complex refractive index segments of turbid sample with multispectral spatially modulated structured light and models approximation.

    PubMed

    Meitav, Omri; Shaul, Oren; Abookasis, David

    2017-09-01

    Spectral data enabling the derivation of a biological tissue sample's complex refractive index (CRI) can provide a range of valuable information in the clinical and research contexts. Specifically, changes in the CRI reflect alterations in tissue morphology and chemical composition, enabling its use as an optical marker during diagnosis and treatment. In the present work, we report a method for estimating the real and imaginary parts of the CRI of a biological sample using Kramers-Kronig (KK) relations in the spatial frequency domain. In this method, phase-shifted sinusoidal patterns at single high spatial frequency are serially projected onto the sample surface at different near-infrared wavelengths while a camera mounted normal to the sample surface acquires the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength are converted to spatial phase maps using KK analysis and are then calibrated against phase-models derived from diffusion approximation. The amplitude of the reflected light, together with phase data, is then introduced into Fresnel equations to resolve both real and imaginary segments of the CRI at each wavelength. The technique was validated in tissue-mimicking phantoms with known optical parameters and in mouse models of ischemic injury and heat stress. Experimental data obtained indicate variations in the CRI among brain tissue suffering from injury. CRI fluctuations correlated with alterations in the scattering and absorption coefficients of the injured tissue are demonstrated. This technique for deriving dynamic changes in the CRI of tissue may be further developed as a clinical diagnostic tool and for biomedical research applications. To the best of our knowledge, this is the first report of the estimation of the spectral CRI of a mouse head following injury obtained in the spatial frequency domain. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  13. Permanent Turbidity-Standards

    PubMed Central

    Roessler, William G.; Brewer, Carl R.

    1967-01-01

    Permanent turbidity reference standards suitable for measurement of microbial suspensions were prepared by suspending finely divided titanium dioxide in aryl sulfonamide-formaldehyde or methylstyrene resins. Turbidities of these standards, adjusted to a useful range for microbiological and immunological studies, were compared with other reference standards in use today. Tube holders for a Coleman Photonephelometer and a Nepho-Colorimeter were modified to eliminate the water well and to allow use of optically standardized 10-, 16-, or 18-mm test tubes. The standards and the tube holders have been used satisfactorily for more than 12 years. Images Fig. 5 Fig. 6 PMID:6077410

  14. Turbidity trends at tucson, Arizona.

    PubMed

    Heidel, K

    1972-09-08

    Variations in atmospheric turbidity at Tucson, Arizona, since 1956 are similar to those at Mauna Loa in Hawaii, especially before January 1970. The turbidity at both locations increased markedly in 1963 after the Bali eruption. Since January 1970, the turbidity has returned to its pre-1963 level at Mauna Loa, but has remained relatively high at Tucson.

  15. Turbidity Current Head Mixing

    NASA Astrophysics Data System (ADS)

    Hernandez, David; Sanchez, Miguel Angel; Medina, Pablo

    2010-05-01

    A laboratory experimental set - up for studying the behaviour of sediment in presence of a turbulent field with zero mean flow is compared with the behaviour of turbidity currents [1] . Particular interest is shown on the initiation of sediment motion and in the sediment lift - off. The behaviour of the turbidity current in a flat ground is compared with the zero mean flow oscilating grid generated turbulence as when wave flow lifts off suspended sediments [2,3]. Some examples of the results obtained with this set-up relating the height of the head of the turbidity current to the equilibrium level of stirred lutoclines are shown. A turbulent velocity u' lower than that estimated by the Shield diagram is required to start sediment motion. The minimum u' required to start sediment lift - off, is a function of sediment size, cohesivity and resting time. The lutocline height depends on u', and the vorticity at the lutocline seems constant for a fixed sediment size [1,3]. Combining grid stirring and turbidty current head shapes analyzed by means of advanced image analysis, sediment vertical fluxes and settling speeds can be measured [4,5]. [1] D. Hernandez Turbulent structure of turbidity currents and sediment transport Ms Thesis ETSECCPB, UPC. Barcelona 2009. [2] A. Sánchez-Arcilla; A. Rodríguez; J.C. Santás; J.M. Redondo; V. Gracia; R. K'Osyan; S. Kuznetsov; C. Mösso. Delta'96 Surf-zone and nearshore measurements at the Ebro Delta. A: International Conference on Coastal Research through large Scale Experiments (Coastal Dynamics '97). University of Plymouth, 1997, p. 186-187. [3] P. Medina, M. A. Sánchez and J. M. Redondo. Grid stirred turbulence: applications to the initiation of sediment motion and lift-off studies Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26, Issue 4, 2001, Pages 299-304 [4] M.O. Bezerra, M. Diez, C. Medeiros, A. Rodriguez, E. Bahia., A. Sanchez-Arcilla and J.M. Redondo. Study on the influence of waves on

  16. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Discharge, SSC, and turbidity were strongly related at the Coldbrook site but not at every monitoring site. In general, relations between discharge and SSC and turbidity were strongest at sites with high SSCs, with the exception of Stony Clove Creek. Stony Clove Creek had high SSCs and turbidity regardless of discharge, and although concentrations and turbidity values generally increased with increasing discharge, the relation was not strong. Five of the six sites used to investigate the relations between SSC and laboratory turbidity had a coefficient of determination (r2) greater than 0.7. Relations were not as strong between SSC and the turbidity measured by in situ probes because the period of record was shorter and therefore the sample sizes were smaller. Data from in situ turbidity probes were strongly related to turbidity data measured in the laboratory for all but one of the monitoring sites where the relation was strongly leveraged by one sample. Although the in situ turbidity probes appeared to provide a good surrogate for SSC and could allow more accurate calculations of suspended-sediment load than discrete suspended-sediment samples alone, more data would be required to define the regression models throughout the range in discharge, SSCs, and turbidity levels that occur at each monitoring site. Nonetheless, the in situ probes provided much greater detail about the relation between discharge and turbidity than did the grab samples and storm samples measured in the laboratory.

  17. Marshes and turbid waters

    NASA Technical Reports Server (NTRS)

    Verger, F. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. The study of the alluvial zones of the French Atlantic littoral at a taxonomic scale which can bring out the general nature of the sediments and their geomorphic forms is being achieved with the aid of ERTS-1 imagery. It will be necessary to run as many lines as possible to study both the alluvial plains, indicating the seasonal phases of the lowest and highest humidity, as well as the turbidity of littoral waters which change in relation to the tides. A better understanding of these alluvial zones and the origin of the sedimentary forms will not be limited to theoretical interest alone, but will have practical application in numerous fields such as agriculture, shell fishing, and land reclamation.

  18. Coherent label-free imaging through turbidity: a holographic approach

    NASA Astrophysics Data System (ADS)

    Bianco, V.; Paturzo, M.; Marchesano, V.; Miccio, L.; Memmolo, P.; Ferraro, P.

    2016-03-01

    A challenging issue has to be faced in microscopy whenever samples are immersed inside a dynamic turbid medium, as occluding objects provoke severe light scattering or unpredictable time-variable phase delays that scramble the object information. In these cases, the transmission matrix of the medium cannot be fully characterized. Here we show a simple technique, named Multi-Look Digital Holography (MLDH), able to fully recover the useful signal of biological specimens dipped inside a turbid liquid phase. Multiple hologram recordings are incoherently combined to synthesize the whole complex field diffused by the sample, which is revealed through turbidity providing quantitative phase-contrast information. Moreover, we show that the presence of a turbid medium can have a positive effect on a coherent imaging system, helping to reduce the effect of speckle artifacts. In other words, occluding biological elements, like e.g. Red Blood Cells (RBCs), can be thought as useful optical components providing denoising capabilities.

  19. Bifocal optical coherenc refractometry of turbid media.

    PubMed

    Alexandrov, Sergey A; Zvyagin, Andrei V; Silva, K K M B Dilusha; Sampson, David D

    2003-01-15

    We propose and demonstrate a novel technique, which we term bifocal optical coherence refractometry, for the rapid determination of the refractive index of a turbid medium. The technique is based on the simultaneous creation of two closely spaced confocal gates in a sample. The optical path-length difference between the gates is measured by means of low-coherence interferometry and used to determine the refractive index. We present experimental results for the refractive indices of milk solutions and of human skin in vivo. As the axial scan rate determines the acquisition time, which is potentially of the order of tens of milliseconds, the technique has potential for in vivo refractive-index measurements of turbid biological media under dynamic conditions.

  20. Mathematical Modelling of Turbidity Currents

    NASA Astrophysics Data System (ADS)

    Fay, G. L.; Fowler, A.; Howell, P.

    2011-12-01

    A turbidity current is a submarine sediment flow which propagates downslope through the ocean into the deep sea. Turbidity currents can occur randomly and without much warning and consequently are hard to observe and measure. The driving force in a turbidity current is the presence of sediment in the current - gravity acts on the sediment in suspension, causing it to move downstream through the ocean water. A phenomenon known as ignition or autosuspension has been observed in turbidity currents in submarine canyons, and it occurs when a current travelling downslope gathers speed as it erodes sediment from the sea floor in a self-reinforcing cycle. Using the turbidity current model of Parker et al. (Journal of Fluid Mechanics, 1986) we investigate the evolution of a 1-D turbidity current as it moves downstream. To seek a better understanding of the dynamics of flow as the current evolves in space and time, we present analytical results alongside computed numerical solutions, incorporating entrainment of water and erosion and deposition of sediment. We consider varying slope functions and inlet conditions and attempt to predict when the current will become extinct. We examine currents which are in both supercritical and subcritical flow regimes and consider the dynamics of the flow as the current switches regime.

  1. Turbidity - a Semi-Continuous Monitoring Option for Suspended Solids

    NASA Astrophysics Data System (ADS)

    Lendvay, J. M.; Rosasco, M. V.; David, K. E.

    2012-12-01

    Redwood Creek, a third order coastal stream flowing through Muir Woods National Monument and Golden Gate National Recreation Area in Marin County, California, was once the spawning grounds for a relatively large population of Coho Salmon (Oncorhynchus kisutch). In recent years less than 1% of historic populations have been returning to the stream. Redwood creek is currently undergoing extensive ecological restoration in an attempt to improve the spawning habitat for the salmon. The original stream path has been altered in the past to make way for development and the National Park Service has been working towards restoring much of the stream's natural functionality with the hope that the salmon population will increase. The restoration process has altered the surrounding riparian landscape in the Redwood Creek watershed. Riparian disturbance caused by vegetation and levee removal as a part of the restoration process followed by installation of seedlings raises concern about the concentration of sediments in the water. Throughout 2011-2012 three parameters for water quality were monitored at Redwood Creek. Suspended sediment concentration (SSC) and total suspended solids (TSS) measurements to determine the concentration of suspended particles in the water column at a given point in time. Turbidity, measured in Nephelometric Turbidity Units (NTU) is a measure of the water's cloudiness caused by suspended particles. Turbidity measurements are favored as they provide a semi-automated monitoring option. Therefore, development of a relationship between turbidity and SSC and TSS is desired. Water samples were analyzed for TSS and SSC using the EPA standard methods, and Turbidity was measured using a Hach 2100Q portable turbidimeter. Additional semi-continuous monitoring of turbidity was completed in situ using Hydrolab DS5X datasondes (with self-cleaning turbidity sensor). The relationship between TSS, SSC and turbidity was determined using a linear regression model for

  2. Turbidity Threshold sampling in watershed research

    Treesearch

    Rand Eads; Jack Lewis

    2003-01-01

    Abstract - When monitoring suspended sediment for watershed research, reliable and accurate results may be a higher priority than in other settings. Timing and frequency of data collection are the most important factors influencing the accuracy of suspended sediment load estimates, and, in most watersheds, suspended sediment transport is dominated by a few, large...

  3. The impacts of turbidity for COD measurements using UV-Vis spectrometry and compensation method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wen, Yizhang; Hu, Yingtian; Wang, Xiaoping

    2016-09-01

    Ultraviolet absorption spectroscopy is one of physical methods used for chemical oxygen demand (COD) measurements of water. The absorbances in ultraviolet band have a relationship to COD. However, turbidity in water could scatter emitting light and influence the absorbances. So it is very important to compensate for the impact of turbidity. In this study, the absorption spectra of standard COD solution (potassium acid phthalate), turbidity solution (Formazine) and their mixture are sampled in the wavelength range from 220 to 750 nm. The impacts of turbidity for COD measurement and compensation method are studied based on these data. The absorbance of mixture substract the absorbance of turbidity solution is less than the absorbance of standard COD solution. The result indicates that turbidity particles decrease the light absorption of organic molecules. Furthermore, we discover that the impact of turbidity is greater for the larger absorbance of the standard COD solution. Then attenuation coeffcient (AC()) is introduced and calculated based on exprimental results. In the process of turbidity compensation, the turbidity of solution is estimated using the absorbance of visible wavelength. The absorption spectra of the turbidity in the ultraviolet wavelength are simulated using normalization technique. The satisfactory prediction result of COD is achieved for the mixture after the turbidity compensation. In conclusion, the new turbidity compensation method could eliminate the influence of turbidity for COD measurements based on absorption spectroscopy.

  4. Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water.

    PubMed

    LeChevallier, M W; Evans, T M; Seidler, R J

    1981-07-01

    To define interrelationships between elevated turbidities and the efficiency of chlorination in drinking water, experiments were performed to measure bacterial survival, chlorine demand, and interference with microbiological determinations. Experiments were conducted on the surface water supplies for communities which practice chlorination as the only treatment. Therefore, the conclusions of this study apply only to such systems. Results indicated that disinfection efficiency (log10 of the decrease in coliform numbers) was negatively correlated with turbidity and was influenced by season, chlorine demand of the samples, and the initial coliform level. Total organic carbon was found to be associated with turbidity and was shown to interfere with maintenance of a free chlorine residual by creating a chlorine demand. Interference with coliform detection in turbid waters could be demonstrated by the recovery of typical coliforms from apparently negative filters. The incidence of coliform masking in the membrane filter technique was found to increase as the turbidity of the chlorinated samples increased. the magnitude of coliform masking in the membrane filter technique increased from less than 1 coliform per 100 ml in water samples of less than 5 nephelometric turbidity units to greater than 1 coliform per 100 ml in water samples of greater than 5 nephelometric turbidity units. Statistical models were developed to predict the impact of turbidity on drinking water quality. The results justify maximum contaminant levels for turbidity in water entering a distribution system as stated in the National Primary Drinking Water Regulations of the Safe Drinking Water Act.

  5. Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water.

    PubMed Central

    LeChevallier, M W; Evans, T M; Seidler, R J

    1981-01-01

    To define interrelationships between elevated turbidities and the efficiency of chlorination in drinking water, experiments were performed to measure bacterial survival, chlorine demand, and interference with microbiological determinations. Experiments were conducted on the surface water supplies for communities which practice chlorination as the only treatment. Therefore, the conclusions of this study apply only to such systems. Results indicated that disinfection efficiency (log10 of the decrease in coliform numbers) was negatively correlated with turbidity and was influenced by season, chlorine demand of the samples, and the initial coliform level. Total organic carbon was found to be associated with turbidity and was shown to interfere with maintenance of a free chlorine residual by creating a chlorine demand. Interference with coliform detection in turbid waters could be demonstrated by the recovery of typical coliforms from apparently negative filters. The incidence of coliform masking in the membrane filter technique was found to increase as the turbidity of the chlorinated samples increased. the magnitude of coliform masking in the membrane filter technique increased from less than 1 coliform per 100 ml in water samples of less than 5 nephelometric turbidity units to greater than 1 coliform per 100 ml in water samples of greater than 5 nephelometric turbidity units. Statistical models were developed to predict the impact of turbidity on drinking water quality. The results justify maximum contaminant levels for turbidity in water entering a distribution system as stated in the National Primary Drinking Water Regulations of the Safe Drinking Water Act. Images PMID:7259162

  6. Winter feeding success of stream trout under different streamflow and turbidity conditions

    Treesearch

    Jason L. White; Bret C. Harvey

    2007-01-01

    To investigate the relationship between turbidity and trout feeding success in natural systems, we sampled the stomach contents of resident rainbow trout Oncorhynchus mykiss and coastal cutthroat trout O. clarkii clarkii under different streamflow and turbidity conditions during winter in two northwestern California streams (total sample size¼161). Feeding success...

  7. [Experimental research of turbidity influence on water quality monitoring of COD in UV-visible spectroscopy].

    PubMed

    Tang, Bin; Wei, Biao; Wu, De-Cao; Mi, De-Ling; Zhao, Jing-Xiao; Feng, Peng; Jiang, Shang-Hai; Mao, Ben-Jiang

    2014-11-01

    Eliminating turbidity is a direct effect spectroscopy detection of COD key technical problems. This stems from the UV-visible spectroscopy detected key quality parameters depend on an accurate and effective analysis of water quality parameters analytical model, and turbidity is an important parameter that affects the modeling. In this paper, we selected formazine turbidity solution and standard solution of potassium hydrogen phthalate to study the turbidity affect of UV--visible absorption spectroscopy detection of COD, at the characteristics wavelength of 245, 300, 360 and 560 nm wavelength point several characteristics with the turbidity change in absorbance method of least squares curve fitting, thus analyzes the variation of absorbance with turbidity. The results show, In the ultraviolet range of 240 to 380 nm, as the turbidity caused by particle produces compounds to the organics, it is relatively complicated to test the turbidity affections on the water Ultraviolet spectra; in the visible region of 380 to 780 nm, the turbidity of the spectrum weakens with wavelength increases. Based on this, this paper we study the multiplicative scatter correction method affected by the turbidity of the water sample spectra calibration test, this method can correct water samples spectral affected by turbidity. After treatment, by comparing the spectra before, the results showed that the turbidity caused by wavelength baseline shift points have been effectively corrected, and features in the ultraviolet region has not diminished. Then we make multiplicative scatter correction for the three selected UV liquid-visible absorption spectroscopy, experimental results shows that on the premise of saving the characteristic of the Ultraviolet-Visible absorption spectrum of water samples, which not only improve the quality of COD spectroscopy detection SNR, but also for providing an efficient data conditioning regimen for establishing an accurate of the chemical measurement methods.

  8. Monitoring suspended sediments and turbidity in Sahelian basins

    NASA Astrophysics Data System (ADS)

    Robert, Elodie; Grippa, Manuela; Kergoat, Laurent; Martinez, Jean-Michel; Pinet, Sylvain; Nogmana, Soumaguel

    2017-04-01

    Suspended matter can carry viruses and bacteria that are pathogenic to humans and can foster their development. Therefore, turbidity can be considered a vector of microbiological contaminants, which cause diarrheal diseases, and it can be used as a proxy for fecal bacteria. Few studies have focused on water turbidity in rural Africa, where many cases of intestinal parasitic infections are due to the consumption of unsafe water from ponds, reservoirs, lakes and rivers. Diarrheal diseases are indeed the second cause of infant mortality in sub-Saharan Africa. Furthermore, in this region, environment survey is minimal or inexistent. Monitoring water turbidity therefore represents a challenge for health improvement. Turbidity refers to the optical properties of water and it is well suited to monitoring by remote sensing. Because it varies in space and time and because the small water bodies (< 250m2) are critical for Sahelian societies, monitoring turbidity requires the use of high temporal and spatial resolution sensors like Landsat 7 and 8, Sentinel-2 as well SPOT5-TAKE5 data. Compared to many other regions of the world, the particularly high turbidity values found in tropical Africa challenges the use of remote sensing and questions the methods developed for less turbid waters. In addition, high aerosol loadings (mineral dust and biomass burning) may be detrimental to turbidity retrieval in this region because of inaccurate atmospheric corrections. We propose a method to monitor water quality of Sahelian ponds, lakes and rivers using in-situ and remote sensing data, which is tested at different sites for which in-situ water turbidity and suspended sediments concentration (SSSC) measurements are acquired. Water sample are routinely collected at two sites within the AMMA-CATCH observatory part of the Réseau de Bassin Versants (RBV) French network: the Agoufou pond in northern Mali (starting September 2014), and the Niger River at Niamey in Niger (starting June 2015

  9. Hyperspectral sensing for turbid water quality monitoring in freshwater rivers: Empirical relationship between reflectance and turbidity and total solids.

    PubMed

    Wu, Jiunn-Lin; Ho, Chung-Ru; Huang, Chia-Ching; Srivastav, Arun Lal; Tzeng, Jing-Hua; Lin, Yao-Tung

    2014-11-28

    Total suspended solid (TSS) is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ) as well as brought to the laboratory for further analysis. To obtain the data set for this study, 160 in situ sample observations were carried out during campaigns from August to December, 2005. The water quality results were correlated with the reflectivity to determine the spectral characteristics and their relationship with turbidity and TSS. Furthermore, multiple-regression (MR) and artificial neural network (ANN) were used to model the transformation function between TSS concentration and turbidity levels of stream water, and the radiance measured by the spectroradiometer. The value of the turbidity and TSS correlation coefficient was 0.766, which implies that turbidity is significantly related to TSS in the Wu river basin. The results indicated that TSS and turbidity are positively correlated in a significant way across the entire spectrum, when TSS concentration and turbidity levels were under 800 mg·L(-1) and 600 NTU, respectively. Optimal wavelengths for the measurements of TSS and turbidity are found in the 700 and 900 nm range, respectively. Based on the results, better accuracy was obtained only when the ranges of turbidity and TSS concentration were less than 800 mg·L(-1) and less than 600 NTU, respectively and used rather than using whole dataset (R(2) = 0.93 versus 0.88 for turbidity and R(2) = 0.83 versus 0.58 for TSS). On the other hand, the ANN approach can improve the TSS retrieval using MR. The accuracy of TSS estimation applying ANN (R(2) = 0.66) was better than with the MR approach (R

  10. Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship between Reflectance and Turbidity and Total Solids

    PubMed Central

    Wu, Jiunn-Lin; Ho, Chung-Ru; Huang, Chia-Ching; Srivastav, Arun Lal; Tzeng, Jing-Hua; Lin, Yao-Tung

    2014-01-01

    Total suspended solid (TSS) is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ) as well as brought to the laboratory for further analysis. To obtain the data set for this study, 160 in situ sample observations were carried out during campaigns from August to December, 2005. The water quality results were correlated with the reflectivity to determine the spectral characteristics and their relationship with turbidity and TSS. Furthermore, multiple-regression (MR) and artificial neural network (ANN) were used to model the transformation function between TSS concentration and turbidity levels of stream water, and the radiance measured by the spectroradiometer. The value of the turbidity and TSS correlation coefficient was 0.766, which implies that turbidity is significantly related to TSS in the Wu river basin. The results indicated that TSS and turbidity are positively correlated in a significant way across the entire spectrum, when TSS concentration and turbidity levels were under 800 mg·L−1 and 600 NTU, respectively. Optimal wavelengths for the measurements of TSS and turbidity are found in the 700 and 900 nm range, respectively. Based on the results, better accuracy was obtained only when the ranges of turbidity and TSS concentration were less than 800 mg·L−1 and less than 600 NTU, respectively and used rather than using whole dataset (R2 = 0.93 versus 0.88 for turbidity and R2 = 0.83 versus 0.58 for TSS). On the other hand, the ANN approach can improve the TSS retrieval using MR. The accuracy of TSS estimation applying ANN (R2 = 0.66) was better than with the MR approach (R2 = 0

  11. Determination of Residual Chlorine and Turbidity in Drinking Water. Student Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This student's manual covers analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. The publication is intended for…

  12. Determination of Residual Chlorine and Turbidity in Drinking Water. Instructor's Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This instructor's guide presents analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. This publication is intended…

  13. Simple systems for treating pumped, turbid water with flocculants and a geotextile dewatering bag.

    PubMed

    Kang, Jihoon; McLaughlin, Richard A

    2016-11-01

    Pumping sediment-laden water from excavations is often necessary on construction sites. This water is often treated by pumping it through geotextile dewatering bags. The bags are not designed to filter the fine sediments that create high turbidity, but dosing with a flocculant prior to the bag could result in greater turbidity control. This study compared two systems for introducing flocculant: passive dosing of commercial solid biopolymer (chitosan) and injection of dissolved polyacrylamide (PAM) in a length of corrugated pipe connected to the bag. The biopolymer system consisted of sequential porous socks containing a "charging agent" followed by chitosan in the corrugated pipe with two levels of dosing. The dissolved PAM was injected into turbid water at a flow-weighted concentration at 1 mg L(-1). For each treatment, sediment-laden turbid water in the range of 2000 to 3500 nephelometric turbidity units (NTU) was pumped into the upstream of corrugated pipe and samples were taken from pipe entrance, pipe exit, and dewatering bag exit. Without flocculant treatment, the dewatering bag reduced turbidity by 70% but the addition of flocculant increased the turbidity reduction up to 97% relative to influent. At the pipe exit, the low-dose biopolymer was less effective in reducing turbidity (37%) but it was equally effective as the high-dose biopolymer or PAM injection after the bag. Our results suggest that a relatively simple treatment with flocculants, either passively or actively, can be very effective in reducing turbidity for pumped water on construction sites.

  14. Laser-speckle-visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  15. Change in field turbidity and trace element concentrations during well purging

    USGS Publications Warehouse

    Gibs, J.; Szabo, Z.; Ivahnenko, T.; Wilde, F.D.

    2000-01-01

    Various physical and chemical properties were monitored sequentially in the field during well purging as indicators of stabilization of the composition of the water in the well. Turbidity was monitored on site during purging of oxic water from three wells with screened intervals open to an unconfined aquifer system in the Coastal Plain of southern New Jersey to determine if stabilization of turbidity is a reliable indicator of the optimum purge time required to collect unbiased trace element samples. Concurrent split (one filtered, one unfiltered) samples collected during purging of the wells were analyzed for concentrations of trace elements so that the relationships between trace element concentrations and turbidity could be compared. Turbidity correlated with the whole water recoverable (WWR) concentration of trace element species, such as iron (Fe), aluminum (Al), and manganese (Mn) in the oxic ground water. Turbidity appeared to be independent of other field-measured characteristics of water such as conductivity, pH, temperature, and dissolved oxygen. The WWR concentrations of lead and copper, considered to be hydrophobic, correlated significantly with the sum of the WWR concentration of Fe, Al, and Mn. High values of field-measured turbidity were a key indicator of an overestimate of ambient hydrophobic trace element WWR concentrations. Stabilization of turbidity was a better indicator of stable, unfiltered trace element concentrations than were the other commonly measured field characteristics. At one well, turbidity was a better indicator of stable, filtered trace element concentrations than the other commonly measured field characteristics. As analytical methods for trace elements improve resulting in smaller MRLs (method reporting levels) and better precision, turbidity of ground water at values of less than 10 NTU (nepheiometric turbidity units) will become important in interpreting the significance of both unfiltered and filtered sample results.

  16. Spectral scattering properties of turbid waters

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Poole, L. R.; Houghton, W. M.

    1980-01-01

    River water samples have been examined for optical scattering properties at wavelengths between 400 and 800 nm. Scattering coefficients were calculated from measurements of beam attenuation and absorption coefficients and are observed to vary with wavelength. At a fixed wavelength, the scattering coefficient is influenced by both phytoplankton concentration (as indicated by chlorophyll a) and suspended solids concentration. Measurements of small angle volume-scattering function indicate that the phase function at an angle of 1.5 deg is not constant for turbid waters and varies with both wavelength and beam attenuation coefficient. These data differ from previously published results for relatively clear oceanic and coastal waters. Caution is required when attempting to estimate scattering coefficient values from single-angle measurements of volume-scattering function.

  17. Spectral scattering properties of turbid waters

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Poole, L. R.; Houghton, W. M.

    1980-01-01

    River water samples have been examined for optical scattering properties at wavelengths between 400 and 800 nm. Scattering coefficients were calculated from measurements of beam attenuation and absorption coefficients and are observed to vary with wavelength. At a fixed wavelength, the scattering coefficient is influenced by both phytoplankton concentration (as indicated by chlorophyll a) and suspended solids concentration. Measurements of small angle volume-scattering function indicate that the phase function at an angle of 1.5 deg is not constant for turbid waters and varies with both wavelength and beam attenuation coefficient. These data differ from previously published results for relatively clear oceanic and coastal waters. Caution is required when attempting to estimate scattering coefficient values from single-angle measurements of volume-scattering function.

  18. IMPACT OF TURBIDITY ON TCE AND DEGRADATION PRODUCTS IN GROUND WATER

    EPA Science Inventory

    Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. H...

  19. IMPACT OF TURBIDITY ON TCE AND DEGRADATION PRODUCTS IN GROUND WATER

    EPA Science Inventory

    Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. H...

  20. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    PubMed

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  1. Water turbidity estimation from airborne hyperspectral imagery and full waveform bathymetric LiDAR

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Glennie, C. L.; Fernandez-Diaz, J. C.

    2015-12-01

    The spatial and temporal variations in water turbidity are of great interest for the study of fluvial and coastal environments; and for predicting the performance of remote sensing systems that are used to map these. Conventional water turbidity estimates from remote sensing observations have normally been derived using near infrared reflectance. We have investigated the potential of determining water turbidity from additional remote sensing sources, namely airborne hyperspectral imagery and single wavelength bathymetric LiDAR (Light Detection and Ranging). The confluence area of the Blue and Colorado River, CO was utilized as a study area to investigate the capabilities of both airborne bathymetric LiDAR and hyperspectral imagery for water turbidity estimation. Discrete and full waveform bathymetric data were collected using Optech's Gemini (1064 nm) and Aquarius (532 nm) LiDAR sensors. Hyperspectral imagery (1.2 m pixel resolution and 72 spectral bands) was acquired using an ITRES CASI-1500 imaging system. As an independent reference, measurements of turbidity were collected concurrent with the airborne remote sensing acquisitions, using a WET Labs EcoTriplet deployed from a kayak and turbidity was then derived from the measured backscatter. The bathymetric full waveform dataset contains a discretized sample of the full backscatter of water column and benthic layer. Therefore, the full waveform records encapsulate the water column characteristics of turbidity. A nonparametric support vector regression method is utilized to estimate water turbidity from both hyperspectral imagery and voxelized full waveform LiDAR returns, both individually and as a fused dataset. Results of all the evaluations will be presented, showing an initial turbidity prediction accuracy of approximately 1.0 NTU. We will also discuss our future strategy for enhanced fusion of the full waveform LiDAR and hyperspectral imagery for improved turbidity estimation.

  2. Quantitative fluorescence spectroscopy in turbid media: a practical solution to the problem of scattering and absorption.

    PubMed

    Chen, Yao; Chen, Zeng-Ping; Yang, Jing; Jin, Jing-Wen; Zhang, Juan; Yu, Ru-Qin

    2013-02-19

    The presence of practically unavoidable scatterers and background absorbers in turbid media such as biological tissue or cell suspensions can significantly distort the shape and intensity of fluorescence spectra of fluorophores and, hence, greatly hinder the in situ quantitative determination of fluorophores in turbid media. In this contribution, a quantitative fluorescence model (QFM) was proposed to explicitly model the effects of the scattering and absorption on fluorescence measurements. On the basis of the proposed model, a calibration strategy was developed to remove the detrimental effects of scattering and absorption and, hence, realize accurate quantitative analysis of fluorophores in turbid media. A proof-of-concept model system, the determination of free Ca(2+) in turbid media using Fura-2, was utilized to evaluate the performance of the proposed method. Experimental results showed that QFM can provide quite precise concentration predictions for free Ca(2+) in turbid media with an average relative error of about 7%, probably the best results ever achieved for turbid media without the use of advanced optical technologies. QFM has not only good performance but also simplicity of implementation. It does not require characterization of the light scattering properties of turbid media, provided that the light scattering and absorption properties of the test samples are reasonably close to those of the calibration samples. QFM can be developed and extended in many application areas such as ratiometric fluorescent sensors for quantitative live cell imaging.

  3. Spatio-temporal patterns in coastal turbidity - Long-term trends and drivers of variation across an estuarine-open coast gradient

    NASA Astrophysics Data System (ADS)

    Seers, Blake M.; Shears, Nick T.

    2015-03-01

    Turbidity in the coastal environment is greatly affected by human activities on the land and this is likely to be exacerbated with expanding urbanisation and climate change. Investigating the temporal and spatial drivers of variation in turbidity is key to understanding processes influencing turbidity and for developing management strategies to mitigate future increases in turbidity. We analyse 22 years of monthly turbidity data from 1992 to 2013 in New Zealand's Hauraki Gulf to determine whether turbidity has changed in response to implementation of land management regulations. We also investigate how spatial and temporal patterns in turbidity relate to meteorological and oceanographic variables along an estuarine to open-coast gradient. Turbidity, total suspended solids and chlorophyll a declined along the estuarine to open-coast gradient. Correlation analysis suggested that suspended sediment was the major determinant of turbidity along this gradient. Improvements in turbidity were evident at some harbour sites, but overall there were no consistent trends across the sites. Some cyclical patterns in turbidity were evident, but these were only weakly related to ENSO. The greatest component of temporal variation at all sites was between samples (months). The primary correlates of this variation in turbidity differed across the estuarine-open coast gradient; recent wave conditions explained the greatest variation in turbidity at open coast sites, whereas tidal currents and daily rainfall were the primary correlates at harbour channel and estuarine sites. The strong coupling found between meteorological factors and coastal turbidity highlight a number of mechanisms whereby turbidity will likely increase as a result of climate change along this coastal gradient. Improvements in land management practices, particularly in rural areas, as well as coastal protection are therefore essential to offset the likely effects of climate change on coastal turbidity.

  4. Relationship between turbidity and total suspended solids concentration within a combined sewer system.

    PubMed

    Hannouche, A; Chebbo, G; Ruban, G; Tassin, B; Lemaire, B J; Joannis, C

    2011-01-01

    This article confirms the existence of a strong linear relationship between turbidity and total suspended solids (TSS) concentration. However, the slope of this relation varies between dry and wet weather conditions, as well as between sites. The effect of this variability on estimating the instantaneous wet weather TSS concentration is assessed on the basis of the size of the calibration dataset used to establish the turbidity - TSS relationship. Results obtained indicate limited variability both between sites and during dry weather, along with a significant inter-event variability. Moreover, turbidity allows an evaluation of TSS concentrations with an acceptable level of accuracy for a reasonable rainfall event sampling campaign effort.

  5. NIR remission spectroscopy of turbid media

    NASA Astrophysics Data System (ADS)

    Krauter, P.; Foschum, F.; Kienle, A.

    2013-06-01

    We present a method for the determination of absorption spectra in VIS and NIR spectra of turbid media without the need for calibration. Measurements of the absorption spectra of a phantom and butter are presented.

  6. GMDH algorithms applied to turbidity forecasting

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Min; Yen, Pei-Hwa

    2017-06-01

    By applying the group method of data handling algorithm to self-organization networks, we design a turbidity prediction model based on simple input/output observations of daily hydrological data (rainfall, discharge, and turbidity). The data are from a field test site at the Chiahsien Weir and its upper stream in Taiwan, and were recorded from May 2000 to December 2008. The model has a regressive mode that can assess the estimated error, i.e., whether a threshold has been exceeded, and can be adjusted by updating the field input data. Consequently, the model can achieve accurate estimations over long-term periods. Test results demonstrate that the 2006 turbidity prediction model was selected as the best predictive model (RMSE = 5.787 and CC = 0.975) because of its ability to predict turbidity within the acceptable error range and 90 % required confidence interval (50NTU). 70(3,1,1) is the optimum modeling data length and variable combinations.

  7. Satellite remote sensing of water turbidity

    USGS Publications Warehouse

    Moore, Gerald K.

    1980-01-01

    Remote sensing instruments obtain an optical measure of water colour and turbidity. Colour increases the absorption of light in water and decreases the remotely sensed signal; turbidity increases the backscatter of light. For low concentrations of suspended materials, spectral reflectance is determined mostly by the absorptance characteristics of water; for higher concentrations, the absorptance characteristics of suspended particles are the most important factors. -from Authorwater colour suspended materials

  8. Laser speckle visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-03-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light and the speckle visibility[2] is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam.[3] It may be applied to other kinds of acoustic wave in different forms of turbid soft matter, such as biological tissues, pastes or concentrated emulsions. Now at Université Lyon 1 (ILM).

  9. Continuous Turbidity Monitoring in the Indian Creek Watershed, Tazewell County, Virginia, 2006-08

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2009-01-01

    Thousands of miles of natural gas pipelines are installed annually in the United States. These pipelines commonly cross streams, rivers, and other water bodies during pipeline construction. A major concern associated with pipelines crossing water bodies is increased sediment loading and the subsequent impact to the ecology of the aquatic system. Several studies have investigated the techniques used to install pipelines across surface-water bodies and their effect on downstream suspended-sediment concentrations. These studies frequently employ the evaluation of suspended-sediment or turbidity data that were collected using discrete sample-collection methods. No studies, however, have evaluated the utility of continuous turbidity monitoring for identifying real-time sediment input and providing a robust dataset for the evaluation of long-term changes in suspended-sediment concentration as it relates to a pipeline crossing. In 2006, the U.S. Geological Survey, in cooperation with East Tennessee Natural Gas and the U.S. Fish and Wildlife Service, began a study to monitor the effects of construction of the Jewell Ridge Lateral natural gas pipeline on turbidity conditions below pipeline crossings of Indian Creek and an unnamed tributary to Indian Creek, in Tazewell County, Virginia. The potential for increased sediment loading to Indian Creek is of major concern for watershed managers because Indian Creek is listed as one of Virginia's Threatened and Endangered Species Waters and contains critical habitat for two freshwater mussel species, purple bean (Villosa perpurpurea) and rough rabbitsfoot (Quadrula cylindrical strigillata). Additionally, Indian Creek contains the last known reproducing population of the tan riffleshell (Epioblasma florentina walkeri). Therefore, the objectives of the U.S. Geological Survey monitoring effort were to (1) develop a continuous turbidity monitoring network that attempted to measure real-time changes in suspended sediment (using

  10. Estimation of suspended sediment concentration from turbidity measurements for agrarian watersheds of Navarre (Spain)

    NASA Astrophysics Data System (ADS)

    Madrona, Cecilia; Campo-Bescós, Miguel A.; Giménez, Rafael

    2016-04-01

    analysis and neural networks will be applied. To this end, there is a complete database of turbidity -taken every ten minutes- and sediment concentration -and in some cases, the granulometry of this sediment- registered along a single event above a certain magnitude. In addition, there are turbidity measurements of water-sediment samples from some of those events carried out in the laboratory. The latter are compared with the turbidity measurements registered by the turbidimeter in the hydrological stations. First results show that the turbidity-SSC relationship has an accuracy that varies throughout the year following a roughly seasonal pattern. Thus, the best fit will be achieved by defining a turbidity-SSC model according to the type of event. Furthermore the water-sediment sampler eventually collect bedload sediment while turbidemeters only register suspended sediments. This fact is somehow spoiling the turbidity-SSC relationship.

  11. Characterization of Tank 40H Supernate and Hydroxide Washing of Sludge

    SciTech Connect

    Wilmarth, W.R.

    2001-01-15

    During June 2000, the 3H Evaporator system is scheduled to receive wash water from washing the sludge and supernate currently in Tank 40H. The supernate from Tank 40H contains concentrated supernate from Tank 38H, the 2H Evaporator drop tank. This material may contain soluble silicon from the DWPF recycle stream. Therefore, SRTC examined the contents of Tank 40H and simulated the hydroxide wash of the sludge. The results of these tests are discussed in this report.

  12. Image transfer through the complex scattering turbid media

    NASA Astrophysics Data System (ADS)

    Meglinski, I. V.; Berrocal, E.; Linne, M. A.; Greenhalgh, D. A.

    2007-05-01

    Seeing through a turbid medium such as fog, mist or clouds is a fascinating idea that would find applications in a large range of fields from research to industry. The main difficulty of this challenging task is related to the complexity of multiple scattering of optical radiation propagated through an ensemble of scattering particles and/or droplets randomly distributed in a medium. To deal with this challenging problem we develop a new Monte Carlo based computational technique able to simulate image transfer through the complex inhomogeneous turbid media. The model is able to identify the contribution of the scattering orders in the detected images for a particular medium. With the presented approach the simulation of laser beam propagation and image transfer of an object hidden within a turbid scattering medium has been performed. The results of simulation demonstrate a good agreement with the experimental results. The validation of the technique has been done by using several modeling samples of water polystyrene spheres solutions.

  13. Turbidity Dynamics in an Urbanized Headwater Stream

    NASA Astrophysics Data System (ADS)

    Wynn, T. M.; Utley, B. C.; Davis, K.; Simpson, J. A.

    2008-12-01

    Excess suspended sediment in streams degrades aquatic ecosystems, reduces reservoir capacity, increases drinking water treatment costs, and serves as a carrier for pollutants such as phosphorus, bacterial, heavy metals, and pesticides. Due to the high temporal variability of suspended sediment transport, continuous instream turbidity measurements are used as a surrogate for suspended sediment concentration. This variability is particularly pronounced in small urban streams (drainage areas < 100 sq. km). To evaluate turbidity dynamics within the Stroubles Creek watershed (14 sq. km), two Eureka Manta multi-parameter sondes with McVan wiped turbidity sensors were installed at two cross sections upstream and downstream of a 450-m reach experiencing active bank retreat. Turbidity was recorded every 10 min. from March 2006 to May 2007. The continuous turbidity records were evaluated for hysteresis and indications of contributions of bank retreat to the stream sediment load. While the transport of suspended sediment from upstream sources through the study reach is observed, channel erosion appears to be a significant source of sediment to the stream.

  14. Fingerprinting Persistent Turbidity in Sheep Creek Reservoir, Owhyee, Nevada

    NASA Astrophysics Data System (ADS)

    Ransom, R. N.; Hooper, R. L.; Kerner, D.; Nicols, S.

    2007-12-01

    Sheep Creek Reservoir near Owyhee, NV is historically a quality rainbow trout fishery. Persistent high-turbidity has been an issue since a major storm event in 2005 resulted in surface water runoff into the Reservoir. The high turbidity is adversely impacting the quality of the fishery. Initial turbidity measurements in 2005 were upwards of 80NTU and these numbers have only decreased to 30NTU over the past two summers. Field parameters indicate the turbidity is associated with high total suspended solids (TSS) and not algae. Five water samples collected from around the reservoir during June, 2007 indicated uniform TSS values in the range of 5 to 12mg/L and oriented powder x-ray diffraction(XRD) and transmission electron microscopy(TEM) analyses of suspended sediment shows very uniform suspended particulate mineralogy including smectite, mixed layer illite/smectite (I/S), discrete illite, lesser amounts of kaolin, sub-micron quartz and feldspar. Diatoms represent a ubiquitous but minor component of the suspended solids. Six soil samples collected from possible source areas around the reservoir were analyzed using both XRD and TEM to see if a source area for the suspended solids could be unambiguously identified. Soils on the east side of the reservoir contain smectite and mixed layer I/S but very little of the other clays. The less than 2 micron size fraction from soils collected from a playa on the topographic bench immediately to the west of the reservoir show a mineralogic finger-print essentially identical to the current suspended sediment. The suspended sediment probably originates on the bench to the west of the reservoir and cascades into the reservoir over the topographic break during extreme storm events. The topographic relief, short travel distance and lack of a suitable vegetated buffer zone to the west are all consistent with a primary persistent suspended sediment source from the west. Identification of the sediment source allows for design of a cost

  15. The design of rapid turbidity measurement system based on single photon detection techniques

    NASA Astrophysics Data System (ADS)

    Yang, Yixin; Wang, Huanqin; Cao, Yangyang; Gui, Huaqiao; Liu, Jianguo; Lu, Liang; Cao, Huibin; Yu, Tongzhu; You, Hui

    2015-10-01

    A new rapid turbidity measurement system has been developed to measure the turbidity of drinking water. To determinate the turbidity quantitatively, the total intensity of scattering light has been measured and quantified as number of photons by adopting the single photon detection techniques (SPDT) which has the advantage of high sensitivity. On the basis of SPDT, the measurement system has been built and series of experiments have been carried out. Combining then the 90° Mie scattering theory with the principle of SPDT, a turbidity measurement model has been proposed to explain the experimental results. The experimental results show that a turbidity, which is as low as 0.1 NTU (Nephelometric Turbidity Units), can be measured steadily within 100 ms. It also shows a good linearity and stability over the range of 0.1-400 NTU and the precision can be controlled within 5% full scale. In order to improve its precision and stability, some key parameters, including the sampling time and incident light intensity, have been discussed. It has been proved that, to guarantee an excellent system performance, a good compromise between the measurement speed and the low power consumption should be considered adequately depending on the practical applications.

  16. An evaluation of suspended sediments and turbidity in Cow Creek, Oregon

    USGS Publications Warehouse

    Curtiss, D.A.

    1982-01-01

    During a 6-month period from December 1980 through May 1981, samples were collected from Cow Creek near Azalea, Oreg., and analyzed for suspended sediment, particle-size distribution, and turbidity. Of the estimated suspended-sediment discharge of 4,270 tons for the 1981 water year, 95 percent (4,050 tons) was transported during a major storm event, December 2-4, 1980. The 1981 water year suspended-sediment discharge of 4,270 tons is well below the average annual suspended-sediment discharge of 22,000 tons reported earlier by Curtiss (1974). A clay-sediment transport curve was used in conjunction with the flow-duration curve to estimate average annual clay discharge of 3,700 tons for Cow Creek near Azalea. Turbidity in Cow Creek near Azalea is estimated to be equal to or less than 15 NTU (nephelometric turbidity units) 90 percent of the time. A method for predicting turbidity values in a hypothetical impoundment is presented in this report. This method utilizes a suspended-sediment transport curve of the fine (<0.002 mm) material and measures residual-turbidity values. This method probably could be used to assess the impact of proposed reservoirs on stream turbidities in basins similar to that of Cow Creek basin.

  17. Turbidity observations in sediment flux studies: Examples from Russian rivers in cold environments

    NASA Astrophysics Data System (ADS)

    Tananaev, N. I.; Debolskiy, M. V.

    2014-08-01

    Turbidity is commonly used as a proxy to estimate suspended sediment content in streams, and for hydroecological purposes. The scope of this paper is to give an outlook to wider applications of nephelometric turbidimetry as a method. Uncalibrated turbidity records in conjunction with water chemistry data prove useful in detecting watershed reaction to single hydrological events during the spring flood in Arctic Russia. The turbidimetric survey technique was applied to study the spatial variability of sediment yield features on small rivers of the south-eastern part of Sakhalin Island. Suspended sediment concentration (SSC) vs. turbidity relation follows the geological features of the terrain and reflects the land-use intensity within the watersheds. For our Igarka key site, a logarithmic regression model was developed as an instrument of SSC calculation with turbidity data for each of the four studied watersheds. A regional regression model was developed for this site, and supplementary water optics data (filtered sample turbidity) was employed to increase the reliability of SSC calculations. Our results show that factors influencing turbidity, namely water colour and sediment grain size, have to be considered in multivariate models, to minimize errors and acquire an understanding of what kind of physical response is actually measured by nephelometry-based instruments.

  18. Characterization of the relationship between ceramic pot filter water production and turbidity in source water.

    PubMed

    Salvinelli, Carlo; Elmore, A Curt; Reidmeyer, Mary R; Drake, K David; Ahmad, Khaldoun I

    2016-11-01

    Ceramic pot filters represent a common and effective household water treatment technology in developing countries, but factors impacting water production rate are not well-known. Turbidity of source water may be principal indicator in characterizing the filter's lifetime in terms of water production capacity. A flow rate study was conducted by creating four controlled scenarios with different turbidities, and influent and effluent water samples were tested for total suspended solids and particle size distribution. A relationship between average flow rate and turbidity was identified with a negative linear trend of 50 mLh(-1)/NTU. Also, a positive linear relationship was found between the initial flow rate of the filters and average flow rate calculated over the 23 day life of the experiment. Therefore, it was possible to establish a method to estimate the average flow rate given the initial flow rate and the turbidity in the influent water source, and to back calculate the maximum average turbidity that would need to be maintained in order to achieve a specific average flow rate. However, long-term investigations should be conducted to assess how these relationships change over the expected CPF lifetime. CPFs rejected fine suspended particles (below 75 μm), especially particles with diameters between 0.375 μm and 10 μm. The results confirmed that ceramic pot filters are able to effectively reduce turbidity, but pretreatment of influent water should be performed to avoid premature failure.

  19. Effect of Canister Movement on Water Turbidity

    SciTech Connect

    TRIMBLE, D.J.

    2000-08-24

    Requirements for evaluating the adherence characteristics of sludge on the fuel stored in the K East Basin and the effect of canister movement on basin water turbidity are documented in Briggs (1996). The results of the sludge adherence testing have been documented (Bergmann 1996). This report documents the results of the canister movement tests. The purpose of the canister movement tests was to characterize water turbidity under controlled canister movements (Briggs 1996). The tests were designed to evaluate methods for minimizing the plumes and controlling water turbidity during fuel movements leading to multi-canister overpack (MCO) loading. It was expected that the test data would provide qualitative visual information for use in the design of the fuel retrieval and water treatment systems. Video recordings of the tests were to be the only information collected.

  20. Verification of reflectance models in turbid waters

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Lyzenga, D. R.

    1981-01-01

    Inherent optical parameters of very turbid waters were used to evaluate existing water reflectance models. Measured upwelling radiance spectra and Monte Carlo simulations of the radiative transfer equations were compared with results from models based upon two flow, quasi-single scattering, augmented isotropic scattering, and power series approximation. Each model was evaluated for three separate components of upwelling radiance: (1) direct sunlight; (2) diffuse skylight; and (3) internally reflected light. Limitations of existing water reflectance models as applied to turbid waters and possible applications to the extraction of water constituent information are discussed.

  1. Spatial and temporal variations in turbidity on two inshore turbid reefs on the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Browne, N. K.; Smithers, S. G.; Perry, C. T.

    2013-03-01

    This study describes the natural turbidity regimes at two inshore turbid reefs on the central Great Barrier Reef where wind-driven waves are the main agent of sediment resuspension. Many corals on inshore turbid reefs have adapted to high and fluctuating turbidity, however, anthropogenic activities such as dredging are speculated to produce larger and more prolonged turbidity events that may exceed the environmental tolerance and adaptive capacity of corals on these reefs. Natural turbidity regimes must be described and understood to determine whether and when coral communities on inshore turbid reefs are at risk from anthropogenically elevated turbidity, but at present few baseline studies exist. Here, we present turbidity data from (a) Middle Reef, a semi-protected reef located between Magnetic Island and Townsville and (b) Paluma Shoals, a reef exposed to higher energy wind and waves located in Halifax Bay. Instruments were deployed on both reefs for 16 days to measure spatial and temporal variations in turbidity and its driving forces (waves, currents, tides). Locally driven wind waves were the key driver of turbidity, but the strength of the relationship was dependent on wave exposure. Turbidity regimes thus vary markedly over individual reefs and this is reflected in community assemblage distributions, with a high abundance of heterotrophic corals (e.g. Goniopora) in reef habitats subjected to large fluctuations in turbidity (>100 NTU). A turbidity model developed using local wind speed data explained up to 75 % and up to 46 % of the variance in turbidity at Paluma Shoals and Middle Reef, respectively. Although the model was based on a brief two-week observational period, it reliably predicted variations in 24-h averaged turbidity and identified periods when turbidity rose above ambient baseline levels, offering reef managers insights into turbidity responses to modified climate and coastal sediment delivery regimes.

  2. Appearance and water quality of turbidity plumes produced by dredging in Tampa Bay, Florida

    USGS Publications Warehouse

    Goodwin, Carl R.; Michaelis, D.M.

    1984-01-01

    Turbidity plumes in Tampa Bay, Florida, produced during ship-channel dredging operations from February 1977 to August 1978, were monitored in order to document plume appearance and water quality, evaluate plume influence on the characteristics of Tampa Bay water, and provide a data base for comparison with other areas that have similar sediment, dredge, placement, containment, and tide conditions. The plumes investigated originated from the operation of one hopper dredge and three cutterhead-pipeline dredges. Composition of bottom sediment was found to vary from 85 percent sand and shell fragments to 60 percent silt and clay. Placement methods for dredged sediment included beach nourishment, stationary submerged discharge, oscillating surface discharge, and construction of emergent dikes. Tidal currents ranged from slack water to flow velocities of 0.60 meter per second. Plumes were monitored simultaneously by (1) oblique and vertical 35-millimeter aerial photography and (2) water-quality sampling to determine water clarity and concentrations of nutrients, metals, pesticides, and industrial compounds. Forty-nine photographs depict plumes ranging in length from a few tens of meters to several kilometers and ranging in turbidity level from <10 to 200,000 nephelometric turbidity units. The most visible turbidity plumes were produced by surface discharge of material with high sand content into unconfined placement areas during times of strong tidal currents. The least visible turbidity plumes were produced by discharge of material with high silt and clay content into areas enclosed by floating turbidity barriers during times of weak tidal currents. Beach nourishment from hopper-dredge unloading operations also produced plumes of low visibility. Primary turbidity plumes were produced directly by dredging and placement operations; secondary plumes were produced indirectly by resuspension of previously deposited material. Secondary plumes were formed both by erosion, in

  3. Resolution limits for imaging through turbid media with diffuse light

    NASA Astrophysics Data System (ADS)

    Moon, J. A.; Mahon, R.; Duncan, M. D.; Reintjes, J.

    1993-10-01

    For the achievable resolution for imaging through a turbid medium with multiply scattered light in the diffusion limit, the authors present analytic expressions. The spatial resolution R (the half-width of the point-spread function) scales with thickness d of the sample as R = (0.2 +/- 0.04)d over 10 order of magnitude in input intensity and transport length are found for detectable levels of light. The experiments with a time-gated stimulated Raman amplifier are in good agreement with the calculations.

  4. Sapphire fiber evanescent wave absorption in turbid media.

    PubMed

    Zhang, Jian; Xiong, Feibing; Djeu, Nicholas

    2009-08-01

    The influence of particulates on sapphire fiber evanescent wave absorption by water has been studied. Suspensions containing micro-sized graphite flakes and glassy carbon powder were used. Conventional free-space transmittance measurements of these samples showed strong absorption and scattering, which severely screened the absorption by water. However, the absorption on the water band determined from the evanescent wave interaction was unaffected by the presence of the graphite flakes. These results indicate that fiber-optic evanescent wave chemical sensors may be suitable for process control applications involving turbid reactor streams.

  5. Using turbidity for designing water networks.

    PubMed

    Castaño, J A; Higuita, J C

    2016-05-01

    Some methods to design water networks with minimum fresh water consumption are based on the selection of a key contaminant. In most of these "single contaminant methods", a maximum allowable concentration of contaminants must be established in water demands and water sources. Turbidity is not a contaminant concentration but is a property that represents the "sum" of other contaminants, with the advantage that it can be cheaper and easily measured than biological oxygen demand, chemical oxygen demand, suspended solids, dissolved solids, among others. The objective of this paper is to demonstrate that turbidity can be used directly in the design of water networks just like any other contaminant concentration. A mathematical demonstration is presented and in order to validate the mathematical results, the design of a water network for a guava fudge production process is performed. The material recovery pinch diagram and nearest neighbors algorithm were used for the design of the water network. Nevertheless, this water network could be designed using other single contaminant methodologies. The maximum error between the expected and the real turbidity values in the water network was 3.3%. These results corroborate the usefulness of turbidity in the design of water networks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Simple reusable hermetically-sealed spectrophotometer cuvette for turbidity studies near binary liquid critical points

    NASA Astrophysics Data System (ADS)

    Eden, Don

    1982-01-01

    Simple cells were designed for measuring the turbidity of binary liquids near their critical point. The cells were constructed by fusing a general purpose, high-vacuum, high-pressure, Teflon and glass stopcock to a commercial cuvette. No sample contamination, as indicated by a shift in critical temperature, has been observed in a sample immersed in a water bath for six months.

  7. Effects of Prevailing Winds on Turbidity of a Shallow Estuary

    PubMed Central

    Cho, Hyun Jung

    2007-01-01

    Estuarine waters are generally more turbid than lakes or marine waters due to greater algal mass and continual re-suspension of sediments. The varying effects of diurnal and seasonal prevailing winds on the turbidity condition of a wind-dominated estuary were investigated by spatial and statistical analyses of wind direction, water level, turbidity, chlorophyll a, and PAR (Photosynthetically Active Radiation) collected in Lake Pontchartrain, Louisiana, USA. The prolonged prevailing winds were responsible for the long-term, large-scale turbidity pattern of the estuary, whereas the short-term changes in wind direction had differential effects on turbidity and water level in varying locations. There were temporal and spatial changes in the relationship between vertical light attenuation coefficient (Kd) and turbidity, which indicate difference in phytoplankton and color also affect Kd. This study demonstrates that the effect of wind on turbidity and water level on different shores can be identified through system-specific analyses of turbidity patterns. PMID:17617683

  8. Computer mapping of turbidity and circulation patterns in Saginaw Bay, Michigan from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Smith, V. E.

    1975-01-01

    The author has identified the following significant results. LANDSAT was used as a basis for producing geometrically-corrected, color-coded imagery of turbidity and circulation patterns in Saginaw Bay, Michigan (Lake Huron). This imagery shows nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. The categorized imagery provided an economical basis for extrapolating water quality parameters from point samples to unsample areas. LANDSAT furnished a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.

  9. Signal Preservation in Pulsing Turbidity Current Deposits

    NASA Astrophysics Data System (ADS)

    Keevil, G. M.; Dorrell, R. M.; McCaffrey, W. D.

