Science.gov

Sample records for 40h turbidity samples

  1. Silicon Analysis of Tank 8F and Tank 40H Turbidity Samples

    SciTech Connect

    Wilmarth, W.R.

    2001-04-17

    The need for silicon measurements in the field exists and can enhance the scheduling of waste transfers in both F- and H-Area Tank Farms. This report examines the use of field turbidity measurements as an at-line method to ensure that entrainment of silicon-bearing sludge materials are minimized.

  2. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.

    PubMed

    Mull, Bonnie; Hill, Vincent R

    2012-12-01

    Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recovering MS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity.

  3. Storm Event and Multipoint Longitudinal Sampling with Biomonitored Responses to Turbidity in a NE Arkansas River

    NASA Astrophysics Data System (ADS)

    Walker, B. L.; Farris, J. L.; Ashcraft, E. A.; Nelson, M. A.

    2005-05-01

    A two part monitoring scheme consisting of both single point storm event sampling and multipoint longitudinal sampling was developed and implemented for the characterization of turbidity in the L'Anguille River in Northeast Arkansas. For the single point storm event monitoring, temperature, conductivity, turbidity and river stage near Palestine, Arkansas, have been continuously measured and recorded at fifteen minute intervals from September 2003 to present. Water samples were collected for the determination of total suspended solids and nutrient levels via an automated sampler following three storm events that caused significant increases in river stage. Grab samples were collected bimonthly for the estimation of background sediment and nutrient loads related to increased turbidity and suspended sediments following storm events. In addition to the intensive single point monitoring, the sampling of additional reaches has been included to characterize conditions along the entire river that differed notably in turbidity and nutrient loads between river segments (100% and 75% respectively). Toxicity testing on collected water (both background and storm) using Ceriodaphnia dubia and Pimephales promelas has shown no significant impairment, while impaired survival has been observed using Chironomus tentans in collected streambed sediments.

  4. Off-confocal Raman spectroscopy (OCRS) for subsurface measurements in layered turbid samples

    NASA Astrophysics Data System (ADS)

    Khan, Khan Mohammad; Ghosh, Nirmalya; Majumder, Shovan Kumar

    2016-09-01

    We report, for the first time, the development of a depth-sensitive Raman spectroscopy system for investigating subsurface depths in a layered turbid sample using the concept of varying Raman collection zones, while keeping the point of illumination fixed on the surface of the target sample. The system makes use of a conventional confocal Raman configuration and realizes the variation in Raman collection zones employing off-confocal detection. This is effected by moving the tip of the Raman detection fiber (acting as the pinhole aperture) from the focus of the Raman collection objective either by taking the point of detection away from the objective (along its axis) or bringing it closer to the objective (along the same axis), thereby essentially offering two ways of enabling subsurface interrogation at a given time. Another important attraction of the approach is that it can be used for analyzing layered turbid samples at depths beyond the reach of the conventional confocal Raman, though not at the cost of any further modifications in its instrumentation. Furthermore, the illumination point remains fixed on the sample surface and no adjustment is required in the sample arm, which indeed are significant advantages for depth-sensitive measurements in situ from layered turbid samples, particularly those having irregular surfaces (like biological tissues). The ability of the system to recover Raman spectra of the subsurface layer was demonstrated using a layered non-biological phantom and a biological tissue sample.

  5. Fluorometry of turbid and absorbant samples and the membrane fluidity of intact erythrocytes.

    PubMed Central

    Eisinger, J; Flores, J

    1985-01-01

    In employing intrinsic or extrinsic fluorophores in the study of whole cells, or other strongly absorbant and/or scattering samples, the measured fluorescence intensity and polarization is seriously affected by absorption and scattering within the sample cuvet. These artifacts are analyzed and simple protocols are provided for overcoming them. An expression relating attenuation of the observed emission anisotropy to sample turbidity is derived. The validity of the method is confirmed by experiments in which the emission anisotropies and fluorescence yields of membrane probes in intact erythrocytes was measured with precision. It is also shown that the rotational mobility of the membrane probe 1-phenyl-3-(2-naphthyl)-2-pyrazoline is the same for intact erythrocytes and ghosts. These protocols are particularly useful in measuring the intrinsic fluorescence yield ratio for excimeric and monomeric emission of pyrene-containing membrane probes. This provides a method for determining the local lateral mobility of excimeric probes in intact erythrocytes. PMID:4016211

  6. Ultra-deep imaging of turbid samples by enhanced photon harvesting

    NASA Astrophysics Data System (ADS)

    Crosignani, Viera; Dvornikov, Alexander; Gratton, Enrico

    2013-02-01

    We constructed an advanced detection system for two-photon fluorescence microscopy that allows us to image in biological tissue and tissue phantoms up to the depth of a few mm with micron resolution. The innovation lies in the detection system which is much more sensitive to low level fluorescence signals than the fluorescence detection configuration used in conventional two-photon fluorescence microscopes. A wide area photocathode photomultiplier tube (PMT) was used to detect fluorescence photons directly from a wide (1 inch diameter) area of the turbid sample, as opposed to the photon collection by the microscope objective which can only collect light from a relatively small area of the sample. The optical path between the sample and the photocathode is refractive index matched to curtail losses at the boundaries due to reflections. The system has been successfully employed in the imaging of tissue phantoms simulating brain optical properties and in biological tissues, such as murine small intestine, colon, tumors, and other samples. The system has in-depth fluorescence lifetime imaging (FLIM) capabilities and is also highly suitable for SHG signal detection, such as collagen fibers and muscles, due to the intrinsically forward-directed propagation of SHG photons.

  7. Dense sampled transmission matrix for high resolution angular spectrum imaging through turbid media via compressed sensing (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jang, Hwanchol; Yoon, Changhyeong; Choi, Wonshik; Eom, Tae Joong; Lee, Heung-No

    2016-03-01

    We provide an approach to improve the quality of image reconstruction in wide-field imaging through turbid media (WITM). In WITM, a calibration stage which measures the transmission matrix (TM), the set of responses of turbid medium to a set of plane waves with different incident angles, is preceded to the image recovery. Then, the TM is used for estimation of object image in image recovery stage. In this work, we aim to estimate highly resolved angular spectrum and use it for high quality image reconstruction. To this end, we propose to perform a dense sampling for TM measurement in calibration stage with finer incident angle spacing. In conventional approaches, incident angle spacing is made to be large enough so that the columns in TM are out of memory effect of turbid media. Otherwise, the columns in TM are correlated and the inversion becomes difficult. We employ compressed sensing (CS) for a successful high resolution angular spectrum recovery with dense sampled TM. CS is a relatively new information acquisition and reconstruction framework and has shown to provide superb performance in ill-conditioned inverse problems. We observe that the image quality metrics such as contrast-to-noise ratio and mean squared error are improved and the perceptual image quality is improved with reduced speckle noise in the reconstructed image. This results shows that the WITM performance can be improved only by executing dense sampling in the calibration stage and with an efficient signal reconstruction framework without elaborating the overall optical imaging systems.

  8. Holographic quantitative imaging of sample hidden by turbid medium or occluding objects

    NASA Astrophysics Data System (ADS)

    Bianco, V.; Miccio, L.; Merola, F.; Memmolo, P.; Gennari, O.; Paturzo, Melania; Netti, P. A.; Ferraro, P.

    2015-03-01

    Digital Holography (DH) numerical procedures have been developed to allow imaging through turbid media. A fluid is considered turbid when dispersed particles provoke strong light scattering, thus destroying the image formation by any standard optical system. Here we show that sharp amplitude imaging and phase-contrast mapping of object hidden behind turbid medium and/or occluding objects are possible in harsh noise conditions and with a large field-of view by Multi-Look DH microscopy. In particular, it will be shown that both amplitude imaging and phase-contrast mapping of cells hidden behind a flow of Red Blood Cells can be obtained. This allows, in a noninvasive way, the quantitative evaluation of living processes in Lab on Chip platforms where conventional microscopy techniques fail. The combination of this technique with endoscopic imaging can pave the way for the holographic blood vessel inspection, e.g. to look for settled cholesterol plaques as well as blood clots for a rapid diagnostics of blood diseases.

  9. Effect of particles on the recovery of cryptosporidium oocysts from source water samples of various turbidities.

    PubMed

    Feng, Yao Yu; Ong, Say Leong; Hu, Jiang Yong; Song, Lian Fa; Tan, Xiao Lan; Ng, Wun Jern

    2003-04-01

    Cryptosporidium parvum can be found in both source and drinking water and has been reported to cause serious waterborne outbreaks which threaten public health safety. The U.S. Environmental Protection Agency has developed method 1622 for detection of Cryptosporidium oocysts present in water. Method 1622 involves four key processing steps: filtration, immunomagnetic separation (IMS), fluorescent-antibody (FA) staining, and microscopic evaluation. The individual performance of each of these four steps was evaluated in this study. We found that the levels of recovery of C. parvum oocysts at the IMS-FA and FA staining stages were high, averaging more than 95%. In contrast, the level of recovery declined significantly, to 14.4%, when the filtration step was incorporated with tap water as a spiking medium. This observation suggested that a significant fraction of C. parvum oocysts was lost during the filtration step. When C. parvum oocysts were spiked into reclaimed water, tap water, microfiltration filtrate, and reservoir water, the highest mean level of recovery of (85.0% +/- 5.2% [mean +/- standard deviation]) was obtained for the relatively turbid reservoir water. Further studies indicated that it was the suspended particles present in the reservoir water that contributed to the enhanced C. parvum oocyst recovery. The levels of C. parvum oocyst recovery from spiked reservoir water with different turbidities indicated that particle size and concentration could affect oocyst recovery. Similar observations were also made when silica particles of different sizes and masses were added to seeded tap water. The optimal particle size was determined to be in the range from 5 to 40 micro m, and the corresponding optimal concentration of suspended particles was 1.42 g for 10 liters of tap water.

  10. DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples.

    PubMed

    Liao, Zhiyu; Sinjab, Faris; Gibson, Graham; Padgett, Miles; Notingher, Ioan

    2016-06-13

    Spectral depth-profiling of optically turbid samples is of high interest to a broad range of applications. We present a method for measuring spatially-offset Raman spectroscopy (SORS) over a range of length scales by incorporating a digital micro-mirror device (DMD) into a sample-conjugate plane in the detection optical path. The DMD can be arbitrarily programmed to collect/reject light at spatial positions in the 2D sample-conjugate plane, allowing spatially offset Raman measurements. We demonstrate several detection geometries, including annular and simultaneous multi-offset modalities, for both macro- and micro-SORS measurements, all on the same instrument. Compared to other SORS modalities, DMD-based SORS provides more flexibility with only minimal additional experimental complexity for subsurface Raman collection. PMID:27410290

  11. Determination of color of turbid waters

    USGS Publications Warehouse

    Lamar, W.L.

    1949-01-01

    A convenient procedure for determining the color of turbid waters, using the principle of precipitation of turbidity by the electrolyte calcium chloride, is described. Because the stable turbidity of many surface waters cannot be completely precipitated by conventional centrifuging alone, this procedure presents a means of flocculating the turbidity without affecting the true color of the water. In the determination of true color of turbid samples one of the most prevalent errors is caused by the reading of color on samples not completely free of turbidity. Pertinent data are presented on color and turbidity of waters as related to the principles involved in the determination of color.

  12. New Approach to Purging Monitoring Wells: Lower Flow Rates Reduce Required Purging Volumes and Sample Turbidity

    EPA Science Inventory

    It is generally accepted that monitoring wells must be purged to access formation water to obtain “representative” ground water quality samples. Historically anywhere from 3 to 5 well casing volumes have been removed prior to sample collection to evacuate the standing well water...

  13. Radiometry of water turbidity measurements

    NASA Technical Reports Server (NTRS)

    Mccluney, W. R.

    1974-01-01

    An examination of a number of measurements of turbidity reported in the literature reveals considerable variability in the definitions, units, and measurement techniques used. Many of these measurements differ radically in the optical quantity measured. The radiometric basis of each of the most common definitions of turbidity is examined. Several commercially available turbidimeters are described and their principles of operation are evaluated radiometrically. It is recommended that the term turbidity be restricted to measurements based upon the light scattered by the sample with that scattered by standard suspensions of known turbidity. It is also recommended that the measurement procedure be standardized by requiring the use of Formazin as the turbidity standardizing material and that the Formazin Turbidity Unit (FTU) be adopted as the standard unit of turbidity.

  14. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  15. Relations between continuous real-time turbidity data and discrete suspended-sediment concentration samples in the Neosho and Cottonwood Rivers, east-central Kansas, 2009-2012

    USGS Publications Warehouse

    Foster, Guy M.

    2014-01-01

    The Neosho River and its primary tributary, the Cottonwood River, are the primary sources of inflow to the John Redmond Reservoir in east-central Kansas. Sedimentation rate in the John Redmond Reservoir was estimated as 743 acre-feet per year for 1964–2006. This estimated sedimentation rate is more than 80 percent larger than the projected design sedimentation rate of 404 acre-feet per year, and resulted in a loss of 40 percent of the conservation pool since its construction in 1964. To reduce sediment input into the reservoir, the Kansas Water Office implemented stream bank stabilization techniques along an 8.3 mile reach of the Neosho River during 2010 through 2011. The U.S. Geological Survey, in cooperation with the Kansas Water Office and funded in part through the Kansas State Water Plan Fund, operated continuous real-time water-quality monitors upstream and downstream from stream bank stabilization efforts before, during, and after construction. Continuously measured water-quality properties include streamflow, specific conductance, water temperature, and turbidity. Discrete sediment samples were collected from June 2009 through September 2012 and analyzed for suspended-sediment concentration (SSC), percentage of sediments less than 63 micrometers (sand-fine break), and loss of material on ignition (analogous to amount of organic matter). Regression models were developed to establish relations between discretely measured SSC samples, and turbidity or streamflow to estimate continuously SSC. Continuous water-quality monitors represented between 96 and 99 percent of the cross-sectional variability for turbidity, and had slopes between 0.91 and 0.98. Because consistent bias was not observed, values from continuous water-quality monitors were considered representative of stream conditions. On average, turbidity-based SSC models explained 96 percent of the variance in SSC. Streamflow-based regressions explained 53 to 60 percent of the variance. Mean squared

  16. A linear gradient line source facilitates the use of diffusion models with high order approximation for efficient, accurate turbid sample optical properties recovery.

    PubMed

    Lee, Ming-Wei; Hung, Cheng-Hung; Liao, Jung-Li; Cheng, Nan-Yu; Hou, Ming-Feng; Tseng, Sheng-Hao

    2014-10-01

    In this paper, we demonstrate that a scanning MEMS mirror can be employed to create a linear gradient line source that is equivalent to a planar source. This light source setup facilitates the use of diffusion models of increased orders of approximation having closed form solution, and thus enhance the efficiency and accuracy in sample optical properties recovery. In addition, compared with a regular planar light source, the linear gradient line source occupies much less source area and has an elevated measurement efficiency. We employed a δ-P1 diffusion equation with a closed form solution and carried out a phantom study to understand the performance of this new method in determining the absorption and scattering properties of turbid samples. Moreover, our Monte Carlo simulation results indicated that this geometry had probing depths comparable to those of the conventional diffuse reflectance measurement geometry with a source-detector separation of 3 mm. We expect that this new source setup would facilitate the investigating of superficial volumes of turbid samples in the wavelength regions where tissue absorption coefficients are comparable to scattering coefficients.

  17. The Swift Turbidity Marker

    ERIC Educational Resources Information Center

    Omar, Ahmad Fairuz; MatJafri, Mohd Zubir

    2011-01-01

    The Swift Turbidity Marker is an optical instrument developed to measure the level of water turbidity. The components and configuration selected for the system are based on common turbidity meter design concepts but use a simplified methodology to produce rapid turbidity measurements. This work is aimed at high school physics students and is the…

  18. On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis.

    PubMed

    Merzlyak, M N; Naqvi, K R

    2000-11-01

    An integrating sphere is often used for recording the absorption spectrum of a turbid sample. If the sample is placed inside the sphere, scattering losses are eliminated, but the recorded spectrum suffers from other distortions. These distortions can be avoided by positioning the sample outside the sphere; but, since some of the scattered light escapes the detector, the recorded spectrum suffers from residual scattering losses. A method proposed by Latimer and Eubanks more than 30 years ago (Arch. Biochem. Biophys. 98 (1962) 274), is put to a quantitative examination, which has shown that one can obtain, by recording two spectra at different distances from the sphere, not only the true absorption spectrum but also the scattering spectra of the sample. Conditions for the validity of the basic assumption underlying the method are investigated by examining suspensions containing various concentrations of cells of the cyanobacterium Anabaena variabilis, and it is shown that the calculated absorbance is proportional to the number density of the cells. The application of the method for quantitative spectrophotometric analysis of pigments in cell suspensions is discussed.

  19. Compact turbidity meter

    NASA Technical Reports Server (NTRS)

    Hirschberg, J. G.

    1979-01-01

    Proposed monitor that detects back-reflected infrared radiation makes in situ turbidity measurements of lakes, streams, and other bodies of water. Monitor is compact, works well in daylight as at night, and is easily operated in rough seas.

  20. Aluminum Corrosion and Turbidity

    SciTech Connect

    Longtin, F.B.

    2003-03-10

    Aluminum corrosion and turbidity formation in reactors correlate with fuel sheath temperature. To further substantiate this correlation, discharged fuel elements from R-3, P-2 and K-2 cycles were examined for extent of corrosion and evidence of breaking off of the oxide film. This report discusses this study.

  1. Turbidity Current Head Mixing

    NASA Astrophysics Data System (ADS)

    Hernandez, David; Sanchez, Miguel Angel; Medina, Pablo

    2010-05-01

    A laboratory experimental set - up for studying the behaviour of sediment in presence of a turbulent field with zero mean flow is compared with the behaviour of turbidity currents [1] . Particular interest is shown on the initiation of sediment motion and in the sediment lift - off. The behaviour of the turbidity current in a flat ground is compared with the zero mean flow oscilating grid generated turbulence as when wave flow lifts off suspended sediments [2,3]. Some examples of the results obtained with this set-up relating the height of the head of the turbidity current to the equilibrium level of stirred lutoclines are shown. A turbulent velocity u' lower than that estimated by the Shield diagram is required to start sediment motion. The minimum u' required to start sediment lift - off, is a function of sediment size, cohesivity and resting time. The lutocline height depends on u', and the vorticity at the lutocline seems constant for a fixed sediment size [1,3]. Combining grid stirring and turbidty current head shapes analyzed by means of advanced image analysis, sediment vertical fluxes and settling speeds can be measured [4,5]. [1] D. Hernandez Turbulent structure of turbidity currents and sediment transport Ms Thesis ETSECCPB, UPC. Barcelona 2009. [2] A. Sánchez-Arcilla; A. Rodríguez; J.C. Santás; J.M. Redondo; V. Gracia; R. K'Osyan; S. Kuznetsov; C. Mösso. Delta'96 Surf-zone and nearshore measurements at the Ebro Delta. A: International Conference on Coastal Research through large Scale Experiments (Coastal Dynamics '97). University of Plymouth, 1997, p. 186-187. [3] P. Medina, M. A. Sánchez and J. M. Redondo. Grid stirred turbulence: applications to the initiation of sediment motion and lift-off studies Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26, Issue 4, 2001, Pages 299-304 [4] M.O. Bezerra, M. Diez, C. Medeiros, A. Rodriguez, E. Bahia., A. Sanchez-Arcilla and J.M. Redondo. Study on the influence of waves on

  2. Turbidity and suspended sediment in the upper Esopus Creek watershed, Ulster County, New York

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason

    2014-01-01

    Discharge, SSC, and turbidity were strongly related at the Coldbrook site but not at every monitoring site. In general, relations between discharge and SSC and turbidity were strongest at sites with high SSCs, with the exception of Stony Clove Creek. Stony Clove Creek had high SSCs and turbidity regardless of discharge, and although concentrations and turbidity values generally increased with increasing discharge, the relation was not strong. Five of the six sites used to investigate the relations between SSC and laboratory turbidity had a coefficient of determination (r2) greater than 0.7. Relations were not as strong between SSC and the turbidity measured by in situ probes because the period of record was shorter and therefore the sample sizes were smaller. Data from in situ turbidity probes were strongly related to turbidity data measured in the laboratory for all but one of the monitoring sites where the relation was strongly leveraged by one sample. Although the in situ turbidity probes appeared to provide a good surrogate for SSC and could allow more accurate calculations of suspended-sediment load than discrete suspended-sediment samples alone, more data would be required to define the regression models throughout the range in discharge, SSCs, and turbidity levels that occur at each monitoring site. Nonetheless, the in situ probes provided much greater detail about the relation between discharge and turbidity than did the grab samples and storm samples measured in the laboratory.

  3. Coherent label-free imaging through turbidity: a holographic approach

    NASA Astrophysics Data System (ADS)

    Bianco, V.; Paturzo, M.; Marchesano, V.; Miccio, L.; Memmolo, P.; Ferraro, P.

    2016-03-01

    A challenging issue has to be faced in microscopy whenever samples are immersed inside a dynamic turbid medium, as occluding objects provoke severe light scattering or unpredictable time-variable phase delays that scramble the object information. In these cases, the transmission matrix of the medium cannot be fully characterized. Here we show a simple technique, named Multi-Look Digital Holography (MLDH), able to fully recover the useful signal of biological specimens dipped inside a turbid liquid phase. Multiple hologram recordings are incoherently combined to synthesize the whole complex field diffused by the sample, which is revealed through turbidity providing quantitative phase-contrast information. Moreover, we show that the presence of a turbid medium can have a positive effect on a coherent imaging system, helping to reduce the effect of speckle artifacts. In other words, occluding biological elements, like e.g. Red Blood Cells (RBCs), can be thought as useful optical components providing denoising capabilities.

  4. Three-dimensional scanning microscopy through thin turbid media.

    PubMed

    Yang, Xin; Hsieh, Chia-Lung; Pu, Ye; Psaltis, Demetri

    2012-01-30

    We demonstrate three-dimensional imaging through a thin turbid medium using digital phase conjugation of the second harmonic signal emitted from a beacon nanoparticle. The digitally phase-conjugated focus scans the volume in the vicinity of its initial position through numerically manipulated phase patterns projected onto the spatial light modulator. Accurate three dimensional images of a fluorescent sample placed behind a turbid medium are obtained.

  5. Mathematical Modelling of Turbidity Currents

    NASA Astrophysics Data System (ADS)

    Fay, G. L.; Fowler, A.; Howell, P.

    2011-12-01

    A turbidity current is a submarine sediment flow which propagates downslope through the ocean into the deep sea. Turbidity currents can occur randomly and without much warning and consequently are hard to observe and measure. The driving force in a turbidity current is the presence of sediment in the current - gravity acts on the sediment in suspension, causing it to move downstream through the ocean water. A phenomenon known as ignition or autosuspension has been observed in turbidity currents in submarine canyons, and it occurs when a current travelling downslope gathers speed as it erodes sediment from the sea floor in a self-reinforcing cycle. Using the turbidity current model of Parker et al. (Journal of Fluid Mechanics, 1986) we investigate the evolution of a 1-D turbidity current as it moves downstream. To seek a better understanding of the dynamics of flow as the current evolves in space and time, we present analytical results alongside computed numerical solutions, incorporating entrainment of water and erosion and deposition of sediment. We consider varying slope functions and inlet conditions and attempt to predict when the current will become extinct. We examine currents which are in both supercritical and subcritical flow regimes and consider the dynamics of the flow as the current switches regime.

  6. Photothermal lens spectrometry measurements in highly turbid media.

    PubMed

    Marcano, Aristides; Basaldua, Isaac; Villette, Aaron; Edziah, Raymond; Liu, Jinjie; Ziane, Omar; Melikechi, Noureddine

    2013-09-01

    We measured the photothermal lens signal in samples exhibiting high turbidity using a pump-probe scheme. We show that the photothermal lens signal properties remain nearly unchanged up to values of turbidity of 6 cm(-1) despite the signal reduction due to the decrease of excitation power associated to turbidity losses. The signal starts decreasing abruptly for values of turbidity larger than 6 cm(-1). Multiple light scattering yields a reduction of the temperature gradients, which results in a decrease of the effective signal. However, the signal-to-noise ratio remains above 50 for turbidity values of 9 cm(-1), which corresponds to a reduction of light transmission by more than four orders of magnitude. We report on the detection of the photothermal lens signal through a 2 mm layer of organic tissue with a signal-to-noise ratio of about 500. This technique appears promising for imaging applications in organic samples, which usually exhibit high turbidity for visible and near-infrared light.

  7. Turbidity - a Semi-Continuous Monitoring Option for Suspended Solids

    NASA Astrophysics Data System (ADS)

    Lendvay, J. M.; Rosasco, M. V.; David, K. E.

    2012-12-01

    Redwood Creek, a third order coastal stream flowing through Muir Woods National Monument and Golden Gate National Recreation Area in Marin County, California, was once the spawning grounds for a relatively large population of Coho Salmon (Oncorhynchus kisutch). In recent years less than 1% of historic populations have been returning to the stream. Redwood creek is currently undergoing extensive ecological restoration in an attempt to improve the spawning habitat for the salmon. The original stream path has been altered in the past to make way for development and the National Park Service has been working towards restoring much of the stream's natural functionality with the hope that the salmon population will increase. The restoration process has altered the surrounding riparian landscape in the Redwood Creek watershed. Riparian disturbance caused by vegetation and levee removal as a part of the restoration process followed by installation of seedlings raises concern about the concentration of sediments in the water. Throughout 2011-2012 three parameters for water quality were monitored at Redwood Creek. Suspended sediment concentration (SSC) and total suspended solids (TSS) measurements to determine the concentration of suspended particles in the water column at a given point in time. Turbidity, measured in Nephelometric Turbidity Units (NTU) is a measure of the water's cloudiness caused by suspended particles. Turbidity measurements are favored as they provide a semi-automated monitoring option. Therefore, development of a relationship between turbidity and SSC and TSS is desired. Water samples were analyzed for TSS and SSC using the EPA standard methods, and Turbidity was measured using a Hach 2100Q portable turbidimeter. Additional semi-continuous monitoring of turbidity was completed in situ using Hydrolab DS5X datasondes (with self-cleaning turbidity sensor). The relationship between TSS, SSC and turbidity was determined using a linear regression model for

  8. Effect of turbidity on chlorination efficiency and bacterial persistence in drinking water.

    PubMed

    LeChevallier, M W; Evans, T M; Seidler, R J

    1981-07-01

    To define interrelationships between elevated turbidities and the efficiency of chlorination in drinking water, experiments were performed to measure bacterial survival, chlorine demand, and interference with microbiological determinations. Experiments were conducted on the surface water supplies for communities which practice chlorination as the only treatment. Therefore, the conclusions of this study apply only to such systems. Results indicated that disinfection efficiency (log10 of the decrease in coliform numbers) was negatively correlated with turbidity and was influenced by season, chlorine demand of the samples, and the initial coliform level. Total organic carbon was found to be associated with turbidity and was shown to interfere with maintenance of a free chlorine residual by creating a chlorine demand. Interference with coliform detection in turbid waters could be demonstrated by the recovery of typical coliforms from apparently negative filters. The incidence of coliform masking in the membrane filter technique was found to increase as the turbidity of the chlorinated samples increased. the magnitude of coliform masking in the membrane filter technique increased from less than 1 coliform per 100 ml in water samples of less than 5 nephelometric turbidity units to greater than 1 coliform per 100 ml in water samples of greater than 5 nephelometric turbidity units. Statistical models were developed to predict the impact of turbidity on drinking water quality. The results justify maximum contaminant levels for turbidity in water entering a distribution system as stated in the National Primary Drinking Water Regulations of the Safe Drinking Water Act. PMID:7259162

  9. [Experimental research of turbidity influence on water quality monitoring of COD in UV-visible spectroscopy].

    PubMed

    Tang, Bin; Wei, Biao; Wu, De-Cao; Mi, De-Ling; Zhao, Jing-Xiao; Feng, Peng; Jiang, Shang-Hai; Mao, Ben-Jiang

    2014-11-01

    Eliminating turbidity is a direct effect spectroscopy detection of COD key technical problems. This stems from the UV-visible spectroscopy detected key quality parameters depend on an accurate and effective analysis of water quality parameters analytical model, and turbidity is an important parameter that affects the modeling. In this paper, we selected formazine turbidity solution and standard solution of potassium hydrogen phthalate to study the turbidity affect of UV--visible absorption spectroscopy detection of COD, at the characteristics wavelength of 245, 300, 360 and 560 nm wavelength point several characteristics with the turbidity change in absorbance method of least squares curve fitting, thus analyzes the variation of absorbance with turbidity. The results show, In the ultraviolet range of 240 to 380 nm, as the turbidity caused by particle produces compounds to the organics, it is relatively complicated to test the turbidity affections on the water Ultraviolet spectra; in the visible region of 380 to 780 nm, the turbidity of the spectrum weakens with wavelength increases. Based on this, this paper we study the multiplicative scatter correction method affected by the turbidity of the water sample spectra calibration test, this method can correct water samples spectral affected by turbidity. After treatment, by comparing the spectra before, the results showed that the turbidity caused by wavelength baseline shift points have been effectively corrected, and features in the ultraviolet region has not diminished. Then we make multiplicative scatter correction for the three selected UV liquid-visible absorption spectroscopy, experimental results shows that on the premise of saving the characteristic of the Ultraviolet-Visible absorption spectrum of water samples, which not only improve the quality of COD spectroscopy detection SNR, but also for providing an efficient data conditioning regimen for establishing an accurate of the chemical measurement methods.

  10. Hyperspectral sensing for turbid water quality monitoring in freshwater rivers: Empirical relationship between reflectance and turbidity and total solids.