    2014-12-01

    Recent debate has focused on the potential preservation of the signal of seismic events in the sedimentary record via the initiation of large-scale turbidity current flows. The failure of a seismic zone lying across a series of submarine canyon systems may initiate multiple linked turbidity currents from each canyon head. Such events can be distinguished from locally triggered turbidity currents by their deposits. Canyon systems may be expected to become progressively interconnected with depth. Differing run out times of each interconnected channel is expected to result in pulsing flow behavior, a key feature of such turbidity currents. Thus, cyclical waxing to waning flow behavior preserved in the rock record may be a key indicator of a large-scale seismic trigger. Novel experimental research is presented that explores the dynamics of pulsed turbidity currents. The experimental study is used to quantitatively examine controls on the time and length scale of signal preservation in pulsing density driven flows. The experiments consisted of a multi gate lock box, with the gates remotely operated by pneumatic rams. Gate timers allow for accurate experimental repeatability and a careful investigation of the effect of time spacing between flows on pulsing flow dynamics. Parameters investigated include volumes of material released, effective flow density and viscosity (as a proxy of flow mud content). Full flow field visualization was made using an array of interlinked HD cameras. Dyeing separate components of the flow different colors enabled detailed analysis of flow dynamic behavior occurring between head and tail. The secondary pulsing flow was seen to rapidly overtake the first flow. Observations of flow velocity and density suggested that due to stratification the secondary flow was travelling along the density interface between the main body of the primary flow and its turbulent wake. As the pulsing flows created in the laboratory experiments rapidly merged, it

  10. The effects of soil properties on the turbidity of catchment soils from the Yongdam dam basin in Korea.

    PubMed

    Hur, Jin; Jung, Myung Chae

    2009-06-01

    Environmental concerns have been raised that suspended solids in turbid water adversely affect human health, and that their removal increases in the cost of water treatment. The Yongdam dam reservoir, located in the southwestern region of Korea, is severely affected by inflowing turbid water after storms. In this study, soil samples were collected from 37 sites in the Yongdam upstream basin to investigate mineralogical and environmental factors associated with the turbidity potential of soils in water environments. Turbidity potential was estimated by measuring the turbidity of soil-suspension solutions after settling for 24 h. The mineralogy of the soils was dominated by four minerals-quartz, microcline, albite, and muscovite-with lesser amounts of hornblende, chlorite, kaolinite, illite, and mixed layer illite. The quartz content was the most variable of the soil mineralogy among the collected samples. Principal-components analysis (PCA) was used to examine relationships between turbidity potential and other soil properties. The variables considered in the PCA included turbidity potential, quartz content, albite content, mean size of soil particles, clay content, clay mineral content, zeta potential, conductivity, and pH of the soil-suspension solution. The first two components of the PCA explained 52% of the overall variation of the selected variables. The first component was possibly explained by physical properties such as the size of the soil particles; the second was correlated with chemical properties of the soils, for example dissolution and extent of weathering. Closer examination of the PCA results revealed that the quartz content of the soils was negatively correlated with their turbidity potential. A linear correlation (r = 0.63) was obtained between measured turbidity potential and that predicted using multiple regression analysis based on the content of clay-sized particles, clay minerals, and quartz, and the conductivity of the soil

  11. Polarization discrimination of coherently propagating light in turbid media

    SciTech Connect

    Sankaran, V.; Schoenenberger, K.; Maitland, D.J.; Walsh, J.T. Jr.

    1999-07-01

    We describe the use of degree of polarization to discriminate unscattered and weakly scattered light from multiply scattered light in an optically turbid material. We use spatially resolved measurements of the degree of polarization to compare how well linearly and circularly polarized light survives in a sample. Experiments were performed on common tissue phantoms consisting of polystyrene and Intralipid microsphere suspensions and on adipose and arterial tissue. The results indicate that polarization is maintained even after unpolarized irradiance through each sample has been extinguished by several orders of magnitude. The results show that polarized light propagation in common tissue phantoms is distinctly different from polarized light propagation in the two tissues investigated. Further, these experiments illustrate when polarization is an effective discrimination criterion and when it is not. The potential of a polarization-based discrimination scheme to image through the biological and nonbiological samples investigated here is also discussed. {copyright} 1999 Optical Society of America

  12. P-wave velocity features of methane hydrate-bearing turbidity sediments sampled by a pressure core tool, from the first offshore production test site in the eastern Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Santamarina, C. J.; Waite, W. F.; Winters, W. J.; Ito, T.; Nakatsuka, Y.; Konno, Y.; Yoneda, J.; Kida, M.; Jin, Y.; Egawa, K.; Fujii, T.; Nagao, J.

    2013-12-01

    Turbidite sediments around the production test site at Daini-Atsumi knoll were deposited under channel and lobe environments of a submarine fan. Changes in physical properties of the sediments are likely caused by differences in the depositional environments. In addition, methane hydrate (MH) crystals growing among sediment grains alter the sediment's original physical properties. Thus, distinguishing between hydrate-bearing sediment and hydrate-free sediment based only on physical property changes measured during downhole logging can be difficult. To more precisely analyze sediment properties, core samples of MH-bearing sediments were taken at the first offshore MH production test site. Samples were collected using a wireline hybrid pressure coring system (Hybrid PCS), which retains downhole pressure, thereby preventing dissociation of MH in the sampled cores. Nondestructive, high-pressure analyses were conducted in both the 2012 summer drilling campaign and a 2013 winter laboratory study in Sapporo. To handle Hybrid PCS cores during the pressure coring campaign in the summer of 2012, a pressure core analysis and transfer system (PCATS) was installed on the research vessel Chikyu (Yamamoto et al., 2012). PCATS P-wave velocity measurements were made at in situ water pressure without causing any core destruction or MH dissociation. In January 2013, Georgia Tech (GT), USGS, AIST, and JOGMEC researchers used pressure core characterization tools (PCCTs) developed by GT to re-measure the P-wave velocity of the MH-bearing sediments at high pressure and low, non-freezing temperature. In the PCATS analysis, results showed a difference of more than 1,200 m/s in P-wave velocities between the MH-bearing sandy and muddy layers. This difference in P-wave velocities was confirmed by PCCTs measurements. P-wave velocities within the turbidite interval tend to decrease upward with the textural grading of the turbidite. Our result implies that MH concentration, which is related to

  13. Estuarine turbidity, flushing, salinity, and circulation

    NASA Technical Reports Server (NTRS)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  14. Absorption coefficient instrument for turbid natural waters.

    PubMed

    Friedman, E; Poole, L; Cherdak, A; Houghton, W

    1980-05-15

    An instrument has been developed that directly measures the multispectral absorption coefficient of turbid natural water. The design incorporates methods for compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in background light level. When used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  15. Evaluation and application of regional turbidity-sediment regression models in Virginia

    USGS Publications Warehouse

    Hyer, Kenneth; Jastram, John D.; Moyer, Douglas; Webber, James S.; Chanat, Jeffrey G.

    2015-01-01

    Conventional thinking has long held that turbidity-sediment surrogate-regression equations are site specific and that regression equations developed at a single monitoring station should not be applied to another station; however, few studies have evaluated this issue in a rigorous manner. If robust regional turbidity-sediment models can be developed successfully, their applications could greatly expand the usage of these methods. Suspended sediment load estimation could occur as soon as flow and turbidity monitoring commence at a site, suspended sediment sampling frequencies for various projects potentially could be reduced, and special-project applications (sediment monitoring following dam removal, for example) could be significantly enhanced. The objective of this effort was to investigate the turbidity-suspended sediment concentration (SSC) relations at all available USGS monitoring sites within Virginia to determine whether meaningful turbidity-sediment regression models can be developed by combining the data from multiple monitoring stations into a single model, known as a “regional” model. Following the development of the regional model, additional objectives included a comparison of predicted SSCs between the regional model and commonly used site-specific models, as well as an evaluation of why specific monitoring stations did not fit the regional model.

  16. Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA

    USGS Publications Warehouse

    Xu, Jingping; Octavio E. Sequeiros,; Noble, Marlene A.

    2014-01-01

    The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in the submarine environment has attracted the attention of researchers from different disciplines. Yet not only are field measurements of oceanic turbidity currents a rare achievement, but also the data that have been collected consist mostly of velocity records with very limited or no suspended sediment concentration or grain size distribution data. This work focuses on two turbidity currents measured in Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, primarily controlled by the source of the gravity flows and their interaction with bed material, play a significant role in shaping the characteristics of the turbidity currents as they travel down the canyon. Before the flows reach their normal or quasi-steady state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through a preliminary adjustment stage where they are subject to capacity-driven deposition, and release heavy material in excess. Flows composed of fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm that flow patterns differ between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.

  17. IR diver vision for turbidity mitigation

    NASA Astrophysics Data System (ADS)

    Milam, Jerry A.

    2010-04-01

    Commercial, forensic, and military divers often encounter turbid conditions which reduce visibility to zero. Under such conditions, work must be performed completely blind. The darkness resulting from high levels of turbidity is complete, and can be dangerous as well as disorienting. Such darkness can even occur near the surface on a bright and sunny day. Artificial underwater lighting is of no use in such situations, as it only makes matters worse (similar to the use of high beam headlights in dense fog). Certain wavelengths of infrared (IR) light have the ability to penetrate this underwater "fog," and thus form the basis of the current development. Turbidity results from clay, silt, finely divided organic and inorganic matter, soluble colored organic compounds, plankton and microscopic organisms suspended in water. The IR Diver Vision system described herein consists of a standard commercial diving mask of any of several configurations whereby an IR light source, IR video camera, video display, and power source may be integrated within or attached to the mask. The IR light source wavelength is compatible with the spectral bandwidth of the video camera. The camera field-of-view (FOV) is matched to the video display in order to provide a unity magnification and hence prevent diver ocular fatigue. The IR video camera, video display, power source and controls are compatible with extended use in a submarine environment. Some such masks will incorporate tilt/heading sensors and video indicators. 3-D Imaging, Inc. has developed prototypes and has patents pending on such devices.

  18. High frequency turbidity as a proxy for total phosphorus: application in a mixed land use catchment in Sweden

    NASA Astrophysics Data System (ADS)

    Lannergård, Emma; Ledesma, José L. J.; Fölster, Jens; Futter, Martyn N.

    2017-04-01

    Surface water eutrophication resulting from excessive phosphorus (P) input is one of the most challenging water issues of today. Total phosphorus (TP) concentrations have high temporal variability, which makes the parameter hard to monitor adequately. We explored the possibility of using high frequency turbidity as a proxy for TP in Sävjaån, a stream in a mixed land use catchment in Sweden. An in situ sensor (YSI 600OMS VS) monitoring turbidity every 10th minute, was situated close to the outlet of Sävjaån during 2014 and 2015. In situ and grab sample turbidity measurements were highly correlated (linear regression, r2=0.90). The maximum turbidity concentration measured by the sensor was at most 13 times higher than the highest concentration from the grab samples. The average turbidity concentration from the two methods was close to similar, as well as the Ecological Quality Ratios (EQR) calculated from the two data sets. The correlation between TP and high frequency turbidity was very high (r2=0.79) and between TSS and turbidity high (r2=0.67). When comparing load estimations from the high frequency data with monthly grab sampling and linear interpolation, the high frequency load was 7 % smaller in 2014 and 17 % larger in 2015. In 2014 the monthly grab sampling caught peaks in TP concentration, which with linear interpolation affected the nearby months and furthermore the yearly load. However, in 2015 peaks in concentration were overlooked when using grab sampling, which gave a larger yearly load when using the high frequency data. Season and flow intensity may affect the relationship between turbidity and TP, however this could not be statistically proven in this study. The proxy relationship could also result in uncertainties tied to unexplained diurnal variations of turbidity, proportion particulate bound P or hysteresis. Uncertainties arising from the use of sensors (e.g. sensor calibration and spatial representation) must as well be recognized. To

  19. Turbidity and suspended-sediment transport in the Russian River Basin, California

    USGS Publications Warehouse

    Ritter, John R.; Brown, William M.

    1971-01-01

    The Russian River in north coastal California has a persistent turbidness, which has reportedly caused a decline in the success of the sports fishermen. As a consequence, the number of sports fishermen angling in the river has declined, and industries dependent on their business have suffered. To determine the source of the turbidity and the rate of sediment transport in the basin, a network of sampling station was established in February 1964 along the river, on some of its tributaries, and near Lake Pillsbury in the upper Eel River basin.

  20. Deep transmission of Laguerre-Gaussian vortex beams through turbid scattering media.

    PubMed

    Wang, W B; Gozali, Richard; Shi, Lingyan; Lindwasser, Lukas; Alfano, R R

    2016-05-01

    Light scattering and transmission of Gaussian (G) and Laguerre-Gaussian (LG) vortex beams with different orbital angular momentum (L) in various turbid media were investigated. Transmittance was measured with varied ratios of sample thickness (z) to scattering mean free path (ls) of turbid media, z/ls. In the ballistic region, the LG and G beams were found to have no significant difference on transmittance, while in the diffusive region, the LG beams showed a higher received signal than the G beams, and the LG beams with higher L values showed a higher received signal than those with lower L values. The transition points from ballistic to diffusive regions for different scattering media were determined. This newly observed transmittance difference of LG and G beams may be used for deep target detection in turbid media through LG beam imaging.

  1. Turbidity. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1 laboratory training skills, this module provides waste water treatment plant operators with the basic skills and information needed to: (1) standardize a nephelometric turbidimeter; (2) determine the turbidity of a sample; and (3) calculate…

  2. Analysis of light scattered by turbid media in cylindrical geometry.

    PubMed

    Tromp, R Hans; Liemert, André; Meinders, Marcel B J

    2014-07-22

    The angle dependence of the transmitted light through a cylindrical turbid sample (latex suspension, developing milk gel, draining/coarsening milk, and protein foams) in a standard light scattering setup was analyzed in terms of the transport mean free path length or scattering length l* (a measure for the turbidity) and the absorption length labs. By variation of the concentration of an absorbing dye, the independence of l* and labs was demonstrated. The resulting value of the specific extinction coefficient of the dye was found to be in fair agreement with direct spectroscopic determination and practically identical in milk and latex suspensions. The validity of this technique for obtaining l* was demonstrated by monitoring the acid-induced gelation of milk. The possibility to simultaneously determine l* and labs was used to follow the time development of a draining and coarsening protein foam which contained an absorbing dye. It was shown that labs can be used as a measure for the volume fraction of air in the foam. This method of monitoring the transmission of multiple light scattering provides an easy way to determine l* and, specifically for foams, quantitative data dominated by the bulk of the foam.

  3. Quantitative polarized Raman spectroscopy in highly turbid bone tissue

    PubMed Central

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-01-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim∕oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim∕oim bones (28±3 deg) compared to wild-type bones (22±3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76±2 deg and in oim∕oim mice, it is 72±4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy. PMID:20615030

  4. Modeling scattering in turbid media using the Gegenbauer phase function

    NASA Astrophysics Data System (ADS)

    Calabro, Katherine W.; Cassarly, William

    2015-03-01

    The choice of scattering phase function is critically important in the modeling of photon propagation in turbid media, particularly when the scattering path within the material is on the order of several mean free path lengths. For tissue applications, the single parameter Henyey-Greenstein (HG) phase function is known to underestimate the contribution of backscattering, while phase functions based on Mie theory can be more complex than necessary due to the multitude of parameter inputs. In this work, the two term Gegenbauer phase function is highlighted as an effective compromise between HG and Mie, as demonstrated when fitting the various phase function to measured data from phantom materials. Further comparison against the Modified Henyey-Greenstein (MHG) phase function, another two term function, demonstrates that the Gegenbauer function provides better control of the higher order phase function moments, and hence allows for a wider range of values for the similarity parameter, γ. Wavelength dependence of the Gegenbauer parameters is also investigated using a range of theoretical particle distributions. Finally, extraction of the scattering properties of solid turbid samples from angularly resolved transmission measurements is performed using an iterative Monte Carlo optimization technique. Fitting results using Gegenbauer, HG, MHG, and Mie phase functions are compared.

  5. Quantitative polarized Raman spectroscopy in highly turbid bone tissue

    NASA Astrophysics Data System (ADS)

    Raghavan, Mekhala; Sahar, Nadder D.; Wilson, Robert H.; Mycek, Mary-Ann; Pleshko, Nancy; Kohn, David H.; Morris, Michael D.

    2010-05-01

    Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.

  6. Measuring large optical reflection matrices of turbid media

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonseung; Park, Jung-Hoon; Park, YongKeun

    2015-10-01

    We report the measurement of a large optical reflection matrix (RM) of a highly disordered medium. Incident optical fields onto a turbid sample are controlled by a spatial light modulator, and the corresponding fields reflected from the sample are measured using full-field Michelson interferometry. The number of modes in the measured RM is set to exceed the number of resolvable modes in the scattering media. We successfully study the subtle intrinsic correlations in the RM which agrees with the theoretical prediction by the random-matrix theory when the effect of the limited numerical aperture on the eigenvalue distribution of the RM is taken into account. The possibility of the enhanced delivery of incident energy into scattering media is also examined from the eigenvalue distribution which promises efficient light therapeutic applications.

  7. Spatial Variability of Near Shore Turbidity At Lake Tahoe

    NASA Astrophysics Data System (ADS)

    McConnell, J.; Taylor, K.

    2001-12-01

    The turbidity of the near shore zone at Lake Tahoe has been mapped during different seasons. While the turbidity values are consistently low by comparison to most lakes, there are significant turbidity differences between different locations and seasons. Prior to the start of the 2001 spring runoff the turbidity values where low, except for around Tahoe Keys were large changes to the surface drainage patterns have an adverse influence on the lake. Early in the summer of 2001 high turbidity was observed off the community of South Lake Tahoe and there is a suggestion of a moderate turbidity plume moving along the South East shore. In late summer of 2000, high turbidity areas were noted offshore of areas with developed land. Identification of persistent high turbidity areas can help direct where restoration efforts will be most effective. Repeat turbidity surveys can help assess the effectiveness of restoration efforts. Analysis of the temporal and spatial patterns of turbidity can suggest the location of sources and transportation pathways of undesirable material that enters the lake.

  8. Particulate Backscattering Retrieval from Remotely-Sensed Turbidity in Various Coastal and Riverine Turbid Waters

    NASA Astrophysics Data System (ADS)

    Nechad, Bouchra; Dogliotti, Ana; Ruddick, Kevin; Doxaran, David

    2016-08-01

    The semi-empirical algorithm of [1] for the estimation of turbidity (T) from marine reflectance (ρw) is calibrated and validated using a large dataset of in situ measurements collected in various waters, for use with any ocean colour hyperspectral sensor, and with Sentinel-2, Landsat 8 and Pléiades spectral bands. The relationship between particulate backscattering coefficient (bbp) and side-scattering (T) is investigated through simulation of Fournier-Forand phase functions, assuming variable particles size and composition, and through T and bbp in situ measurements in clear to extremely turbid waters.

  9. Monitoring of event based mobilization of hydrophobic pollutants in rivers: Calibration of turbidity as a proxy for particle facilitated transport

    NASA Astrophysics Data System (ADS)

    Rügner, Hermann; Schwientek, Marc; Grathwohl, Peter

    2014-05-01

    Transport of many pollutants in rivers is coupled to transport of suspended particles which is typically enhanced during events such as floods, snow melts etc. As the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants in rivers such as polycyclic aromatic hydrocarbons (PAHs), PCBs, etc. and several heavy metals. On-line turbidity measurements (e.g. by optical backscattering sensors) then allow for an assessment of particle and pollutant flux dynamics. In this study, pronounced flood and thus turbidity events were sampled at high temporal resolution in three contrasting catchments in Southwest Germany (Rivers Ammer, Goldersbach, Steinlach) as well as in the River Neckar. Samples were analyzed for turbidity, the total amount of PAH and total suspended solids (TSS) in water. Additionally, the grain size distributions of suspended solids were determined. Discharge and turbidity were measured on-line at gauging stations in three of the catchments. Results showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the flood samples (i.e. independent on grain size). This also holds for total PAH concentrations which can be reasonably well predicted based on the turbidity measurements and TSS versus PAH relationships - even for very high turbidity or TSS values (> 2000 NTU or mg l-1, respectively). From these linear regressions concentrations of PAHs on suspended particles were obtained which varied by catchment. The values comprise a robust measure of the average sediment quality in a river network and may be correlated to the degree of urbanization represented by the number of inhabitants per total flux of suspended particles. Based on long-term on-line turbidity measurements mass flow rates of particle bound pollutants over time could be calculated. Results showed that by far the largest amount

  10. A multilayer approach for turbidity currents

    NASA Astrophysics Data System (ADS)

    Fernandez-Nieto, Enrique; Castro Díaz, Manuel J.; Morales de Luna, Tomás

    2017-04-01

    When a river that carries sediment in suspension enters into a lake or the ocean it can form a plume that can be classified as hyperpycnal or hypopycnal. Hypopycnal plumes occurs if the combined density of the sediment and interstitial fluid is lower than that of the ambient. Hyperpycnal plumes are a class of sediment-laden gravity current commonly referred to as turbidity currents [7,9]. Some layer-averaged models have been previously developed (see [3, 4, 8] among others). Although this layer-averaged approach gives a fast and valuable information, it has the disadvantage that the vertical distribution of the sediment in suspension is lost. A recent technique based on a multilayer approach [1, 2, 6] has shown to be specially useful to generalize shallow water type models in order to keep track of the vertical components of the averaged variables in the classical shallow water equations. In [5] multilayer model is obtained using a vertical discontinuous Galerkin approach for which the vertical velocity is supposed to be piecewise linear and the horizontal velocity is supposed to be piecewise constant. In this work the technique introduced in [5] is generalized to derive a model for turbidity currents. This model allows to simulate hyperpycnal as well as hypopycnal plumes. Several numerical tests will be presented. References [1] E. Audusse, M. Bristeau, B. Perthame, and J. Sainte-Marie. A multilayer Saint-Venant system with mass exchanges for shallow water flows. derivation and numerical validation. ESAIM: Mathematical Modelling and Numerical Analysis, 45(1):169-200, (2010). [2] E. Audusse, M.-O. Bristeau, M. Pelanti, and J. Sainte-Marie. Approximation of the hydrostatic Navier–Stokes system for density stratified flows by a multilayer model: Kinetic interpretation and numerical solution. Journal of Computational Physics, 230(9):3453-3478, (2011). [3] S. F. Bradford and N. D. Katopodes. Hydrodynamics of turbid underflows. i: Formulation and numerical

  11. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... pursuant to section 1412(b)(7)(iii), that filtration is required. The requirements in this section apply...

  12. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... pursuant to section 1412(b)(7)(iii), that filtration is required. The requirements in this section apply...

  13. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... pursuant to section 1412(b)(7)(iii), that filtration is required. The requirements in this section apply...

  14. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... pursuant to section 1412(b)(7)(iii), that filtration is required. The requirements in this section apply...

  15. Turbidity currents generated by Hurricane Iwa

    USGS Publications Warehouse

    Dengler, A.T.; Wilde, P.; Noda, E.K.; Normark, W.R.

    1984-01-01

    Off southwest Oahu, Hawaii, an array of current sensors recorded four successive episodes of downslope displacement associated with high-speed near-bottom currents of up to 200 cm/s and elevated water temperatures. These episodes coincided with the maximum storm effects of hurricane Iwa. Sensors from four moorings recorded increases in depth of as much as 220 m, implying downslope movement of as much as 2.4 km at speeds up to 300 cm/s. A succession of slope failures at or above the 110-m shelf break, each resulting in a turbidity current event, is the favored explanation. ?? 1984 Springer-Verlag New York Inc.

  16. Distribution of Turbidity in Australian Tropical Waters

    DTIC Science & Technology

    1993-08-01

    south of 11°S and within 20 to 25 n.miles of the coast of the Cape York Peninsula. Approaches to Darwin (Map 8) Secchi depths less than 5 m have been...found around the south-west corner of Bathurst Island, and in the south-east of Beagle Gulf (the gulf between Bathurst/’Melville Islands and Darwin ...Within 20 n.miles of Darwin Secchi depths as low as 2 m are common. LANDSAT satellite imagery indicates that waters are highly turbid out to

  17. Absorption coefficient instrument for turbid natural waters

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-05-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  18. Absorption coefficient instrument for turbid natural waters

    NASA Technical Reports Server (NTRS)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  19. An investigation of atmospheric turbidity over Kerkennah Island in Tunisia

    NASA Astrophysics Data System (ADS)

    Trabelsi, A.; Masmoudi, M.

    2011-07-01

    Atmospheric turbidity is an important parameter for assessing the air pollution in local areas and controlling the attenuation of solar radiation reaching the Earth's surface under cloudless sky. An investigation of atmospheric turbidity has been undertaken in Kerkennah Island (in Tunisia). Turbidity indexes, namely, Linke factor (T L) and Angstrom coefficient (β) were derived directly from measurements taken by pyrheliometer during a year: July (2008) to June (2009). Data obtained from these measurements in this area were compared with measurements performed in a coastal and urban region (Sidi Bou Said) located in the North of Tunisia. A comparison of the seasonal cycle of turbidity at both sites showed: *) maximum values of turbidity in the summer due to dust storms, vertical convection and breeze sea circulation; *) Values of turbidity decrease in the autumn season, due to the decreasing of days of Sirocco and to the increasing of amount of rainfall; *) low values of turbidity index in the winter, due to precipitation removal as well as relative humidity-impacted deposition; *) middle values of turbidity were observed in the spring season. Monthly, diurnal, hourly mean values and frequency of occurrence of the value of each turbidity index were used to characterize variations of atmospheric turbidity. The three-hourly standard meteorological data given by the Meteorological National Institute (Sfax) represent a valuable supplement to the data sets with the pyrheliometer measurements. The analysis of the results shows that there is a high correlation between atmospheric turbidity and local weather conditions, especially temperature and wind speed. The correlation of meteorological parameters (wind speed and temperature) with the turbidity coefficients was analyzed and discussed.

  20. Spectral similarity approach for mapping turbidity of an inland waterbody

    NASA Astrophysics Data System (ADS)

    Garg, Vaibhav; Senthil Kumar, A.; Aggarwal, S. P.; Kumar, Vinay; Dhote, Pankaj R.; Thakur, Praveen K.; Nikam, Bhaskar R.; Sambare, Rohit S.; Siddiqui, Asfa; Muduli, Pradipta R.; Rastogi, Gurdeep

    2017-07-01

    Turbidity is an important quality parameter of water from its optical property point of view. It varies spatio-temporally over large waterbodies and its well distributed measurement on field is tedious and time consuming. Generally, normalized difference turbidity index (NDTI), or band ratio, or regression analysis between turbidity concentration and band reflectance, approaches have been adapted to retrieve turbidity using multispectral remote sensing data. These techniques usually provide qualitative rather than quantitative estimates of turbidity. However, in the present study, spectral similarity analysis, between the spectral characteristics of spaceborne hyperspectral remote sensing data and spectral library generated on field, was carried out to quantify turbidity in the part of Chilika Lake, Odisha, India. Spatial spectral contextual image analysis, spectral angle mapper (SAM) technique was evaluated for the same. The SAM spectral matching technique has been widely used in geological application (mineral mapping), however, the application of this kind of techniques is limited in water quality studies due to non-availability of reference spectral libraries. A spectral library was generated on field for the different concentrations of turbidity using well calibrated instruments like field spectro-radiometer, turbidity meter and hand held global positioning system. The field spectra were classified into 7 classes of turbidity concentration as <5, 5-10, 10-15, 15-25, 25-45, 45-100 and >100 NTU for analysis. Analysis reveal that at each location in the lake under consideration, the field spectra matched with the image spectra with SAM score of 0.8 and more. The observed turbidity at each location was also very much falling in the estimated turbidity class range. It was observed that the spectral similarity approach provides more quantitative estimate of turbidity as compared to NDTI.

  1. Unusual behaviour of phototrophic picoplankton in turbid waters

    PubMed Central

    Pálffy, Károly; V. -Balogh, Katalin; Botta-Dukát, Zoltán; Vörös, Lajos

    2017-01-01

    Autotrophic picoplankton (APP) abundance and contribution to phytoplankton biomass was studied in Hungarian shallow lakes to test the effect of inorganic turbidity determining the size distribution of the phytoplankton. The studied lakes displayed wide turbidity (TSS: 4–2250 mg l-1) and phytoplankton biomass (chlorophyll a: 1–460 μg l-1) range, as well as APP abundance (0 and 100 million cells ml-1) and contribution (0–100%) to total phytoplankton biomass. Inorganic turbidity had a significant effect on the abundance and contribution of APP, resulting in higher values compared to other freshwater lakes with the same phytoplankton biomass. Our analysis has provided empirical evidence for a switching point (50 mg l-1 inorganic turbidity), above which turbidity is the key factor causing APP predominance regardless of phytoplankton biomass in shallow turbid lakes. Our results have shown that turbid shallow lakes are unique waters, where the formerly and widely accepted model (decreasing APP contribution with increasing phytoplankton biomass) is not applicable. We hypothesize that this unusual behaviour of APP in turbid waters is a result of either diminished underwater light intensity or a reduced grazing pressure due to high inorganic turbidity. PMID:28346542

  2. Chapter A6. Section 6.7. Turbidity

    USGS Publications Warehouse

    Anderson, Chauncey W.

    2005-01-01

    Turbidity is one of the indicators used to assess the environmental health of water bodies. Turbidity is caused by the presence of suspended and dissolved matter, such as clay, silt, finely divided organic matter, plankton and other microscopic organisms, organic acids, and dyes. This section of the National Field Manual (NFM) describes the USGS protocols for determining turbidity in surface and ground waters, including extensive guidance for equipment selection and data reporting. It includes the revised approach to turbidity measurement and reporting that was implemented by the U.S. Geological Survey (USGS) in October 2004 to account for technological advances and consequent measurement complexities.

  3. Optimisation of the zinc sulphate turbidity test for the determination of immune status.

    PubMed

    Hogan, I; Doherty, M; Fagan, J; Kennedy, E; Conneely, M; Crowe, B; Lorenz, I

    2016-02-13

    Failure of passive transfer of maternal immunity occurs in calves that fail to absorb sufficient immunoglobulins from ingested colostrum. The zinc sulphate turbidity test has been developed to test bovine neonates for this failure. The specificity of this test has been shown to be less than ideal. The objective was to examine how parameters of the zinc sulphate turbidity test may be manipulated in order to improve its diagnostic accuracy. One hundred and five blood samples were taken from calves of dairy cows receiving various rates of colostrum feeding. The zinc sulphate turbidity test was carried out multiple times on each sample, varying the solution strength, time of reaction and wavelength of light used and the results compared with those of a radial immunodiffusion test, which is the reference method for measuring immunoglobulin concentration in serum. Reducing the time over which the reaction occurs, or increasing the wavelength of light used to read the turbidity, resulted in decreased specificity without improving sensitivity. Increasing the concentration of the zinc sulphate solution used in the test was shown to improve the specificity without decreasing sensitivity. Examination of the cut-off points suggested that a lower cut-off point would improve the performance. British Veterinary Association.

  4. Submicron Size Distributions of Inorganic Suspended Solids in Turbid Waters by Photon Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gallegos, C. L.; Menzel, R. G.

    1987-04-01

    Photon correlation Spectroscopy (PCS) is a technique for determining size distributions of submicron-sized particles. A particle diffusion coefficient, which is dependent on particle diameter, is determined from measurements of the autocorrelation function of the intensity fluctuations of light scattered from a laser beam passing through a suspension of particles. We demonstrate the applicability of the technique to particles likely to be found in runoff or turbid impoundments using soil fractions prepared to have a known size distribution. Mean particle diameters of all soil fractions determined by PCS fell within the expected range. Particle-size distributions of natural water samples were reproducible when analyzed within minutes of collection. The effects of sample storage and pretreatment varied between water bodies and thus can be a source of uncertainty in the results. Particles from a turbid creek carying storm runoff began to coagulate within 2.5-6 hours, whereas particles from a perennially turbid impoundment remained stable for 10 days. Addition of sodium hexametaphosphate improved the reproducibility of the particle-size distribution with prolonged storage. Applications of the technique include determination of coagulation rates and critical coagulation concentrations of electrolytes, and calculation of settling velocity distributions of submicron particles in turbid natural waters.

  5. Time- and space-resolved reflectance from multilayered turbid media

    NASA Astrophysics Data System (ADS)

    Gelebart, Bernard; Tualle, Jean-Michel; Tinet, Eric; Avrillier, Sigrid; Ollivier, Jean-Pierre

    1998-01-01

    Our purpose is to develop an optical technique for in-vivo and non-invasive diagnosis using backscattered light measurements. We have already demonstrated that optical coefficients of turbid media ((mu) a, (mu) s) can be derived from time and space-resolved reflectance in the case of semi-infinite geometry. This procedure was then applied to the investigation of multi-layered media: the upper layer was an aqueous solution of calibrated latex microspheres in water and the lower layer of the sample was a solid phantom. Two different types of phantoms were used. In the first set of experiments, we used an absorbing medium for under layer. In the second case, the lower layer was an absorbing and scattering phantom. Comparison with Monte-Carlo simulations were achieved for the resolution of the inverse problem.

  6. Anisotropic reflectance from turbid media. I. Theory.

    PubMed

    Neuman, Magnus; Edström, Per

    2010-05-01

    It is shown that the intensity of light reflected from plane-parallel turbid media is anisotropic in all situations encountered in practice. The anisotropy, in the form of higher intensity at large polar angles, increases when the amount of near-surface bulk scattering is increased, which dominates in optically thin and highly absorbing media. The only situation with isotropic intensity is when a non-absorbing infinitely thick medium is illuminated diffusely. This is the only case where the Kubelka-Munk model gives exact results and there exists an exact translation between Kubelka-Munk and general radiative transfer. This also means that a bulk scattering perfect diffusor does not exist. Angle-resolved models are thus crucial for a correct understanding of light scattering in turbid media. The results are derived using simulations and analytical calculations. It is also shown that there exists an optimal angle for directional detection that minimizes the error introduced when using the Kubelka-Munk model to interpret reflectance measurements with diffuse illumination.

  7. Multi-faceted monitoring of estuarine turbidity and particulate matter provenance: Case study from Salem Harbor, USA.

    PubMed

    Hubeny, J Bradford; Kenney, Melanie; Warren, Barbara; Louisos, Jeremy

    2017-01-01

    Turbidity is a water quality parameter that is known to adversely affect aquatic systems, however the causes of turbid water are often elusive. We present results of a study designed to constrain the source of particulate matter in a coastal embayment that has suffered from increased turbidity over past decades. Our approach utilized monitoring buoys to quantify turbidity at high temporal resolution complemented by geochemical isotope analysis of suspended sediment samples and meteorological data. Results reveal a complex system in which multiple sources are associated with particulate matter. Weight of evidence demonstrates that phytoplankton productivity in the water column, however, is the dominant source of particulate matter associated with elevated turbidity in Salem Harbor, Massachusetts. Allochthonous matter from the watershed was observed to mix into the pool of suspended particulate matter near river mouths, especially in spring and summer. Resuspension of harbor surface sediments likely provides additional particulates in the regions of boat moorings, especially during summer when recreational boats are attached to moorings. Our approach allows us to constrain the causes of turbidity events in this embayment, is helping with conservation efforts of environmental quality in the region, and can be used as a template for other locations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Estimation of turbidity in coastal waters using satellite data

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, Anuj; Shanmugam, Palanisamy

    2016-05-01

    The assessment of water clarity of any regional water body is particularly important from ecological and water quality perspectives, especially in the regions which are highly influenced by sediment run-off and seasonal fluctuations in turbidity. The ocean colour remote sensing has played a significant role in monitoring the turbidity level in marine and inland water bodies. However, algorithms to accurately estimate the turbidity in such optically complex waters are scarce or limited by high level of uncertainty due to various issues. The present study proposes a simple, two band algorithm to estimate turbidity in both turbid and clear waters. It was found that the band ratio of remote sensing reflectance (Rrs(670)/Rrs(670)+Rrs(555)) represents the proxy of TSS (Total suspended sediment) and therefore, positively correlates to turbidity. The new algorithm is based on the assumption that light reflected in these two vital bands contains the essential information regarding the total suspended matter in the water column. The statistical results showed that the percent mean relative error between the predicted turbidity and the measured turbidity was within +/-20%. To further demonstrate the robustness of the present algorithm, the spatial grid contours for the measured and the predicted turbidity was generated for the month of January 2014, August 2013 and May 2012 for the coastal waters in Bay of Bengal (Point Calimere, located in the southeast coast of India). The close consistency between the predicted and measured turbidity spatial patterns revealed that the present algorithm can be applied with high confidence to predict turbidity in both coastal and inland waters.

  9. Water turbidity mapping using Landsat-8 data in Mekong and Bassac Rivers, Vietnam

    NASA Astrophysics Data System (ADS)

    Lau, Va-Khin; Chen, Chi-Farn; Nguyen, Thanh-Son; Lam, Dao-Nguyen; Chen, Cheng-Ru

    2016-04-01

    Turbidity is the cloudiness or haziness measured by the intensity of light scattered through a water sample and turbidity is often used as an indicator of water quality. Traditional studies of water turbidity are often implemented through costly and time-consuming field surveys, and water samples are analyzed in the laboratory. This method can be applied for a small region. However, the method often creates limitation due to the time bias of data collection, interpolation error, and cost when applied to a large region. In recent year, remote sensing technologies have proved the capacity of mapping turbidity or suspended solids by various data sources, including aerial photography, high resolution images (e.g., Spot, Formosat) and medium resolution images (e.g., Landsat), and low resolution images (e.g., MODIS, MERIS, and VIIR). The main of this study is to investigate the applicability of Landsat data for water turbidity mapping in Mekong and Bassac Rivers, Vietnam. The length of these two main rivers is approximately 210 km with the width ranging from 500 m to 5 km. Aerial photos and high resolution images (e.g., IKONOS, QuickView) are good candidates for this water turbidity monitoring purpose. However, it is costly. Low resolution images such as MODIS are relatively coarse, given the width of rivers in some areas smaller than 500 m. The Landsat 8 satellite launched in 2013 provides the multispectral data with seven bands and 30 m resolution, which are deemed suitable for water turbidity monitoring in the study region, and thus used in this study. The data were processed by first converting the digital number of each pixel to radiance. The atmospheric correction using FLAASH model was accordingly applied to generate surface reflectance data. We used the Bayesian model average (BMA) to investigate the relationship between Landsat spectral bands and field survey data, which were collected from 63 sites of 21 transects across the two rivers on 24 January 2015

  10. Investigation of moderately turbid suspensions by heterodyne near field scattering.

    PubMed

    Escobedo-Sánchez, M A; Rojas-Ochoa, L F; Laurati, M; Egelhaaf, S U

    2017-08-03

    Light scattering has proven to be a very powerful technique to characterize soft matter systems. However, many samples are turbid and hence suffer from multiple scattering which can affect the signal considerably. Multiple scattering can be reduced by diluting the sample or changing the solvent, but often this alters the sample and hence is precluded. Here we study the dynamics of a model system. In particular, we investigate the effects of moderate multiple scattering on small-angle heterodyne near field scattering (HNFS). Varying the particle concentration and size we change the degree of multiple scattering, which is quantified by the transmission of light. In dependence of the degree of multiple scattering, we analyze the statistical properties of the HNFS signal, which is the difference between two intensity patterns separated by a delay time. The distribution of intensity differences follows a Gaussian distribution if single scattering dominates and a Laplace distribution in the presence of extreme multiple scattering. We also investigate the effects of multiple scattering on the measured intermediate scattering function and the hydrodynamic radius of the particles. Reliable data are obtained for sample transmissions down to about 0.7. This is confirmed by a comparison with results from a far field cross-correlation instrument that suppresses multiple scattering contributions. Therefore, HNFS represents a technically simple but powerful method to investigate samples that are moderately multiple scattering.

  11. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    USGS Publications Warehouse

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  12. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... part. The maximum contaminant levels for turbidity in drinking water, measured at a representative...

  13. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... part. The maximum contaminant levels for turbidity in drinking water, measured at a representative...

  14. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... part. The maximum contaminant levels for turbidity in drinking water, measured at a representative...

  15. Turbidity affects foraging success of drift-feeding rosyide dace

    Treesearch

    Richard M. Zamor; Gary D. Grossman

    2007-01-01

    The effects of suspended sediment on nongame fishes are not well understood. We examined the effects of suspended sediment (i.e., turbidity) on reactive distance and prey capture success at springautumn (12°C) and summer (18°C) temperatures for royside dace Clinostomus funduloides in an artificial stream. Experimental turbidities ranged from 0 to 56...

  16. Prey capture of pike Esox lucius larvae in turbid water.

    PubMed

    Salonen, M; Engström-Ost, J

    2010-06-01

    Pike Esox lucius larvae captured fewer calanoid and cyclopoid copepods in turbid than in clear water, whereas no differences were detected in feeding rates on Daphnia longispina. Decreased capture of copepods may lead to lower growth and survival of E. lucius larvae in turbid areas, in particular, if cladocerans are scarce.

  17. Remote measurement of turbidity and chlorophyll through aerial photography

    NASA Technical Reports Server (NTRS)

    Schwebel, M. D.; James, W. P.; Clark, W. J.

    1973-01-01

    Studies were conducted utilizing six different film and filter combinations to quantitatively detect chlorophyll and turbidity in six farm ponds. The low range of turbidity from 0-35 JTU correlated well with the density readings from the green band of normal color film and the high range above 35 JTU was found to correlate with density readings in the red band of color infrared film. The effect of many of the significant variables can be reduced by using standardized procedures in taking the photography. Attempts to detect chlorophyll were masked by the turbidity. The ponds which were highly turbid also had high chlorophyll concentrations; whereas, the ponds with low turbidity also had low chlorophyll concentrations. This prevented a direct correlation for this parameter. Several suggested approaches are cited for possible future investigations.

  18. Manufacturing temperature and turbidity sensor based on ATMega 8535 microcontroller

    NASA Astrophysics Data System (ADS)

    Nuzula, Nike Ika; Sakinah, Wazirotus; Endarko

    2017-01-01

    The manufacturing of temperature and turbidity measurement system based on ATMega 8535 microcontroller has been done. To measure temperature, this system uses LM35 and photodiode to measure water turbidity. The principle of LM35 sensor is comparing temperature based on its resistance. Thus temperature that is converted to voltage can be detected. The Turbidity system in this experiment is using Nephelometer method with the light scattered by suspended particles in fluid, with LED and photodiode parallel to each other. This system can measure turbidity in 1 NTU - 200 NTU with a close distance (1 inch) and a maximum relative error of 3.09% for the temperature measurement and also 3,12 % for turbidity measurement.

  19. In-situ measurements of velocity structure within turbidity currents

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.; Rosenfeld, L.K.

    2004-01-01

    Turbidity currents are thought to be the main mechanism to move ???500,000 m3 of sediments annually from the head of the Monterey Submarine Canyon to the deep-sea fan. Indirect evidence has shown frequent occurrences of such turbidity currents in the canyon, but the dynamic properties of the turbidity currents such as maximum speed, duration, and dimensions are still unknown. Here we present the first-ever in-situ measurements of velocity profiles of four turbidity currents whose maximum along-canyon velocity reached 190 cm/s. Two turbidity currents coincided with storms that produced the highest swells and the biggest stream flows during the year-long deployment. Copyright 2004 by the American Geophysical Union.

  20. Monitoring instream turbidity to estimate continuous suspended-sediment loads and yields and clay-water volumes in the upper North Santiam River Basin, Oregon, 1998-2000

    USGS Publications Warehouse

    Uhrich, Mark A.; Bragg, Heather M.

    2003-01-01

    Three real-time, instream water-quality and turbidity-monitoring sites were established in October 1998 in the upper North Santiam River Basin on the North Santiam River, the Breitenbush River, and Blowout Creek, the main tributary inputs to Detroit Lake, a large, controlled reservoir that extends from river mile 61 to 70. Suspended-sediment samples were collected biweekly to monthly at each station. Rating curves provided estimated suspended-sediment concentration in 30-minute increments from log transformations of the instream turbidity monitoring data. Turbidity was found to be a better surrogate than discharge for estimating suspended-sediment concentration. Daily and annual mean suspended-sediment loads were estimated using the estimated suspended-sediment concentrations and corresponding streamflow data. A laboratory method for estimating persistent (residual) turbidity from separate turbidity samples was developed. Turbidity was measured over time for each sample. Turbidity decay curves were derived as the suspended sediment settled. Each curve was used to estimate a turbidity value for a given settling time. Medium to fine clay particle (< 0.002 mm [millimeter] diameter) settling times of 8.5 hours were computed using Stokes Law. An average of 30 persistent turbidity samples was collected from each of the 3 sites. These samples were used to estimate the 0.002-mm-size clay particle persistent turbidity for each site. The monitored instream 30-minute turbidity values were converted to a calculated persistent turbidity value that would have resulted after 8.5 hours of settling in the laboratory. Persistent turbidities of 10 NTU and above were tabulated for each site. (Water of 10 NTU and above can interfere with or damage treatment filters and result in intake closures at drinking-water facilities.) A method was developed that used the persistent turbidity experiments, turbidity decay curves, and stream discharge to estimate the volume of water containing

  1. Development of turbidity estimation model using SMA and water turbidity index Application to the Kushiro Mire, japan--

    NASA Astrophysics Data System (ADS)

    Kameyama, S.; Yamagata, Y.; Nakamura, F.; Kaneko, M.

    2003-04-01

    A new Water Turbidity Index (WTI) based on multi spectral images was developed and tested at The Kushiro Mire, the largest mire in Japan.The Kushiro Mire designated by the Ramsar Convention in 1980, presently faces a serious problem with turbid water flooding. Shortening of stream channels, associated with agricultural development, is a major cause of streambed aggradations. The aggradation reduces the carrying capacity of the channel, resulting in sediment-laden water spilling over into the wetlands during a flood event. An algorithm for turbidity estimation was developed and applied to Landsat TM images to monitor the turbid water on the mire surface during the snow-melting season. We used Spectral Mixture Analysis (SMA) to produce a turbidity estimation model. The SMA 'unmixes' a mixed pixel determining the fractions due to each spectral endmember. In this study we used four endmembers (1. alder, 2. reed, 3. high- concentration turbid water (485ppm), 4. low- concentration turbid water (10ppm) measured in the test site. The WTI was determined by the following equation: WTI = amax / ( amax + amin ), where amax is abundance of high- concentration turbid water and amin is abundance of low- concentration turbid water. The endmember spectra of alder and reed were measured in the laboratory using specimens collected at the test site. The spectrum of turbid water was measured at the test sites. The relative abundance of each endmember was estimated based on this spectral information using SMA. The same formula was applied to Landsat TM images. Then we applied the WTI equation to the endmember images to obtain a WTI map. In the mire wetland region, turbid water spreads under alder trees and reed grasses. To verify our turbidity estimation method based on WTI under these conditions, we constructed a small experimental wetland consisting of mixed stands of alder and reed. WTI was calculated from the mixed spectrum of this "artificial wetland" and the regression curve for

  2. Performance Evaluation of Five Turbidity Sensors in Three Primary Standards

    USGS Publications Warehouse

    Snazelle, Teri T.

    2015-10-28

    Open-File Report 2015-1172 is temporarily unavailable.Five commercially available turbidity sensors were evaluated by the U.S. Geological Survey, Hydrologic Instrumentation Facility (HIF) for accuracy and precision in three types of turbidity standards; formazin, StablCal, and AMCO Clear (AMCO–AEPA). The U.S. Environmental Protection Agency (EPA) recognizes all three turbidity standards as primary standards, meaning they are acceptable for reporting purposes. The Forrest Technology Systems (FTS) DTS-12, the Hach SOLITAX sc, the Xylem EXO turbidity sensor, the Yellow Springs Instrument (YSI) 6136 turbidity sensor, and the Hydrolab Series 5 self-cleaning turbidity sensor were evaluated to determine if turbidity measurements in the three primary standards are comparable to each other, and to ascertain if the primary standards are truly interchangeable. A formazin 4000 nephelometric turbidity unit (NTU) stock was purchased and dilutions of 40, 100, 400, 800, and 1000 NTU were made fresh the day of testing. StablCal and AMCO Clear (for Hach 2100N) standards with corresponding concentrations were also purchased for the evaluation. Sensor performance was not evaluated in turbidity levels less than 40 NTU due to the unavailability of polymer-bead turbidity standards rated for general use. The percent error was calculated as the true (not absolute) difference between the measured turbidity and the standard value, divided by the standard value.The sensors that demonstrated the best overall performance in the evaluation were the Hach SOLITAX and the Hydrolab Series 5 turbidity sensor when the operating range (0.001–4000 NTU for the SOLITAX and 0.1–3000 NTU for the Hydrolab) was considered in addition to sensor accuracy and precision. The average percent error in the three standards was 3.80 percent for the SOLITAX and -4.46 percent for the Hydrolab. The DTS-12 also demonstrated good accuracy with an average percent error of 2.02 percent and a maximum relative standard

  3. Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions.

    PubMed

    Gómez-Couso, H; Fontán-Saínz, M; Sichel, C; Fernández-Ibáñez, P; Ares-Mazás, E

    2009-06-01

    To investigate the efficacy of the solar water disinfection (SODIS) method for inactivating Cryptosporidium parvum oocysts in turbid waters using 1.5 l polyethylene terephthalate (PET) bottles under natural sunlight. All experiments were performed at the Plataforma Solar de Almería, located in the Tabernas Desert (Southern Spain) in July and October 2007. Turbid water samples [5, 100 and 300 nephelometric turbidity units (NTU)] were prepared by addition of red soil to distilled water, and then spiked with purified C. parvum oocysts. PET bottles containing the contaminated turbid waters were exposed to full sunlight for 4, 8 and 12 h. The samples were then concentrated by filtration and the oocyst viability was determined by inclusion/exclusion of the fluorogenic vital dye propidium iodide. Results After an exposure time of 12 h (cumulative global dose of 28.28 MJ/m(2); cumulative UV dose of 1037.06 kJ/m(2)) the oocyst viabilities were 11.54%, 25.96%, 41.50% and 52.80% for turbidity levels of 0, 5, 100 and 300 NTU, respectively, being significantly lower than the viability of the initial isolate (P < 0.01). SODIS method significantly reduced the potential viability of C. parvum oocysts on increasing the percentage of oocysts that took up the dye PI (indicator of cell wall integrity), although longer exposure periods appear to be required than those established for the bacterial pathogens usually tested in SODIS assays. SODIS.

  4. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images.

    PubMed

    Bustamante, Javier; Pacios, Fernando; Díaz-Delgado, Ricardo; Aragonés, David

    2009-05-01

    We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.

  5. Evaluation of the dual differential radiometer for remote sensing of sediment and chlorophyll in turbid waters

    NASA Technical Reports Server (NTRS)

    Witte, W. G.

    1975-01-01

    The dual differential radiometer (DDR) was tested to determine its capability for measuring suspended sediment and chlorophyll in turbid waters. Measurements were obtained from a boat dock and from a helicopter with combinations of sample and reference filters with peak transmissions at various wavelengths. Water samples were taken concurrently and were analyzed for light scattering, particle count, and total chlorophyll. Least-squares estimates of the linear relationship between DDR output and the water parameters yielded correlation coefficients of less than 0.7. Under the turbid water conditions of the present tests, the DDR did not accurately measure either suspended sediment or chlorophyll. A precise knowledge of the spectral signatures of various pollutants might enable appropriate filters to be selected for tuning the DDR to monitor a particular pollutant.

  6. Calculation of sky turbidity in the Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Mostafa, Z. A.

    The atmospheric turbidity has been calculated and averaged for 29 places around the Kingdom of Saudi Arabia by using a nine years solar radiation data covering the period from 1971 to 1980. The turbidity values were found to range from 0.1 to 0.4, and the overall average of the turbidity was 0.281±0.056. The minimum value was in Sirr-Lasan (0.168±0.028) and the maximum value was 0.474±0.090 in Riyadh. The low value of the turbidity indicates that the sky of Sirr-Lasan (2100 meter above sea level) may be the clearest sky in the country if the turbidity is taken to be the main factor in preliminary site selection for astronomical observatory. Correlations between the turbidity and geographical coordinates have been investigated and have shown a weak relation between them. Also, seasonal variations studies have shown no significant distribution, which means that each station has its own trend. The low values of the turbidity indicate that the Saudi Arabian sky has relatively small disturbance in the atmosphere.

  7. Nqrs Data for C40H39Br2CuP2 (Subst. No. 1657)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for C40H39Br2CuP2 (Subst. No. 1657)

  8. Uncertainties in turbidity-based measurements of suspended sediment load used to quantify the sediment budget on the catchment scale

    NASA Astrophysics Data System (ADS)

    de Hipt, Felix Op; Diekkrüger, Bernd; Steup, Gero; Rode, Michael

    2016-04-01

    Water-driven soil erosion, transport and deposition take place on different spatial and temporal scales. Therefore, related measurements are complex and require process understanding and a multi-method approach combining different measurement methods with soil erosion modeling. Turbidity as a surrogate measurement for suspended sediment concentration (SSC) in rivers is frequently used to overcome the disadvantages of conventional sediment measurement techniques regarding temporal resolution and continuity. The use of turbidity measurements requires a close correlation between turbidity and SSC. Depending on the number of samples collected, the measured range and the variations in the measurements, SSC-turbidity curves are subject to uncertainty. This uncertainty has to be determined in order to assess the reliability of measure-ments used to quantify catchment sediment yields and to calibrate soil erosion models. This study presents the calibration results from a sub-humid catchment in south-western Burkina Faso and investigates the related uncertainties. Daily in situ measurements of SSC manually collected at one turbidity station and the corresponding turbidity readings are used to obtain the site-specific calibration curve. The discharge is calculated based on an empirical water level-discharge relationship. The derived regression equations are used to define prediction intervals for SSC and discharge. The uncertainty of the suspended sediment load time series is influenced by the corresponding uncertainties of SSC and discharge. This study shows that the determination of uncertainty is relevant when turbidity-based measurements of suspended sediment loads are used to quantify catchment erosion and to calibrate erosion models.

  9. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.

    PubMed

    Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter

    2014-08-15

    Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events.

  10. [Discussion on barium sulfate turbidity as arbitration inspection method for sulfate in drinking water].

    PubMed

    Wei, Bin; Wang, Qin; He, Yi; Wang, Yang; Wang, Min; Liu, Yueyue

    2013-09-01

    To evaluate the suitability of barium sulfate turbidity in Standard examination methods for drinking water (GB/T 5750.5-2006) as arbitration inspection method of sulfate in drinking water by evaluation of uncertainty. The expanded uncertainty of determination result for the unknown water sample was given by evaluating all uncertainty components in process of determination of barium sulfate turbidity. The determination result of the unknown water sample is 250 mg/L , with the expanded uncertainty of 42 mg/L (kappa = 2). This method could not accurately determine the amount of sulfate which is close to health standard limited in drinking water, at the same time, it' s unsuitable as arbitration inspection method of sulfate in drinking water. Because the expanded uncertainty of determination results of the unknown water sample by barium sulfate turbidity is so big, with the confidence regions of sulfate of 208-292 mg/L. So, evaluating uncertainty of the determination results is helpful to choose the suitable arbitration inspection method.

  11. Enhanced coagulation for turbidity and Total Organic Carbon (TOC) removal from river Kansawati water.

    PubMed

    Narayan, Sumit; Goel, Sudha

    2011-01-01

    The objective of this study was to determine optimum coagulant doses for turbidity and Total Organic Carbon (TOC) removal and evaluate the extent to which TOC can be removed by enhanced coagulation. Jar tests were conducted in the laboratory to determine optimum doses of alum for the removal of turbidity and Natural Organic Matter (NOM) from river water. Various other water quality parameters were measured before and after thejar tests and included: UV Absorbance (UVA) at 254 nm, microbial concentrations, TDS, conductivity, hardness, alkalinity, and pH. The optimum alum dose for removal of turbidity and TOC was 20 mg/L for the sample collected in November 2009 and 100 mg/L for the sample collected in March 2010. In both cases, the dose for enhanced coagulation was significantly higher than that for conventional coagulation. The gain in TOC removal was insignificant compared to the increase in coagulant dose required. This is usual for low TOC (< 2 mg/L)--high alkalinity water. Other water samples with higher TOC need to be tested to demonstrate the effectiveness of enhanced coagulation.

  12. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding.

    PubMed

    Yan, Xiu-Fang; Chen, Zeng-Ping; Cui, Yin-Yin; Hu, Yuan-Liang; Yu, Ru-Qin

    2016-05-19

    PEBBLE (probe encapsulated by biologically localized embedding) nanosensor encapsulating an intensity-based fluorescence indicator and an inert reference fluorescence dye inside the pores of stable matrix can be used as a generalized wavelength-ratiometric probe. However, the lack of an efficient quantitative model render the choices of inert reference dyes and intensity-based fluorescence indicators used in PEBBLEs based generalized wavelength-ratiometric probes rather limited. In this contribution, an extended quantitative fluorescence model was derived specifically for generalized wavelength-ratiometric probes based on PEBBLE technique (QFMGRP) with a view to simplify the design of PEBBLEs and hence further extend their application potentials. The effectiveness of QFMGRP has been tested on the quantitative determination of free Ca(2+) in both simulated and real turbid media using a Ca(2+) sensitive PEBBLE nanosensor encapsulating Rhod-2 and eosin B inside the micropores of stable polyacrylamide matrix. Experimental results demonstrated that QFMGRP could realize precise and accurate quantification of free Ca(2+) in turbid samples, even though there is serious overlapping between the fluorescence excitation peaks of eosin B and Ca(2+) bound Rhod-2. The average relative predictive error value of QFMGRP for the test simulated turbid samples was 5.9%, about 2-4 times lower than the corresponding values of partial least squares calibration model and the empirical ratiometric model based on the ratio of fluorescence intensities at the excitation peaks of Ca(2+) bound Rhod-2 and eosin B. The recovery rates of QFMGRP for the real and spiked turbid samples varied from 93.1% to 101%, comparable to the corresponding results of atomic absorption spectrometry.

  13. Evaluating the use of in-situ turbidity measurements to quantify fluvial sediment and phosphorus concentrations and fluxes in agricultural streams.

    PubMed

    Stutter, Marc; Dawson, Julian J C; Glendell, Miriam; Napier, Fiona; Potts, Jacqueline M; Sample, James; Vinten, Andrew; Watson, Helen

    2017-12-31

    Accurate quantification of suspended sediments (SS) and particulate phosphorus (PP) concentrations and loads is complex due to episodic delivery associated with storms and management activities often missed by infrequent sampling. Surrogate measurements such as turbidity can improve understanding of pollutant behaviour, providing calibrations can be made cost-effectively and with quantified uncertainties. Here, we compared fortnightly and storm intensive water quality sampling with semi-continuous turbidity monitoring calibrated against spot samples as three potential methods for determining SS and PP concentrations and loads in an agricultural catchment over two-years. In the second year of sampling we evaluated the transferability of turbidity calibration relationships to an adjacent catchment with similar soils and land cover. When data from nine storm events were pooled, both SS and PP concentrations (all in log space) were better related to turbidity than they were to discharge. Developing separate calibration relationship for the rising and falling limbs of the hydrograph provided further improvement. However, the ability to transfer calibrations between adjacent catchments was not evident as the relationships of both SS and PP with turbidity differed both in gradient and intercept on the rising limb of the hydrograph between the two catchments. We conclude that the reduced uncertainty in load estimation derived from the use of turbidity as a proxy for specific water quality parameters in long-term regulatory monitoring programmes, must be considered alongside the increased capital and maintenance costs of turbidity equipment, potentially noisy turbidity data and the need for site-specific prolonged storm calibration periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Small-scale turbidity currents in a big submarine canyon

    USGS Publications Warehouse

    Xu, Jingping; Barry, James P.; Paull, Charles K.

    2013-01-01

    Field measurements of oceanic turbidity currents, especially diluted currents, are extremely rare. We present a dilute turbidity current recorded by instrumented moorings 14.5 km apart at 1300 and 1860 m water depth. The sediment concentration within the flow was 0.017%, accounting for 18 cm/s gravity current speed due to density excess. Tidal currents of ∼30 cm/s during the event provided a "tailwind" that assisted the down-canyon movement of the turbidity current and its sediment plume. High-resolution velocity measurements suggested that the turbidity current was likely the result of a local canyon wall slumping near the 1300 m mooring. Frequent occurrences, in both space and time, of such weak sediment transport events could be an important mechanism to cascade sediment and other particles, and to help sustain the vibrant ecosystems in deep-sea canyons.

  15. Dynamic imaging through turbid media based on digital holography.

    PubMed

    Li, Shiping; Zhong, Jingang

    2014-03-01

    Imaging through turbid media using visible or IR light instead of harmful x ray is still a challenging problem, especially in dynamic imaging. A method of dynamic imaging through turbid media using digital holography is presented. In order to match the coherence length between the dynamic object wave and the reference wave, a cw laser is used. To solve the problem of difficult focusing in imaging through turbid media, an autofocus technology is applied. To further enhance the image contrast, a spatial filtering technique is used. A description of digital holography and experiments of imaging the objects hidden in turbid media are presented. The experimental result shows that dynamic images of the objects can be achieved by the use of digital holography.

  16. 40 CFR 230.21 - Suspended particulates/turbidity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles...

  17. 40 CFR 230.21 - Suspended particulates/turbidity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles...

  18. 40 CFR 230.21 - Suspended particulates/turbidity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles...

  19. 40 CFR 230.21 - Suspended particulates/turbidity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles...

  20. 40 CFR 230.21 - Suspended particulates/turbidity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles...

  1. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range

  2. Effects of flow regime on stream turbidity and suspended solids after wildfire, Colorado Front Range

    USGS Publications Warehouse

    Murphy, Sheila F.; McCleskey, R. Blaine; Writer, Jeffrey H.

    2012-01-01

    Wildfires occur frequently in the Colorado Front Range and can alter the hydrological response of watersheds, yet little information exists on the impact of flow regime and storm events on post-wildfire water quality. The flow regime in the region is characterized by base-flow conditions during much of the year and increased runoff during spring snowmelt and summer convective storms. The impact of snowmelt and storm events on stream discharge and water quality was evaluated for about a year after a wildfire near Boulder, Colorado, USA. During spring snowmelt and low-intensity storms, differences in discharge and turbidity at sites upstream and downstream from the burned areas were minimal. However, high-intensity convective storms resulted in dramatic increases in discharge and turbidity at sites downstream from the burned area. This study highlights the importance of using high-frequency sampling to assess accurately wildfire impacts on water quality downstream.

  3. Dynamics of coarse particulate matter in the turbidity maximum zone of the Gironde Estuary

    NASA Astrophysics Data System (ADS)

    Fuentes-Cid, Ana; Etcheber, Henri; Schmidt, Sabine; Abril, Gwenaël; De-Oliveira, Eric; Lepage, Mario; Sottolichio, Aldo

    2014-01-01

    There is a lack of studies devoted to coarse particulate matter (CPM) in estuaries, although this fraction can disturb activities that filter large volumes of water, such as industrial or fishery activities. In the macrotidal and highly-turbid Gironde Estuary, a monthly sampling of CPM was performed in 2011 and 2013 at two stations in the Turbidity Maximum Zone (TMZ) to understand its seasonal, tidal and hydrological dynamics. Regardless of the season and station, low quantities of CPM (few g m-3) were observed in comparison with suspended particulate matter (several 103 g m-3). The highest concentrations were consistently recorded in bottom waters and at the upstream station. Whereas there is no clear link between the CPM present in the column water and spring or neap tides, an increase in the CPM size has been identified at the two stations after a flood event, fact potentially critical regarding filtering functioning of estuarine activities.

  4. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.

    PubMed

    Guo, Xinxin; Wood, Michael F G; Ghosh, Nirmalya; Vitkin, I Alex

    2010-01-10

    Details of light depolarization in turbid media were investigated using polarization-sensitive Monte Carlo simulations. The surviving linear and circular polarization fractions of photons undergoing a particular number of scattering events were studied for different optical properties of the turbid media. It was found that the threshold number of photon scattering interactions that fully randomize the incident polarization (defined here as <1% surviving polarization fraction) is not a constant, but varies with the photon detection angle. Larger detection angles, close to backscattering direction, show lower full depolarization threshold number for a given set of sample's optical properties. The Monte Carlo simulations also confirm that depolarization is not only controlled by the number of scattering events and detection geometry, but is also strongly influenced by other factors such as anisotropy g, medium linear birefringence, and the polarization state of the incident light.

  5. Hybrid algorithm for simulating the collimated transmittance of homogeneous stratified turbid media

    PubMed Central

    Cruzado, Beatriz Morales; Atencio, José Alberto Delgado; Vázquez y Montiel, Sergio; Gómez, Erick Sarmiento

    2015-01-01

    In this work we describe the development of a program that simulates the propagation of photons through refractive and reflecting optical components such as lenses, mirrors and stops that includes a biological tissue sample as the main issue to be investigated in order to get a simulated value of light distribution, in particular, of the unscattered light. The analysis of the photons that travel through the sample is based on the program Monte Carlo Multi-Layered with some modifications that consider a Gaussian beam as initial source of light. Position, directional cosines and weight of photons exiting the turbid media are used to propagate them through an optical system. As a mean of validation of the program, we selected a typical optical system for measurement of collimated transmittance. Therefore, several tests were carried out to find the optical system that gives the theoretical collimated transmittance at different values of the optical properties of the turbid media. Along this validation, the optimal experimental configuration is found. Using this results, a comparison between the simulated optimal configuration and the experimental set-up was done, by using a colloidal suspension as a turbid media. PMID:26137375

  6. Hybrid algorithm for simulating the collimated transmittance of homogeneous stratified turbid media.

    PubMed

    Cruzado, Beatriz Morales; Atencio, José Alberto Delgado; Vázquez Y Montiel, Sergio; Gómez, Erick Sarmiento

    2015-05-01

    In this work we describe the development of a program that simulates the propagation of photons through refractive and reflecting optical components such as lenses, mirrors and stops that includes a biological tissue sample as the main issue to be investigated in order to get a simulated value of light distribution, in particular, of the unscattered light. The analysis of the photons that travel through the sample is based on the program Monte Carlo Multi-Layered with some modifications that consider a Gaussian beam as initial source of light. Position, directional cosines and weight of photons exiting the turbid media are used to propagate them through an optical system. As a mean of validation of the program, we selected a typical optical system for measurement of collimated transmittance. Therefore, several tests were carried out to find the optical system that gives the theoretical collimated transmittance at different values of the optical properties of the turbid media. Along this validation, the optimal experimental configuration is found. Using this results, a comparison between the simulated optimal configuration and the experimental set-up was done, by using a colloidal suspension as a turbid media.

  7. Suspended solids in and turbidity of runoff from green roofs.

    PubMed

    Morgan, Susan; Alyaseri, Isam; Retzlaff, William

    2011-01-01

    Green roof technology is used to reduce the quantity of stormwater runoff, but questions remain regarding its impact on quality. This study analyzed the total suspended solids (TSS) in and the turbidity of runoff from green roof growth media mixed with composted pine bark in an indoor pot study. The results showed that there were elevated levels of TSS and turbidity in the runoff that decreased over time for all growth media. Both TSS and turbidity are affected by the type of growth media. Lava and haydite had higher mean TSS and mean turbidity than arkalyte and bottom ash. Vegetation reduced the mean turbidity and mean TSS of the first flush by an average of 53% and 63%, respectively, but generally had no statistically significant effect thereafter. The results indicate that the media, rather than the vegetation, has a greater effect on TSS and turbidity in the runoff In areas with stringent water quality regulations for stormwater runoff from developed sites, media selection may be an important consideration. It may also be necessary in these regions to ensure that the roof is planted prior to receiving rainfall to minimize the first flush effect and that any irrigation does not result in runoff.

  8. Turbidity study of solar ponds utilizing seawater as salt source

    SciTech Connect

    Li, Nan; Sun, Wence; Shi, Yufeng; Yin, Fang; Zhang, Caihong

    2010-02-15

    A series of experiments were conducted to study the turbidity reduction in solar ponds utilizing seawater as salt source. The experiment on the turbidity reduction efficiency with chemicals indicates that alum (KAl(SO{sub 4}){sub 2}.12H{sub 2}O) has a better turbidity control property because of its strongly flocculating and also well depressing the growing of algae and bacteria in the seawater. In comparison with bittern and seawater, our experiment shows that the residual brine after desalination can keep limpidity for a long time even without any chemical in it. Experiments were also conducted on the diffusion of turbidity and salinity, which show that the turbidity did not diffuse upwards in the solution. In the experiment on subsidence of soil in the bittern and saline with the same salinity, it was found that soil subsided quite quickly in the pure saline water, but very slowly in the bittern. In this paper we also proposed an economical method to protect the solar pond from the damage of rain. Finally, thermal performance of a solar pond was simulated in the conditions of different turbidities using a thermal diffusion model. (author)

  9. Spatial and temporal variability of the atmospheric turbidity in Tunisia

    NASA Astrophysics Data System (ADS)

    Saad, Mohamed; Trabelsi, Amel; Masmoudi, Mohamed; Alfaro, Stephane C.

    2016-11-01

    Atmospheric turbidity is an important parameter in meteorology, climatology and for providing hindsight on particulate air pollution in local areas. In this work we exploit 1260 direct solar radiation measurements performed in Sfax (Center Tunisia), from March 2015 to February 2016. These measurements were made with a pyrheliometer only when clouds did not obstruct the solar disk. The atmospheric turbidity is quantified by the means of both the Linke's turbidity factor (TLI) and Angström's coefficient (β). Over the year, values of TLI and β are found to vary in the ranges 1-15 and 0-0.7, with the most probable values around 3.5 and 0.05, respectively. However, a marked seasonal pattern is observed for the two turbidity parameters. They achieve their maximum in the spring and summer months, their minimum in winter and autumn appears as a transitional period. The comparison of the results obtained in Sfax with those of three AERONET stations located in north (Carthage), central-north (Ben Salem), and south (Medenine) Tunisia, reveals that this seasonal pattern of the atmospheric turbidity is valid for all the Tunisian territory, and probably beyond. At shorter (hourly) time scales, the diurnal behavior of the turbidity in Sfax is different in the summer months from the one observed during the rest of the year. Indeed, an enhancement of TLI is observed during the day. This is assumedly attributed to the production of secondary aerosols by atmospheric photochemistry.

  10. Establishment of turbidity forecasting model and early-warning system for source water turbidity management using back-propagation artificial neural network algorithm and probability analysis.

    PubMed

    Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng

    2014-08-01

    The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.

  11. Chlorophyll a and turbidity patterns over coral reefs systems of La Parguera Natural Reserve, Puerto Rico.

    PubMed

    Otero, Emesto; Carbery, Kelly K

    2005-05-01

    Studies of temporal and spatial changes in phytoplankton biomass and turbidity provide essential information on coral reef ecosystem function and health. Fluctuation of phytoplankton biomass responds to several factors including nutrient inputs, both anthropogenic and natural, while turbidity is mostly affected by sediment resuspension or transport from terrestrial systems. These parameters can be used as sentinels of significant environmental factors "modifying" coral reef systems. A chlorophyll a concentration (Chl a) and turbidity (Turb) in situ logger was installed at 10 stations from June 4 to July 7, 2003 in La Parguera Natural Reserve (Southwestern Puerto Rico) to assess short-term temporal and geographic variation in patterns of phytoplankton biomass and turbidity at pre-selected sites as part of an interdisciplinary long-term study. Average station Ch1 a variation was 0.17-1.12 microg 1(-1) and 0.2-23.4 NTU for Turb. Results indicate that the western near-coastal stations had higher levels of Turb and Ch1 a. The easternmost mid shelf station, Romero reef, was similar to coastal stations probably due to nutrient and suspended sediment inputs from a source external to our study area to the east, Guánica Bay. Comparisons between different sampling days indicate significant differences between days for most stations suggesting that one-time discrete sampling may not be representative of average water column conditions and illustrate the dynamic nature of coral reef systems. Further work is warranted to assess seasonal changes that integrate short-term (daily) variability in both Turb and Ch1 a.

  12. Control of energy density inside turbid medium (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sarma, Raktim; Yamilov, Alexey; Petrenko, Sasha; Bromberg, Yaron; Cao, Hui

    2017-02-01

    Recent breakthroughs in optical wavefront engineering have opened the possibility of controlling light intensity distribution inside highly scattering medium, but their success is limited by the open geometry of the sample and the difficulty of covering all input modes. Here we demonstrate experimentally an efficient control of energy density distribution inside a strong scattering medium. Instead of the open slab geometry, we fabricate a silicon waveguide that contains scatterers and has reflecting sidewalls. The intensity distribution inside the 2D waveguide is probed from the third dimension. With a careful design of the on-chip coupling waveguide, we can access all the input modes. Such unprecedented control of incident wavefront leads to 10 times enhancement of the total transmission or 50 times suppression. A direct probe of light intensity distribution inside the disordered structure reveals that selective excitation of open channels leads to an energy buildup deep inside the scattering medium, while the excitation of closed channels greatly reduces the penetration depth. Compared to the linear decay for random input fields, the optimized wavefront can produce an intensity profile that is either peaked near the center of the waveguide or decay exponentially with depth. The total energy stored inside the waveguide is increased 3.7 times or decreased 2 times. Since the energy density dictates light-matter interactions inside a scattering system, our results demonstrate the possibility of tailoring optical excitations as well as linear and nonlinear optical processes inside the turbid medium in an on-chip platform.

  13. Phytoplankton productivity in a turbid buoyant coastal plume

    NASA Astrophysics Data System (ADS)

    Schofield, Oscar; Moline, Mark; Cahill, Brownyn; Frazer, Thomas; Kahl, Alex; Oliver, Matthew; Reinfelder, John; Glenn, Scott; Chant, Robert

    2013-07-01

    The complex dynamics associated with coastal buoyant plumes make it difficult to document the interactions between light availability, phytoplankton carbon fixation, and biomass accumulation. Using real-time data, provided by satellites and high frequency radar, we adaptively sampled a low salinity parcel of water that was exported from the Hudson river estuary in April 2005. The water was characterized by high nutrients and high chlorophyll concentrations. The majority of the low salinity water was re-circulated within a nearshore surface feature for 5 days during which nitrate concentrations dropped 7-fold, the maximum quantum yield for photosynthesis dropped 10-fold, and primary productivity rates decreased 5-fold. Associated with the decline in nitrate was an increase in phytoplankton biomass. The phytoplankton combined with the Colored Dissolved Organic Matter (CDOM) and non-algal particles attenuated the light so the 1% light level ranged between 3 and 10m depending on the age of the plume water. As the plume was 10-15m thick, the majority of the phytoplankton were light-limited. Vertical mixing within the plume was high as indicated by the dispersion of injected of rhodamine dye. The mixing within the buoyant plume was more rapid than phytoplankton photoacclimation processes. Mixing rates within the plume was the critical factor determining overall productivity rates within the turbid plume.

  14. Climate-change refugia: shading reef corals by turbidity.

    PubMed

    Cacciapaglia, Chris; van Woesik, Robert

    2016-03-01

    Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate-change refuges, shading corals from the harmful interaction between high sea-surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m(-2) ) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20-30°N and 15-25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) - habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate-change-associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to <250 μmol m(-2)  s(-1) , and predict that 16% of reef-coral habitat ≤30 m will preclude coral growth and reef development. Thus, protecting the turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef-coral persistence under climate change.

  15. Salinity and turbidity distributions in the Brisbane River estuary, Australia

    NASA Astrophysics Data System (ADS)

    Yu, Yingying; Zhang, Hong; Lemckert, Charles

    2014-11-01

    The Brisbane River estuary (BRE) in Australia not only plays a vital role in ecosystem health, but is also of importance for people who live nearby. Comprehensive investigations, both in the short- and long-term, into the salinity and turbidity distributions in the BRE were conducted. Firstly, the analysis of numerical results revealed that the longitudinal salinity varied at approximately 0.45 and 0.61 psu/h during neap and spring tides, respectively. The turbidity stayed at a higher level and was less impacted by tide in the upper estuary, however, the water cleared up while the tide changed from flood to ebb in the mid and lower estuary. The second investigation into the seasonal variations of salinity and turbidity in the BRE was conducted, using ten-year field measurement data. A fourth-order polynomial equation was proposed, describing the longitudinal variation in salinity dilution changes as the upstream distance in the BRE during the wet and dry seasons. From the observation, the mid and upper estuaries were vertically well-mixed during both seasons, but the lower BRE was stratified, particularly during the wet season. The estuary turbidity maximum (ETM) zone was about 10 km longer during the wet season than the dry season. Particular emphasis was given to the third investigation into the use of satellite remote sensing techniques for estimation of the turbidity level in the BRE. A linear relationship between satellite observed water reflectance and surface turbidity level in the BRE was validated with an R2 of 0.75. The application of satellite-observed water reflectance therefore provided a practical solution for estimating surface turbidity levels of estuarine rivers not only under normal weather conditions, but also during flood events. The results acquired from this study are valuable for further hydrological research in the BRE and particularly prominent for immediate assessment of flood impacts.

  16. A pre-enrichment step is essential for detection of Campylobacter sp. in turbid pond water.

    PubMed

    Abulreesh, H H; Paget, T A; Goulder, R

    2014-06-01

    This work aimed to detect Campylobacter species from naturally contaminated turbid pond water by PCR. A total of 16 water samples were collected from a turbid village pond. Four methods of DNA extraction were applied to centrifuge pellets from eight 100 ml pond water samples prior to attempted detection of Campylobacter by PCR without an enrichment step. These methods were (1) Tris-HCl and sodium dodecyl sulfate followed by phenol:chloroform:isoamylalcohol extraction followed by treatment with DNA clean up kit, (2) proteinase K, (3) Chelex® 100, and (4) boiling. The other eight pond water samples (10 ml and 100 ml) were filtered and filters were incubated overnight in Preston enrichment broth. The centrifuge pellets obtained from enrichment cultures were treated by proteinase K for DNA extraction. Primers CF03 and CF04 for the flagellin genes (flaA and flaB) of Campylobacter jejuni and Campylobacter coli were used for amplifying the extracted DNA. The DNA extracted from eight-100 ml pond water samples that were not subject to selective enrichment was never amplified with primers CF03 and CF04, hence Campylobacter was not detected. In contrast, the DNA that was from samples that were subjected to a selective enrichment step in Preston broth prior to PCR assay always gave amplified bands of 340-380 bp, therefore the presence of Campylobacter was confirmed. Detection of campylobacters from naturally contaminated, turbid, environmental water may not be feasible by direct PCR assay because of low numbers and the presence of high concentration of humic matter and other PCR inhibitors. The enrichment of water samples in selective broth, however, facilitated PCR detection of Campylobacter probably by increasing cell number and by diluting PCR inhibitors.

  17. Turbidity-based methods for continuous estimates of suspended sediment, particulate carbon, phosphorus and nitrogen fluxes

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Alsuliman, Malek; Rode, Michael

    2015-04-01

    A good evaluation of surface water pollution is mainly limited by the monitoring strategy and sampling frequencies. Carbon and nutrient monitoring at finer time intervals is still very difficult and expensive. Therefore, establishing relationships between grab sampling and continuous commonly available data can be considered as a favorable solution to turn this problem. The aim of this study was to develop a method to continuously estimate instream sediment, carbon, nitrogen and phosphorus concentrations based on high resolution measurement of turbidity, discharge, electrical conductivity and oxygen concentration. To achieve our gaols, high frequency data (30 min interval) were generated during 3 years at the UFZ- TERENO platform Bode (Terrestrial Environmental Observatories). Samples were analysed for suspended sediment concentration (SSC), particulate organic carbon (POC), total organic carbon (TOC), particulate nitrogen (PN) and particulate phosphorus (PP) using simple and multiple linear regression models. For this study, measurements from six sub-catchments with different geographical characteristics were considered. The available data sets were divided into two years (2010-2012) calibration and one year (2012-2013) validation periods. Results revealed that the turbidity was the most predictor variable in all models, particularly for suspended sediment concentrations. For all gauging stations, the SSC could be explained using simple linear regression model by the turbidity with a lowest correlation coefficient of 0.93. The non-uniqueness of the simple linear equation obtained between the stations reflected the sensitivity of the turbidity signal to the differences in land use and agriculture management between the sub-catchments. Best predictions of POC, TOC, PP and PN were achieved when multiple linear regression models were used including discharge, electrical conductivity and oxygen concentrations as predictor variables in addition to turbidity (lowest

  18. River bank filtration in Haridwar, India: removal of turbidity, organics and bacteria

    NASA Astrophysics Data System (ADS)

    Dash, Rakesh R.; Bhanu Prakash, E. V. P.; Kumar, Pradeep; Mehrotra, Indu; Sandhu, Cornelius; Grischek, Thomas

    2010-06-01

    Improvement in the quality of river water filtered through a 17-m thick sand-gravel unconfined aquifer at a production well surrounded by surface-water bodies, in Haridwar (India), was studied. Distances between surface water sources and the production well are more than 115 m, and the shortest travel times are 77 and 84 days for monsoon and non-monsoon periods, respectively. During the monsoon period, surface water exhibited increased turbidity by 50-100 times, bacterial count of around 10 times and decreased electrical conductivity of around 0.6 times compared to non-monsoon samples. The quality of abstracted bank filtrate, however, was found not to significantly vary. In non-monsoon months, riverbank filtration resulted in a reduction of turbidity and coliforms by 1 and 3 logs, respectively. For monsoonal months, this increased to more than 2 and 4 logs in turbidity and coliforms reduction, respectively. UV absorbance was also found to be reduced to about 1 log during monsoon season. Results from column studies confirmed that a retention time of around 5 days is adequate to achieve more than 99.9% removal of coliforms.

  19. Rheological characterization and turbidity of riboflavin-photosensitized changes in alginate/GDL systems.

    PubMed

    Baldursdóttir, Stefanía G; Kjøniksen, Anna-Lena

    2005-04-01

    Riboflavin (RF) in combination with light, in the wavelength range of 310-800 nm, is used to induce degradation of alginic acid gels. Light irradiation of alginate solutions in the presence of RF under aerobic conditions causes scission of the polymer chains. In the development process of a new drug delivery system, RF photosensitized degradation of alginic acid gels is studied by monitoring changes in the turbidity and rheological parameters of alginate/glucono-delta-lactone (GDL) systems with different concentrations of GDL. Addition of GDL induces gel formation of the samples by gradually lowering the pH-value of the system. The turbidity is measured and the cloud point determined. The turbidity starts to increase after shorter times with enhanced concentration of GDL. Enhanced viscoelasticity is detected with increasing GDL concentration in the post-gel regime, but small differences are detected at the gel point. The incipient gel is 'soft' and has an open structure independent on the GDL concentration. In the post-gel regime solid-like behavior is observed, this is more distinct for the systems with high GDL concentrations. The effect of photosensitized RF on alginate/GDL systems decreases with increasing amount of GDL in the system. The same trend is detected whether the systems are irradiated in the pre-gel or in the post-gel regime.

  20. In situ toxicity evaluations of turbidity and photoinduction of polycyclic aromatic hydrocarbons

    SciTech Connect

    Ireland, D.S.; Burton, G.A. Jr; Hess, G.G.

    1996-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are prevalent pollutants in the aquatic environment that can cause a wide range of toxic effects. Earlier studies have shown that toxicity of PAHs can be enhanced by ultraviolet (UV) radiation. In situ and laboratory exposures with Ceriodaphnia dubia were used to evaluate photoinduced toxicity of PAHs in wet-weather runoff and in turbid conditions. Exposure to UV increased the toxicity of PAH-contaminated sediment to C. dubia. Toxicity was removed when UV wavelengths did not penetrate the water column to the exposed organisms. A significant correlation was observed between in situ C. dubia survival and turbidity when organisms were exposed to sunlight. Stormwater runoff samples exhibited an increase in chronic toxicity (reproduction) to C. dubia when exposed to UV wavelengths as compared to C. dubia not exposed to UV wavelengths. Toxicity was reduced significantly in the presence of UV radiation when the organic fraction of stormwater runoff was removed. The PAHs are bound to the sediment and resuspended into the water column once the sediment is disturbed (e.g., during a storm). The in situ and laboratory results showed that photoinduced toxicity occurred frequently during low flow conditions and wet weather runoff and was reduced in turbid conditions.

  1. Angular domain spectroscopic imaging of turbid media using silicon micromachined microchannel arrays

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; Ng, Eldon; Najiminaini, Mohamadreza; Albert, Genevieve; Kaminska, Bozena; Chapman, Glenn H.; Carson, Jeffrey J. L.

    2010-02-01

    We experimentally characterized a novel Angular Domain Spectroscopic Imaging (ADSI) technique for the detection and characterization of optical contrast abnormalities in turbid media. The new imaging system employs silicon micromachined angular filtering methodology, which has high angular selectivity for photons exiting the turbid medium. The angular filter method offers efficient scattered light suppression at moderate levels of scattering (i.e. up to 6 reduced mean free paths). An ADSI system was constructed from a broadband light source, an Angular Filter Array (AFA), and an imaging spectrometer. The free-space collimated broadband light source was used to trans-illuminate a turbid sample over a wide range of wavelengths in the near infrared region of the spectrum. The imaging spectrometer decomposed the output of the AFA into hyperspectral images representative of spatial location and wavelength. It collected and angularly filtered a line image from the object onto the CCD camera with the spatial information displayed along one axis and wavelength information along the other. The ADSI system performance was evaluated on tissue-mimicking phantoms as well as fresh chicken breast tissue. Collected images with the ADSI displayed differences in image contrast between different tissue types.

  2. Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks.

    PubMed

    Bayram, Adem; Kankal, Murat; Onsoy, Hizir

    2012-07-01

    Suspended sediment concentration (SSC) is generally determined from the direct measurement of sediment concentration of river or from sediment transport equations. Direct measurement is very costly and cannot be conducted for all river gauge stations. Therefore, correct estimation of suspended sediment amount carried by a river is very important in terms of water pollution, channel navigability, reservoir filling, fish habitat, river aesthetics and scientific interests. This study investigates the feasibility of using turbidity as a surrogate for SSC as in situ turbidity meters are being increasingly used to generate continuous records of SSC in rivers. For this reason, regression analysis (RA) and artificial neural networks (ANNs) were employed to estimate SSC based on in situ turbidity measurements. The SSC was firstly experimentally determined for the surface water samples collected from the six monitoring stations along the main branch of the stream Harsit, Eastern Black Sea Basin, Turkey. There were 144 data for each variable obtained on a fortnightly basis during March 2009 and February 2010. In the ANN method, the used data for training, testing and validation sets are 108, 24 and 12 of total 144 data, respectively. As the results of analyses, the smallest mean absolute error (MAE) and root mean square error (RMSE) values for validation set were obtained from the ANN method with 11.40 and 17.87, respectively. However these were 19.12 and 25.09 for RA. It was concluded that turbidity could be a surrogate for SSC in the streams, and the ANNs method used for the estimation of SSC provided acceptable results.

  3. A Comparison of Turbidity-Based and Streamflow-Based Estimates of Suspended-Sediment Concentrations in Three Chesapeake Bay Tributaries

    USGS Publications Warehouse

    Jastram, John D.; Moyer, Douglas; Hyer, Kenneth

    2009-01-01

    Fluvial transport of sediment into the Chesapeake Bay estuary is a persistent water-quality issue with major implications for the overall health of the bay ecosystem. Accurately and precisely estimating the suspended-sediment concentrations (SSC) and loads that are delivered to the bay, however, remains challenging. Although manual sampling of SSC produces an accurate series of point-in-time measurements, robust extrapolation to unmeasured periods (especially highflow periods) has proven to be difficult. Sediment concentrations typically have been estimated using regression relations between individual SSC values and associated streamflow values; however, suspended-sediment transport during storm events is extremely variable, and it is often difficult to relate a unique SSC to a given streamflow. With this limitation for estimating SSC, innovative approaches for generating detailed records of suspended-sediment transport are needed. One effective method for improved suspended-sediment determination involves the continuous monitoring of turbidity as a surrogate for SSC. Turbidity measurements are theoretically well correlated to SSC because turbidity represents a measure of water clarity that is directly influenced by suspended sediments; thus, turbidity-based estimation models typically are effective tools for generating SSC data. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency Chesapeake Bay Program and Virginia Department of Environmental Quality, initiated continuous turbidity monitoring on three major tributaries of the bay - the James, Rappahannock, and North Fork Shenandoah Rivers - to evaluate the use of turbidity as a sediment surrogate in rivers that deliver sediment to the bay. Results of this surrogate approach were compared to the traditionally applied streamflow-based approach for estimating SSC. Additionally, evaluation and comparison of these two approaches were conducted for nutrient estimations. Results

  4. Turbidity sensor for determination of concentration, ash presence and particle diameter of sediment suspensions

    NASA Astrophysics Data System (ADS)

    Bilro, L.; Prats, S.; Pinto, J. L.; Keizer, J. J.; Nogueira, R. N.

    2011-05-01

    The present work addresses the need for low-cost turbidity sensors felt in the context of an ongoing research project on enhanced soil erosion following wildfire in Portugal. To this end, a system based on plastic optical fibre was developed and tested, including against a commercially-available system. The performance of the sensor was tested using artificially-created samples with a wide range of concentration of three types of very distinct materials, six particle size classes of ashes and real runoff samples collected at the slope and catchment scale in a recently burned area.

  5. Normalized velocity profiles of field-measured turbidity currents

    USGS Publications Warehouse

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  6. Temporal analysis of remotely sensed turbidity in a coastal archipelago

    NASA Astrophysics Data System (ADS)

    Suominen, Tapio; Tolvanen, Harri

    2016-07-01

    A topographically fragmental archipelago with dynamic waters set the preconditions for assessing coherent remotely sensed information. We generated a turbidity dataset for an archipelago coast in the Baltic Sea from MERIS data (FSG L1b), using CoastColour L1P, L2R and L2W processors. We excluded land and mixed pixels by masking the imagery with accurate (1:10 000) shoreline data. Using temporal linear averaging (TLA), we produced satellite-imagery datasets applicable to temporal composites for the summer seasons of three years. The turbidity assessments and temporally averaged data were compared to in situ observations obtained with coastal monitoring programs. The ability of TLA to estimate missing pixel values was further assessed by cross-validation with the leave-one-out method. The correspondence between L2W turbidity and in situ observations was good (r = 0.89), and even after applying TLA the correspondence remained acceptable (r = 0.78). The datasets revealed spatially divergent temporal water characteristics, which may be relevant to the management, design of monitoring and habitat models. Monitoring observations may be spatially biased if the temporal succession of water properties is not taken into account in coastal areas with anisotropic dispersion of waters and asynchronous annual cycles. Accordingly, areas of varying turbidity may offer a different habitat for aquatic biota than areas of static turbidity, even though they may appear similar if water properties are measured for short annual periods.

  7. Measurement of "turbidity" and related characteristics of natural waters

    USGS Publications Warehouse

    Pickering, R.J.

    1976-01-01

    The U.S. Geological Survey, Water Resources Division has adopted the following principles to be used in selecting methods for the measurement of light transmitting characteristics of natural waters: (1) standard instruments and methods are to be adopted to measure and report in optical units, avoiding ' turbidity ' as a quantitative measure; (2) reporting of ' turbidity ' in JTU 's, Hellige units, severity, or NTU 's will be phased out; (3) the basis for estimations of sediment concentrations based on light measurements must be documented adequately; and (4) use of transparency measurement by Secchi disk is not changed, although light transmittance may prove to be more precise means of obtaining the same information. A schedule has been established to implement new methods beginning October 1, 1976, and with the transition to be completed at all stations by October 1, 1977. Provisions are provided to meet requirements of cooperators who have legal requirements for ' turbidity ' data. (Woodard-USGS)

  8. Laser beam propagation and wavefront correction in turbid media

    NASA Astrophysics Data System (ADS)

    Galaktionov, Ilya; Kudryashov, Alexis; Sheldakova, Julia; Byalko, Alexander; Borsoni, Gilles

    2015-09-01

    It is well known that turbid medium such as fog or biological tissues causes light scatter. This phenomenon is known as major impediment for imaging and focusing of light. Thus it is important to understand the impact of the turbid medium on the light characteristics, namely intensity and phase distributions. In this work laser beam propagation through the scattering suspension of polystyrene microspheres in distilled water was investigated both theoretically and experimentally. We obtained the dependence of the wavefront aberrations on the particles concentration and shown the existence of high-order symmetric wavefront aberrations of the laser beam passed through turbid medium. The investigation showed that with the use of bimorph deformable mirror the wavefront aberrations of scattered light could be effectively corrected.

  9. Experimentally measured MTF's associated with imaging through turbid water

    NASA Astrophysics Data System (ADS)

    Witherspoon, N.; Strand, M.; Holloway, J., Jr.; Price, B.; Brown, D.

    1988-01-01

    One factor which affects the ability to image an underwater object from the atmosphere is water turbidity. The performance of an imaging system is often expressed by the limiting resolution which is determined from the contrast transfer function (CTF). The image quality is usually expressed in terms of the modulation transfer function (MTF). This paper presents the results from carefully controlled laboratory experiments to determine the CTFs and the MTFs of a turbid water medium for Jackson turbidity units (JTUs) ranging from 0 to 24. MTFs are generated from a narrow strip target and CTFs are generated from standard resolution bar targets. MTF results are compared with earlier work and CTFs calculated from MTFs are compared with measured CTFs.

  10. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation

    NASA Astrophysics Data System (ADS)

    McDowell, Emily J.; Cui, Meng; Vellekoop, Ivo M.; Senekerimyan, Vahan; Yaqoob, Zahid; Yang, Changhuei

    2010-03-01

    We describe the amplitude and resolution trends of the signals acquired by turbidity suppression through optical phase conjugation (TSOPC) with samples that span the ballistic and diffusive scattering regimes. In these experiments, the light field scattered through a turbid material is written into a hologram, and a time-reversed copy of the light field is played back through the sample. In this manner, the wavefront originally incident on the sample is reconstructed. We examine a range of scattering samples including chicken breast tissue sections of increasing thickness and polyacrylamide tissue-mimicking phantoms with increasing scattering coefficients. Our results indicate that only a small portion of the scattered wavefront (<0.02%) must be collected to reconstruct a TSOPC signal. Provided the sample is highly scattering, all essential angular information is contained within such small portions of the scattered wavefront due to randomization by scattering. A model is fitted to our results, describing the dependence of the TSOPC signal on other measurable values within the system and shedding light on the efficiency of the phase conjugation process. Our results describe the highest level of scattering that has been phase conjugated in biological tissues to date.

  11. Turbidity suppression from the ballistic to the diffusive regime in biological tissues using optical phase conjugation

    PubMed Central

    McDowell, Emily J.; Cui, Meng; Vellekoop, Ivo M.; Senekerimyan, Vahan; Yaqoob, Zahid; Yang, Changhuei

    2010-01-01

    We describe the amplitude and resolution trends of the signals acquired by turbidity suppression through optical phase conjugation (TSOPC) with samples that span the ballistic and diffusive scattering regimes. In these experiments, the light field scattered through a turbid material is written into a hologram, and a time-reversed copy of the light field is played back through the sample. In this manner, the wavefront originally incident on the sample is reconstructed. We examine a range of scattering samples including chicken breast tissue sections of increasing thickness and polyacrylamide tissue-mimicking phantoms with increasing scattering coefficients. Our results indicate that only a small portion of the scattered wavefront (<0.02%) must be collected to reconstruct a TSOPC signal. Provided the sample is highly scattering, all essential angular information is contained within such small portions of the scattered wavefront due to randomization by scattering. A model is fitted to our results, describing the dependence of the TSOPC signal on other measurable values within the system and shedding light on the efficiency of the phase conjugation process. Our results describe the highest level of scattering that has been phase conjugated in biological tissues to date. PMID:20459245

  12. A feasibility study for a remote laser water turbidity meter

    NASA Technical Reports Server (NTRS)

    Hickman, G. D.; Ghovanlou, A. H.; Friedman, E. J.; Gault, C. S.; Hogg, J. E.

    1974-01-01

    A technique to remotely determine the attenuation coefficient (alpha) of the water was investigated. The backscatter energy (theta = 180 deg) of a pulse laser (lambda = 440 - 660 nm) was found directly related to the water turbidity. The greatest sensitivity was found to exist at 440 nm. For waters whose turbidity was adjusted using Chesapeake Bay sediment, the sensitivity in determining alpha at 440 nm was found to be approximately 5 - 10%. A correlation was also found to exist between the water depth (time) at which the peak backscatter occurs and alpha.

  13. Light Backscattering Polarization Patterns from Turbid Media: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Rakovic, Milun J.; Kattawar, George W.; Mehrubeoglu, Mehrube; Cameron, Brent D.; Wang, Lihong V.; Rastegar, Sohi; Coté, Gerard L.

    1999-05-01

    We present both experimental measurements and Monte-Carlo-based simulations of the diffusely backscattered intensity patterns that arise from illuminating a turbid medium with a polarized laser beam. It is rigorously shown that, because of axial symmetry of the system, only seven elements of the effective backscattering Mueller matrix are independent. A new numerical method that allows simultaneous calculation of all 16 elements of the two-dimensional Mueller matrix is used. To validate our method we compared calculations to measurements from a turbid medium that consisted of polystyrene spheres of different sizes and concentrations in deionized water. The experimental and numerical results are in excellent agreement.

  14. Light backscattering polarization patterns from turbid media: theory and experiment.

    PubMed

    Raković, M J; Kattawar, G W; Mehrubeoğlu, M B; Cameron, B D; Wang, L V; Rastegar, S; Coté, G L

    1999-05-20

    We present both experimental measurements and Monte-Carlo-based simulations of the diffusely backscattered intensity patterns that arise from illuminating a turbid medium with a polarized laser beam. It is rigorously shown that, because of axial symmetry of the system, only seven elements of the effective backscattering Mueller matrix are independent. A new numerical method that allows simultaneous calculation of all 16 elements of the two-dimensional Mueller matrix is used. To validate our method we compared calculations to measurements from a turbid medium that consisted of polystyrene spheres of different sizes and concentrations in deionized water. The experimental and numerical results are in excellent agreement.

  15. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.

    PubMed

    Malektaji, Siavash; Lima, Ivan T; Escobar I, Mauricio R; Sherif, Sherif S

    2017-10-01

    An accurate and practical simulator for Optical Coherence Tomography (OCT) could be an important tool to study the underlying physical phenomena in OCT such as multiple light scattering. Recently, many researchers have investigated simulation of OCT of turbid media, e.g., tissue, using Monte Carlo methods. The main drawback of these earlier simulators is the long computational time required to produce accurate results. We developed a massively parallel simulator of OCT of inhomogeneous turbid media that obtains both Class I diffusive reflectivity, due to ballistic and quasi-ballistic scattered photons, and Class II diffusive reflectivity due to multiply scattered photons. This Monte Carlo-based simulator is implemented on graphic processing units (GPUs), using the Compute Unified Device Architecture (CUDA) platform and programming model, to exploit the parallel nature of propagation of photons in tissue. It models an arbitrary shaped sample medium as a tetrahedron-based mesh and uses an advanced importance sampling scheme. This new simulator speeds up simulations of OCT of inhomogeneous turbid media by about two orders of magnitude. To demonstrate this result, we have compared the computation times of our new parallel simulator and its serial counterpart using two samples of inhomogeneous turbid media. We have shown that our parallel implementation reduced simulation time of OCT of the first sample medium from 407 min to 92 min by using a single GPU card, to 12 min by using 8 GPU cards and to 7 min by using 16 GPU cards. For the second sample medium, the OCT simulation time was reduced from 209 h to 35.6 h by using a single GPU card, and to 4.65 h by using 8 GPU cards, and to only 2 h by using 16 GPU cards. Therefore our new parallel simulator is considerably more practical to use than its central processing unit (CPU)-based counterpart. Our new parallel OCT simulator could be a practical tool to study the different physical phenomena underlying OCT

  16. Angular domain optical projection tomography in turbid media

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; Kaminska, Bozena; Jordan, Kevin; Chapman, Glenn H.; Carson, Jeffrey J. L.

    2009-02-01

    Most high-resolution optical tomography techniques employ coherence domain or time domain methodologies to capture non-scattered photons in turbid media. Angular Domain Optical Projection Tomography (ADOPT) uses an angular filter array (AFA) to observe photons that propagate through a specimen with small angular deviation. We constructed an ADOPT system consisting of an AFA micro-machined silicon micro-tunnel array with each micro-tunnel 60 μm wide, 60 μm high, 10 mm long, and separated by 5 μm thick walls. The range of acceptance angles was 0° to 0.5°. The system also included an 808 nm CW diode laser, beam shaping optics, a sample cuvette, a Keplerian lens system, and a CMOS camera. Testing was performed with a target consisting of two graphite rods (0.9 mm diameter) suspended in the cuvette by a rotation stage. The target was placed in a manner that the line of laser light was perpendicular to the long axis of the rods. A multitude of projections were collected at increments of 1.8° and compiled into a sinogram. A transverse image was reconstructed from the sinogram using filtered backprojection. The submillimeter targets embedded in the 2 cm thick scattering medium (reduced scattering coefficient <= 2.4 cm-1) were discernable in both the sinograms and the reconstructed images. The results suggest that ADOPT may be a useful technique for tomographic imaging of thick biological specimens (i.e. up to 8 mm across).

  17. Fluorescence correlation spectroscopy: Ultrasensitive detection in clear and turbid media

    NASA Astrophysics Data System (ADS)

    Tahari, Abdel Kader

    In this work, I describe the development of a simple, inexpensive, and powerful alternative technique to detect and analyze, without enrichment, extremely low concentrations of cells, bacteria, viruses, and protein aggregates in turbid fluids for clinical and biotechnological applications. The anticipated applications of this technique are many. They range from the determination of the somatic cell count in milk for the dairy industry, to the enumeration and characterization of microorganisms in environmental microbiology and the food industry, and to the fast and ultrasensitive detection of protein aggregates for the diagnosis of Alzheimer's and other neurodegenerative diseases in clinical medicine. A prototype instrument has been built and allowed the detection and quantification of particles down to a few per milliliter in short scanning times. It consists of a small microscope that has a horizontal geometry and a mechanical instrument that holds a cylindrical cuvette (1 cm in diameter) with two motors that provide a rotational and a slower vertical inversion motions. The illumination focus is centered about 200 mum from the wall of the cuvette inside the sample. The total volume that is explored is large (˜1ml/min for bright particles). The data is analyzed with a correlation filter program based on particle passage pattern recognition. I will also describe further work on improving the sensitivity of the technique, expanding it for multiple-species discrimination and enumeration, and testing the prototype device in actual clinical and biotechnological applications. The main clinical application of this project seeks to establish conditions and use this new technique to quantify and size-analyze oligomeric complexes of the Alzheimer's disease beta-peptide in cerebrospinal fluid and other body fluids as a molecular biomarker for persons at risk of Alzheimer's disease dementia. The technology could potentially be extended to the diagnosis and therapeutic

  18. Most Detailed Direct Measurements Yet of Turbidity Currents in the Deep Ocean: Monterey Coordinated Canyon Experiment

    NASA Astrophysics Data System (ADS)

    Paull, C. K.; Anderson, K.; Barry, J. P.; Caress, D. W.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Kieft, B.; Lundsten, E. M.; Maier, K. L.; McCann, M. P.; McGann, M.; O'Reilly, T. C.; Parsons, D. R.; Rosenberger, K. J.; Sumner, E.; Talling, P. J.; Xu, J.

    2016-12-01

    Submarine sediment gravity flows (turbidity currents) are among the most important sediment transport processes on Earth, yet there are remarkably few direct measurements of these events in action. The ongoing multi-institution Coordinated Canyon Experiment (CCE) is providing detailed measurements of turbidity currents using multiple sensors and sediment traps deployed in the axis of Monterey Canyon, offshore California, in 6-month long deployments from October 2015 to April 2017 together with seafloor sampling and repeated mapping of seafloor morphology. No previous study has deployed such a dense array of sensors along a turbidity current pathway. Instrumentation includes: an array of 6 moorings carrying downward looking acoustic Doppler current profilers (ADCP) and sediment traps distributed along the canyon axis from 270 to 1,850 m water depth; a benthic instrument node at 1,840 m holding ADCPs of three different frequencies recording on a common time base, as well as salinity, temperature, and turbidity sensors; a McLane profiler at 1,830 m monitoring the lower 500 m of the water column; an array of benthic event detectors (smart boulders) that record their transport within the base of a flow; and precision triangulation beacons to assess creep within the canyon floor. Repeated mapping of the canyon floor at nested grid resolutions ranging from 1-m to 1-cm is being conducted to understand changes in canyon floor morphology. The first 6-month long deployment has been completed and 8 sediment transport events recorded. Seven of these events were restricted to <520 m water depths. However, on January 15th 2016 a sediment-laden turbidity flow ran out for >50 km from <279 m to >1,860 m water depth with an average velocity of 5.4 m/sec. Individual moorings and instruments moved down-canyon up to 7.8 km during this event. The novel instrument array and mapping tools have successfully recorded the down-canyon evolution of the powerful flow in spectacular detail.

  19. Utilizing Turbidity and Measurements of Suspended Sediment Concentrations to Better Understand Sediment Transport within Urban Streams

    NASA Astrophysics Data System (ADS)

    Elkins, T. M.; Napieralski, J. A.

    2009-12-01

    The Rouge River watershed in Southeast Michigan is an urban watershed, which has been exposed to more than 100 years of anthropogenic activities related to industrialization and urbanization. This urbanization has degraded water quality by increasing erosion and altering the transport mechanism and chemistry of bed and suspended sediments. This study aims to explore the relationship between development within the Lower Rouge watershed and watershed hydrology through an examination of USGS discharge data, stream water quality and suspended sediment loads during storm and base flow. Two YSI dataloggers are used to continuously measure water quality parameters during baseflow and storm events (varying hydrologic conditions), including: turbidity, dissolved oxygen, conductivity, salinity, total dissolved solids, and temperature. Depth-integrated sediment samples are collected and analyzed for sediment concentration using Imhoff cones and filtration methods. Correlations between discharge weighted continuous turbidity measurements and discharge weighted suspended sediment samples are used to estimate sediment loads; essentially, turbidity readings and measured sediment concentrations form a near-linear relationship. In addition, sediment samples are analyzed for inorganic heavy metal contaminants common to Southeast Michigan to characterize both suspended sediments and sediments frequently deposited on adjacent floodplains. These metals (i.e. Lead, Copper, Chromium, Nickle) are commonly known as the “Michigan Metals” and represent indicator species of mobilized and deposited contaminants associated with urbanization and industrialization. The results will provide a baseline for better understanding the transport and fate of contaminated sediments within the Rouge watershed, as well as guide ongoing development and management practices along the Rouge River.

  20. Effect of sand bed depth and media age on Escherichia coli and turbidity removal in biosand filters.

    PubMed

    Napotnik, Julie A; Baker, Derek; Jellison, Kristen L

    2017-02-17

    The main objective of this study was to build several full-scale biosand filters (BSFs) and assess the long-term (9 month) efficacy for particulate and Escherichia coli removal under simulated real-world usage. Four replicates of three different filter designs were built: the traditional concrete BSF, and two scaled-down versions that use a 5-gal or 2-gal bucket, respectively, as the casing material. The smaller sand bed depths in the bucket-sized filters did not impact filter performance with respect to (i) turbidity and E. coli removal or (ii) effluent levels of turbidity and E. coli. All filters produced effluents with a mean turbidity of <0.6 NTU. In addition, 78%, 74%, and 72% of effluent samples for the concrete, 5-gal, and 2-gal filters, respectively, had E. coli concentrations <1 CFU/100 mL. The bucket-sized filters were found to be a potential alternative to the concrete BSFs for the removal of E. coli and turbidity from drinking water. Since smaller BSFs must be filled more frequently than larger BSFs to produce comparable water volumes, the effect of shorter pause periods on BSF performance should be investigated.

  1. Water quality determination by photographic analysis. [optical density and water turbidity

    NASA Technical Reports Server (NTRS)

    Klooster, S. A.; Scherz, J. P.

    1973-01-01

    Aerial reconnaissance techniques to extract water quality parameters from aerial photos are reported. The turbidity can be correlated with total suspended solids if the constituent parts of the effluent remain the same and the volumetric flow remains relatively constant. A monochromator is used for the selection of the bandwidths containing the most information. White reflectance panels are used to locate sampling points and eliminate inherent energy changes from lens flare, radial lens fall-off, and changing subject illumination. Misleading information resulting from bottom effects is avoided by the use of Secchi disc readings and proper choice of wavelength for analyzing the photos.

  2. Remote estimation of the diffuse attenuation coefficient in a moderately turbid estuary

    USGS Publications Warehouse

    Stumpf, R.P.; Pennock, J.R.

    1991-01-01

    Solutions of the radiative transfer equation are used to derive relationships of water reflectance to the diffuse attenuation coefficient (K) in moderately turbid water (K > 0.5 m-1). Data sets collected from the NOAA AVHRR and in situ observations from five different dates confirm the appropriateness of these relationships, in particular the logistic equation. Values of K calculated from the reflectance data agree to within 60% of the observed values, although the reflectance derived using a more comprehensive aerosol correction is sensitive to chlorophyll concentrations greater than 50 ??g L-1. Agreement between in situ and remote observations improves as the time interval between samples is narrowed. ?? 1991.

  3. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... both community water systems and non-community water systems using surface water sources in whole or...

  4. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... both community water systems and non-community water systems using surface water sources in whole or...

  5. Laser measure of sea salinity, temperature and turbidity in depth

    NASA Technical Reports Server (NTRS)

    Hirschberg, J. G.; Wouters, A. W.; Byrne, J. D.

    1974-01-01

    A method is described in which a pulsed laser is used to probe the sea. Backscattered light is analyzed in time, intensity and wavelength. Tyndall, Raman and Brillouin scattering are used to obtain the backscatter turbidity, sound velocity, salinity, and the temperature as a function of depth.

  6. Continuous turbidity monitoring in streams of northwestern California

    Treesearch

    Rand Eads; Jack Lewis

    2002-01-01

    Abstract - Redwood Sciences Laboratory, a field office of the USDA Forest Service, Pacific Southwest Research Station has developed and refined methods and instrumentation to monitor turbidity and suspended sediment in streams of northern California since 1996. Currently we operate 21 stations and have provided assistance in the installation of 6 gaging stations for...

  7. Sediment concentration and turbidity changes during culvert removals

    Treesearch

    Randy B. Foltz; Kristina A. Yanosek; Timothy M. Brown

    2008-01-01

    The concentrations of sediment and turbidity in stream water were monitored during culvert removals to determine the short term effects of road obliteration. Sediment concentration was measured at 11 stream crossings among two locations in Idaho and one in Washington. Sediment concentration immediately below the culvert outlet exceeded levels above the culvert outlet...

  8. Turbidity. Training Module 5.240.2.77.

    ERIC Educational Resources Information Center

    Bonte, John L.; Davidson, Arnold C.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with candle turbidimeter and the nephelometric method of turbidity analysis. Included are objectives, an instructor guide, student handout, and transparency masters. A video tape is also available from the author. This module considers use…

  9. Operational monitoring of turbidity in rivers: how satellites can contribute

    NASA Astrophysics Data System (ADS)

    Hucke, Dorothee; Hillebrand, Gudrun; Winterscheid, Axel; Kranz, Susanne; Baschek, Björn

    2016-10-01

    The applications of remote sensing in hydrology are diverse and offer significant benefits for water monitoring. Up to now, operational river monitoring and sediment management in Germany mainly rely on in-situ measurements and on results obtained from numerical modelling. Remote sensing by satellites has a great potential to supplement existing data with two-dimensional information on near-surface turbidity distributions at greater spatial scales than in-situ measurements can offer. Within the project WasMon-CT (WaterMonitoring-Chlorophyll/Turbidity), the Federal Institute of Hydrology (BfG) aims at the implementation of an operational monitoring of turbidity distributions based on satellite images (esp. Sentinel-2, Landsat7 and 8). Initially, selected federal inland and estuarine waterways will be addressed: Rhine, Elbe, Ems, Weser. WasMon-CT is funded within the German Copernicus activities. Within the project, a database of atmospherically corrected, geo-referenced turbidity data will be assembled. The collected corresponding meta-data will include aspects of satellite data as well as hydrological data, e.g. cloud cover and river run-off. Based on this catalogue of spatially linked meta-data, the satellite data will be selected by e.g. cloud cover or run-off. The permanently updated database will include past as well as recent satellite images. It is designed with a long-term perspective to optimize the existing in-situ measurement network, which will serve partly for calibration and partly as validation data set. The aim is to extend, but not to substitute, the existing frequent point measurements with spatially extensive, satellite-derived data from the near surface part of the water column. Here, turbidity is used as proxy for corresponding suspended sediment concentrations. For this, the relationship between turbidity and suspended sediment concentrations will be investigated. Products as e.g. longitudinal profiles or virtual measurement stations will be

  10. Turbidity dynamics of the karst spring Ombla (Croatia)

    NASA Astrophysics Data System (ADS)

    Denic-Jukic, V.; Juras, T.; Plenkovic, M.; Kadic, A.; Jukic, D.

    2012-04-01

    Hydrogeological characteristics of the karst are complex and significantly different from the characteristics of granular media. Underground structures of pores, fissures, fractures and conduits of various size and forms with significant spatial and temporal variability and discontinuity of hydraulic and geometric parameters create complex hydrogeological conditions for groundwater flow. Karst aquifers are important fresh water resources but are frequently contaminated by turbidity because of the presence of various degrees of karstified limestone with highly transmissive conduits. Many analyses have shown that the period of turbidity represents the period of increased water pollution with bacteria. The present study presents the Ombla spring karstic system (Dubrovnik, Croatia). The Ombla Spring is located at an elevation of 2.5 m above sea-level and the river immediately flows into the Adriatic Sea. The water from the Ombla Spring is used for the water supply for the city of Dubrovnik. The precipitation regime is changeable. The average annual rainfall measured in Dubrovnik was 1220 mm. At Vukovići raingauge station, 7 km away, it amounted to 1800 mm and at the Hum raingauge station, 12.5 km from Dubrovnik it reached 2100 mm. The method applied is based essentially on time series analysis which has wide application in hydrogeological system analysis. A simple analysis gave a definition of the pattern signals of three types of records: rainfall, discharge rate and turbidity. Cross-correlation and spectral analysis were made between rainfall and discharge rates that were considered to be input signal and turbidity values which were considered to be the output signal. Both the simple and cross-analysis were made taking into account time and frequency domain. Analyzing turbidity as additional output signal parameter and parallel analysis of two responses reveals additional valuable information about the karst spring functioning. Turbidity of water in the Ombla karst

  11. USING TURBIDITY DATA TO PREDICT SUSPENDED SEDIMENT CONCENTRATIONS: POSSIBILITIES, LIMITATIONS, AND PITFALLS

    EPA Science Inventory

    This talk will look at the relationships between turbidity and suspended sediment concentrations in a variety of geographic areas, geomorphic river types, and river sizes; and attempt to give guidance on using existing turbidity data to predict suspended sediment concentrations.

  12. Do larval fishes exhibit diel drift patterns in a large, turbid river?

    USGS Publications Warehouse

    Reeves, K.S.; Galat, D.L.

    2010-01-01

    Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May - June) and summer (July - August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or 'low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. ?? 2010 Blackwell Verlag, Berlin.

  13. Water turbidity optical meter using optical fiber array for topographical distribution analysis

    NASA Astrophysics Data System (ADS)

    Mutter, Kussay Nugamesh; Mat Jafri, Mohd Zubir; Yeoh, Stephenie

    2017-06-01

    This work is presenting an analysis study for using optical fiber array as turbidity meter and topographical distribution. Although many studies have been figure out of utilizing optical fibers as sensors for turbidity measurements, still the topographical map of suspended particles in water as rare as expected among all of works in literatures in this scope. The effect of suspended particles are highly affect the water quality which varies according to the source of these particles. A two dimensional array of optical fibers in a 1 litter rectangular plastic container with 2 cm cladding off sensing portion prepared to point out 632.8 nm laser power at each fiber location at the container center. The overall output map of the optical power were found in an inhomogeneous distribution such that the top to down layers of a present water sample show different magnitudes. Each sample prepared by mixing a distilled water with large grains sand, small grains sand, glucose and salt. All with different amount of concentration which measured by refractometer and turbidity meter. The measurements were done in different times i.e. from 10 min to 60 min. This is to let the heavy particles to move down and accumulate at the bottom of the container. The results were as expected which had a gradually topographical map from low power at top layers into high power at bottom layers. There are many applications can be implemented of this study such as transport vehicles fuel meter, to measure the purity of tanks, and monitoring the fluids quality in pipes.

  14. Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media.