    PubMed

    Wu, Jiunn-Lin; Ho, Chung-Ru; Huang, Chia-Ching; Srivastav, Arun Lal; Tzeng, Jing-Hua; Lin, Yao-Tung

    2014-11-28

    Total suspended solid (TSS) is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ) as well as brought to the laboratory for further analysis. To obtain the data set for this study, 160 in situ sample observations were carried out during campaigns from August to December, 2005. The water quality results were correlated with the reflectivity to determine the spectral characteristics and their relationship with turbidity and TSS. Furthermore, multiple-regression (MR) and artificial neural network (ANN) were used to model the transformation function between TSS concentration and turbidity levels of stream water, and the radiance measured by the spectroradiometer. The value of the turbidity and TSS correlation coefficient was 0.766, which implies that turbidity is significantly related to TSS in the Wu river basin. The results indicated that TSS and turbidity are positively correlated in a significant way across the entire spectrum, when TSS concentration and turbidity levels were under 800 mg·L(-1) and 600 NTU, respectively. Optimal wavelengths for the measurements of TSS and turbidity are found in the 700 and 900 nm range, respectively. Based on the results, better accuracy was obtained only when the ranges of turbidity and TSS concentration were less than 800 mg·L(-1) and less than 600 NTU, respectively and used rather than using whole dataset (R(2) = 0.93 versus 0.88 for turbidity and R(2) = 0.83 versus 0.58 for TSS). On the other hand, the ANN approach can improve the TSS retrieval using MR. The accuracy of TSS estimation applying ANN (R(2) = 0.66) was better than with the MR approach (R

  11. Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship between Reflectance and Turbidity and Total Solids

    PubMed Central

    Wu, Jiunn-Lin; Ho, Chung-Ru; Huang, Chia-Ching; Srivastav, Arun Lal; Tzeng, Jing-Hua; Lin, Yao-Tung

    2014-01-01

    Total suspended solid (TSS) is an important water quality parameter. This study was conducted to test the feasibility of the band combination of hyperspectral sensing for inland turbid water monitoring in Taiwan. The field spectral reflectance in the Wu river basin of Taiwan was measured with a spectroradiometer; the water samples were collected from the different sites of the Wu river basin and some water quality parameters were analyzed on the sites (in situ) as well as brought to the laboratory for further analysis. To obtain the data set for this study, 160 in situ sample observations were carried out during campaigns from August to December, 2005. The water quality results were correlated with the reflectivity to determine the spectral characteristics and their relationship with turbidity and TSS. Furthermore, multiple-regression (MR) and artificial neural network (ANN) were used to model the transformation function between TSS concentration and turbidity levels of stream water, and the radiance measured by the spectroradiometer. The value of the turbidity and TSS correlation coefficient was 0.766, which implies that turbidity is significantly related to TSS in the Wu river basin. The results indicated that TSS and turbidity are positively correlated in a significant way across the entire spectrum, when TSS concentration and turbidity levels were under 800 mg·L−1 and 600 NTU, respectively. Optimal wavelengths for the measurements of TSS and turbidity are found in the 700 and 900 nm range, respectively. Based on the results, better accuracy was obtained only when the ranges of turbidity and TSS concentration were less than 800 mg·L−1 and less than 600 NTU, respectively and used rather than using whole dataset (R2 = 0.93 versus 0.88 for turbidity and R2 = 0.83 versus 0.58 for TSS). On the other hand, the ANN approach can improve the TSS retrieval using MR. The accuracy of TSS estimation applying ANN (R2 = 0.66) was better than with the MR approach (R2 = 0

  12. Determination of Residual Chlorine and Turbidity in Drinking Water. Instructor's Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This instructor's guide presents analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. This publication is intended…

  13. Determination of Residual Chlorine and Turbidity in Drinking Water. Student Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This student's manual covers analytical methods for residual chlorine and turbidity. Topics include sample handling, permissable concentration levels, substitution of residual chlorine for bacteriological work, public notification, and the required analytical techniques to determine residual chlorine and turbidity. The publication is intended for…

  14. Spatial and temporal variation in suspended sediment, organic matter, and turbidity in a Minnesota prairie river: implications for TMDLs.

    PubMed

    Lenhart, Christian F; Brooks, Kenneth N; Heneley, Daniel; Magner, Joseph A

    2010-06-01

    The Minnesota River Basin (MRB), situated in the prairie pothole region of the Upper Midwest, contributes excessive sediment and nutrient loads to the Upper Mississippi River. Over 330 stream channels in the MRB are listed as impaired by the Minnesota Pollution Control Agency, with turbidity levels exceeding water quality standards in much of the basin. Addressing turbidity impairment requires an understanding of pollutant sources that drive turbidity, which was the focus of this study. Suspended volatile solids (SVS), total suspended solids (TSS), and turbidity were measured over two sampling seasons at ten monitoring stations in Elm Creek, a turbidity impaired tributary in the MRB. Turbidity levels exceeded the Minnesota standard of 25 nephelometric units in 73% of Elm Creek samples. Turbidity and TSS were correlated (r (2) = 0.76), yet they varied with discharge and season. High levels of turbidity occurred during periods of high stream flow (May-June) because of excessive suspended inorganic sediment from watershed runoff, stream bank, and channel contributions. Both turbidity and TSS increased exponentially downstream with increasing stream power, bank height, and bluff erosion. However, organic matter discharged from wetlands and eutrophic lakes elevated SVS levels and stream turbidity in late summer when flows were low. SVS concentrations reached maxima at lake outlets (50 mg/l) in August. Relying on turbidity measurements alone fails to identify the cause of water quality impairment whether from suspended inorganic sediment or organic matter. Therefore, developing mitigation measures requires monitoring of both TSS and SVS from upstream to downstream reaches.

  15. Laser-speckle-visibility acoustic spectroscopy in soft turbid media

    NASA Astrophysics Data System (ADS)

    Wintzenrieth, Frédéric; Cohen-Addad, Sylvie; Le Merrer, Marie; Höhler, Reinhard

    2014-01-01

    We image the evolution in space and time of an acoustic wave propagating along the surface of turbid soft matter by shining coherent light on the sample. The wave locally modulates the speckle interference pattern of the backscattered light, which is recorded using a camera. We show both experimentally and theoretically how the temporal and spatial correlations in this pattern can be analyzed to obtain the acoustic wavelength and attenuation length. The technique is validated using shear waves propagating in aqueous foam. It may be applied to other kinds of acoustic waves in different forms of turbid soft matter such as biological tissues, pastes, or concentrated emulsions.

  16. Atmospheric turbidity over Kathmandu valley

    NASA Astrophysics Data System (ADS)

    Sapkota, Balkrishna; Dhaubhadel, Rajan

    The atmosphere of Kathmandu Valley has been investigated by using Sunphotometer and Nephelometer during the pre-monsoon period of 1999. The atmospheric turbidity parameters (extinction coefficient for 500 nm wavelength τAG and Angstrom coefficient β) are found high in the morning and show decreasing trends from morning to late afternoon on average. Vertical dispersion of pollutants and increasing pollutant flushing rate by increasing wind speed from morning to late afternoon is the cause for this decreasing trend of turbidity over the valley. Being surrounded by high hills all around the valley, horizontal exit of pollutants without vertical dispersion is not possible. The scattering coefficient bscat of aerosols in ground level troposphere is also found high in the morning, which decreases and becomes minimum during afternoon. During late afternoon, bscat again shows a slightly increasing trend. The reason is the increasing vehicular emission during late afternoon rush period. The average values of Angstrom exponent α, β, τAG and bscat are found to be 0.624±0.023, 0.299±0.009, 0.602±0.022 and 0.353±0.014 km -1, respectively. About 76.8% of the observed values of β lie above 0.2 indicating heavy particulate pollution in the valley. A comparison of observed values of turbidity parameters with other major cities of the world shows that Kathmandu is as polluted as cities like Jakarta, Kansas, Beijing, Vienna, etc.

  17. Generalized weighted ratio method for accurate turbidity measurement over a wide range.

    PubMed

    Liu, Hongbo; Yang, Ping; Song, Hong; Guo, Yilu; Zhan, Shuyue; Huang, Hui; Wang, Hangzhou; Tao, Bangyi; Mu, Quanquan; Xu, Jing; Li, Dejun; Chen, Ying

    2015-12-14

    Turbidity measurement is important for water quality assessment, food safety, medicine, ocean monitoring, etc. In this paper, a method that accurately estimates the turbidity over a wide range is proposed, where the turbidity of the sample is represented as a weighted ratio of the scattered light intensities at a series of angles. An improvement in the accuracy is achieved by expanding the structure of the ratio function, thus adding more flexibility to the turbidity-intensity fitting. Experiments have been carried out with an 850 nm laser and a power meter fixed on a turntable to measure the light intensity at different angles. The results show that the relative estimation error of the proposed method is 0.58% on average for a four-angle intensity combination for all test samples with a turbidity ranging from 160 NTU to 4000 NTU.

  18. Change in field turbidity and trace element concentrations during well purging

    USGS Publications Warehouse

    Gibs, J.; Szabo, Z.; Ivahnenko, T.; Wilde, F.D.

    2000-01-01

    Various physical and chemical properties were monitored sequentially in the field during well purging as indicators of stabilization of the composition of the water in the well. Turbidity was monitored on site during purging of oxic water from three wells with screened intervals open to an unconfined aquifer system in the Coastal Plain of southern New Jersey to determine if stabilization of turbidity is a reliable indicator of the optimum purge time required to collect unbiased trace element samples. Concurrent split (one filtered, one unfiltered) samples collected during purging of the wells were analyzed for concentrations of trace elements so that the relationships between trace element concentrations and turbidity could be compared. Turbidity correlated with the whole water recoverable (WWR) concentration of trace element species, such as iron (Fe), aluminum (Al), and manganese (Mn) in the oxic ground water. Turbidity appeared to be independent of other field-measured characteristics of water such as conductivity, pH, temperature, and dissolved oxygen. The WWR concentrations of lead and copper, considered to be hydrophobic, correlated significantly with the sum of the WWR concentration of Fe, Al, and Mn. High values of field-measured turbidity were a key indicator of an overestimate of ambient hydrophobic trace element WWR concentrations. Stabilization of turbidity was a better indicator of stable, unfiltered trace element concentrations than were the other commonly measured field characteristics. At one well, turbidity was a better indicator of stable, filtered trace element concentrations than the other commonly measured field characteristics. As analytical methods for trace elements improve resulting in smaller MRLs (method reporting levels) and better precision, turbidity of ground water at values of less than 10 NTU (nepheiometric turbidity units) will become important in interpreting the significance of both unfiltered and filtered sample results.

  19. Spectral scattering properties of turbid waters

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Poole, L. R.; Houghton, W. M.

    1980-01-01

    River water samples have been examined for optical scattering properties at wavelengths between 400 and 800 nm. Scattering coefficients were calculated from measurements of beam attenuation and absorption coefficients and are observed to vary with wavelength. At a fixed wavelength, the scattering coefficient is influenced by both phytoplankton concentration (as indicated by chlorophyll a) and suspended solids concentration. Measurements of small angle volume-scattering function indicate that the phase function at an angle of 1.5 deg is not constant for turbid waters and varies with both wavelength and beam attenuation coefficient. These data differ from previously published results for relatively clear oceanic and coastal waters. Caution is required when attempting to estimate scattering coefficient values from single-angle measurements of volume-scattering function.

  20. Applications of turbidity monitoring to forest management in California.

    PubMed

    Harris, Richard R; Sullivan, Kathleen; Cafferata, Peter H; Munn, John R; Faucher, Kevin M

    2007-09-01

    Many California streams have been adversely affected by sedimentation caused by historic and current land uses, including timber harvesting. The impacts of timber harvesting and logging transportation systems on erosion and sediment delivery can be directly measured, modeled, or inferred from water quality measurements. California regulatory agencies, researchers, and land owners have adopted turbidity monitoring to determine effects of forest management practices on suspended sediment loads and water quality at watershed, project, and site scales. Watershed-scale trends in sediment discharge and responses to current forest practices may be estimated from data collected at automated sampling stations that measure turbidity, stream flow, suspended sediment concentrations, and other water quality parameters. Future results from these studies will provide a basis for assessing the effectiveness of modern forest practice regulations in protecting water quality. At the project scale, manual sampling of water column turbidity during high stream flow events within and downstream from active timber harvest plans can identify emerging sediment sources. Remedial actions can then be taken by managers to prevent or mitigate water quality impacts. At the site scale, manual turbidity sampling during storms or high stream flow events at sites located upstream and downstream from new, upgraded, or decommissioned stream crossings has proven to be a valuable way to determine whether measures taken to prevent post-construction erosion and sediment production are effective. Turbidity monitoring at the project and site scales is therefore an important tool for adaptive management. Uncertainty regarding the effects of current forest practices must be resolved through watershed-scale experiments. In the short term, this uncertainty will stimulate increased use of project and site-scale monitoring. PMID:17562100

  1. Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan.

    PubMed

    Chang, Qing; Zhang, Min; Wang, Jinxi

    2009-09-30

    A macromolecule heavy metal flocculant mercaptoacetyl chitosan (MAC) was prepared by reacting chitosan with mercaptoacetic acid. In preliminary experiments, the flocculation performance of MAC was evaluated by using wastewater containing Cu(2+) or/and turbidity. Some factors which affect the removal of Cu(2+) and turbidity were also studied. The experimental results showed that: (1) MAC can remove both Cu(2+) and turbidity from wastewater. The removal efficiency of Cu(2+) by using MAC combined with hydrolyzed polyacrylamide is higher than that by only using MAC, the removal efficiency of Cu(2+) reaches above 98%; (2) when water sample containing not only Cu(2+) but also turbidity-causing substance, the removal efficiency of both Cu(2+) and turbidity will be promoted by the cooperation effect of each other, the residual concentration of Cu(2+) reaches below 0.5 mg L(-1) and the turbidity reaches below 3NTU, Cu(2+) is more easily removed by MAC when turbidity is higher; (3) the removal efficiency of Cu(2+) increases with the increase in pH value, contrarily removal efficiency of turbidity decreases with the increase in pH value.

  2. IMPACT OF TURBIDITY ON TCE AND DEGRADATION PRODUCTS IN GROUND WATER

    EPA Science Inventory

    Elevated particulate concentrations in ground water samples can bias contaminant concentration data. This has been particularly problematic for metal analyses where artificially increased turbidity levels can affect metals concentrations and confound interpretation of the data. H...

  3. Increasing precision of turbidity-based suspended sediment concentration and load estimates.

    PubMed

    Jastram, John D; Zipper, Carl E; Zelazny, Lucian W; Hyer, Kenneth E

    2010-01-01

    Turbidity is an effective tool for estimating and monitoring suspended sediments in aquatic systems. Turbidity can be measured in situ remotely and at fine temporal scales as a surrogate for suspended sediment concentration (SSC), providing opportunity for a more complete record of SSC than is possible with physical sampling approaches. However, there is variability in turbidity-based SSC estimates and in sediment loadings calculated from those estimates. This study investigated the potential to improve turbidity-based SSC, and by extension the resulting sediment loading estimates, by incorporating hydrologic variables that can be monitored remotely and continuously (typically 15-min intervals) into the SSC estimation procedure. On the Roanoke River in southwestern Virginia, hydrologic stage, turbidity, and other water-quality parameters were monitored with in situ instrumentation; suspended sediments were sampled manually during elevated turbidity events; samples were analyzed for SSC and physical properties including particle-size distribution and organic C content; and rainfall was quantified by geologic source area. The study identified physical properties of the suspended-sediment samples that contribute to SSC estimation variance and hydrologic variables that explained variability of those physical properties. Results indicated that the inclusion of any of the measured physical properties in turbidity-based SSC estimation models reduces unexplained variance. Further, the use of hydrologic variables to represent these physical properties, along with turbidity, resulted in a model, relying solely on data collected remotely and continuously, that estimated SSC with less variance than a conventional turbidity-based univariate model, allowing a more precise estimate of sediment loading, Modeling results are consistent with known mechanisms governing sediment transport in hydrologic systems.

  4. Use of Moringa oleifera seed extracts to reduce helminth egg numbers and turbidity in irrigation water.

    PubMed

    Sengupta, Mita E; Keraita, Bernard; Olsen, Annette; Boateng, Osei K; Thamsborg, Stig M; Pálsdóttir, Guðný R; Dalsgaard, Anders

    2012-07-01

    Water from wastewater-polluted streams and dug-outs is the most commonly used water source for irrigation in urban farming in Ghana, but helminth parasite eggs in the water represent health risks when used for crop production. Conventional water treatment is expensive, requires advanced technology and often breaks down in less developed countries so low cost interventions are needed. Field and laboratory based trials were carried out in order to investigate the effect of the natural coagulant Moringa oleifera (MO) seed extracts in reducing helminh eggs and turbidity in irrigation water, turbid water, wastewater and tap water. In medium to high turbid water MO extracts were effective in reducing the number of helminth eggs by 94-99.5% to 1-2 eggs per litre and the turbidity to 7-11 NTU which is an 85-96% reduction. MO is readily available in many tropical countries and can be used by farmers to treat high turbid water for irrigation, however, additional improvements of water quality, e.g. by sand filtration, is suggested to meet the guideline value of ≤ 1 helminth egg per litre and a turbidity of ≤ 2 NTU as recommended by the World Health Organization and the U.S. Environmental Protection Agency for water intended for irrigation. A positive correlation was established between reduction in turbidity and helminth eggs in irrigation water, turbid water and wastewater treated with MO. This indicates that helminth eggs attach to suspended particles and/or flocs facilitated by MO in the water, and that turbidity and helminth eggs are reduced with the settling flocs. However, more experiments with water samples containing naturally occurring helminth eggs are needed to establish whether turbidity can be used as a proxy for helminth eggs.

  5. Water turbidity estimation from airborne hyperspectral imagery and full waveform bathymetric LiDAR

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Glennie, C. L.; Fernandez-Diaz, J. C.

    2015-12-01

    The spatial and temporal variations in water turbidity are of great interest for the study of fluvial and coastal environments; and for predicting the performance of remote sensing systems that are used to map these. Conventional water turbidity estimates from remote sensing observations have normally been derived using near infrared reflectance. We have investigated the potential of determining water turbidity from additional remote sensing sources, namely airborne hyperspectral imagery and single wavelength bathymetric LiDAR (Light Detection and Ranging). The confluence area of the Blue and Colorado River, CO was utilized as a study area to investigate the capabilities of both airborne bathymetric LiDAR and hyperspectral imagery for water turbidity estimation. Discrete and full waveform bathymetric data were collected using Optech's Gemini (1064 nm) and Aquarius (532 nm) LiDAR sensors. Hyperspectral imagery (1.2 m pixel resolution and 72 spectral bands) was acquired using an ITRES CASI-1500 imaging system. As an independent reference, measurements of turbidity were collected concurrent with the airborne remote sensing acquisitions, using a WET Labs EcoTriplet deployed from a kayak and turbidity was then derived from the measured backscatter. The bathymetric full waveform dataset contains a discretized sample of the full backscatter of water column and benthic layer. Therefore, the full waveform records encapsulate the water column characteristics of turbidity. A nonparametric support vector regression method is utilized to estimate water turbidity from both hyperspectral imagery and voxelized full waveform LiDAR returns, both individually and as a fused dataset. Results of all the evaluations will be presented, showing an initial turbidity prediction accuracy of approximately 1.0 NTU. We will also discuss our future strategy for enhanced fusion of the full waveform LiDAR and hyperspectral imagery for improved turbidity estimation.

  6. Angular measurements of light scattered by turbid chiral media using linear Stokes polarimeter.

    PubMed

    Guo, Xinxin; Wood, Michael F G; Vitkin, I Alex

    2006-01-01

    The effects of turbid chiral media on light polarization are studied in different directions around the scattering samples using a refined linear Stokes polarimeter, which simplifies the signal analysis, and allows for the detailed investigations of scattered light. Because no moving parts are involved in a measurement at a specific detection direction, the determination accuracy of polarization states is increased. The results show that light depolarization increases with both turbidity and detection angle for low and moderately turbid samples; however, the angular dependence decreases with increasing turbidity. When the turbidity is increased to approximately 100 cm(-1), the depolarization becomes higher in the forward than in the backward direction. Polarization sensitive Monte Carlo simulations are used to verify some experimental observations. The results also demonstrate that surviving linear polarization fraction and overall intensity are more sensitive to the increase of glucose concentration in backward than in the forward direction in highly turbid media, indicating that backward geometry may be preferable for potential glucose detection in a biomedical context. Comparison measurements with optically inactive glycerol suggest that the refractive index matching effect, and not the chiral nature of the solute, dominates the observed optical rotation engendered by glucose in highly turbid media. PMID:16965133

  7. Spatio-temporal patterns in coastal turbidity - Long-term trends and drivers of variation across an estuarine-open coast gradient

    NASA Astrophysics Data System (ADS)

    Seers, Blake M.; Shears, Nick T.

    2015-03-01

    Turbidity in the coastal environment is greatly affected by human activities on the land and this is likely to be exacerbated with expanding urbanisation and climate change. Investigating the temporal and spatial drivers of variation in turbidity is key to understanding processes influencing turbidity and for developing management strategies to mitigate future increases in turbidity. We analyse 22 years of monthly turbidity data from 1992 to 2013 in New Zealand's Hauraki Gulf to determine whether turbidity has changed in response to implementation of land management regulations. We also investigate how spatial and temporal patterns in turbidity relate to meteorological and oceanographic variables along an estuarine to open-coast gradient. Turbidity, total suspended solids and chlorophyll a declined along the estuarine to open-coast gradient. Correlation analysis suggested that suspended sediment was the major determinant of turbidity along this gradient. Improvements in turbidity were evident at some harbour sites, but overall there were no consistent trends across the sites. Some cyclical patterns in turbidity were evident, but these were only weakly related to ENSO. The greatest component of temporal variation at all sites was between samples (months). The primary correlates of this variation in turbidity differed across the estuarine-open coast gradient; recent wave conditions explained the greatest variation in turbidity at open coast sites, whereas tidal currents and daily rainfall were the primary correlates at harbour channel and estuarine sites. The strong coupling found between meteorological factors and coastal turbidity highlight a number of mechanisms whereby turbidity will likely increase as a result of climate change along this coastal gradient. Improvements in land management practices, particularly in rural areas, as well as coastal protection are therefore essential to offset the likely effects of climate change on coastal turbidity.

  8. Turbidity distribution in the Atlantic Ocean

    USGS Publications Warehouse

    Eittreim, S.; Thorndike, E.M.; Sullivan, L.

    1976-01-01

    The regional coverage of Lamont nephelometer data in the North and South Atlantic can be used to map seawater turbidity at all depths. At the level of the clearest water, in the mid-depth regions, the turbidity distribution primarily reflects the pattern of productivity in the surface waters. This suggests that the 'background' turbidity level in the oceans is largely a function of biogenic fallout. The bottom waters of the western Atlantic generally exhibit large increases in turbidity. The most intense benthic nepheloid layers are in the southwestern Argentine basin and northern North American basin; the lowest bottom water turbidity in the western Atlantic is in the equatorial regions. Both the Argentine and North American basin bottom waters appear to derive their high turbidity largely from local resuspension of terrigenous input in these basins. In contrast to the west, the eastern Atlantic basins show very low turbidities with the exception of three regions: the Mediterranean outflow area, the Cape basin, and the West European basin. ?? 1976.

  9. Backscattering differential ghost imaging in turbid media.

    PubMed

    Bina, M; Magatti, D; Molteni, M; Gatti, A; Lugiato, L A; Ferri, F

    2013-02-22

    In this Letter we present experimental results concerning the retrieval of images of absorbing objects immersed in turbid media via differential ghost imaging (DGI) in a backscattering configuration. The method has been applied, for the first time to our knowledge, to the imaging of thin black objects located inside a turbid solution in proximity of its surface. We show that it recovers images with a contrast better than standard noncorrelated direct imaging, but equivalent to noncorrelated diffusive imaging. A simple theoretical model capable of describing the basic optics of DGI in turbid media is proposed.

  10. Simple systems for treating pumped, turbid water with flocculants and a geotextile dewatering bag.

    PubMed

    Kang, Jihoon; McLaughlin, Richard A

    2016-11-01

    Pumping sediment-laden water from excavations is often necessary on construction sites. This water is often treated by pumping it through geotextile dewatering bags. The bags are not designed to filter the fine sediments that create high turbidity, but dosing with a flocculant prior to the bag could result in greater turbidity control. This study compared two systems for introducing flocculant: passive dosing of commercial solid biopolymer (chitosan) and injection of dissolved polyacrylamide (PAM) in a length of corrugated pipe connected to the bag. The biopolymer system consisted of sequential porous socks containing a "charging agent" followed by chitosan in the corrugated pipe with two levels of dosing. The dissolved PAM was injected into turbid water at a flow-weighted concentration at 1 mg L(-1). For each treatment, sediment-laden turbid water in the range of 2000 to 3500 nephelometric turbidity units (NTU) was pumped into the upstream of corrugated pipe and samples were taken from pipe entrance, pipe exit, and dewatering bag exit. Without flocculant treatment, the dewatering bag reduced turbidity by 70% but the addition of flocculant increased the turbidity reduction up to 97% relative to influent. At the pipe exit, the low-dose biopolymer was less effective in reducing turbidity (37%) but it was equally effective as the high-dose biopolymer or PAM injection after the bag. Our results suggest that a relatively simple treatment with flocculants, either passively or actively, can be very effective in reducing turbidity for pumped water on construction sites. PMID:27479237

  11. GMDH algorithms applied to turbidity forecasting

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Min; Yen, Pei-Hwa

    2016-09-01

    By applying the group method of data handling algorithm to self-organization networks, we design a turbidity prediction model based on simple input/output observations of daily hydrological data (rainfall, discharge, and turbidity). The data are from a field test site at the Chiahsien Weir and its upper stream in Taiwan, and were recorded from May 2000 to December 2008. The model has a regressive mode that can assess the estimated error, i.e., whether a threshold has been exceeded, and can be adjusted by updating the field input data. Consequently, the model can achieve accurate estimations over long-term periods. Test results demonstrate that the 2006 turbidity prediction model was selected as the best predictive model (RMSE = 5.787 and CC = 0.975) because of its ability to predict turbidity within the acceptable error range and 90 % required confidence interval (50NTU). 70(3,1,1) is the optimum modeling data length and variable combinations.

  12. NIR remission spectroscopy of turbid media

    NASA Astrophysics Data System (ADS)

    Krauter, P.; Foschum, F.; Kienle, A.

    2013-06-01

    We present a method for the determination of absorption spectra in VIS and NIR spectra of turbid media without the need for calibration. Measurements of the absorption spectra of a phantom and butter are presented.

  13. Correlation between multispectral photography and near-surface turbidities

    NASA Technical Reports Server (NTRS)

    Wertz, D. L.; Mealor, W. T.; Steele, M. L.; Pinson, J. W.

    1976-01-01

    Four-band multispectral photography obtained from an aerial platform at an altitude of about 10,000 feet has been utilized to measure near-surface turbidity at numerous sampling sites in the Ross Barnett Reservoir, Mississippi. Correlation of the photographs with turbidity measurements has been accomplished via an empirical mathematical model which depends upon visual color recognition when the composited photographs are examined on either an I squared S model 600 or a Spectral Data model 65 color-additive viewer. The mathematical model was developed utilizing least-squares, iterative, and standard statistical methods and includes a time-dependent term related to sun angle. This model is consistent with information obtained from two overflights of the target area - July 30, 1973 and October 30, 1973 - and now is being evaluated with regard to information obtained from a third overflight on November 8, 1974.

  14. Satellite remote sensing of water turbidity

    USGS Publications Warehouse

    Moore, Gerald K.

    1980-01-01

    Remote sensing instruments obtain an optical measure of water colour and turbidity. Colour increases the absorption of light in water and decreases the remotely sensed signal; turbidity increases the backscatter of light. For low concentrations of suspended materials, spectral reflectance is determined mostly by the absorptance characteristics of water; for higher concentrations, the absorptance characteristics of suspended particles are the most important factors. -from Authorwater colour suspended materials

  15. Continuous Turbidity Monitoring in the Indian Creek Watershed, Tazewell County, Virginia, 2006-08

    USGS Publications Warehouse

    Moyer, Douglas; Hyer, Kenneth

    2009-01-01

    Thousands of miles of natural gas pipelines are installed annually in the United States. These pipelines commonly cross streams, rivers, and other water bodies during pipeline construction. A major concern associated with pipelines crossing water bodies is increased sediment loading and the subsequent impact to the ecology of the aquatic system. Several studies have investigated the techniques used to install pipelines across surface-water bodies and their effect on downstream suspended-sediment concentrations. These studies frequently employ the evaluation of suspended-sediment or turbidity data that were collected using discrete sample-collection methods. No studies, however, have evaluated the utility of continuous turbidity monitoring for identifying real-time sediment input and providing a robust dataset for the evaluation of long-term changes in suspended-sediment concentration as it relates to a pipeline crossing. In 2006, the U.S. Geological Survey, in cooperation with East Tennessee Natural Gas and the U.S. Fish and Wildlife Service, began a study to monitor the effects of construction of the Jewell Ridge Lateral natural gas pipeline on turbidity conditions below pipeline crossings of Indian Creek and an unnamed tributary to Indian Creek, in Tazewell County, Virginia. The potential for increased sediment loading to Indian Creek is of major concern for watershed managers because Indian Creek is listed as one of Virginia's Threatened and Endangered Species Waters and contains critical habitat for two freshwater mussel species, purple bean (Villosa perpurpurea) and rough rabbitsfoot (Quadrula cylindrical strigillata). Additionally, Indian Creek contains the last known reproducing population of the tan riffleshell (Epioblasma florentina walkeri). Therefore, the objectives of the U.S. Geological Survey monitoring effort were to (1) develop a continuous turbidity monitoring network that attempted to measure real-time changes in suspended sediment (using

  16. Unreliability of triglyceride measurement to predict turbidity induced interference.

    PubMed

    Twomey, P J; Don-Wauchope, A C; McCullough, D

    2003-11-01

    Lipaemic specimens are a common problem in clinical chemistry. Most laboratories will measure the concentration of triglycerides and then decide whether the analytical result is valid or not. There is a poor association between the concentration of triglycerides and an objective assessment of turbidity for visually turbid specimens. Extrapolation of triglyceride concentrations derived from the use of intravenous emulsions to visually turbid specimens found in clinical practice will overestimate the turbidity induced interference in assays (non-turbid interferences are probably the same). The evaluation of turbidity induced interference needs to be standardised using objective assessments of turbidity.

  17. Estimation of suspended sediment concentration from turbidity measurements for agrarian watersheds of Navarre (Spain)

    NASA Astrophysics Data System (ADS)

    Madrona, Cecilia; Campo-Bescós, Miguel A.; Giménez, Rafael

    2016-04-01

    analysis and neural networks will be applied. To this end, there is a complete database of turbidity -taken every ten minutes- and sediment concentration -and in some cases, the granulometry of this sediment- registered along a single event above a certain magnitude. In addition, there are turbidity measurements of water-sediment samples from some of those events carried out in the laboratory. The latter are compared with the turbidity measurements registered by the turbidimeter in the hydrological stations. First results show that the turbidity-SSC relationship has an accuracy that varies throughout the year following a roughly seasonal pattern. Thus, the best fit will be achieved by defining a turbidity-SSC model according to the type of event. Furthermore the water-sediment sampler eventually collect bedload sediment while turbidemeters only register suspended sediments. This fact is somehow spoiling the turbidity-SSC relationship.

  18. A turbidity-based method to continuously monitor sediment, carbon and nitrogen flows in mountainous watersheds

    NASA Astrophysics Data System (ADS)

    Slaets, Johanna I. F.; Schmitter, Petra; Hilger, Thomas; Lamers, Marc; Piepho, Hans-Peter; Vien, Tran Duc; Cadisch, Georg

    2014-05-01

    The aim of this study was to develop a method to continuously monitor sediment, carbon and nitrogen concentrations in streams using turbidity sensors. Field experiments were conducted in an irrigated and intensely cultivated watershed in Northwest Vietnam. Turbidity, discharge and rainfall were monitored during two successive rainy seasons from 2010 to 2011, and manual water samples were collected using a storm-based approach. Samples were analyzed for concentrations of suspended sediment (SSC), particulate organic carbon (POC) and particulate nitrogen (PN). A linear mixed model was developed to account for serial correlation, with turbidity, discharge and rainfall as predictor variables. Turbidity was the most important predictor variable in all models. Fivefold cross-validation showed best model performance for POC with a Pearson’s correlation coefficient of 0.91, while predictions for SSC and PN achieved a satisfying correlation of 0.86 and 0.87, respectively. Laboratory testing of the turbidity sensors showed that the turbidity signal is sensitive to differences in organic matter content, and has the smallest variance for fine textures, both of which are correlated to POC and thus supporting the higher predictive accuracy for this variable. The developed methodology is widely applicable and can be used to simultaneously obtain reliable, cost-effective and continuous estimates of SSC, POC and PN with a single sensor.

  19. Ultrasonic probing of the banana photon distribution in turbid media

    NASA Astrophysics Data System (ADS)

    Lev, Aner; Kotler, Zvi; Sfez, Bruno

    2001-06-01

    Probing photon density in diffusive media is very important in order to model and understand their propagation. It is possible to detect photons outside the medium, but their non-invasive detection inside it is still an unsolved problem. An elegant, semi-invasive approach to perform this task is to scan a small absorbing sphere inside the turbid medium and measure the light outside the sample when the sphere is present and when it is not. However this method requires the medium to be liquid and such a procedure cannot be performed in the case of biological tissues. Ultrasound tagging of light has been introduced initially for transillumination imaging in turbid media, and then extended to the case of reflection imaging. Here we present results showing that it is possible to map the photon density inside solid turbid media by locally tagging photons using an ultrasonic field. We experimentally retrieve the well-known banana-shaped photons distribution when the source and the detectors are in a back-scattering configuration, using a gel-based homogeneous phantom. We also present experiments where hemoglobin has been introduced inside the gel. By fitting the experimental results with the theoretical formula, we are able to quantitatively retrieve the amount of hemoglobin introduced inside the gel, not only from data obtained by scanning the ultrasound waist inside the phantom, the in put and output fibers staying fixed.

  20. Fingerprinting Persistent Turbidity in Sheep Creek Reservoir, Owhyee, Nevada

    NASA Astrophysics Data System (ADS)

    Ransom, R. N.; Hooper, R. L.; Kerner, D.; Nicols, S.

    2007-12-01

    Sheep Creek Reservoir near Owyhee, NV is historically a quality rainbow trout fishery. Persistent high-turbidity has been an issue since a major storm event in 2005 resulted in surface water runoff into the Reservoir. The high turbidity is adversely impacting the quality of the fishery. Initial turbidity measurements in 2005 were upwards of 80NTU and these numbers have only decreased to 30NTU over the past two summers. Field parameters indicate the turbidity is associated with high total suspended solids (TSS) and not algae. Five water samples collected from around the reservoir during June, 2007 indicated uniform TSS values in the range of 5 to 12mg/L and oriented powder x-ray diffraction(XRD) and transmission electron microscopy(TEM) analyses of suspended sediment shows very uniform suspended particulate mineralogy including smectite, mixed layer illite/smectite (I/S), discrete illite, lesser amounts of kaolin, sub-micron quartz and feldspar. Diatoms represent a ubiquitous but minor component of the suspended solids. Six soil samples collected from possible source areas around the reservoir were analyzed using both XRD and TEM to see if a source area for the suspended solids could be unambiguously identified. Soils on the east side of the reservoir contain smectite and mixed layer I/S but very little of the other clays. The less than 2 micron size fraction from soils collected from a playa on the topographic bench immediately to the west of the reservoir show a mineralogic finger-print essentially identical to the current suspended sediment. The suspended sediment probably originates on the bench to the west of the reservoir and cascades into the reservoir over the topographic break during extreme storm events. The topographic relief, short travel distance and lack of a suitable vegetated buffer zone to the west are all consistent with a primary persistent suspended sediment source from the west. Identification of the sediment source allows for design of a cost

  1. Turbidity Dynamics in an Urbanized Headwater Stream

    NASA Astrophysics Data System (ADS)

    Wynn, T. M.; Utley, B. C.; Davis, K.; Simpson, J. A.

    2008-12-01

    Excess suspended sediment in streams degrades aquatic ecosystems, reduces reservoir capacity, increases drinking water treatment costs, and serves as a carrier for pollutants such as phosphorus, bacterial, heavy metals, and pesticides. Due to the high temporal variability of suspended sediment transport, continuous instream turbidity measurements are used as a surrogate for suspended sediment concentration. This variability is particularly pronounced in small urban streams (drainage areas < 100 sq. km). To evaluate turbidity dynamics within the Stroubles Creek watershed (14 sq. km), two Eureka Manta multi-parameter sondes with McVan wiped turbidity sensors were installed at two cross sections upstream and downstream of a 450-m reach experiencing active bank retreat. Turbidity was recorded every 10 min. from March 2006 to May 2007. The continuous turbidity records were evaluated for hysteresis and indications of contributions of bank retreat to the stream sediment load. While the transport of suspended sediment from upstream sources through the study reach is observed, channel erosion appears to be a significant source of sediment to the stream.

  2. An evaluation of suspended sediments and turbidity in Cow Creek, Oregon

    USGS Publications Warehouse

    Curtiss, D.A.

    1982-01-01

    During a 6-month period from December 1980 through May 1981, samples were collected from Cow Creek near Azalea, Oreg., and analyzed for suspended sediment, particle-size distribution, and turbidity. Of the estimated suspended-sediment discharge of 4,270 tons for the 1981 water year, 95 percent (4,050 tons) was transported during a major storm event, December 2-4, 1980. The 1981 water year suspended-sediment discharge of 4,270 tons is well below the average annual suspended-sediment discharge of 22,000 tons reported earlier by Curtiss (1974). A clay-sediment transport curve was used in conjunction with the flow-duration curve to estimate average annual clay discharge of 3,700 tons for Cow Creek near Azalea. Turbidity in Cow Creek near Azalea is estimated to be equal to or less than 15 NTU (nephelometric turbidity units) 90 percent of the time. A method for predicting turbidity values in a hypothetical impoundment is presented in this report. This method utilizes a suspended-sediment transport curve of the fine (<0.002 mm) material and measures residual-turbidity values. This method probably could be used to assess the impact of proposed reservoirs on stream turbidities in basins similar to that of Cow Creek basin.

  3. The design of rapid turbidity measurement system based on single photon detection techniques

    NASA Astrophysics Data System (ADS)

    Yang, Yixin; Wang, Huanqin; Cao, Yangyang; Gui, Huaqiao; Liu, Jianguo; Lu, Liang; Cao, Huibin; Yu, Tongzhu; You, Hui

    2015-10-01

    A new rapid turbidity measurement system has been developed to measure the turbidity of drinking water. To determinate the turbidity quantitatively, the total intensity of scattering light has been measured and quantified as number of photons by adopting the single photon detection techniques (SPDT) which has the advantage of high sensitivity. On the basis of SPDT, the measurement system has been built and series of experiments have been carried out. Combining then the 90° Mie scattering theory with the principle of SPDT, a turbidity measurement model has been proposed to explain the experimental results. The experimental results show that a turbidity, which is as low as 0.1 NTU (Nephelometric Turbidity Units), can be measured steadily within 100 ms. It also shows a good linearity and stability over the range of 0.1-400 NTU and the precision can be controlled within 5% full scale. In order to improve its precision and stability, some key parameters, including the sampling time and incident light intensity, have been discussed. It has been proved that, to guarantee an excellent system performance, a good compromise between the measurement speed and the low power consumption should be considered adequately depending on the practical applications.

  4. Effect of Canister Movement on Water Turbidity

    SciTech Connect

    TRIMBLE, D.J.

    2000-08-24

    Requirements for evaluating the adherence characteristics of sludge on the fuel stored in the K East Basin and the effect of canister movement on basin water turbidity are documented in Briggs (1996). The results of the sludge adherence testing have been documented (Bergmann 1996). This report documents the results of the canister movement tests. The purpose of the canister movement tests was to characterize water turbidity under controlled canister movements (Briggs 1996). The tests were designed to evaluate methods for minimizing the plumes and controlling water turbidity during fuel movements leading to multi-canister overpack (MCO) loading. It was expected that the test data would provide qualitative visual information for use in the design of the fuel retrieval and water treatment systems. Video recordings of the tests were to be the only information collected.

  5. Verification of reflectance models in turbid waters

    NASA Technical Reports Server (NTRS)

    Tanis, F. J.; Lyzenga, D. R.

    1981-01-01

    Inherent optical parameters of very turbid waters were used to evaluate existing water reflectance models. Measured upwelling radiance spectra and Monte Carlo simulations of the radiative transfer equations were compared with results from models based upon two flow, quasi-single scattering, augmented isotropic scattering, and power series approximation. Each model was evaluated for three separate components of upwelling radiance: (1) direct sunlight; (2) diffuse skylight; and (3) internally reflected light. Limitations of existing water reflectance models as applied to turbid waters and possible applications to the extraction of water constituent information are discussed.

  6. Appearance and water quality of turbidity plumes produced by dredging in Tampa Bay, Florida

    USGS Publications Warehouse

    Goodwin, Carl R.; Michaelis, D.M.

    1984-01-01

    Turbidity plumes in Tampa Bay, Florida, produced during ship-channel dredging operations from February 1977 to August 1978, were monitored in order to document plume appearance and water quality, evaluate plume influence on the characteristics of Tampa Bay water, and provide a data base for comparison with other areas that have similar sediment, dredge, placement, containment, and tide conditions. The plumes investigated originated from the operation of one hopper dredge and three cutterhead-pipeline dredges. Composition of bottom sediment was found to vary from 85 percent sand and shell fragments to 60 percent silt and clay. Placement methods for dredged sediment included beach nourishment, stationary submerged discharge, oscillating surface discharge, and construction of emergent dikes. Tidal currents ranged from slack water to flow velocities of 0.60 meter per second. Plumes were monitored simultaneously by (1) oblique and vertical 35-millimeter aerial photography and (2) water-quality sampling to determine water clarity and concentrations of nutrients, metals, pesticides, and industrial compounds. Forty-nine photographs depict plumes ranging in length from a few tens of meters to several kilometers and ranging in turbidity level from <10 to 200,000 nephelometric turbidity units. The most visible turbidity plumes were produced by surface discharge of material with high sand content into unconfined placement areas during times of strong tidal currents. The least visible turbidity plumes were produced by discharge of material with high silt and clay content into areas enclosed by floating turbidity barriers during times of weak tidal currents. Beach nourishment from hopper-dredge unloading operations also produced plumes of low visibility. Primary turbidity plumes were produced directly by dredging and placement operations; secondary plumes were produced indirectly by resuspension of previously deposited material. Secondary plumes were formed both by erosion, in

  7. Computer mapping of turbidity and circulation patterns in Saginaw Bay, Michigan from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Smith, V. E.

    1975-01-01

    The author has identified the following significant results. LANDSAT was used as a basis for producing geometrically-corrected, color-coded imagery of turbidity and circulation patterns in Saginaw Bay, Michigan (Lake Huron). This imagery shows nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. The categorized imagery provided an economical basis for extrapolating water quality parameters from point samples to unsample areas. LANDSAT furnished a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.

  8. Using turbidity for designing water networks.

    PubMed

    Castaño, J A; Higuita, J C

    2016-05-01

    Some methods to design water networks with minimum fresh water consumption are based on the selection of a key contaminant. In most of these "single contaminant methods", a maximum allowable concentration of contaminants must be established in water demands and water sources. Turbidity is not a contaminant concentration but is a property that represents the "sum" of other contaminants, with the advantage that it can be cheaper and easily measured than biological oxygen demand, chemical oxygen demand, suspended solids, dissolved solids, among others. The objective of this paper is to demonstrate that turbidity can be used directly in the design of water networks just like any other contaminant concentration. A mathematical demonstration is presented and in order to validate the mathematical results, the design of a water network for a guava fudge production process is performed. The material recovery pinch diagram and nearest neighbors algorithm were used for the design of the water network. Nevertheless, this water network could be designed using other single contaminant methodologies. The maximum error between the expected and the real turbidity values in the water network was 3.3%. These results corroborate the usefulness of turbidity in the design of water networks.

  9. Using turbidity for designing water networks.

    PubMed

    Castaño, J A; Higuita, J C

    2016-05-01

    Some methods to design water networks with minimum fresh water consumption are based on the selection of a key contaminant. In most of these "single contaminant methods", a maximum allowable concentration of contaminants must be established in water demands and water sources. Turbidity is not a contaminant concentration but is a property that represents the "sum" of other contaminants, with the advantage that it can be cheaper and easily measured than biological oxygen demand, chemical oxygen demand, suspended solids, dissolved solids, among others. The objective of this paper is to demonstrate that turbidity can be used directly in the design of water networks just like any other contaminant concentration. A mathematical demonstration is presented and in order to validate the mathematical results, the design of a water network for a guava fudge production process is performed. The material recovery pinch diagram and nearest neighbors algorithm were used for the design of the water network. Nevertheless, this water network could be designed using other single contaminant methodologies. The maximum error between the expected and the real turbidity values in the water network was 3.3%. These results corroborate the usefulness of turbidity in the design of water networks. PMID:26934641

  10. Proposed method for controlling turbid particles in solid-phase bioluminescent toxicity measurement.

    PubMed

    Yeo, Seul-Ki; Park, Jun-Boum; Ahn, Joo-Sung; Han, Young-Soo

    2015-06-01

    In the recent half century, numerous methods have been developed to assess ecological toxicity. However, the presence of solid-particle turbidity sometimes causes such tests to end with questionable results. Many researchers focused on controlling this arbitrary turbidity effect when using the Microtox® solid-phase toxicity system, but there is not yet a standard method. In this study, we examined four solid-phase sample test methods recommended in the Microtox® manual, or proposed from the literature, and compared the existing methods with our proposed method (centrifuged basic solid-phase test, c-BSPT). Four existing methods use the following strategies to control turbid particles: complete separation of liquid and solid using 0.45-μm filtration before contacting solid samples and bacteria, natural settlement, moderate separation of large particles using coarser pore size filtration, and exclusion of light loss in the toxicity calculation caused by turbidity after full disturbance of samples. Our proposed method uses moderate centrifugation to separate out the heavier soil particles from the lighter bacteria after direct contact between them. Among the solid-phase methods tested, in which the bacteria and solid particles were in direct contact (i.e., the three existing methods and the newly proposed one, c-BSPT), no single method could be recommended as optimal for samples over a range of turbidity. Instead, a simple screening strategy for selecting a sample-dependent solid-phase test method was suggested, depending on the turbidity of the solid suspension. The results of this study highlight the importance of considering solid particles, and the necessity for optimal selection of test method to reduce errors in the measurement of solid-phase toxicity.

  11. P-wave velocity features of methane hydrate-bearing turbidity sediments sampled by a pressure core tool, from the first offshore production test site in the eastern Nankai Trough, Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Santamarina, C. J.; Waite, W. F.; Winters, W. J.; Ito, T.; Nakatsuka, Y.; Konno, Y.; Yoneda, J.; Kida, M.; Jin, Y.; Egawa, K.; Fujii, T.; Nagao, J.

    2013-12-01

    Turbidite sediments around the production test site at Daini-Atsumi knoll were deposited under channel and lobe environments of a submarine fan. Changes in physical properties of the sediments are likely caused by differences in the depositional environments. In addition, methane hydrate (MH) crystals growing among sediment grains alter the sediment's original physical properties. Thus, distinguishing between hydrate-bearing sediment and hydrate-free sediment based only on physical property changes measured during downhole logging can be difficult. To more precisely analyze sediment properties, core samples of MH-bearing sediments were taken at the first offshore MH production test site. Samples were collected using a wireline hybrid pressure coring system (Hybrid PCS), which retains downhole pressure, thereby preventing dissociation of MH in the sampled cores. Nondestructive, high-pressure analyses were conducted in both the 2012 summer drilling campaign and a 2013 winter laboratory study in Sapporo. To handle Hybrid PCS cores during the pressure coring campaign in the summer of 2012, a pressure core analysis and transfer system (PCATS) was installed on the research vessel Chikyu (Yamamoto et al., 2012). PCATS P-wave velocity measurements were made at in situ water pressure without causing any core destruction or MH dissociation. In January 2013, Georgia Tech (GT), USGS, AIST, and JOGMEC researchers used pressure core characterization tools (PCCTs) developed by GT to re-measure the P-wave velocity of the MH-bearing sediments at high pressure and low, non-freezing temperature. In the PCATS analysis, results showed a difference of more than 1,200 m/s in P-wave velocities between the MH-bearing sandy and muddy layers. This difference in P-wave velocities was confirmed by PCCTs measurements. P-wave velocities within the turbidite interval tend to decrease upward with the textural grading of the turbidite. Our result implies that MH concentration, which is related to

  12. The effects of soil properties on the turbidity of catchment soils from the Yongdam dam basin in Korea.

    PubMed

    Hur, Jin; Jung, Myung Chae

    2009-06-01

    Environmental concerns have been raised that suspended solids in turbid water adversely affect human health, and that their removal increases in the cost of water treatment. The Yongdam dam reservoir, located in the southwestern region of Korea, is severely affected by inflowing turbid water after storms. In this study, soil samples were collected from 37 sites in the Yongdam upstream basin to investigate mineralogical and environmental factors associated with the turbidity potential of soils in water environments. Turbidity potential was estimated by measuring the turbidity of soil-suspension solutions after settling for 24 h. The mineralogy of the soils was dominated by four minerals-quartz, microcline, albite, and muscovite-with lesser amounts of hornblende, chlorite, kaolinite, illite, and mixed layer illite. The quartz content was the most variable of the soil mineralogy among the collected samples. Principal-components analysis (PCA) was used to examine relationships between turbidity potential and other soil properties. The variables considered in the PCA included turbidity potential, quartz content, albite content, mean size of soil particles, clay content, clay mineral content, zeta potential, conductivity, and pH of the soil-suspension solution. The first two components of the PCA explained 52% of the overall variation of the selected variables. The first component was possibly explained by physical properties such as the size of the soil particles; the second was correlated with chemical properties of the soils, for example dissolution and extent of weathering. Closer examination of the PCA results revealed that the quartz content of the soils was negatively correlated with their turbidity potential. A linear correlation (r = 0.63) was obtained between measured turbidity potential and that predicted using multiple regression analysis based on the content of clay-sized particles, clay minerals, and quartz, and the conductivity of the soil

  13. Signal Preservation in Pulsing Turbidity Current Deposits

    NASA Astrophysics Data System (ADS)

    Keevil, G. M.; Dorrell, R. M.; McCaffrey, W. D.

    2014-12-01

    Recent debate has focused on the potential preservation of the signal of seismic events in the sedimentary record via the initiation of large-scale turbidity current flows. The failure of a seismic zone lying across a series of submarine canyon systems may initiate multiple linked turbidity currents from each canyon head. Such events can be distinguished from locally triggered turbidity currents by their deposits. Canyon systems may be expected to become progressively interconnected with depth. Differing run out times of each interconnected channel is expected to result in pulsing flow behavior, a key feature of such turbidity currents. Thus, cyclical waxing to waning flow behavior preserved in the rock record may be a key indicator of a large-scale seismic trigger. Novel experimental research is presented that explores the dynamics of pulsed turbidity currents. The experimental study is used to quantitatively examine controls on the time and length scale of signal preservation in pulsing density driven flows. The experiments consisted of a multi gate lock box, with the gates remotely operated by pneumatic rams. Gate timers allow for accurate experimental repeatability and a careful investigation of the effect of time spacing between flows on pulsing flow dynamics. Parameters investigated include volumes of material released, effective flow density and viscosity (as a proxy of flow mud content). Full flow field visualization was made using an array of interlinked HD cameras. Dyeing separate components of the flow different colors enabled detailed analysis of flow dynamic behavior occurring between head and tail. The secondary pulsing flow was seen to rapidly overtake the first flow. Observations of flow velocity and density suggested that due to stratification the secondary flow was travelling along the density interface between the main body of the primary flow and its turbulent wake. As the pulsing flows created in the laboratory experiments rapidly merged, it

  14. Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA

    USGS Publications Warehouse

    Xu, Jingping; Octavio E. Sequeiros,; Noble, Marlene A.

    2014-01-01

    The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in the submarine environment has attracted the attention of researchers from different disciplines. Yet not only are field measurements of oceanic turbidity currents a rare achievement, but also the data that have been collected consist mostly of velocity records with very limited or no suspended sediment concentration or grain size distribution data. This work focuses on two turbidity currents measured in Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, primarily controlled by the source of the gravity flows and their interaction with bed material, play a significant role in shaping the characteristics of the turbidity currents as they travel down the canyon. Before the flows reach their normal or quasi-steady state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through a preliminary adjustment stage where they are subject to capacity-driven deposition, and release heavy material in excess. Flows composed of fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm that flow patterns differ between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.

  15. Evaluation and application of regional turbidity-sediment regression models in Virginia

    USGS Publications Warehouse

    Hyer, Kenneth; Jastram, John D.; Moyer, Douglas; Webber, James; Chanat, Jeffrey G.

    2015-01-01

    Conventional thinking has long held that turbidity-sediment surrogate-regression equations are site specific and that regression equations developed at a single monitoring station should not be applied to another station; however, few studies have evaluated this issue in a rigorous manner. If robust regional turbidity-sediment models can be developed successfully, their applications could greatly expand the usage of these methods. Suspended sediment load estimation could occur as soon as flow and turbidity monitoring commence at a site, suspended sediment sampling frequencies for various projects potentially could be reduced, and special-project applications (sediment monitoring following dam removal, for example) could be significantly enhanced. The objective of this effort was to investigate the turbidity-suspended sediment concentration (SSC) relations at all available USGS monitoring sites within Virginia to determine whether meaningful turbidity-sediment regression models can be developed by combining the data from multiple monitoring stations into a single model, known as a “regional” model. Following the development of the regional model, additional objectives included a comparison of predicted SSCs between the regional model and commonly used site-specific models, as well as an evaluation of why specific monitoring stations did not fit the regional model.

  16. Sediment concentrations, flow conditions, and downstream evolution of two turbidity currents, Monterey Canyon, USA

    NASA Astrophysics Data System (ADS)

    Xu, J. P.; Sequeiros, Octavio E.; Noble, Marlene A.

    2014-07-01

    The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in the submarine environment has attracted the attention of researchers from different disciplines. Yet not only are field measurements of oceanic turbidity currents a rare achievement, but also the data that have been collected consist mostly of velocity records with very limited or no suspended sediment concentration or grain size distribution data. This work focuses on two turbidity currents measured in Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, primarily controlled by the source of the gravity flows and their interaction with bed material, play a significant role in shaping the characteristics of the turbidity currents as they travel down the canyon. Before the flows reach their normal or quasi-steady state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through a preliminary adjustment stage where they are subject to capacity-driven deposition, and release heavy material in excess. Flows composed of fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm that flow patterns differ between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.

  17. Atmospheric turbidity determination from irradiance ratios

    SciTech Connect

    Gueymard, C.; Vignola, F.

    1997-12-31

    A semi-physical method is proposed to evaluate turbidity from broadband irradiance measurements and other atmospheric parameters. An error analysis and various tests against measured data show that this method can predict accurate turbidities provided that the sky is perfectly cloudless and the diffuse irradiance data are very accurate. Yet, this method is insensitive to errors in input data such as precipitable water and ozone amount. Applications of this method to the quality control of radiation data are discussed. Tests with actual data from Florida and Oregon show good agreement with other methods. Evaluation of the model required a detailed discussion of the accuracy and cosine error of pyranometers, and the uncertainty in precipitable water estimates.

  18. Reproducibility and uncertainty of wastewater turbidity measurements.

    PubMed

    Joannis, C; Ruban, G; Gromaire, M-C; Chebbo, G; Bertrand-Krajewski, J-L; Joannis, C; Ruban, G

    2008-01-01

    Turbidity monitoring is a valuable tool for operating sewer systems, but it is often considered as a somewhat tricky parameter for assessing water quality, because measured values depend on the model of sensor, and even on the operator. This paper details the main components of the uncertainty in turbidity measurements with a special focus on reproducibility, and provides guidelines for improving the reproducibility of measurements in wastewater relying on proper calibration procedures. Calibration appears to be the main source of uncertainties, and proper procedures must account for uncertainties in standard solutions as well as non linearity of the calibration curve. With such procedures, uncertainty and reproducibility of field measurement can be kept lower than 5% or 25 FAU. On the other hand, reproducibility has no meaning if different measuring principles (attenuation vs. nephelometry) or very different wavelengths are used.

  19. Turbidity and suspended-sediment transport in the Russian River Basin, California

    USGS Publications Warehouse

    Ritter, John R.; Brown, William M.

    1971-01-01

    The Russian River in north coastal California has a persistent turbidness, which has reportedly caused a decline in the success of the sports fishermen. As a consequence, the number of sports fishermen angling in the river has declined, and industries dependent on their business have suffered. To determine the source of the turbidity and the rate of sediment transport in the basin, a network of sampling station was established in February 1964 along the river, on some of its tributaries, and near Lake Pillsbury in the upper Eel River basin.

  20. Estuarine turbidity, flushing, salinity, and circulation

    NASA Technical Reports Server (NTRS)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  1. Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm.

    PubMed

    Svensson, Tomas; Alerstam, Erik; Khoptyar, Dmitry; Johansson, Jonas; Folestad, Staffan; Andersson-Engels, Stefan

    2009-06-01

    Photon time-of-flight spectroscopy (PTOFS) is a powerful tool for analysis of turbid materials. We have constructed a time-of-flight spectrometer based on a supercontinuum fiber laser, acousto-optical tunable filtering, and an InP/InGaAsP microchannel plate photomultiplier tube. The system is capable of performing PTOFS up to 1400 nm, and thus covers an important region for vibrational spectroscopy of solid samples. The development significantly increases the applicability of PTOFS for analysis of chemical content and physical properties of turbid media. The great value of the proposed approach is illustrated by revealing the distinct absorption features of turbid epoxy resin. Promising future applications of the approach are discussed, including quantitative assessment of pharmaceuticals, powder analysis, and calibration-free near-infrared spectroscopy.

  2. FMCW optical ranging technique in turbid waters

    NASA Astrophysics Data System (ADS)

    Illig, David W.; Laux, Alan; Lee, Robert W.; Jemison, William D.; Mullen, Linda J.

    2015-05-01

    The performance of a frequency-modulated continuous-wave (FMCW) hybrid lidar-radar system will be presented in the context of an underwater optical ranging application. In adapting this technique from the radar community, a laser is intensity-modulated with a linear frequency ramp. A custom wideband laser source modulated by a new wideband digital synthesizer board is used to transmit an 800 MHz wide chirp into the underwater channel. The transmitted signal is mixed with a reference copy to obtain a "beat" signal representing the distance to the desired object. The expected form of the return signal is derived for turbid waters, a highly scattering environment, indicating that FMCW can detect both the desired object and the volumetric center of the backscatter "clutter" signal. This result is verified using both laboratory experiments and a realistic simulation model of the underwater optical channel. Ranging performance is explored as a function of both object position and water turbidity. Experimental and simulated results are in good agreement and performance out to ten attenuation lengths is reported, equivalent to 100 meters in open ocean or 5 meters in a turbid harbor condition.

  3. CFD modeling of turbidity current deposition

    NASA Astrophysics Data System (ADS)

    Perez, Sergio

    2010-03-01

    Simulation of the flow and deposition from a laboratory turbidity current, in which dense mixtures of sediment move down a narrow, sloping channel and flow into a large tank. SSIIM CFD software is used to model 3-D flow and deposition. SSIIM predicts the height of the accumulated mound to within 25% of experimental values, and the volume of the mound to 20%˜50%, depending on the concentration of sediment and slope of the channel. The SSIIM predictions were consistently lower than experimental values. In simulations with initial sediment volumetric concentrations greater than 14%, SSIIM dumped some of the sediment load at the entry gate into the channel, which was not the case with the experimental runs. This is likely due to the fact that the fall velocity of sediment particles in SSIIM does not vary with sediment concentration. Further simulations of deposition from turbidity currents should be attempted when more complete experimental results are available, but it appears for now that SSIIM can be used to give approximate estimates of turbidity current deposition.