    PubMed

    Hadley, Kevin C; Vitkin, I Alex

    2002-07-01

    The polarization properties of light scattered in a lateral direction from turbid media were studied. Polarization modulation and synchronous detection were used to measure, and Mueller calculus to model and derive, the degrees of surviving linear and circular polarization and the optical rotation induced by turbid samples. Polystyrene microspheres were used as scatterers in water solutions containing dissolved chiral, racemic, and achiral molecules. The preservation of circular polarization was found to exceed the linear polarization preservation for all samples examined. The optical rotation induced increased with the chiral molecule concentration only, whereas both linear and circular polarizations increased with an increase in the concentrations of chiral, racemic, and achiral molecules. This latter effect was shown to stem solely from the refractive index matching mechanism induced by the solute molecules, independent of their chiral nature.

  15. Household based treatment of drinking water with flocculant-disinfectant for preventing diarrhoea in areas with turbid source water in rural western Kenya: cluster randomised controlled trial

    PubMed Central

    Crump, John A; Otieno, Peter O; Slutsker, Laurence; Keswick, Bruce H; Rosen, Daniel H; Hoekstra, R Michael; Vulule, John M; Luby, Stephen P

    2005-01-01

    Objective To compare the effect on prevalence of diarrhoea and mortality of household based treatment of drinking water with flocculant-disinfectant, sodium hypochlorite, and standard practices in areas with turbid water source in Africa. Design Cluster randomised controlled trial over 20 weeks. Setting Family compounds, each containing several houses, in rural western Kenya. Participants 6650 people in 605 family compounds. Intervention Water treatment: flocculant-disinfectant, sodium hypochlorite, and usual practice (control). Main outcome measures Prevalence of diarrhoea and all cause mortality. Escherichia coli concentration, free residual chlorine concentration, and turbidity in household drinking water as surrogates for effectiveness of water treatment. Results In children < 2 years old, compared with those in the control compounds, the absolute difference in prevalence of diarrhoea was –25% in the flocculant-disinfectant arm (95% confidence interval –40 to –5) and –17% in the sodium hypochlorite arm (–34 to 4). In all age groups compared with control, the absolute difference in prevalence was –19% in the flocculant-disinfectant arm (–34 to –2) and –26% in the sodium hypochlorite arm (–39 to –9). There were significantly fewer deaths in the intervention compounds than in the control compounds (relative risk of death 0.58, P = 0.036). Fourteen per cent of water samples from control compounds had E coli concentrations < 1 CFU/100 ml compared with 82% in flocculant-disinfectant and 78% in sodium hypochlorite compounds. The mean turbidity of drinking water was 8 nephelometric turbidity units (NTU) in flocculant-disinfectant households, compared with 55 NTU in the two other compounds (P < 0.001). Conclusions In areas of turbid water, flocculant-disinfectant was associated with a significant reduction in diarrhoea among children < 2 years. This health benefit, combined with a significant reduction in turbidity, suggests that the flocculant

  16. A turbidity current model for real world applications

    NASA Astrophysics Data System (ADS)

    Macías, Jorge; Castro, Manuel J.; Morales, Tomás

    2016-04-01

    Traditional turbidity current models suffer from several drawbacks. Among them not preserving freshwater mass, a missing pressure term, or not including terms related to deposition, erosion and entrainment in the momentum equation. In Morales et al.(2009) a new turbidity current model was proposed trying to overcome all these drawbacks. This model takes into account the interaction between the turbidity current and the bottom, considering deposition and erosion effects as well as solid bedload transport of particles at the bed due to the current. Moreover, this model includes the effects of the deposition, erosion and water entrainment into the momentum equation,commonly neglected in this type of models and, finally, in the absence of water entrainment, freshwater mass in the turbidity current is preserved. Despite these improvements, the numerical results obtained by this model when applied to real river systems were not satisfactory due to the simple form of the friction term that was considered. In the present work we propose a different parameterization of this term, where bottom and interface fluid frictions are separately parameterized with more complex expressions. Moreover, the discretization of the deposition/erosion terms is now performed semi-implicitly which guarantees the positivity of the volumetric concentration of sediments in suspension and in the erodible sediment layer at the bed. The numerical simulations obtained with this new turbidity current model (component of HySEA numerical computing platform) greatly improve previous numerical results for simplified geometries as well as for real river systems. Acknowledgements: This research has been partially supported by the Junta de Andalucía research project TESELA (P11-RNM7069) and the Spanish Government Research project DAIFLUID (MTM2012-38383-C02-01) and Universidad de Málaga, Campus de Excelencia Andalucía TECH. References: T. Morales, M. Castro, C. Parés, and E. Fernández-Nieto (2009). On

  17. Relationships between aquatic vegetation and water turbidity: A field survey across seasons and spatial scales.

    PubMed

    Austin, Åsa N; Hansen, Joakim P; Donadi, Serena; Eklöf, Johan S

    2017-01-01

    Field surveys often show that high water turbidity limits cover of aquatic vegetation, while many small-scale experiments show that vegetation can reduce turbidity by decreasing water flow, stabilizing sediments, and competing with phytoplankton for nutrients. Here we bridged these two views by exploring the direction and strength of causal relationships between aquatic vegetation and turbidity across seasons (spring and late summer) and spatial scales (local and regional), using causal modeling based on data from a field survey along the central Swedish Baltic Sea coast. The two best-fitting regional-scale models both suggested that in spring, high cover of vegetation reduces water turbidity. In summer, the relationships differed between the two models; in the first model high vegetation cover reduced turbidity; while in the second model reduction of summer turbidity by high vegetation cover in spring had a positive effect on summer vegetation which suggests a positive feedback of vegetation on itself. Nitrogen load had a positive effect on turbidity in both seasons, which was comparable in strength to the effect of vegetation on turbidity. To assess whether the effect of vegetation was primarily caused by sediment stabilization or a reduction of phytoplankton, we also tested models where turbidity was replaced by phytoplankton fluorescence or sediment-driven turbidity. The best-fitting regional-scale models suggested that high sediment-driven turbidity in spring reduces vegetation cover in summer, which in turn has a negative effect on sediment-driven turbidity in summer, indicating a potential positive feedback of sediment-driven turbidity on itself. Using data at the local scale, few relationships were significant, likely due to the influence of unmeasured variables and/or spatial heterogeneity. In summary, causal modeling based on data from a large-scale field survey suggested that aquatic vegetation can reduce turbidity at regional scales, and that high

  18. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems.

    PubMed

    Pizarro, H; Vera, M S; Vinocur, A; Pérez, G; Ferraro, M; Menéndez Helman, R J; Dos Santos Afonso, M

    2016-03-01

    Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4 ± 0.1 mg l(-1) of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a = 2.04 μg l(-1); turbidity = 2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a = 50.3 μg l(-1); turbidity = 16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body.

  19. Calculated Angstroem`s turbidity coefficients for Fairbanks, Alaska

    SciTech Connect

    Fox, J.D.

    1994-10-01

    Angstrom`s turbidity coefficient, {beta}, was determined from measurements of direct normal solar irradiance (broadband) at Fairbanks, Alaska (latitude, 64.82). The frequency distribution and seasonal changes of derived values were similar to those reported for rural sites in other parts of the world, whereas magnitudes were at the lower end of the reported range. The method was sensitive enough to detect a seasonal pattern along with annual deviations associated with hemispheric scale disturbance created by the El Chicon volcanic eruptions of 1982. Daily deviations from the seasonal pattern were associated with antecedent precipitation events and the occurrence of local or regional forest fires in summer and possible episodes of Arctic haze in winter. Knowledge of Angstrom turbidity values will improve representations of solar irradiance in micro- and mesoscale ecological and weather models. 38 refs., 3 figs., 1 tab.

  20. Parameter Space of the Columbia River Estuarine Turbidity Maxima

    NASA Astrophysics Data System (ADS)

    McNeil, C. L.; Shcherbina, A.; Lopez, J.; Karna, T.; Baptista, A. M.; Crump, B. C.; Sanford, T. B.

    2016-12-01

    We present observations of estuarine turbidity maxima (ETM) in the North Channel of the Columbia River estuary (OR and WA, USA) covering different river discharge and flood tide conditions. Measurements were made using optical backscattering sensors on two REMUS-100 autonomous underwater vehicles (AUVs) during spring 2012, summer 2013, and fall 2012. Although significant short term variability in AUV measured optical backscatter was observed, some clustering of the data occurs around the estuarine regimes defined by a mixing parameter and a freshwater Froude number (Geyer & MacCready [2014]). Similar clustering is observed in long term time series of turbidity from the SATURN observatory. We will use available measurements and numerical model simulations of suspended sediment to further explore the variability of suspended sediment dynamics within a frame work of estuarine parameter space.

  1. Focusing of light through turbid media by curve fitting optimization

    NASA Astrophysics Data System (ADS)

    Gong, Changmei; Wu, Tengfei; Liu, Jietao; Li, Huijuan; Shao, Xiaopeng; Zhang, Jianqi

    2016-12-01

    The construction of wavefront phase plays a critical role in focusing light through turbid media. We introduce the curve fitting algorithm (CFA) into the feedback control procedure for wavefront optimization. Unlike the existing continuous sequential algorithm (CSA), the CFA locates the optimal phase by fitting a curve to the measured signals. Simulation results show that, similar to the genetic algorithm (GA), the proposed CFA technique is far less susceptible to the experimental noise than the CSA. Furthermore, only three measurements of feedback signals are enough for CFA to fit the optimal phase while obtaining a higher focal intensity than the CSA and the GA, dramatically shortening the optimization time by a factor of 3 compared with the CSA and the GA. The proposed CFA approach can be applied to enhance the focus intensity and boost the focusing speed in the fields of biological imaging, particle trapping, laser therapy, and so on, and might help to focus light through dynamic turbid media.

  2. Turbidity of a Binary Fluid Mixture: Determining Eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  3. Effects of Turbidity on Fluridone Treatments for Curlyleaf Pondweed Control

    DTIC Science & Technology

    2008-03-01

    Manage. 41:113-118. Yaron-Marcovich, D., S. Nir, and Y. Chen. 2004. Fluridone adsorption-desorption on organo - clays . Applied Clay Sci. 24:167-175...Nichols 1994). These species usually have complex and deep root systems to withstand wind-driven waves that scour the lake bottom, suspending...caused by suspended organic matter, sediment, and other inorganic particles. Clays also may comprise a part of the suspended sediment found in turbid

  4. Tufts submarine fan: turbidity-current gateway to Escanaba Trough

    USGS Publications Warehouse

    Reid, Jane A.; Normark, William R.

    2003-01-01

    Turbidity-current overflow from Cascadia Channel near its western exit from the Blanco Fracture Zone has formed the Tufts submarine fan, which extends more than 350 km south on the Pacific Plate to the Mendocino Fracture Zone. For this study, available 3.5-kHz high-resolution and airgun seismic-reflection data, long-range side-scan sonar images, and sediment core data are used to define the growth pattern of the fan. Tufts fan deposits have smoothed and filled in the linear ridge-and-valley relief over an area exceeding 23,000 km2 on the west flank of the Gorda Ridge. The southernmost part of the fan is represented by a thick (as much as 500 m) sequence of turbidite deposits ponded along more than 100 km of the northern flank of the Mendocino Fracture Zone. Growth of the Tufts fan now permits turbidity-current overflow from Cascadia Channel to reach the Escanaba Trough, a deep rift valley along the southern axis of the Gorda Ridge. Scientific drilling during both the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP) provided evidence that the 500-m-thick sediment fill of Escanaba Trough is dominantly sandy turbidites. Radiocarbon dating of the sediment at ODP Site 1037 showed that deposition of most of the upper 120 m of fill was coincident with Lake Missoula floods and that the provenance of the fill is from the eastern Columbia River drainage basin. The Lake Missoula flood discharge with its entrained sediment continued flowing downslope upon reaching the ocean as hyperpycnally generated turbidity currents. These huge turbidity currents followed the Cascadia Channel to reach the Pacific Plate, where overbank flow provided a significant volume of sediment on Tufts fan and in Escanaba Trough. Tufts fan and Tufts Abyssal Plain to the west probably received turbidite sediment from the Cascadia margin during much of the Pleistocene.

  5. Riverbank filtration for the treatment of highly turbid Colombian rivers

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Juan Pablo; van Halem, Doris; Rietveld, Luuk

    2017-05-01

    The poor quality of many Colombian surface waters forces us to seek alternative, sustainable treatment solutions with the ability to manage peak pollution events and to guarantee the uninterrupted provision of safe drinking water to the population. This review assesses the potential of using riverbank filtration (RBF) for the highly turbid and contaminated waters in Colombia, emphasizing water quality improvement and the influence of clogging by suspended solids. The suspended sediments may be favorable for the improvement of the water quality, but they may also reduce the production yield capacity. The cake layer must be balanced by scouring in order for an RBF system to be sustainable. The infiltration rate must remain high enough throughout the river-aquifer interface to provide the water quantity needed, and the residence time of the contaminants must be sufficient to ensure adequate water quality. In general, RBF seems to be a technology appropriate for use in highly turbid and contaminated surface rivers in Colombia, where improvements are expected due to the removal of turbidity, pathogens and to a lesser extent inorganics, organic matter and micro-pollutants. RBF has the potential to mitigate shock loads, thus leading to the prevention of shutdowns of surface water treatment plants. In addition, RBF, as an alternative pretreatment step, may provide an important reduction in chemical consumption, considerably simplifying the operation of the existing treatment processes. However, clogging and self-cleansing issues must be studied deeper in the context of these highly turbid waters to evaluate the potential loss of abstraction capacity yield as well as the development of different redox zones for efficient contaminant removal.

  6. Simplified multiple scattering model for radiative transfer in turbid water

    NASA Technical Reports Server (NTRS)

    Ghovanlou, A. H.; Gupta, G. N.

    1978-01-01

    Quantitative analytical procedures for relating selected water quality parameters to the characteristics of the backscattered signals, measured by remote sensors, require the solution of the radiative transport equation in turbid media. Presented is an approximate closed form solution of this equation and based on this solution, the remote sensing of sediments is discussed. The results are compared with other standard closed form solutions such as quasi-single scattering approximations.

  7. Non-invasive three-dimension control of light between turbid layers using a surface quasi-point light source for precorrection.

    PubMed

    Qiao, Mu; Liu, Honglin; Pang, Guanghui; Han, Shensheng

    2017-08-29

    Manipulating light non-invasively through inhomogeneous media is an attractive goal in many disciplines. Wavefront shaping and optical phase conjugation can focus light to a point. Transmission matrix method can control light on multiple output modes simultaneously. Here we report a non-invasive approach which enables three-dimension (3D) light control between two turbid layers. A digital optical phase conjugation mirror measured and conjugated the diffused wavefront, which originated from a quasi-point source on the front turbid layer and passed through the back turbid layer. And then, because of memory effect, the phase-conjugated wavefront could be used as a carrier wave to transport a pre-calculated wavefront through the back turbid layer. The pre-calculated wavefront could project a desired 3D light field inside the sample, which, in our experiments, consisted of two 220-grid ground glass plates spaced by a 20 mm distance. The controllable range of light, according to the memory effect, was calculated to be 80 mrad in solid angle and 16 mm on z-axis. Due to the 3D light control ability, our approach may find applications in photodynamic therapy and optogenetics. Besides, our approach can also be combined with ghost imaging or compressed sensing to achieve 3D imaging between turbid layers.

  8. Mechanisms of complete turbulence suppression in turbidity currents

    NASA Astrophysics Data System (ADS)

    Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.

    2012-11-01

    The sustained propagation of turbidity current depends on a tight interplay between suspended sediments and turbulence. This work explores the phenomenon of complete turbulence suppression in a dilute turbidity current due to stratification of suspended sediments. Direct numerical simulations of turbidity currents are carried out to understand the dynamics of complete turbulence suppression. We observe that stratification of sediments leads to damping and spatial redistribution of hairpin and quasi-streamwise turbulent structures in the flow. These turbulent structures are known to be responsible for sustaining turbulence in the flow. We propose that beyond a critical stratification limit, the existing vortical structures in the flow are damped to an extent where they loose their ability to auto-generate subsequent turbulent structures, which ultimately leads to complete loss of turbulence. We also identify three parameters: Reynolds number (Reτ), Richardson number (Riτ) and sediment settling velocity (Vz) to control the flow dynamics. Therefore a criteria for complete turbulence suppression can be defined as a critical value for RiτVz . Based on simulations, experiments and field data, the critical value appears to have logarithmic dependence on Reτ . Authors thank the support of NSF through grant OCE1131016.

  9. Estimation of particulate nutrient load using turbidity meter.

    PubMed

    Yamamoto, K; Suetsugi, T

    2006-01-01

    The "Nutrient Load Hysteresis Coefficient" was proposed to evaluate the hysteresis of the nutrient loads to flow rate quantitatively. This could classify the runoff patterns of nutrient load into 15 patterns. Linear relationships between the turbidity and the concentrations of particulate nutrients were observed. It was clarified that the linearity was caused by the influence of the particle size on turbidity output and accumulation of nutrients on smaller particles (diameter < 23 microm). The L-Q-Turb method, which is a new method for the estimation of runoff loads of nutrients using a regression curve between the turbidity and the concentrations of particulate nutrients, was developed. This method could raise the precision of the estimation of nutrient loads even if they had strong hysteresis to flow rate. For example, as for the runoff load of total phosphorus load on flood events in a total of eight cases, the averaged error of estimation of total phosphorus load by the L-Q-Turb method was 11%, whereas the averaged estimation error by the regression curve between flow rate and nutrient load was 28%.

  10. Imaging in turbid media: a transmission detector gives 2-3 order of magnitude enhanced sensitivity compared to epi-detection schemes.

    PubMed

    Dvornikov, Alexander; Gratton, Enrico

    2016-09-01

    Imaging depth in turbid media by two-photon fluorescence microscopy depends on the ability of the optical system to detect weak fluorescence signals. We have shown that use of a wide area detector in transmission geometry allows increasing imaging depth in turbid media due to efficient photon collection. Compared to the conventional epi-detection scheme used in most commercial microscopes, the transmission detector was found to be 2-3 orders of magnitude more sensitive when used for in depth imaging in scattering samples simulating brain optical properties.

  11. Imaging in turbid media: a transmission detector gives 2-3 order of magnitude enhanced sensitivity compared to epi-detection schemes

    PubMed Central

    Dvornikov, Alexander; Gratton, Enrico

    2016-01-01

    Imaging depth in turbid media by two-photon fluorescence microscopy depends on the ability of the optical system to detect weak fluorescence signals. We have shown that use of a wide area detector in transmission geometry allows increasing imaging depth in turbid media due to efficient photon collection. Compared to the conventional epi-detection scheme used in most commercial microscopes, the transmission detector was found to be 2–3 orders of magnitude more sensitive when used for in depth imaging in scattering samples simulating brain optical properties. PMID:27699135

  12. Note: refractive index sensing of turbid media by differentiation of the reflectance profile: does error-correction work?

    PubMed

    Goyal, K G; Dong, M L; Kane, D G; Makkar, S S; Worth, B W; Bali, L M; Bali, S

    2012-08-01

    A widely used method for determining refractive index postulates that the derivative of the angular profile for light reflected from the sample is maximum at the critical angle for total internal reflection (TIR). It is well-known that in turbid media this "differentiation method" yields errors in refractive index. Unexplained anomalies in previous error-calculations are eliminated if one uses a recent model of TIR which departs from traditional Fresnel theory. However we find that, in practical situations, the refractive index obtained by differentiation even after error-correction is significantly different from the best estimate for the refractive index obtained by curve-fitting the reflectance data. Thus the differentiation method lacks scientific validity in turbid media.

  13. Remote measurement of water color in coastal waters. [spectral radiance data used to obtain quantitative values for chlorophyll and turbidity

    NASA Technical Reports Server (NTRS)

    Weldon, J. W.

    1973-01-01

    An investigation was conducted to develop procedure to obtain quantitative values for chlorophyll and turbidity in coastal waters by observing the changes in spectral radiance of the backscattered spectrum. The technique under consideration consists of Examining Exotech model 20-D spectral radiometer data and determining which radiance ratios best correlated with chlorophyll and turbidity measurements as obtained from analyses of water samples and sechi visibility readings. Preliminary results indicate that there is a correlation between backscattered light and chlorophyll concentration and secchi visibility. The tests were conducted with the spectrometer mounted in a light aircraft over the Mississippi Sound at altitudes of 2.5K, 2.8K and 10K feet.

  14. Indirect determination of broadband turbidity coefficients over Egypt

    NASA Astrophysics Data System (ADS)

    El-Metwally, Mossad

    2013-01-01

    Long-term data from diffuse and global irradiances were used to calculate direct beam irradiance which was used to determine three atmospheric turbidity coefficients (Linke T L , Ångström β and Unsworth-Monteith δ a ) at seven sites in Egypt in the period from 1981 to 2000. Seven study sites (Barrani, Matruh, Arish, Cairo, Asyut, Aswan and Kharga) have been divided into three categories: Mediterranean climate (MC), desert Nile climate (DNC) and urban climate (UC, Cairo). The indirect method (i.e., global irradiance minus diffuse irradiance) used here allows to estimate the turbidity coefficients with an RMSE% ≤20 % (for β, δ a and T L ) and ~30 % (for β) if compared with those estimated by direct beam irradiance and sunphotometeric data, respectively. Monthly averages of T L , β and δ a show seasonal variations with mainly maxima in spring at all stations, due to Khamsin depressions coming from Sahara. Secondary maxima is observed in summer and autumn at DNC and MC (Barrani and Arish) stations in summer due to dust haze which prevails during that season and at UC (Cairo) in autumn, due to the northern extension of the Sudan monsoon trough, which is accompanied by small-scale depressions with dust particles. The mean annual values of β, δ a , and T L (0.216, 0.314, and 4.6, respectively) are larger in Cairo than at MC stations (0.146, 0.216, and 3.8, respectively) and DNC stations (0.153, 0.227, and 3.8, respectively). Both El-Chichon and Mt. Pinatubo eruptions were examined for all records data at MC, UC and DNC stations. The overburden caused by Mt. Pinatubo's eruption was larger than El-Chichon's eruption and overburden for β, and T L at DNC stations (0.06, and 0.58 units, respectively) was more pronounced than that at MC (0.02, and 0.26, respectively) and UC (0.05 and 0.52 units, respectively) stations. The annual variations in wind speed and turbidity parameters show high values for both low and high wind speed at all stations

  15. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media.

    PubMed

    Kunnen, Britt; Macdonald, Callum; Doronin, Alexander; Jacques, Steven; Eccles, Michael; Meglinski, Igor

    2015-04-01

    Polarization-based optical techniques have become increasingly popular in the field of biomedical diagnosis. In the current report we exploit the directional awareness of circularly and/or elliptically polarized light backscattered from turbid tissue-like scattering media. We apply circularly and elliptically polarized laser light which illuminates the samples of interest, and a standard optical polarimeter is used to observe the polarization state of light backscattered a few millimeters away from the point of incidence. We demonstrate that the Stokes vector of backscattered light depicted on a Poincaré sphere can be used to assess a turbid tissue-like scattering medium. By tracking the Stokes vector of the detected light on the Poincaré sphere, we investigate the utility of this approach for characterization of cancerous and non-cancerous tissue samples in vitro. The obtained results are discussed in the framework of a phenomenological model and the results of a polarization tracking Monte Carlo model, developed in house. Schematic illustration of the experimental approach utilizing circularly and elliptically polarized light for probing turbid tissue-like scattering media. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An improved profiling method for the measurement of hyperspectral diffuse attenuation coefficents in shallow turbid waters

    NASA Astrophysics Data System (ADS)

    Ma, Li; Tao, Bangyi; Shi, Liangliang; Zhu, Qiankun

    2016-10-01

    The measurement of hyperspectral diffuse attenuation coefficients (Kd(λ)) in shallow turbid waters cannot be successfully achieved by the original Satlantic profiling system, because of less data available in the near-surface waters due to the rapid decrease of light intensity. In this paper, an improved profiling system and processing method are proposed. Firstly, a convenient buoyancy device is designed and mounted on the Satlantic Profiler II to allow the profiler to loiter close to the sea surface, thereby significantly improving the vertical sampling resolution to 1cm/s in near-surface waters, particularly in the depth between 0 and 1 meter. In addition, customized processing software CProSoft is developed to subjectively select the depths for various wavelengths that meet their different requirement for regression analysis. Comparison with original system results shows that our novel method can significantly improve the accuracy of Kd(λ) measurements especially in the short blue and red spectral range, and can even effectively derive near-surface Kd values in the extremely turbid waters with attenuation coefficients greater than 30 m-1, which dramatically enlarge the Kd(λ) measuring range

  17. Optical monitoring of chemical processes in turbid biogenic liquid dispersions by Photon Density Wave spectroscopy.

    PubMed

    Hass, Roland; Munzke, Dorit; Ruiz, Salomé Vargas; Tippmann, Johannes; Reich, Oliver

    2015-04-01

    In turbid biogenic liquid material, like blood or milk, quantitative optical analysis is often strongly hindered by multiple light scattering resulting from cells, particles, or droplets. Here, optical attenuation is caused by losses due to absorption as well as scattering of light. Fiber-based Photon Density Wave (PDW) spectroscopy is a very promising method for the precise measurement of the optical properties of such materials. They are expressed as absorption and reduced scattering coefficients (μ a and μ s', respectively) and are linked to the chemical composition and physical properties of the sample. As a process analytical technology, PDW spectroscopy can sense chemical and/or physical processes within such turbid biogenic liquids, providing new scientific insight and process understanding. Here, for the first time, several bioprocesses are analyzed by PDW spectroscopy and the resulting optical coefficients are discussed with respect to established mechanistic models of the chosen processes. As model systems, enzymatic casein coagulation in milk, temperature-induced starch hydrolysis in beer mash, and oxy- as well as deoxygenation of human donor blood were investigated by PDW spectroscopy. The findings indicate that also for very complex biomaterials (i.e., not well-defined model materials like monodisperse polymer dispersions), obtained optical coefficients allow for the assessment of a structure/process relationship and thus for a new analytical access to biogenic liquid material. This is of special relevance as PDW spectroscopy data are obtained without any dilution or calibration, as often found in conventional spectroscopic approaches.

  18. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  19. Analytical Capability of Defocused µ-SORS in the Chemical Interrogation of Thin Turbid Painted Layers

    PubMed Central

    Realini, Marco; Botteon, Alessandra; Colombo, Chiara; Noll, Sarah; Elliott, Stephen R.; Matousek, Pavel

    2016-01-01

    A recently developed micrometer-scale spatially offset Raman spectroscopy (μ-SORS) method provides a new analytical capability for investigating non-destructively the chemical composition of sub-surface, micrometer-scale thickness, diffusely scattering layers at depths beyond the reach of conventional confocal Raman microscopy. Here, we demonstrate experimentally, for the first time, the capability of μ-SORS to determine whether two detected chemical components originate from two separate layers or whether the two components are mixed together in a single layer. Such information is important in a number of areas, including conservation of cultural heritage objects, and is not available, for highly turbid media, from conventional Raman microscopy, where axial (confocal) scanning is not possible due to an inability to facilitate direct imaging within the highly scattering sample. This application constitutes an additional capability for μ-SORS in addition to its basic capacity to determine the overall chemical make-up of layers in a turbid system. PMID:26767641

  20. Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media

    PubMed Central

    Morales Cruzado, Beatriz; y Montiel, Sergio Vázquez; Atencio, José Alberto Delgado

    2013-01-01

    In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation. PMID:23504404

  1. Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media.

    PubMed

    Morales Cruzado, Beatriz; Y Montiel, Sergio Vázquez; Atencio, José Alberto Delgado

    2013-03-01

    In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation.

  2. Four decades of variability in turbidity in the western Wadden Sea as derived from corrected Secchi disk readings

    NASA Astrophysics Data System (ADS)

    Philippart, Catharina J. M.; Salama, Mhd. Suhyb; Kromkamp, Jacco C.; van der Woerd, Hendrik J.; Zuur, Alain F.; Cadée, Gerhard C.

    2013-09-01

    The Wadden Sea has undergone many changes of which some (e.g., seagrass disappearance, dredging activities) are thought to have affected the concentrations of suspended particulate matter (SPM) in these waters. Results of previous analyses of long-term variation and trends in SPM are, however, possibly biased by the fact that the data underlying these trends were not corrected for methodological changes in time. In this paper we analyze the variability of Secchi disk measurements recorded at one location in the westernmost part of the Wadden Sea during almost four decades (from 1974 to 2010). The Secchi readings were corrected for varying environmental conditions (solar zenith angle, solar irradiance and sea surface conditions) at the time of observation and then converted to a turbidity proxy that measures the attenuation of light due to suspended and dissolved materials in the water column. We tested a series of hypotheses to describe the seasonal and long-term variations of this turbidity proxy. The best statistical model assumed one common seasonal pattern within the study period and a strong variation in turbidity over the years without any apparent long-term increase or decrease in time (n = 1361; r2 = 0.53). In addition, we found that most of the turbidity variation in this part of the Wadden Sea can be described as a function of SPM, chlorophyll-a, salinity, water temperature, the filter type used for the SPM determinations, and a still unidentified seasonal factor (n = 401; r2 = 0.88). Comparison with annual averaged ADCP-derived SPM concentrations as determined from a ferry sailing across the Marsdiep tidal inlet (1998-2008) showed that the variability in turbidity at the sampling station was indicative for the variation in light attenuation in the westernmost part of the Wadden Sea. Because the intensity of the underwater light-field affects primary productivity, this new and consistent information on long-term variation in turbidity is of profound

  3. Factors affecting the bacterial community composition and heterotrophic production of Columbia River estuarine turbidity maxima.

    PubMed

    Herfort, Lydie; Crump, Byron C; Fortunato, Caroline S; McCue, Lee Ann; Campbell, Victoria; Simon, Holly M; Baptista, António M; Zuber, Peter

    2017-08-06

    Estuarine turbidity maxima (ETM) function as hotspots of microbial activity and diversity in estuaries, yet, little is known about the temporal and spatial variability in ETM bacterial community composition. To determine which environmental factors affect ETM bacterial populations in the Columbia River estuary, we analyzed ETM bacterial community composition (Sanger sequencing and amplicon pyrosequencing of 16S rRNA gene) and bulk heterotrophic production ((3) H-leucine incorporation rates). We collected water 20 times to cover five ETM events and obtained 42 samples characterized by different salinities, turbidities, seasons, coastal regimes (upwelling vs. downwelling), locations, and particle size. Spring and summer populations were distinct. All May samples had similar bacterial community composition despite having different salinities (1-24 PSU), but summer non-ETM bacteria separated into marine, freshwater, and brackish assemblages. Summer ETM bacterial communities varied depending on coastal upwelling or downwelling conditions and on the sampling site location with respect to tidal intrusion during the previous neap tide. In contrast to ETM, whole (>0.2 μm) and free-living (0.2-3 μm) assemblages of non-ETM waters were similar to each other, indicating that particle-attached (>3 μm) non-ETM bacteria do not develop a distinct community. Brackish water type (ETM or non-ETM) is thus a major factor affecting particle-attached bacterial communities. Heterotrophic production was higher in particle-attached than free-living fractions in all brackish waters collected throughout the water column during the rise to decline of turbidity through an ETM event (i.e., ETM-impacted waters). However, free-living communities showed higher productivity prior to or after an ETM event (i.e., non-ETM-impacted waters). This study has thus found that Columbia River ETM bacterial communities vary based on seasons, salinity, sampling location, and particle size, with the

  4. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    PubMed

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols.

  5. Turbid releases from Glen Canyon Dam, Arizona, following rainfall-runoff events of September 2013

    USGS Publications Warehouse

    Wildman, Richard A.; Vernieu, William

    2017-01-01

    Glen Canyon Dam is a large dam on the Colorado River in Arizona. In September 2013, it released turbid water following intense thunderstorms in the surrounding area. Turbidity was >15 nephelometric turbidity units (NTU) for multiple days and >30 NTU at its peak. These unprecedented turbid releases impaired downstream fishing activity and motivated a rapid-response field excursion. At 5 locations upstream from the dam, temperature, specific conductance, dissolved oxygen, chlorophyll a, and turbidity were measured in vertical profiles. Local streamflow and rainfall records were retrieved, and turbidity and specific conductance data in dam releases were evaluated. Profiling was conducted to determine possible sources of turbidity from 3 tributaries nearest the dam, Navajo, Antelope, and Wahweap creeks, which entered Lake Powell as interflows during this study. We discuss 4 key conditions that must have been met for tributaries to influence turbidity of dam releases: tributary flows must have reached the dam, tributary flows must have been laden with sediment, inflow currents must have been near the depth of dam withdrawals, and the settling velocity of particles must have been slow. We isolate 2 key uncertainties that reservoir managers should resolve in future similar studies: the reach of tributary water into the reservoir thalweg and the distribution of particle size of suspended sediment. These uncertainties leave the source of the turbidity ambiguous, although an important role for Wahweap Creek is possible. The unique combination of limnological factors we describe implies that turbid releases at Glen Canyon Dam will continue to be rare.

  6. Turbidity Currents In The Ocean; Are They Stably Stratified?

    NASA Astrophysics Data System (ADS)

    Kneller, B. C.; Nasr-Azadani, M.; Meiburg, E. H.

    2013-12-01

    A large proportion of the sediment generated by erosion of the continents is ultimately delivered to the deep ocean to form submarine fans, being carried to the margins of these fans by turbidity currents that flow through submarine channels that may be hundreds or even thousands of kilometers long. The persistence of these flows over extremely long distances with gradients that may be 10-4 or less, while maintaining sediment as coarse as fine-grained sand in suspension, is enigmatic, given the drag that one would expect to be experienced by such flows, and the effects of progressive dilution by entrainment of ambient seawater. The commonly-held view of the flow structure of turbidity currents, based on many laboratory and numerical simulations and rare observations in the ocean, is that of a vertical profile of time-averaged horizontal velocity with a maximum value close the bed, largely due to much higher drag on the upper boundary than on the lower. This upper boundary drag is related to Kelvin-Helmholtz (K-H) instabilities generated by shear between the current and the ambient seawater. K-H instabilities result when fluid shear dominates over density stratification within the turbidity current; the dimensionless ratio of these two influences is the gradient Richardson number. When this exceeds a value of 0.25 the stratification is stable, and no K-H instabilities will form, eliminating much of the drag and entrainment. The majority of the entrainment of ambient seawater into the turbidity current also occurs via the K-H instabilities. Analysis by Birman et al. (2009) suggests that there may be little or no entrainment of ambient fluid in turbidity currents flowing over low gradients, implying that K-H instabilities may be absent under these conditions. We examine the case of flows on the extremely low gradients of the ocean floor, and suggest some conditions that may lead to stably-stratified currents, with dramatically reduced drag, and a fundamentally

  7. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOEpatents

    Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.

    1995-01-01

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.

  8. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOEpatents

    Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.

    1995-06-13

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.

  9. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data

    NASA Astrophysics Data System (ADS)

    Barnes, Brian B.; Hu, Chuanmin

    2016-09-01

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km2 of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km2, although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects.

  10. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data

    PubMed Central

    Barnes, Brian B.; Hu, Chuanmin

    2016-01-01

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km2 of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km2, although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects. PMID:27628096

  11. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data.

    PubMed

    Barnes, Brian B; Hu, Chuanmin

    2016-09-15

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km(2) of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km(2), although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects.

  12. Spatial and temporal patterns of turbidity, sediment concentration and load across nested scales in an urban watershed

    NASA Astrophysics Data System (ADS)

    Kemper, J. T.; Welty, C.; Miller, A. J.

    2016-12-01

    In a highly regulated area such as the Chesapeake Bay watershed, suspended sediment is a matter of primary concern. However, there are few continuous sediment-concentration records available to quantify urban sediment loads. Near real-time turbidity and discharge data have been collected continuously for more than three years at six stream gages representing three nested watershed scales (1-2 sq km, 5-6 sq km, 14 sq km) in the highly impervious Dead Run watershed, located in Baltimore County, MD. Suspended sediment point samples have been collected for multiple storm events at five of the six sites, to establish provisional relationships between turbidity and suspended sediment concentrations. Using these calculated relationships and USGS discharge data, we can quantify sediment loads at each station. Turbidity-discharge relationships vary both spatially and temporally, highlighting the extreme heterogeneity of an urban watershed. Spatially, relationships change from headwaters to mouth, potentially suggesting a variation in sediment sources. Temporally, relationships change both seasonally and annually. The lowest turbidity values are consistently seen in the fall, while values in winter, spring, and summer display a high inter-annual variability. Sediment loads and yields calculated for four representative storms are compared across nested watershed scales to assess evidence for sources or sinks at different locations within the drainage network. Yields at the mouth of the watershed (DRKR) for large storms were higher than an area-weighted average of the two contributing sites (DR3, DR4), potentially suggesting additional source areas of sediment within the watershed. This highlights the ability of near real-time data to assist in developing more effective approaches in mitigating sediment transport by helping to identifying consistent trends, locations of hot spots, and patterns of sediment arrival.

  13. Digital optical phase conjugation of fluorescence in turbid tissue

    SciTech Connect

    Vellekoop, Ivo M.; Cui Meng; Yang Changhuei

    2012-08-20

    We demonstrate a method for phase conjugating fluorescence. Our method, called reference free digital optical phase conjugation, can conjugate extremely weak, incoherent optical signals. It was used to phase conjugate fluorescent light originating from a bead covered with 0.5 mm of light-scattering tissue. The phase conjugated beam refocuses onto the bead and causes a local increase of over two orders of magnitude in the light intensity. Potential applications are in imaging, optical trapping, and targeted photochemical activation inside turbid tissue.

  14. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  15. Oceanic turbidity and chlorophyll as inferred from ERTS-1 observations

    NASA Technical Reports Server (NTRS)

    Curran, R. J.

    1973-01-01

    Spectral signatures of phytoplankton and other obscuring effects are considered in order to determine how to best use satellite data. The results of this study were then used to analyze the spectral data obtained from the ERTS-1 multispectral scanner (MSS). The analyzed satellite data were finally compared with surface ship measurements of chlorophyll concentration. It was found that the effects of water turbidity on the multispectral imagery can be discriminated by rationing the two shortest wavelength channels so that the effect of phytoplankton is enhanced.

  16. Landsat Thematic Mapper monitoring of turbid inland water quality

    SciTech Connect

    Lathrop, R.G., JR. )

    1992-04-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions. 17 refs.

  17. Turbidity-current channels in Queen Inlet, Glacier Bay, Alaska

    USGS Publications Warehouse

    Carlson, P.R.; Powell, R.D.; Rearic, D.M.

    1989-01-01

    Queen Inlet is unique among Glacier Bay fjords because it alone has a branching channel system incised in the Holocene sediment fill of the fjord floor. Queen Inlet and other known channel-containing fjords are marine-outwash fjords; the tidewater glacial fjords do not have steep delta fronts on which slides are generated and may not have a sufficient reservoir of potentially unstable coarse sediment to generate channel-cutting turbidity currents. Presence or absence of channels, as revealed in the ancient rock record, may be one criterion for interpreting types of fjords. -Authors

  18. Decomposition-based recovery of absorbers in turbid media

    SciTech Connect

    Campbell, S. D.; Goodin, I. L.; Grobe, S. D.; Su, Q.; Grobe, R.

    2007-12-15

    We suggest that the concept of the point-spread function traditionally used to predict the blurred image pattern of various light sources embedded inside turbid media can be generalized under certain conditions to predict also the presence and location of spatially localized absorbing inhomogeneities based on shadow point-spread functions associated with each localized absorber in the medium. The combined image obtained from several absorbers can then be decomposed approximately into the arithmetic sums of these individual shadow point-spread functions with suitable weights that can be obtained from multiple-regression analysis. This technique permits the reconstruction of the location of absorbers.

  19. Free space propagation of concentric vortices through underwater turbid environments

    NASA Astrophysics Data System (ADS)

    Morgan, K. S.; Miller, J. K.; Cochenour, B. M.; Li, W.; Li, Y.; Watkins, R. J.; Johnson, E. G.

    2016-10-01

    Concentric optical vortex beams of 3-petal, 5-petal, and 6-petal spatial profiles are generated at 450 nm using a single diffractive optical element. The spatial and temporal propagation characteristics of these beams are then studied in a scattering underwater environment. Experimental results demonstrate a less than 5% reduction in the spatial pattern for turbidities in excess of 10 attenuation lengths. The temporal properties of concentric vortex beams are studied by temporally encoding an on-off keyed, non-return-to-zero (OOK-NRZ) data stream at 1.5 GHz.

  20. Using digital micromirror devices for focusing light through turbid media

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Sri Nivas; Ligtenberg, Hans; Steenbergen, Wiendelt; Vellekoop, Ivo M.

    2014-03-01

    The holy grail of biomedical optical imaging is to perform microscopy deep inside living tissue. Unfortunately, biological tissue scatters light, which prevents the formation of a sharp focus. However, recently it was shown that wavefront shaping can be used to focus light through and inside turbid materials. So far, most experiments used liquid crystal devices, which are too slow to match the dynamics of perfused tissue. Since DMD technology is approximately 1000 times faster, it may bring wavefront shaping to in-vivo applications. We will compare analytically the performance of different methods for focusing light through scattering media with an intensity-only light modulator.

  1. Time-resolved photon emission from layered turbid media

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.

    1996-02-01

    We present numerical and experimental results of time-resolved emission profiles from various layered turbid media. Numerical solutions determined by time-resolved Monte Carlo simulations are compared with measurements on layered-tissue phantoms made from gelatin. In particular, we show that in certain cases the effects of the upper layers can be eliminated. As a practical example, these results are used to analyze in vivo measurements on the human head. This demonstrates the influence of skin, skull, and meninges on the determination of the blood oxygenation in the brain.

  2. Decomposition-based recovery of absorbers in turbid media

    NASA Astrophysics Data System (ADS)

    Campbell, S. D.; Goodin, I. L.; Grobe, S. D.; Su, Q.; Grobe, R.

    2007-12-01

    We suggest that the concept of the point-spread function traditionally used to predict the blurred image pattern of various light sources embedded inside turbid media can be generalized under certain conditions to predict also the presence and location of spatially localized absorbing inhomogeneities based on shadow point-spread functions associated with each localized absorber in the medium. The combined image obtained from several absorbers can then be decomposed approximately into the arithmetic sums of these individual shadow point-spread functions with suitable weights that can be obtained from multiple-regression analysis. This technique permits the reconstruction of the location of absorbers.

  3. Decomposition based recovery of absorbers in turbid media

    NASA Astrophysics Data System (ADS)

    Goodin, Isaac; Rogers, Ben; Su, Q.; Grobe, R.

    2009-11-01

    We suggest that the concept of the point-spread function traditionally used to predict the blurred image pattern of various light sources embedded inside turbid media can be generalized under certain conditions to predict also the presence and location of spatially localized absorbing inhomogeneities based on shadow point spread functions associated with each localized absorber in the medium. The combined image obtained from several absorbers can then be decomposed approximately into the arithmetic sums of these individual shadow point spread functions with suitable weights that can be obtained from multiple regression analysis. This technique permits the reconstruction of the location of absorbers.

  4. Time-resolved photon emission from layered turbid media

    SciTech Connect

    Hielscher, A.H.; Liu, H.; Chance, B.; Tittel, F.K.; Jacques, S.L.

    1996-02-01

    We present numerical and experimental results of time-resolved emission profiles from various layered turbid media. Numerical solutions determined by time-resolved Monte Carlo simulations are compared with measurements on layered-tissue phantoms made from gelatin. In particular, we show that in certain cases the effects of the upper layers can be eliminated. As a practical example, these results are used to analyze {ital in} {ital vivo} measurements on the human head. This demonstrates the influence of skin, skull, and meninges on the determination of the blood oxygenation in the brain. {copyright} {ital 1996 Optical Society of America.}

  5. Laboratory observations of saline and turbidity currents flowing in U-shaped flume

    NASA Astrophysics Data System (ADS)

    Stagnaro, M.; Bolla Pittaluga, M.

    2013-12-01

    Saline and turbidity currents belong to the large family of gravity currents. Due to the difficulties to predict and observe these kinds of phenomena, especially turbidity currents, we developed an experimental apparatus able to reproduce these currents in our Marchi Environmental Laboratory (Genova, Italy). The experiments were performed in a large U-shaped flume, 30 m long, characterized by a constant curvature bend (radius of 2.5 m) joining two straight reaches approximately 12 m long. The flume has a rectangular cross section 0.6 m wide and 0.5 m deep. Inside the flume we made a uniform concrete bottom slope (0.005), which proceeds from the inlet section along the first straight track and finishes 3 m after the bend exit. For each experiment we have been able to measure density distribution and velocity profiles along the vertical in different cross section. Density measurements were obtained using two ranks of siphons that sample the currents at different heights. Velocity was acquired with the DOP2000 ultrasound velocimeter; we measured longitudinal component in the straight reach of the flume, and both longitudinal and transversal velocity in the curved reach. We performed 30 experiments by changing the inlet conditions: primary defining the nature of the currents, saline or sediment laden, then varying two of the main parameters governing the currents: the density of the mixture and the flow discharge. The former covered a range between 1003 and 1023 kg/m^3 and the flow discharge ranged between 0.5 to 4.0 l/s. Both of these parameters influence the densimetric Froude Number, and allowed us to reproduce both subcritical and supercritical flow. In each experiment water entrainment from above was negligible hence the current was able to attain a quasi-uniform configuration in the first straight reach, whereby the longitudinal velocity and the thickness of the current were approximately constant. By varying the inlet conditions, it was possible to observe the

  6. Predicting Recreational Water Quality Using Turbidity in the Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2004-7

    USGS Publications Warehouse

    Brady, Amie M.G.; Bushon, Rebecca N.; Plona, Meg B.

    2009-01-01

    The Cuyahoga River within Cuyahoga Valley National Park (CVNP) in Ohio is often impaired for recreational use because of elevated concentrations of bacteria, which are indicators of fecal contamination. During the recreational seasons (May through August) of 2004 through 2007, samples were collected at two river sites, one upstream of and one centrally-located within CVNP. Bacterial concentrations and turbidity were determined, and streamflow at time of sampling and rainfall amounts over the previous 24 hours prior to sampling were ascertained. Statistical models to predict Escherichia coli (E. coli) concentrations were developed for each site (with data from 2004 through 2006) and tested during an independent year (2007). At Jaite, a sampling site near the center of CVNP, the predictive model performed better than the traditional method of determining the current day's water quality using the previous day's E. coli concentration. During 2007, the Jaite model, based on turbidity, produced more correct responses (81 percent) and fewer false negatives (3.2 percent) than the traditional method (68 and 26 percent, respectively). At Old Portage, a sampling site just upstream from CVNP, a predictive model with turbidity and rainfall as explanatory variables did not perform as well as the traditional method. The Jaite model was used to estimate water quality at three other sites in the park; although it did not perform as well as the traditional method, it performed well - yielding between 68 and 91 percent correct responses. Further research would be necessary to determine whether using the Jaite model to predict recreational water quality elsewhere on the river would provide accurate results.

  7. Interrelation of surface tension, optical turbidity, and color of operational transformer oils

    SciTech Connect

    L'vov, S. Yu.; Lyut'ko, E. O.; Lankau, Ya. V.; Komarov, V. B.; Seliverstov, A. F.; Bondareva, V. N.; L'vov, Yu. N.; L'vov, M. Yu.; Ershov, B. G.

    2011-09-15

    Measurements of the acidity, optical turbidity, surface tension, and color of transformer oil from 54 power transformers, autotransformers, and shunt reactors are reported. Changes in surface tension, optical turbidity, and color are found to obey adequate linear correlations, while the acidity has no correlation with any of these properties. Numerical criteria for the maximum permissible state (quality) of the oil with respect to optical turbidity and color are obtained. Recommendations to operating staff are provided for cases in which the criteria for optical turbidity and color are exceeded.

  8. Critical analysis of atmospheric turbidity and precipitable water at five Canadian stations

    SciTech Connect

    Garrison, J.; Gueymard, C.

    1997-12-31

    Global and diffuse radiation and surface meteorological measurements at Edmonton, Montreal, Port Hardy, Toronto and Winnipeg for the years 1977--1984 are analyzed to yield estimates of atmospheric precipitable water and turbidity. Three methods of estimating the precipitable water and two methods of estimating the turbidity are used and compared. Measurements of pyranometer response as a function of zenith angle are used to correct the global radiation measurements. Turbidity is corrected for the effect of circumsolar radiation included in the direct radiation obtained from the global and diffuse radiation measurements. A comparison with earlier precipitable water and turbidity results is included.

  9. Assessing the risk posed by high-turbidity water to water supplies.

    PubMed

    Chang, Chia-Ling; Liao, Chung-Sheng

    2012-05-01

    The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.

  10. An innovative process to improve turbidity and Organics Removal by BAC filters

    NASA Astrophysics Data System (ADS)

    Miao, Jia; Zhao, Qingliang; Wang, Baozhen; Li, Ji; Zhang, Jinsong

    2006-10-01

    The turbidity criterion for the product water of a WTP according to the State Project ‘863’ on the safeguard technology of drinking water in the southern areas of China is 0.1 NTU. The turbidity removal in the activated carbon filter was analyzed in a pilot-scale test and an innovative technology to improve the turbidity removal in a biologically activated carbon (BAC) filter was put forward in order to meet the criterion. Experimental results showed that the enhanced filtration by adding polymerized aluminium chloride (PAC) into the BAC filter was quite effective in turbidity control. The effluent turbidity was kept at a stable level (mean) of 0.033 NTU with a high removal of about 80% for influent turbidity of 0.110 0240 NTU with an addition of PAC at 0.05 mg L-1, meeting the requirement for filtrate turbidity equal to or less than 0.1 NTUC totally. In addition, the larger the PAC dosage was, the lower the effluent turbidity was. However, further improvement of turbidity removal was not obvious for PAC dosages beyond 0.l0 mg L-, and an optimal PAC dosage in the range of 0.05 0.10 mg L- was proposed.

  11. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11

    USGS Publications Warehouse

    Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.

    2014-01-01

    Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.

  12. Comprehensive analytical model for CW laser induced heat in turbid media.

    PubMed

    Erkol, Hakan; Nouizi, Farouk; Luk, Alex; Unlu, Mehmet Burcin; Gulsen, Gultekin

    2015-11-30

    In this work, we present a new analytical approach to model continuous wave laser induced temperature in highly homogeneous turbid media. First, the diffusion equation is used to model light transport and a comprehensive solution is derived analytically by obtaining a special Greens' function. Next, the time-dependent bio-heat equation is used to describe the induced heat increase and propagation within the medium. The bio-heat equation is solved analytically utilizing the separation of variables technique. Our theoretical model is successfully validated using numerical simulations and experimental studies with agarose phantoms and ex-vivo chicken breast samples. The encouraging results show that our method can be implemented as a simulation tool to determine important laser parameters that govern the magnitude of temperature rise within homogenous biological tissue or organs.

  13. Prospects of coherent control in turbid media: Bounds on focusing broadband laser pulses

    SciTech Connect

    Shapiro, Evgeny A.; Drane, Thomas M.; Milner, Valery

    2011-11-15

    We study the prospects of controlling transmission of broadband and bichromatic laser pulses through turbid samples. The ability to focus transmitted broadband light is limited via both the scattering properties of the medium and the technical characteristics of the experimental setup. There are two time scales given by pulse stretching in the near- and far-field regions which define the maximum bandwidth of a pulse amenable to focusing. In the geometric-optics regime of wave propagation in the medium, a single setup can be optimal for focusing light at frequencies {omega} and n{omega} simultaneously, providing the basis for the 1+n coherent quantum control. Beyond the regime of geometric optics, we discuss a simple solution for the shaping, which provides the figure of merit for one's ability to simultaneously focus several transmission modes.

  14. Monte Carlo simulation of optical coherence tomography for turbid media with arbitrary spatial distributions.

    PubMed

    Malektaji, Siavash; Lima, Ivan T; Sherif, Sherif S

    2014-04-01

    We developed a Monte Carlo-based simulator of optical coherence tomography (OCT) imaging for turbid media with arbitrary spatial distributions. This simulator allows computation of both Class I diffusive reflectance due to ballistic and quasiballistic scattered photons and Class II diffusive reflectance due to multiple scattered photons. It was implemented using a tetrahedron-based mesh and importance sampling to significantly reduce computational time. Our simulation results were verified by comparing them with results from two previously validated OCT simulators for multilayered media. We present simulation results for OCT imaging of a sphere inside a background slab, which would not have been possible with earlier simulators. We also discuss three important aspects of our simulator: (1) resolution, (2) accuracy, and (3) computation time. Our simulator could be used to study important OCT phenomena and to design OCT systems with improved performance.

  15. Low Frequency Vibrating Optical System for Detecting Objects Buried in Turbid Media: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Cywiak, D.; Cywiak, M.; Pérez-Solano, R.; Gutiérrez-Juárez, G.

    2012-11-01

    Preliminary results of an in-plane vibrating system to image objects buried in turbid media are presented. The incident optical beam is vibrated in a periodic back-and-forth motion at low frequency and small constant amplitude in a plane perpendicular to the direction of the beam. The detection is performed in the AC mode, blocking the DC component. The system shows a dramatic increase in the AC signal whenever the target boundary intersects with the reference line between the incident laser beam and a photodiode after a small aperture. The system was capable to render visible 2 mm width objects buried at depths up to 3 cm from the front surface of a 1% intralipid sample.

  16. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media

    NASA Astrophysics Data System (ADS)

    Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-05-01

    Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.

  17. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media.

    PubMed

    Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-05-16

    Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.

  18. Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials.

    PubMed

    Matousek, P; Conti, C; Realini, M; Colombo, C

    2016-02-07

    This article reviews a very recent field of noninvasive analysis of turbid media using micro-scale Spatially Offset Raman Spectroscopy - micro-SORS. The technique combines conventional SORS with microscopy concepts and represents a new imaging modality in Raman microscopy. Micro-SORS facilitates analytical capability for investigating non-destructively the chemical composition of subsurface, micrometer-scale-thick diffusely scattering layers at depths more than an order of magnitude larger than those accessible with the depth resolving power of conventional confocal Raman microscopy. Potential application areas include nondestructive subsurface analysis of painted layers in cultural heritage, characterization of stratified polymer systems, analysis of layered biological samples or forensic analysis. The article discusses the basic principles of the technique, its variants and outlines emerging applications in this rapidly evolving field.

  19. Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier

    PubMed Central

    Zhao, Youbo; Tu, Haohua; Liu, Yuan; Bower, Andrew; Boppart, Stephen

    2015-01-01

    We report the enhancement in imaging performance of a spectral-domain optical coherence microscope (OCM) in turbid media by incorporating an optical parametric amplifier (OPA). The OPA provides a high level of optical gain to the sample arm, thereby improving the signal-to-noise ratio of the OCM by a factor of up to 15 dB. A unique nonlinear confocal gate is automatically formed in the OPA, which enables selective amplification of singly scattered (ballistic) photons against the multiply-scattered light background. Simultaneous enhancement in both imaging depth and spatial resolution in imaging microstructures in highly light-scattering media are demonstrated with the combined OPA-OCM setup. Typical OCM inteferograms (left) and images (right) without and with OPA. PMID:25196251

  20. Comprehensive analytical model for CW laser induced heat in turbid media

    PubMed Central

    Erkol, Hakan; Nouizi, Farouk; Luk, Alex; Unlu, Mehmet Burcin; Gulsen, Gultekin

    2015-01-01

    In this work, we present a new analytical approach to model continuous wave laser induced temperature in highly homogeneous turbid media. First, the diffusion equation is used to model light transport and a comprehensive solution is derived analytically by obtaining a special Greens’ function. Next, the time-dependent bio-heat equation is used to describe the induced heat increase and propagation within the medium. The bio-heat equation is solved analytically utilizing the separation of variables technique. Our theoretical model is successfully validated using numerical simulations and experimental studies with agarose phantoms and ex-vivo chicken breast samples. The encouraging results show that our method can be implemented as a simulation tool to determine important laser parameters that govern the magnitude of temperature rise within homogenous biological tissue or organs. PMID:26698736

  1. Turbid Media Extinction Coefficient for Near-Infrared Laser Radiation

    NASA Astrophysics Data System (ADS)

    Dreischuh, T.; Gurdev, L.; Vankov, O.; Stoyanov, D.; Avramov, L.

    2015-03-01

    In this work, extended investigations are performed of the extinction coefficient of Intralipid-20% dilutions in distilled water depending on the Intralipid concentration, for laser radiation wavelengths in the red and near-infrared regions covering the so-called tissue optical window. The extinction is measured by using an approach we have developed recently based on the features of the spatial intensity distribution of laser-radiation beams propagating through semi-infinite turbid media. The measurements are conducted using separately two dilution- containing plexiglass boxes of different sizes and volumes, in order to prove the appropriateness of the assumption of semi-infinite turbid medium. The experimental results for the extinction are in agreement with our previous results and with empiric formulae found by other authors concerning the wavelength dependence of the scattering coefficient of Intralipid - 10% and Intralipid - 20%. They are also in agreement with known data of the water absorptance. It is estimated as well that the wavelengths around 1320 nm would be advantageous for deep harmless sensing and diagnostics of tissues.

  2. Light propagation in a turbid medium with insonified microbubbles

    NASA Astrophysics Data System (ADS)

    Leung, Terence S.; Honeysett, Jack E.; Stride, Eleanor; Deng, Jing

    2013-01-01

    Surfactant stabilized microbubbles are widely used clinical contrast agents for ultrasound imaging. In this work, the light propagation through a turbid medium in the presence of microbubbles has been investigated. Through a series of experiments, it has been found that the optical attenuation is increased when the microbubbles in a turbid medium are insonified by ultrasound. Such microbubble enhanced optical attenuation is a function of both applied ultrasound pressure and microbubble concentration. To understand the mechanisms involved, a Monte Carlo (MC) model has been developed. Under ultrasound exposure, the sizes of microbubbles vary in space and time, and their dynamics are modeled by the Rayleigh-Plesset equation. By using Mie theory, the spatially and temporally varying optical scattering and scattering efficiency of microbubbles are determined based on the bubble sizes and internal refractive indices. The MC model is shown to effectively describe a medium with rapidly changing optical scattering, and the results are validated against both computational results using an N-layered diffusion equation model and experimental results using a clinical microbubble contrast agent (SonoVue).

  3. Backscattering of ultrashort laser pulse in turbid media

    NASA Astrophysics Data System (ADS)

    Narivonchik, Stanislav; Bespalov, Victor G.