  4. Turbidity. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Carnegie, John W.

    Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1 laboratory training skills, this module provides waste water treatment plant operators with the basic skills and information needed to: (1) standardize a nephelometric turbidimeter; (2) determine the turbidity of a sample; and (3) calculate…

  5. Modeling scattering in turbid media using the Gegenbauer phase function

    NASA Astrophysics Data System (ADS)

    Calabro, Katherine W.; Cassarly, William

    2015-03-01

    The choice of scattering phase function is critically important in the modeling of photon propagation in turbid media, particularly when the scattering path within the material is on the order of several mean free path lengths. For tissue applications, the single parameter Henyey-Greenstein (HG) phase function is known to underestimate the contribution of backscattering, while phase functions based on Mie theory can be more complex than necessary due to the multitude of parameter inputs. In this work, the two term Gegenbauer phase function is highlighted as an effective compromise between HG and Mie, as demonstrated when fitting the various phase function to measured data from phantom materials. Further comparison against the Modified Henyey-Greenstein (MHG) phase function, another two term function, demonstrates that the Gegenbauer function provides better control of the higher order phase function moments, and hence allows for a wider range of values for the similarity parameter, γ. Wavelength dependence of the Gegenbauer parameters is also investigated using a range of theoretical particle distributions. Finally, extraction of the scattering properties of solid turbid samples from angularly resolved transmission measurements is performed using an iterative Monte Carlo optimization technique. Fitting results using Gegenbauer, HG, MHG, and Mie phase functions are compared.

  6. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... filtered systems until June 29, 1993. The requirements in this section apply to unfiltered systems that...

  7. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... filtered systems until June 29, 1993. The requirements in this section apply to unfiltered systems that...

  8. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... filtered systems until June 29, 1993. The requirements in this section apply to unfiltered systems that...

  9. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... filtered systems until June 29, 1993. The requirements in this section apply to unfiltered systems that...

  10. 40 CFR 141.22 - Turbidity sampling and analytical requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements. 141.22 Section 141.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Monitoring and Analytical Requirements... filtered systems until June 29, 1993. The requirements in this section apply to unfiltered systems that...

  11. Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions.

    PubMed

    Hall, Damien; Zhao, Ran; Dehlsen, Ian; Bloomfield, Nathaniel; Williams, Steven R; Arisaka, Fumio; Goto, Yuji; Carver, John A

    2016-04-01

    Due to their colloidal nature, all protein aggregates scatter light in the visible wavelength region when formed in aqueous solution. This phenomenon makes solution turbidity, a quantity proportional to the relative loss in forward intensity of scattered light, a convenient method for monitoring protein aggregation in biochemical assays. Although turbidity is often taken to be a linear descriptor of the progress of aggregation reactions, this assumption is usually made without performing the necessary checks to provide it with a firm underlying basis. In this article, we outline utilitarian methods for simulating the turbidity generated by homogeneous and mixed-protein aggregation reactions containing fibrous, amorphous, and crystalline structures. The approach is based on a combination of Rayleigh-Gans-Debye theory and approximate forms of the Mie scattering equations.

  12. Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions.

    PubMed

    Hall, Damien; Zhao, Ran; Dehlsen, Ian; Bloomfield, Nathaniel; Williams, Steven R; Arisaka, Fumio; Goto, Yuji; Carver, John A

    2016-04-01

    Due to their colloidal nature, all protein aggregates scatter light in the visible wavelength region when formed in aqueous solution. This phenomenon makes solution turbidity, a quantity proportional to the relative loss in forward intensity of scattered light, a convenient method for monitoring protein aggregation in biochemical assays. Although turbidity is often taken to be a linear descriptor of the progress of aggregation reactions, this assumption is usually made without performing the necessary checks to provide it with a firm underlying basis. In this article, we outline utilitarian methods for simulating the turbidity generated by homogeneous and mixed-protein aggregation reactions containing fibrous, amorphous, and crystalline structures. The approach is based on a combination of Rayleigh-Gans-Debye theory and approximate forms of the Mie scattering equations. PMID:26763936

  13. Monitoring of event based mobilization of hydrophobic pollutants in rivers: Calibration of turbidity as a proxy for particle facilitated transport

    NASA Astrophysics Data System (ADS)

    Rügner, Hermann; Schwientek, Marc; Grathwohl, Peter

    2014-05-01

    Transport of many pollutants in rivers is coupled to transport of suspended particles which is typically enhanced during events such as floods, snow melts etc. As the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants in rivers such as polycyclic aromatic hydrocarbons (PAHs), PCBs, etc. and several heavy metals. On-line turbidity measurements (e.g. by optical backscattering sensors) then allow for an assessment of particle and pollutant flux dynamics. In this study, pronounced flood and thus turbidity events were sampled at high temporal resolution in three contrasting catchments in Southwest Germany (Rivers Ammer, Goldersbach, Steinlach) as well as in the River Neckar. Samples were analyzed for turbidity, the total amount of PAH and total suspended solids (TSS) in water. Additionally, the grain size distributions of suspended solids were determined. Discharge and turbidity were measured on-line at gauging stations in three of the catchments. Results showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the flood samples (i.e. independent on grain size). This also holds for total PAH concentrations which can be reasonably well predicted based on the turbidity measurements and TSS versus PAH relationships - even for very high turbidity or TSS values (> 2000 NTU or mg l-1, respectively). From these linear regressions concentrations of PAHs on suspended particles were obtained which varied by catchment. The values comprise a robust measure of the average sediment quality in a river network and may be correlated to the degree of urbanization represented by the number of inhabitants per total flux of suspended particles. Based on long-term on-line turbidity measurements mass flow rates of particle bound pollutants over time could be calculated. Results showed that by far the largest amount

  14. Determination of the residence time of suspended particles in the turbidity maximum of the Loire estuary by 7Be analysis

    NASA Astrophysics Data System (ADS)

    Ciffroy, Philippe; Reyss, Jean-Louis; Siclet, Françoise

    2003-07-01

    The aim of the present work was to evaluate the half life of suspended particles in the Loire estuarine turbidity maximum by analysis of 7Be budgets. The methodology was based on in situ sampling and further measurements aiming at quantifying 7Be sources (atmospheric deposition and river inputs) and 7Be stock in the water column of the turbidity maximum. 7Be river inputs were determined by monthly 7Be measurements performed upstream of the estuary. 7Be atmospheric deposition was estimated by using an empirical relation between 7Be deposition and rainfall. 7Be in particles of the estuarine turbidity maximum was measured at eight different dates corresponding to different tidal and hydrological conditions. 7Be sources and stocks thus determined have been compared to a mathematical model. Results allow to quantify the 'standard half life' of suspended particles in the Loire estuarine turbidity maximum and show that it depends on the season (6-10 months in summer and about 0.7 month during flood periods). Furthermore, a rather good linear correlation was observed between the standard half life of particles and the sum of flow rates in the Loire river during 60 days before each sampling date. The kinetic evolution of the mass of particles within the turbidity maximum could be estimated by this method and appeared to be consistent with previous studies. Moreover, the method proposed in this study could presumably be used for estimating 60Co concentrations in the estuarine turbidity maximum.

  15. Innovative GOCI algorithm to derive turbidity in highly turbid waters: a case study in the Zhejiang coastal area.

    PubMed

    Qiu, Zhongfeng; Zheng, Lufei; Zhou, Yan; Sun, Deyong; Wang, Shengqiang; Wu, Wei

    2015-09-21

    An innovative algorithm is developed and validated to estimate the turbidity in Zhejiang coastal area (highly turbid waters) using data from the Geostationary Ocean Color Imager (GOCI). First, satellite-ground synchronous data (n = 850) was collected from 2014 to 2015 using 11 buoys equipped with a Yellow Spring Instrument (YSI) multi-parameter sonde capable of taking hourly turbidity measurements. The GOCI data-derived Rayleigh-corrected reflectance (R(rc)) was used in place of the widely used remote sensing reflectance (R(rs)) to model turbidity. Various band characteristics, including single band, band ratio, band subtraction, and selected band combinations, were analyzed to identify correlations with turbidity. The results indicated that band 6 had the closest relationship to turbidity; however, the combined bands 3 and 6 model simulated turbidity most accurately (R(2) = 0.821, p<0.0001), while the model based on band 6 alone performed almost as well (R(2) = 0.749, p<0.0001). An independent validation data set was used to evaluate the performances of both models, and the mean relative error values of 42.5% and 51.2% were obtained for the combined model and the band 6 model, respectively. The accurate performances of the proposed models indicated that the use of R(rc) to model turbidity in highly turbid coastal waters is feasible. As an example, the developed model was applied to 8 hourly GOCI images on 30 December 2014. Three cross sections were selected to identify the spatiotemporal variation of turbidity in the study area. Turbidity generally decreased from near-shore to offshore and from morning to afternoon. Overall, the findings of this study provide a simple and practical method, based on GOCI data, to estimate turbidity in highly turbid coastal waters at high temporal resolutions.

  16. Absorption coefficient instrument for turbid natural waters

    NASA Technical Reports Server (NTRS)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  17. Experimental Observations On Turbidity Currents Flowing Over Low Bed Slopes

    NASA Astrophysics Data System (ADS)

    Stagnaro, M.; Bolla Pittaluga, M.

    2012-12-01

    in the cross section with different angles, we were able to obtain the vertical profiles of the secondary flow in the central region of the flume. The density profiles were obtained using two ranks of siphons that take samples of the current water at different heights from the bottom. The ongoing experimental observations will allow to provide detailed measurements on both flow velocity and suspended sediment concentration of subcritical turbidity currents flowing in constant curvature bend and shed some light on the ongoing debate concerning the orientation of secondary flow in submarine channels. At present we have completed the first set of runs, performed with a flow discharge Q=2 l/s and a density of the mixture ρ_{mix}=1021 kg/m^3 that provides a relative excess density equal to 0,023. The current was subcritical both in the straight and curved reach and characterized by an average densimetric Froude number approximately equal to 0.70. Secondary flow in the curved bend was characterized by a river like orientation, i.e. inward oriented close to the bed and outward oriented above. In the next sets of experiments we plan to perform further runs by changing the density of the mixture and the flow discharge in order to observe their effect on the evolution of the turbidity current. These further results will be hopefully presented at the meeting.

  18. Optimisation of the zinc sulphate turbidity test for the determination of immune status.

    PubMed

    Hogan, I; Doherty, M; Fagan, J; Kennedy, E; Conneely, M; Crowe, B; Lorenz, I

    2016-02-13

    Failure of passive transfer of maternal immunity occurs in calves that fail to absorb sufficient immunoglobulins from ingested colostrum. The zinc sulphate turbidity test has been developed to test bovine neonates for this failure. The specificity of this test has been shown to be less than ideal. The objective was to examine how parameters of the zinc sulphate turbidity test may be manipulated in order to improve its diagnostic accuracy. One hundred and five blood samples were taken from calves of dairy cows receiving various rates of colostrum feeding. The zinc sulphate turbidity test was carried out multiple times on each sample, varying the solution strength, time of reaction and wavelength of light used and the results compared with those of a radial immunodiffusion test, which is the reference method for measuring immunoglobulin concentration in serum. Reducing the time over which the reaction occurs, or increasing the wavelength of light used to read the turbidity, resulted in decreased specificity without improving sensitivity. Increasing the concentration of the zinc sulphate solution used in the test was shown to improve the specificity without decreasing sensitivity. Examination of the cut-off points suggested that a lower cut-off point would improve the performance.

  19. Chapter A6. Section 6.7. Turbidity

    USGS Publications Warehouse

    Anderson, Chauncey W.

    2005-01-01

    Turbidity is one of the indicators used to assess the environmental health of water bodies. Turbidity is caused by the presence of suspended and dissolved matter, such as clay, silt, finely divided organic matter, plankton and other microscopic organisms, organic acids, and dyes. This section of the National Field Manual (NFM) describes the USGS protocols for determining turbidity in surface and ground waters, including extensive guidance for equipment selection and data reporting. It includes the revised approach to turbidity measurement and reporting that was implemented by the U.S. Geological Survey (USGS) in October 2004 to account for technological advances and consequent measurement complexities.

  20. Reduction of turbidity of water using locally available natural coagulants.

    PubMed

    Asrafuzzaman, Md; Fakhruddin, A N M; Hossain, Md Alamgir

    2011-01-01

    Turbidity imparts a great problem in water treatment. Moringa oleifera, Cicer arietinum, and Dolichos lablab were used as locally available natural coagulants in this study to reduce turbidity of synthetic water. The tests were carried out, using artificial turbid water with conventional jar test apparatus. Optimum mixing intensity and duration were determined. After dosing water-soluble extracts of Moringa oleifera, Cicer arietinum, and Dolichos lablab reduced turbidity to 5.9, 3.9, and 11.1 nephelometric turbidity unit (NTU), respectively, from 100 NTU and 5, 3.3, and 9.5, NTU, respectively, after dosing and filtration. Natural coagulants worked better with high, turbid, water compare to medium, or low, turbid, water. Highest turbidity reduction efficiency (95.89%) was found with Cicer arietinum. About 89 to 96% total coliform reduction were also found with natural coagulant treatment of turbid water. Using locally available natural coagulants, suitable, easier, and environment friendly options for water treatment were observed.

  1. Reduction of Turbidity of Water Using Locally Available Natural Coagulants

    PubMed Central

    Asrafuzzaman, Md.; Fakhruddin, A. N. M.; Hossain, Md. Alamgir

    2011-01-01

    Turbidity imparts a great problem in water treatment. Moringa oleifera, Cicer arietinum, and Dolichos lablab were used as locally available natural coagulants in this study to reduce turbidity of synthetic water. The tests were carried out, using artificial turbid water with conventional jar test apparatus. Optimum mixing intensity and duration were determined. After dosing water-soluble extracts of Moringa oleifera, Cicer arietinum, and Dolichos lablab reduced turbidity to 5.9, 3.9, and 11.1 nephelometric turbidity unit (NTU), respectively, from 100 NTU and 5, 3.3, and 9.5, NTU, respectively, after dosing and filtration. Natural coagulants worked better with high, turbid, water compare to medium, or low, turbid, water. Highest turbidity reduction efficiency (95.89%) was found with Cicer arietinum. About 89 to 96% total coliform reduction were also found with natural coagulant treatment of turbid water. Using locally available natural coagulants, suitable, easier, and environment friendly options for water treatment were observed. PMID:23724307

  2. Water turbidity mapping using Landsat-8 data in Mekong and Bassac Rivers, Vietnam

    NASA Astrophysics Data System (ADS)

    Lau, Va-Khin; Chen, Chi-Farn; Nguyen, Thanh-Son; Lam, Dao-Nguyen; Chen, Cheng-Ru

    2016-04-01

    Turbidity is the cloudiness or haziness measured by the intensity of light scattered through a water sample and turbidity is often used as an indicator of water quality. Traditional studies of water turbidity are often implemented through costly and time-consuming field surveys, and water samples are analyzed in the laboratory. This method can be applied for a small region. However, the method often creates limitation due to the time bias of data collection, interpolation error, and cost when applied to a large region. In recent year, remote sensing technologies have proved the capacity of mapping turbidity or suspended solids by various data sources, including aerial photography, high resolution images (e.g., Spot, Formosat) and medium resolution images (e.g., Landsat), and low resolution images (e.g., MODIS, MERIS, and VIIR). The main of this study is to investigate the applicability of Landsat data for water turbidity mapping in Mekong and Bassac Rivers, Vietnam. The length of these two main rivers is approximately 210 km with the width ranging from 500 m to 5 km. Aerial photos and high resolution images (e.g., IKONOS, QuickView) are good candidates for this water turbidity monitoring purpose. However, it is costly. Low resolution images such as MODIS are relatively coarse, given the width of rivers in some areas smaller than 500 m. The Landsat 8 satellite launched in 2013 provides the multispectral data with seven bands and 30 m resolution, which are deemed suitable for water turbidity monitoring in the study region, and thus used in this study. The data were processed by first converting the digital number of each pixel to radiance. The atmospheric correction using FLAASH model was accordingly applied to generate surface reflectance data. We used the Bayesian model average (BMA) to investigate the relationship between Landsat spectral bands and field survey data, which were collected from 63 sites of 21 transects across the two rivers on 24 January 2015

  3. Natural ferrihydrite as an agent for reducing turbidity caused by suspended clays.

    PubMed

    Rhoton, F E; Bigham, J M

    2009-01-01

    Biologically impaired waters are often caused by the turbidity associated with elevated suspended sediment concentrations. Turbidity can be reduced by the addition of positively charged compounds that coagulate negatively charged particles in suspension, causing them to flocculate. This research was conducted to determine the effectiveness of ferrihydrite, a poorly crystalline Fe oxide, as a flocculating agent for suspended clays similar to those found in high-turbidity waters of the Mississippi delta. Clay concentrations of 100 mg L(-1) from a Dubbs silt loam (fine silty, mixed, active, thermic Typic Hapludalfs), a Forestdale silty clay loam (fine, smectitic, thermic Typic Hapludalfs), and a Sharkey clay (very fine, smectitic, thermic Chromic Epiaquerts) were suspended in 0.0005 mol L(-1) CaCl(2) solutions at pH 5, 6, 7, or 8. Natural ferrihydrite with a zero point of charge at pH 5.8 was acquired from a drinking water treatment facility and mixed with the suspension at concentrations of 0, 10, 25, and 50 mg L(-1). After settling periods of 24 and 48 h, percent transmittance was measured at a wavelength of 420 nm using a 3-mL sample collected at a depth of 2 cm. The greatest reductions in turbidity after 24-h equilibration were recorded for the pH 5 suspensions of the Dubbs (31%) and Forestdale (37%) clays at a ferrihydrite concentration of 10 mg L(-1) and for the Sharkey clay at a ferrihydrite concentration of 25 mg L(-1) (relative to the 0 ferrihydrite treatment). Water clarity for all samples further increased after 48 h. These results indicate that the effectiveness of ferrihydrite, as a means of reducing turbidity associated with suspended clays, is greatest at pH values below its zero point of charge. PMID:19643754

  4. Assessment and correction of turbidity effects on Raman observations of chemicals in aqueous solutions.

    PubMed

    Sinfield, Joseph V; Monwuba, Chike K

    2014-01-01

    Improvements in diode laser, fiber optic, and data acquisition technologies are enabling increased use of Raman spectroscopic techniques for both in lab and in situ water analysis. Aqueous media encountered in the natural environment often contain suspended solids that can interfere with spectroscopic measurements, yet removal of these solids, for example, via filtration, can have even greater adverse effects on the extent to which subsequent measurements are representative of actual field conditions. In this context, this study focuses on evaluation of turbidity effects on Raman spectroscopic measurements of two common environmental pollutants in aqueous solution: ammonium nitrate and trichloroethylene. The former is typically encountered in the runoff from agricultural operations and is a strong scatterer that has no significant influence on the Raman spectrum of water. The latter is a commonly encountered pollutant at contaminated sites associated with degreasing and cleaning operations and is a weak scatterer that has a significant influence on the Raman spectrum of water. Raman observations of each compound in aqueous solutions of varying turbidity created by doping samples with silica flour with grain sizes ranging from 1.6 to 5.0 μm were employed to develop relationships between observed Raman signal strength and turbidity level. Shared characteristics of these relationships were then employed to define generalized correction methods for the effect of turbidity on Raman observations of compounds in aqueous solution.

  5. Tales of Two Turbidity Currents Recorded in Monterey Submarine Canyon, USA

    NASA Astrophysics Data System (ADS)

    Xu, J.; Sequeiros, O.; Noble, M. A.

    2013-12-01

    The capacity of turbidity currents to carry sand and coarser sediment from shallow to deep regions in submarine environment has attracted the attention of researchers from different disciplines. Yet not only field measurements of oceanic turbidity currents are a rare achievement but also when such measurements do occur they consist mostly of velocity records with very limited or no data of suspended sediment concentration and grain size distribution. This work focus on two turbidity currents measured in the Monterey Canyon in 2002 with emphasis on suspended sediment from unique samples collected within the body of these currents. It is shown that concentration and grain size of the suspended material, defined by the source of the gravity flows, play a significant role in shaping the characteristics of the currents as they travel downstream the canyon. Before the flows reach their normal state, which is defined by bed slope, bed roughness, and suspended grain size, they might pass through an adjusting preliminary stage where they are subject to capacity-driven deposition releasing heavy material in excess. Flows composed with fine (silt/clay) sediments tend to be thicker than those with sands. The measured velocity and concentration data confirm the different flow patterns between the front and body of turbidity currents and that, even after reaching normal state, the flow regime can be radically disrupted by abrupt changes in canyon morphology.

  6. 40 CFR 230.21 - Suspended particulates/turbidity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Suspended particulates/turbidity. 230.21 Section 230.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) OCEAN DUMPING.../turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral...

  7. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... part. The maximum contaminant levels for turbidity in drinking water, measured at a...

  8. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... part. The maximum contaminant levels for turbidity in drinking water, measured at a...

  9. Velocity Profile Normalization of Field-Measured Turbidity Currents

    NASA Astrophysics Data System (ADS)

    Xu, J.

    2009-05-01

    Multiple occurrences of turbidity currents were observed in moored-ADCP measurements in Monterey (2002/03) and Hueneme (2007/08) submarine canyons, California. These turbidity currents, almost all of which were supercritical (densimetric Froude number greater than unity), lasted for hours and obtained a maximum speed of greater than 200 cm/s. The layer-averaged velocity of the turbidity currents varied from 100+ cm/s at the onset of the turbidity currents to 20+ cm/s toward the end of the events. The thickness of the turbidity currents tended to increase from 10 to 40 m over an event. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller than the field measurements [e.g. Altinakar, Graf, and Hopfinger, 1996, Flow structure in turbidity currents, Journal of Hydraulic Research, 34(5):713-718], were found to represent the field data fairly well. However, the best similarity collapse of the turbidity current velocity profiles was obtained when the streamwise velocity was normalized by the layer-averaged velocity and the elevation was normalized by the turbidity current thickness. This normalization scheme can be generalized to the same empirical function y = exp (-α xm) for the jet region above the velocity maximum.

  10. High-frequency turbidity currents in British Columbia fjords

    NASA Astrophysics Data System (ADS)

    Bornhold, Brian D.; Ren, Ping; Prior, David B.

    1994-12-01

    The frequency of turbidity currents in Bute Inlet and Knight Inlet (British Columbia, Canada) was monitored. A prototype instrument (turbidity event detector) was deployed adjacent to prominent incised sea-floor channels. Approximately 25 30 turbidity currents occur annually. They appear closely correlated to periods of higher river discharge into the heads of the fjords. Two peaks in both discharge and turbidity current fequency occur, one in response to snow melt in late June early July, the other to glacier melt in August. Virtually no turbidity currents were observed in winter. River mouth bars, channel deposits, and other deltaic sediments build up during lower discharge periods and are swept onto the steep delta front and into subaqueous channels, along with bedload, during floods.

  11. In-situ measurements of velocity structure within turbidity currents

    USGS Publications Warehouse

    Xu, J. P.; Noble, M.A.; Rosenfeld, L.K.

    2004-01-01

    Turbidity currents are thought to be the main mechanism to move ???500,000 m3 of sediments annually from the head of the Monterey Submarine Canyon to the deep-sea fan. Indirect evidence has shown frequent occurrences of such turbidity currents in the canyon, but the dynamic properties of the turbidity currents such as maximum speed, duration, and dimensions are still unknown. Here we present the first-ever in-situ measurements of velocity profiles of four turbidity currents whose maximum along-canyon velocity reached 190 cm/s. Two turbidity currents coincided with storms that produced the highest swells and the biggest stream flows during the year-long deployment. Copyright 2004 by the American Geophysical Union.

  12. Remote measurement of turbidity and chlorophyll through aerial photography

    NASA Technical Reports Server (NTRS)

    Schwebel, M. D.; James, W. P.; Clark, W. J.

    1973-01-01

    Studies were conducted utilizing six different film and filter combinations to quantitatively detect chlorophyll and turbidity in six farm ponds. The low range of turbidity from 0-35 JTU correlated well with the density readings from the green band of normal color film and the high range above 35 JTU was found to correlate with density readings in the red band of color infrared film. The effect of many of the significant variables can be reduced by using standardized procedures in taking the photography. Attempts to detect chlorophyll were masked by the turbidity. The ponds which were highly turbid also had high chlorophyll concentrations; whereas, the ponds with low turbidity also had low chlorophyll concentrations. This prevented a direct correlation for this parameter. Several suggested approaches are cited for possible future investigations.

  13. Monitoring instream turbidity to estimate continuous suspended-sediment loads and yields and clay-water volumes in the upper North Santiam River Basin, Oregon, 1998-2000

    USGS Publications Warehouse

    Uhrich, Mark A.; Bragg, Heather M.

    2003-01-01

    Three real-time, instream water-quality and turbidity-monitoring sites were established in October 1998 in the upper North Santiam River Basin on the North Santiam River, the Breitenbush River, and Blowout Creek, the main tributary inputs to Detroit Lake, a large, controlled reservoir that extends from river mile 61 to 70. Suspended-sediment samples were collected biweekly to monthly at each station. Rating curves provided estimated suspended-sediment concentration in 30-minute increments from log transformations of the instream turbidity monitoring data. Turbidity was found to be a better surrogate than discharge for estimating suspended-sediment concentration. Daily and annual mean suspended-sediment loads were estimated using the estimated suspended-sediment concentrations and corresponding streamflow data. A laboratory method for estimating persistent (residual) turbidity from separate turbidity samples was developed. Turbidity was measured over time for each sample. Turbidity decay curves were derived as the suspended sediment settled. Each curve was used to estimate a turbidity value for a given settling time. Medium to fine clay particle (< 0.002 mm [millimeter] diameter) settling times of 8.5 hours were computed using Stokes Law. An average of 30 persistent turbidity samples was collected from each of the 3 sites. These samples were used to estimate the 0.002-mm-size clay particle persistent turbidity for each site. The monitored instream 30-minute turbidity values were converted to a calculated persistent turbidity value that would have resulted after 8.5 hours of settling in the laboratory. Persistent turbidities of 10 NTU and above were tabulated for each site. (Water of 10 NTU and above can interfere with or damage treatment filters and result in intake closures at drinking-water facilities.) A method was developed that used the persistent turbidity experiments, turbidity decay curves, and stream discharge to estimate the volume of water containing

  14. Predictive models of turbidity and water depth in the Doñana marshes using Landsat TM and ETM+ images.

    PubMed

    Bustamante, Javier; Pacios, Fernando; Díaz-Delgado, Ricardo; Aragonés, David

    2009-05-01

    We have used Landsat-5 TM and Landsat-7 ETM+ images together with simultaneous ground-truth data at sample points in the Doñana marshes to predict water turbidity and depth from band reflectance using Generalized Additive Models. We have point samples for 12 different dates simultaneous with 7 Landsat-5 and 5 Landsat-7 overpasses. The best model for water turbidity in the marsh explained 38% of variance in ground-truth data and included as predictors band 3 (630-690 nm), band 5 (1550-1750 nm) and the ratio between bands 1 (450-520 nm) and 4 (760-900 nm). Water turbidity is easier to predict for water bodies like the Guadalquivir River and artificial ponds that are deep and not affected by bottom soil reflectance and aquatic vegetation. For the latter, a simple model using band 3 reflectance explains 78.6% of the variance. Water depth is easier to predict than turbidity. The best model for water depth in the marsh explains 78% of the variance and includes as predictors band 1, band 5, the ratio between band 2 (520-600 nm) and band 4, and bottom soil reflectance in band 4 in September, when the marsh is dry. The water turbidity and water depth models have been developed in order to reconstruct historical changes in Doñana wetlands during the last 30 years using the Landsat satellite images time series.

  15. Effects of emulsifying salts on the turbidity and calcium-phosphate-protein interactions in casein micelles.

    PubMed

    Mizuno, R; Lucey, J A

    2005-09-01

    Influence of emulsifying salts (ES) on some physical properties of casein micelles was investigated. A reconstituted milk protein concentrate (MPC) solution (5% wt/wt) was used as the protein source and the effects of ES [0 to 2.0% (wt/wt)] were estimated by measuring turbidity, acid-base titration curves and amount of casein-bound Ca and inorganic P (P(i)). Various ES, trisodium citrate (TSC), or sodium phosphates (ortho-, pyro-, or hexameta-) were added to MPC solution, and all samples were adjusted to pH 5.8. Acid-base buffering curves were used to observe changes in the amount and type of insoluble Ca phosphates. An increase in the concentration of TSC added to MPC solution decreased turbidity, buffering at pH approximately 5 (contributed by colloidal Ca phosphate), and amount of casein-bound Ca and P(i). Addition of up to 0.7% disodium orthophosphate (DSP) did not significantly influence turbidity, buffering curves, or amount of casein-bound Ca and P(i). When higher concentrations (i.e., > or =1.0%) of DSP were added, there was a slow decrease in turbidity. With increasing concentration of added tetrasodium pyrophosphate (TSPP), turbidity and buffering at pH approximately 5 decreased, and amount of casein-bound Ca and P(i) increased. When small concentrations (i.e., 0.1%) of sodium hexameta-phosphate were added, effects were similar to those when TSPP were added but when higher concentrations (i.e., > or =0.5%) were added, the buffering peak shifted to a higher pH value, and amount of casein-bound Ca and P(i) decreased. These results suggested that each type of ES influenced casein micelles by different mechanisms.

  16. Performance Evaluation of Five Turbidity Sensors in Three Primary Standards

    USGS Publications Warehouse

    Snazelle, Teri T.