    2002-01-01

    Recently there has been considerable interest in the problems of optical imaging in turbid, strongly scattering media, such as tumours in biological tissues, objects in water, etc. To detect objects in the media the analysis of backscattering of picosecond signal can be used. In this paper we report about the influence of medium parameters and detector parameters on temporal profile of the reflected pulse and its intensity. Virtual experiments were carried out with the MONTE-CARLO method, and temporal profile of signal was obtained. The dependencies of the forepart and tail-part of the signal fronts, maximum position of the reflected signal and the reflection coefficient from the scattering particle density and cross section were obtained. These dependencies show that the tail-part of the signal is greatly decreased while the density is increased, compared to the forepart and maximum intensity position of the signal. These results can be used to analyze the scattering particle density and cross section in the turbid materials. Virtual experiments with the presence of various inhomogeneities were performed, which show that not only reflecting and absorbing solid objects, but also even density inhomogeneities can be detected.

  4. Photometric and polarimetric mapping of water turbidity and water depth

    NASA Technical Reports Server (NTRS)

    Halajian, J.; Hallock, H.

    1973-01-01

    A Digital Photometric Mapper (DPM) was used in the Fall of 1971 in an airborne survey of New York and Boston area waters to acquire photometric, spectral and polarimetric data. The object of this study is to analyze these data with quantitative computer processing techniques to assess the potential of the DPM in the measurement and regional mapping of water turbidity and depth. These techniques have been developed and an operational potential has been demonstrated. More emphasis is placed at this time on the methodology of data acquisition, analysis and display than on the quantity of data. The results illustrate the type, quantity and format of information that could be generated operationally with the DPM-type sensor characterized by high photometric stability and fast, accurate digital output. The prototype, single-channel DPM is suggested as a unique research tool for a number of new applications. For the operational mapping of water turbidity and depth, the merits of a multichannel DPM coupled with a laser system are stressed.

  5. Light propagation in a turbid medium with insonified microbubbles.

    PubMed

    Leung, Terence S; Honeysett, Jack E; Stride, Eleanor; Deng, Jing

    2013-01-01

    Surfactant stabilized microbubbles are widely used clinical contrast agents for ultrasound imaging. In this work, the light propagation through a turbid medium in the presence of microbubbles has been investigated. Through a series of experiments, it has been found that the optical attenuation is increased when the microbubbles in a turbid medium are insonified by ultrasound. Such microbubble enhanced optical attenuation is a function of both applied ultrasound pressure and microbubble concentration. To understand the mechanisms involved, a Monte Carlo (MC) model has been developed. Under ultrasound exposure, the sizes of microbubbles vary in space and time, and their dynamics are modeled by the Rayleigh-Plesset equation. By using Mie theory, the spatially and temporally varying optical scattering and scattering efficiency of microbubbles are determined based on the bubble sizes and internal refractive indices. The MC model is shown to effectively describe a medium with rapidly changing optical scattering, and the results are validated against both computational results using an N-layered diffusion equation model and experimental results using a clinical microbubble contrast agent (SonoVue®).

  6. Disinfection by-product formation and mitigation strategies in point-of-use chlorination of turbid and non-turbid waters in western Kenya.

    PubMed

    Lantagne, D S; Blount, B C; Cardinali, F; Quick, R

    2008-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrheal and other waterborne diseases cause an estimated 2.2 million deaths per year. The Safe Water System (SWS) is a proven household water treatment intervention that reduces diarrheal disease incidence in users in developing countries. Because the SWS recommends the addition of sodium hypochlorite to unfiltered water sources, concerns have been raised about the potential long-term health effects of disinfection by-products to SWS users. This study investigated the production of trihalomethanes (THMs) in water treated with sodium hypochlorite from six sources used for drinking water in western Kenya. The turbidity values of these sources ranged from 4.23 NTU to 305 NTU. THM concentrations were analysed at 1, 8, and 24 hours after addition of sodium hypochlorite. No sample exceeded the World Health Organization (WHO) guideline values for any of the four THMs: chloroform, bromodichloromethane, dibromochloromethane, or bromoform. In addition, no sample exceeded the WHO additive total THM guideline value. These results clearly show that point-of-use chlorination of a variety of realistic source waters used for drinking did not lead to THM concentrations that pose a significant health risk to SWS users.

  7. Turbidity interferes with foraging success of visual but not chemosensory predators

    PubMed Central

    Smee, Delbert L.

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator–prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs. PMID:26401444

  8. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  9. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  10. Determination of thickness of thin turbid painted over-layers using micro-scale spatially offset Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Conti, Claudia; Realini, Marco; Colombo, Chiara; Botteon, Alessandra; Bertasa, Moira; Striova, Jana; Barucci, Marco; Matousek, Pavel

    2016-12-01

    We present a method for estimating the thickness of thin turbid layers using defocusing micro-spatially offset Raman spectroscopy (micro-SORS). The approach, applicable to highly turbid systems, enables one to predict depths in excess of those accessible with conventional Raman microscopy. The technique can be used, for example, to establish the paint layer thickness on cultural heritage objects, such as panel canvases, mural paintings, painted statues and decorated objects. Other applications include analysis in polymer, biological and biomedical disciplines, catalytic and forensics sciences where highly turbid overlayers are often present and where invasive probing may not be possible or is undesirable. The method comprises two stages: (i) a calibration step for training the method on a well characterized sample set with a known thickness, and (ii) a prediction step where the prediction of layer thickness is carried out non-invasively on samples of unknown thickness of the same chemical and physical make up as the calibration set. An illustrative example of a practical deployment of this method is the analysis of larger areas of paintings. In this case, first, a calibration would be performed on a fragment of painting of a known thickness (e.g. derived from cross-sectional analysis) and subsequently the analysis of thickness across larger areas of painting could then be carried out non-invasively. The performance of the method is compared with that of the more established optical coherence tomography (OCT) technique on identical sample set. This article is part of the themed issue "Raman spectroscopy in art and archaeology".

  11. Determination of thickness of thin turbid painted over-layers using micro-scale spatially offset Raman spectroscopy.

    PubMed

    Conti, Claudia; Realini, Marco; Colombo, Chiara; Botteon, Alessandra; Bertasa, Moira; Striova, Jana; Barucci, Marco; Matousek, Pavel

    2016-12-13

    We present a method for estimating the thickness of thin turbid layers using defocusing micro-spatially offset Raman spectroscopy (micro-SORS). The approach, applicable to highly turbid systems, enables one to predict depths in excess of those accessible with conventional Raman microscopy. The technique can be used, for example, to establish the paint layer thickness on cultural heritage objects, such as panel canvases, mural paintings, painted statues and decorated objects. Other applications include analysis in polymer, biological and biomedical disciplines, catalytic and forensics sciences where highly turbid overlayers are often present and where invasive probing may not be possible or is undesirable. The method comprises two stages: (i) a calibration step for training the method on a well characterized sample set with a known thickness, and (ii) a prediction step where the prediction of layer thickness is carried out non-invasively on samples of unknown thickness of the same chemical and physical make up as the calibration set. An illustrative example of a practical deployment of this method is the analysis of larger areas of paintings. In this case, first, a calibration would be performed on a fragment of painting of a known thickness (e.g. derived from cross-sectional analysis) and subsequently the analysis of thickness across larger areas of painting could then be carried out non-invasively. The performance of the method is compared with that of the more established optical coherence tomography (OCT) technique on identical sample set.This article is part of the themed issue 'Raman spectroscopy in art and archaeology'. © 2016 The Author(s).

  12. An integrated approach to monitoring the effect of sediment and turbidity on aquatic biota and water quality in the New York City water supply

    NASA Astrophysics Data System (ADS)

    McHale, M. R.; Baldigo, B. P.; Smith, A. J.; Mukundan, R.; Siemion, J.; Mulvihill, C.

    2011-12-01

    The New York City water supply system provides drinking water to more than 9 million people. About 90 percent of New York City's water is supplied by six surface-water reservoirs in the Catskill Mountains in southeastern New York State. The Ashokan Reservoir is a focus of concern because high turbidity and suspended sediment concentration can affect the drinking water supply and the integrity of aquatic biota in the reservoir and its tributaries. The U.S. Geological Survey, New York State Department of Environmental Conservation, and New York City Department of Environmental Protection are collaborating to identify suspended sediment and turbidity source areas and evaluate the effectiveness of stream stabilization projects to improve water quality in the 497 square kilometer Upper Esopus Creek watershed, the primary source of water to the Ashokan Reservoir. This research combines point measurements of stream habitat, macroinvertebrate, periphyton, and fish population sampling, and water quality sampling with continuous turbidity measurements and watershed modeling to integrate point measurements temporally and spatially throughout the watershed. Preliminary results suggest that although stream stabilization projects appear to have reduced sediment and turbidity concentrations and improved aquatic habitat, interpreting results has been confounded by a series of large storms during the last several years. Indeed, storms large enough to reshape channel morphology can have long-lasting effects on sediment and turbidity concentrations and aquatic biota. This framework for integrating temporal and spatial point measurements using high frequency monitoring and watershed modeling appears to hold great promise to inform policy concerning the water supply of one of the world's largest cities.

  13. Effet de la turbidité sur la dégradation des pigments phytoplanctoniques dans l'estuaire de la GirondeEffect of turbidity on phytoplanktonic pigments degradation in the Gironde Estuary

    NASA Astrophysics Data System (ADS)

    Lemaire, Emmanuelle; Abril, Gwenaël; De Wit, Rutger; Etcheber, Henri

    In the Gironde Estuary, most part of phytoplanktonic material carried by the rivers is mineralised in the maximum turbidity zone (MTZ). In order to follow the degradation of the phytoplanktonic material into the MTZ, we developed an in vitro approach based on the monitoring of phytoplanktonic pigments. Algal material from two chlorophytes ( Scenedesmus suspicatus Chaudat and Chlamydomonas sp.) was incubated in the dark during 28 days into water samples from the Gironde estuary MTZ, at variable suspended solid concentrations (SPM) as well as in a sterilised turbid sample. First order decay constants of chlorophylls a and b and lutein increased by a factor 3 to 5 between SPM of 0 and 3 g l-1. The production of pheophytin a in the presence of particles and the lack of degradation in the sterilised turbid sample confirmed the effect of attached bacteria on the particles. To cite this article: E. Lemaire et al., C. R. Geoscience 334 (2002) 251-258.

  14. Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers

    Treesearch

    W.F. Henley; M.A. Patterson; R.J. Neves; A. Dennis. Lemly

    2000-01-01

    Sedimentation and turbidity are significant contributors to declines in populations of North American aquatic organisms. Impacts to lotic fauna may be expressed through pervasive alterations in local food chains beginning at the primary trophic level. Decreases in primary production are associated with increases in sedimentation and turbidity and produce negative...

  15. Use of benthic prey by salmonids under turbid conditions in a laboratory stream

    Treesearch

    Bret C. Harvey; Jason L. White

    2008-01-01

    The negative effect of turbidity on the reactive distance of salmonids has been well established. However, determining the consequences of this relationship for overall feeding success remains problematic, as successful foraging by salmonids across a broad range in turbidity has been observed under a variety of conditions. Previous laboratory and field observations...

  16. Turbidity and total suspended solid concentration dynamics in streamflow from California oak woodland watersheds

    Treesearch

    David J. Lewis; Kenneth W. Tate; Randy A. Dahlgren; Jacob Newell

    2002-01-01

    Resource agencies, private landowners, and citizen monitoring programs utilize turbidity (water clarity) measurements as a water quality indicator for total suspended solids (TSS – mass of solids per unit volume) and other constituents in streams and rivers. The dynamics and relationships between turbidity and TSS are functions of watershed-specific factors and...

  17. Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons.

    PubMed

    Lee, Chih-Sheng; Lee, Yi-Chao; Chiang, Hui-Min

    2016-07-01

    River turbidity is of dynamic nature, and its stable state is significantly changed during the period of heavy rainfall events. The frequent occurrence of typhoons in Taiwan has caused serious problems in drinking water treatment due to extremely high turbidity. The aim of the present study is to evaluate impact of typhoons on river turbidity. The statistical methods used included analyses of paired annual mean and standard deviation, frequency distribution, and moving standard deviation, skewness, and autocorrelation; all clearly indicating significant state changes of river turbidity. Typhoon Morakot of 2009 (recorded high rainfall over 2000mm in three days, responsible for significant disaster in southern Taiwan) is assumed as a major initiated event leading to critical state change. In addition, increasing rate of turbidity in rainfall events is highly and positively correlated with rainfall intensity both for pre- and post-Morakot periods. Daily turbidity is also well correlated with daily flow rate for all the eleven events evaluated. That implies potential prediction of river turbidity by river flow rate during rainfall and typhoon events. Based on analysis of stable state changes, more effective regulations for better basin management including soil-water conservation in watershed are necessary. Furthermore, municipal and industrial water treatment plants need to prepare and ensure the adequate operation of water treatment with high raw water turbidity (e.g., >2000NTU). Finally, methodology used in the present of this study can be applied to other environmental problems with abrupt state changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Review of epidemiological studies of drinking-water turbidity in relation to acute gastrointestinal illness

    Treesearch

    Anneclaire J. De Roos; Patrick L. Gurian; Lucy F. Robinson; Arjita Rai; Issa Zakeri; Michelle C. Kondo

    2017-01-01

    BACKGROUND: Turbidity has been used as an indicator of microbiological contamination of drinking water in time-series studies attempting to discern the presence of waterborne gastrointestinal illness; however, the utility of turbidity as a proxy exposure measure has been questioned. OBJECTIVES: We conducted a review of epidemiological studies of the association between...

  19. Turbidity and salinity in a tropical northern Australian estuary and their influence on fish distribution

    NASA Astrophysics Data System (ADS)

    Cyrus, D. P.; Blaber, S. J. M.

    1992-12-01

    Turbidity and salinity and their influences on fish distribution were studied for two and a half years in the Embley Estuary in tropical northern Australia. Both turbidity and salinity varied significantly during the year but three clearly distinguishable seasonal patterns existed. These are referred to as the Wet, Early Dry and Late Dry Seasons. During each of these seasons distinct gradients of turbidity and salinity were present. The turbidity and salinity gradients were continuous with those in the adjacent marine environment of Albatross Bay. The levels and ranges of both factors were largely determined by the seasonal rainfall patterns in the catchment of the Embley River. The distribution and abundance of the 45 most common species was analysed in relation to turbidity, salinity and temperature patterns in the estuary. These data showed that fish densities within the estuary were related to turbidity and salinity but not temperature. There was a strong inverse relationship between turbidity and salinity. The Catch per Unit Effort (CPUE) of each species was determined in each of three broad ranges of turbidity and salinity. From this, patterns related to these two factors were found for 30 of the 45 species of fish.

  20. Application of the adjoint approach to optimise the initial conditions of a turbidity current with the AdjointTurbidity 1.0 model

    NASA Astrophysics Data System (ADS)

    Parkinson, Samuel D.; Funke, Simon W.; Hill, Jon; Piggott, Matthew D.; Allison, Peter A.

    2017-03-01

    Turbidity currents are one of the main drivers of sediment transport from the continental shelf to the deep ocean. The resulting sediment deposits can reach hundreds of kilometres into the ocean. Computer models that simulate turbidity currents and the resulting sediment deposit can help us to understand their general behaviour. However, in order to recreate real-world scenarios, the challenge is to find the turbidity current parameters that reproduce the observations of sediment deposits. This paper demonstrates a solution to the inverse sediment transportation problem: for a known sedimentary deposit, the developed model reconstructs details about the turbidity current that produced the deposit. The reconstruction is constrained here by a shallow water sediment-laden density current model, which is discretised by the finite-element method and an adaptive time-stepping scheme. The model is differentiated using the adjoint approach, and an efficient gradient-based optimisation method is applied to identify the turbidity parameters which minimise the misfit between the modelled and the observed field sediment deposits. The capabilities of this approach are demonstrated using measurements taken in the Miocene Marnoso-arenacea Formation (Italy). We find that whilst the model cannot match the deposit exactly due to limitations in the physical processes simulated, it provides valuable insights into the depositional processes and represents a significant advance in our toolset for interpreting turbidity current deposits.

  1. Virus-bacterium coupling driven by both turbidity and hydrodynamics in an Amazonian floodplain lake.

    PubMed

    Barros, Nathan; Farjalla, Vinicius F; Soares, Maria C; Melo, Rossana C N; Roland, Fábio

    2010-11-01

    The importance of viruses in aquatic ecosystem functioning has been widely described. However, few studies have examined tropical aquatic ecosystems. Here, we evaluated for the first time viruses and their relationship with other planktonic communities in an Amazonian freshwater ecosystem. Coupling between viruses and bacteria was studied, focusing both on hydrologic dynamics and anthropogenic forced turbidity in the system (Lake Batata). Samples were taken during four hydrologic seasons at both natural and impacted sites to count virus-like particles (VLP) and bacteria. In parallel, virus-infected bacteria were identified and quantified by transmission electron microscopy (TEM). Viral abundance ranged from 0.5 × 10⁷ ± 0.2 × 10⁷ VLP ml⁻¹ (high-water season, impacted site) to 1.7 × 10⁷ ± 0.4 × 10⁷ VLP ml⁻¹ (low-water season, natural site). These data were strongly correlated with the bacterial abundance (r² = 0.84; P < 0.05), which ranged from 1.0 × 10⁶ ± 0.5 × 10⁶ cells ml⁻¹ (high water, impacted site) to 3.4 × 10⁶ ± 0.7 × 10⁶ cells ml⁻¹ (low water, natural site). Moreover, the viral abundance was weakly correlated with chlorophyll a, suggesting that most viruses were bacteriophages. TEM quantitative analyses revealed that the frequency of visibly infected cells was 20%, with 10 ± 3 phages per cell section. In general, we found a low virus-bacterium ratio (<7). Both the close coupling between the viral and bacterial abundances and the low virus-bacterium ratio suggest that viral abundance tends to be driven by the reduction of hosts for viral infection. Our results demonstrate that viruses are controlled by biological substrates, whereas in addition to grazing, bacteria are regulated by physical processes caused by turbidity, which affect underwater light distribution and dissolved organic carbon availability.

  2. Finite element simulation of light transfer in turbid media under structured illumination

    NASA Astrophysics Data System (ADS)

    Hu, Dong; Lu, Renfu; Ying, Yibin

    2017-05-01

    Spatial-frequency domain (SFD) imaging technique allows to estimate the optical properties of biological tissues in a wide field of view. The technique is, however, prone to error in measurement because the two crucial assumptions used for deriving the analytical solution to diffusion approximation cannot be met perfectly in practical applications. This research was mainly focused on modeling light transfer in turbid media under the normal incidence of structured illumination using finite element method (FEM). Finite element simulations were performed for 50 simulation samples with different combinations of optical absorption and scattering coefficients for varying spatial frequencies, and the results were then compared with analytical method and Monte Carlo simulation. Relationships between diffuse reflectance and dimensionless absorption and dimensionless scattering coefficients were investigated. The results indicated that FEM provided reasonable results for diffuse reflectance, compared with the analytical method. Both FEM and analytical method overestimated the reflectance for μtr/fx values of greater than 2 and underestimated the reflectance for μtr/fx values of smaller than 2. Larger values of μ's/μa yielded better estimations of diffuse reflectance than did those of smaller than 10. The reflectance increased nonlinearly with the dimensionless scattering, whereas the reflectance decreased linearly with the dimensionless absorption. It was also observed that diffuse reflectance was relatively stable and insensitive to μs' when the dimensionless scattering was larger than 50. Overall results demonstrate that FEM is effective for modeling light transfer in turbid media and can be used to explore the effects of crucial parameters for the SFD imaging technique.

  3. Propagation of coherent polarized light in turbid highly scattering medium.

    PubMed

    Doronin, Alexander; Macdonald, Callum; Meglinski, Igor

    2014-02-01

    Within the framework of further development of unified Monte Carlo code for the needs of biomedical optics and biophotonics, we present an approach for modeling of coherent polarized light propagation in highly scattering turbid media, such as biological tissues. The temporal coherence of light, linear and circular polarization, interference, and the helicity flip of circularly polarized light due to reflection at the medium boundary and/or backscattering events are taken into account. To achieve higher accuracy in the results and to speed up the modeling, the implementation of the code utilizes parallel computing on NVIDIA graphics processing units using Compute Unified Device Architecture. The results of the simulation of coherent linearly and circularly polarized light are presented in comparison with the results of known theoretical studies and the results of alternative modelings.

  4. Preliminary assessment of atmospheric turbidity at Dhahran, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abdelrahman, M. A.; Nimmo, B. G.

    Spectral beam solar radiation measurements for the period July 1980 to June 1981 were made in Dhahran, Saudi Arabia (Lat. 26° 23', Long. 50° 00'), using broad-band niter techniques. Schott filters (OG1, RG2 and R08) arranged on an automatically rotated disk mounted on an Eppley Normal Incidence Pyrhcliometer were used for the measurements. The Beer-Lambert relation was used to calculate optical depths from which values of the Angström Coefficient of Turbidity, β, were obtained for the wavelength exponent, α = 1.3. In addition, Herovanu's method was used to obtain α and β values for each month. The 12-month average values of β and α were 0.22 and 1.28, respectively.

  5. Capability of MODIS radiance to analyze Iberian turbid plumes

    NASA Astrophysics Data System (ADS)

    Fernandez-Novoa, Diego; deCastro, Maite; Des, Marisela; Costoya, Xurxo; Mendes, Renato; Gomez-Gesteira, Moncho

    2017-04-01

    River plumes are formed near river mouths by freshwater and riverine materials. Therefore, the area influenced by freshwater (salinity plume) is usually negatively correlated with the area occupied by suspension and dissolved material (turbid plume). Suspended material results in a strong signal detected by satellite sensors whereas ocean clear waters have negligible contributions. Thus, remote sensing data, such as radiance obtained from Moderate Resolution Imaging Spectroradiometer (MODIS), are a very useful tool to analyze turbid plumes due to the high spatial and time resolution provided. Here, MODIS capability for characterizing similarities and differences among the most important Iberian plumes was assessed under the influence of their main forcing. Daily radiance data from MODIS-Aqua and MODIS-Terra satellite sensors were processed obtaining a resolution of 500 m. Two approaches are usually used for atmospheric correction treatments: Near-Infrared (NIR) bands and a combined algorithm using NIR and Short Wave Infrared (SWIR) bands. In the particular case of Iberian Peninsula plumes both methods offered similar results, although NIR bands present a lower associated error. MODIS allows working with several bands of normalized water-leaving radiances (nLw). Focusing in the resolution provided, nLw555 and 645 were the most appropriate because both provide the best coverage and correlation with river discharge. The nLw645 band was chosen because has a lower water penetration avoiding overestimations of turbidity caused by shallow seafloor areas and/or upwelling blooms. Daily data from both satellites were merged to enhance the robustness and precision of the study by increasing the number of available pixels. Results indicate that differences between radiance data from both satellites are negligible for Iberian plumes, justifying the merging. By last, each turbid limit, to delimit the respective plume from adjacent seawater, was obtained using two alternative

  6. Laser ablation of a turbid medium: Modeling and experimental results

    SciTech Connect

    Brygo, F.; Semerok, A.; Weulersse, J.-M.; Thro, P.-Y.; Oltra, R.

    2006-08-01

    Q-switched Nd:YAG laser ablation of a turbid medium (paint) is studied. The optical properties (absorption coefficient, scattering coefficient, and its anisotropy) of a paint are determined with a multiple scattering model (three-flux model), and from measurements of reflection-transmission of light through thin layers. The energy deposition profiles are calculated at wavelengths of 532 nm and 1.064 {mu}m. They are different from those described by a Lambert-Beer law. In particular, the energy deposition of the laser beam is not maximum on the surface but at some depth inside the medium. The ablated rate was measured for the two wavelengths and compared with the energy deposition profile predicted by the model. This allows us to understand the evolution of the ablated depth with the wavelength: the more the scattering coefficient is higher, the more the ablated depth and the threshold fluence of ablation decrease.

  7. Enhancement of Video Images Degraded by Turbid Water

    DTIC Science & Technology

    1986-12-01

    I o o i^ipipP^^iW^ NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS ENHANCEMENT OF VIDEO IMAGES DEGRADED BY TURBID WATER by Jorge A...OUTPUT ARRAY » « • DOL = I.IHG DO M - 1 .IM6Y SALIDA (L.M) = 0 END DO END DO c c c c c c c TYPE «/OUTPUT ARRAY INITIALIZED’ CALL riCHECK...MM((J-1)»16>+1 IXX=LL+IX-1 IYY =MM+IY-1 SALIDA (IXX.IYY) = SALIDA (IXX.IYY>+INTE(IX.IY) TYPEMXX AND IYY =>’.IXX.IYY 50 ^&&J^i£aJ^^ ’» 100 c

  8. Markov chain solution of photon multiple scattering through turbid slabs.

    PubMed

    Lin, Ying; Northrop, William F; Li, Xuesong

    2016-11-14

    This work introduces a Markov Chain solution to model photon multiple scattering through turbid slabs via anisotropic scattering process, i.e., Mie scattering. Results show that the proposed Markov Chain model agree with commonly used Monte Carlo simulation for various mediums such as medium with non-uniform phase functions and absorbing medium. The proposed Markov Chain solution method successfully converts the complex multiple scattering problem with practical phase functions into a matrix form and solves transmitted/reflected photon angular distributions by matrix multiplications. Such characteristics would potentially allow practical inversions by matrix manipulation or stochastic algorithms where widely applied stochastic methods such as Monte Carlo simulations usually fail, and thus enable practical diagnostics reconstructions such as medical diagnosis, spray analysis, and atmosphere sciences.

  9. EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Mahannah, R.; Edwards, T.

    2013-06-04

    Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the

  10. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    SciTech Connect

    Mahannah, R. N.; Edwards, T. B.

    2013-01-15

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards

  11. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes.

    PubMed

    Johansen, J L; Jones, G P

    2013-09-01

    Sedimentation is a substantial threat to aquatic ecosystems and a primary cause of habitat degradation on near-shore coral reefs. Although numerous studies have demonstrated major impacts of sedimentation and turbidity on corals, virtually nothing is known of the sensitivity of reef fishes. Planktivorous fishes are an important trophic group that funnels pelagic energy sources into reef ecosystems. These fishes are visual predators whose foraging is likely to be impaired by turbidity, but the threshold for such effects and their magnitude are unknown. This study examined the effect of sediment-induced turbidity on foraging in four species of planktivorous damselfishes (Pomacentridae) of the Great Barrier Reef, including inshore and offshore species that potentially differ in tolerance for turbidity. An experimental flow tunnel was used to quantify their ability to catch mobile and immobile planktonic prey under different levels of turbidity and velocity in the range encountered on natural and disturbed reefs. Turbidity of just 4 NTU (nephelometric turbidity units) reduced average attack success by up to 56%, with higher effect sizes for species with offshore distributions. Only the inshore species (Neopomacentrus bankieri), which frequently encounters this turbidity on coastal reefs, could maintain high prey capture success. At elevated turbidity similar to that found on disturbed reefs (8 NTU), attack success was reduced in all species examined by up to 69%. These reductions in attack success led to a 21-24% decrease in foraging rates for all mid to outer-shelf species, in spite of increasing attack rates at high turbidity. Although effects of turbidity varied among species, it always depended heavily on prey mobility and ambient velocity. Attack success was up to 14 times lower on mobile prey, leaving species relatively incapable of foraging on anything but immobile prey at high turbidity. Effects of turbidity were particularly prominent at higher velocities, as

  12. Determination of struvite crystallization mechanisms in urine using turbidity measurement.

    PubMed

    Triger, Aurélien; Pic, Jean-Stéphane; Cabassud, Corinne

    2012-11-15

    Sanitation improvement in developing countries could be achieved through wastewater treatment processes. Nowadays alternative concepts such as urine separate collection are being developed. These processes would be an efficient way to reduce pollution of wastewater while recovering nutrients, especially phosphorus, which are lost in current wastewater treatment methods. The precipitation of struvite (MgNH(4)PO(4)∙6H(2)O) from urine is an efficient process yielding more than 98% phosphorus recovery with very high reaction rates. The work presented here aims to determine the kinetics and mechanisms of struvite precipitation in order to supply data for the design of efficient urine treatment processes. A methodology coupling the resolution of the population balance equation to turbidity measurement was developed, and batch experiments with synthetic and real urine were performed. The main mechanisms of struvite crystallization were identified as crystal growth and nucleation. A satisfactory approximation of the volumetric crystal size distribution was obtained. The study has shown the low influence on the crystallization process of natural organic matter contained in real urine. It has also highlighted the impact of operational parameters. Mixing conditions can create segregation and attrition which influence the nucleation rate, resulting in a change in crystals number, size, and thus final crystal size distribution (CSD). Moreover urine storage conditions can impact urea hydrolysis and lead to spontaneous struvite precipitation in the stock solution also influencing the final CSD. A few limits of the applied methodology and of the proposed modelling, due to these phenomena and to the turbidity measurement, are also discussed.

  13. A drifter for measuring water turbidity in rivers and coastal oceans.

    PubMed

    Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter

    2015-02-15

    A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding.

  14. Model development and application design of fiber mat used for turbid runoff treatment.

    PubMed

    Yu, Jianghua; Yu, Haixia; Kim, Youngchul

    2013-01-01

    Performance of a synthetic-fibre mat was investigated for the treatment of high-turbidity runoff. The impact of different operating parameters, such as hydraulics (flow rate and exchange rate), density current due to temperature and turbidity differences, mat conditions (thickness and number) and particle size were studied. The experimental results showed that increasing the mat thickness and number enhanced turbidity removal. The density current showed significant inverse effect on mat performance. Turbidity removal decreased with the increasing flow rate and exchange rate. Particle size also indicated an influence on removal efficiency. Predictive correlations for turbidity removal efficiency and mat design were established using dimensionless groups based on the experiment. The simulation results indicated that the predicted values correlated with the experimental ones significantly. Finally, the application design process was demonstrated.

  15. Corals persisting in naturally turbid waters adjacent to a pristine catchment in Solomon Islands.

    PubMed

    Albert, Simon; Fisher, Paul L; Gibbes, Badin; Grinham, Alistair

    2015-05-15

    Few water quality measurements exist from pristine environments, with fewer reported studies of coastal water quality from Solomon Islands. Water quality benchmarks for the Solomons have relied on data from other geographic regions, often from quite different higher latitude developed nations, with large land masses. We present the first data of inshore turbidity and sedimentation rate for a pristine catchment on Isabel Island. Surveys recorded relatively high coral cover. The lowest cover was recorded at 22.7% (Jejevo) despite this site having a mean turbidity (continuous monitoring) of 32 NTU. However, a similar site (Jihro) was significantly less turbid (2.1 mean NTU) over the same period. This difference in turbidity is likely due to natural features of the Jihro River promoting sedimentation before reaching coastal sites. We provide an important baseline for Solomon Island inshore systems, whilst demonstrating the importance of continuous monitoring to capture episodic high turbidity events.

  16. Robust sensor for turbidity measurement from light scattering and absorbing liquids.

    PubMed

    Kontturi, Ville; Turunen, Petri; Uozumi, Jun; Peiponen, Kai-Erik

    2009-12-01

    Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid-prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.

  17. Ultra-high spectral extinction Brillouin spectroscopy for turbid tissue measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Jitao; Fiore, Antonio; Shao, Peng; Yun, Seok-Hyun; Scarcelli, Giuliano

    2016-03-01

    Brillouin spectroscopy allows non-invasive measurement of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein, and thus has been widely investigated for biomedical application. Recently, the development of fast Brillouin spectrometry based on virtually-imaged phased array (VIPA) has made in-situ measurement of biomedical sample possible. However, one limitation of current Brillouin technique is the low spectral extinction, which limits the measurement to nearly transparent sample. In order to measure turbid sample, multistage VIPA can be cascaded to gain spectral extinction. For example, spectral extinction of ~80 dB was achieved using three-stage VIPA; however, this approach significantly sacrificed measurement throughput. In this work, we develop a novel spectrometer that achieves high extinction without significant signal loss. To achieve this goal, we combine a two-stage VIPA spectrometer with a triple-pass Fabry-Perot interferometer. The triple-pass Fabry-Perot interferometer acts as a band-pass filter with ~3 GHz bandwidth and ~35-dB spectral extinction. Therefore, the overall extinction of this spectrometer greatly surpasses 80 dB with only ~20% excess loss. We demonstrated the performance of this spectrometer measuring background-free Brillouin spectra from Intralipid solutions and within chicken tissue.

  18. The Risk Analysis of Reservoir Water Supply under High Turbidity- Case Study of the Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Chang, L.; Ko, S.; Ho, C.; Chen, Y.

    2010-12-01

    Due to the unstable geological condition of the Shihmen reservoir basin, the high turbidity of the outflow of water from the basin to the reservoir during typhoons causes rapid increase of turbidity in reservoir water. Because high water turbidity reduces the capacity of water treatment plants, water shortages could occur more frequently during typhoons and flood seasons. Based on the scenario described above, this study used the Monte Carlo analysis to evaluate shortage of water in the Taoyuan area when the Shihmen reservoir water was under conditions of high turbidity. The risk analysis process consisted of four sub-models: sub-model of rainfall synthesis, sub-model of rainfall runoff, sub-model of prediction of turbidity, and sub-model of management of water allocation under conditions of high turbidity. Two methods of prediction of turbidity, the artificial neural network (ANN) method and the unit characteristic hydrograph method, were developed and compared. The unit characteristic hydrograph method was modified from the unit hydrograph method and represented the relationship of reservoir inflow or outflow to the turbidity of reservoir water according to the function of unit response. Results of comparison of the two-methods indicated that the unit characteristic hydrograph method was more stable than the ANN method and included physical concepts that were easily understandable. Risk analysis showed a 57% possibility of water shortage during typhoons. Risk of water shortage decreased to 34% when tolerance of water shortage increased by 5%. Results of the case study demonstrated the reliability of the proposed procedure for risk assessment and method of prediction of turbidity prediction method. These methods could be extended to other reservoirs that have problems of high turbidity problem to assess risk of water shortage.

  19. Optical properties of highly turbid shallow lakes with contrasting turbidity origins: the ecological and water management implications.

    PubMed

    Pérez, G L; Lagomarsino, L; Zagarese, H E

    2013-11-30

    A comprehensive optical study of three highly turbid shallow lakes was presented. The lakes contained very high concentrations of optically active substances [OASs] with clear differences in total suspended solid [TSS] composition among them. Lakes presented elevated values of total absorption [at(λ)] and scattering coefficients [b(λ)], which translated into extremely high light attenuation coefficients [Kd(PAR)]. Differences among lakes in the estimation of Kd(PAR), using two typical estimators of light penetration (i.e., nephelometric turbidity [Tn] and Secchi disk [ZSD]), were analysed. Kirk's optical model was used to model Kd(PAR) using inherent optical properties [IOPs]. Modelled values of Kd(PAR) agreed very well with those measured (R(2) = 0.95). In addition, optical properties and Kirk's model were used to determine water quality targets for restoring submerged aquatic vegetation [SAV]. Based on a minimum light requirement for SAV of 10%, results showed that only an integrative remediation action, considering substantial reduction of TSS and Chl a (95%), and CDOM (50%), must be contemplated to improve maximum colonization depth for SAV to values higher than 0.7 m. On the other hand, phytoplankton absorptive characteristics were also studied. In these lakes, phytoplankton showed different responses to the nature of light competition. Some of the variation in specific phytoplankton absorption [aph(*)(λ)] was explained by differences in the ratio between unpigmented particulate absorption and phytoplankton absorption (up to R(2) = 0.48 for the blue band). Hydrologic optical results were discussed in terms of ecological and management implications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Automatic real-time control of suspended sediment based upon high frequency in situ measurements of nephelometric turbidity

    Treesearch

    Jack Lewis; Rand Eads

    1998-01-01

    Abstract - For estimating suspended sediment concentration (SSC) in rivers, turbidity is potentially a much better predictor than water discharge. Since about 1990, it has been feasible to automatically collect high frequency turbidity data at remote sites using battery-powered turbidity probes that are properly mounted in the river or stream. With sensors calibrated...

  1. Study of the scattering of the light in aqueous samples collagen in the presence of nanoparticles and curcuma pigment

    NASA Astrophysics Data System (ADS)

    Silva, F. M. L.; Alencar, L. D. S.; Bernardi, M. I. B.; Lima, F. W. S.; Melo, C. A. S.

    2015-06-01

    In this work we investigate the scattering of light in means turbid in the presence or not of pigment and nanoparticles. For this we initially using a sample of collagen from means turbid with and without the presence of curcuma pigments and nanoparticles. Our results show that the light scattering is more intense in the samples with nanoparticles and curcuma pigment.

  2. Determination of trace sulfides in turbid waters by gas dialysis/ion chromatography

    SciTech Connect

    Goodwin, L.R.; Francom, D.; Urso, A.; Dieken, F.P.

    1988-02-01

    The accuracy of the methylene blue colorimetric procedure for the determination of sulfide in environmental waters and waste waters is influenced by turbidity interferences even after application of recommended pretreatment techniques. The direct analysis of sulfide by ion chromatography (IC), without sample pretreatment, is complicated by field preservation of samples with zinc ion (or equivalent). A continuous-flow procedure has been developed that converts the acid-extractable sulfide to H/sub 2/S, which is separated from the sample matrix by a gas dialysis membrane and then trapped in a dilute sodium hydroxide solution. A 200-..mu..L portion of this solution is injected into the ion chromatograph for analysis with an electrochemical detector. Detection limits as low as 1.9 ng/mL have been obtained. Good agreement was found between the gas dialysis/IC and methylene blue methods for nonturbid standards. The addition of ascorbic acid as an antioxidant is required to obtain adequate recoveries from spiked tap and well waters.

  3. Bacteria and Turbidity Survey for Blue Mountain Lake, Arkansas, Spring and Summer, 1994

    USGS Publications Warehouse

    Lasker, A. Dwight

    1995-01-01

    Introduction Blue Mountain Lake darn is located at river mile 74.4 on the Petit Jean River in Logan and Yell Counties in west-central Arkansas (fig. 1). Drainage area above the darn is 488 square miles. Blue Mountain Lake is located between two national forests-the Ozark National Forest and the Ouachita National Forest. The primary purpose for Blue Mountain Lake is flood control, but the lake is used for a variety of recreational purposes. The U.S. Geological Survey (USGS) in cooperation with the U.s. Army Corps of Engineers, Little Rock District, conducted a bacterial and turbidity study of the Blue Mountain Lake Basin during the spring and suri1mer 1994. Samples were collected weekly at 11 locations within the lake basin from May through September 1994. Eight sampling sites were located on tributaries to the lake and three sampling sites were located on the lake with one of the sites located at a swim beach (fig. 2; table 1).

  4. Spectrophotometric determination of turbid optical parameters without using an integrating sphere.

    PubMed

    Liang, Xiaohui; Li, Meihua; Lu, Jun Q; Huang, Chuanwei; Feng, Yuanming; Sa, Yu; Ding, Junhua; Hu, Xin-Hua

    2016-03-10

    Spectrophotometric quantification of turbidity by multiple optical parameters has wide-ranging applications in material analysis and life sciences. A robust system design needs to combine hardware for precise measurement of light signals with software to accurately model measurement configuration and rapidly solve a sequence of challenging inverse problems. We have developed and validated a design approach and performed system validation based on radiative transfer theory for determination of absorption coefficient, scattering coefficient, and anisotropy factor without using an integrating sphere. Accurate and rapid determination of parameters and spectra is achieved for microsphere suspension samples by combining photodiode-based measurement of four signals with the Monte Carlo simulation and perturbation-based inverse calculations. The three parameters of microsphere suspension samples have been determined from the measured signals as functions of wavelength from 400 to 800 nm and agree with calculated results based on the Mie theory. It has been shown that the inverse problems in the cases of microsphere suspension samples are well posed with convex cost functions to yield unique solutions, and it takes about 1 min to obtain the three parameters per wavelength.

  5. On-Line Analyzer For Monitoring Trace Amounts Of Oil In Turbid Waters

    NASA Astrophysics Data System (ADS)

    Niemela, P.; Jaatinen, J.

    1986-05-01

    This report presents an automated analyzer which continuously monitors oil content of a sample water stream that flows through the analyzer. The measuring principle is based on the absorption of infrared radiation by oil molecules contained in the sample water. The wavelength band that is used in the measurement is at 3.4 μm, where different types of oils show nearly equal absorption. Another wavelength band of 3.6 μm, where oil has no absorption, is used to compensate the effect of turbidity, which is due to solid particles and oil droplets contained in the sample water. Before entering the analyzer the sample water flow is properly homogenized. To compensate the strong absorption by water molecules in these wavelength bands the sample water is compared with reference water. This is done by directing them alternately through the same measuring cell. The reference water is obtained from the sample water by ultrafiltration and it determines the base line for the contaminated sample water. To ensure the stability of the base line, temperature and pressure differences of the two waters are kept within adequate ranges. Areas of application of the analyzer are wide ranging i.a. from ships' discharge waters to waste waters of industrial processes. The first application of the analyzer is on board oil tankers to control the discharge process of bilge and ballast waters. The analyzer is the first that fully corresponds to the stringent regulations for oil content monitors by the International Maritime Organization (IMO). Pilot installations of the analyzer are made on industrial plants.

  6. An alternative cost-effective image processing based sensor for continuous turbidity monitoring

    NASA Astrophysics Data System (ADS)

    Chai, Matthew Min Enn; Ng, Sing Muk; Chua, Hong Siang

    2017-03-01

    Turbidity is the degree to which the optical clarity of water is reduced by impurities in the water. High turbidity values in rivers and lakes promote the growth of pathogen, reduce dissolved oxygen levels and reduce light penetration. The conventional ways of on-site turbidity measurements involve the use of optical sensors similar to those used in commercial turbidimeters. However, these instruments require frequent maintenance due to biological fouling on the sensors. Thus, image processing was proposed as an alternative technique for continuous turbidity measurement to reduce frequency of maintenance. The camera was kept out of water to avoid biofouling while other parts of the system submerged in water can be coated with anti-fouling surface. The setup developed consisting of a webcam, a light source, a microprocessor and a motor used to control the depth of a reference object. The image processing algorithm quantifies the relationship between the number of circles detected on the reference object and the depth of the reference object. By relating the quantified data to turbidity, the setup was able to detect turbidity levels from 20 NTU to 380 NTU with measurement error of 15.7 percent. The repeatability and sensitivity of the turbidity measurement was found to be satisfactory.

  7. Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions

    NASA Astrophysics Data System (ADS)

    Biggerstaff, A.; Smith, D. J.; Jompa, J.; Bell, J. J.

    2015-12-01

    Changes to coral reefs are occurring worldwide, often resulting in declining environmental quality which can be in the form of higher sedimentation rates and increased turbidity. While environmental acclimation to turbid and low-light conditions has been extensively studied in corals, far less is known about other phototrophic reef invertebrates. The photosynthetic cyanobacteria containing sponge Lamellodysidea herbacea is one of the most abundant sponges in the Wakatobi Marine National Park (WMNP, Indonesia), and its abundance is greatest at highly disturbed, turbid sites. This study investigated photoacclimation of L. herbacea symbionts to turbid reef sites using in situ PAM fluorometry combined with shading and transplant experiments at environmental extremes of light availability for this species. We found in situ photoacclimation of L. herbacea to both shallow, clear, high-light environments and deep, turbid, low-light environments. Shading experiments provide some evidence that L. herbacea are dependent on nutrition from their photosymbionts as significant tissue loss was seen in shaded sponges. Symbionts within surviving shaded tissue showed evidence of photoacclimation. Lamellodysidea herbacea transplanted from high- to low-light conditions appeared to have photoacclimated within 5 d with no significant effect of the lowered light level on survival. This ability of L. herbacea to photoacclimate to rapid and extreme changes in light availability may be one of the factors contributing to their survival on more turbid reef sites in the WMNP. Our study highlights the ability of some sponge species to acclimate to changes in light levels as a result of increased turbidity.

  8. Spatial and temporal variations in high turbidity surface water off the Thule region, northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Ohashi, Yoshihiko; Iida, Takahiro; Sugiyama, Shin; Aoki, Shigeru

    2016-09-01

    Glacial meltwater discharge from the Greenland ice sheet and ice caps forms high turbidity water in the proglacial ocean off the Greenland coast. Although the timing and magnitude of high turbidity water export affect the coastal marine environment, for example, through impacts on biological productivity, little is known about the characteristics of this high turbidity water. In this paper, we therefore report on the spatial and temporal variations in high turbidity water off the Thule region in northwestern Greenland, based on remote sensing reflectance data at a wavelength of 555 nm (Rrs555). The high turbidity area, identified on the basis of high reflectivity (Rrs555 ≥ 0.0070 sr-1), was generally distributed near the coast, where many outlet glaciers terminate in the ocean and on land. The extent of the high turbidity area exhibited substantial seasonal and interannual variability, and its annual maximum extent was significantly correlated with summer air temperature. Assuming a linear relationship between the high turbidity area and summer temperature, annual maximum extent increases under the influence of increasing glacial meltwater discharge, as can be inferred from present and predicted future warming trends.

  9. Collagen I Self-Assembly: Revealing the Developing Structures that Generate Turbidity

    PubMed Central

    Zhu, Jieling; Kaufman, Laura J.

    2014-01-01

    Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness. PMID:24739181

  10. Effects of suspended sediment concentration and grain size on three optical turbidity sensors

    USGS Publications Warehouse

    Merten, Gustavo Henrique; Capel, Paul D.; Minella, Jean P.G.

    2014-01-01

    Purpose: Optical turbidity sensors have been successfully used to determine suspended sediment flux in rivers, assuming the relation between the turbidity signal and suspended sediment concentration (SSC) has been appropriately calibrated. Sediment size, shape and colour affect turbidity and are important to incorporate into the calibration process. Materials and methods: This study evaluates the effect of SSC and particle size (i.e. medium sand, fine sand, very fine sand, and fines (silt + clay)) on the sensitivity of the turbidity signal. Three different turbidity sensors were used, with photo detectors positioned at 90 and 180 degrees relative to the axis of incident light. Five different sediment ratios of sand:fines (0:100, 25:75, 50:50, 75:25 and 100:0) were also evaluated for a single SSC (1000 mg l-1). Results and discussion: The photo detectors positioned at 90 degrees were more sensitive than sensor positioned at 180 degrees in reading a wide variety of grain size particles. On average for the three turbidity sensors, the sensitivity for fines were 170, 40, and 4 times greater than sensitivities for medium sand, fine sand, and very fine sand, respectively. For an SSC of 1000 mg l-1 with the treatments composed of different proportions of sand and fines, the presence of sand in the mixture linearly reduced the turbidity signal. Conclusions: The results indicate that calibration of the turbidity signal should be carried out in situ and that the attenuation of the turbidity signal due to sand can be corrected, as long as the proportion of sand in the SSC can be estimated.

  11. DRINKING WATER TURBIDITY AND EMERGENCY DEPARTMENT VISITS FOR GASTROINTESTINAL ILLNESS IN ATLANTA, 1993 – 2004

    PubMed Central

    Tinker, Sarah C.; Moe, Christine L.; Klein, Mitchel; Flanders, W. Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E.

    2013-01-01

    Background The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well-understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the U.S., and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. Methods We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240 000 emergency department visits for gastrointestinal illness during 1993–2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. Results For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. This association was not observed for all treatment plants in plant-specific analyses. Conclusions Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants. PMID:18941478

  12. Drinking water turbidity and emergency department visits for gastrointestinal illness in Atlanta, 1993-2004.

    PubMed

    Tinker, Sarah C; Moe, Christine L; Klein, Mitchel; Flanders, W Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E

    2010-01-01

    The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the United States, and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240,000 emergency department visits for gastrointestinal illness during 1993-2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants.

  13. Modeling seasonal and interannual variability in atmospheric turbidity with application to South Africa

    NASA Astrophysics Data System (ADS)

    Power, Helen Claire

    1999-12-01

    Aerosols have several important influences on the climate system. Among the more important of these are their roles in absorbing and scattering radiation, and as condensation nuclei in cloud-forming processes. Despite their importance, our knowledge of their spatial and temporal variability and, in turn, their influence on climate, is incomplete. This research presents a methodology for estimating and examining atmospheric turbidity, a convenient surrogate for the amount of aerosols in the atmospheric column. Constraints associated with conventional approaches to measuring turbidity-including the requirements for clear skies and costly equipment-have contributed to the paucity of turbidity data. This is especially true for the Southern Hemisphere. My research refines and applies techniques for estimating monthly turbidity from readily available surface-weather data, regardless of cloud cover. Using a high-resolution spectral radiation model, clear-sky beam irradiance is parameterized as a function of atmospheric attenuation processes, including scattering and absorption by aerosols. This model is then integrated over the day to obtain an expression for estimating potential daily clear-sky beam irradiation. By forcing the model with monthly-averaged climate data, turbidity is estimated at an array of eight weather-station locations in South Africa. Findings include new estimates of turbidity trends and variability over South Africa. Seasonal trends are evident at many stations although there is no consistent trend. Over recent decades, turbidity has generally been stable at six of the eight stations. In Cape Town, there has been an increase in turbidity over the last 30 years, while in Grootfontein turbidity appears to have decreased over the 25-year record. The methodology can be applied at any location where the requisite climate data are available and therefore holds promise for a more complete, and possibly global, climatology of aerosols.

  14. Experiments on Substrate Erosion via Subcritical Turbidity Currents

    NASA Astrophysics Data System (ADS)

    McElroy, B.; Mohrig, D.; Buttles, J.

    2006-12-01

    Modern process models of turbidity currents parameterize vertical mixing and suspended sediment transport as a function of turbulence produced solely in the basal current through interaction with the underlying bed. Implicit to this type of closure is that mixing at the upper fluid-fluid interface is neglected because it contributes insignificantly to turbulence in the basal flow where sediment transport is focused. Here we present a laboratory scale demonstration of the importance of vertical mixing induced by turbulence generated at the current's upper interface. This is directly related to the pattern of bed erosion measured during these experimental currents. The initial conditions in our approximately 1-D channel consisted of a nearly 3m flat upper bed segment, an abrupt roll-over to a 3 m segment with a 10 degree bed slope, and a transition back to a sub-horizontal lower section that ran out for 12 m. The salt-laden currents traversed the upper flat portion of the profile with peak velocities near 15 cm/s and thicknesses near 10cm. For these current velocities and thickness on the initial flat segment, and with bulk excess densities in the range 1.4% to 2.7%, stratification of the underflow was sufficient to inhibit any significant mixing at the interface between currents and overlying ambient fluid (clear water). All currents accelerated as they moved across the break in slope, and they thinned commensurate with that spatial acceleration. In spite of variable conditions, the densimetric Froude number always remained less than 1. However, acceleration and thinning was sufficient to overcome neutral stability of the current, and ambient fluid interface mixing ensued via eddies that grew in diameter to about half of the flow thickness. Sediment erosion from the bed of the channel was then focused directly beneath the ensuing zone of breaking internal waves. ADV measurements indicate that this position had the largest, near-bed turbulence intensities in the

  15. Extension of the Stokes equation for layered constructions to fluorescent turbid media.

    PubMed

    Coppel, Ludovic G; Neuman, Magnus; Edström, Per

    2012-04-01

    Expressions relating the bispectral reflectance of a stack of n fluorescing layers to each individual layer's reflectance and transmittance are derived. This theoretical framework is used together with recently proposed extensions of the Kubelka-Munk model to study the fluorescence from layered turbid media. For one layer over a reflecting background, the model is shown to give the same results as a previous model. The extension to n layers with different optical properties allows simulating the bispectral reflectance from a pad of layered turbid media. The applicability of the model is exemplified with an optimization of fluorophore distribution in layered turbid media.

  16. Bioremediation of Turbid Surface Water Using Seed Extract from the Moringa oleifera Lam. (Drumstick) Tree.

    PubMed

    Lea, Michael

    2014-05-01

    An indigenous water treatment method uses Moringa oleifera seeds in the form of a crude water-soluble extract in suspension, resulting in an effective natural clarification agent for highly turbid and untreated pathogenic surface water. Efficient reduction (80.0% to 99.5%) of high turbidity produces an aesthetically clear supernatant, concurrently accompanied by 90.00% to 99.99% (1 to 4 log) bacterial reduction. Application of this low-cost Moringa oleifera protocol is recommended for water treatment where rural and peri-urban people living in extreme poverty are presently drinking highly turbid and microbiologically contaminated water.

  17. Bioremediation of turbid surface water using seed extract from Moringa oleifera Lam. (drumstick) tree.

    PubMed

    Lea, Michael

    2010-02-01

    An indigenous water treatment method uses Moringa oleifera seeds in the form of a water-soluble extract in suspension, resulting in an effective natural clarification agent for highly turbid and untreated pathogenic surface water. Efficient reduction (80.0% to 99.5%) of high turbidity produces an aesthetically clear supernatant, concurrently accompanied by 90.00% to 99.99% (1 to 4 log) bacterial reduction. Application of this low-cost Moringa oleifera protocol is recommended for simplified, point-of-use, low-risk water treatment where rural and peri-urban people living in extreme poverty are presently drinking highly turbid and microbiologically contaminated water.

  18. Can turbidity caused by Corophium volutator (Pallas) activity be used to assess sediment toxicity rapidly?

    PubMed

    Briggs, Andrew D; Greenwood, Naomi; Grant, Alastair

    2003-04-01

    The standard toxicity test organism, Corophium volutator, exhibits a behavioural response to contaminated sediments that causes increased turbidity of overlying water. We quantify the effects of this response to an estuarine sediment spiked with copper and hydrocarbon contaminated sediments from an oil installation in the North Sea. Turbidity measured 24 h after the start of a toxicity test shows a strong relationship with contaminant concentrations and with mortality after 10 days. Turbidity measurements can therefore give a rapid indication of sediment toxicity, permitting a reduction in storage time of sediments to be used in dilution series and toxicity identification evaluation (TIE) tests, reducing the likelihood of contaminants degrading prior to testing.

  19. The influence of turbid medium properties on object visibility in optical Kerr gated imaging

    NASA Astrophysics Data System (ADS)

    Zhan, Pingping; Si, Jinhai; Tan, Wenjiang; Liu, Xin; Wu, Bin; Xu, Shichao; Chen, Feng; Hou, Xun

    2014-01-01

    In this paper, we demonstrate femtosecond optical Kerr gated imaging of an object hidden behind a highly turbid medium. The influence of turbid medium properties on image contrast has been investigated. Experimental and Monte Carlo simulation results show that for a given optical density, the image contrast of direct imaging without an optical Kerr gate decreases with the increase of the scattering particle size or the decrease of the thickness of the turbid medium. Compared with direct imaging, optical Kerr gated imaging has a better image contrast as it eliminates more scattered photons effectively. Qualitative comparisons between experiments and simulations show good agreement.

  20. Fluvial suspended sediment characteristics by high-resolution, surrogate metrics of turbidity, laser-diffraction, acoustic backscatter, and acoustic attenuation

    NASA Astrophysics Data System (ADS)

    Landers, Mark Newton

    Sedimentation is a primary and growing environmental, engineering, and agricultural issue around the world. However, collection of the data needed to develop solutions to sedimentation issues has declined by about three-fourths since 1983. Suspended-sediment surrogates have the potential to obtain sediment data using methods that are more accurate, of higher spatial and temporal resolution, and with less manually intensive, costly, and hazardous methods. The improved quality of sediment data from high-resolution surrogates may inform improved understanding and solutions to sedimentation problems. The field experiments for this research include physical samples of suspended sediment collected concurrently with surrogate metrics from instruments including 1.2, 1.5, and 3.0 megahertz frequency acoustic doppler current profilers, a nephelometric turbidity sensor, and a laser-diffraction particle size analyzer. This comprehensive data set was collected over five storms in 2009 and 2010 at Yellow River near Atlanta, Georgia. Fluvial suspended sediment characteristics in this study can be determined by high-resolution surrogate parameters of turbidity, laser-diffraction and acoustics with model errors 33% to 49% lower than traditional methods using streamflow alone. Hysteresis in sediment-turbidity relations for single storm events was observed and quantitatively related to PSD changes of less than 10 microns in the fine silt to clay size range. Suspended sediment particle size detection (PSD) is significantly correlated with ratios of measured acoustic attenuation at different frequencies; however the data do not fit the theoretical relations. Using both relative acoustic backscatter (RB) and acoustic attenuation as explanatory variables results in a significantly improved model of suspended sediment compared with traditional sonar equations using only RB. High resolution PSD data from laser diffraction provide uniquely valuable information; however the size detection

  1. Determination of soluble immunoglobulin G in bovine colostrum products by Protein G affinity chromatography-turbidity correction and method validation.

    PubMed

    Holland, Patrick T; Cargill, Anne; Selwood, Andrew I; Arnold, Kate; Krammer, Jacqueline L; Pearce, Kevin N

    2011-05-25

    Immunoglobulin-containing food products and nutraceuticals such as bovine colostrum are of interest to consumers as they may provide health benefits. Commercial scale colostrum products are valued for their immunoglobulin G (IgG) content and therefore require accurate analysis. One of the most commonly used methods for determining total soluble IgG in colostrum products is based on affinity chromatography using a Protein G column and UV detection. This paper documents improvements to the accuracy of the Protein G analysis of IgG in colostrum products, especially those containing aggregated forms of IgG. Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) analysis confirmed that aggregated IgG measured by Protein G does not contain significant amounts of casein or other milk proteins. Size exclusion chromatography identified the content of soluble IgG as mainly monomeric IgG and aggregated material MW > 450 kDa with small amounts of dimer and trimer. The turbidity of the eluting IgG, mainly associated with aggregated IgG, had a significant effect on the quantitative results. Practical techniques were developed to correct affinity LC data for turbidity on an accurate, consistent, and efficient basis. The method was validated in two laboratories using a variety of colostrum powders. Precision for IgG was 2-3% (RSD(r)) and 3-12% (RSD(R)). Recovery was 100.2 ± 2.4% (mean ± RSD, n = 10). Greater amounts of aggregated IgG were solubilized by a higher solution:sample ratio and extended times of mixing or sonication, especially for freeze-dried material. It is concluded that the method without acid precipitation and with turbidity correction provides accurate, precise, and robust data for total soluble IgG and is suitable for product specification and quality control of colostrum products.

  2. Beyond Rating Curves: Time Series Models for in-Stream Turbidity Prediction

    NASA Astrophysics Data System (ADS)

    Wang, L.; Mukundan, R.; Zion, M.; Pierson, D. C.

    2012-12-01

    The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies over 1 billion gallons of water per day to more than 9 million customers. DEP's "West of Hudson" reservoirs located in the Catskill Mountains are unfiltered per a renewable filtration avoidance determination granted by the EPA. While water quality is usually pristine, high volume storm events occasionally cause the reservoirs to become highly turbid. A logical strategy for turbidity control is to temporarily remove the turbid reservoirs from service. While effective in limiting delivery of turbid water and reducing the need for in-reservoir alum flocculation, this strategy runs the risk of negatively impacting water supply reliability. Thus, it is advantageous for DEP to understand how long a particular turbidity event will affect their system. In order to understand the duration, intensity and total load of a turbidity event, predictions of future in-stream turbidity values are important. Traditionally, turbidity predictions have been carried out by applying streamflow observations/forecasts to a flow-turbidity rating curve. However, predictions from rating curves are often inaccurate due to inter- and intra-event variability in flow-turbidity relationships. Predictions can be improved by applying an autoregressive moving average (ARMA) time series model in combination with a traditional rating curve. Since 2003, DEP and the Upstate Freshwater Institute have compiled a relatively consistent set of 15-minute turbidity observations at various locations on Esopus Creek above Ashokan Reservoir. Using daily averages of this data and streamflow observations at nearby USGS gauges, flow-turbidity rating curves were developed via linear regression. Time series analysis revealed that the linear regression residuals may be represented using an ARMA(1,2) process. Based on this information, flow-turbidity regressions with

  3. Optoacoustic signal profiles for monitoring glucose concentration in turbid media

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Oraevsky, Alexander A.

    1999-03-01

    Our research project is focused on theoretical and experimental studies into the possibility of in vivo monitoring of blood glucose concentration. Previous experiments demonstrated that the presence of glucose dissolved in aqueous solution of polystyrene microspheres increases the refractive index of this solution due to glucose hydrophilic properties. As a strong osmolyte glucose influences the scattering properties of any particles or fibers suspended in water or biological fluids. We measured profiles of absorbed laser energy distributions as a function of glucose concentration in aqueous solution of polystyrene microspheres colored with potassium chromate. Experiments were performed at the wavelength of the Nd:YAG laser third harmonic, (lambda) equals 355 nm. The results obtained demonstrated a 4.5% decrease in effective optical attenuation coefficient with a 100 mM increase in glucose concentration. These initial results demonstrated that the effect of glucose on optical attenuation of turbid aqueous solutions is small but reliably measurable with the use of the time-resolved optoacoustic technique.

  4. Navigation by light polarization in clear and turbid waters

    PubMed Central

    Lerner, Amit; Sabbah, Shai; Erlick, Carynelisa; Shashar, Nadav

    2011-01-01

    Certain terrestrial animals use sky polarization for navigation. Certain aquatic species have also been shown to orient according to a polarization stimulus, but the correlation between underwater polarization and Sun position and hence the ability to use underwater polarization as a compass for navigation is still under debate. To examine this issue, we use theoretical equations for per cent polarization and electric vector (e-vector) orientation that account for the position of the Sun, refraction at the air–water interface and Rayleigh single scattering. The polarization patterns predicted by these theoretical equations are compared with measurements conducted in clear and semi-turbid coastal sea waters at 2 m and 5 m depth over sea floors of 6 m and 28 m depth. We find that the per cent polarization is correlated with the Sun's elevation only in clear waters. We furthermore find that the maximum value of the e-vector orientation angle equals the angle of refraction only in clear waters, in the horizontal viewing direction, over the deeper sea floor. We conclude that navigation by use of underwater polarization is possible under restricted conditions, i.e. in clear waters, primarily near the horizontal viewing direction, and in locations where the sea floor has limited effects on the light's polarization. PMID:21282170

  5. Interpretation and processing of NIR spectra of turbid biological tissue

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph M.; Yang, Hua; Qu, Jianan Y.

    1998-04-01

    NIR spectra of biological tissue consist of a number of broad, overlapping absorbance bands on a sloping vaseline. The interpretation and processing of such spectra are complicated by multiple-scattering interactions that distort the shapes of the absorbance bands and introduce wavelength- dependent scattering losses. In this paper we explain the dependence of the shape of the diffuse-reflection log(1/R) spectrum of a turbid medium on the scattering coefficient and probe geometry. From measurements on tissue phantoms and biological tissue, we observe that the separation distance between source and detector probes affects the sensitivity of the reflectance to changes in the density of scattering centers and alters the wavelength dependence of the baseline slope of the log(1/R) spectra. A new method, called fractional derivative processing (FDP), is introduced for extracting information from broad absorption bands corrupted by residual baseline variations and high-frequency noise. FDP was evaluated on spectra obtained from living tissue and tissue phantoms. Possible applications include NIR spectroscopy of hemoglobin, water, and other absorbers in human skin.

  6. Study of inhomogeneities in turbid media: experimental and numerical results

    NASA Astrophysics Data System (ADS)

    Carbone, N. A.; di Rocco, Héctor O.; Iriarte, Daniela I.; Pomarico, Juan A.; Ranea-Sandoval, Héctor F.; Pardini, Pamela; Waks-Serra, M. Victoria

    2011-08-01

    Near Infrared diffuse transmission of light through tissue is a tool for noninvasive imaging for diagnostic purposes. Most of the research has been focused over breast cancer imaging; however, major efforts have been done in cerebral tomography and topography imaging, as well as small animal organs imaging systems. In this work, we investigate the transmitted light profiles when scattering and absorbing cylindrical inhomogeneities are submerged at different depths inside slabs of turbid media. We analyze the transilluminance profiles when the phantom is scanned using both, CW and time resolved detection. The study of the spatial profiles obtained with CW light, shows an apparently contradictory effect when the absorption coefficient of the inclusion is higher than that of the bulk. In this case, the intensity profiles displays a peak of higher intensity where the inclusion is located, as it would be expected for a less absorbing inclusion. The experiments were compared and analyzed with a theoretical model for cylindrical inclusions and Monte Carlo simulations implemented in a Graphic Processing Unit (GPU).

  7. Ultrasound modulation of bioluminescence generated inside a turbid medium

    NASA Astrophysics Data System (ADS)

    Ahmad, Junaid; Jayet, Baptiste; Hill, Philip J.; Mather, Melissa L.; Dehghani, Hamid; Morgan, Stephen P.

    2017-03-01

    In vivo bioluminescence imaging (BLI) has poor spatial resolution owing to strong light scattering by tissue, which also affects quantitative accuracy. This paper proposes a hybrid acousto-optic imaging platform that images bioluminescence modulated at ultrasound (US) frequency inside an optically scattering medium. This produces an US modulated light within the tissue that reduces the effects of light scattering and improves the spatial resolution. The system consists of a continuously excited 3.5 MHz US transducer applied to a tissue like phantom of known optical properties embedded with bio-or chemiluminescent sources that are used to mimic in vivo experiments. Scanning US over the turbid medium modulates the luminescent sources deep inside tissue at several US scan points. These modulated signals are recorded by a photomultiplier tube and lock-in detection to generate a 1D profile. Indeed, high frequency US enables small focal volume to improve spatial resolution, but this leads to lower signal-to-noise ratio. First experimental results show that US enables localization of a small luminescent source (around 2 mm wide) deep ( 20 mm) inside a tissue phantom having a scattering coefficient of 80 cm-1. Two sources separated by 10 mm could be resolved 20 mm inside a chicken breast.

  8. Turbid medium polarimetry in biomedical imaging and diagnosis

    NASA Astrophysics Data System (ADS)

    Ghosh, N.; Banerjee, A.; Soni, J.

    2011-06-01

    Studies on polarization properties of scattered light from a random medium like biological tissue have received considerable attention because polarization can be used as an effective tool to discriminate against multiply scattered light (acting as a gating mechanism) and thus can facilitate high resolution imaging through tissue. Further, the polarization properties of scattered light from tissue contain wealth of morphological and functional information of potential biomedical importance. However, in a complex random medium like tissue, numerous complexities due to multiple scattering and simultaneous occurrences of many scattering and polarization events present formidable challenges both in terms of accurate measurements and in terms of analysis of the tissue polarimetry signal. Several studies have therefore been conducted in the recent past to develop appropriate measurement procedures, suitable light propagation models and polarimetry signal analysis methods to overcome these difficulties. In this review, we focus on some of the recent key developments in this area. Specifically, we describe variety of theoretical and experimental tools, illustrated with selected results, aimed at evaluating the prospect of turbid medium polarimetry for both biomedical imaging and diagnosis.

  9. Controlled light field concentration through turbid biological membrane for phototherapy.

    PubMed

    Wang, Fujuan; He, Hexiang; Zhuang, Huichang; Xie, Xiangsheng; Yang, Zhenchong; Cai, Zhigang; Gu, Huaiyu; Zhou, Jianying

    2015-06-01

    Laser propagation through a turbid rat dura mater membrane is shown to be controllable with a wavefront modulation technique. The scattered light field can be refocused into a target area behind the rat dura mater membrane with a 110 times intensity enhancement using a spatial light modulator. The efficient laser intensity concentration system is demonstrated to imitate the phototherapy for human brain tumors. The power density in the target area is enhanced more than 200 times compared with the input power density on the dura mater membrane, thus allowing continued irradiation concentration to the deep lesion without damage to the dura mater. Multibeam inputs along different directions, or at different positions, can be guided to focus to the same spot behind the membrane, hence providing a similar gamma knife function in optical spectral range. Moreover, both the polarization and the phase of the input field can be recovered in the target area, allowing coherent field superposition in comparison with the linear intensity superposition for the gamma knife.

  10. Controlled light field concentration through turbid biological membrane for phototherapy

    PubMed Central

    Wang, Fujuan; He, Hexiang; Zhuang, Huichang; Xie, Xiangsheng; Yang, Zhenchong; Cai, Zhigang; Gu, Huaiyu; Zhou, Jianying

    2015-01-01

    Laser propagation through a turbid rat dura mater membrane is shown to be controllable with a wavefront modulation technique. The scattered light field can be refocused into a target area behind the rat dura mater membrane with a 110 times intensity enhancement using a spatial light modulator. The efficient laser intensity concentration system is demonstrated to imitate the phototherapy for human brain tumors. The power density in the target area is enhanced more than 200 times compared with the input power density on the dura mater membrane, thus allowing continued irradiation concentration to the deep lesion without damage to the dura mater. Multibeam inputs along different directions, or at different positions, can be guided to focus to the same spot behind the membrane, hence providing a similar gamma knife function in optical spectral range. Moreover, both the polarization and the phase of the input field can be recovered in the target area, allowing coherent field superposition in comparison with the linear intensity superposition for the gamma knife. PMID:26114042

  11. Hyperspectral simulation and recovery of submerged targets in turbid waters

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.

    2005-05-01

    Modeled hyperspectral reflectance signatures just above the water surface are obtained from radiative transfer models to create synthetic images of targets below the water surface. Images are displayed as 24 bit RGB images of the water surface using selected channels. Example model outputs are presented in this paper for a hyperspectral Monte Carlo and a hyperspectral layered analytical iterative model of radiative transport within turbid shallow water types. Images at the selected wavelengths or channels centered at 490, 530 and 680 nm suggests the two models provide quite similar results when displayed as RGB images. The techniques are demonstrated to the problem of extracting synthetic targets from hyperspectral synthetic images in the presence of water surface wave, using spectral wave models. The most sensitive parameters for generating realistic images are water depth and bottom reflectance in clean natural and optically shallow waters. Also presented are platforms for use in ports, harbors, inlets and waterways developed and designed for current and future monitoring to insure sustainable safe shallow water environments.

  12. Time-to-turbidity model for non-protective type B Clostridium botulinum.

    PubMed

    Whiting, R C; Oriente, J C

    1997-04-29

    A model to predict the time for growth to turbidity from spores of non-proteolytic type B strains of Clostridium botulinum was developed in broth media with varying temperatures (4-28 degrees C), pH values (5-7), NaCl additions (0-4%) and total spores (10(1)-10(5)). The model estimates the probability that a sample will have growth on a given day for up to 90 days of storage. The parameters of the model include the probability of growth after 90 days (Pmax) and the mean time of growth (tau) for those that showed growth. The 95% confidence interval (CI95%) for tau was also determined. The tau decreased with increasing temperature and pH, but NaCl levels below 3% had little effect. Decreasing the number of spores in a sample increased both tau and the confidence intervals about tau, reflecting the increasing uncertainty about the estimation of growth times for low spore numbers.

  13. Extraction of effective parameters of turbid media utilizing the Mueller matrix approach: study of glucose sensing.

    PubMed

    Pham, Thi-Thu-Hien; Lo, Yu-Lung

    2012-09-01

    An analytical technique based on Stokes polarimetry and the Mueller matrix method is proposed for extracting the effective linear birefringence, linear dichroism, circular birefringence, circular dichroism, linear depolarization, and circular depolarization properties of turbid media. In contrast to existing analytical models, the model proposed extracts the effective parameters in a decoupled manner and considers not only the circular dichroism properties of the sample, but also the depolarization properties. The results show that the proposed method enables all of the effective parameters to be measured over the full range. Moreover, it is shown that the extracted value of the depolarization index is unaffected by the order in which the depolarizing Mueller matrix is decomposed during the extraction procedure. Finally, a method is proposed for calibrating the optical rotation angle of a polystyrene microsphere suspension containing dissolved D-glucose (C6H12O6) powder in accordance with the distance between the sample and the detector. The experimental results show that the sensitivity of the resulting D-glucose measurement is equal to approximately 1.73  deg/M.

  14. Evaluation of optical coherence quantitation of analytes in turbid media by use of two wavelengths

    SciTech Connect

    Sathyam, U.S.; Colston, B.W. Jr.; Da Silva, L.B.; Everett, M.J.

    1999-04-01

    We introduce a novel method for determining analyte concentration as a function of depth in a highly scattering media by use of a dual-wavelength optical coherence tomography system. We account for the effect of scattering on the measured attenuation by using a second wavelength that is not absorbed by the sample. We assess the applicability of this technique by measuring the concentration of water in an Intralipid phantom, using a probe wavelength of 1.53 {mu}m and a reference wavelength of 1.31 {mu}m. The results of our study show a strong correlation between the measured absorption and the water content of the sample. The accuracy of the technique, however, was limited by the dominance of scattering over absorption in the turbid media. Thus, although the effects of scattering were minimized, significant errors remained in the calculated absorption values. More-accurate results could be obtained with the use of more powerful superluminescent diodes and a choice of wavelengths at which absorption effects are more significant relative to scattering. {copyright} 1999 Optical Society of America

  15. Population structure and residency patterns of the blacktip reef shark Carcharhinus melanopterus in turbid coastal environments.

    PubMed

    Chin, A; Tobin, A J; Heupel, M R; Simpfendorfer, C A

    2013-04-01

    This study examined the characteristics of a blacktip reef shark Carcharhinus melanopterus population in turbid coastal habitats through a multi-year fishery-independent sampling and tag-recapture programme. Results revealed a highly structured population comprised almost entirely of juveniles and adult females with individuals between 850 and 1050 mm total length effectively absent. Mature males were also rarely encountered with adult sex ratio highly biased towards females (female:male = 7:1). Mating scars were observed on adult females between December and April, and parturition was observed from December to March. Regression analysis showed that catch rates were significantly higher during the summer wet season between November and May. Recapture data suggested a highly resident population with a recapture rate of 21% and a mean recapture distance of 0·8 km. In addition, 33% of recaptured animals were captured multiple times, indicating long-term residency. Most recaptures were, however, of adults with few juveniles recaptured. Widespread sampling at the study site and in adjacent areas suggested that the population was highly localized to a specific bay. The bimodal and sex-segregated population structure observed here differs from previous reports for this species, and in combination with reproductive observations, suggests population structuring to facilitate reproductive and recruitment success. These data also highlight the potential ecosystem functions performed by coastal habitats in sustaining C. melanopterus populations.

  16. The effect of submerged aquatic vegetation expansion on a declining turbidity trend in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Hestir, E.L.; Schoellhamer, David H.; Jonathan Greenberg,; Morgan-King, Tara L.; Ustin, S.L.

    2016-01-01

    Submerged aquatic vegetation (SAV) has well-documented effects on water clarity. SAV beds can slow water movement and reduce bed shear stress, promoting sedimentation and reducing suspension. However, estuaries have multiple controls on turbidity that make it difficult to determine the effect of SAV on water clarity. In this study, we investigated the effect of primarily invasive SAV expansion on a concomitant decline in turbidity in the Sacramento-San Joaquin River Delta. The objective of this study was to separate the effects of decreasing sediment supply from the watershed from increasing SAV cover to determine the effect of SAV on the declining turbidity trend. SAV cover was determined by airborne hyperspectral remote sensing and turbidity data from long-term monitoring records. The turbidity trends were corrected for the declining sediment supply using suspended-sediment concentration data from a station immediately upstream of the Delta. We found a significant negative trend in turbidity from 1975 to 2008, and when we removed the sediment supply signal from the trend it was still significant and negative, indicating that a factor other than sediment supply was responsible for part of the turbidity decline. Turbidity monitoring stations with high rates of SAV expansion had steeper and more significant turbidity trends than those with low SAV cover. Our findings suggest that SAV is an important (but not sole) factor in the turbidity decline, and we estimate that 21–70 % of the total declining turbidity trend is due to SAV expansion.

  17. Escherichia coli bacteria density in relation to turbidity, streamflow characteristics, and season in the Chattahoochee River near Atlanta, Georgia, October 2000 through September 2008—Description, statistical analysis, and predictive modeling

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2012-01-01

    Regression analyses show that E. coli density in samples was strongly related to turbidity, streamflow characteristics, and season at both sites. The regression equation chosen for the Norcross data showed that 78 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), streamflow event (dry-weather flow or stormflow), season (cool or warm), and an interaction term that is the cross product of streamflow event and turbidity. The regression equation chosen for the Atlanta data showed that 76 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), water temperature, streamflow event, and an interaction term that is the cross product of streamflow event and turbidity. Residual analysis and model confirmation using new data indicated the regression equations selected at both sites predicted E. coli density within the 90 percent prediction intervals of the equations and could be used to predict E. coli density in real time at both sites.

  18. The association between blood lipid and phlegm turbidity syndrome of angina pectoris: a systematic review and meta-analysis.

    PubMed

    Kong, Dezhao; Wang, Yang; Liu, Yue; Zhang, Zhe; Liu, Guanghui; Qi, Wencheng; Xiao, Lei; Yuan, Dongchao; Yang, Guanlin

    2014-08-01

    A series of case-control studies have been conducted to investigate the association between blood lipid and phlegm turbidity syndrome of angina pectoris, but produced inconsistent results. We performed a meta-analysis to determine the association between blood lipid and phlegm turbidity syndrome of angina pectoris more precisely. Manual screening as well as screening of the China National Knowledge Infrastructure (CNKI), Chinese Journal full-text database (VIP), Wanfang database (WF), ScienceDirect, Pubmed, the Cochrane Library, and Embase were carried out for relevant literature. The formula was translated to calculate the pooled mean value and standard deviation value. The "Newcastle-Ottawa Quality Assessment Scale: Case-Control Studies" (NOS) was taken to assess the quality of the included studies. The Revman 5.2.6 software provided by "The Cochrane Collaboration" was used to analyze the collected data. The subgroup analysis was established according to the sample size proportion between the test group and the control group. Sensitivity analysis was constructed by using two different effect models. Besides, a funnel plot was created to analyze potential publication bias. No statistically meaningful difference existed between the test group and control group of total cholesterol (TC) and low-density lipoprotein-cholesterol (LDL-C) in non-Qi and yin deficiency syndrome (QYDS) and non-Yang deficiency syndrome (YDS) subgroup, whereas the two biotic indicators in the test group were higher than the non-phlegm syndrome group in other subgroups. Triglyceride (TG) in phlegm syndrome group showed superior to non-phlegm syndrome group in the rest subgroups except for the non-CCS (Cold coagulating syndrome)-non-YDS subgroup. High-density lipoprotein-cholesterol (HDL-C) levels of the phlegm group were lower than that of the non-phlegm group in all subgroups. When comparing with Traditional Chinese Medicine (TCM) syndromes of asthenia nature, such as YDS, QYDS, and heart qi

  19. Field turbidity method for the determination of lead in acid extracts of dried paint.

    PubMed

    Studabaker, William B; McCombs, Michelle; Sorrell, Kristen; Salmons, Cynthia; Brown, G Gordon; Binstock, David; Gutknecht, William F; Harper, Sharon L

    2010-07-08

    Lead, which can be found in old paint, soil, and dust, has been clearly shown to have adverse health effects on the neurological systems of both children and adults. As part of an ongoing effort to reduce childhood lead poisoning, the US Environmental Protection Agency promulgated the Lead Renovation, Repair, and Painting Program (RRP) rule requiring that paint in target housing built prior to 1978 be tested for lead before any renovation, repair, or painting activities are initiated. This rule has led to a need for a rapid, relatively easy, and an inexpensive method for measuring lead in paint. This paper presents a new method for measuring lead extracted from paint that is based on turbidimetry. This method is applicable to paint that has been collected from a surface and extracted into 25% (v/v) of nitric acid. An aliquot of the filtered extract is mixed with an aliquot of solid potassium molybdate in 1 M ammonium acetate to form a turbid suspension of lead molybdate. The lead concentration is determined using a portable turbidity meter. This turbidimetric method has a response of approximately 0.9 NTU per microg lead per mL extract, with a range of 1-1000 Nephelometric Turbidity Units (NTUs). Precision at a concentration corresponding to the EPA-mandated decision point of 1 mg of lead per cm(2) is <2%. This method is insensitive to the presence of other metals common to paint, including Ba(2+), Ca(2+), Mg(2+), Fe(3+), Co(2+), Cu(2+), and Cd(2+), at concentrations of 10 mg mL(-1) or to Zn(2+) at 50 mg mL(-1). Analysis of 14 samples from six reference materials with lead concentrations near 1 mg cm(-2) yielded a correlation to inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of 0.97, with an average bias of 2.8%. Twenty-four sets of either 6 or 10 paint samples each were collected from different locations in old houses, a hospital, tobacco factory, and power station. Half of each set was analyzed using rotor/stator-25% (v/v) nitric acid

  20. Temporal variation in drinking water turbidity and diagnosed gastroenteritis in Milwaukee.

    PubMed Central

    Morris, R D; Naumova, E N; Levin, R; Munasinghe, R L

    1996-01-01

    Daily counts of diagnosed gastroenteritis (gastrointestinal events) in Milwaukee County, Wisconsin, from January 1992 through April 1993 were compared with reported daily turbidity from the two drinking water treatment plants serving the county. Turbidity in both plants was associated with an increased number of gastrointestinal events even after exclusion of a major documented outbreak of cryptosporidiosis. During the 434-day period prior to the outbreak, an increase in turbidity of 0.5 nephelometric turbidity units at one of the plants was associated with relative risks for gastrointestinal events of 2.35 among children (95% confidence interval [CI] = 1.34, 4.12) and 1.17 among adults (95% CI = 0.91, 1.52). PMID:8633742

  1. Survival of poliovirus in flowing turbid seawater treated with ultraviolet light.

    PubMed

    Hill, W F; Hamblet, F E; Akin, E W

    1967-05-01

    The effectiveness of a model ultraviolet (UV) radiation unit for treating flowing turbid seawater contaminated with poliovirus was determined. At a turbidity of 70 ppm, the observed survival ratios ranged from 1.9 x 10(-3) (99.81% reduction) to 1.5 x 10(-4) (99.98% reduction) at flow rates ranging from 25 to 15 liters/min; no virus was recovered at flow rates of 10 and 5 liters/min. At a turbidity of 240 ppm, the observed survival ratios ranged from 3.2 x 10(-2) (96.80% reduction) to 2.1 x 10(-4) (99.98% reduction) at flow rates ranging from 25 to 5 liters/min. As expected, turbidity had an adverse influence on the effectiveness of UV radiation; however, by adjusting the flow rate of the seawater through the treatment unit, adequate disinfection was shown to be predictable.

  2. Survival of Poliovirus in Flowing Turbid Seawater Treated with Ultraviolet Light

    PubMed Central

    Hill, W. F.; Hamblet, F. E.; Akin, E. W.

    1967-01-01

    The effectiveness of a model ultraviolet (UV) radiation unit for treating flowing turbid seawater contaminated with poliovirus was determined. At a turbidity of 70 ppm, the observed survival ratios ranged from 1.9 × 10-3 (99.81% reduction) to 1.5 × 10-4 (99.98% reduction) at flow rates ranging from 25 to 15 liters/min; no virus was recovered at flow rates of 10 and 5 liters/min. At a turbidity of 240 ppm, the observed survival ratios ranged from 3.2 × 10-2 (96.80% reduction) to 2.1 × 10-4 (99.98% reduction) at flow rates ranging from 25 to 5 liters/min. As expected, turbidity had an adverse influence on the effectiveness of UV radiation; however, by adjusting the flow rate of the seawater through the treatment unit, adequate disinfection was shown to be predictable. Images Fig. 1 PMID:4291955

  3. Multiwavelength Photosensor for On-Chip Real-Time Monitoring of Fluorescence and Turbidity

    NASA Astrophysics Data System (ADS)

    Maruyama, Yuki; Ishida, Makoto; Sawada, Kazuaki

    2009-06-01

    In this paper, we report simultaneous detection of fluorescence and turbidity using a multiwavelength photosensor. The multiwavelength photosensor is fabricated in a 5 µm 1-poly 1-metal p-well complementary metal oxide semiconductor (CMOS) technology. First, to confirm the basic characteristics of the multiwavelength photosensor, the linearity of irradiated intensity and photocurrent, fluorescence detection capability, and turbidity detection capability were separately observed. Then, in the fluorescence detection measurement using a fluorescent dye, a detection limit of DNA concentration of 49.8 nM was determined. Then, the turbidity detection performance was compared with that of a Si photodiode. Finally, the sensor was used for real-time monitoring of DNA amplification using the loop-mediated isothermal amplification (LAMP) method. Owing to its multiwavelength detection, simultaneous changes in fluorescence and turbidity were successfully observed using a single sensor.

  4. Target detection in turbid medium using polarization-based range-gated technology.

    PubMed

    Guan, Jinge; Zhu, Jingping

    2013-06-17

    Range-gated technology is well known for its good reliability, large field of view (FOV) and low cost in target detection through scattering or turbid medium. However, the tail-gating technology suffers from low signal-to-noise ratio in high turbidity levels due to superposition of photons multiply scattered from the medium and that reflected from the target. In this paper, polarization properties of multiply scattered photons emerging from the turbid medium are studied. Results demonstrate that diffusive photons are almost completely depolarized with no diattenuation and retardance. We combined the tail-gated technology with polarization detection method to effectively image in high level of turbidity. This approach showed about two times enhancement in image contrast as compared with the conventional range-gated technology.

  5. Long-range sediment transport in the world's oceans by stably stratified turbidity currents

    NASA Astrophysics Data System (ADS)

    Kneller, Benjamin; Nasr-Azadani, Mohamad M.; Radhakrishnan, Senthil; Meiburg, Eckart

    2016-12-01

    Submarine fans, supplied primarily by turbidity currents, constitute the largest sediment accumulations on Earth. Generally accepted models of turbidity current behavior imply they should dissipate rapidly on the very small gradients of submarine fans, thus their persistence over long distances is enigmatic. We present numerical evidence, constrained by published field data, suggesting that turbidity currents traveling on low slopes and carrying fine particles have a stably stratified shear layer along their upper interface, which dramatically reduces dissipation and entrainment of ambient fluid, allowing the current to propagate over long distances. We propose gradient Richardson number as a useful criterion to discriminate between the different behaviors exhibited by turbidity currents on high and low slopes.

  6. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    USGS Publications Warehouse

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  7. Major Turbidity Events in the North Santiam River Basin, Oregon, Water Years 1999-2004

    USGS Publications Warehouse

    Sobieszczyk, Steven; Uhrich, Mark A.; Bragg, Heather M.

    2007-01-01

    Multiple high-turbidity events with values greater than 250 Formazin Nephelometric Units occurred in streams of the North Santiam River basin during water years 1999-2004. By using a combination of field reconnaissance, aerial photography, and geographic information systems, eight of these high-turbidity events were investigated and linked to at least one likely source area and became known as 'major turbidity events.' Sediment source type and location, the amount of material transported, and the results of any follow-up investigation of the source area were recorded for each event. Significant findings from this study include: * Although heavy precipitation caused basinwide erosion that increased turbidity in streams, a major turbidity event often required at least one landslide or similar type of contributing source to introduce enough sediment to raise the turbidity value to greater than 250 Formazin Nephelometric Units. * Different processes drove sediment loading at different times. In general, precipitation eroded sediment from source areas or induced landslides. However, in two cases, warm temperatures caused rapid snowmelt, which supplied the water necessary to erode unconsolidated glacial soils or other sediment material and increase turbidity. * Some source areas, such as existing earthflows, repeatedly supplied a large volume of sediment to streams, whereas other sources, such as landslides or debris flows, were unpredictable and sporadically supplied large volumes of sediment to streams. * Major turbidity events were well distributed throughout the North Santiam River basin; discrete events were observed in each of the five subbasins along unregulated streams. * Suspended-sediment loads and clay-water (persistently turbid water) volume estimates were event-specific and varied greatly between major turbidity events, even though, in some cases, the source area was the same; however, high yields generally were observed for events in the Blowout Creek

  8. Historical Land-Use Influences the Long-Term Stream Turbidity Response to a Wildfire

    NASA Astrophysics Data System (ADS)

    Harrison, Evan T.; Dyer, Fiona; Wright, Daniel W.; Levings, Chris

    2014-02-01

    Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine ( Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.

  9. Towards an optical "black hole": surface reshaping for an optimal optical coupling into turbid medium

    NASA Astrophysics Data System (ADS)

    Thompson, Jonathan V.; Hokr, Brett H.; Yakovlev, Vladislav V.

    2017-02-01

    Light propagation in a turbid medium is typically considered for flat or regular surfaces. However, such an approximation often does not reflect an experimental reality, and, in this report, we attempt to optimize the surface of a scattering medium to improve the optical coupling into the medium. By making conical microchannels in a turbid medium using short-pulsed laser micro-drilling, we show that we were able to substantially increase the photon life-time and diffusion radius in the medium.

  10. Time-gated backscattered ballistic light imaging of objects in turbid water

    NASA Astrophysics Data System (ADS)

    Zevallos L., Manuel E.; Gayen, S. K.; Alrubaiee, M.; Alfano, R. R.

    2005-01-01

    Time-gated optical imaging of objects in turbid water was carried out in a backscattering geometry using light pulses of different pulse widths and a time-gated detection scheme with variable gate widths. Experimental results demonstrate that ultrashort pulsed illumination with ultrashort gated detection significantly improve image contrast as compared to any other combinations. These results are important for imaging objects embedded in turbid media, such as cloud, fog, smoke, murky water, and biological tissues for military, civilian, and medical applications.

  11. Satellite assessment of hurricane-induced ocean turbidity for the southern U.S. coastline

    USGS Publications Warehouse

    Waters, K.; Brock, J.; Subramaniam, A.; Stumpf, R.P.; Armstrong, E.

    1997-01-01

    Advanced very high resolution radiometer images before and after three hurricanes were processed to estimate the reflectance difference between visible and near-infrared bands. The reflectance difference provides a measure of the turbidity in the water column. The images were compared to examine the influence of hurricanes on coastal waters Hurricanes were found to increase turbidity in a large area, with the greatest impact to the right side of the hurricane track. ??2005 Copyright SPIE - The International Society for Optical Engineering.

  12. Noninvasive Determination of Depth in Transmission Raman Spectroscopy in Turbid Media Based on Sample Differential Transmittance.

    PubMed

    Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2017-09-19

    Here we propose a simple noninvasive approach to determine the depth of a buried object using transmission Raman spectroscopy. In accordance with theory, the photons arising from spectral peaks that are suitably separated will be subjected to different optical properties in the media through which they travel. These differences can impact the relative intensities of Raman peaks as a function of the transmission path length, thereby the depth of signal generation is inherently encoded in the spectra. In a proof-of-concept study, through only external calibrations, it was possible to accurately predict the depth of Polytetrafluoroethylene (PTFE) layer purely on the basis of relative intensity of two peaks in a predominantly absorbing solution Indian ink (0.1 μL/mL; RMSE 0.42 mm) and a scattering solution (RMSE 0.50 mm). This simple approach offers the possibility to noninvasively identify the depth of a buried object, such as breast calcifications, using simple transmission measurement geometries for the first time.

  13. Effect of enzymatic mash treatment and storage on phenolic composition, antioxidant activity, and turbidity of cloudy apple juice.

    PubMed

    Oszmiański, Jan; Wojdylo, Aneta; Kolniak, Joanna

    2009-08-12

    The effects of different commercial enzymatic mash treatments on yield, turbidity, color, and polyphenolic and sediment of procyanidins content of cloudy apple juice were studied. Addition of pectolytic enzymes to mash treatment had positive effect on the production of cloud apple juices by improving polyphenolic contents, especially procyanidins and juice yields (68.3% in control samples to 77% after Pectinex Yield Mash). As summary of the effect of enzymatic mash treatment, polyphenol contents in cloudy apple juices significantly increased after Pectinex Yield Mash, Pectinex Smash XXL, and Pectinex XXL maceration were applied but no effect was observed after Pectinex Ultra-SPL I Panzym XXL use, compared to the control samples. The content of polymeric procyanidins represented 50-70% of total polyphenols, but in the present study, polymeric procyanidins were significantly lower in juices than in fruits and also affected by enzymatic treatment (Pectinex AFP L-4 and Panzym Yield Mash) compared to the control samples. The enzymatic treatment decreased procyanidin content in most sediment with the exception of Pectinex Smash XXL and Pectinex AFP L-4. Generally in samples that were treated by pectinase, radical scavenging activity of cloudy apple juices was increased compared to the untreated reference samples. The highest radical scavenging activity was associated with Pectinex Yield Mash, Pectinex Smash XXL, and Pectinex XXL enzyme and the lowest activity with Pectinex Ultra SP-L and Pectinex APFL-4. However, in the case of enzymatic mash treatment cloudy apple juices showed instability of turbidity and low viscosity. These results must be ascribed to the much higher hydrolysis of pectin by enzymatic preparation which is responsible for viscosity. During 6 months of storage at 4 degrees C small changes in analyzed parameters of apple juices were observed.

  14. Diurnal variability in turbidity and coral fluorescence on a fringing reef flat: Southern Molokai, Hawaii

    USGS Publications Warehouse

    Piniak, G.A.; Storlazzi, C.D.

    2008-01-01

    Terrigenous sediment in the nearshore environment can pose both acute and chronic stresses to coral reefs. The reef flat off southern Molokai, Hawaii, typically experiences daily turbidity events, in which trade winds and tides combine to resuspend terrigenous sediment and transport it alongshore. These chronic turbidity events could play a role in restricting coral distribution on the reef flat by reducing the light available for photosynthesis. This study describes the effects of these turbidity events on the Hawaiian reef coral Montipora capitata using in situ diurnal measurements of turbidity, light levels, and chlorophyll fluorescence yield via pulse-amplitude-modulated (PAM) fluorometry. Average surface irradiance was similar in the morning and the afternoon, while increased afternoon turbidity resulted in lower subsurface irradiance, higher fluorescence yield (??F/Fm???), and lower relative electron transport rates (rETR). Model calculations based on observed light extinction coeffecients suggest that in the absence of turbidity events, afternoon subsurface irradiances would be 1.43 times higher than observed, resulting in rETR for M. capitata that are 1.40 times higher.

  15. The relationship between turbidity of mouth-rinsed water and oral health status.

    PubMed

    Takeuchi, Susumu; Ueno, Masayuki; Takehara, Sachiko; Pham, Thuy Anh Vu; Hakuta, Chiyoko; Morishima, Seiji; Shinada, Kayoko; Kawaguchi, Yoko

    2013-01-01

    The purpose of this study was to examine the relationship between turbidity of mouth rinsed water and oral health status such as dental and periodontal conditions, oral hygiene status, flow rate of saliva and oral bacteria. Subjects were 165 patients who visited the Dental Hospital, Tokyo Medical and Dental University. Oral health status, including dental and periodontal conditions, oral hygiene status and flow rate of saliva, was clinically examined. The turbidity was measured with a turbidimeter. Quantification of Fusobacterium spp, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola and total bacteria levels was performed using real-time PCR. The Pearson correlation and multiple regression analysis were used to explore the associations between the turbidity and oral health parameters. The turbidity showed significant correlations with the number of decayed teeth and deep pockets, the plaque index, extent of tongue coating and Fusobacterium spp, P. gingivalis, T. forsythia, T. denticola and total bacteria levels. In a multiple regression model, the turbidity was negatively associated with the flow rate of saliva and positively associated with the total number of bacteria (p < 0.001). Current findings suggested that turbidity of mouth rinsed water could be used as an indicator to evaluate oral health condition and the amount of bacteria in the oral cavity. In addition, the turbiditimeter appeared as a simple and objective device for screening abnormality of oral health condition at chair side as well as community-based research.

  16. Emplacement of massive turbidites linked to extinction of turbulence in turbidity currents

    NASA Astrophysics Data System (ADS)

    Cantero, Mariano I.; Cantelli, Alessandro; Pirmez, Carlos; Balachandar, S.; Mohrig, David; Hickson, Thomas A.; Yeh, Tzu-Hao; Naruse, Hajime; Parker, Gary

    2012-01-01

    Submarine turbidity currents are controlled by gravity acting on suspended sediments that pull water downslope along with them. In addition to suspended sediments, turbidity currents also transport sediments at the base of the flow, which causes the reorganization of basal sediments prior to the settling of suspended grains. However, as turbidity currents reach areas with minimal slope, they cross a fall-velocity threshold beyond which the suspended sediments begin to stratify the flow. This process extinguishes the turbulence near the bed. Here we use direct numerical simulation of turbidity currents to show that this extinction of turbulence eliminates the ability of the flow to re-entrain sediment and rework the sediment at the base of the flow. Our simulations indicate that deposits from flows without basal reworking should lack internal structures such as laminations. Under appropriate conditions, then, sustained delivery of fine sediments will therefore result in the emplacement of massive turbidites. We suggest that this mechanism can explain field observations of massive deposits that were emplaced gradually by dilute but powerful turbidity currents. We also conclude that turbulence in submarine turbidity currents is more fragile than river systems, and more sensitive to damping by the stratification of suspended sediment in the flow.

  17. Turbidity management during flushing-flows: A model for open-loop control

    NASA Astrophysics Data System (ADS)

    Fovet, Ophelie; Litrico, Xavier; Belaud, Gilles

    2012-04-01

    Fixed algae developments induce strong constraints for the management of open-channel networks. They cause clogging issues on hydraulic devices and can sometimes lead to water quality alteration. An original strategy to limit the algal biomass is to carry out regular flushes. A flush is performed by increasing the hydraulic shear conditions using the hydraulic structures of the canal. Consequently to the shear stress increase, a part of the fixed algae is detached, then re-suspended into the water column, and finally transported into the canal network. This leads to a peak of turbidity that needs to be controlled. The present paper proposes a quasi-linear model of the turbidity response to a discharge increase, that can be used for automatic controller design. The model parameters are identified on a real network. The calibration is based on continuous monitoring of water turbidity. Flushes are simulated on the whole branch and on an intermediate reach in order to test the ability of the model to simulate the propagation of a turbidity peak. Then, the model is used to develop an open-loop controller of turbidity for flush design. The efficiency of a flush will depend on its amplitude and duration. The design objective consists in maximizing the algae detachment without exceeding a maximal turbidity level, and using as little water as possible. The designed flush is finally tested on a nonlinear model.

  18. A spectral model of Linke's turbidity factor and its experimental implications

    SciTech Connect

    Grenier, J.C.; De La Casiniere, A.; Cabot, T. )

    1994-04-01

    A model of Linke's turbidity factor, T[sub L], is developed by means of updated spectral extraterrestrial irradiances and extinction coefficients of gaseous absorbers. It is shown that the new values of T[sub L] are clearly different from those obtained by Kasten's formula which parameterizes the optical thickness of the clean dry atmosphere. The model is used to investigate the dependence of T[sub L] on the relative optical air mass and to elucidate the relationships linking T[sub L] to Angstroem's turbidity coefficient and to the water vapor content. For any T[sub L], the corresponding value related to the air mass 2.0 can be determined. Such a standardized value is independent of solar elevation and is therefore strictly representative of the atmospheric turbidity. It can be linked to Angstroem's turbidity coefficient. Practical procedures and algorithms for computing the standard Linke's turbidity factor and determining Angstroem's turbidity coefficient are described. A relationship for converting the T[sub L] values obtained by Kasten's formula into the new values is proposed.

  19. Swept Away by a Turbidity Current in Mendocino Submarine Canyon, California

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.

    2015-12-01

    Direct observations of turbidity currents in the ocean are rare, yet essential for validating and developing conceptual models of these enigmatic flows. We present a novel set of observations and measurements collected by a remotely operated vehicle entrained within a turbidity current in Mendocino Canyon, California. The flow had a two layer structure with a thin (0.5 to 30 m), relatively dense (<0.04 vol %) and fast (up to ~1.7 m/s) wedge-shaped lower layer overlain by a thicker (up to 89m) more dilute and slower current. The fast moving lower layer lagged the slow moving, dilute flow front by 14 min, which we infer resulted from the interaction of two initial pulses. The two layers were strongly coupled, and the sharp interface between the layers was characterized by a wave-like instability. This is the first field-scale data from a turbidity current to show (i) the complex dynamics of the head of a turbidity current and (ii) the presence of multiple layers within the same event. This data set provides a new perspective on the character of turbidity currents in the ocean. The data pose challenges not simply for understanding the dynamics of turbidity currents but also for how we interpret existing data based on cable breaks and how we might measure similar flows in the future.

  20. Turbidity currents and turbidites: towards quantitative interpretation and prediction of process and product.

    NASA Astrophysics Data System (ADS)

    Eggenhuisen, J. T.; Cartigny, M.; de Leeuw, J.; Pohl, F.

    2015-12-01

    Many decades of studies of deposits and seascapes formed by turbidity currents have established a robust observational framework that demonstrates that depositional and morphological patterns are repeated through time and space. The process-modeling community has similarly made progress in the understanding of the distribution of suspended sediment, velocity, and turbulence in turbidity currents, together shaping the "flow structure". Thus, now is the time to integrate, and investigate in more detail how the process of sediment erosion, transport, and deposition by turbidity currents is related to observed systematics in the physical products preserved in the geological record. Here we review recent breakthroughs in theoretical understanding of turbulent suspended sediment transport capacity. These breakthroughs allow us to understand the coupling between the flow field of turbidity currents, the kinematics of which have long been established, and the carrying capacity of sediment. This leads to robust first order estimators of the velocity and suspended sediment distribution within turbidity currents. These estimators can be applied straightforwardly to investigate natural systems. Two types of examples are explored: application to modern seafloor systems results in sediment budget estimations of natural turbidity current channels and canyons. Application to ancient turbidite deposits in the rock record displays how the present state of understanding can be used for quantitative process inversion from the product. This should ultimately lead to predictive capabilities of rock-body characteristics in the subsurface.

  1. Progress in theoretical, experimental, and computational investigations in turbid tissue phantoms and human teeth using laser infrared photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2002-03-01

    This paper reviews and describes the state-of-the-art in the development of frequency-domain infrared photothermal radiometry (FD-PTR) for biomedical and dental applications. The emphasis is placed on the measurement of the optical and thermal properties of tissue-like materials using FD-PTR. A rigorous three-dimensional thermal-wave formulation with three-dimensional diffuse and coherent photon-density-wave sources is presented, and is applied to data from model tissue phantoms and dental enamel samples. The combined theoretical, experimental and computational methodology shows good promise with regard to its analytical ability to measure optical properties of turbid media uniquely, as compared to PPTR, which exhibits uniqueness problems. From data sets obtained with calibrated test phantoms, the reduced optical scattering and absorption coefficients were found to be within 20% and 10%, respectively, from the independently derived values using Mie scattering theory and spectrophotometric measurements. Furthermore, the state-of-the-art and recent developments in applications of laser infrared FD-PTR to dental caries research is described, with examples and histological studies from carious dental tissue. The correlation of PTR signals with modulated dental luminescence is discussed as a very promising potential quantitative methodology for the clinical diagnosis of sub-surface incipient dental caries. The application of the turbid-medium thermal-wave model to the measurement of the optical absorption and scattering coefficients of enamel is also presented.

  2. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system.

    PubMed

    Spirou, Gloria M; Mandelis, Andreas; Vitkin, I Alex; Whelan, William M

    2008-05-10

    Photoacoustic (more precisely, photothermoacoustic) signals generated by the absorption of photons can be related to the incident laser fluence rate. The dependence of frequency domain photoacoustic (FD-PA) signals on the optical absorption coefficient (micro(a)) and the effective attenuation coefficient (micro(eff)) of a turbid medium [polyvinyl chloride-plastisol (PVCP)] with tissuelike optical properties was measured, and empirical relationships between these optical properties and the photoacoustic (PA) signal amplitude and the laser fluence rate were derived for the water (PVCP system with and without optical scatterers). The measured relationships between these sample optical properties and the PA signal amplitude were found to be linear, consistent with FD-PA theory: micro(a)=a(A/Phi)-b and micro(eff)=c(A/Phi)+d, where Phi is the laser fluence, A is the FD-PA amplitude, and a, ...,d are empirical coefficients determined from the experiment using linear frequency-swept modulation and a lock-in heterodyne detection technique. This quantitative technique can easily be used to measure the optical properties of general turbid media using FD-PAs.

  3. A combination turbidity and supernatant microplate assay to rank-order the supersaturation limits of early drug candidates.

    PubMed

    Morrison, John S; Nophsker, Michelle J; Haskell, Roy J

    2014-10-01

    A unique opportunity exists at the drug discovery stage to overcome inherently poor solubility by selecting drug candidates with superior supersaturation propensity. Existing supersaturation assays compare either precipitation-resistant or precipitation-inhibiting excipients, or higher-energy polymorphic forms, but not multiple compounds or multiple concentrations. Furthermore, these assays lack sufficient throughput and compound conservation necessary for implementation in the discovery environment. A microplate-based combination turbidity and supernatant concentration assay was therefore developed to determine the extent to which different compounds remain in solution as a function of applied concentration in biorelevant media over a specific period of time. Dimethyl sulfoxide stock solutions at multiple concentrations of four poorly soluble, weak base compounds (Dipyridamole, Ketoconazole, Albendazole, and Cinnarizine) were diluted with pH 6.5 buffer as well as FaSSIF. All samples were monitored for precipitation by turbidity at 600 nm over 1 h and the final supernatant concentrations were measured. The maximum supersaturation ratio was calculated from the supersaturation limit and the equilibrium solubility in each media. Compounds were rank-ordered by supersaturation ratio: Ketoconazole > Dipyridamole > Cinnarizine ∼ Albendazole. These in vitro results correlated well with oral AUC ratios from published in vivo pH effect studies, thereby confirming the validity of this approach. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Fluorescence tomography of targets in a turbid medium using non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Gayen, S. K.

    2014-04-01

    A near-infrared optical tomography approach for detection, three-dimensional localization, and cross-section imaging of fluorescent targets in a turbid medium is introduced. The approach uses multisource probing of targets, multidetector acquisition of diffusely transmitted fluorescence signal, and a non-negative matrix factorization based blind source separation scheme to obtain three-dimensional location of the targets. A Fourier transform back-projection algorithm provides an estimate of target cross section. The efficacy of the approach is demonstrated in an experiment involving two laterally separated small fluorescent targets embedded in a human breast tissue-simulating sample of thickness 60 times the transport mean free path. The approach could locate the targets within ˜1 mm of their known positions, and provide estimates of their cross sections. The high spatial resolution, fast reconstruction speed, noise tolerance, and ability to detect small targets are indicative of the potential of the approach for detecting and locating fluorescence contrast-enhanced breast tumors in early growth stages, when they are more amenable to treatment.

  5. Time reversal optical tomography locates fluorescent targets in a turbid medium

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Cai, W.; Gayen, S. K.

    2013-03-01

    A fluorescence optical tomography approach that extends time reversal optical tomography (TROT) to locate fluorescent targets embedded in a turbid medium is introduced. It uses a multi-source illumination and multi-detector signal acquisition scheme, along with TR matrix formalism, and multiple signal classification (MUSIC) to construct pseudo-image of the targets. The samples consisted of a single or two small tubes filled with water solution of Indocyanine Green (ICG) dye as targets embedded in a 250 mm × 250 mm × 60 mm rectangular cell filled with Intralipid-20% suspension as the scattering medium. The ICG concentration was 1μM, and the Intralipid-20% concentration was adjusted to provide ~ 1-mm transport length for both excitation wavelength of 790 nm and fluorescence wavelength around 825 nm. The data matrix was constructed using the diffusely transmitted fluorescence signals for all scan positions, and the TR matrix was constructed by multiplying data matrix with its transpose. A pseudo spectrum was calculated using the signal subspace of the TR matrix. Tomographic images were generated using the pseudo spectrum. The peaks in the pseudo images provided locations of the target(s) with sub-millimeter accuracy. Concurrent transmission TROT measurements corroborated fluorescence-TROT findings. The results demonstrate that TROT is a fast approach that can be used to obtain accurate three-dimensional position information of fluorescence targets embedded deep inside a highly scattering medium, such as, a contrast-enhanced tumor in a human breast.

  6. Retrieving Seawater Turbidity from Landsat-TM Data by Regressions and Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Gan, T.; Kalinga, O.; Ohgushi, K.

    2001-12-01

    By subtracting Lowtran 7's estimated Rayleigh scattered and aerosol scattered radiance from Landsat-TM's measured radiance, the radiance reflected at the sea surface (RW) of Ariake Sea was estimated. Then the RW averaged from 4 x 4 windows of pixels centered at 33 sampling sites of Ariake Sea were calibrated against the observed Secchi disk depth (SDD) using linear and nonlinear regression, and an artificial neural network (ANN) algorithm called MCPN. Results show that multi-date calibration (RW) data mainly based on the visible channels of Landsat-TM predict more accurate and dependable SDD than single-date RW data at the validation stage. Between the three classes of retrieval algorithms tested, nonlinear regression (NLR) likely more closely (though not perfectly) describe the SDD/RW relationship than the linear regression (LR). However, the inherent non-linearity and inter-connectivity of an ANN such as the MCPN, together with its ability to learn and generalize information from complex or poorly understood systems, enable it to even better represent the SDD/RW relationship than the NLR. This study confirms the feasibility of retrieving SDD (or turbidity/ suspended sediments) from Landsat-TM data. On the basis of the validation results, it seems that the calibrated MCPN and possibly NLR are temporally portable within the Ariake Sea. Lastly, the coefficient of efficiency is a more stringent and likely a more accurate statistical measure than the popular, coefficient of determination, R2.

  7. Turbidity forecasting at a karst spring using combined machine learning and wavelet multiresolution analysis.

    NASA Astrophysics Data System (ADS)

    Savary, M.; Massei, N.; Johannet, A.; Dupont, J. P.; Hauchard, E.

    2016-12-01

    25% of the world populations drink water extracted from karst aquifer. The comprehension and the protection of these aquifers appear as crucial due to an increase of drinking water needs. In Normandie(North-West of France), the principal exploited aquifer is the chalk aquifer. The chalk aquifer highly karstified is an important water resource, regionally speaking. Connections between surface and underground waters thanks to karstification imply turbidity that decreases water quality. Both numerous parameters and phenomenons, and the non-linearity of the rainfall/turbidity relation influence the turbidity causing difficulties to model and forecast turbidity peaks. In this context, the Yport pumping well provides half of Le Havreconurbation drinking water supply (236 000 inhabitants). The aim of this work is thus to perform prediction of the turbidity peaks in order to help pumping well managers to decrease the impact of turbidity on water treatment. Database consists in hourly rainfalls coming from six rain gauges located on the alimentation basin since 2009 and hourly turbidity since 1993. Because of the lack of accurate physical description of the karst system and its surface basin, the systemic paradigm is chosen and a black box model: a neural network model is chosen. In a first step, correlation analyses are used to design the original model architecture by identifying the relation between output and input. The following optimization phases bring us four different architectures. These models were experimented to forecast 12h ahead turbidity and threshold surpassing. The first model is a simple multilayer perceptron. The second is a two-branches model designed to better represent the fast (rainfall) and low (evapotranspiration) dynamics. Each kind of model is developed using both a recurrent and feed-forward architecture. This work highlights that feed-forward multilayer perceptron is better to predict turbidity peaks when feed-forward two-branches model is

  8. Coupled Numerical Study of Turbidity Currents, Internal Hydraulic Jump and Morphological Signatures

    NASA Astrophysics Data System (ADS)

    Hu, P.; Cao, Z.; He, Z.; Gareth, P.

    2013-12-01

    Abstract: The last two decades have seen intensive experimental and numerical studies of the occurrence condition of internal hydraulic jump in turbidity currents and the induced morphological signatures (Garcia and Parker 1989; Kostic and Parker 2006). Yet there are two critical issues that remain insufficiently or inappropriately addressed. First, depositional turbidity currents are imposed on steep slopes in both flume experiments and numerical cases, exclusively based on a configuration consisting of an upstream sloping portion and a downstream horizontal portion linked by a slope break. This appears physically counterintuitive as steep slope should favour self-accelerating erosional turbidity currents (Parker et al. 1986). The second issue concerns the numerical studies. There exist significant interactions among the current, sediment transport and bed topography. Due to the slope break in bed, the current may experience an internal hydraulic jump, leaving morphological signatures on the bed, which in turn affects the current evolution. Nevertheless, simplified decoupled models are exclusively employed in previous numerical investigations, in which the interactions are either partly or completely ignored without sufficient justification. The present paper aims to address the above-mentioned two issues relevant to the occurrence condition of the internal hydraulic jump and the induced morphological signatures. A recently developed well-balanced coupled numerical model for turbidity currents (Hu et al. 2012) is applied. In contrast to previous studies, erosional turbidity currents will be imposed at the upstream boundary, which is much more typical of the field. The effects of sediment size, bed slope decrease, and upstream and downstream boundary conditions are revealed in detail. In addition, the evolution of turbidity currents over a bed characterized by gradual decrease in slope is also discussed. References Garcia, M. H., and Parker, G. (1989). Experiments

  9. Variability in turbidity current frequency within a central Portuguese margin canyon

    NASA Astrophysics Data System (ADS)

    Allin, Joshua R.; Talling, Peter J.; Hunt, James E.; Clare, Michael E.; Pope, Ed

    2015-04-01

    Submarine canyons constitute one of the most important pathways for sediment transport into ocean basins. For this reason, understanding canyon architecture and sedimentary processes has significance for oil and gas reservoir characterisation, carbon budgets and geohazard assessment. Canyon sedimentation in the form of turbidity-currents is known to operate on a variety of scales and result from a number of different processes, including landslides, river-derived hyperpycnal flows and tidal or storm resuspension. Despite the expanding knowledge of turbidity current triggers, the spatial variability in turbidity current frequency within most canyon systems is not well defined. Here, new chronologies from cores in the lower reaches of Nazaré Canyon illustrate changes in turbidity current frequency and their relationship to sea level. These flows were relatively frequent during the last glacial maximum and the last deglaciation, with an average recurrence interval of ~70 years. Mid to early Holocene slowdown in activity (avg. recurrence of 1625 years) appears to occur later than other systems along the Iberian margin. Cores from the Iberian Abyssal Plain also provide the first recurrence interval estimates for large run-out turbidity currents from the central Portuguese margin. These large turbidity currents have an average recurrence interval of 2750 years, broadly comparable to modern turbidity flow events in the lower Nazaré Canyon. This indicates that Nazaré Canyon acted as a depocentre, capturing large volumes of sediment during glacial periods prior to large scale canyon flushing events. However, this sediment capture has largely been restricted to the middle and upper canyon since stabilisation of Holocene sea level. Recurrence intervals suggest that large turbidity flows which flush the canyon operate on a timescale independent of the sea level forcing evident in the lower canyon. While instability-triggered landsliding and tidal/storm resuspension are

  10. Relations Between Environmental and Water-Quality Variables and Escherichia coli in the Cuyahoga River With Emphasis on Turbidity as a Predictor of Recreational Water Quality, Cuyahoga Valley National Park, Ohio, 2008

    USGS Publications Warehouse

    Brady, Amie M.G.; Plona, Meg B.

    2009-01-01

    During the recreational season of 2008 (May through August), a regression model relating turbidity to concentrations of Escherichia coli (E. coli) was used to predict recreational water quality in the Cuyahoga River at the historical community of Jaite, within the present city of Brecksville, Ohio, a site centrally located within Cuyahoga Valley National Park. Samples were collected three days per week at Jaite and at three other sites on the river. Concentrations of E. coli were determined and compared to environmental and water-quality measures and to concentrations predicted with a regression model. Linear relations between E. coli concentrations and turbidity, gage height, and rainfall were statistically significant for Jaite. Relations between E. coli concentrations and turbidity were statistically significant for the three additional sites, and relations between E. coli concentrations and gage height were significant at the two sites where gage-height data were available. The turbidity model correctly predicted concentrations of E. coli above or below Ohio's single-sample standard for primary-contact recreation for 77 percent of samples collected at Jaite.

  11. An Observed Step Change in River Delta Turbidity Following 1982-1983 El Nino Floods

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Schoellhamer, D. H.; Morgan-King, T.; Ustin, S.