    2015-10-28

    Open-File Report 2015-1172 is temporarily unavailable.Five commercially available turbidity sensors were evaluated by the U.S. Geological Survey, Hydrologic Instrumentation Facility (HIF) for accuracy and precision in three types of turbidity standards; formazin, StablCal, and AMCO Clear (AMCO–AEPA). The U.S. Environmental Protection Agency (EPA) recognizes all three turbidity standards as primary standards, meaning they are acceptable for reporting purposes. The Forrest Technology Systems (FTS) DTS-12, the Hach SOLITAX sc, the Xylem EXO turbidity sensor, the Yellow Springs Instrument (YSI) 6136 turbidity sensor, and the Hydrolab Series 5 self-cleaning turbidity sensor were evaluated to determine if turbidity measurements in the three primary standards are comparable to each other, and to ascertain if the primary standards are truly interchangeable. A formazin 4000 nephelometric turbidity unit (NTU) stock was purchased and dilutions of 40, 100, 400, 800, and 1000 NTU were made fresh the day of testing. StablCal and AMCO Clear (for Hach 2100N) standards with corresponding concentrations were also purchased for the evaluation. Sensor performance was not evaluated in turbidity levels less than 40 NTU due to the unavailability of polymer-bead turbidity standards rated for general use. The percent error was calculated as the true (not absolute) difference between the measured turbidity and the standard value, divided by the standard value.The sensors that demonstrated the best overall performance in the evaluation were the Hach SOLITAX and the Hydrolab Series 5 turbidity sensor when the operating range (0.001–4000 NTU for the SOLITAX and 0.1–3000 NTU for the Hydrolab) was considered in addition to sensor accuracy and precision. The average percent error in the three standards was 3.80 percent for the SOLITAX and -4.46 percent for the Hydrolab. The DTS-12 also demonstrated good accuracy with an average percent error of 2.02 percent and a maximum relative standard

  17. Uncertainties in turbidity-based measurements of suspended sediment load used to quantify the sediment budget on the catchment scale

    NASA Astrophysics Data System (ADS)

    de Hipt, Felix Op; Diekkrüger, Bernd; Steup, Gero; Rode, Michael

    2016-04-01

    Water-driven soil erosion, transport and deposition take place on different spatial and temporal scales. Therefore, related measurements are complex and require process understanding and a multi-method approach combining different measurement methods with soil erosion modeling. Turbidity as a surrogate measurement for suspended sediment concentration (SSC) in rivers is frequently used to overcome the disadvantages of conventional sediment measurement techniques regarding temporal resolution and continuity. The use of turbidity measurements requires a close correlation between turbidity and SSC. Depending on the number of samples collected, the measured range and the variations in the measurements, SSC-turbidity curves are subject to uncertainty. This uncertainty has to be determined in order to assess the reliability of measure-ments used to quantify catchment sediment yields and to calibrate soil erosion models. This study presents the calibration results from a sub-humid catchment in south-western Burkina Faso and investigates the related uncertainties. Daily in situ measurements of SSC manually collected at one turbidity station and the corresponding turbidity readings are used to obtain the site-specific calibration curve. The discharge is calculated based on an empirical water level-discharge relationship. The derived regression equations are used to define prediction intervals for SSC and discharge. The uncertainty of the suspended sediment load time series is influenced by the corresponding uncertainties of SSC and discharge. This study shows that the determination of uncertainty is relevant when turbidity-based measurements of suspended sediment loads are used to quantify catchment erosion and to calibrate erosion models.

  18. Monitoring of event-based mobilization of hydrophobic pollutants in rivers: calibration of turbidity as a proxy for particle facilitated transport in field and laboratory.

    PubMed

    Rügner, Hermann; Schwientek, Marc; Egner, Marius; Grathwohl, Peter

    2014-08-15

    Transport of many pollutants in rivers is coupled to mobilization of suspended particles which typically occurs during floods. Since the amount of total suspended solids (TSS) in rivers can be monitored by turbidity measurements this may be used as a proxy for the total concentration of particle associated pollutants such as PAHs, PCBs, etc. and several heavy metals. Online turbidity measurements (e.g. by optical backscattering sensors) would then also allow for an assessment of particle and pollutant flux dynamics if once calibrated against TSS and total pollutant concentrations for a given catchment. In this study, distinct flood and thus turbidity events were sampled at high temporal resolution in three contrasting sub-catchments of the River Neckar in Southwest Germany (Ammer, Goldersbach, Steinlach) as well as in the River Neckar itself and investigated for the total amount of PAHs and TSS in water; turbidity (NTU) and grain size distributions of suspended solids were determined as well. Laboratory experiments were performed with natural river bed sediments from different locations (Ammer) to investigate PAH concentrations, TSS and turbidity during sedimentation of suspended particles under controlled conditions (yielding smaller and smaller suspended particles and TSS with time). Laboratory and field results agreed very well and showed that turbidity and TSS were linearly correlated over an extended turbidity range up to 2000 NTU for the field samples and up to 8000 NTU in lab experiments. This also holds for total PAH concentrations which can be reasonably well predicted based on turbidity measurements and TSS vs. PAHs relationships - even for high turbidity values observed during flood events (>2000 NTU). Total PAH concentrations on suspended solids were independent of grain size of suspended particles. This implies that for the rivers investigated the sorption capacity of particles did not change significantly during the observed events.

  19. Eddy-resolving simulation of lofting turbidity currents

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, S.; Lenk, E.; Meiburg, E. H.

    2012-12-01

    Turbidity currents originate due to horizontal pressure gradient created by differences in sediment concentration. Often turbidity currents propagate as a ground hugging underflow because its bulk density is higher than the density of the ambient fluid. If the density of the interstitial fluid in turbidity current is smaller than the density of the ambient fluid, then turbidity current can become positively buoyant after sufficient sand grains have settled. The current then lifts off from the bottom surface and travels as a surface gravity current over the heavier ambient fluid. These types of lofting currents, where the buoyancy reverses its direction, have been observed when sediment laden fresh water enters the sea or during volcanic eruption that creates a pyroclastic flow. We use a lock-exchange configuration with mono-disperse and bi-disperse grains to study the lofting characteristics of turbidity currents. Most of the Reynolds-stress carrying eddies are resolved in Large-eddy simulation (LES) and their predictions are more accurate than Reynolds-averaged models where none of the eddies are resolved. We use LES to study lofting turbidity currents at high Reynolds numbers that are comparable to laboratory and field scale flows. Dynamic Smagorinsky model is used to parameterize the sub-grid scale stresses that are not resolved by the grid. Results show that the deposit profiles has a sharp decay at the lift-off point unlike a ground hugging turbidity current whose deposit profile has a slow monotonic decay from the lock region.

  20. Enhanced coagulation for turbidity and Total Organic Carbon (TOC) removal from river Kansawati water.

    PubMed

    Narayan, Sumit; Goel, Sudha

    2011-01-01

    The objective of this study was to determine optimum coagulant doses for turbidity and Total Organic Carbon (TOC) removal and evaluate the extent to which TOC can be removed by enhanced coagulation. Jar tests were conducted in the laboratory to determine optimum doses of alum for the removal of turbidity and Natural Organic Matter (NOM) from river water. Various other water quality parameters were measured before and after thejar tests and included: UV Absorbance (UVA) at 254 nm, microbial concentrations, TDS, conductivity, hardness, alkalinity, and pH. The optimum alum dose for removal of turbidity and TOC was 20 mg/L for the sample collected in November 2009 and 100 mg/L for the sample collected in March 2010. In both cases, the dose for enhanced coagulation was significantly higher than that for conventional coagulation. The gain in TOC removal was insignificant compared to the increase in coagulant dose required. This is usual for low TOC (< 2 mg/L)--high alkalinity water. Other water samples with higher TOC need to be tested to demonstrate the effectiveness of enhanced coagulation.

  1. A coherent model for turbid imaging with confocal microscopy

    PubMed Central

    Glazowski, Christopher E.; Zavislan, James

    2013-01-01

    We present an engineering model of coherent imaging within a turbid volume, such as human tissues, with a confocal microscope. The model is built to analyze the statistical effect of aberrations and multiply scattered light on the resulting image. Numerical modeling of theory is compared with experimental results. We describe the construction of a stable phantom that represents the statistical effect of object turbidity on the image recorded. The model and phantom can serve as basis for system optimization in turbid imaging. PMID:23577285

  2. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding.

    PubMed

    Yan, Xiu-Fang; Chen, Zeng-Ping; Cui, Yin-Yin; Hu, Yuan-Liang; Yu, Ru-Qin

    2016-05-19

    PEBBLE (probe encapsulated by biologically localized embedding) nanosensor encapsulating an intensity-based fluorescence indicator and an inert reference fluorescence dye inside the pores of stable matrix can be used as a generalized wavelength-ratiometric probe. However, the lack of an efficient quantitative model render the choices of inert reference dyes and intensity-based fluorescence indicators used in PEBBLEs based generalized wavelength-ratiometric probes rather limited. In this contribution, an extended quantitative fluorescence model was derived specifically for generalized wavelength-ratiometric probes based on PEBBLE technique (QFMGRP) with a view to simplify the design of PEBBLEs and hence further extend their application potentials. The effectiveness of QFMGRP has been tested on the quantitative determination of free Ca(2+) in both simulated and real turbid media using a Ca(2+) sensitive PEBBLE nanosensor encapsulating Rhod-2 and eosin B inside the micropores of stable polyacrylamide matrix. Experimental results demonstrated that QFMGRP could realize precise and accurate quantification of free Ca(2+) in turbid samples, even though there is serious overlapping between the fluorescence excitation peaks of eosin B and Ca(2+) bound Rhod-2. The average relative predictive error value of QFMGRP for the test simulated turbid samples was 5.9%, about 2-4 times lower than the corresponding values of partial least squares calibration model and the empirical ratiometric model based on the ratio of fluorescence intensities at the excitation peaks of Ca(2+) bound Rhod-2 and eosin B. The recovery rates of QFMGRP for the real and spiked turbid samples varied from 93.1% to 101%, comparable to the corresponding results of atomic absorption spectrometry. PMID:27126788

  3. The influence of hemolysis, turbidity and icterus on the measurements of CK-MB, troponin I and myoglobin.

    PubMed

    Kwon, Hi J; Seo, Eun J; Min, Ki O

    2003-03-01

    To decide on the acceptability of a specimen for the measurement of serum CK-MB, troponin I and myoglobin, we investigated the influence of hemolysis, turbidity, and icterus on those tests by adding arbitrarily made interferents. A total of 16 cases each for CK-MB and troponin I, and 18 cases for myoglobin tests were studied to verify the effects of hemolysis, turbidity, and unconjugated hyperbilirubinemia. A total of 16 cases were studied to clarify the effects of the conjugated hyperbilirubinemia. We graded the severity of hemolysis, turbidity, and icterus as mild, moderate, and severe after adding hemolysate, Intralipos (20% soybean oil), and unconjugated or conjugated bilirubin to sera. ACS180SE automated chemiluminescence system was used to measure CK-MB, troponin I, and myoglobin. CK-MB and troponin I were affected by any degree of hemolysis, turbidity, unconjugated hyperbilirubinemia, and conjugated hyperbilirubinemia, while myoglobin was affected only by severe unconjugated hyperbilirubinemia and conjugated hyperbilirubinemia in the samples with concentration higher than reference range, resulting in concentration level lower than baseline. In conclusion, the results of cardiac markers should be carefully interpreted when the specimens are hemolyzed, turbid or icteric.

  4. Quantitative Raman spectroscopy in turbid media

    NASA Astrophysics Data System (ADS)

    Reble, Carina; Gersonde, Ingo; Andree, Stefan; Eichler, Hans Joachim; Helfmann, Jürgen

    2010-05-01

    Intrinsic Raman spectra of biological tissue are distorted by the influences of tissue absorption and scattering, which significantly challenge signal quantification. A combined Raman and spatially resolved reflectance setup is introduced to measure the absorption coefficient μa and the reduced scattering coefficient μs' of the tissue, together with the Raman signals. The influence of μa and μs' on the resonance Raman signal of β-carotene is measured at 1524 cm-1 by tissue phantom measurements and Monte Carlo simulations for μa=0.01 to 10 mm-1 and μs'=0.1 to 10 mm-1. Both methods show that the Raman signal drops roughly proportional to 1/μa for μa>0.2 mm-1 in the measurement geometry and that the influence of μs' is weaker, but not negligible. Possible correction functions dependent on the elastic diffuse reflectance are investigated to correct the Raman signal for the influence of μa and μs', provided that μa and μs' are measured as well. A correction function based on the Monte Carlo simulation of Raman signals is suggested as an alternative. Both approaches strongly reduce the turbidity-induced variation of the Raman signals and allow absolute Raman scattering coefficients to be determined.

  5. Comparison of turbidity to multi-frequency sideways-looking acoustic-Doppler data and suspended-sediment data in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Voichick, Nicholas; Topping, David J.

    2010-01-01

    Water clarity is important to biologists when studying fish and other fluvial fauna and flora. Turbidity is an indicator of the cloudiness of water, or reduced water clarity, and is commonly measured using nephelometric sensors that record the scattering and absorption of light by particles in the water. Unfortunately, nephelometric sensors only operate over a narrow range of the conditions typically encountered in rivers dominated by suspended-sediment transport. For example, sediment inputs into the Colorado River in Grand Canyon caused by tributary floods often result in turbidity levels that exceed the maximum recording level of nephelometric turbidity sensors. The limited range of these sensors is one reason why acoustic Doppler profiler instrument data, not turbidity, has been used as a surrogate for suspended sediment concentration and load of the Colorado River in Grand Canyon. However, in addition to being an important water-quality parameter to biologists, turbidity of the Colorado River in Grand Canyon has been used to strengthen the suspended-sediment record through the process of turbidity-threshold sampling; high turbidity values trigger a pump sampler to collect samples of the river at critical times for gathering suspended-sediment data. Turbidity depends on several characteristics of suspended sediment including concentration, particle size, particle shape, color, and the refractive index of particles. In this paper, turbidity is compared with other parameters coupled to suspended sediment, namely suspended-silt and clay concentration and multifrequency acoustic attenuation. These data have been collected since 2005 at four stations with different sediment-supply characteristics on the Colorado River in Grand Canyon. These comparisons reveal that acoustic attenuation is a particularly useful parameter, because it is strongly related to turbidity and it can be measured by instruments that experience minimal fouling and record over the entire range

  6. Experimental evaluation of atmospheric aerosol turbidity in different Atlantic regions

    SciTech Connect

    Plakhina, I.N.; Pyrogov, S.M.

    1994-12-31

    The statistical estimation of the experimental values of atmospheric turbidity are considered over the different Atlantic regions: from clean atmospheric conditions to very turbid conditions influenced by air masses from Africa containing continental Sahara aerosol. The factors influencing the variability of atmospheric turbidity are also analyzed. The contribution of aerosol to atmospheric attenuation of the direct solar radiation is estimated. It is shown that aerosol is the main factor determining the values of the optical thickness and its variability. The single scattering albedo is evaluated. The influence of the Sahara dust on the total solar radiation over the ocean surface is estimated. Based on the found relationship between aerosol optical thickness, total atmosphere, and aerosol turbidity in the surface layer, the height of the homogeneous atmosphere has been estimated. In addition, the aerosol generation by ocean surface in storm conditions has been considered.

  7. Small-scale turbidity currents in a big submarine canyon

    USGS Publications Warehouse

    Xu, Jingping; Barry, James P.; Paull, Charles K.

    2013-01-01

    Field measurements of oceanic turbidity currents, especially diluted currents, are extremely rare. We present a dilute turbidity current recorded by instrumented moorings 14.5 km apart at 1300 and 1860 m water depth. The sediment concentration within the flow was 0.017%, accounting for 18 cm/s gravity current speed due to density excess. Tidal currents of ∼30 cm/s during the event provided a "tailwind" that assisted the down-canyon movement of the turbidity current and its sediment plume. High-resolution velocity measurements suggested that the turbidity current was likely the result of a local canyon wall slumping near the 1300 m mooring. Frequent occurrences, in both space and time, of such weak sediment transport events could be an important mechanism to cascade sediment and other particles, and to help sustain the vibrant ecosystems in deep-sea canyons.

  8. Turbidity of a binary fluid mixture: Determining eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1994-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to the critical point. By covering the range of reduced temperatures t is equivalent to (T-T(sub c))/T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Interpreting the turbidity correctly is important if future NASA flight experiments use turbidity as an indirect measurement of relative temperature in shuttle experiments on critical phenomena in fluids.

  9. Dynamics of coarse particulate matter in the turbidity maximum zone of the Gironde Estuary

    NASA Astrophysics Data System (ADS)

    Fuentes-Cid, Ana; Etcheber, Henri; Schmidt, Sabine; Abril, Gwenaël; De-Oliveira, Eric; Lepage, Mario; Sottolichio, Aldo

    2014-01-01

    There is a lack of studies devoted to coarse particulate matter (CPM) in estuaries, although this fraction can disturb activities that filter large volumes of water, such as industrial or fishery activities. In the macrotidal and highly-turbid Gironde Estuary, a monthly sampling of CPM was performed in 2011 and 2013 at two stations in the Turbidity Maximum Zone (TMZ) to understand its seasonal, tidal and hydrological dynamics. Regardless of the season and station, low quantities of CPM (few g m-3) were observed in comparison with suspended particulate matter (several 103 g m-3). The highest concentrations were consistently recorded in bottom waters and at the upstream station. Whereas there is no clear link between the CPM present in the column water and spring or neap tides, an increase in the CPM size has been identified at the two stations after a flood event, fact potentially critical regarding filtering functioning of estuarine activities.

  10. Effects of flow regime on stream turbidity and suspended solids after wildfire, Colorado Front Range

    USGS Publications Warehouse

    Murphy, Sheila F.; McCleskey, R. Blaine; Writer, Jeffrey H.

    2012-01-01

    Wildfires occur frequently in the Colorado Front Range and can alter the hydrological response of watersheds, yet little information exists on the impact of flow regime and storm events on post-wildfire water quality. The flow regime in the region is characterized by base-flow conditions during much of the year and increased runoff during spring snowmelt and summer convective storms. The impact of snowmelt and storm events on stream discharge and water quality was evaluated for about a year after a wildfire near Boulder, Colorado, USA. During spring snowmelt and low-intensity storms, differences in discharge and turbidity at sites upstream and downstream from the burned areas were minimal. However, high-intensity convective storms resulted in dramatic increases in discharge and turbidity at sites downstream from the burned area. This study highlights the importance of using high-frequency sampling to assess accurately wildfire impacts on water quality downstream.

  11. Analytical Capability of Defocused µ-SORS in the Chemical Interrogation of Thin Turbid Painted Layers.

    PubMed

    Conti, Claudia; Realini, Marco; Botteon, Alessandra; Colombo, Chiara; Noll, Sarah; Elliott, Stephen R; Matousek, Pavel

    2016-01-01

    A recently developed micrometer-scale spatially offset Raman spectroscopy (μ-SORS) method provides a new analytical capability for investigating non-destructively the chemical composition of sub-surface, micrometer-scale thickness, diffusely scattering layers at depths beyond the reach of conventional confocal Raman microscopy. Here, we demonstrate experimentally, for the first time, the capability of μ-SORS to determine whether two detected chemical components originate from two separate layers or whether the two components are mixed together in a single layer. Such information is important in a number of areas, including conservation of cultural heritage objects, and is not available, for highly turbid media, from conventional Raman microscopy, where axial (confocal) scanning is not possible due to an inability to facilitate direct imaging within the highly scattering sample. This application constitutes an additional capability for μ-SORS in addition to its basic capacity to determine the overall chemical make-up of layers in a turbid system.

  12. Turbidity very near the critical point of methanol-cyclohexane mixtures

    NASA Technical Reports Server (NTRS)

    Kopelman, R. B.; Gammon, R. W.; Moldover, M. R.

    1984-01-01

    The turbidity of a critical mixture of methanol and cyclohexane has been measured extremely close to the consolute point. The data span the reduced-temperature range between 10 to the -7th and 10 to the -3d, which is two decades closer to Tc than previous measurements. In this temperature range, the turbidity varies approximately as 1nt, as expected from the integrated form for Ornstein-Zernike scattering. A thin cell (200-micron optical path) with a very small volume (0.08 ml) was used to avoid multiple scattering. A carefully controlled temperature history was used to mix the sample and to minimize the effects of critical wetting layers. The data are consistent with a correlation-length amplitude of 3.9 plus or minus 1.0 A, in agreement with the value 3.5 A calculated from two-scale-factor universality and heat-capacity data from the literature.

  13. Hybrid algorithm for simulating the collimated transmittance of homogeneous stratified turbid media

    PubMed Central

    Cruzado, Beatriz Morales; Atencio, José Alberto Delgado; Vázquez y Montiel, Sergio; Gómez, Erick Sarmiento

    2015-01-01

    In this work we describe the development of a program that simulates the propagation of photons through refractive and reflecting optical components such as lenses, mirrors and stops that includes a biological tissue sample as the main issue to be investigated in order to get a simulated value of light distribution, in particular, of the unscattered light. The analysis of the photons that travel through the sample is based on the program Monte Carlo Multi-Layered with some modifications that consider a Gaussian beam as initial source of light. Position, directional cosines and weight of photons exiting the turbid media are used to propagate them through an optical system. As a mean of validation of the program, we selected a typical optical system for measurement of collimated transmittance. Therefore, several tests were carried out to find the optical system that gives the theoretical collimated transmittance at different values of the optical properties of the turbid media. Along this validation, the optimal experimental configuration is found. Using this results, a comparison between the simulated optimal configuration and the experimental set-up was done, by using a colloidal suspension as a turbid media. PMID:26137375

  14. TSS concentration in sewers estimated from turbidity measurements by means of linear regression accounting for uncertainties in both variables.

    PubMed

    Bertrand-Krajewski, J L

    2004-01-01

    In order to replace traditional sampling and analysis techniques, turbidimeters can be used to estimate TSS concentration in sewers, by means of sensor and site specific empirical equations established by linear regression of on-site turbidity Tvalues with TSS concentrations C measured in corresponding samples. As the ordinary least-squares method is not able to account for measurement uncertainties in both T and C variables, an appropriate regression method is used to solve this difficulty and to evaluate correctly the uncertainty in TSS concentrations estimated from measured turbidity. The regression method is described, including detailed calculations of variances and covariance in the regression parameters. An example of application is given for a calibrated turbidimeter used in a combined sewer system, with data collected during three dry weather days. In order to show how the established regression could be used, an independent 24 hours long dry weather turbidity data series recorded at 2 min time interval is used, transformed into estimated TSS concentrations, and compared to TSS concentrations measured in samples. The comparison appears as satisfactory and suggests that turbidity measurements could replace traditional samples. Further developments, including wet weather periods and other types of sensors, are suggested.

  15. A fine-scale turbidity record as a view of fine bed sediment supply, transport, and dynamics

    NASA Astrophysics Data System (ADS)

    Leonardson, R.; Hunt, J. R.; Dietrich, W. E.

    2007-12-01

    Fine bed sediments in gravel-bedded rivers are detrimental for salmonid reproduction, ecosystem productivity, groundwater-surface water exchange, and streambank pumping operations. However, the quantity and grain size of fine bed sediments are generally unknown. Direct measurements are temporally and spatially sparse, valid for only a short length of time, and often lack volumetric, subsurface, and sediment quality analyses. California's Russian River is impaired for both turbidity and sedimentation of the bed by fines. Bed sedimentation has been relatively unquantified; we hypothesize that it is possible to extract information about the quantity and grain size of bed sediment from the extensive record of streamflow and turbidity data available in the basin. A unique database has been assembled by joining all US Geological Survey (USGS) daily and 15-minute monitoring data from the basin (22,000,000 data points) with USGS water quality field-sampling data, NOAA atmospheric data, and ancillary data collected by the USGS, the California Department of Fish and Game, the Sonoma and Mendocino County Water Agencies, and academic and private researchers. This database has been organized with a data cube, which allows for quick retrieval of information organized by different dimensions (e.g. by water year, frequency, site, etc.) Analyses made thus far have focused on six years of 15-minute turbidity and streamflow data collected at two gauging stations (drainage areas 900 and 3500 km2) on the main stem. Differences in the relationship between turbidity and suspended sediment concentration during different flow phases and the progression of turbidity/streamflow hysteresis loops over series of storms suggest that early in the initial rising limb, turbidity is largely controlled by local mobilization of fines in the bed. Farther into the discharge event, fine material loads are interpreted to become source-dependent (i.e. sediment mobilized from well upstream.) To build on our

  16. Spatial and temporal variability of the atmospheric turbidity in Tunisia

    NASA Astrophysics Data System (ADS)

    Saad, Mohamed; Trabelsi, Amel; Masmoudi, Mohamed; Alfaro, Stephane C.

    2016-11-01

    Atmospheric turbidity is an important parameter in meteorology, climatology and for providing hindsight on particulate air pollution in local areas. In this work we exploit 1260 direct solar radiation measurements performed in Sfax (Center Tunisia), from March 2015 to February 2016. These measurements were made with a pyrheliometer only when clouds did not obstruct the solar disk. The atmospheric turbidity is quantified by the means of both the Linke's turbidity factor (TLI) and Angström's coefficient (β). Over the year, values of TLI and β are found to vary in the ranges 1-15 and 0-0.7, with the most probable values around 3.5 and 0.05, respectively. However, a marked seasonal pattern is observed for the two turbidity parameters. They achieve their maximum in the spring and summer months, their minimum in winter and autumn appears as a transitional period. The comparison of the results obtained in Sfax with those of three AERONET stations located in north (Carthage), central-north (Ben Salem), and south (Medenine) Tunisia, reveals that this seasonal pattern of the atmospheric turbidity is valid for all the Tunisian territory, and probably beyond. At shorter (hourly) time scales, the diurnal behavior of the turbidity in Sfax is different in the summer months from the one observed during the rest of the year. Indeed, an enhancement of TLI is observed during the day. This is assumedly attributed to the production of secondary aerosols by atmospheric photochemistry.

  17. Turbidity study of solar ponds utilizing seawater as salt source

    SciTech Connect

    Li, Nan; Sun, Wence; Shi, Yufeng; Yin, Fang; Zhang, Caihong

    2010-02-15

    A series of experiments were conducted to study the turbidity reduction in solar ponds utilizing seawater as salt source. The experiment on the turbidity reduction efficiency with chemicals indicates that alum (KAl(SO{sub 4}){sub 2}.12H{sub 2}O) has a better turbidity control property because of its strongly flocculating and also well depressing the growing of algae and bacteria in the seawater. In comparison with bittern and seawater, our experiment shows that the residual brine after desalination can keep limpidity for a long time even without any chemical in it. Experiments were also conducted on the diffusion of turbidity and salinity, which show that the turbidity did not diffuse upwards in the solution. In the experiment on subsidence of soil in the bittern and saline with the same salinity, it was found that soil subsided quite quickly in the pure saline water, but very slowly in the bittern. In this paper we also proposed an economical method to protect the solar pond from the damage of rain. Finally, thermal performance of a solar pond was simulated in the conditions of different turbidities using a thermal diffusion model. (author)

  18. Suspended solids in and turbidity of runoff from green roofs.

    PubMed

    Morgan, Susan; Alyaseri, Isam; Retzlaff, William

    2011-01-01

    Green roof technology is used to reduce the quantity of stormwater runoff, but questions remain regarding its impact on quality. This study analyzed the total suspended solids (TSS) in and the turbidity of runoff from green roof growth media mixed with composted pine bark in an indoor pot study. The results showed that there were elevated levels of TSS and turbidity in the runoff that decreased over time for all growth media. Both TSS and turbidity are affected by the type of growth media. Lava and haydite had higher mean TSS and mean turbidity than arkalyte and bottom ash. Vegetation reduced the mean turbidity and mean TSS of the first flush by an average of 53% and 63%, respectively, but generally had no statistically significant effect thereafter. The results indicate that the media, rather than the vegetation, has a greater effect on TSS and turbidity in the runoff In areas with stringent water quality regulations for stormwater runoff from developed sites, media selection may be an important consideration. It may also be necessary in these regions to ensure that the roof is planted prior to receiving rainfall to minimize the first flush effect and that any irrigation does not result in runoff.

  19. Performance of Landsat TM in ship detection in turbid waters

    NASA Astrophysics Data System (ADS)

    Wu, Guofeng; de Leeuw, Jan; Skidmore, Andrew K.; Liu, Yaolin; Prins, Herbert H. T.

    2009-02-01

    The visible and near infrared bands of Landsat have limitations for detecting ships in turbid water. The potential of TM middle infrared bands for ship detection has so far not been investigated. This study analyzed the performance of the six Landsat TM visible and infrared bands for detecting dredging ships in the turbid waters of the Poyang Lake, China. A colour composite of principal components analysis (PCA) components 3, 2 and 1 of a TM image was used to randomly select 81 dredging ships. The reflectance contrast between ships and adjacent water was calculated for each ship. A z-score and related p-value were used to assess the ship detection performance of the six Landsat TM bands. The reflectance contrast was related to water turbidity to analyze how water turbidity affected the capability of ship identification. The results revealed that the TM middle infrared bands 5 and 7 better discriminated vessels from surrounding waters than the visible and near infrared bands 1-4. A significant relation between reflectance contrast and water turbidity in bands 1-4 could explain the limitations of bands 1-4; while water turbidity has no a significant relation to the reflectance contrast of bands 5 and 7. This explains why bands 5 and 7 detect ships better than bands 1-4.

  20. Establishment of turbidity forecasting model and early-warning system for source water turbidity management using back-propagation artificial neural network algorithm and probability analysis.

    PubMed

    Yang, Tsung-Ming; Fan, Shu-Kai; Fan, Chihhao; Hsu, Nien-Sheng

    2014-08-01

    The purpose of this study is to establish a turbidity forecasting model as well as an early-warning system for turbidity management using rainfall records as the input variables. The Taipei Water Source Domain was employed as the study area, and ANOVA analysis showed that the accumulative rainfall records of 1-day Ping-lin, 2-day Ping-lin, 2-day Fei-tsui, 2-day Shi-san-gu, 2-day Tai-pin and 2-day Tong-hou were the six most significant parameters for downstream turbidity development. The artificial neural network model was developed and proven capable of predicting the turbidity concentration in the investigated catchment downstream area. The observed and model-calculated turbidity data were applied to developing the turbidity early-warning system. Using a previously determined turbidity as the threshold, the rainfall criterion, above which the downstream turbidity would possibly exceed this respective threshold turbidity, for the investigated rain gauge stations was determined. An exemplary illustration demonstrated the effectiveness of the proposed turbidity early-warning system as a precautionary alarm of possible significant increase of downstream turbidity. This study is the first report of the establishment of the turbidity early-warning system. Hopefully, this system can be applied to source water turbidity forecasting during storm events and provide a useful reference for subsequent adjustment of drinking water treatment operation.

  1. Phytoplankton productivity in a turbid buoyant coastal plume

    NASA Astrophysics Data System (ADS)

    Schofield, Oscar; Moline, Mark; Cahill, Brownyn; Frazer, Thomas; Kahl, Alex; Oliver, Matthew; Reinfelder, John; Glenn, Scott; Chant, Robert

    2013-07-01

    The complex dynamics associated with coastal buoyant plumes make it difficult to document the interactions between light availability, phytoplankton carbon fixation, and biomass accumulation. Using real-time data, provided by satellites and high frequency radar, we adaptively sampled a low salinity parcel of water that was exported from the Hudson river estuary in April 2005. The water was characterized by high nutrients and high chlorophyll concentrations. The majority of the low salinity water was re-circulated within a nearshore surface feature for 5 days during which nitrate concentrations dropped 7-fold, the maximum quantum yield for photosynthesis dropped 10-fold, and primary productivity rates decreased 5-fold. Associated with the decline in nitrate was an increase in phytoplankton biomass. The phytoplankton combined with the Colored Dissolved Organic Matter (CDOM) and non-algal particles attenuated the light so the 1% light level ranged between 3 and 10m depending on the age of the plume water. As the plume was 10-15m thick, the majority of the phytoplankton were light-limited. Vertical mixing within the plume was high as indicated by the dispersion of injected of rhodamine dye. The mixing within the buoyant plume was more rapid than phytoplankton photoacclimation processes. Mixing rates within the plume was the critical factor determining overall productivity rates within the turbid plume.

  2. A pre-enrichment step is essential for detection of Campylobacter sp. in turbid pond water.

    PubMed

    Abulreesh, H H; Paget, T A; Goulder, R

    2014-06-01

    This work aimed to detect Campylobacter species from naturally contaminated turbid pond water by PCR. A total of 16 water samples were collected from a turbid village pond. Four methods of DNA extraction were applied to centrifuge pellets from eight 100 ml pond water samples prior to attempted detection of Campylobacter by PCR without an enrichment step. These methods were (1) Tris-HCl and sodium dodecyl sulfate followed by phenol:chloroform:isoamylalcohol extraction followed by treatment with DNA clean up kit, (2) proteinase K, (3) Chelex® 100, and (4) boiling. The other eight pond water samples (10 ml and 100 ml) were filtered and filters were incubated overnight in Preston enrichment broth. The centrifuge pellets obtained from enrichment cultures were treated by proteinase K for DNA extraction. Primers CF03 and CF04 for the flagellin genes (flaA and flaB) of Campylobacter jejuni and Campylobacter coli were used for amplifying the extracted DNA. The DNA extracted from eight-100 ml pond water samples that were not subject to selective enrichment was never amplified with primers CF03 and CF04, hence Campylobacter was not detected. In contrast, the DNA that was from samples that were subjected to a selective enrichment step in Preston broth prior to PCR assay always gave amplified bands of 340-380 bp, therefore the presence of Campylobacter was confirmed. Detection of campylobacters from naturally contaminated, turbid, environmental water may not be feasible by direct PCR assay because of low numbers and the presence of high concentration of humic matter and other PCR inhibitors. The enrichment of water samples in selective broth, however, facilitated PCR detection of Campylobacter probably by increasing cell number and by diluting PCR inhibitors.

  3. Turbidity-based methods for continuous estimates of suspended sediment, particulate carbon, phosphorus and nitrogen fluxes

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Alsuliman, Malek; Rode, Michael

    2015-04-01

    A good evaluation of surface water pollution is mainly limited by the monitoring strategy and sampling frequencies. Carbon and nutrient monitoring at finer time intervals is still very difficult and expensive. Therefore, establishing relationships between grab sampling and continuous commonly available data can be considered as a favorable solution to turn this problem. The aim of this study was to develop a method to continuously estimate instream sediment, carbon, nitrogen and phosphorus concentrations based on high resolution measurement of turbidity, discharge, electrical conductivity and oxygen concentration. To achieve our gaols, high frequency data (30 min interval) were generated during 3 years at the UFZ- TERENO platform Bode (Terrestrial Environmental Observatories). Samples were analysed for suspended sediment concentration (SSC), particulate organic carbon (POC), total organic carbon (TOC), particulate nitrogen (PN) and particulate phosphorus (PP) using simple and multiple linear regression models. For this study, measurements from six sub-catchments with different geographical characteristics were considered. The available data sets were divided into two years (2010-2012) calibration and one year (2012-2013) validation periods. Results revealed that the turbidity was the most predictor variable in all models, particularly for suspended sediment concentrations. For all gauging stations, the SSC could be explained using simple linear regression model by the turbidity with a lowest correlation coefficient of 0.93. The non-uniqueness of the simple linear equation obtained between the stations reflected the sensitivity of the turbidity signal to the differences in land use and agriculture management between the sub-catchments. Best predictions of POC, TOC, PP and PN were achieved when multiple linear regression models were used including discharge, electrical conductivity and oxygen concentrations as predictor variables in addition to turbidity (lowest

  4. Efficient purification and concentration of viruses from a large body of high turbidity seawater.

    PubMed

    Sun, Guowei; Xiao, Jinzhou; Wang, Hongming; Gong, Chaowen; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2014-01-01

    Marine viruses are the most abundant entities in the ocean and play crucial roles in the marine ecological system. However, understanding of viral diversity on large scale depends on efficient and reliable viral purification and concentration techniques. Here, we report on developing an efficient method to purify and concentrate viruses from large body of high turbidity seawater. The developed method characterizes with high viral recovery efficiency, high concentration factor, high viral particle densities and high-throughput, and is reliable for viral concentration from high turbidity seawater. Recovered viral particles were used directly for subsequent analysis by epifluorescence microscopy, transmission electron microscopy and metagenomic sequencing. Three points are essential for this method:•The sampled seawater (>150 L) was initially divided into two parts, water fraction and settled matter fraction, after natural sedimentation.•Both viruses in the water fraction concentrated by tangential flow filtration (TFF) and viruses isolated from the settled matter fraction were considered as the whole viral community in high turbidity seawater.•The viral concentrates were re-concentrated by using centrifugal filter device in order to obtain high density of viral particles.

  5. Efficient purification and concentration of viruses from a large body of high turbidity seawater

    PubMed Central

    Sun, Guowei; Xiao, Jinzhou; Wang, Hongming; Gong, Chaowen; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2014-01-01

    Marine viruses are the most abundant entities in the ocean and play crucial roles in the marine ecological system. However, understanding of viral diversity on large scale depends on efficient and reliable viral purification and concentration techniques. Here, we report on developing an efficient method to purify and concentrate viruses from large body of high turbidity seawater. The developed method characterizes with high viral recovery efficiency, high concentration factor, high viral particle densities and high-throughput, and is reliable for viral concentration from high turbidity seawater. Recovered viral particles were used directly for subsequent analysis by epifluorescence microscopy, transmission electron microscopy and metagenomic sequencing. Three points are essential for this method:•The sampled seawater (>150 L) was initially divided into two parts, water fraction and settled matter fraction, after natural sedimentation.•Both viruses in the water fraction concentrated by tangential flow filtration (TFF) and viruses isolated from the settled matter fraction were considered as the whole viral community in high turbidity seawater.•The viral concentrates were re-concentrated by using centrifugal filter device in order to obtain high density of viral particles. PMID:26150953

  6. In situ toxicity evaluations of turbidity and photoinduction of polycyclic aromatic hydrocarbons

    SciTech Connect

    Ireland, D.S.; Burton, G.A. Jr; Hess, G.G.

    1996-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are prevalent pollutants in the aquatic environment that can cause a wide range of toxic effects. Earlier studies have shown that toxicity of PAHs can be enhanced by ultraviolet (UV) radiation. In situ and laboratory exposures with Ceriodaphnia dubia were used to evaluate photoinduced toxicity of PAHs in wet-weather runoff and in turbid conditions. Exposure to UV increased the toxicity of PAH-contaminated sediment to C. dubia. Toxicity was removed when UV wavelengths did not penetrate the water column to the exposed organisms. A significant correlation was observed between in situ C. dubia survival and turbidity when organisms were exposed to sunlight. Stormwater runoff samples exhibited an increase in chronic toxicity (reproduction) to C. dubia when exposed to UV wavelengths as compared to C. dubia not exposed to UV wavelengths. Toxicity was reduced significantly in the presence of UV radiation when the organic fraction of stormwater runoff was removed. The PAHs are bound to the sediment and resuspended into the water column once the sediment is disturbed (e.g., during a storm). The in situ and laboratory results showed that photoinduced toxicity occurred frequently during low flow conditions and wet weather runoff and was reduced in turbid conditions.

  7. River bank filtration in Haridwar, India: removal of turbidity, organics and bacteria

    NASA Astrophysics Data System (ADS)

    Dash, Rakesh R.; Bhanu Prakash, E. V. P.; Kumar, Pradeep; Mehrotra, Indu; Sandhu, Cornelius; Grischek, Thomas

    2010-06-01

    Improvement in the quality of river water filtered through a 17-m thick sand-gravel unconfined aquifer at a production well surrounded by surface-water bodies, in Haridwar (India), was studied. Distances between surface water sources and the production well are more than 115 m, and the shortest travel times are 77 and 84 days for monsoon and non-monsoon periods, respectively. During the monsoon period, surface water exhibited increased turbidity by 50-100 times, bacterial count of around 10 times and decreased electrical conductivity of around 0.6 times compared to non-monsoon samples. The quality of abstracted bank filtrate, however, was found not to significantly vary. In non-monsoon months, riverbank filtration resulted in a reduction of turbidity and coliforms by 1 and 3 logs, respectively. For monsoonal months, this increased to more than 2 and 4 logs in turbidity and coliforms reduction, respectively. UV absorbance was also found to be reduced to about 1 log during monsoon season. Results from column studies confirmed that a retention time of around 5 days is adequate to achieve more than 99.9% removal of coliforms.

  8. Angular domain spectroscopic imaging of turbid media using silicon micromachined microchannel arrays

    NASA Astrophysics Data System (ADS)

    Vasefi, Fartash; Ng, Eldon; Najiminaini, Mohamadreza; Albert, Genevieve; Kaminska, Bozena; Chapman, Glenn H.; Carson, Jeffrey J. L.

    2010-02-01

    We experimentally characterized a novel Angular Domain Spectroscopic Imaging (ADSI) technique for the detection and characterization of optical contrast abnormalities in turbid media. The new imaging system employs silicon micromachined angular filtering methodology, which has high angular selectivity for photons exiting the turbid medium. The angular filter method offers efficient scattered light suppression at moderate levels of scattering (i.e. up to 6 reduced mean free paths). An ADSI system was constructed from a broadband light source, an Angular Filter Array (AFA), and an imaging spectrometer. The free-space collimated broadband light source was used to trans-illuminate a turbid sample over a wide range of wavelengths in the near infrared region of the spectrum. The imaging spectrometer decomposed the output of the AFA into hyperspectral images representative of spatial location and wavelength. It collected and angularly filtered a line image from the object onto the CCD camera with the spatial information displayed along one axis and wavelength information along the other. The ADSI system performance was evaluated on tissue-mimicking phantoms as well as fresh chicken breast tissue. Collected images with the ADSI displayed differences in image contrast between different tissue types.

  9. Understanding potential feedbacks in aquatic systems: submerged aquatic plans and turbidity in the Sacramento-San Joaquin River Delta.

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Schoellhamer, D.; Santos, M. J.; Morgan, T.; Ustin, S. L.

    2008-12-01

    Invasive submerged aquatic plants can reduce the ecological health of estuaries; they act as ecosystem engineers, altering the physical habitat they colonize and induce feedback mechanisms. Once established, submerged plants can reduce flow, attenuate wave energy, decrease turbidity, and increase sedimentation. Altered sediment transport influences the geomorphology and the rate and type of change of biogeochemical processes in wetlands and floodplains. Contaminants such as mercury, polychlorinated biphenyls (PCBs), and organochlorine (OC) pesticides adsorb onto sediments, and increased bed sedimentation can impact benthic habitat quality. Using a combination of in situ and remote sensing data in a GIS, we analyzed the impact of established submerged aquatic plants on turbidity at the ecosystem-wide scale and at a site- specific scale in the Sacramento-San Joaquin River Delta, CA. Annual areal estimates of submerged plant cover were derived from classification of airborne hyperspectral remote sensing data from 2004 to 2008, which average 11% of the 2000 km2 waterways. These data were used in conjunction with turbidity and velocity recorded at monitoring stations in the Delta. Extensive point sampling of turbidity and submerged aquatic plant biomass were conducted concurrent with airborne remote sensing imagery in 2008. Submerged aquatic plant cover was mapped with an accuracy of 70-90% per year. We found a negative effect of established submerged aquatic plant cover/biomass on water speed and turbidity, both at the local and ecosystem levels. Furthermore, our results suggest a threshold of plant cover that triggers its impact on system-wide turbidity measurements. These results reinforce that submerged aquatic plants may be functioning as biogeomorphic agents, or ecosystem engineers, by altering system hydrodynamics and aquatic habitat.

  10. Climate-change refugia: shading reef corals by turbidity.

    PubMed

    Cacciapaglia, Chris; van Woesik, Robert

    2016-03-01

    Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate-change refuges, shading corals from the harmful interaction between high sea-surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m(-2) ) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20-30°N and 15-25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) - habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate-change-associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to <250 μmol m(-2)  s(-1) , and predict that 16% of reef-coral habitat ≤30 m will preclude coral growth and reef development. Thus, protecting the turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef-coral persistence under climate change. PMID:26695523

  11. Climate-change refugia: shading reef corals by turbidity.

    PubMed

    Cacciapaglia, Chris; van Woesik, Robert

    2016-03-01

    Coral reefs have recently experienced an unprecedented decline as the world's oceans continue to warm. Yet global climate models reveal a heterogeneously warming ocean, which has initiated a search for refuges, where corals may survive in the near future. We hypothesized that some turbid nearshore environments may act as climate-change refuges, shading corals from the harmful interaction between high sea-surface temperatures and high irradiance. We took a hierarchical Bayesian approach to determine the expected distribution of 12 coral species in the Indian and Pacific Oceans, between the latitudes 37°N and 37°S, under representative concentration pathway 8.5 (W m(-2) ) by 2100. The turbid nearshore refuges identified in this study were located between latitudes 20-30°N and 15-25°S, where there was a strong coupling between turbidity and tidal fluctuations. Our model predicts that turbidity will mitigate high temperature bleaching for 9% of shallow reef habitat (to 30 m depth) - habitat that was previously considered inhospitable under ocean warming. Our model also predicted that turbidity will protect some coral species more than others from climate-change-associated thermal stress. We also identified locations where consistently high turbidity will likely reduce irradiance to <250 μmol m(-2)  s(-1) , and predict that 16% of reef-coral habitat ≤30 m will preclude coral growth and reef development. Thus, protecting the turbid nearshore refuges identified in this study, particularly in the northwestern Hawaiian Islands, the northern Philippines, the Ryukyu Islands (Japan), eastern Vietnam, western and eastern Australia, New Caledonia, the northern Red Sea, and the Arabian Gulf, should become part of a judicious global strategy for reef-coral persistence under climate change.

  12. A Comparison of Turbidity-Based and Streamflow-Based Estimates of Suspended-Sediment Concentrations in Three Chesapeake Bay Tributaries

    USGS Publications Warehouse

    Jastram, John D.; Moyer, Douglas; Hyer, Kenneth

    2009-01-01

    Fluvial transport of sediment into the Chesapeake Bay estuary is a persistent water-quality issue with major implications for the overall health of the bay ecosystem. Accurately and precisely estimating the suspended-sediment concentrations (SSC) and loads that are delivered to the bay, however, remains challenging. Although manual sampling of SSC produces an accurate series of point-in-time measurements, robust extrapolation to unmeasured periods (especially highflow periods) has proven to be difficult. Sediment concentrations typically have been estimated using regression relations between individual SSC values and associated streamflow values; however, suspended-sediment transport during storm events is extremely variable, and it is often difficult to relate a unique SSC to a given streamflow. With this limitation for estimating SSC, innovative approaches for generating detailed records of suspended-sediment transport are needed. One effective method for improved suspended-sediment determination involves the continuous monitoring of turbidity as a surrogate for SSC. Turbidity measurements are theoretically well correlated to SSC because turbidity represents a measure of water clarity that is directly influenced by suspended sediments; thus, turbidity-based estimation models typically are effective tools for generating SSC data. The U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency Chesapeake Bay Program and Virginia Department of Environmental Quality, initiated continuous turbidity monitoring on three major tributaries of the bay - the James, Rappahannock, and North Fork Shenandoah Rivers - to evaluate the use of turbidity as a sediment surrogate in rivers that deliver sediment to the bay. Results of this surrogate approach were compared to the traditionally applied streamflow-based approach for estimating SSC. Additionally, evaluation and comparison of these two approaches were conducted for nutrient estimations. Results

  13. Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks.

    PubMed

    Bayram, Adem; Kankal, Murat; Onsoy, Hizir

    2012-07-01

    Suspended sediment concentration (SSC) is generally determined from the direct measurement of sediment concentration of river or from sediment transport equations. Direct measurement is very costly and cannot be conducted for all river gauge stations. Therefore, correct estimation of suspended sediment amount carried by a river is very important in terms of water pollution, channel navigability, reservoir filling, fish habitat, river aesthetics and scientific interests. This study investigates the feasibility of using turbidity as a surrogate for SSC as in situ turbidity meters are being increasingly used to generate continuous records of SSC in rivers. For this reason, regression analysis (RA) and artificial neural networks (ANNs) were employed to estimate SSC based on in situ turbidity measurements. The SSC was firstly experimentally determined for the surface water samples collected from the six monitoring stations along the main branch of the stream Harsit, Eastern Black Sea Basin, Turkey. There were 144 data for each variable obtained on a fortnightly basis during March 2009 and February 2010. In the ANN method, the used data for training, testing and validation sets are 108, 24 and 12 of total 144 data, respectively. As the results of analyses, the smallest mean absolute error (MAE) and root mean square error (RMSE) values for validation set were obtained from the ANN method with 11.40 and 17.87, respectively. However these were 19.12 and 25.09 for RA. It was concluded that turbidity could be a surrogate for SSC in the streams, and the ANNs method used for the estimation of SSC provided acceptable results.

  14. Carnosine ameliorates lens protein turbidity formations by inhibiting calpain proteolysis and ultraviolet C-induced degradation.

    PubMed

    Liao, Jiahn-Haur; Lin, I-Lin; Huang, Kai-Fa; Kuo, Pei-Ting; Wu, Shih-Hsiung; Wu, Tzu-Hua

    2014-06-25

    Carnosine (CAR) is an endogenous peptide and present in lens, but there is little evidence for its effectiveness in calpain-induced proteolysis inhibition and its differential effects toward different wavelengths of ultraviolet (UV) irradiation. This study aimed to develop three in vitro cataract models to compare the mechanisms underlying the protective activities of CAR. Crude crystallins extracted from porcine lenses were used for antiproteolysis assays, and purified γ-crystallins were used for anti-UV assays. The turbidity in those in vitro models mimics cataract formation and was assayed by measuring optical density (OD) at 405 nm. The effectiveness of CAR on calpain-induced proteolysis was studied at 37 and 58 °C. Patterns of proteins were then analyzed by SDS-PAGE. The turbidity was reduced significantly (p<0.05) at 60 min measurements with the increased concentration of CAR (10-300 mM). SDS-PAGE showed that the decreased intensities at both ∼28 and ∼30 kDa protein bands in heat-enhanced assays were ameliorated by CAR at ≥10 mM concentrations. In UV-B studies, CAR (200, 300 mM) reduced the turbidity of γ-crystallin significantly (p<0.05) at 6 h observations. The turbidity of samples containing γ-crystallins was ameliorated while incubated with CAR (100, 300 mM) significantly (p<0.05) following 4 h of exposure to UV-C. SDS-PAGE showed that the presence of CAR reduced UV-B-induced aggregation of γ-crystallins at ∼44 kDa and resulted in less loss of γ-crystallin following UV-C exposure. The result of modeling also suggests that CAR acts as an inhibitor of calpain. In conclusion, CAR protects lens proteins more readily by inhibiting proteolysis and UV-C-induced degradation than aggregation induced by UV-B irradiation.

  15. [Exploration of the Essence of "Endogenous Turbidity" in Chinese Medicine].

    PubMed

    Fan, Xin-rong; Tang, Nong; Ji, Yun-xi; Zhang, Yao-zhong; Jiang, Li; Huang, Gui-hua; Xie, Sheng; Li, Liu-mei; Song, Chun-hui; Ling, Jiang-hong

    2015-08-01

    The essence of endogenous turbidity in Chinese medicine (CM) is different from cream, fat, phlegm, retention, damp, toxicity, and stasis. Along with the development of modern scientific technologies and biology, researches on the essence of endogenous turbidity should keep pace with the time. Its material bases should be defined and new connotation endowed at the microscopic level. The essence of turbidity lies in abnormal functions of zang-fu organs. Sugar, fat, protein, and other nutrient substances cannot be properly decomposed, but into semi-finished products or intermediate metabolites. They are inactive and cannot participate in normal material syntheses and decomposition. They cannot be transformed to energy metabolism, but also cannot be synthesized as executive functioning of active proteins. If they cannot be degraded by autophagy-lysosome or ubiquitin-prosome into glucose, fatty acids, amino acids, and other basic nutrients to be used again, they will accumulate inside the human body and become endogenous turbidity. Therefore, endogenous turbidity is different from final metabolites such as urea, carbon dioxide, etc., which can transform vital qi. How to improve the function of zang-fu organs, enhance its degradation by autophagy-lysosome or ubiquitin-prosome is of great significance in normal operating of zang-fu organs and preventing the emergence and progress of related diseases.

  16. [Exploration of the Essence of "Endogenous Turbidity" in Chinese Medicine].

    PubMed

    Fan, Xin-rong; Tang, Nong; Ji, Yun-xi; Zhang, Yao-zhong; Jiang, Li; Huang, Gui-hua; Xie, Sheng; Li, Liu-mei; Song, Chun-hui; Ling, Jiang-hong

    2015-08-01

    The essence of endogenous turbidity in Chinese medicine (CM) is different from cream, fat, phlegm, retention, damp, toxicity, and stasis. Along with the development of modern scientific technologies and biology, researches on the essence of endogenous turbidity should keep pace with the time. Its material bases should be defined and new connotation endowed at the microscopic level. The essence of turbidity lies in abnormal functions of zang-fu organs. Sugar, fat, protein, and other nutrient substances cannot be properly decomposed, but into semi-finished products or intermediate metabolites. They are inactive and cannot participate in normal material syntheses and decomposition. They cannot be transformed to energy metabolism, but also cannot be synthesized as executive functioning of active proteins. If they cannot be degraded by autophagy-lysosome or ubiquitin-prosome into glucose, fatty acids, amino acids, and other basic nutrients to be used again, they will accumulate inside the human body and become endogenous turbidity. Therefore, endogenous turbidity is different from final metabolites such as urea, carbon dioxide, etc., which can transform vital qi. How to improve the function of zang-fu organs, enhance its degradation by autophagy-lysosome or ubiquitin-prosome is of great significance in normal operating of zang-fu organs and preventing the emergence and progress of related diseases. PMID:26485920

  17. Temporal analysis of remotely sensed turbidity in a coastal archipelago

    NASA Astrophysics Data System (ADS)

    Suominen, Tapio; Tolvanen, Harri

    2016-07-01

    A topographically fragmental archipelago with dynamic waters set the preconditions for assessing coherent remotely sensed information. We generated a turbidity dataset for an archipelago coast in the Baltic Sea from MERIS data (FSG L1b), using CoastColour L1P, L2R and L2W processors. We excluded land and mixed pixels by masking the imagery with accurate (1:10 000) shoreline data. Using temporal linear averaging (TLA), we produced satellite-imagery datasets applicable to temporal composites for the summer seasons of three years. The turbidity assessments and temporally averaged data were compared to in situ observations obtained with coastal monitoring programs. The ability of TLA to estimate missing pixel values was further assessed by cross-validation with the leave-one-out method. The correspondence between L2W turbidity and in situ observations was good (r = 0.89), and even after applying TLA the correspondence remained acceptable (r = 0.78). The datasets revealed spatially divergent temporal water characteristics, which may be relevant to the management, design of monitoring and habitat models. Monitoring observations may be spatially biased if the temporal succession of water properties is not taken into account in coastal areas with anisotropic dispersion of waters and asynchronous annual cycles. Accordingly, areas of varying turbidity may offer a different habitat for aquatic biota than areas of static turbidity, even though they may appear similar if water properties are measured for short annual periods.

  18. Normalized velocity profiles of field-measured turbidity currents

    USGS Publications Warehouse

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  19. Measurement of "turbidity" and related characteristics of natural waters

    USGS Publications Warehouse

    Pickering, R.J.

    1976-01-01

    The U.S. Geological Survey, Water Resources Division has adopted the following principles to be used in selecting methods for the measurement of light transmitting characteristics of natural waters: (1) standard instruments and methods are to be adopted to measure and report in optical units, avoiding ' turbidity ' as a quantitative measure; (2) reporting of ' turbidity ' in JTU 's, Hellige units, severity, or NTU 's will be phased out; (3) the basis for estimations of sediment concentrations based on light measurements must be documented adequately; and (4) use of transparency measurement by Secchi disk is not changed, although light transmittance may prove to be more precise means of obtaining the same information. A schedule has been established to implement new methods beginning October 1, 1976, and with the transition to be completed at all stations by October 1, 1977. Provisions are provided to meet requirements of cooperators who have legal requirements for ' turbidity ' data. (Woodard-USGS)

  20. High-density turbidity currents: Are they sandy debris flows?

    SciTech Connect

    Shanmugam, G.

    1996-01-01

    Conventionally, turbidity currents are considered as fluidal flows in which sediment is supported by fluid turbulence, whereas debris flows are plastic flows in which sediment is supported by matrix strength, dispersive pressure, and buoyant lift. The concept of high-density turbidity current refers to high-concentration, commonly non-turbulent, flows of fluids in which sediment is supported mainly by matrix strength, dispersive pressure, and buoyant lift. The conventional wisdom that traction carpets with entrained turbulent clouds on top represent high-density turbidity currents is a misnomer because traction carpets are neither fluidal nor turbulent. Debris flows may also have entrained turbulent clouds on top. The traction carpet/debris flow and the overriding turbulent clouds are two separate entities in terms of flow rheology and sediment-support mechanism. In experimental and theoretical studies, which has linked massive sands and floating clasts to high-density turbidity currents, the term high-density turbidity current has actually been used for laminar flows. In alleviating this conceptual problem, sandy debris flow is suggested as a substitute for high-density turbidity current. Sandy debris flows represent a continuous spectrum of processes between cohesive and cohesionless debris flows. Commonly they are rheologically plastic. They may occur with or without entrained turbulent clouds on top. Their sediment-support mechanisms include matrix strength, dispersive pressure, and buoyant lift. They are characterized by laminar flow conditions, a moderate to high grain concentration, and a low to moderate mud content. Although flows evolve and transform during the course of transport in density-stratified flows, the preserved features in a deposit are useful to decipher only the final stages of deposition. At present, there are no established criteria to decipher transport mechanism from the depositional record.

  1. Measurement of in vitro microtubule polymerization by turbidity and fluorescence.

    PubMed

    Mirigian, Matthew; Mukherjee, Kamalika; Bane, Susan L; Sackett, Dan L

    2013-01-01

    Tubulin polymerization may be conveniently monitored by the increase in turbidity (optical density, or OD) or by the increase in fluorescence intensity of diamidino-phenylindole. The resulting data can be a quantitative measure of microtubule (MT) assembly, but some care is needed in interpretation, especially of OD data. Buffer formulations used for the assembly reaction significantly influence the polymerization, both by altering the critical concentration for polymerization and by altering the exact polymer produced-for example, by increasing the production of sheet polymers in addition to MT. Both the turbidity and the fluorescence methods are useful for demonstrating the effect of MT-stabilizing or -destabilizing additives.

  2. Lidar equations for turbid media with pulse stretching.

    PubMed

    Walker, R E; McLean, J W

    1999-04-20

    Lidar equations for a system with multiple-scattering beam spreading and pulse stretching are developed from an analytical model for the beam spread function. The resulting lidar equations are transparent to the physics and with some simple approximations for system transfer functions become mathematically simple engineering models for system studies. Application to and comparison with a variety of lidar applications in ocean environments (turbidity and bathymetry) and clouds (aerosol scattering) are presented. These examples provide model validation. The lidar model developed represents a significant extension beyond historical lidar models that exclude pulse stretching. Their mathematical simplicity should foster use in a broader class of problems involving light propagation in turbid media.

  3. A feasibility study for a remote laser water turbidity meter

    NASA Technical Reports Server (NTRS)

    Hickman, G. D.; Ghovanlou, A. H.; Friedman, E. J.; Gault, C. S.; Hogg, J. E.