    2010-12-01

    Sediment transport influences the geomorphology, biogeochemical cycling, pollutant load, and ecology of river deltas and estuaries. In the Sacramento-San Joaquin Delta, turbidity is largely considered a surrogate of suspended sediment concentration, and has been declining over the past 30 years. This has contributed to dramatic changes in the ecology of the Delta and to the decline of the endemic and endangered delta smelt. The declining turbidity trend in the Delta has been attributed to reduced sediment inputs and expansion of invasive submerged aquatic vegetation. In this study, we analyzed historic monthly turbidity records collected by the California Department of Water Resources Environmental Monitoring Program from 1975-2008. We investigated structural changes in the turbidity trend, and identified a significant step decrease in turbidity after the beginning of the 1984 water year at nine different sites within the Delta. This significant decrease in Delta turbidity appears to have been caused by the combination of large El-Nino driven winter floods from both the San Joaquin and Sacramento Rivers in 1982-1983 and the high inflows throughout the summer. We suggest that these extended high flow events flushed the erodible sediment pool from the Delta into the San Francisco Bay. This event has left the Delta in its current, low-turbidity state. Another study found that a step decrease in suspended sediment concentration in San Francisco Bay in 1999 may have been caused by depletion of erodible sediment. This indicates that depletion of erodible sediment may have progressed downstream and, if the erodible sediment pools were created by hydraulic mining in the late 1800s, sedimentation in the estuary has largely recovered from hydraulic mining.

  12. Changes of turbidity during the phenol oxidation by photo-Fenton treatment.

    PubMed

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez, Jonatan

    2014-11-01

    Turbidity presented by phenol solutions oxidized with Fenton reagent shows the tendency of a first order intermediate kinetics. Thus, turbidity can be considered a representative parameter of the presence of intermediate oxidation species, which are generated along the decomposition of toxic and reluctant contaminants, such as phenol. Moreover, that parameter presents a linear dependence with the catalyst dosage, but is also determined by the initial contaminant load. When analyzing the oxidation mechanism of phenol, it is found that the maximum turbidity occurs when the treatment is carried out at oxidant to phenol molar ratios R = 4.0. These oxidation conditions correspond to the presence of a reaction mixture mainly composed of dihydroxylated rings, precursors of the muconic acid formation. The oxidation via "para" comprises the formation reactions of charge transfer complexes (quinhydrone), between the para-dihydroxylated intermediates (hydroquinone) and the para-substituted quinones (p-benzoquinone), which are quite unstable and reactive species, quickly decomposed into hydroxyhydroquinones. Working with oxidant ratios up to R = 6.0, the maximum observed value of turbidity in the oxidized solutions is kept almost constant. It is found that, in these conditions, the pyrogallol formation is maximal, what is generated through the degradation of ortho-species (catechol and ortho-benzoquinone) and meta-substituted (resorcinol). Operating with ratios over R = 6.0, these intermediates are decomposed into biodegradable acids, generating lower turbidity in the solution. Then, the residual turbidity is a function of the molar ratio of the ferrous ions vs. moles of oxidant utilized in the essays, that lets to estimate the stoichiometric dosage of catalyst as 20 mg/L at pH = 3.0, whereas operating in stoichiometric conditions, R = 14.0, the residual turbidity of water results almost null.

  13. Review of Epidemiological Studies of Drinking-Water Turbidity in Relation to Acute Gastrointestinal Illness.

    PubMed

    De Roos, Anneclaire J; Gurian, Patrick L; Robinson, Lucy F; Rai, Arjita; Zakeri, Issa; Kondo, Michelle C

    2017-08-17

    Turbidity has been used as an indicator of microbiological contamination of drinking water in time-series studies attempting to discern the presence of waterborne gastrointestinal illness; however, the utility of turbidity as a proxy exposure measure has been questioned. We conducted a review of epidemiological studies of the association between turbidity of drinking-water supplies and incidence of acute gastrointestinal illness (AGI), including a synthesis of the overall weight of evidence. Our goal was to evaluate the potential for causal inference from the studies. We identified 14 studies on the topic (distinct by region, time period and/or population). We evaluated each study with regard to modeling approaches, potential biases, and the strength of evidence. We also considered consistencies and differences in the collective results. Positive associations between drinking-water turbidity and AGI incidence were found in different cities and time periods, and with both unfiltered and filtered supplies. There was some evidence for a stronger association at higher turbidity levels. The studies appeared to adequately adjust for confounding. There was fair consistency in the notable lags between turbidity measurement and AGI identification, which fell between 6 and 10 d in many studies. The observed associations suggest a detectable incidence of waterborne AGI from drinking water in the systems and time periods studied. However, some discrepant results indicate that the association may be context specific. Combining turbidity with seasonal and climatic factors, additional water quality measures, and treatment data may enhance predictive modeling in future studies. https://doi.org/10.1289/EHP1090.

  14. Multiple Scattering Effects on Pulse Propagation in Optically Turbid Media.

    NASA Astrophysics Data System (ADS)

    Joelson, Bradley David

    The effects of multiple scattering in a optically turbid media is examined for an impulse solution to the radiative transfer equation for a variety of geometries and phase functions. In regions where the complexities of the phase function proved too cumbersome for analytic methods Monte Carlo techniques were developed to describe the entire scalar radiance distribution. The determination of a general spread function is strongly dependent on geometry and particular regions where limits can be placed on the variables of the problem. Hence, the general spread function is first simplified by considering optical regions which reduce the complexity of the variable dependence. First, in the small-angle limit we calculate some contracted spread functions along with their moments and then use Monte Carlo techniques to establish the limitations imposed by the small-angle approximation in planar geometry. The point spread function (PSF) for a spherical geometry is calculated for the full angular spread in the forward direction of ocean waters using Monte Carlo methods in the optically thin and moderate depths and analytic methods in the diffusion domain. The angular dependence of the PSF for various ocean waters is examined for a range of optical parameters. The analytic method used in the diffusion calculation is justified by examining the angular dependence of the radiance of a impulse solution in a planar geometry for a prolongated Henyey-Greenstein phase function of asymmetry factor approximately equal to that of the ocean phase functions. The Legendre moments of the radiance are examined in order to examine the viability of the diffusion approximation which assumes a linearly anisotropic angular distribution for the radiance. A realistic lidar calculation is performed for a variety of ocean waters to determine the effects of multiple scattering on the determination of the speed of sound by using the range gated frequency spectrum of the lidar signal. It is shown that the

  15. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  16. Ecotoxicological assessment of the impact of fluoride (F(-)) and turbidity on the freshwater snail Physella acuta in a polluted river receiving an industrial effluent.

    PubMed

    Camargo, Julio A; Alonso, Álvaro

    2017-06-01

    We carried out field studies and laboratory experiments to assess the impact of fluoride (F(-)) and turbidity on the freshwater snail Physella acuta in a polluted river receiving an industrial effluent (the middle Duraton River, Central Spain). Fluoride concentrations and turbidity levels significantly increased downstream from the industrial effluent (with the highest values being 0.6 mg F(-)/L and 55.2 nephelometric turbidity unit). In addition, higher deposition of fine inorganic matter was evident at polluted sampling sites. Conversely, the abundance of P. acuta significantly declined (until its virtual disappearance) downstream from the industrial effluent. Toxicity bioassays showed that P. acuta is a relatively tolerant invertebrate species to fluoride toxicity, with estimated safe concentrations (expressed as LC0.10 values for infinite hours of exposure) for juvenile and adult snails being 2.4 and 3.7 mg F(-)/L, respectively. Furthermore, juvenile snails (more sensitive than adult snails) did not show significant alterations in their behavior through 15 days of exposure to 2.6 mg F(-)/L: mean values of the proportion of test snails located on the water surface habitat, as well as mean values of the sliding movement rate (velocity) of test snails, never showed significant differences when comparing control and treatment glass vessels. It is concluded that instream habitat degradation, derived from increased turbidity levels, might be a major cause for significant reductions in the abundance of P. acuta downstream from the industrial effluent. The presence of the competing gastropod Ancylus fluviatilis could also affect negatively the recovery of P. acuta abundance.

  17. On-site treatment of turbid river water using chitosan, a natural organic polymer coagulant.

    PubMed

    Sekine, M; Takeshita, A; Oda, N; Ukita, M; Imai, T; Higuchi, T

    2006-01-01

    Chitosan, acetylate of chitin, is a biodegradable cationic polymer. The objective of this study is to assess the applicability of chitosan as an on-site treatment agent of turbid water caused by river construction works and other diffused pollutions. The results of jar-tests indicate that floc of chitosan is much larger than that of aluminium sulfate, and turbidity treated by chitosan under moving water conditions is much lower than that of aluminium sulfate. Chitosan is applied to Imou River in Yamaguchi prefecture, where river construction work is going on. St.1 is located just below the construction work, St.2 is located about 250 m downstream from St.1, and St.3 is located about 350 m downstream from St.2. Initial turbidity of each station is 1,100, 937 and 313 NTU, respectively. By applying chitosan at St.1, turbidity of each station is drastically reduced to 1,100, 12 and 0 NTU. Chitosan could be helpful to reduce problems caused by turbidity in rivers.

  18. A new approach using coagulation rate constant for evaluation of turbidity removal

    NASA Astrophysics Data System (ADS)

    Al-Sameraiy, Mukheled

    2017-06-01

    Coagulation-flocculation-sedimentation processes for treating three levels of bentonite synthetic turbid water using date seeds (DS) and alum (A) coagulants were investigated in the previous research work. In the current research, the same experimental results were used to adopt a new approach on a basis of using coagulation rate constant as an investigating parameter to identify optimum doses of these coagulants. Moreover, the performance of these coagulants to meet (WHO) turbidity standard was assessed by introducing a new evaluating criterion in terms of critical coagulation rate constant (kc). Coagulation rate constants (k2) were mathematically calculated in second order form of coagulation process for each coagulant. The maximum (k2) values corresponded to doses, which were obviously to be considered as optimum doses. The proposed criterion to assess the performance of coagulation process of these coagulants was based on the mathematical representation of (WHO) turbidity guidelines in second order form of coagulation process stated that (k2) for each coagulant should be ≥ (kc) for each level of synthetic turbid water. For all tested turbid water, DS coagulant could not satisfy it. While, A coagulant could satisfy it. The results obtained in the present research are exactly in agreement with the previous published results in terms of finding optimum doses for each coagulant and assessing their performances. On the whole, it is recommended considering coagulation rate constant to be a new approach as an indicator for investigating optimum doses and critical coagulation rate constant to be a new evaluating criterion to assess coagulants' performance.

  19. Rainfall Threshold Assessment Corresponding to the Maximum Allowable Turbidity for Source Water.

    PubMed

    Fan, Shu-Kai S; Kuan, Wen-Hui; Fan, Chihhao; Chen, Chiu-Yang

    2016-12-01

      This study aims to assess the upstream rainfall thresholds corresponding to the maximum allowable turbidity of source water, using monitoring data and artificial neural network computation. The Taipei Water Source Domain was selected as the study area, and the upstream rainfall records were collected for statistical analysis. Using analysis of variance (ANOVA), the cumulative rainfall records of one-day Ping-lin, two-day Ping-lin, two-day Tong-hou, one-day Guie-shan, and one-day Tai-ping (rainfall in the previous 24 or 48 hours at the named weather stations) were found to be the five most significant parameters for downstream turbidity development. An artificial neural network model was constructed to predict the downstream turbidity in the area investigated. The observed and model-calculated turbidity data were applied to assess the rainfall thresholds in the studied area. By setting preselected turbidity criteria, the upstream rainfall thresholds for these statistically determined rain gauge stations were calculated.

  20. Extraction of natural coagulant from peanut seeds for treatment of turbid water

    NASA Astrophysics Data System (ADS)

    Birima, A. H.; Hammad, H. A.; Desa, M. N. M.; Muda, Z. C.

    2013-06-01

    This study investigates the potential of peanut seeds as an environmental friendly and natural coagulant for the treatment of high turbid water. The peanut seeds have been used after oil extraction; and the active coagulation component was extracted by distilled water and salt solution of different salt concentrations. The salts used were NaCl, KNO3, KCl, NH4Cl and NaNO3. Synthetic water with 200 NTU turbidity was used. Peanut extracted with NaCl (PC-NaCl) could effectively remove 92% of the 200 NTU turbidity using only 20 mg/l, while peanut seeds extracted with distilled water (PC-DW) could remove only 31.5% of the same turbidity with the same dosage. The coagulant dosage did not affected by the concentration of the salt solution, however, residual turbidity decreased with increasing the concentration of the salt; and the relationship was found to be a second order polynomial curve with R2 of 0.9312. The other salts tested were also found to be good solvents to extract the active coagulation component with no much difference from NaCl solution in terms of efficiency.

  1. A new approach using coagulation rate constant for evaluation of turbidity removal

    NASA Astrophysics Data System (ADS)

    Al-Sameraiy, Mukheled

    2015-09-01

    Coagulation-flocculation-sedimentation processes for treating three levels of bentonite synthetic turbid water using date seeds (DS) and alum (A) coagulants were investigated in the previous research work. In the current research, the same experimental results were used to adopt a new approach on a basis of using coagulation rate constant as an investigating parameter to identify optimum doses of these coagulants. Moreover, the performance of these coagulants to meet (WHO) turbidity standard was assessed by introducing a new evaluating criterion in terms of critical coagulation rate constant (kc). Coagulation rate constants (k2) were mathematically calculated in second order form of coagulation process for each coagulant. The maximum (k2) values corresponded to doses, which were obviously to be considered as optimum doses. The proposed criterion to assess the performance of coagulation process of these coagulants was based on the mathematical representation of (WHO) turbidity guidelines in second order form of coagulation process stated that (k2) for each coagulant should be ≥ (kc) for each level of synthetic turbid water. For all tested turbid water, DS coagulant could not satisfy it. While, A coagulant could satisfy it. The results obtained in the present research are exactly in agreement with the previous published results in terms of finding optimum doses for each coagulant and assessing their performances. On the whole, it is recommended considering coagulation rate constant to be a new approach as an indicator for investigating optimum doses and critical coagulation rate constant to be a new evaluating criterion to assess coagulants' performance.

  2. [Study on the technology of treating low temperature and low turbidity water by membrane bioreactor].

    PubMed

    Zuo, Jin-Long; Cui, Fu-Yi; Yang, Wei; Wang, Huan; Zhang, Hai-Long

    2007-02-01

    For the purpose of solving the problem of low temperature and low turbidity water treatment, a pilot study was made on the treatment of Songhuajiang River raw water with low temperature and low turbidity by using membrane bioreactor (MBR) process, and the removal effects of organic pollutants and turbidity and membrane filtration period were also investigated. The results showed that the effluent turbidity was lower than 1 NTU and its removal efficiency was over 90%. The removal efficiency of permanganate index and UV254 were about 40% - 50% and 30% - 45%, respectively. The operation time of the MBR was as long as 60 - 70 hours. Adding powder activated carbon (PAC) has increased the organic pollutant removal efficiency but it has no significant influence on the membrane permeability. Therefore, the MBR was capable of effectively treating waters typically used for drinking water supplies, particularly when the low temperature and low turbidity water are treated. The effluent water quality of MBR was better than that of conventional process. PAC-MBR combined process can be used to enhance organic pollutants removal efficiency when raw water was polluted severely.

  3. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters.

    PubMed

    He, Xianqiang; Bai, Yan; Pan, Delu; Tang, Junwu; Wang, Difeng

    2012-08-27

    Instead of the conventionally atmospheric correction algorithms using the near-infrared and shortwave infrared wavelengths, an alternative practical atmospheric correction algorithm using the ultraviolet wavelength for turbid waters (named UV-AC) is proposed for satellite ocean color imagery in the paper. The principle of the algorithm is based on the fact that the water-leaving radiance at ultraviolet wavelengths can be neglected as compared with that at the visible light wavelengths or even near-infrared wavelengths in most cases of highly turbid waters due to the strong absorption by detritus and colored dissolved organic matter. The UV-AC algorithm uses the ultraviolet band to estimate the aerosol scattering radiance empirically, and it does not need any assumption of the water's optical properties. Validations by both of the simulated data and in situ data show that the algorithm is appropriate for the retrieval of the water-leaving radiance in turbid waters. The UV-AC algorithm can be used for all the current satellite ocean color sensors, and it is especially useful for those ocean color sensors lacking the shortwave infrared bands. Moreover, the algorithm can be used for any turbid waters with negligible water-leaving radiance at ultraviolet wavelength. Based on our work, we recommend the future satellite ocean color remote sensors setting the ultraviolet band to perform the atmospheric correction in turbid waters.

  4. Comparison of two online flocculation monitoring techniques for predicting turbidity removal by granular media filtration.

    PubMed

    Ball, T; Carrière, A; Barbeau, B

    2011-07-01

    Particulate matter removal in drinking water treatment via direct granular filtration requires specific flocculation conditions (a process typically termed 'high energy flocculation'). Predicting filtered water turbidity based on flocculated water characteristics remains difficult. This study has sought to establish a relationship between filtered water turbidity and the flocculated water characteristics. Flocculation oflow-turbidity raw water was evaluated online using a Photometric Dispersion Analyser (PDA) and a Dynamic Particle Analyser in a modified jar test followed by a bench-scale anthracite filter. Coagulants used were alum, PASS100 and ferric sulphate, in addition to a polydiallyldimethylammonium chloride (polyDADMAC) cationic polymer. They were dosed in warm and cold waters, and flocculated with intensities (G) from 0 to 100 s(-1). Of the two instruments selected to analyse flocculation performance, the Dynamic Particle Analyser was shown to be the most sensitive, detecting small changes in floc growth kinetics and even floc growth under low flocculation conditions which remained undetected by the PDA. Floc size was shown to be insufficient in predicting particulate matter removal by direct granular filtration as measured by turbidity, although a threshold d(v) value (50 microm) could be identified for the test conditions evaluated in this project, above which turbidity was systematically lower than 0.2 NTU.

  5. Turbidity and chlorine demand reduction using alum and moringa flocculation before household chlorination in developing countries.

    PubMed

    Preston, Kelsey; Lantagne, Daniele; Kotlarz, Nadine; Jellison, Kristen

    2010-03-01

    Over 1.1 billion people in the world lack access to improved drinking water. Diarrhoeal and other waterborne diseases cause an estimated 1.87 million deaths per year. The Safe Water System (SWS) is a household water treatment intervention that reduces diarrhoeal disease incidence among users in developing countries. Turbid waters pose a particular challenge to implementation of SWS programmes; although research shows that a 3.75 mg l(-1) sodium hypochlorite dose effectively treats turbid waters, users sometimes object to the strong chlorine taste and prefer to drink water that is more aesthetically pleasing. This study investigated the efficacy of two locally available chemical water treatments-alum and Moringa oleifera flocculation-to reduce turbidity and chlorine demand at turbidities of 10, 30, 70, 100 and 300 NTU. Both treatments effectively reduced turbidity (alum flocculation 23.0-91.4%; moringa flocculation 14.2-96.2%). Alum flocculation effectively reduced chlorine demand compared with controls at 30, 70, 100 and 300 NTU (p=0.01-0.06). Moringa flocculation increased chlorine demand to the point where adequate free chlorine residual was not maintained for 24 hours after treatment. Alum pretreatment is recommended in waters>or=30 NTU for optimum water disinfection. Moringa flocculation is not recommended before chlorination.

  6. Characteristics of turbulent kinetic energy dissipation rate and turbidity near the coast of East China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwei; Xu, Huiping; Qin, Rufu; Xu, Changwei; Fan, Daidu

    2016-09-01

    The East China Sea (ECS) has a high suspended-sediment concentration because of the influence of the Changjiang River, indicated by high turbidity in the water. Considering the islands offthe coast and the complex topography, and the strong influence of tides and wind, the coast offthe ECS is a typical region with strong oceanic mixing processes. The changes in the dynamic processes near the bottom play an important role in the control of water turbidity. The turbulent kinetic energy dissipation rate ( ɛ ) is a parameter that shows the strength of ocean mixing. This is estimated based on a structure method using current velocity that is measured by a high-frequency Acoustic Doppler Current Profiler (ADCP) from a seafloor observatory in the ECS. The results indicate strong ocean mixing processes with a mean ɛ value of 5.7×10-5 W/kg and distinct tidal variations in the dissipation rate. Conversely, the variation of the water turbidity leads to changes in the water dynamical structure near the bottom. Comparing the dissipation rate with the turbidity near the bottom boundary layer, we find that the high turbidity mimics strong ocean mixing.

  7. Propagation of a turbidity current in confined geometries

    NASA Astrophysics Data System (ADS)

    Silvestre, Nuno; Salgueiro, Dora; Franca, Mário J.; Ferreira, Rui M. L.

    2017-04-01

    Sedimentation in reservoirs due to turbidity currents originates problems of loss of storage capacity as well as clogging of outlets/intakes. These currents are driven by the difference in specific weight between the current itself and the surrounding fluid, due to the presence of particles in suspension. As a gravity current, the main properties of these phenomena has been investigated by several authors since the 1970´s. Despite driven by a simple mechanism, the propagation of these currents can become more complex owing to the influence of factors such as geometry, bed roughness and other non-uniform elements. However, the majority of conducted studies has been focused in characterising only the influence of density imbalance. The propagation of a density current in confined geometries and the influence of bed roughness is herein investigated, through laboratory experiments carried out at the Laboratory of Hydraulics and Environment of Instituto Superior Técnico, Lisbon. The density currents were generated with brine to allow for visualization and velocity measurement. The laboratory experiments comprised point and continuous release of a dense NaCl mixture with a tracer (Rhodamine WT), with a density equal to 1028 g/L, into a tank with resting freshwater (1000 g/L). The transport and the mixing processes were recorded with high-speed video. The mass distribution was obtained through a photometric methodology and the Particle Image Velocimetry (PIV) technique was used to measure the instantaneous flow velocity fields and the depth of the density current. Both methodologies were used to measure different plan views of the phenomena, including profile and top views, for different regions, near-field and far-field. Different bed roughness were studied, including smooth and rough bed. The facility was designed with the objective to generate a complex 2D flow with an advancing wave front but also shocks reflected from the walls. As the image analysis technique

  8. Nutrient variability and its influence on nitrogen processes in a highly turbid tropical estuary (Bangpakong, Gulf of Thailand).

    PubMed

    Bordalo, Adriano A; Chalermwat, Kashane; Teixeira, Catarina

    2016-07-01

    Estuarine ecosystems in SE Asia have been poorly studied when compared to other tropical environments. Important gaps exist particularly in the understanding of their biogeochemical function and contribution to global change. In this work we looked into N-turnover in the water column and sediments of the Bangpakong estuary (13°N). A seasonal sampling program was performed along the salinity gradient covering different stretches of the estuary (68km). Key physical and chemical characteristics were also monitored in order to unravel possible environmental controls. Results showed the occurrence of active denitrification in sediments (5.7-50.9nmol N-N2/(cm(3)·hr)), and water column (3.5-1044pmol N-N2/(cm(3)·hr)). No seasonal or spatial variability was detected for denitrification potential in sediment samples. However, in the water column, the denitrification activity peaked during the transition season in the downstream sites coinciding with high turbidity levels. Therefore, in that period of the year, the water column compartment may be an important contributor to nitrate reduction within the estuary. The rather low nitrification rates detected were not always measurable, probably due to the reduced oxygen content and high siltation. This study is one of the few dealing simultaneously with sediments and water column processes in a highly turbid tropical estuary. Therefore, it emerges as a valuable contribution for the understanding of the dynamics of the nitrogen cycle in tropical environments by exploring the role of estuarine N microbial activity in reducing the effects of increased nitrogen loads. Copyright © 2016. Published by Elsevier B.V.

  9. Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices.

    PubMed

    Liao, Chia-Chi; Lo, Yu-Lung

    2013-07-15

    A hybrid model comprising the differential Mueller matrix formalism and the Mueller matrix decomposition method is proposed for extracting the linear birefringence (LB), linear dichroism (LD), circular birefringence (CB), circular dichroism (CD), and depolarization properties (Dep) of turbid optical samples. In contrast to the differential-based Mueller matrix method, the proposed hybrid model provides full-range measurements of all the anisotropic properties of the optical sample. Furthermore, compared to the decomposition-based Mueller matrix method, the proposed model is insensitive to the multiplication order of the constituent basis matrices. The validity of the proposed method is confirmed by extracting the anisotropic properties of a compound chitosan-glucose-microsphere sample with LB/CB/Dep properties and two ferrofluidic samples with CB/CD/Dep and LB/LD/Dep properties, respectively. It is shown that the proposed hybrid model not only yields full-range measurements of all the anisotropic parameters, but is also more accurate and more stable than the decomposition method. Moreover, compared to the decomposition method, the proposed model more accurately reflects the dependency of the phase retardation angle and linear dichroism angle on the direction of the external magnetic field for ferrofluidic samples. Overall, the results presented in this study confirm that the proposed model has significant potential for extracting the optical parameters of real-world samples characterized by either single or multiple anisotropic properties.

  10. Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate

    DOEpatents

    Sappey, Andrew D.

    1998-04-14

    Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.

  11. Turbidity as a method of preparing sperm dilutions in the echinoid sperm/egg bioassay

    SciTech Connect

    Hall, T.J.; Haley, R.K.; Battan, K.J. )

    1993-11-01

    The use of turbidimeter for preparing sperm dilutions used in the echinoid sperm/egg bioassay was evaluated. Regression analyses of the relationship between sperm density and turbidity for the sea urchins Strongylocentrotus purpuratus and Strongylocentrotus droebachiensis and the sand dollar Dendraster excentricus indicated that although there were slope differences for each species, each coefficient of determination was highly significant. For Dendraster excentricus, triplicate hemacytometer counts over a range of turbidities as well as repeated preparations of a single sperm turbidity indicated similar variability for each. The use of the turbidimeter has time-saving advantages over conventional hemacytometer methods without sacrificing precision. Sperm dilutions can be prepared rapidly, minimizing seawater sperm preactivation before test initiation, and may therefore contribute to increased test precision.

  12. Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates.

    PubMed

    Sommaruga, Ruben; Kandolf, Georg

    2014-02-17

    Heterotrophic (phagotrophic) flagellates are key components of planktonic food webs in freshwater and marine ecosystems because they are the main consumers of bacteria. Although they are ubiquitous in aquatic ecosystems, they were numerically undetectable in turbid glacier-fed lakes. Here we show that glacial particles had negative effects on the survival and growth of heterotrophic flagellates. The effect of glacial particles was concentration-dependent and was caused by their interference with bacterial uptake rather than by physical damage. These results are the first to reveal why establishment of heterotrophic flagellates populations is hindered in very turbid glacial lakes. Because glaciers are vanishing around the world, recently formed turbid meltwater lakes represent an excellent opportunity to understand the environmental conditions that probably shaped the establishment of lake communities at the end of the last glaciation.

  13. Three dimensional cross-correlation dynamic light scattering by non-ergodic turbid media.

    PubMed

    Haro-Pérez, C; Ojeda-Mendoza, G J; Rojas-Ochoa, L F

    2011-06-28

    We investigate dynamic light scattering by non-ergodic turbid media with an adapted version of the method proposed by Pusey and van Megen [Physica A 157, 705 (1989)]. Our formulation follows the derivation of the original method by extending it to the three dimensional cross-correlation scheme (3DDLS). The main finding is an expression to obtain the dynamic structure factor from light scattering that takes into account the system turbidity and the peculiarities of the 3D geometry. From 3DDLS measurements in well-controlled solid-like systems of different turbidity, we confirm that our results can be interpreted reasonably well by the theoretical approach described here. Good agreement is found with earlier reported results on similar systems.

  14. Turbidity removal effect and surface charge shift for electrochemically treated retentate without coagulant addition.

    PubMed

    Uchibori, Toshiya; Fujino, Takeshi; Asaeda, Takashi

    2010-01-01

    An electrolytic treatment method promoting dense aggregates was developed in order to thicken retentate quickly without coagulant addition. A kaolin suspension with a turbidity of 200 NTU with a large fraction of colloidal particles was used as the retentate. Comparative testing showed that the electrolytic treatment increased aggregate size and enhanced the turbidity removal effect up to 75% on average with increasing retention time. Even though the Al ion concentration in the treated retentate was much lower than 0.1 mg/L, along with the large upward shift of surface charge, the turbidity removal effect was enhanced considerably with independently stabilized pH compared with alum as the coagulant. Comparison between the charging behaviors indicated that the electrochemical treatment generates polymeric Al hydroxide species that form adsorption layers with fewer defects, thereby inducing a stronger removal effect.

  15. Measurement of vascular permeability in spinal cord using Evans Blue spectrophotometry and correction for turbidity.

    PubMed

    Warnick, R E; Fike, J R; Chan, P H; Anderson, D K; Ross, G Y; Gutin, P H

    1995-05-01

    Vascular permeability can be visualized by Evans Blue (EB) extravasation and quantified by spectrophotometry after formamide extraction of the tissue. However, formamide extracts show significant turbidity, which may contribute to the total optical density at the wavelength of measurement (e.g., 620 lambda). We developed a simple method for estimating the component of the total optical density of a dyed specimen contributed by turbidity. Our method, which uses a determination of turbidity made at another point of the light spectrum (740 lambda), was more precise than two other EB quantification techniques. We therefore recommend it for individual correction of formamide extracts of spinal cord specimens. The application of this technique to the brain remains to be determined.

  16. Swept away by a turbidity current in Mendocino submarine canyon, California

    NASA Astrophysics Data System (ADS)

    Sumner, E. J.; Paull, C. K.

    2014-11-01

    We present unique observations and measurements of a dilute turbidity current made with a remotely operated vehicle in 400 m water depth near the head of Mendocino Canyon, California. The flow had a two-layer structure with a thin (0.5 to 30 m), relatively dense (<0.04 vol %) and fast (up to ~1.7 m/s) wedge-shaped lower layer overlain by a thicker (up to 89 m) more dilute and slower current. The fast moving lower layer lagged the slow moving, dilute flow front by 14 min, which we infer resulted from the interaction of two initial pulses. The two layers were strongly coupled, and the sharp interface between the layers was characterized by a wave-like instability. This is the first field-scale data from a turbidity current to show (i) the complex dynamics of the head of a turbidity current and (ii) the presence of multiple layers within the same event.

  17. Prey detection by great cormorant (Phalacrocorax carbo sinensis) in clear and in turbid water.

    PubMed

    Strod, Tamir; Izhaki, Ido; Arad, Zeev; Katzir, Gadi

    2008-03-01

    The scattering and absorption of light by water molecules and by suspended and dissolved matter (turbidity) degrade image transmission and, thus, underwater perception. We tested the effects on visual detection of prey size and distance (affecting apparent prey size) and of low-level water turbidity in hand-reared great cormorants (Phalacrocorax carbo sinensis) diving for natural prey (fish) in a forced-choice situation. The cormorants' detection of underwater prey relied on vision. The minimal tested subtending visual angle of the prey at detection ranged between approximately 34.2' (prey size constant; distance varied) and 9.5' (distance constant; prey size varied). For all tested distances (0.8-3.1 m) the mean detection success was significantly higher than the chance level. The probability of a correct choice declined significantly with increased distance, with Detection success=-0.034D+1.021 (where D is distance, r(2)=0.5, N=70, P<0.001). The combined effect of turbidity and distance on the probability of detection success was significant, with both variables having a negative effect: Detection success=-0.286D-0.224Tu+1.691 (where Tu is turbidity, r(2)=0.68, N=144, P<0.001). At prey detection threshold, the relationship between distance and turbidity was: D=3.79e(-4.55Tu). It is concluded that (i) the subtending angle of natural prey at detection was lower than that of resolution of square-wave, high-contrast grating and (ii) turbidity, at levels significantly lower than commonly used in behavioural experiments, had a pronounced effect on visually mediated behaviour patterns.

  18. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    USGS Publications Warehouse

    Landers, Mark N.; Sturm, Terry W.

    2013-01-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC~T) for single stormflow events was observed and quantified for a data set of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009–2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine-silt and smaller sizes (finer than 16 microns). This study shows that small changes in the often assumed stability of the PSD are significant to SSC~T relations. Changes of only 5 microns in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC~T rating that can increase error and produce bias. Observed SSC~T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity-limited for sand-sized sediment in the channel and supply-limited for fine silt and smaller sediment from the hillslope.

  19. Effects of turbidity on predation vulnerability of juvenile humpback chub to rainbow and brown trout

    USGS Publications Warehouse

    Ward, David L.; Morton-Starner, Rylan; Vaage, Benjamin M.

    2016-01-01

    Predation on juvenile native fish by introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta is considered a significant threat to the persistence of endangered humpback chub Gila cypha in the Colorado River in Grand Canyon. Diet studies of rainbow and brown trout in Glen and Grand canyons indicate that these species eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable depending on the physical conditions under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile humpback chub changes in response to changes in turbidity. In overnight laboratory trials, we exposed hatchery-reared juvenile humpback chub and bonytail Gila elegans (a surrogate for humpback chub) to adult rainbow and brown trout at turbidities ranging from 0 to 1,000 formazin nephlometric units. We found that turbidity as low as 25 formazin nephlometric units significantly reduced predation vulnerability of bonytail to rainbow trout and led to a 36% mean increase in survival (24–60%, 95% CI) compared to trials conducted in clear water. Predation vulnerability of bonytail to brown trout at 25 formazin nephlometric units also decreased with increasing turbidity and resulted in a 25% increase in survival on average (17–32%, 95% CI). Understanding the effects of predation by trout on endangered humpback chub is important when evaluating management options aimed at preservation of native fishes in Grand Canyon National Park. This research suggests that relatively small changes in turbidity may be sufficient to alter predation dynamics of trout on humpback chub in the mainstem Colorado River and that turbidity manipulation may warrant further investigation as a fisheries management tool.

  20. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    PubMed

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install.

  1. Factors contributing to hypoxia in a highly turbid, macrotidal estuary (the Gironde, France).

    PubMed

    Lanoux, Aurélie; Etcheber, Henri; Schmidt, Sabine; Sottolichio, Aldo; Chabaud, Gérard; Richard, Marion; Abril, Gwenaël

    2013-03-01

    Dissolved oxygen (DO) is a fundamental parameter of coastal water quality, as it is necessary to aquatic biota, and it provides an indication of organic matter decomposition in waters and their degree of eutrophication. We present here a 7 year time series of DO concentration and ancillary parameters (river discharge, water level, turbidity, temperature, and salinity) from the MAGEST high-frequency monitoring network, at four automated stations in the central and fluvial regions of the macrotidal Gironde Estuary, one of the largest European estuaries. The spatio-temporal variability of DO at different time scales was first related to the migration and position of the maximum turbidity zone in this extremely turbid estuary. Since 2005, the Gironde Estuary has recorded several borderline hypoxic situations (DO close to 2 mg L(-1)) and a 7 day-long hypoxic event (DO < 2 mg L(-1)) in July 2006. Summer hypoxia occurred exclusively in the fluvial, low salinity, and high turbidity sections of the estuary and was significantly more pronounced in front of the large urban area of Bordeaux (715 000 inhabitants). Detailed analysis of the data at the seasonal, neap-spring and semi-diurnal tidal time scales, reveals that hypoxia in this area occurred: (i) in the maximum turbidity zone; (ii) during the spring to neap tide transition; (iii) at highest water temperature; and (iv) at lowest river discharge; there was also evidence of an additional negative impact of sewage treatment plants of Bordeaux city. Enhancement of respiration by turbidity, temperature and inputs of domestic biodegradable organic matter and ammonia, versus renewal of waters and dispersion of reduced pollutants with the river discharge, appeared as the dominant antagonist processes that controlled the occurrence of summer hypoxia. In the context of long-term environmental changes (increase in temperature and population, decrease in summer river discharge), the occurrence of severe hypoxia could not be excluded

  2. Coagulation of highly turbid suspensions using magnesium hydroxide: effects of slow mixing conditions.

    PubMed

    Ayoub, George M; BinAhmed, Sara W; Al-Hindi, Mahmoud; Azizi, Fouad

    2014-09-01

    Laboratory experiments were carried out to study the effects of slow mixing conditions on magnesium hydroxide floc size and strength and to determine the turbidity and total suspended solid (TSS) removal efficiencies during coagulation of highly turbid suspensions. A highly turbid kaolin clay suspension (1,213 ± 36 nephelometric turbidity units (NTU)) was alkalized to pH 10.5 using a 5 M NaOH solution; liquid bittern (LB) equivalent to 536 mg/L of Mg(2+) was added as a coagulant, and the suspension was then subjected to previously optimized fast mixing conditions of 100 rpm and 60 s. Slow mixing speed (20, 30, 40, and 50 rpm) and time (10, 20, and 30 min) were then varied, while the temperature was maintained at 20.7 ± 1 °C. The standard practice for coagulation-flocculation jar test ASTM D2035-13 (2013) was followed in all experiments. Relative floc size was monitored using an optical measuring device, photometric dispersion analyzer (PDA 2000). Larger and more shear resistant flocs were obtained at 20 rpm for both 20- and 30-min slow mixing times; however, given the shorter duration for the former, the 20-min slow mixing time was considered to be more energy efficient. For slow mixing camp number (Gt) values in the range of 8,400-90,000, it was found that the mixing speed affected floc size and strength more than the time. Higher-turbidity removal efficiencies were achieved at 20 and 30 rpm, while TSS removal efficiency was higher for the 50-rpm slow mixing speed. Extended slow mixing time of 30 min yielded better turbidity and TSS removal efficiencies at the slower speeds.

  3. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    NASA Astrophysics Data System (ADS)

    Landers, Mark N.; Sturm, Terry W.

    2013-09-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC˜T) for single stormflow events was observed and quantified for a dataset of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009-2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine silt and smaller sizes (finer than 16 µm). This study shows that small changes in the often assumed stability of the PSD are significant to SSC˜T relations. Changes of only 5 µm in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC˜T rating that can increase error and produce bias. Observed SSC˜T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity limited for sand-sized sediment in the channel and supply limited for fine silt and smaller sediment from the hillslope.

  4. Dihydropyridine type calcium channel blocker-induced turbid dialysate in patients undergoing peritoneal dialysis.

    PubMed

    Yoshimoto, K; Saima, S; Nakamura, Y; Nakayama, M; Kubo, H; Kawaguchi, Y; Nishitani, H; Nakamura, Y; Yasui, A; Yokoyama, K; Kuriyama, S; Shirai, D; Kugiyama, A; Hayano, K; Fukui, H; Horigome, I; Amagasaki, Y; Tsubakihara, Y; Kamekawa, T; Ando, R; Tomura, S; Okamoto, R; Miwa, S; Koyama, T; Echizen, H

    1998-08-01

    We previously reported that manidipine, a new dihydropyridine type calcium channel blocker, produced chylous peritoneal dialysate being visually indistinguishable from infective peritonitis in 5 patients undergoing continuous ambulatory peritoneal dialysis (CAPD) [Yoshimoto et al. 1993]. To study whether such an adverse drug reaction would also be elicited by other commonly prescribed calcium channel blockers in CAPD patients, we have conducted postal inquiry to 15 collaborating hospitals and an institutional survey in International Medical Center of Japan as to the possible occurrence of calcium channel blocker-associated non-infective, turbid peritoneal dialysate in CAPD patients. Our diagnostic criteria for drug-induced turbidity of dialysate as a) it developed within 48 h after the administration of a newly introduced calcium channel blocker to the therapeutic regimen, b) absence of clinical symptoms of peritoneal inflammation (i.e., pyrexia, abdominal pain, nausea or vomiting), c) the fluid containing normal leukocyte counts and being negative for bacterial and fungal culture of the fluid, and d) it disappeared shortly after the withdrawal of the assumed causative agent. Results showed that 19 out of 251 CAPD patients given one of the calcium channel blockers developed non-infective turbid peritoneal dialysis that fulfilled all the above criteria. Four calcium channel blockers were suspected to be associated with the events: benidipine [2 out of 2 (100%) patients given the drug], manidipine [15 out of 36 (42%) patients], nisoldipine [1 out of 11 (9%) patients] and nifedipine [1 out of 159 (0.6%)] in descending order of frequency. None of the patients who received nicardipine, nilvadipine, nitrendipine, barnidipine and diltiazem (25, 7, 2, 1 and 8 patients, respectively) exhibited turbid dialysate. In conclusion, we consider that certain dihydropyridine type calcium channel blockers would cause turbid peritoneal dialysate being similar to that observed in

  5. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.

    PubMed

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P; Gowda, Ashok

    2014-11-15

    In this paper, we describe the concept of a novel implantable fiber-optic Turbidity Affinity Sensor (TAS) and report on the findings of its in-vitro performance for continuous glucose monitoring. The sensing mechanism of the TAS is based on glucose-specific changes in light scattering (turbidity) of a hydrogel suspension consisting of small particles made of crosslinked dextran (Sephadex G100), and a glucose- and mannose-specific binding protein - Concanavalin A (ConA). The binding of ConA to Sephadex particles results in a significant turbidity increase that is much greater than the turbidity contribution by the individual components. The turbidity of the TAS was measured by determining the intensity of light passing through the suspension enclosed within a small semi-permeable hollow fiber (OD: 220 μm, membrane thickness: 20 μm, molecular weight cut-off: 10 kDa) using fiber optics. The intensity of measured light of the TAS was proportional to the glucose concentration over the concentration range from 50mg/dL to 400mg/dL in PBS and whole blood at 37°C (R>0.96). The response time was approximately 4 min. The stability of the glucose response of the TAS decreased only slightly (by 20%) over an 8-day study period at 37°C. In conclusion, this study demonstrated proof-of-concept of the TAS for interstitial glucose monitoring. Due to the large signal amplitude of the turbidity change, and the lack of need for wavelength-specific emission and excitation filters, a very small, robust and compact TAS device with an extremely short optical pathlength could be feasibly designed and implemented for in-vivo glucose monitoring in people with diabetes.

  6. Effect of substituted hydroxyl groups in the changes of solution turbidity in the oxidation of aromatic contaminants.

    PubMed

    Villota, N; Jm, Lomas; Lm, Camarero

    2017-01-01

    This paper deals with the changes of turbidity that are generated in aqueous solutions of phenol when they are oxidized by using different Fenton technologies. Results revealed that if the Fenton reaction was promoted with UV light, the turbidity that was generated in the water doubled. Alternatively, the use of ultrasonic waves produced an increase in turbidity which initially proceeded slowly, reaching intensities eight times higher than in the conventional Fenton treatment. As well, the turbidity showed a high dependence on pH. It is therefore essential to control acidity throughout the reaction. The maximum turbidity was generated when operating at pH = 2.0, and it slowly decreased with increasing to a value of pH = 3.0, at which the turbidity was the lowest. This result was a consequence of the presence of ferric ions in solution. At pH values greater than 3.5, the turbidity increased almost linearly until at pH = 5.0 reached its maximum intensity. In this range, ferrous ions may generate an additional contribution of radicals that promote the degradation of the phenol species that produce turbidity. Turbidity was enhanced at ratios R = 4.0 mol H2O2/mol C6H6O. This value corresponds to the stoichiometric ratio that leads to the production of turbidity-precursor species. Therefore, muconic acid would be a species that generate high turbidity in solution according to its isomerism. Also, the results revealed that the turbidity is not a parameter to which species contribute additively since interactions may occur among species that would enhance their individual contributions to it. Analyzing the oxidation of phenol degradation intermediates, the results showed that meta-substituted compounds (resorcinol) generate high turbidity in the wastewater. The presence of polar molecules, such as muconic acid, would provide the structural features that are necessary for resorcinol to act as a clip between two carboxylic groups, thus establishing directional

  7. Turbidity anomaly and probability of slope failure following the 2011 Great Tohoku Earthquake

    NASA Astrophysics Data System (ADS)

    Noguchi, T.; Tanikawa, W.; Hirose, T.; Lin, W.; Kawagucci, S.; Yoshida, Y.; Honda, M. C.; Takai, K.; Kitazato, H.; Okamura, K.

    2011-12-01

    Turbidity anomaly at seafloor is often observed immediately after earthquakes (Thunnell et al., 1999: Mikada et al., 2006). Such turbidity anomaly at deepsea is thought to be results of the seismically induced landslides at trench slopes. Turbidity distribution was observed using turbidity meter (Seapoint Sensors Inc.) at the mainshock area of the 2011 off the Pacific coast Tohoku earthquake (Mw 9.0) one month after the event. Turbidity anomalies, in which the turbidity increased with depth, were observed near the seafloor at all four sites. The thickness of the anomalous zones increased with water depth; the thickness at station B, the deepest measurement site, was about 1300 m above the seafloor and the average particle concentration which is equivalent to turbidity in the zone was 1.5 mg/L. We analyzed the mineral composition and grain size distribution of the suspended particle collected one month after the earthquake and shallow sediment core collected before the earthquake at the mainshock area. The grain size of the suspended particles was ranged from 1 to 300μm, and XRD analysis confirmed the presence of chlorite, illite, quartz, and albite in the particles. These characteristics are similar to the subsurface sediment material. Earlier studies (Prior, 1984) have introduced a mathematical model for analysis of submarine slope stability that include the effect of vertical and horizontal seismic accelerations caused by the earthquake. We analyzed slope instability on the basis of their model using the physical properties (density and shear strength) of the shallow sediment core materials and the acceleration of 2011 off the Pacific coast Tohoku earthquake. Our results show that a submarine landslide can be induced by a very large ground acceleration, as high as 3 m/s2, even if the sediment layer on the sliding surface is not very thick. We interpret the high turbidity observed one month after the Tohoku earthquake as the result of thin submarine landsliding

  8. Influence of temperature and turbidity on water COD detection by UV absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Kun-peng; Bi, Wei-hong; Zhang, Qi-hang; Fu, Xing-hu; Wu, Guo-qing

    2016-11-01

    Ultraviolet (UV) absorption spectroscopy is used to detect the concentration of water chemical oxygen demand (COD). The UV absorption spectra of COD solutions are analyzed qualitatively and quantitatively. The partial least square (PLS) algorithm is used to model COD solution and the modeling results are compared. The influence of environmental temperature and turbidity is analyzed. These results show that the influence of temperature on the predicted value can be ignored. However, the change of turbidity can affect the detection results of UV spectra, and the COD detection error can be effectively compensated by establishing the single-element regression model.

  9. Focusing light into desired patterns through turbid media by feedback-based wavefront shaping

    NASA Astrophysics Data System (ADS)

    Wan, Lipeng; Chen, Ziyang; Huang, Huiling; Pu, Jixiong

    2016-07-01

    We demonstrate that the focusing of light into desired patterns through turbid media can be realized using feedback-based wavefront shaping. Three desired focused patterns—a triangle, a circle, and a rectangle—are used as examples to study this ability. During the process of modulating scattered light, the Pearson's correlation coefficient is introduced as a feedback signal. It is found that the speckle field formed by the turbid media gradually transforms into the desired pattern through a process of modulation of the input beam wave front. The proposed approach has potential applications in biomedical treatment and laser material processing.

  10. Optical imaging through turbid media using a degenerate-four-wave mixing correlation time gate

    SciTech Connect

    Bigio, I.J.; Strauss, C.E.M.; Zerkle, D.K.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have demonstrated the use of a degenerate-four-wave-mixing time gate to allow imaging through turbid media, with potential application to tissue imaging. A near infrared (NIR), long-pulse Cr{sup +3}:Li{sub 2}SrAlF{sub 6} laser was used as the light source (during most the project) for imaging through clear and turbid media. Preliminary experiments were also carried out with a continuous diode laser.

  11. Influence of dissolved organic materials on turbid water optical properties and remote-sensing reflectance

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Harriss, R. C.; Usry, J. W.; Poole, L. R.; Houghton, W. M.; Morris, W. D.; Gurganus, E. A.

    1982-01-01

    The effects of dissolved organic materials on turbid-water optical properties are assessed, by means of field measurements and laboratory simulations in which upwelled reflectance, attenuation, absorption, and backscatter spectral properties at wavelengths from 450 to 800 nm are examined in relation to water chemistry. The data show that dissolved organic materials decrease upwelled reflectance from turbid waters, and that the decrease in reflectance is a nonlinear function of concentration with the largest gradients at low carbon concentrations, depending on wavelength. Upwelled reflectance is found to be highly correlated with two backscatter-absorption parameters used in some optical models, which are nonlinear with dissolved organic material concentration change.

  12. Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media

    SciTech Connect

    Wang, L.; Jacques, S.L.; Zhao, X.

    1995-03-15

    Continuous-wave ultrasonic modulation of scattered laser light has been used to image objects in tissue-simulating turbid media for what is to our knowledge the first time. The ultrasound wave focused into the turbid media modulates the laser light passing through the ultrasonic focal zone. The modulated laser light collected by a photomultiplier tube reflects the local mechanical and optical properties in the focal zone. Buried objects are located with millimeter resolution by scanning and detecting alterations of the modulated optical signal. This technique has the potential to provide a noninvasive, nonionizing, inexpensive diagnostic tool for diseases such as breast cancer.

  13. Turbidity and salinity affect feeding performance and physiological stress in the endangered delta smelt.

    PubMed

    Hasenbein, Matthias; Komoroske, Lisa M; Connon, Richard E; Geist, Juergen; Fangue, Nann A

    2013-10-01

    Coastal estuaries are among the most heavily impacted ecosystems worldwide with many keystone fauna critically endangered. The delta smelt (Hypomesus transpacificus) is an endangered pelagic fish species endemic to the Sacramento-San Joaquin Estuary in northern California, and is considered as an indicator species for ecosystem health. This ecosystem is characterized by tidal and seasonal gradients in water parameters (e.g., salinity, temperature, and turbidity), but is also subject to altered water-flow regimes due to water extraction. In this study, we evaluated the effects of turbidity and salinity on feeding performance and the stress response of delta smelt because both of these parameters are influenced by water flows through the San Francisco Bay Delta (SFBD) and are known to be of critical importance to the completion of the delta smelt's life cycle. Juvenile delta smelt were exposed to a matrix of turbidities and salinities ranging from 5 to 250 nephelometric turbidity units (NTUs) and 0.2 to 15 parts per thousand (ppt), respectively, for 2 h. Best statistical models using Akaike's Information Criterion supported that increasing turbidities resulted in reduced feeding rates, especially at 250 NTU. In contrast, best explanatory models for gene transcription of sodium-potassium-ATPase (Na/K-ATPase)-an indicator of osmoregulatory stress, hypothalamic pro-opiomelanocortin-a precursor protein to adrenocorticotropic hormone (expressed in response to biological stress), and whole-body cortisol were affected by salinity alone. Only transcription of glutathione-S-transferase, a phase II detoxification enzyme that protects cells against reactive oxygen species, was affected by both salinity and turbidity. Taken together, these data suggest that turbidity is an important determinant of feeding, whereas salinity is an important abiotic factor influencing the cellular stress response in delta smelt. Our data support habitat association studies that have shown greater

  14. Backscattering target detection in a turbid medium by use of circularly and linearly polarized light.

    PubMed

    Kartazayeva, S A; Ni, Xiaohui; Alfano, R R

    2005-05-15

    The polarization properties of the backscattered light from a turbid medium containing large-diameter (10.143-microm) and small-diameter (0.202-microm) spherical polystyrene particles are studied. It is shown that the difference in the polarization properties of the emerging light that originates at the target and that is backscattered from the medium allows for improvement of image contrast by use of polarized light. Based on the images obtained by the CCD camera, the polarization memory effect with circularly polarized light is demonstrated to have an advantage over the linear polarization technique in imaging a highly reflective target inside a turbid medium containing large particles.

  15. Determination of scattering functions and their effects on remote sensing of turbidity in natural waters

    NASA Technical Reports Server (NTRS)

    Ghovanlou, A. H.; Gupta, J. N.; Henderson, R. G.

    1977-01-01

    The development of quantitative analytical procedures for relating scattered signals, measured by a remote sensor, was considered. The applications of a Monte Carlo simulation model for radiative transfer in turbid water are discussed. The model is designed to calculate the characteristics of the backscattered signal from an illuminated body of water as a function of the turbidity level, and the spectral properties of the suspended particulates. The optical properties of the environmental waters, necessary for model applications, were derived from available experimental data and/or calculated from Mie formalism. Results of applications of the model are presented.

  16. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.

    PubMed

    Liebert, A; Wabnitz, H; Zołek, N; Macdonald, R

    2008-08-18

    We present an efficient Monte Carlo algorithm for simulation of time-resolved fluorescence in a layered turbid medium. It is based on the propagation of excitation and fluorescence photon bundles and the assumption of equal reduced scattering coefficients at the excitation and emission wavelengths. In addition to distributions of times of arrival of fluorescence photons at the detector, 3-D spatial generation probabilities were calculated. The algorithm was validated by comparison with the analytical solution of the diffusion equation for time-resolved fluorescence from a homogeneous semi-infinite turbid medium. It was applied to a two-layered model mimicking intra- and extracerebral compartments of the adult human head.

  17. Species of dissolved Cu and Ni and their adsorption kinetics in turbid riverwater

    NASA Astrophysics Data System (ADS)

    Herzl, V. M. C.; Millward, G. E.; Wollast, R.; Achterberg, E. P.

    2003-01-01

    Time-dependent sorption experiments have been carried out under controlled laboratory conditions, using filtered river water and particles from the turbidity maximum zone (TMZ) of the Tamar Estuary (UK). Adsorptive cathodic stripping voltammetry (ACSV) was used to determine ACSV labile and total dissolved Cu and Ni, without prior sample handling and/or pre-concentration. The ACSV metal lability is theoretically defined and is dependent upon the α-coefficient ( αMAL) of the added ACSV ligand. The fraction of labile dissolved Cu in the river water was in the range 28-41% of the total, while labile Ni was 80-90% of the total dissolved Ni. After 24 h incubation with the particles, the concentration of total dissolved Cu was reduced to half the original value and involved the removal of 40% of labile Cu and 70% of the non-labile Cu. Removal of total dissolved Ni after 24 h ranged from 40 to 60% and the uptake kinetics were dominated by adsorption of labile Ni. The kinetics of adsorption for the different chemical forms of Cu and Ni were interpreted by assuming a first-order reversible reaction between the dissolved components and the particulate phase. The chemical response time for the removal of labile Cu was 1.1 and 0.5 h for non-labile Cu. The chemical response time for labile Ni was in a range from 0.7 to 0.3 h. The results are interpreted in terms of the role played by chemical kinetics in determining the phase transport of metals in the reactive zones of estuaries.

  18. Nitrification and its oxygen consumption along the turbid Changjiang River plume

    NASA Astrophysics Data System (ADS)

    Hsiao, S. S.-Y.; Hsu, T.-C.; Liu, J.-W.; Xie, X.; Zhang, Y.; Lin, J.; Wang, H.; Yang, J.-Y. T.; Hsu, S.-C.; Dai, M.; Kao, S.-J.

    2013-05-01

    Nitrification rates of bulk water (NRb) and particle free (NRpf, particle > 3 μm eliminated) were determined along the Changjiang River plume in August 2011 by nitrogen isotope tracer technique. Dissolved oxygen (DO), community respiration rate (CR), nutrients, dissolved organic nitrogen, total suspended matter (TSM), particulate organic carbon/nitrogen (POC/PON), acid-leachable iron and manganese on suspended particles and both archaeal and β-proteobacterial amoA abundance on size-fractioned particle (> 3 μm and 0.22-3 μm) were measured. The NRb ranged from undetectable up to 4.6 μmol L-1 d-1 peaking at salinity of ~ 29. NRb values were positively correlated with ammonia concentration suggesting the importance of substrate in nitrification. In river mouth and inner plume, NRb was much higher than NRpf indicating nitrifying bacteria is mainly particle-associated, which was supported by amoA gene abundance and regression analysis of TSM and NRb. The estimated oxygen demand of nitrification accounted for 0.4% to 317% of CR. The nitrification oxygen demand is much higher than Redfield model's estimation (23%) indicating that oxygen might not be the sole oxidant though DO was sufficient (> 58 μmol kg-1). The excess nitrification oxygen demand showed tendency to occur at lower DO samples accompanying with higher acid-leachable Fe/Mn, which implied reactive Fe3+/Mn4+ may play a role as oxidant in nitrification process. Stoichiometric calculation suggested reactive Fe on particles was even 10-fold the oxidant demand for complete ammonia oxidation along all areas of the plume. The involvement of reactive iron and manganese in nitrification process in oxygenated water further complicated the nitrogen cycling in turbid river plume.

  19. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    USGS Publications Warehouse

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  20. The effect of turbidity levels and Moringa oleifera concentration on the effectiveness of coagulation in water treatment.

    PubMed

    Nkurunziza, T; Nduwayezu, J B; Banadda, E N; Nhapi, I

    2009-01-01

    Laboratory experiments were carried out to assess the water purification and antimicrobial properties of Moringa oleifera (MO). Hence different concentrations (25 to 300 mg/L) were prepared from a salt (1 M NaCl) extract of MO fine powder and applied to natural surface water whose turbidity levels ranged from 50 to 450 NTU. The parameters determined before and after coagulation were turbidity, pH, colour, hardness, iron, manganese and Escherichia coli. The experiments showed that turbidity removal is influenced by the initial turbidity since the lowest turbidity removal of 83.2% was observed at 50 NTU, whilst the highest of 99.8% was obtained at 450 NTU. Colour removal followed the same trend as the turbidity. The pH exhibited slight variations through the coagulation. The hardness removal was very low (0 to 15%). However, high removals were achieved for iron (90.4% to 100%) and manganese (93.1% to 100%). The highest E. coli removal achieved was 96.0%. Its removal was associated with the turbidity removal. The optimum MO dosages were 150 mg/L (50 NTU and 150 NTU) and 125 mg/L for the rest of the initial turbidity values. Furthermore all the parameters determined satisfied the WHO guidelines for drinking water except for E. coli.