    1974-01-01

    A technique to remotely determine the attenuation coefficient (alpha) of the water was investigated. The backscatter energy (theta = 180 deg) of a pulse laser (lambda = 440 - 660 nm) was found directly related to the water turbidity. The greatest sensitivity was found to exist at 440 nm. For waters whose turbidity was adjusted using Chesapeake Bay sediment, the sensitivity in determining alpha at 440 nm was found to be approximately 5 - 10%. A correlation was also found to exist between the water depth (time) at which the peak backscatter occurs and alpha.

  4. Fluorescence correlation spectroscopy: Ultrasensitive detection in clear and turbid media

    NASA Astrophysics Data System (ADS)

    Tahari, Abdel Kader

    In this work, I describe the development of a simple, inexpensive, and powerful alternative technique to detect and analyze, without enrichment, extremely low concentrations of cells, bacteria, viruses, and protein aggregates in turbid fluids for clinical and biotechnological applications. The anticipated applications of this technique are many. They range from the determination of the somatic cell count in milk for the dairy industry, to the enumeration and characterization of microorganisms in environmental microbiology and the food industry, and to the fast and ultrasensitive detection of protein aggregates for the diagnosis of Alzheimer's and other neurodegenerative diseases in clinical medicine. A prototype instrument has been built and allowed the detection and quantification of particles down to a few per milliliter in short scanning times. It consists of a small microscope that has a horizontal geometry and a mechanical instrument that holds a cylindrical cuvette (1 cm in diameter) with two motors that provide a rotational and a slower vertical inversion motions. The illumination focus is centered about 200 mum from the wall of the cuvette inside the sample. The total volume that is explored is large (˜1ml/min for bright particles). The data is analyzed with a correlation filter program based on particle passage pattern recognition. I will also describe further work on improving the sensitivity of the technique, expanding it for multiple-species discrimination and enumeration, and testing the prototype device in actual clinical and biotechnological applications. The main clinical application of this project seeks to establish conditions and use this new technique to quantify and size-analyze oligomeric complexes of the Alzheimer's disease beta-peptide in cerebrospinal fluid and other body fluids as a molecular biomarker for persons at risk of Alzheimer's disease dementia. The technology could potentially be extended to the diagnosis and therapeutic

  5. Utilizing Turbidity and Measurements of Suspended Sediment Concentrations to Better Understand Sediment Transport within Urban Streams

    NASA Astrophysics Data System (ADS)

    Elkins, T. M.; Napieralski, J. A.

    2009-12-01

    The Rouge River watershed in Southeast Michigan is an urban watershed, which has been exposed to more than 100 years of anthropogenic activities related to industrialization and urbanization. This urbanization has degraded water quality by increasing erosion and altering the transport mechanism and chemistry of bed and suspended sediments. This study aims to explore the relationship between development within the Lower Rouge watershed and watershed hydrology through an examination of USGS discharge data, stream water quality and suspended sediment loads during storm and base flow. Two YSI dataloggers are used to continuously measure water quality parameters during baseflow and storm events (varying hydrologic conditions), including: turbidity, dissolved oxygen, conductivity, salinity, total dissolved solids, and temperature. Depth-integrated sediment samples are collected and analyzed for sediment concentration using Imhoff cones and filtration methods. Correlations between discharge weighted continuous turbidity measurements and discharge weighted suspended sediment samples are used to estimate sediment loads; essentially, turbidity readings and measured sediment concentrations form a near-linear relationship. In addition, sediment samples are analyzed for inorganic heavy metal contaminants common to Southeast Michigan to characterize both suspended sediments and sediments frequently deposited on adjacent floodplains. These metals (i.e. Lead, Copper, Chromium, Nickle) are commonly known as the “Michigan Metals” and represent indicator species of mobilized and deposited contaminants associated with urbanization and industrialization. The results will provide a baseline for better understanding the transport and fate of contaminated sediments within the Rouge watershed, as well as guide ongoing development and management practices along the Rouge River.

  6. Measurement of complex refractive index of turbid media by scanning focused refractive index.

    PubMed

    Sun, Teng-Qian; Ye, Qing; Liu, Shi-Ke; Wang, Xiao-Wan; Wang, Jin; Deng, Zhi-Chao; Mei, Jian-Chun; Zhou, Wen-Yuan; Zhang, Chun-Ping; Tian, Jian-Guo

    2016-08-15

    We present the application of scanning focused refractive index microscopy in the complex refractive index measurement of turbid media. An extra standard scattering layer is placed in front of the detector to perform scattering transformation on the reflected light. The principle of the scattering transformation is elaborated theoretically. The influence of the sample scattering is deeply and effectively suppressed experimentally. As a proof of the feasibility and accuracy of the proposed method, we demonstrate experimental data of 20% and 30% Intralipid solutions that are commonly used as phantom media for light propagation studies.

  7. Concurrent measurement of cellular turbidity and hemoglobin to evaluate the antioxidant activity of plants.

    PubMed

    Bellik, Yuva; Iguer-Ouada, Mokrane

    2016-01-01

    In past decades, a multitude of analytical methods for measuring antioxidant activity of plant extracts has been developed. However, when using methods to determine hemoglobin released from human erythrocytes treated with ginger extracts, we found hemoglobin concentrations were significantly higher than in untreated control samples. This suggests in the presence of antioxidants that measuring hemoglobin alone is not sufficient to determine hemolysis. We show concurrent measurement of erythrocyte concentration and hemoglobin is essential in such assays, and describe a new protocol based on simultaneous measurement of cellular turbidity and hemoglobin.

  8. Water quality determination by photographic analysis. [optical density and water turbidity

    NASA Technical Reports Server (NTRS)

    Klooster, S. A.; Scherz, J. P.

    1973-01-01

    Aerial reconnaissance techniques to extract water quality parameters from aerial photos are reported. The turbidity can be correlated with total suspended solids if the constituent parts of the effluent remain the same and the volumetric flow remains relatively constant. A monochromator is used for the selection of the bandwidths containing the most information. White reflectance panels are used to locate sampling points and eliminate inherent energy changes from lens flare, radial lens fall-off, and changing subject illumination. Misleading information resulting from bottom effects is avoided by the use of Secchi disc readings and proper choice of wavelength for analyzing the photos.

  9. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... both community water systems and non-community water systems using surface water sources in whole or...

  10. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Levels § 141.13... both community water systems and non-community water systems using surface water sources in whole or...

  11. 40 CFR 230.21 - Suspended particulates/turbidity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... suspended particulates persist. The biological and the chemical content of the suspended material may react..., pathogens, and viruses absorbed or adsorbed to fine-grained particulates in the material may become... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Suspended particulates/turbidity....

  12. Turbidity. Training Module 5.240.2.77.

    ERIC Educational Resources Information Center

    Bonte, John L.; Davidson, Arnold C.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with candle turbidimeter and the nephelometric method of turbidity analysis. Included are objectives, an instructor guide, student handout, and transparency masters. A video tape is also available from the author. This module considers use…

  13. 40 CFR 141.13 - Maximum contaminant levels for turbidity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Maximum contaminant levels for turbidity. 141.13 Section 141.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER...) Interfere with disinfection; (2) Prevent maintenance of an effective disinfectant agent throughout...

  14. Laser measure of sea salinity, temperature and turbidity in depth

    NASA Technical Reports Server (NTRS)

    Hirschberg, J. G.; Wouters, A. W.; Byrne, J. D.

    1974-01-01

    A method is described in which a pulsed laser is used to probe the sea. Backscattered light is analyzed in time, intensity and wavelength. Tyndall, Raman and Brillouin scattering are used to obtain the backscatter turbidity, sound velocity, salinity, and the temperature as a function of depth.

  15. Remote sensing of turbidity plumes in Lake Ontario

    NASA Technical Reports Server (NTRS)

    Pluhowski, E. J.

    1973-01-01

    Preliminary analyses of ERTS-1 imagery demonstrates the utility of the satellite to monitor turbidity plumes generated by the Welland Canal, and the Genese and Oswego Rivers. Although visible in high altitude photographs, the Niagara River plume is not readily identifiable from satellite imagery.

  16. Do larval fishes exhibit diel drift patterns in a large, turbid river?

    USGS Publications Warehouse

    Reeves, K.S.; Galat, D.L.

    2010-01-01

    Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May - June) and summer (July - August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or 'low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. ?? 2010 Blackwell Verlag, Berlin.

  17. Turbidity dynamics of the karst spring Ombla (Croatia)

    NASA Astrophysics Data System (ADS)

    Denic-Jukic, V.; Juras, T.; Plenkovic, M.; Kadic, A.; Jukic, D.

    2012-04-01

    Hydrogeological characteristics of the karst are complex and significantly different from the characteristics of granular media. Underground structures of pores, fissures, fractures and conduits of various size and forms with significant spatial and temporal variability and discontinuity of hydraulic and geometric parameters create complex hydrogeological conditions for groundwater flow. Karst aquifers are important fresh water resources but are frequently contaminated by turbidity because of the presence of various degrees of karstified limestone with highly transmissive conduits. Many analyses have shown that the period of turbidity represents the period of increased water pollution with bacteria. The present study presents the Ombla spring karstic system (Dubrovnik, Croatia). The Ombla Spring is located at an elevation of 2.5 m above sea-level and the river immediately flows into the Adriatic Sea. The water from the Ombla Spring is used for the water supply for the city of Dubrovnik. The precipitation regime is changeable. The average annual rainfall measured in Dubrovnik was 1220 mm. At Vukovići raingauge station, 7 km away, it amounted to 1800 mm and at the Hum raingauge station, 12.5 km from Dubrovnik it reached 2100 mm. The method applied is based essentially on time series analysis which has wide application in hydrogeological system analysis. A simple analysis gave a definition of the pattern signals of three types of records: rainfall, discharge rate and turbidity. Cross-correlation and spectral analysis were made between rainfall and discharge rates that were considered to be input signal and turbidity values which were considered to be the output signal. Both the simple and cross-analysis were made taking into account time and frequency domain. Analyzing turbidity as additional output signal parameter and parallel analysis of two responses reveals additional valuable information about the karst spring functioning. Turbidity of water in the Ombla karst

  18. Escherichia coli bacteria density in relation to turbidity, streamflow characteristics, and season in the Chattahoochee River near Atlanta, Georgia, October 2000 through September 2008—Description, statistical analysis, and predictive modeling

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2012-01-01

    Regression analyses show that E. coli density in samples was strongly related to turbidity, streamflow characteristics, and season at both sites. The regression equation chosen for the Norcross data showed that 78 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), streamflow event (dry-weather flow or stormflow), season (cool or warm), and an interaction term that is the cross product of streamflow event and turbidity. The regression equation chosen for the Atlanta data showed that 76 percent of the variability in E. coli

  19. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false What happens if my system's turbidity... Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.561 What happens if my system's turbidity monitoring equipment fails? If there is a failure in the...

  20. 40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... effluent turbidity limits must my system meet? 141.551 Section 141.551 Protection of Environment... Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my system meet? Your system must meet two strengthened combined filter effluent turbidity limits. (a) The...

  1. 40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... effluent turbidity limits must my system meet? 141.551 Section 141.551 Protection of Environment... Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my system meet? Your system must meet two strengthened combined filter effluent turbidity limits. (a) The...

  2. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... filter turbidity requirements? 141.560 Section 141.560 Protection of Environment ENVIRONMENTAL PROTECTION... Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.560 Is my system subject to individual filter turbidity requirements? If your system is a...

  3. 40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... effluent turbidity limits must my system meet? 141.551 Section 141.551 Protection of Environment... Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my system meet? Your system must meet two strengthened combined filter effluent turbidity limits. (a) The...

  4. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false What happens if my system's turbidity... Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.561 What happens if my system's turbidity monitoring equipment fails? If there is a failure in the...

  5. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... filter turbidity requirements? 141.560 Section 141.560 Protection of Environment ENVIRONMENTAL PROTECTION... Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.560 Is my system subject to individual filter turbidity requirements? If your system is a...

  6. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filter turbidity requirements? 141.560 Section 141.560 Protection of Environment ENVIRONMENTAL PROTECTION... Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.560 Is my system subject to individual filter turbidity requirements? If your system is a...

  7. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false What happens if my system's turbidity... Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.561 What happens if my system's turbidity monitoring equipment fails? If there is a failure in the...

  8. 40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... effluent turbidity limits must my system meet? 141.551 Section 141.551 Protection of Environment... Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my system meet? Your system must meet two strengthened combined filter effluent turbidity limits. (a) The...

  9. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... filter turbidity requirements? 141.560 Section 141.560 Protection of Environment ENVIRONMENTAL PROTECTION... Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.560 Is my system subject to individual filter turbidity requirements? If your system is a...

  10. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false What happens if my system's turbidity... Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.561 What happens if my system's turbidity monitoring equipment fails? If there is a failure in the...

  11. 40 CFR 141.560 - Is my system subject to individual filter turbidity requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... filter turbidity requirements? 141.560 Section 141.560 Protection of Environment ENVIRONMENTAL PROTECTION... Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Individual Filter Turbidity Requirements § 141.560 Is my system subject to individual filter turbidity requirements? If your system is a...

  12. Glyphosate input modifies microbial community structure in clear and turbid freshwater systems.

    PubMed

    Pizarro, H; Vera, M S; Vinocur, A; Pérez, G; Ferraro, M; Menéndez Helman, R J; Dos Santos Afonso, M

    2016-03-01

    Since it was commercially introduced in 1974, glyphosate has been one of the most commonly used herbicides in agriculture worldwide, and there is growing concern about its adverse effects on the environment. Assuming that glyphosate may increase the organic turbidity of water bodies, we evaluated the effect of a single application of 2.4 ± 0.1 mg l(-1) of glyphosate (technical grade) on freshwater bacterioplankton and phytoplankton (pico, micro, and nanophytoplankton) and on the physical and chemical properties of the water. We used outdoor experimental mesocosms under clear and oligotrophic (phytoplanktonic chlorophyll a = 2.04 μg l(-1); turbidity = 2.0 NTU) and organic turbid and eutrophic (phytoplanktonic chlorophyll a = 50.3 μg l(-1); turbidity = 16.0 NTU) scenarios. Samplings were conducted at the beginning of the experiment and at 1, 8, 19, and 33 days after glyphosate addition. For both typologies, the herbicide affected the abiotic water properties (with a marked increase in total phosphorus), but it did not affect the structure of micro and nanophytoplankton. In clear waters, glyphosate treatment induced a trend toward higher bacteria and picoeukaryotes abundances, while there was a 2 to 2.5-fold increase in picocyanobacteria number. In turbid waters, without picoeukaryotes at the beginning of the experiment, glyphosate decreased bacteria abundance but increased the number of picocyanobacteria, suggesting a direct favorable effect. Moreover, our results show that the impact of the herbicide was observed in microorganisms from both oligo and eutrophic conditions, indicating that the impact would be independent of the trophic status of the water body. PMID:26552793

  13. A turbidity current model for real world applications

    NASA Astrophysics Data System (ADS)

    Macías, Jorge; Castro, Manuel J.; Morales, Tomás

    2016-04-01

    Traditional turbidity current models suffer from several drawbacks. Among them not preserving freshwater mass, a missing pressure term, or not including terms related to deposition, erosion and entrainment in the momentum equation. In Morales et al.(2009) a new turbidity current model was proposed trying to overcome all these drawbacks. This model takes into account the interaction between the turbidity current and the bottom, considering deposition and erosion effects as well as solid bedload transport of particles at the bed due to the current. Moreover, this model includes the effects of the deposition, erosion and water entrainment into the momentum equation,commonly neglected in this type of models and, finally, in the absence of water entrainment, freshwater mass in the turbidity current is preserved. Despite these improvements, the numerical results obtained by this model when applied to real river systems were not satisfactory due to the simple form of the friction term that was considered. In the present work we propose a different parameterization of this term, where bottom and interface fluid frictions are separately parameterized with more complex expressions. Moreover, the discretization of the deposition/erosion terms is now performed semi-implicitly which guarantees the positivity of the volumetric concentration of sediments in suspension and in the erodible sediment layer at the bed. The numerical simulations obtained with this new turbidity current model (component of HySEA numerical computing platform) greatly improve previous numerical results for simplified geometries as well as for real river systems. Acknowledgements: This research has been partially supported by the Junta de Andalucía research project TESELA (P11-RNM7069) and the Spanish Government Research project DAIFLUID (MTM2012-38383-C02-01) and Universidad de Málaga, Campus de Excelencia Andalucía TECH. References: T. Morales, M. Castro, C. Parés, and E. Fernández-Nieto (2009). On

  14. Calculated Angstroem`s turbidity coefficients for Fairbanks, Alaska

    SciTech Connect

    Fox, J.D.

    1994-10-01

    Angstrom`s turbidity coefficient, {beta}, was determined from measurements of direct normal solar irradiance (broadband) at Fairbanks, Alaska (latitude, 64.82). The frequency distribution and seasonal changes of derived values were similar to those reported for rural sites in other parts of the world, whereas magnitudes were at the lower end of the reported range. The method was sensitive enough to detect a seasonal pattern along with annual deviations associated with hemispheric scale disturbance created by the El Chicon volcanic eruptions of 1982. Daily deviations from the seasonal pattern were associated with antecedent precipitation events and the occurrence of local or regional forest fires in summer and possible episodes of Arctic haze in winter. Knowledge of Angstrom turbidity values will improve representations of solar irradiance in micro- and mesoscale ecological and weather models. 38 refs., 3 figs., 1 tab.

  15. Turbidity of a Binary Fluid Mixture: Determining Eta

    NASA Technical Reports Server (NTRS)

    Jacobs, Donald T.

    1996-01-01

    A ground based (1-g) experiment is in progress that will measure the turbidity of a density-matched, binary fluid mixture extremely close to its liquid-liquid critical point. By covering the range of reduced temperatures t equivalent to (T-T(sub c)) / T(sub c) from 10(exp -8) to 10(exp -2), the turbidity measurements will allow the critical exponent eta to be determined. No experiment has precisely determined a value of the critical exponent eta, yet its value is significant to theorists in critical phenomena. Relatively simple critical phenomena, as in the liquid-liquid system studied here, serve as model systems for more complex systems near a critical point.

  16. Effects of specimen turbidity and glycerol concentration on nine enzymatic methods for triglyceride determination.

    PubMed

    Sampson, M; Ruddel, M; Elin, R J

    1994-02-01

    We compared the effects of specimen turbidity and glycerol concentration on nine enzymatic methods for triglyceride measurement. We assayed 51 specimens with triglyceride concentrations of 0.85-8.21 mmol/L (75-727 mg/dL) and turbidity at 420 nm equivalent to > or = 0.1 mmol/L (8.8 mg/dL) triglyceride (measured as part of our comparison method). The data were analyzed by multiple regression, which gave coefficients for the effects of glycerol concentration and the change in turbidity during the reaction. The effects of specimen turbidity and glycerol concentration were method-dependent and ranged from 6.20% to -15.67% of the measured result. The magnitude of the turbidity effect (in assays with a significant turbidity interference) was similar to that for glycerol (in assays with a significant glycerol interference). A triglyceride assay with a bichromatic measurement was less subject to interference from turbidity.

  17. Imaging in turbid media: a transmission detector gives 2-3 order of magnitude enhanced sensitivity compared to epi-detection schemes

    PubMed Central

    Dvornikov, Alexander; Gratton, Enrico

    2016-01-01

    Imaging depth in turbid media by two-photon fluorescence microscopy depends on the ability of the optical system to detect weak fluorescence signals. We have shown that use of a wide area detector in transmission geometry allows increasing imaging depth in turbid media due to efficient photon collection. Compared to the conventional epi-detection scheme used in most commercial microscopes, the transmission detector was found to be 2–3 orders of magnitude more sensitive when used for in depth imaging in scattering samples simulating brain optical properties. PMID:27699135

  18. Imaging in turbid media: a transmission detector gives 2-3 order of magnitude enhanced sensitivity compared to epi-detection schemes

    PubMed Central

    Dvornikov, Alexander; Gratton, Enrico

    2016-01-01

    Imaging depth in turbid media by two-photon fluorescence microscopy depends on the ability of the optical system to detect weak fluorescence signals. We have shown that use of a wide area detector in transmission geometry allows increasing imaging depth in turbid media due to efficient photon collection. Compared to the conventional epi-detection scheme used in most commercial microscopes, the transmission detector was found to be 2–3 orders of magnitude more sensitive when used for in depth imaging in scattering samples simulating brain optical properties.

  19. A deterministic method for studying depolarization in turbid media

    NASA Astrophysics Data System (ADS)

    Clark, Julia P.

    2016-05-01

    There are a number of interesting experimental and Monte Carlo results regarding the persistence of polarization in turbid media; however, there is not a good theoretical understanding of this phenomenon. These results include circular polarization memory in strongly scattering anisotropic media and the impact of polydisperse scatterers on the depolarization rate. In this work we use the spectrum of the discretized vector radiative transport equation to investigate to study circular depolarization in strongly scattering media.

  20. Tufts submarine fan: turbidity-current gateway to Escanaba Trough

    USGS Publications Warehouse

    Reid, Jane A.; Normark, William R.

    2003-01-01

    Turbidity-current overflow from Cascadia Channel near its western exit from the Blanco Fracture Zone has formed the Tufts submarine fan, which extends more than 350 km south on the Pacific Plate to the Mendocino Fracture Zone. For this study, available 3.5-kHz high-resolution and airgun seismic-reflection data, long-range side-scan sonar images, and sediment core data are used to define the growth pattern of the fan. Tufts fan deposits have smoothed and filled in the linear ridge-and-valley relief over an area exceeding 23,000 km2 on the west flank of the Gorda Ridge. The southernmost part of the fan is represented by a thick (as much as 500 m) sequence of turbidite deposits ponded along more than 100 km of the northern flank of the Mendocino Fracture Zone. Growth of the Tufts fan now permits turbidity-current overflow from Cascadia Channel to reach the Escanaba Trough, a deep rift valley along the southern axis of the Gorda Ridge. Scientific drilling during both the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP) provided evidence that the 500-m-thick sediment fill of Escanaba Trough is dominantly sandy turbidites. Radiocarbon dating of the sediment at ODP Site 1037 showed that deposition of most of the upper 120 m of fill was coincident with Lake Missoula floods and that the provenance of the fill is from the eastern Columbia River drainage basin. The Lake Missoula flood discharge with its entrained sediment continued flowing downslope upon reaching the ocean as hyperpycnally generated turbidity currents. These huge turbidity currents followed the Cascadia Channel to reach the Pacific Plate, where overbank flow provided a significant volume of sediment on Tufts fan and in Escanaba Trough. Tufts fan and Tufts Abyssal Plain to the west probably received turbidite sediment from the Cascadia margin during much of the Pleistocene.

  1. Variability of aerosol optical thickness and atmospheric turbidity in Tunisia

    NASA Astrophysics Data System (ADS)

    Masmoudi, M.; Chaabane, M.; Medhioub, K.; Elleuch, F.

    The aerosol optical thickness (AOT) τa computed from the spectral sun photometer in Thala (Tunisia) exhibited variability ranging from approximately 0.03 to greater than 2.0 at 870 nm for March-October 2001. These measurements are compared to the aerosol optical thickness computed in Ouagadougou (Burkina-Faso), Banizoumbou (Niger), IMC Oristano (Sardinia) and Rome Tor Vergata (Italy). Analysis of τa data from this observation network suggests that there is a high temporal and spatial variability of τa in the different sites. The Angström wavelength exponent α was found to vary with the magnitude of the aerosol optical thickness, with values as high as 1.5 for very low τa, and values of -0.1 for high τa situations. The relationship between the two parameters τa and α is investigated. Values of the turbidity coefficient β have been determined in Thala (Tunisia) for 8 months in 2001 based on a direct fitting method of the Angström power law expression using sun photometer data. The monthly averaged values of the turbidity coefficient β vary between 0.15 and 0.33. The months of July and October experienced the highest turbidity, while April experienced the lowest aerosol loading on average. The turbidity shows a maximum and minimum values for the Southwest and the Northwest wind directions, respectively. The single scattering albedo ωo for the 870 nm wavelength obtained from solar aureole data in Thala is analysed according to the particles' origin.

  2. Simplified multiple scattering model for radiative transfer in turbid water

    NASA Technical Reports Server (NTRS)

    Ghovanlou, A. H.; Gupta, G. N.

    1978-01-01

    Quantitative analytical procedures for relating selected water quality parameters to the characteristics of the backscattered signals, measured by remote sensors, require the solution of the radiative transport equation in turbid media. Presented is an approximate closed form solution of this equation and based on this solution, the remote sensing of sediments is discussed. The results are compared with other standard closed form solutions such as quasi-single scattering approximations.

  3. Mechanisms of complete turbulence suppression in turbidity currents

    NASA Astrophysics Data System (ADS)

    Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.

    2012-11-01

    The sustained propagation of turbidity current depends on a tight interplay between suspended sediments and turbulence. This work explores the phenomenon of complete turbulence suppression in a dilute turbidity current due to stratification of suspended sediments. Direct numerical simulations of turbidity currents are carried out to understand the dynamics of complete turbulence suppression. We observe that stratification of sediments leads to damping and spatial redistribution of hairpin and quasi-streamwise turbulent structures in the flow. These turbulent structures are known to be responsible for sustaining turbulence in the flow. We propose that beyond a critical stratification limit, the existing vortical structures in the flow are damped to an extent where they loose their ability to auto-generate subsequent turbulent structures, which ultimately leads to complete loss of turbulence. We also identify three parameters: Reynolds number (Reτ), Richardson number (Riτ) and sediment settling velocity (Vz) to control the flow dynamics. Therefore a criteria for complete turbulence suppression can be defined as a critical value for RiτVz . Based on simulations, experiments and field data, the critical value appears to have logarithmic dependence on Reτ . Authors thank the support of NSF through grant OCE1131016.

  4. Recovering low-turbidity cutting liquid from silicon slurry waste.

    PubMed

    Tsai, Tzu-Hsuan; Shih, Yu-Pei

    2014-04-30

    In order to recover a low-turbidity polyalkylene glycol (PAG) liquid from silicon slurry waste by sedimentation, temperatures were adjusted, and acetone, ethanol or water was used as a diluent. The experimental results show that the particles in the waste would aggregate and settle readily by using water as a diluent. This is because particle surfaces had lower surface potential value and weaker steric stabilization in PAG-water than in PAG-ethanol or PAG-acetone solutions. Therefore, water is the suggested diluent for recovering a low-turbidity PAG (<100 NTU) by sedimentation. After 50 wt.% water-assisted sedimentation for 21 days, the solid content of the upper liquid reduced to 0.122 g/L, and the turbidity decreased to 44 NTU. The obtained upper liquid was then vacuum-distillated to remove water. The final recovered PAG with 0.37 NTU had similar viscosity and density to the unused PAG and could be reused in the cutting process.

  5. An approach for probabilistic forecasting of seasonal turbidity threshold exceedance

    NASA Astrophysics Data System (ADS)

    Towler, Erin; Rajagopalan, Balaji; Summers, R. Scott; Yates, David

    2010-06-01

    Though climate forecasts offer substantial promise for improving water resource oversight, additional tools are needed to translate these forecasts into water-quality-based products that can be useful to water utility managers. To this end, a generalized approach is developed that uses seasonal forecasts to predict the likelihood of exceeding a prescribed water quality limit. Because many water quality standards are based on thresholds, this study utilizes a logistic regression technique, which employs nonparametric or "local" estimation that can capture nonlinear features in the data. The approach is applied to a drinking water source in the Pacific Northwest United States that has experienced elevated turbidity values that are correlated with streamflow. The main steps of the approach are to (1) obtain a seasonal probabilistic precipitation forecast, (2) generate streamflow scenarios conditional on the precipitation forecast, (3) use a local logistic regression to compute the turbidity threshold exceedance probabilities, and (4) quantify the likelihood of turbidity exceedance corresponding to the seasonal climate forecast. Results demonstrate that forecasts offer a slight improvement over climatology, but that representative forecasts are conservative and result in only a small shift in total exceedance likelihood. Synthetic forecasts are included to show the sensitivity of the total exceedance likelihood. The technique is general and could be applied to other water quality variables that depend on climate or hydroclimate.

  6. Remote measurement of water color in coastal waters. [spectral radiance data used to obtain quantitative values for chlorophyll and turbidity

    NASA Technical Reports Server (NTRS)

    Weldon, J. W.

    1973-01-01

    An investigation was conducted to develop procedure to obtain quantitative values for chlorophyll and turbidity in coastal waters by observing the changes in spectral radiance of the backscattered spectrum. The technique under consideration consists of Examining Exotech model 20-D spectral radiometer data and determining which radiance ratios best correlated with chlorophyll and turbidity measurements as obtained from analyses of water samples and sechi visibility readings. Preliminary results indicate that there is a correlation between backscattered light and chlorophyll concentration and secchi visibility. The tests were conducted with the spectrometer mounted in a light aircraft over the Mississippi Sound at altitudes of 2.5K, 2.8K and 10K feet.

  7. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media.

    PubMed

    Kunnen, Britt; Macdonald, Callum; Doronin, Alexander; Jacques, Steven; Eccles, Michael; Meglinski, Igor

    2015-04-01

    Polarization-based optical techniques have become increasingly popular in the field of biomedical diagnosis. In the current report we exploit the directional awareness of circularly and/or elliptically polarized light backscattered from turbid tissue-like scattering media. We apply circularly and elliptically polarized laser light which illuminates the samples of interest, and a standard optical polarimeter is used to observe the polarization state of light backscattered a few millimeters away from the point of incidence. We demonstrate that the Stokes vector of backscattered light depicted on a Poincaré sphere can be used to assess a turbid tissue-like scattering medium. By tracking the Stokes vector of the detected light on the Poincaré sphere, we investigate the utility of this approach for characterization of cancerous and non-cancerous tissue samples in vitro. The obtained results are discussed in the framework of a phenomenological model and the results of a polarization tracking Monte Carlo model, developed in house. Schematic illustration of the experimental approach utilizing circularly and elliptically polarized light for probing turbid tissue-like scattering media. PMID:25328034

  8. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media.