  1. Virus-Bacterium Coupling Driven by both Turbidity and Hydrodynamics in an Amazonian Floodplain Lake ▿ † ‡

    PubMed Central

    Barros, Nathan; Farjalla, Vinicius F.; Soares, Maria C.; Melo, Rossana C. N.; Roland, Fábio

    2010-01-01

    The importance of viruses in aquatic ecosystem functioning has been widely described. However, few studies have examined tropical aquatic ecosystems. Here, we evaluated for the first time viruses and their relationship with other planktonic communities in an Amazonian freshwater ecosystem. Coupling between viruses and bacteria was studied, focusing both on hydrologic dynamics and anthropogenic forced turbidity in the system (Lake Batata). Samples were taken during four hydrologic seasons at both natural and impacted sites to count virus-like particles (VLP) and bacteria. In parallel, virus-infected bacteria were identified and quantified by transmission electron microscopy (TEM). Viral abundance ranged from 0.5 × 107 ± 0.2 × 107 VLP ml−1 (high-water season, impacted site) to 1.7 × 107 ± 0.4 × 107 VLP ml−1 (low-water season, natural site). These data were strongly correlated with the bacterial abundance (r2 = 0.84; P < 0.05), which ranged from 1.0 × 106 ± 0.5 × 106 cells ml−1 (high water, impacted site) to 3.4 × 106 ± 0.7 × 106 cells ml−1 (low water, natural site). Moreover, the viral abundance was weakly correlated with chlorophyll a, suggesting that most viruses were bacteriophages. TEM quantitative analyses revealed that the frequency of visibly infected cells was 20%, with 10 ± 3 phages per cell section. In general, we found a low virus-bacterium ratio (<7). Both the close coupling between the viral and bacterial abundances and the low virus-bacterium ratio suggest that viral abundance tends to be driven by the reduction of hosts for viral infection. Our results demonstrate that viruses are controlled by biological substrates, whereas in addition to grazing, bacteria are regulated by physical processes caused by turbidity, which affect underwater light distribution and dissolved organic carbon availability. PMID:20833790

  2. Probing neural tissue with airy light-sheet microscopy: investigation of imaging performance at depth within turbid media

    NASA Astrophysics Data System (ADS)

    Nylk, Jonathan; McCluskey, Kaley; Aggarwal, Sanya; Tello, Javier A.; Dholakia, Kishan

    2017-02-01

    Light-sheet microscopy (LSM) has received great interest for fluorescent imaging applications in biomedicine as it facilitates three-dimensional visualisation of large sample volumes with high spatiotemporal resolution whilst minimising irradiation of, and photo-damage to the specimen. Despite these advantages, LSM can only visualize superficial layers of turbid tissues, such as mammalian neural tissue. Propagation-invariant light modes have played a key role in the development of high-resolution LSM techniques as they overcome the natural divergence of a Gaussian beam, enabling uniform and thin light-sheets over large distances. Most notably, Bessel and Airy beam-based light-sheet imaging modalities have been demonstrated. In the single-photon excitation regime and in lightly scattering specimens, Airy-LSM has given competitive performance with advanced Bessel-LSM techniques. Airy and Bessel beams share the property of self-healing, the ability of the beam to regenerate its transverse beam profile after propagation around an obstacle. Bessel-LSM techniques have been shown to increase the penetration-depth of the illumination into turbid specimens but this effect has been understudied in biologically relevant tissues, particularly for Airy beams. It is expected that Airy-LSM will give a similar enhancement over Gaussian-LSM. In this paper, we report on the comparison of Airy-LSM and Gaussian-LSM imaging modalities within cleared and non-cleared mouse brain tissue. In particular, we examine image quality versus tissue depth by quantitative spatial Fourier analysis of neural structures in virally transduced fluorescent tissue sections, showing a three-fold enhancement at 50 μm depth into non-cleared tissue with Airy-LSM. Complimentary analysis is performed by resolution measurements in bead-injected tissue sections.

  3. Near-infrared center-of-intensity time gated imaging for detection of a target in a highly scattering turbid medium.

    PubMed

    Wang, Yimin; Gayen, S K; Alrubaiee, M; Alfano, R R

    2012-08-01

    A near-infrared optical imaging approach for locating a target embedded in a turbid medium is introduced. The target localization is based on an analysis of the spatial variation of the transmitted-light intensity distribution for illumination at different positions on the sample boundary. The approach is used to detect, locate and generate images of absorbing targets embedded inside model scattering media of thickness approximately 50 times the transport mean free path of the medium, as well as, of ex vivo biological tissue specimens.

  4. Burdigalian turbid water patch reef environment revealed by larger benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Novak, V.; Renema, W.; Throughflow-project

    2012-04-01

    Ancient isolated patch reefs outcropping from siliciclastic sediments are a trademark for the Miocene carbonate deposits occurring in East Kalimantan, Indonesia. They develop in transitional shelf sediments deposited between deltaic and deep marine deposits (Allen and Chambers, 1998). The Batu Putih Limestone (Wilson, 2005) and similar outcrops in adjacent areas have been characterized as shallow water carbonates influenced by high siliciclastic input, showing low relief patch reefs in turbid waters. Larger benthic foraminifera (LBF) are excellent markers for biochronology and paleoenvironmental reconstruction. This study aims to reveal age and paleoenvironment of a shallow water carbonate patch reef developed in mixed depositional system by using LBF and microfacies analysis. The studied section is located near Bontang, East Kalimantan, and is approximately 80 m long and 12 m high. It is placed within Miocene sediments in the central part of the Kutai Basin. Patch reef and capping sediments were logged through eight transects along section and divided into nine different lithological units from which samples were collected. Thin sections and isolated specimens of larger benthic foraminifera were analyzed and recognized to species level (where possible) providing age and environmental information. Microfacies analysis of thin sections included carbonate classification (textural scheme of Dunham, 1962) and assemblage composition of LBF, algae and corals relative abundance. Three environmentally indicative groups of LBF were separated based on test morphology, habitat or living relatives (Hallock and Glenn, 1986). Analysed foraminifera assemblage suggests Burdigalian age (Tf1). With use of microfacies analysis nine successive lithological units were grouped into five facies types. Paleoenvironmental reconstruction of LBF fossil assemblage indicate two cycles of possible deepening recorded in the section. Based on high muddy matrix ratio in analyzed thin-sections we

  5. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration...

  6. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements... H system serving fewer than 10,000 people and utilizing conventional filtration or direct...

  7. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration...

  8. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration...

  9. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements... H system serving fewer than 10,000 people and utilizing conventional filtration or direct...

  10. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration...

  11. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements... H system serving fewer than 10,000 people and utilizing conventional filtration or direct...

  12. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration...

  13. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements... H system serving fewer than 10,000 people and utilizing conventional filtration or direct...

  14. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements... H system serving fewer than 10,000 people and utilizing conventional filtration or direct...

  15. Are viruses important in the plankton of highly turbid glacier-fed lakes?

    PubMed Central

    Drewes, Fabian; Peter, Hannes; Sommaruga, Ruben

    2016-01-01

    Viruses are ubiquitous in aquatic ecosystems where they significantly contribute to microbial mortality. In glacier-fed turbid lakes, however, viruses not only encounter low host abundances, but also a high number of suspended mineral particles introduced by glacier meltwaters. We hypothesized that these particles potentially lead to unspecific adsorption and removal of free virus from the plankton, and thus significantly reduce their abundance in this type of lake. We followed the distribution of free virus-like particles (VLP) during the ice-free season across a turbidity gradient in four alpine lakes including one adjacent clear system where hydrological connectivity to the receding glacier is already lost. In the glacier-fed turbid lakes, VLP abundance increased with distance to the glacier, but the highest numbers were observed in the clear lake by the end of August, coinciding with the maximum in prokaryotic abundance. Our results suggest that viral loss by attachment to particles is less important than expected. Nevertheless, the relatively lower variability in VLP abundance and the lower virus-to-prokaryote ratio found in the turbid lakes than in the clear one point to a rather low temporal turnover and thus, to a reduced impact on microbial communities. PMID:27094854

  16. Turbidity alters pre-mating social interactions between native and invasive stream fishes

    USGS Publications Warehouse

    Glotzbecker, Gregory J.; Ward, Jessica L.; Walters, David M.; Blum, Michael J.

    2015-01-01

    These findings suggest that elevated turbidity can increase pre-mating social interactions between native and invasive species, which could result in greater hybridisation and promote the genetic assimilation of native species following species introductions. Thus, integrating knowledge of species behaviour into conservation and management planning can help deter the establishment and spread of invasive species.

  17. Imaging quality comparison of two typical methods for imaging through turbid media

    NASA Astrophysics Data System (ADS)

    Shao, Xiaopeng; Wu, Tengfei; Gong, Changmei

    2014-06-01

    Due to the multiple scattering of light in turbid media such as biological tissues, the image of target becomes highly deteriorated and even disappears entirely. Only speckle patterns, which result from multiple scattering and interference in turbid media and contain disordered objects-information, can be acquired. Two typical methods to recover the image of target behind a turbid medium are described and simulated in this paper. The first approach is based on image correlation and wavefront shaping technique, in which the Pearson correlation coefficient is applied as a cost function for the optimization and genetic algorithm (GA) is employed to control a spatial light modulator to generate the optimal wavefront to maximize the cost function. For the second approach, the target images can be reconstructed from the speckle patterns with total variation minimization by augmented Lagrangian and alternating direction algorithms (TVAL3). Circular Gaussian distribution model and Fresnel diffraction theory are exploited in our simulations to describe turbid media and light propagation between optical devices, respectively. The anti-noise capabilities of the two methods are analyzed to demonstrate their stabilities applied in low signal-to-noise environment. This work will be beneficial to the fields of microscopic imaging and biomedical imaging in micro/nano scale.

  18. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity

    PubMed Central

    Omar, Ahmad Fairuz Bin; MatJafri, Mohd Zubir Bin

    2009-01-01

    Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ. PMID:22408507

  19. Turbidity changes during culvert to bridge upgrades at Carmen Creek, Idaho

    Treesearch

    Randy B. Foltz; Breann Westfall; Ben Kopyscianski

    2012-01-01

    Carmen Creek, a tributary to the Salmon River in Idaho, was the site of two culvert to bridge upgrade operations in September and October 2011. Both locations were upgraded from multiple, large diameter culverts to bridge crossings. Turbidity readings measured at the end of the mixing zone during the nearly three weeks of upgrade construction activities did not exceed...

  20. Copepods in turbid shallow soda lakes accumulate unexpected high levels of carotenoids.

    PubMed

    Schneider, Tobias; Herzig, Alois; Koinig, Karin A; Sommaruga, Ruben

    2012-01-01

    Carotenoids are protective pigments present in many aquatic organisms that reduce the photooxidative stress induced by short-wavelenght solar radiation, yet increase their susceptibility to predators. Arctodiaptomus spinosus, a calanoid copepod typically found in many fishless shallow soda lakes, shows large between-lake differences in pigmentation. Here, we attribute these differences to the environmental state of these ecosystems, namely, 'dark water' lakes with submersed vegetation and turbid 'white' lakes lacking macrophytes. Copepod carotenoid concentration in the turbid 'white' lakes was significantly (about 20-fold) higher than in the 'dark water' ones, although the latter systems were characterized by higher transparency. In addition, males had on a dry weight basis around three times higher carotenoid concentrations than females. Mycosporine-like amino acids (direct UV screening substances) were found in all cases, but in low concentration. The environmental conditions in these ecosystems were largely shaped by the presence/absence of submersed macrophytes Thus, in the turbid lakes, the strong wind-driven mixis allows for copepods to be brought to the surface and being exposed to solar radiation, whereas in 'dark water' ones, macrophytes reduce water turbulence and additionally provide shelter. Our results explain the counter-intuitive notion of strong red pigmentation in copepods from a turbid ecosystem and suggest that factors other than high UV transparency favor carotenoid accumulation in zooplankton.

  1. Numerical modeling of submarine turbidity currents over erodible beds using unstructured grids

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Infante Sedano, Julio Ángel; Mohammadian, Abdolmajid

    2017-05-01

    Second-order central-upwind schemes proposed by Bryson et al. (2011) for the Saint-Venant system have two very attractive properties: well-balanced and positivity preserving, which are originally designed for constant fluid density and fixed beds in Bryson et al. (2011). For the turbidity current system with variable density over erodible beds, such desired properties can be obtained by developing a well-balanced and positivity preserving central-upwind scheme following the ideas in Bryson et al. (2011). To this end, in this paper, a coupled numerical model for two-dimensional depth-averaged turbidity current system over erodible beds is developed using finite volume method on triangular grids. The proposed numerical model is second-order accurate in space using piecewise linear reconstruction and third-order accurate in time using a strong stability preserving Runge-Kutta method. Applying the central-upwind method to estimate numerical fluxes through cell interfaces, the model can successfully deal with sharp gradients in turbidity flows. The developed numerical model can preserve the well-balanced property over irregular bottom, guarantee the non-negative turbidity current depth over erodible beds, and preserving the positivity of suspended sediment. These features of the developed numerical model and its robustness and accuracy are demonstrated in several numerical tests.

  2. The role of upstream-migrating knick points in turbidity current channels

    NASA Astrophysics Data System (ADS)

    Cartigny, Matthieu; Hughes Clarke, John; Stacey, Cooper; Hage, Sophie; Parsons, Daniel; Talling, Peter; Azpiroz, Maria; Clare, Michael; Eggenhuisen, Joris; Hizzett, Jamie; Hunt, James; Lintern, Gwyn; Sumner, Esther; Vellinga, Age; Vendettouli, Daniella; Wood, Jon

    2017-04-01

    High-resolution bathymetric images of turbidity current channels reveal the existence of a wide range of bedforms within these systems. Knick points are the dominant kilometre-scale bedform in most sandy systems. These knick points are thought to initiate and maintain submarine channels, and they would therefore play a key role the transport of sediment and nutrients to the deep sea. In contrast to their important role very little is known about knick points. What drives the formation of a knick point? Are they remnant headwalls of landslide, or are they related to supercritical turbidity currents? Are they a purely erosional feature? Do they have any preservation potential in the rock record? Here we present data collected from knick points in an active turbidity current channel on a fjord floor in British Colombia, Canada. These data show how trains of knick points migrate several hundred metres upstream every year. We use repeat surveys to show how knick points are a combined erosional-depositional feature. Furthermore, we have deployed several instruments over the knick points to study how the knick points interact with the passing turbidity currents. Finally, we use repeat surveys and cores to explore the potential architecture and facies association associated to knick points.

  3. Daily variations in effluent water turbidity and diarrhoeal illness in a Russian city.

    PubMed

    Egorov, Andrey I; Naumova, Elena N; Tereschenko, Andrey A; Kislitsin, Victor A; Ford, Timothy E

    2003-03-01

    To assess an association between temporal variations in drinking water quality and gastrointestinal (GI) illness, a cohort study involving 100 randomly selected families (367 individuals) was conducted in the city of Cherepovets, Russia from June through November 1999. Participants maintained daily diaries of gastrointestinal symptoms, water consumption and other behavioural exposure variables, while daily effluent water quality data were provided by the water utility. The cumulative incidence rate of self-reported gastrointestinal diseases, 1.7 cases per person-year, was almost two orders of magnitude higher than that of officially reported GI infections in the city. An interquartile range increase in effluent water turbidity of 0.8 Nephelometric Turbidity Units was associated with a relative risk of self-reported GI illness of 1.47 (95% Confidence Interval 1.16, 1.86) at a lag of 2 days after control for daily rate of consumption of non-boiled tap water, behavioural covariates, day of the week and a seasonally-related linear trend. In the analysis by subsets of study participants stratified by non-boiled tap water consumption, no statistically significant associations between turbidity and GI illness were found for the study participants who always boiled their drinking water. For individuals who drank non-boiled tap water, statistically significant associations between turbidity and GI illness were detected at lags 1, 2 and 7 days.

  4. UV-induced DNA damage in Cyclops abyssorum tatricus populations from clear and turbid alpine lakes

    PubMed Central

    Tartarotti, Barbara; Saul, Nadine; Chakrabarti, Shumon; Trattner, Florian; Steinberg, Christian E. W.; Sommaruga, Ruben

    2014-01-01

    Zooplankton from clear alpine lakes thrive under high levels of solar UV radiation (UVR), but in glacially turbid ones they are more protected from this damaging radiation. Here, we present results from experiments done with Cyclops abyssorum tatricus to assess UV-induced DNA damage and repair processes using the comet assay. Copepods were collected from three alpine lakes of differing UV transparency ranging from clear to glacially turbid, and exposed to artificial UVR. In addition, photoprotection levels [mycosporine-like amino acids (MAAs) and lipophilic antioxidant capacity] were estimated in the test populations. Similar UV-induced DNA damage levels were observed among the copepods from all lakes, but background DNA damage (time zero and dark controls) was lowest in the copepods from the glacially turbid lake, resulting in a higher relative DNA damage accumulation. Most DNA strand breaks were repaired after recovery in the dark. Low MAA concentrations were found in the copepods from the glacially turbid lake, while the highest levels were observed in the population from the most UV transparent lake. However, the highest lipophilic antioxidant capacities were measured in the copepods from the lake with intermediate UV transparency. Photoprotection and the ability to repair DNA damage, and consequently reducing UV-induced damage, are part of the response mechanisms in zooplankton to changes in water transparency caused by glacier retreat. PMID:24616551

  5. Wavefront analysis of the laser beam propagating through a turbid medium

    SciTech Connect

    Galaktionov, I V; Sheldakova, J V; Kudryashov, A V

    2015-02-28

    Laser beam propagation through a scattering suspension of polystyrene microspheres in distilled water is studied theoretically and experimentally. The dependence of wavefront aberrations on the particle concentration is investigated. The existence of symmetric wavefront aberrations of the laser beam passed through a turbid medium is shown. (light scattering)

  6. Precision cleaning verification of nonvolatile residues by using water, ultrasonics, and turbidity analyses

    NASA Astrophysics Data System (ADS)

    Skinner, S. Ballou

    1991-11-01

    Chlorofluorocarbons (CFC's) in the atmosphere are believed to present a major environmental problem because they are able to interact with and deplete the ozone layer. NASA has been mandated to replace chlorinated solvents in precision cleaning, cleanliness verification, and degreasing of aerospace fluid systems hardware and ground support equipment. KSC has a CFC phase-out plan which provides for the elimination of over 90 percent of the CFC and halon use by 1995. The Materials Science Laboratory and KSC is evaluating four analytical methods for the determination of nonvolatile residues removal by water: (1) infrared analyses using an attenuated total reflectance; (2) surface tension analyses, (3) total organic content analyses, and (4) turbidity analyses. This research project examined the ultrasonic-turbidity responses for 22 hydrocarbons in an effect to determine: (1) if ultrasonics in heated water (70 C) will clean hydrocarbons (oils, greases, gels, and fluids) from aerospace hardware; (2) if the cleaning process by ultrasonics will simultaneously emulsify the removed hydrocarbons in the water; and (3) if a turbidimeter can be used successfully as an analytical instrument for quantifying the removal of hydrocarbons. Sixteen of the 22 hydrocarbons tested showed that ultrasonics would remove it at least 90 percent of the contaminated hydrocarbon from the hardware in 10 minutes or less giving a good ultrasonic-turbidity response. Six hydrocarbons had a lower percentage removal, a slower removal rate, and a marginal ultrasonic-turbidity response.

  7. Effects on the Mount St. Helens volcanic cloud on turbidity at Ann Arbor, Michigan

    SciTech Connect

    Ryznar, E.; Weber, M.R.; Hallaron, T.S.

    1981-11-01

    Measurements of turbidity were made at the University of Michigan irradiance and metorlogical measurement facility just prior to, during and after the passage of the volcanic cloud from the 18 May 1980 eruption of Mount St. Helens. They were made with a Volz sunphotometer at wavelengths of 500 and 880 nm.

  8. Preliminary modeling of turbidity currents associated with the 2011 Tohoku-oki Earthquake

    NASA Astrophysics Data System (ADS)

    Kioka, Arata; Strasser, Michael; Moernaut, Jasper; Schwestermann, Tobias; Ikehara, Ken; Kanamatsu, Toshiya; McHugh, Cecilia M.

    2017-04-01

    The 2011 Tohoku-oki earthquake generated among the largest volume of sediment transportation associated with coseismic shaking, tsunamis, and submarine landslides. Several recent studies of sediment cores, and instrumental observations revealed that the 2011 earthquake mobilized sediments to transport along the slope and over to the Japan Trench through single or multi-flow turbidity currents. Yet, source location and flow pathways of turbidity currents associated with the 2011 earthquake, and the resulting spatial distribution of deposit thickness remain unknown. Here we model three-dimensional depth-averaged turbidity currents offshore Tohoku area, to investigate possible scenarios of source location, flow size, and pathways of turbidity currents generated by the 2011 earthquake. Within the studied model scheme, the model is theoretically hampered to produce reliable results because of large uncertainties in parameters including seabed conditions and flow properties. In our modelling, sediment cores and subbottom profiles acquired from research cruises after the 2011 earthquake (e.g., R/V Sonne SO251A), and previous results are used to constrain most of the parameters. We also test a sensitivity of the parameters in order to examine how the sediment dynamics in Japan Trench changes with different properties of the flow. Our scheme also helps further our understanding of turbidite system produced by old giant earthquakes.

  9. Copepods in Turbid Shallow Soda Lakes Accumulate Unexpected High Levels of Carotenoids

    PubMed Central

    Schneider, Tobias; Herzig, Alois; Koinig, Karin A.; Sommaruga, Ruben

    2012-01-01

    Carotenoids are protective pigments present in many aquatic organisms that reduce the photooxidative stress induced by short-wavelenght solar radiation, yet increase their susceptibility to predators. Arctodiaptomus spinosus, a calanoid copepod typically found in many fishless shallow soda lakes, shows large between-lake differences in pigmentation. Here, we attribute these differences to the environmental state of these ecosystems, namely, ‘dark water’ lakes with submersed vegetation and turbid ‘white’ lakes lacking macrophytes. Copepod carotenoid concentration in the turbid ‘white’ lakes was significantly (about 20-fold) higher than in the ‘dark water’ ones, although the latter systems were characterized by higher transparency. In addition, males had on a dry weight basis around three times higher carotenoid concentrations than females. Mycosporine-like amino acids (direct UV screening substances) were found in all cases, but in low concentration. The environmental conditions in these ecosystems were largely shaped by the presence/absence of submersed macrophytes Thus, in the turbid lakes, the strong wind-driven mixis allows for copepods to be brought to the surface and being exposed to solar radiation, whereas in ‘dark water’ ones, macrophytes reduce water turbulence and additionally provide shelter. Our results explain the counter-intuitive notion of strong red pigmentation in copepods from a turbid ecosystem and suggest that factors other than high UV transparency favor carotenoid accumulation in zooplankton. PMID:22916208

  10. Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty

    EPA Science Inventory

    Annual total suspended solid (TSS) loads in the Mae Sa Catchment in northern Thailand, determined with an automated, turbidity-based monitoring approach, were approximately 62,000, 33,000, and 14,000 Mg during the three years of observation. These loads were equivalent to basin y...

  11. The significance of suspended organic sediments to turbidity, sediment flux, and fish-feeding behavior

    Treesearch

    Mary Ann Madej; Margaret Wilzbach; Kenneth Cummins; Colleen Ellis; Samantha Hadden

    2007-01-01

    For over three decades, geologists, hydrologists and stream ecologists have shown significant interest in suspended load in running waters. Physical scientists have focused on turbidity, the development of sediment-rating curves and estimation of sediment yields, often as an indicator of changing land uses (Beschta 1981). Stream ecologists, on the other hand, have...

  12. The effects of turbidity and an invasive species on foraging success of rosyside dace (Clinostomus funduloides)

    Treesearch

    Peter D. Hazelton; Gary D. Grossman

    2009-01-01

    Habitat degradation and biological invasions are important threats to fish diversity worldwide. We experimentally examined the effects of turbidity, velocity and intra- and interspecific competition on prey capture location, reactive distance and prey capture success of native rosyside dace (Clinostomus funduloides) and invasive yellowfin shiners (Notropis lutipinnis)...

  13. Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty

    EPA Science Inventory

    Annual total suspended solid (TSS) loads in the Mae Sa Catchment in northern Thailand, determined with an automated, turbidity-based monitoring approach, were approximately 62,000, 33,000, and 14,000 Mg during the three years of observation. These loads were equivalent to basin y...

  14. Are viruses important in the plankton of highly turbid glacier-fed lakes?

    NASA Astrophysics Data System (ADS)

    Drewes, Fabian; Peter, Hannes; Sommaruga, Ruben

    2016-04-01

    Viruses are ubiquitous in aquatic ecosystems where they significantly contribute to microbial mortality. In glacier-fed turbid lakes, however, viruses not only encounter low host abundances, but also a high number of suspended mineral particles introduced by glacier meltwaters. We hypothesized that these particles potentially lead to unspecific adsorption and removal of free virus from the plankton, and thus significantly reduce their abundance in this type of lake. We followed the distribution of free virus-like particles (VLP) during the ice-free season across a turbidity gradient in four alpine lakes including one adjacent clear system where hydrological connectivity to the receding glacier is already lost. In the glacier-fed turbid lakes, VLP abundance increased with distance to the glacier, but the highest numbers were observed in the clear lake by the end of August, coinciding with the maximum in prokaryotic abundance. Our results suggest that viral loss by attachment to particles is less important than expected. Nevertheless, the relatively lower variability in VLP abundance and the lower virus-to-prokaryote ratio found in the turbid lakes than in the clear one point to a rather low temporal turnover and thus, to a reduced impact on microbial communities.

  15. Precision Cleaning Verification of Nonvolatile Residues by Using Water, Ultrasonics, and Turbidity Analyses

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1991-01-01

    Chlorofluorocarbons (CFC's) in the atmosphere are believed to present a major environmental problem because they are able to interact with and deplete the ozone layer. NASA has been mandated to replace chlorinated solvents in precision cleaning, cleanliness verification, and degreasing of aerospace fluid systems hardware and ground support equipment. KSC has a CFC phase-out plan which provides for the elimination of over 90 percent of the CFC and halon use by 1995. The Materials Science Laboratory and KSC is evaluating four analytical methods for the determination of nonvolatile residues removal by water: (1) infrared analyses using an attenuated total reflectance; (2) surface tension analyses, (3) total organic content analyses, and (4) turbidity analyses. This research project examined the ultrasonic-turbidity responses for 22 hydrocarbons in an effect to determine: (1) if ultrasonics in heated water (70 C) will clean hydrocarbons (oils, greases, gels, and fluids) from aerospace hardware; (2) if the cleaning process by ultrasonics will simultaneously emulsify the removed hydrocarbons in the water; and (3) if a turbidimeter can be used successfully as an analytical instrument for quantifying the removal of hydrocarbons. Sixteen of the 22 hydrocarbons tested showed that ultrasonics would remove it at least 90 percent of the contaminated hydrocarbon from the hardware in 10 minutes or less giving a good ultrasonic-turbidity response. Six hydrocarbons had a lower percentage removal, a slower removal rate, and a marginal ultrasonic-turbidity response.

  16. Study of the effect of scattering from turbid water on the polarization of a laser beam

    NASA Technical Reports Server (NTRS)

    Henderson, R. G.; Hovanlou, A. H.

    1978-01-01

    A Monte Carlo simulation method was used to determine the effect of scattering from turbid water on the polarization of a backscattered beam of laser light. The relationship between the polarization and the type and amount of suspended particulates in the water was investigated.

  17. A non-stochastic iterative computational method to model light propagation in turbid media

    NASA Astrophysics Data System (ADS)

    McIntyre, Thomas J.; Zemp, Roger J.

    2015-03-01

    Monte Carlo models are widely used to model light transport in turbid media, however their results implicitly contain stochastic variations. These fluctuations are not ideal, especially for inverse problems where Jacobian matrix errors can lead to large uncertainties upon matrix inversion. Yet Monte Carlo approaches are more computationally favorable than solving the full Radiative Transport Equation. Here, a non-stochastic computational method of estimating fluence distributions in turbid media is proposed, which is called the Non-Stochastic Propagation by Iterative Radiance Evaluation method (NSPIRE). Rather than using stochastic means to determine a random walk for each photon packet, the propagation of light from any element to all other elements in a grid is modelled simultaneously. For locally homogeneous anisotropic turbid media, the matrices used to represent scattering and projection are shown to be block Toeplitz, which leads to computational simplifications via convolution operators. To evaluate the accuracy of the algorithm, 2D simulations were done and compared against Monte Carlo models for the cases of an isotropic point source and a pencil beam incident on a semi-infinite turbid medium. The model was shown to have a mean percent error less than 2%. The algorithm represents a new paradigm in radiative transport modelling and may offer a non-stochastic alternative to modeling light transport in anisotropic scattering media for applications where the diffusion approximation is insufficient.

  18. Dynamics of turbidity plumes in Lake Ontario. [Welland Canal and Niagara, Genesee, and Oswego Rivers

    NASA Technical Reports Server (NTRS)

    Pluhowski, E. J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Large turbidity features along the 275 km south shore of Lake Ontario were analyzed using LANDSAT-1 images. The Niagara River plume, ranging from 30 to 500 sq km in area is, by far, the largest turbidity feature in the lake. Based on image tonal comparisons, turbidity in the Welland Canal is usually higher than that in any other water course discharging into the lake during the shipping season. Less turbid water enters the lake from the Port Dalhousie diversion channel and the Genesee River. Relatively clear water resulting from the deposition of suspended matter in numerous upstream lakes is discharged by the Niagara and Oswego Rivers. Plume analysis corroborates the presence of a prevailing eastward flowing longshore current along the entire south shore. Plumes resulting from beach erosion were detected in the images. Extensive areas of the south shore are subject to erosion but the most severely affected beaches are situated between Fifty Mile Point, Ontario and Thirty Mile Point, New York along the Rochester embayment, and between Sodus Bay and Nine Mile Point.

  19. The role of wind in generating turbidity maxima in the Tay Estuary

    NASA Astrophysics Data System (ADS)

    Weir, D. J.; McManus, J.

    1987-11-01

    Variations of wind direction and strength in the Tay Estuary control wave generation and the resultant patterns of suspended sediment concentration in the waters over the extensive tidal flats. Bodies of water with high water concentration peaks advect to occupy sites at which turbidity maxima are normally present at low water. Other low water peaks are generated by ebb tidal current resuspension.

  20. Drinking Water Turbidity and Emergency Department Visits for Gastrointestinal Illness in New York City, 2002-2009

    PubMed Central

    Hsieh, Jennifer L.; Nguyen, Trang Quyen; Matte, Thomas; Ito, Kazuhiko

    2015-01-01

    Background Studies have examined whether there is a relationship between drinking water turbidity and gastrointestinal (GI) illness indicators, and results have varied possibly due to differences in methods and study settings. Objectives As part of a water security improvement project we conducted a retrospective analysis of the relationship between drinking water turbidity and GI illness in New York City (NYC) based on emergency department chief complaint syndromic data that are available in near-real-time. Methods We used a Poisson time-series model to estimate the relationship of turbidity measured at distribution system and source water sites to diarrhea emergency department (ED) visits in NYC during 2002-2009. The analysis assessed age groups and was stratified by season and adjusted for sub-seasonal temporal trends, year-to-year variation, ambient temperature, day-of-week, and holidays. Results Seasonal variation unrelated to turbidity dominated (~90% deviance) the variation of daily diarrhea ED visits, with an additional 0.4% deviance explained with turbidity. Small yet significant multi-day lagged associations were found between NYC turbidity and diarrhea ED visits in the spring only, with approximately 5% excess risk per inter-quartile-range of NYC turbidity peaking at a 6 day lag. This association was strongest among those aged 0-4 years and was explained by the variation in source water turbidity. Conclusions Integrated analysis of turbidity and syndromic surveillance data, as part of overall drinking water surveillance, may be useful for enhanced situational awareness of possible risk factors that can contribute to GI illness. Elucidating the causes of turbidity-GI illness associations including seasonal and regional variations would be necessary to further inform surveillance needs. PMID:25919375

  1. Drinking water turbidity and emergency department visits for gastrointestinal illness in New York City, 2002-2009.

    PubMed

    Hsieh, Jennifer L; Nguyen, Trang Quyen; Matte, Thomas; Ito, Kazuhiko

    2015-01-01

    Studies have examined whether there is a relationship between drinking water turbidity and gastrointestinal (GI) illness indicators, and results have varied possibly due to differences in methods and study settings. As part of a water security improvement project we conducted a retrospective analysis of the relationship between drinking water turbidity and GI illness in New York City (NYC) based on emergency department chief complaint syndromic data that are available in near-real-time. We used a Poisson time-series model to estimate the relationship of turbidity measured at distribution system and source water sites to diarrhea emergency department (ED) visits in NYC during 2002-2009. The analysis assessed age groups and was stratified by season and adjusted for sub-seasonal temporal trends, year-to-year variation, ambient temperature, day-of-week, and holidays. Seasonal variation unrelated to turbidity dominated (~90% deviance) the variation of daily diarrhea ED visits, with an additional 0.4% deviance explained with turbidity. Small yet significant multi-day lagged associations were found between NYC turbidity and diarrhea ED visits in the spring only, with approximately 5% excess risk per inter-quartile-range of NYC turbidity peaking at a 6 day lag. This association was strongest among those aged 0-4 years and was explained by the variation in source water turbidity. Integrated analysis of turbidity and syndromic surveillance data, as part of overall drinking water surveillance, may be useful for enhanced situational awareness of possible risk factors that can contribute to GI illness. Elucidating the causes of turbidity-GI illness associations including seasonal and regional variations would be necessary to further inform surveillance needs.

  2. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish

    PubMed Central

    Cumming, H.; Herbert, N. A.

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O2 uptake rates of a juvenile sparid species (Pagrus auratus) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation. PMID:27766155

  3. Are stream stabilization projects reducing suspended sediment concentrations and turbidity in the New York City Water Supply Watershed?

    NASA Astrophysics Data System (ADS)

    McHale, M. R.; Siemion, J.; Davis, W. D.

    2015-12-01

    Turbidity and suspended sediment concentrations (SSCs) are primary water quality concerns in the upper Esopus Creek watershed, the main tributary to the Ashokan reservoir. The Ashokan reservoir is one of 6 surface water reservoirs that constitute about 90% of New York City's drinking water supply. This study quantified turbidity levels and SSCs at 10 locations throughout the upper Esopus Creek watershed for 3 years prior to the implementation of 2 stream stabilization projects and for 18 months after the projects were completed. More than 93 percent of the total-suspended sediment load occurred on days with flows greater than or equal to the 90th percentile of flows observed during the study period. Discharge, SSC, and turbidity were strongly related at the outlet of the upper Esopus Creek, but not at every monitoring site. In general, relations between discharge and SSC and turbidity were strongest at sites with high SSCs, with the exception of Stony Clove Creek, the largest tributary. Stony Clove Creek, consistently produced higher SSCs and turbidity than any of the other Esopus Creek tributaries. Nonetheless, there was not a strong relation between either turbidity or SSC and discharge because there was a series of eroding banks in contact with fine grained glacio-lacustrine deposits and associated hill slope failures within the Stony Clove Creek watershed that delivered elevated turbidity and SSCs to the stream during all flow conditions. Stream bank stabilization projects were completed at two of the largest bank failures. After the projects were completed there was decrease in stream SSC and turbidity however, flows during the 18 months following the projects were lower than before the projects. Nevertheless, a shift in the SSC and turbidity discharge rating curves suggests that the stream stabilization projects resulted in lower turbidity levels and SSCs for similar discharge conditions as compared to before the projects thereby reducing sediment yields

  4. Why do some turbidity currents create upstream migrating bedforms while others do not?

    NASA Astrophysics Data System (ADS)

    Vellinga, Age; Cartigny, Matthieu; Clare, Michael

    2017-04-01

    Turbidity currents are the dominant process for transporting sediment from continental shelves to the deep sea via submarine canyons. The small density contrast between turbidity currents and ambient seawater means that many of these currents are in the Froude-supercritical flow regime. Froude-supercritical flows in open channel flows form upstream migrating bedforms such as antidunes and cyclic steps. Turbidity currents have been shown to create similar upstream migrating bedforms in submarine canyons and on steep delta slopes, on a scale of tens of to hundreds metres; but curiously such bedforms are not always observed. Here, using a novel depth-resolved numerical model, we explore the physical controls on upstream migrating bedform development. Why do some turbidity currents create upstream migrating bedforms, and others do not? A series of turbidity currents, with different initial concentrations, flow velocities, and thicknesses are simulated using a computational fluid-dynamics model. The sediment bed, initially with a random rugosity, is free to be reworked by turbidity currents. Contrary to expectations, we found that Froude-supercritical turbidity currents do not necessarily create upstream migrating bedforms. In isolation, the densimetric Froude number is a poor predictor for the formation of upstream migrating bedforms, unlike in open channel flows. Density stratification instead appears to be more important. The mixing intensity of the flow, as characterised by the gradient Richardson number, is used to quantify the degree of stratification and appears to be a primary control on upstream bedform migration. In the model runs, all flows that created upstream migrating bedforms where stratified, whereas none of the well-mixed flows created these bedforms. All flows that created bedforms had a denser basal layer with a densimetric Froude number above unity, and a mean velocity maximum over a threshold values (1.4 m/s in this case). Our results show that

  5. A new model for marine density-turbidity currents with criteria for ignition

    NASA Astrophysics Data System (ADS)

    Salusti, E.

    We discuss the hydrodynamic stability properties of a one-dimensional quasi-steady marine current, driven by a density excess caused by low temperature or high salinity, and flowing over a regular slope, taking bottom-erosion phenomena into consideration. The term density-turbidity current is used here for a thermohaline density current, with that density increased by entrained sediment. Thermohaline currents are of fundamental importance with regard to the Earth's climate, and the same must apply to density-turbidity currents. To simplify this complex problem, we schematize the flow as a thin turbulent quasisteady current, with gravitational and frictional forces in approximate equilibrium; the effects of small-scale perturbations, and of interaction with the bottom sediment, are then schematised by assuming a heuristic model of sediment evolution. Indeed, as in recent work by Caserta et al. (1990), we postulate that density variation due to bottom erosion or deposition is a function only of the shear stress exerted on the sea bottom by the current. Using these assumptions, we arrive at a complex nonlinear equation which considers both time and space variability for a realistic two-layer model of these density-turbidity currents. This finally gives a nonlinear heat equation that displays both diffusive behaviour and a peculiar type of time-delayed nonlinear behaviour, a previously-unrecognised effect governed by a criterion which defines explosive perturbations. It is of interest that this criterion is not related to energy considerations, like other criteria discussed in the literature, but is based on hydrodynamic instability considerations. The above model can also be applied to classical turbidity currents, i.e. those in which the interstitial fluid has the same density as the ambient fluid. However, the way in which the initial turbid water is generated is of paramount importance; mechanisms include submarine slumping, underflows from large flooded rivers

  6. The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time

    USGS Publications Warehouse

    Uncles, R.J.; Stephens, J.A.; Smith, R.E.

    2002-01-01

    It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Patos Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low ‘intrinsic’ SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer

  7. The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time

    USGS Publications Warehouse

    Uncles, R.J.; Stephens, J.A.; Smith, R.E.

    2002-01-01

    It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Paros Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low 'intrinsic' SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing

  8. Impact of climate change on persistent turbidity in the water supply system of a Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Chung, S. W.; Park, H. S.; Lim, K. J.; Kang, B.

    2016-12-01

    Persistent turbidity, a long-term resuspension of fine particles in aquatic system, is one of the major water quality concerns for the sustainable management of water supply systems in metropolitan areas. Turbid water has undesirable aesthetic and recreational appeal and may have harmful effect on ecosystem health, in addition to increasing water treatment costs in drinking water supply systems. These concerns have been more intensified as the strength and frequency of rainfall events increase by climate change in the Asian monsoon climate region, including Korea. The aim of this study was to assess the impact of potential climate change on the persistent turbidity of the Han River systems that supplies drinking water to approximately 25 million consumers dwelling in the Seoul Metropolitan areas. A comprehensive numerical and statistical modeling suit has been developed and applied to the systems for the projection of future climate, responding hydrological and soil erosion processes in the watershed, and sediment transport processes in the rivers and reservoirs systems. The down-scaled 100 years of climatic data from General Circulation Model (HadGEM2-AO) based on the IPCC's greenhouse-gas emissions scenario RCP4.5 were used for the forcing data of the watershed and river-reservoir models. As the results, an extreme flood event that may incur significant persistent turbidity was projected to be occurred five times in the future. The threshold of a flood event that is classified as an extreme event was based on the historical flood event that occurred on July of 2006 when turbid water had persisted within the Soyang Reservoir and discharged to the downstream of the Han River systems over the year until May of the following year. A two-dimensional river and reservoir model simulated the transport and dynamics of suspended sediments in Soyang Reservoir, and routed the discharged turbid water to the downstream of Paldang Reservoir, in which most of the drinking water

  9. Measurements of near-bottom stress and turbidity in the Gulf of Trieste during the passage of vessels

    NASA Astrophysics Data System (ADS)

    Malacic, Vlado

    2017-04-01

    The Gulf of Trieste (GT) is a semi-enclosed 20 x 20 km gulf in the northernmost part of the Adriatic Sea with depths that reach 24 m at the most. Sediments in the southern (Slovenian) side of GT inside the shallow Bay of Koper, where measurements of near-bottom stress took place, are composed primarily of clayey silt (2-63 um). The observation of currents and turbidity took place inside the Bay of Koper at a location inside the shipping route, where the bottom depth is around 19 m. The goal of measurements was to study the bottom erosion due to changes to flow fields by ship movements (and due to propeller wakes). High-frequency measurements of currents and turbulence near the sea bottom were conducted with two Vector instruments (Nortek AS) with pressure sensors in the interval 123-31 July 2013, mounted at heights 0.2 m and 1.3 m above the sea bottom. Turbidity was measured with the same frequency with Seapoint IR (880 nm) turbidimeters placed at the same heights. In addition, turbidity was measured also with the 'old' Minitracka II instrument of Chelsea Instruments that functioned at 470 nm. 10 s averages of 1 s measurements were recorded. When the voltage output of this instrument surpassed the chosen threshold value (e.g. 2 V out of 5 V range) the triggering signal was sent to start measurements of the size distribution of suspended sediments and their falling speeds with the laser in-situ scattering and transmissometery (LISST-STX). In the interval 7-19 November 2013 currents over the whole water column with vertical resolution of 0.5 m have been also surveyed with the 1 MHz ADCP instrument (Nortek AS) with a sampling frequency of 1/s, where 10 s averages were recorded. It appears that pure ship's dislocation of a mass of fluid, which may easily surpass 105 tons, is important in the erosion of the bottom. We have confirmed this by velocity and stress peaks near the sea-floor in the Bay of Koper that were frequently accompanied by peaks of turbidity during

  10. Integrating in situ reflectance with satellite imagery to determine chlorophyll and turbidity for inland waters

    NASA Astrophysics Data System (ADS)

    Marshall, Tina

    The overall objective of this study was to use hyperspectral field spectra to find possible spectral regions in which chlorophyll- a and turbidity could be identified to assist in the assessment and monitoring of water quality using satellite remote sensing technology. Using statistical analysis between the mean reflectance values measured with the GER1500 field spectroradiometer across the spectrum and the concentrations of chlorophyll-a (mug/L) and turbidity (NTU) acquired simultaneously, regression analyses were applied to determine the best wavelengths for determining the concentration of these parameters. Each regression model (512 in total) corresponded to a measured wavelength of the GER1500 field spectrometer. The achieved correlations presented as R2 values against wavelengths, indicated the regions with high correlation values, chlorophyll-a , and turbidity. Based on the results from this study and by matching the spectral bands of the field spectroradiometer with those of the Landsat Thematic Mapper (TM) satellite sensor, several suitable spectral regions were determined for monitoring water quality in Kentucky Lake. For chlorophyll- a, the spectral region of 0.45-0.52 mum (TM band 1), and for turbidity the region 0.52-0.60 mum (TM bands 1 and 2) were determined to be suitable wavelengths to determine such data. In this study, the wavelengths of 700 nm and 675 nm from the GER1500 spectroradiometer were found to be the most suitable wavelengths for predicting chlorophyll-a concentrations. Correlation analysis between remotely sensed data and chlorophyll- a data indicated the possibility of mapping chlorophyll- a concentrations accurately. The wavelengths that represented the difference of 770.82nm-742.60nm correlated best to turbidity (R2 = 0.74).

  11. Direct measurements by submersible of surge-type turbidity currents in a fjord channel, southeast Alaska

    SciTech Connect

    Cowan, E.A. . Dept. of Geology); Powell, R.D. . Geology Dept.); Lawson, D.E. ); Carlson, P.R. )

    1992-01-01

    High density, high-speed turbidity currents were observed and their properties measured in submarine channels in Queen Inlet, southeast Alaska during June, 1990 and 1991. A ROV submersible fitted with two video cameras, a CTD, an optical backscatter turbidity monitor (OBS), and electromagnetic current meter, and sidescan sonar was used to collect data from within and above the flows. Multiple flows were recorded during a ROV dive at 2.3 km from the delta front in a channel at 104 m depth. Flows were marked by sudden increases in turbidity and current velocity. In one flow, turbidity increased from 300 to 1,600 OBS units (instrument maximum) in 10 sec, and within 9.4 min, salinity (S) steadily decreased by 12.1 ppt, with only a 0.2 C temperature (T) increase. Density differences between the flow and ambient water require a minimum sediment concentration of 97 g/l. Maximum flow velocity exceeded 3.3 m/s. A vertical ROV profile indicated a flow thickness of 10 m. The upper surface was visually identified by billowing suspended sediment and by fluctuating OBS and T as ambient and flow water mixed in turbulent eddies. A faster S decrease and slower T increase with distance into and away from the flow indicate that thermal diffusive processes were less efficient than convective mass transfer. The S change indicates that flow water and ambient water mixed well beyond the flow defined by high turbidity. Warm water temperatures within the flow and low meltwater stream discharge suggest that these flows originated from the delta front and are not continuous underflows.

  12. Direct Monitoring of Turbidity Currents: New Insights, Challenging Preconceptions and Future Directions

    NASA Astrophysics Data System (ADS)

    Clare, M. A.; Talling, P. J.; Cartigny, M.; Vardy, M. E.; Azpiroz, M.; Hunt, J.; Sumner, E.; Hizzett, J.; Vellinga, A.; Hughes Clarke, J. E.

    2015-12-01

    Turbidity currents are, volumetrically, the most important process for the transportation of sediment on the face of our planet. The combination of large volume and fast speeds can damage globally important seafloor cables and offshore structures and may transport sediment over hundreds of kilometres. Despite their significance for sediment flux and as geohazards, very few examples of direct monitoring of real-world turbidity currents exist. Until recently, there has been a reliance on depositional records, scaled-down experiments and numerical models to understand the nature of turbidity currents. The results of direct monitoring obtained over the past few years now provide us with ground-breaking insights into the real-world behaviour of full-scale turbidity currents. We present results of recent flow monitoring acquired using an array of acoustic and geophysical tools, from multiple sites worldwide, including the deep-sea Congo Canyon, Canadian fjords, and a dredging experiment offshore Holland. This advent in turbidity current monitoring, largely driven by step-changes in technology, has reinforced some existing interpretations, but also challenges some preconceptions. Our results are based on monitoring using multibeam sonars, sub-bottom and acoustic Doppler current profilers. First, we provide insights into the triggering of flows that include landslides, tidal and wave effects, and other more cryptic events with no clear initiation point. Second, the influence of dense layers at the base of flows is shown to be important for sediment transport and bedform migration; however, most acoustic techniques struggle to penetrate. Initial results from a novel Chirp profiler provide imaging of the lowermost part of the flow. Third, the morphology of the flow and its development through time are shown to deviate from that observed in classical flume tank experiments. Finally, we summarise some future directions for flow monitoring to push forward our understanding of

  13. Retrieval of Water Quality Parameters in a Highly Turbid Estuary from Hyperspectral Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Greenberg, J. A.; Ustin, S. L.

    2007-12-01

    The Sacramento-San Joaquin River Delta is a highly turbid inland estuary that drains into the Pacific Ocean via the San Francisco Bay. The Delta has become a major ecological concern over the past decade, and the decline of the endangered fish, Delta smelt, has been attributed in part to decreasing turbidity in the Delta. Measuring and monitoring turbidity and Secchi disk depth are important to ecosystem health management and water quality monitoring of inland case-2 waters. The spectral determination of water quality parameters is dependent on (i) the inherent optical properties of water, such as the load of total suspended solids, suspended sediments, humic acids and dissolved organic matter, and planktonic content and composition, and (ii) the apparent optical properties of water which depend on both the medium and the geometric structure of light (surface reflectance, vertical diffuse attenuation). Water quality parameters such as turbidity and Secchi disk depth can be retrieved from hyperspectral remote sensing imagery, remote sensing data collected with many narrow spectral bands, using semi-empirical methods that require regression analysis, or from radiative transfer calculations that model apparent optical properties. We compared the accuracy of both semi-empirical and radiative transfer methods to retrieve turbidity and Secchi disk depths from airborne hyperspectral remote sensing imagery (the HyMap sensor, 450-2500 nm, 10-15nm bandwidth) of the Delta collected in June 2007. Results were validated using extensive field data collected concurrent with image acquisition. Additionally, we examined the effect of resampling the hyperspectral data to multispectral resolutions more commonly found on spaceborne instruments on the accuracy of water constituent retrieval from inland, case-2 waters.

  14. Evaluation of using aluminum sulfate and water-soluble Moringa oleifera seed lectin to reduce turbidity and toxicity of polluted stream water.

    PubMed

    Freitas, José Henrique Edmilson Souza; de Santana, Keissy Vanderley; do Nascimento, Ana Cláudia Claudina; de Paiva, Sérgio Carvalho; de Moura, Maiara Celine; Coelho, Luana Cassandra Breitenbach Barroso; de Oliveira, Maria Betânia Melo; Paiva, Patrícia Maria Guedes; do Nascimento, Aline Elesbão; Napoleão, Thiago Henrique

    2016-11-01

    Aluminum salts are used as coagulants in water treatment; however, the exposure to residual aluminum has been associated with human brain lesions. The water-soluble Moringa oleifera lectin (WSMoL), which is extracted with distilled water and isolated by chitin chromatography, has coagulant activity and is able to reduce the concentration of metal ions in aqueous solutions. This study evaluated the potential of using aluminum sulfate and WSMoL to reduce the turbidity and toxicity of water from the Cavouco stream located in Recife, Pernambuco, Brazil. The water sample used (called P1) was collected from the stream source, which was found to be strongly polluted based on physicochemical and water quality analyses, as well as ecotoxicity assays with Artemia salina and seeds of Eruca sativa and Lactuca sativa. The assays combining WSMoL and aluminum sulfate were more efficient than those that used these agents separately. Furthermore, the greatest reduction in turbidity (96.8%) was obtained with the treatment using aluminum sulfate followed by WSMoL, compared to when they were applied simultaneously (91.3%). In addition, aluminum sulfate followed by WSMoL treatment resulted in residual aluminum concentration (0.3 mg/L) that was much lower than that recorded after the treatment using only the salt (35.5 mg/L). The ecotoxicity of P1 was also strongly reduced after the treatments. In summary, the combined use of aluminum sulfate and WSMoL was efficient in promoting a strong reduction of turbidity and ecotoxicity of a polluted water sample, without resulting in a high residual aluminum concentration at the conclusion of the treatment.

  15. Nitrification and its oxygen consumption along the turbid Chang Jiang River plume

    NASA Astrophysics Data System (ADS)

    Hsiao, S. S.-Y.; Hsu, T.-C.; Liu, J.-w.; Xie, X.; Zhang, Y.; Lin, J.; Wang, H.; Yang, J.-Y. T.; Hsu, S.-C.; Dai, M.; Kao, S.-J.

    2014-04-01

    Nitrification is a series of processes that oxidizes ammonia to nitrate, which contributes to hypoxia development in coastal oceans, especially in eutrophicated regions. The nitrification rate of bulk water (NRb) and particle free water (NRpf, particle > 3 μm eliminated) were determined along the Chang Jiang River plume in August 2011 by nitrogen isotope tracer technique. Measurements of dissolved oxygen (DO), community respiration rate (CR), nutrients, dissolved organic nitrogen (DON), total suspended matter (TSM), particulate organic carbon/nitrogen (POC / PON), acid-leachable iron and manganese on suspended particles and both archaeal and β-proteobacterial ammonia monooxygenase subunit A gene (amoA) abundance on size-fractioned particles (> 3 μm and 0.22-3 μm) were conducted. The NRb ranged from undetectable up to 4.6 μmol L-1 day-1, peaking at a salinity of ~ 29. NRb values were positively correlated with ammonium concentration, suggesting the importance of substrate in nitrification. In the river mouth and the inner plume, NRb was much higher than NRpf, indicating that the nitrifying microorganism is mainly particle associated, which was supported by its significant correlation with amoA gene abundance and TSM concentration. The estimated oxygen demands of nitrification accounted for 0.32 to 318% of CR, in which 50% samples demanded more oxygen than that predicted by by the Redfield model (23%), indicating that oxygen might not be the sole oxidant though DO was sufficient (> 58 μmol kg-1) throughout the observation period. The excess nitrification-associated oxygen demand (NOD) showed a tendency to occur at lower DO samples accompanied by higher acid-leachable Fe / Mn, which implied reactive Fe3+ / Mn4+ may play a role as oxidant in the nitrification process. Stoichiometric calculation suggested that reactive Fe on particles was 10 times the oxidant demand required to complete ammonia oxidation in the entire plume. The potential involvement of reactive

  16. Chemical analysis of molecular species through turbid medium.

    PubMed

    Arora, Rajan; Petrov, Georgi I; Yakovlev, Vladislav V; Scully, Marlan O

    2014-02-04

    Subsurface analysis of chemical species is imperative for biomedical diagnostics and imaging, homeland security, and pharmaceutical and other industries; however, the access to the object of interest is often obscured by an optically scattering medium which limits the ability to inspect the chemical composition of the sample. In this report, we employ coherent Raman microspectroscopy in a combination with a hierarchical cluster analysis to mitigate the effect of scattering and demonstrate the identification of multiple chemical species.

  17. Estimation of suspended-sediment concentration from total suspended solids and turbidity data for Kentucky, 1978-1995

    USGS Publications Warehouse

    Williamson, Tanja N.; Crawford, Charles G.

    2011-01-01

    Suspended sediment is a constituent of water quality that is monitored because of concerns about accelerated erosion, nonpoint contamination of water resources, and degradation of aquatic environments. In order to quantify the relationship among different sediment parameters for Kentucky streams, long-term records were obtained from the National Water Information System of the U.S. Geological Survey. Suspended-sediment concentration (SSC), the parameter traditionally measured and reported by the U.S. Geological Survey, was statistically compared to turbidity and total suspended solids (TSS), two parameters that are considered surrogate data. A linear regression of log-transformed observations was used to estimate SSC from TSS; 72% of TSS observations were less than coincident SSC observations; however, the estimated SSC values were almost as likely to be overestimated as underestimated. The SSC-turbidity relationship also used log-transformed observations, but required a nonlinear, breakpoint regression that separated turbidity observations ???6nephelometric turbidity units. The slope for these low turbidity values was not significantly different than zero, indicating that low turbidity observations provide no real information about SSC; in the case of the Kentucky sediment record, this accounts for 30% of the turbidity observations. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  18. Modelling the risk of mortality of Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) exposed to different turbidity conditions.

    PubMed

    Avelar, W E P; Neves, F F; Lavrador, M A S

    2014-05-01

    The provision of sediment in rivers, due to erosion processes that occur in the environment, consists of a major source of pollution and alteration of the physicochemical conditions of water resources. In addition, the increase in water turbidity may cause siltation, dramatically impacting aquatic communities. Specifically considering the bivalve Corbicula fluminea (Müller, 1774), the aim of this study was to analyse the effect of exposure to different turbidity conditions of sediments, as a risk factor for the animals. For this purpose, a docking device was designed to ensure water circulation in a closed system and to maintain the desired levels of turbidity. Although C. fluminea can generally tolerate environmental changes in aquatic systems, an intolerance to high turbidity levels was experimentally observed, expressed by the mortality rate of the animals when exposed to conditions above 150 nephelometric turbidity units (NTU). This value was similar to the one recorded at study sites in the rivers Pardo (Serrana-SP-Brazil) and Mogi Guaçu (Porto Ferreira-SP-Brazil) during the rainy season. Using a logistic regression model, the experimental results were analysed and the observed mortality rates indicate that the exposure of the animals to turbidity levels above 150 nephelometric turbidity units (NTU), for periods longer than 120 hours, may be considered a probable cause of mortality for the species.

  19. Performance of a photothermal detector with turbid liquids.

    PubMed

    Hodgkinson, Jane; Johnson, Mark; Dakin, John P

    2005-07-10

    A closed-cell photothermal detector for aqueous analytes has been evaluated at 254 and 678 nm. We used a detector with a water meniscus as a pressure sensor, whose periodic deflection was measured using a low-finesse optical fiber Fabry-Perot interferometer. Performance was compared with a commercial diode array spectrometer and found to be similar for absorption measurements in nonturbid samples, but the results were affected up to 60 times less by scattered light. Finally the photothermal cell was converted into an integrating cavity using ceramic inserts, showing freedom from scattering-related errors at 678 nm but a degradation in performance at 254 nm.

  20. Coral assemblages are structured along a turbidity gradient on the Southwestern Gulf of Mexico, Veracruz

    NASA Astrophysics Data System (ADS)

    Jordán-Garza, A. G.; González-Gándara, C.; Salas-Pérez, J. J.; Morales-Barragan, A. M.

    2017-04-01

    Corals on the reef corridor of the southwestern Gulf of Mexico have evolved on a terrigenous shallow continental shelf under the influence of several natural river systems. As a result, water turbidity on these reefs can be high, with visibility as low as <1 m, depending on reef location and season. Using a presence-absence species database from field surveys, literature search, and satellite data on sea surface temperature, turbidity and chlorophyll-a, the coral species composition and environmental variables were analyzed for the three main reef systems of the reef corridor of the southwestern Gulf of Mexico. Completeness of the data set was assessed using species accumulation curves and non-parametric estimators of species richness. Differences in coral assemblages' composition between the reef systems were investigated using univariate (ANOVA) and multivariate (nMDS, ANOSIM, SIMPER) analyses and the relationship between the assemblages and environmental data was assessed using a forward selection process in canonical correspondence analysis (CCA) to eliminate non-significant environmental variables. The northern and central Veracruz reef systems share a similar number of coral species (p=0.78 mult. comp.) and both showed higher species richness than the southern system (p<0.001 mult. comp.). In terms of the assemblages' structure, significant differences were found (ANOSIM R=0.3, p=0.001) with larger average dissimilitude between north-south (75.4% SIMPER) and central-south (74.2%) than north-central (27%) comparisons. Only environmental variables related to water turbidity and productivity were significant on the final CCA configuration, which showed a gradient of increasing turbidity from north to south. Reef geomorphology and the effect of turbidity help explain differences in coral assemblages' composition. More studies are necessary to establish if turbidity could function as a refuge for future environmental stress. Each Veracruz reef system is at the