    PubMed

    Kunnen, Britt; Macdonald, Callum; Doronin, Alexander; Jacques, Steven; Eccles, Michael; Meglinski, Igor

    2015-04-01

    Polarization-based optical techniques have become increasingly popular in the field of biomedical diagnosis. In the current report we exploit the directional awareness of circularly and/or elliptically polarized light backscattered from turbid tissue-like scattering media. We apply circularly and elliptically polarized laser light which illuminates the samples of interest, and a standard optical polarimeter is used to observe the polarization state of light backscattered a few millimeters away from the point of incidence. We demonstrate that the Stokes vector of backscattered light depicted on a Poincaré sphere can be used to assess a turbid tissue-like scattering medium. By tracking the Stokes vector of the detected light on the Poincaré sphere, we investigate the utility of this approach for characterization of cancerous and non-cancerous tissue samples in vitro. The obtained results are discussed in the framework of a phenomenological model and the results of a polarization tracking Monte Carlo model, developed in house. Schematic illustration of the experimental approach utilizing circularly and elliptically polarized light for probing turbid tissue-like scattering media.

  9. Estimating dissolved organic carbon concentration in turbid coastal waters using optical remote sensing observations

    NASA Astrophysics Data System (ADS)

    Cherukuru, Nagur; Ford, Phillip W.; Matear, Richard J.; Oubelkheir, Kadija; Clementson, Lesley A.; Suber, Ken; Steven, Andrew D. L.

    2016-10-01

    Dissolved Organic Carbon (DOC) is an important component in the global carbon cycle. It also plays an important role in influencing the coastal ocean biogeochemical (BGC) cycles and light environment. Studies focussing on DOC dynamics in coastal waters are data constrained due to the high costs associated with in situ water sampling campaigns. Satellite optical remote sensing has the potential to provide continuous, cost-effective DOC estimates. In this study we used a bio-optics dataset collected in turbid coastal waters of Moreton Bay (MB), Australia, during 2011 to develop a remote sensing algorithm to estimate DOC. This dataset includes data from flood and non-flood conditions. In MB, DOC concentration varied over a wide range (20-520 μM C) and had a good correlation (R2 = 0.78) with absorption due to coloured dissolved organic matter (CDOM) and remote sensing reflectance. Using this data set we developed an empirical algorithm to derive DOC concentrations from the ratio of Rrs(412)/Rrs(488) and tested it with independent datasets. In this study, we demonstrate the ability to estimate DOC using remotely sensed optical observations in turbid coastal waters.

  10. Optical monitoring of chemical processes in turbid biogenic liquid dispersions by Photon Density Wave spectroscopy.

    PubMed

    Hass, Roland; Munzke, Dorit; Ruiz, Salomé Vargas; Tippmann, Johannes; Reich, Oliver

    2015-04-01

    In turbid biogenic liquid material, like blood or milk, quantitative optical analysis is often strongly hindered by multiple light scattering resulting from cells, particles, or droplets. Here, optical attenuation is caused by losses due to absorption as well as scattering of light. Fiber-based Photon Density Wave (PDW) spectroscopy is a very promising method for the precise measurement of the optical properties of such materials. They are expressed as absorption and reduced scattering coefficients (μ a and μ s', respectively) and are linked to the chemical composition and physical properties of the sample. As a process analytical technology, PDW spectroscopy can sense chemical and/or physical processes within such turbid biogenic liquids, providing new scientific insight and process understanding. Here, for the first time, several bioprocesses are analyzed by PDW spectroscopy and the resulting optical coefficients are discussed with respect to established mechanistic models of the chosen processes. As model systems, enzymatic casein coagulation in milk, temperature-induced starch hydrolysis in beer mash, and oxy- as well as deoxygenation of human donor blood were investigated by PDW spectroscopy. The findings indicate that also for very complex biomaterials (i.e., not well-defined model materials like monodisperse polymer dispersions), obtained optical coefficients allow for the assessment of a structure/process relationship and thus for a new analytical access to biogenic liquid material. This is of special relevance as PDW spectroscopy data are obtained without any dilution or calibration, as often found in conventional spectroscopic approaches.

  11. Optical device for sensing the index of refraction of liquids with high turbidity

    NASA Astrophysics Data System (ADS)

    Pena-Gomar, M.; Fajardo-Lira, C.; Rosete-Aguilar, Martha; Garcia-Valenzuela, Augusto

    2000-12-01

    We discuss the use of photo-reflectance near the critical angle (PRCA) to monitor small changes of the RI of highly turbid liquids. The theory of the reflectance of a laser beam near the critical angle for an external medium with a complex RI is summarized. The applicability of PRCA to sense highly turbid media is demonstrated experimentally on bovine milk samples. We give experimental results showing the temporal variation of the refractive index (RI) during three different processes in bovine milk: (1) Mechanical stirring, (2) temperature changes, and (3) pH variations around the isoelectric point of the casein micelles (micelle aggregation). RI changes in the order of a few times 1 X 10-3 are observed during the experiments. The experimental results show that the RI of milk can be used to track physico-chemical changes in time allowing one to measure the time constant of the different process. The design of a compact RI probe for in situ applications is discussed. The miniaturization of such a probe will probably limited by factors other than the loss of sensitivity. A novel angle-of-incidence control which requires only linear displacements of some of the optical components (no rotation) is proposed and shown to be feasible. Such an optical probe may be used in the dairy industry and in general in the food industry or food science research laboratories. It could give additional analytical power to the food scientist, engineer, or technician.

  12. A high-throughput assay for quantification of starch hydrolase inhibition based on turbidity measurement.

    PubMed

    Liu, Tingting; Song, Lixia; Wang, Hongyu; Huang, Dejian

    2011-09-28

    A high-throughput method for rapid determination of starch hydrolase inhibition was developed using a 96-well microplate UV-vis reader to monitor the turbidity decrease over time. The area under the curve of turbidity measured over time was used to quantify the inhibitory effect of polyphenolic compounds on porcine pancreatic amylase, rat intestine α-glucosidase, and fungal amyloglucosidase. Acarbose equivalence (AE) was introduced for the first time and defined as IC50 of acarbose divided by the IC50 of the sample measured under the same 96-well plate. This way, the run-to-run variations are canceled out. Among the plant extracts tested, grape seed extracts (1,440 μmolAE/g) and cinnamon bark extracts (1600 μmolAE/g) are the most active in inhibiting rat intestine α-glucosidase. For porcine α-amylase inhibition, grape seed extracts (5710 μmol AE/g) are close to four times more active (equal weight basis) than acarbose (1550 μmolAE/g).

  13. Analytical Capability of Defocused µ-SORS in the Chemical Interrogation of Thin Turbid Painted Layers

    PubMed Central

    Realini, Marco; Botteon, Alessandra; Colombo, Chiara; Noll, Sarah; Elliott, Stephen R.; Matousek, Pavel

    2016-01-01

    A recently developed micrometer-scale spatially offset Raman spectroscopy (μ-SORS) method provides a new analytical capability for investigating non-destructively the chemical composition of sub-surface, micrometer-scale thickness, diffusely scattering layers at depths beyond the reach of conventional confocal Raman microscopy. Here, we demonstrate experimentally, for the first time, the capability of μ-SORS to determine whether two detected chemical components originate from two separate layers or whether the two components are mixed together in a single layer. Such information is important in a number of areas, including conservation of cultural heritage objects, and is not available, for highly turbid media, from conventional Raman microscopy, where axial (confocal) scanning is not possible due to an inability to facilitate direct imaging within the highly scattering sample. This application constitutes an additional capability for μ-SORS in addition to its basic capacity to determine the overall chemical make-up of layers in a turbid system. PMID:26767641

  14. Interpreting Organic Carbon Cycling from High-Frequency Stream FDOM, Turbidity, and CO2 Measurements at the USGS WEBB Watersheds

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Saraceno, J.; Pellerin, B. A.; Dornblaser, M.; Clow, D. W.; Aulenbach, B. T.; Walker, J. F.; Aiken, G.

    2013-12-01

    At the five forested and/or alpine headwater sites of the U.S. Geological Survey (USGS) Water, Energy, and Biogeochemical Budgets (WEBB) program, we measure fluorescing dissolved organic matter (FDOM), turbidity, and dissolved CO2 at high frequency with in-stream sensors. Goals of this effort are to compute accurate stream fluxes of DOC, POC, and CO2 and compare them to conventional sample-based approaches, as well as to exploit the variability in the signals - over temporal scales from event to season - to infer processes controlling these carbon phases in the watershed and the stream. We take discrete samples over a range of hydrologic conditions to verify the field measurements and test the proxy power of FDOM for DOC, and turbidity for POC. After correcting FDOM for water temperature, turbidity, and the inner filter effect (attenuation of signal by DOC itself), field and laboratory FDOM values agree closely and DOC-FDOM and POC-turbidity relations typically have an r2 > 0.9. We will present four examples of interpretation: (1) Diurnal cycles of FDOM occur during the cold-water snowmelt period before canopy leafout, underscoring the importance of light to stimulate algal and microbial activity; (2) The nature of hysteresis in the FDOM-stream discharge relation (e.g. size and direction of hysteretic loop) can reveal DOM sources and travel times within the catchment/stream system; (3) Seasonal FDOM patterns reveal the shifting importance of flushing in spring versus new production in summer and especially autumn (leaf fall); and (4) Event and seasonal shifts in stream CO2 concentrations suggest shifts in relative contributions from discrete zones within the shallow aquifer.

  15. Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media

    PubMed Central

    Morales Cruzado, Beatriz; y Montiel, Sergio Vázquez; Atencio, José Alberto Delgado

    2013-01-01

    In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation. PMID:23504404

  16. Sensing aggregation in highly turbid plasmonic and non-plasmonic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Ducay, Rey Nann Mark; Philip, Nathan; Boivin, Jordan; Judge, Patrick; Berberich, Jason; Scaffidi, Jonathan; Bali, Lalit; Bali, Samir

    2015-05-01

    We demonstrate a method for sensing the presence of aggregation in highly turbid aqueous suspensions of polystyrene and gold nanospheres. Aggregation is induced either by changing the pH or the ionic strength, by adding small, controlled amounts of an acid or base solution. The particle concentrations used are at least two orders of magnitude higher than previously reported. To the best of our knowledge, this is a first observation of aggregation in highly dense colloidal suspensions without any sample dilution or special sample preparation. We gratefully acknowledge support from the American Chemical Society Petroleum Research Fund and Miami University's Interdisciplinary Roundtable Fund. We also gratefully acknowledge experimental help from the Miami University Instrumentation Laboratory.

  17. Monitoring of hourly variations in coastal water turbidity using the geostationary ocean color imager (GOCI)

    NASA Astrophysics Data System (ADS)

    Choi, J.; Ryu, J.

    2011-12-01

    Temporal variations of suspended sediment concentration (SSC) in coastal water are the key to understanding the pattern of sediment movement within coastal area, in particular, such as in the west coast of the Korean Peninsula which is influenced by semi-diurnal tides. Remote sensing techniques can effectively monitor the distribution and dynamic changes in seawater properties across wide areas. Thus, SSC on the sea surface has been investigated using various types of satellite-based sensors. An advantage of Geostationary Ocean Color Imager (GOCI), the world's first geostationary ocean color observation satellite, over other ocean color satellite images is that it can obtain data every hour during the day and makes it possible to monitor the ocean in real time. In this study, hourly variations in turbidity on the coastal waters were estimated quantitatively using GOCI. Thirty three water samples were obtained on the coastal water surface in southern Gyeonggi Bay, located on the west coast of Korea. Water samples were filtered using 25-mm glass fiber filters (GF/F) for the estimation of SSC. The radiometric characteristics of the surface water, such as the total water-leaving radiance (LwT, W/m2/nm/sr), the sky radiance (Lsky, W/m2/nm/sr) and the downwelling irradiance, were also measured at each sampling location. In situ optical properties of the surface water were converted into remote sensing reflectance (Rrs) and then were used to develop an algorithm to generate SSC images in the study area. GOCI images acquired on the same day as the samples acquisition were used to generate the map of turbidity and to estimate the difference in SSC displayed in each image. The estimation of the time-series variation in SSC in a coastal, shallow-water area affected by tides was successfully achieved using GOCI data that had been acquired at hourly intervals during the daytime.

  18. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef.

    PubMed

    Macdonald, Rachael K; Ridd, Peter V; Whinney, James C; Larcombe, Piers; Neil, David T

    2013-09-15

    Water turbidity and suspended sediment concentration (SSC) are commonly used as part of marine monitoring and water quality plans. Current management plans utilise threshold SSC values derived from mean-annual turbidity concentrations. Little published work documents typical ranges of turbidity for reefs within open coastal waters. Here, time-series turbidity measurements from 61 sites in the Great Barrier Reef (GBR) and Moreton Bay, Australia, are presented as turbidity exceedance curves and derivatives. This contributes to the understanding of turbidity and SSC in the context of environmental management in open-coastal reef environments. Exceedance results indicate strong spatial and temporal variability in water turbidity across inter/intraregional scales. The highest turbidity across 61 sites, at 50% exceedance (T50) is 15.3 NTU and at 90% exceedance (T90) 4.1 NTU. Mean/median turbidity comparisons show strong differences between the two, consistent with a strongly skewed turbidity regime. Results may contribute towards promoting refinement of water quality management protocols.

  19. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOEpatents

    Tromberg, B.J.; Tsay, T.T.; Berns, M.W.; Svaasand, L.O.; Haskell, R.C.

    1995-06-13

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid. 14 figs.

  20. Apparatus and method for qualitative and quantitative measurements of optical properties of turbid media using frequency-domain photon migration

    DOEpatents

    Tromberg, Bruce J.; Tsay, Tsong T.; Berns, Michael W.; Svaasand, Lara O.; Haskell, Richard C.

    1995-01-01

    Optical measurements of turbid media, that is media characterized by multiple light scattering, is provided through an apparatus and method for exposing a sample to a modulated laser beam. The light beam is modulated at a fundamental frequency and at a plurality of integer harmonics thereof. Modulated light is returned from the sample and preferentially detected at cross frequencies at frequencies slightly higher than the fundamental frequency and at integer harmonics of the same. The received radiance at the beat or cross frequencies is compared against a reference signal to provide a measure of the phase lag of the radiance and modulation ratio relative to a reference beam. The phase and modulation amplitude are then provided as a frequency spectrum by an array processor to which a computer applies a complete curve fit in the case of highly scattering samples or a linear curve fit below a predetermined frequency in the case of highly absorptive samples. The curve fit in any case is determined by the absorption and scattering coefficients together with a concentration of the active substance in the sample. Therefore, the curve fitting to the frequency spectrum can be used both for qualitative and quantitative analysis of substances in the sample even though the sample is highly turbid.

  1. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data.

    PubMed

    Barnes, Brian B; Hu, Chuanmin

    2016-09-15

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km(2) of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km(2), although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects.

  2. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data

    NASA Astrophysics Data System (ADS)

    Barnes, Brian B.; Hu, Chuanmin

    2016-09-01

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km2 of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km2, although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects.

  3. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data

    PubMed Central

    Barnes, Brian B.; Hu, Chuanmin

    2016-01-01

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km2 of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km2, although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects. PMID:27628096

  4. Island building in the South China Sea: detection of turbidity plumes and artificial islands using Landsat and MODIS data.

    PubMed

    Barnes, Brian B; Hu, Chuanmin

    2016-01-01

    The South China Sea is currently in a state of intense geopolitical conflict, with six countries claiming sovereignty over some or all of the area. Recently, several countries have carried out island building projects in the Spratly Islands, converting portions of coral reefs into artificial islands. Aerial photography and high resolution satellites can capture snapshots of this construction, but such data are lacking in temporal resolution and spatial scope. In contrast, lower resolution satellite sensors with regular repeat sampling allow for more rigorous assessment and monitoring of changes to the reefs and surrounding areas. Using Landsat-8 data at ≥15-m resolution, we estimated that over 15 km(2) of submerged coral reef area was converted to artificial islands between June 2013 and December 2015, mostly by China. MODIS data at ≥250-m resolution were used to locate previously underreported island building activities, as well as to assess resulting in-water turbidity plumes. The combined spatial extent of observed turbidity plumes for island building activities at Mischief, Subi, and Fiery Cross Reefs was over 4,300 km(2), although nearly 40% of this area was only affected once. Together, these activities represent widespread damage to coral ecosystems through physical burial as well as indirect turbidity effects. PMID:27628096

  5. Numerical simulation of turbidity current flow and sedimentation

    SciTech Connect

    Zeng, J.

    1992-01-01

    A computer-based numerical model of turbidity-current flow and sedimentation has been developed by integrating geological observations with basic equations for fluid and sediment motion. The model emphasizes water mixing across the upper boundary, particle-concentration controls on sediment support and flow dynamics, and sediment fractionation during sedimentation. The model includes three numerical components: (1) a sedimentation/fluidization model for quantifying sediment-size fractionation in sedimenting multi-component suspensions; (2) a concentration-viscosity model for quantifying the changes in density and viscosity of high-concentrated sediment suspensions; and (3) a layer-averaged flow model for tracing downslope flow evolution using continuity and momentum equations. The resulting simulation monitors the sedimentation history of layer-averaged turbidity flows over submarine slopes in terms of the evolution of flow velocity, thickness, and sediment concentration and the resulting rate of sedimentation and sediment size fractionation in a longitudinal section of the flow. The model generates turbidites and outputs downslope variations in their thickness and grain-size structuring. The model is tested by reference to modern turbidity currents in Bute Inlet, British Columbia. Using initial and boundary conditions approximating those of Bute Inlet yields model flows that show downslope evolutions and deposit turbidites closely resembling their natural counterparts. Additional flow experiments provide quantitative evaluation of the effects of basin geometry, sediment concentration, and sediment sources on the formation and properties of turbidites. Experimental high-concentration flows show much higher downslope velocities and lower sediment-setting velocities than more dilute flows, resulting in longer sediment-transport. Model turbidites formed by high-concentration and low-concentration flows show both distribution and coarse-tail grading.

  6. Turbidity regimes over fringing coral reefs near a mining site at Lihir Island, Papua New Guinea.

    PubMed

    Thomas, Séverine; Ridd, Peter V; Day, Geoff

    2003-08-01

    An extensive sediment transport survey took place at Lihir Island (Papua New Guinea), where mining operations involve disposal of waste rocks and soil in nearshore waters. To investigate the potential impact of these practices over neighbouring fringing reefs, turbidity and sediment accumulation were measured continuously for extended periods. Turbidity records provided a map of observed impact zones based on turbidity thresholds. The main zoning features were (a) that an extreme turbidity gradient persists between the inner harbour (turbidity levels of 100-1000 mg l(-1)) and the adjacent reefs (turbidity levels in the order of 10 mg l(-1)), and (b) that observed zones conform with pre-operations impact predictions. Accumulation measurements unveiled no significant sediment accumulation over fringing coral reefs. This study contributes to the understanding of the potential impact of sediment discharge to nearshore waters.

  7. Predicting Recreational Water Quality Using Turbidity in the Cuyahoga River, Cuyahoga Valley National Park, Ohio, 2004-7

    USGS Publications Warehouse

    Brady, Amie M.G.; Bushon, Rebecca N.; Plona, Meg B.

    2009-01-01

    The Cuyahoga River within Cuyahoga Valley National Park (CVNP) in Ohio is often impaired for recreational use because of elevated concentrations of bacteria, which are indicators of fecal contamination. During the recreational seasons (May through August) of 2004 through 2007, samples were collected at two river sites, one upstream of and one centrally-located within CVNP. Bacterial concentrations and turbidity were determined, and streamflow at time of sampling and rainfall amounts over the previous 24 hours prior to sampling were ascertained. Statistical models to predict Escherichia coli (E. coli) concentrations were developed for each site (with data from 2004 through 2006) and tested during an independent year (2007). At Jaite, a sampling site near the center of CVNP, the predictive model performed better than the traditional method of determining the current day's water quality using the previous day's E. coli concentration. During 2007, the Jaite model, based on turbidity, produced more correct responses (81 percent) and fewer false negatives (3.2 percent) than the traditional method (68 and 26 percent, respectively). At Old Portage, a sampling site just upstream from CVNP, a predictive model with turbidity and rainfall as explanatory variables did not perform as well as the traditional method. The Jaite model was used to estimate water quality at three other sites in the park; although it did not perform as well as the traditional method, it performed well - yielding between 68 and 91 percent correct responses. Further research would be necessary to determine whether using the Jaite model to predict recreational water quality elsewhere on the river would provide accurate results.

  8. Landsat Thematic Mapper monitoring of turbid inland water quality

    SciTech Connect

    Lathrop, R.G., JR. )

    1992-04-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions. 17 refs.

  9. Time-resolved photon emission from layered turbid media

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.

    1996-02-01

    We present numerical and experimental results of time-resolved emission profiles from various layered turbid media. Numerical solutions determined by time-resolved Monte Carlo simulations are compared with measurements on layered-tissue phantoms made from gelatin. In particular, we show that in certain cases the effects of the upper layers can be eliminated. As a practical example, these results are used to analyze in vivo measurements on the human head. This demonstrates the influence of skin, skull, and meninges on the determination of the blood oxygenation in the brain.

  10. Digital optical phase conjugation of fluorescence in turbid tissue

    SciTech Connect

    Vellekoop, Ivo M.; Cui Meng; Yang Changhuei

    2012-08-20

    We demonstrate a method for phase conjugating fluorescence. Our method, called reference free digital optical phase conjugation, can conjugate extremely weak, incoherent optical signals. It was used to phase conjugate fluorescent light originating from a bead covered with 0.5 mm of light-scattering tissue. The phase conjugated beam refocuses onto the bead and causes a local increase of over two orders of magnitude in the light intensity. Potential applications are in imaging, optical trapping, and targeted photochemical activation inside turbid tissue.

  11. Turbidity of a near-critical ionic fluid

    SciTech Connect

    Narayanan, T.; Pitzer, K.S.

    1994-11-01

    We report the critical behavior of osmotic compressibility ({chi}{sub T}), that was deduced from turbidity, in an ionic fluid mixture comprised of tetra-n-butyl-ammonium picrate in a low dielectric solvent, 1-dodecanol. The liquid-liquid phase separation in this system is driven, predominantly, by Coulombic interactions. Measurements covered the reduced temperature, t, range 7 {times} 10{sup -5} {<=} t {<=} 7 {times} 10{sup -2}. The critical behavior of {chi}{sub T} indicates a crossover from the mean-field to the Ising critical exponent, as the critical temperature (T{sub c}) is approached.

  12. Decomposition-based recovery of absorbers in turbid media

    SciTech Connect

    Campbell, S. D.; Goodin, I. L.; Grobe, S. D.; Su, Q.; Grobe, R.

    2007-12-15

    We suggest that the concept of the point-spread function traditionally used to predict the blurred image pattern of various light sources embedded inside turbid media can be generalized under certain conditions to predict also the presence and location of spatially localized absorbing inhomogeneities based on shadow point-spread functions associated with each localized absorber in the medium. The combined image obtained from several absorbers can then be decomposed approximately into the arithmetic sums of these individual shadow point-spread functions with suitable weights that can be obtained from multiple-regression analysis. This technique permits the reconstruction of the location of absorbers.

  13. Free space propagation of concentric vortices through underwater turbid environments

    NASA Astrophysics Data System (ADS)

    Morgan, K. S.; Miller, J. K.; Cochenour, B. M.; Li, W.; Li, Y.; Watkins, R. J.; Johnson, E. G.

    2016-10-01

    Concentric optical vortex beams of 3-petal, 5-petal, and 6-petal spatial profiles are generated at 450 nm using a single diffractive optical element. The spatial and temporal propagation characteristics of these beams are then studied in a scattering underwater environment. Experimental results demonstrate a less than 5% reduction in the spatial pattern for turbidities in excess of 10 attenuation lengths. The temporal properties of concentric vortex beams are studied by temporally encoding an on-off keyed, non-return-to-zero (OOK-NRZ) data stream at 1.5 GHz.

  14. Holey random walks: optics of heterogeneous turbid composites.

    PubMed

    Svensson, Tomas; Vynck, Kevin; Grisi, Marco; Savo, Romolo; Burresi, Matteo; Wiersma, Diederik S

    2013-02-01

    We present a probabilistic theory of random walks in turbid media with nonscattering regions. It is shown that important characteristics such as diffusion constants, average step lengths, crossing statistics, and void spacings can be analytically predicted. The theory is validated using Monte Carlo simulations of light transport in heterogeneous systems in the form of random sphere packings and good agreement is found. The role of step correlations is discussed and differences between unbounded and bounded systems are investigated. Our results are relevant to the optics of heterogeneous systems in general and represent an important step forward in the understanding of media with strong (fractal) heterogeneity in particular. PMID:23496473

  15. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  16. Turbidity-current channels in Queen Inlet, Glacier Bay, Alaska

    USGS Publications Warehouse

    Carlson, P.R.; Powell, R.D.; Rearic, D.M.

    1989-01-01

    Queen Inlet is unique among Glacier Bay fjords because it alone has a branching channel system incised in the Holocene sediment fill of the fjord floor. Queen Inlet and other known channel-containing fjords are marine-outwash fjords; the tidewater glacial fjords do not have steep delta fronts on which slides are generated and may not have a sufficient reservoir of potentially unstable coarse sediment to generate channel-cutting turbidity currents. Presence or absence of channels, as revealed in the ancient rock record, may be one criterion for interpreting types of fjords. -Authors

  17. Hybrid reflecting objectives for functional multiphoton microscopy in turbid media

    PubMed Central

    Vučinić, Dejan; Bartol, Thomas M.; Sejnowski, Terrence J.

    2010-01-01

    Most multiphoton imaging of biological specimens is performed using microscope objectives optimized for high image quality under wide-field illumination. We present a class of objectives designed de novo without regard for these traditional constraints, driven exclusively by the needs of fast multiphoton imaging in turbid media: the delivery of femtosecond pulses without dispersion and the efficient collection of fluorescence. We model the performance of one such design optimized for a typical brain-imaging setup and show that it can greatly outperform objectives commonly used for this task. PMID:16880851

  18. Oceanic turbidity and chlorophyll as inferred from ERTS-1 observations

    NASA Technical Reports Server (NTRS)

    Curran, R. J.

    1973-01-01

    Spectral signatures of phytoplankton and other obscuring effects are considered in order to determine how to best use satellite data. The results of this study were then used to analyze the spectral data obtained from the ERTS-1 multispectral scanner (MSS). The analyzed satellite data were finally compared with surface ship measurements of chlorophyll concentration. It was found that the effects of water turbidity on the multispectral imagery can be discriminated by rationing the two shortest wavelength channels so that the effect of phytoplankton is enhanced.

  19. Laboratory observations of saline and turbidity currents flowing in U-shaped flume

    NASA Astrophysics Data System (ADS)

    Stagnaro, M.; Bolla Pittaluga, M.

    2013-12-01

    Saline and turbidity currents belong to the large family of gravity currents. Due to the difficulties to predict and observe these kinds of phenomena, especially turbidity currents, we developed an experimental apparatus able to reproduce these currents in our Marchi Environmental Laboratory (Genova, Italy). The experiments were performed in a large U-shaped flume, 30 m long, characterized by a constant curvature bend (radius of 2.5 m) joining two straight reaches approximately 12 m long. The flume has a rectangular cross section 0.6 m wide and 0.5 m deep. Inside the flume we made a uniform concrete bottom slope (0.005), which proceeds from the inlet section along the first straight track and finishes 3 m after the bend exit. For each experiment we have been able to measure density distribution and velocity profiles along the vertical in different cross section. Density measurements were obtained using two ranks of siphons that sample the currents at different heights. Velocity was acquired with the DOP2000 ultrasound velocimeter; we measured longitudinal component in the straight reach of the flume, and both longitudinal and transversal velocity in the curved reach. We performed 30 experiments by changing the inlet conditions: primary defining the nature of the currents, saline or sediment laden, then varying two of the main parameters governing the currents: the density of the mixture and the flow discharge. The former covered a range between 1003 and 1023 kg/m^3 and the flow discharge ranged between 0.5 to 4.0 l/s. Both of these parameters influence the densimetric Froude Number, and allowed us to reproduce both subcritical and supercritical flow. In each experiment water entrainment from above was negligible hence the current was able to attain a quasi-uniform configuration in the first straight reach, whereby the longitudinal velocity and the thickness of the current were approximately constant. By varying the inlet conditions, it was possible to observe the

  20. The influence of turbidity on juvenile marine fish in the estuaries of Natal, South africa

    NASA Astrophysics Data System (ADS)

    Cyrus, D. P.; Blaber, S. J. M.

    1987-11-01

    Results from field studies in Natal estuaries show that the distribution of juvenile marine fish is influenced by turbidity. Laboratory studies on turbidity preference, with other variables excluded, showed good correlation with the field data for eight of ten species tested. The importance of turbidity and other factors to juvenile fish is discussed in relation to the role which estuaries play as nursery areas for juveniles of numerous marine species.

  1. Correlations of turbidity to suspended-sediment concentration in the Toutle River Basin, near Mount St. Helens, Washington, 2010-11

    USGS Publications Warehouse

    Uhrich, Mark A.; Kolasinac, Jasna; Booth, Pamela L.; Fountain, Robert L.; Spicer, Kurt R.; Mosbrucker, Adam R.

    2014-01-01

    Researchers at the U.S. Geological Survey, Cascades Volcano Observatory, investigated alternative methods for the traditional sample-based sediment record procedure in determining suspended-sediment concentration (SSC) and discharge. One such sediment-surrogate technique was developed using turbidity and discharge to estimate SSC for two gaging stations in the Toutle River Basin near Mount St. Helens, Washington. To provide context for the study, methods for collecting sediment data and monitoring turbidity are discussed. Statistical methods used include the development of ordinary least squares regression models for each gaging station. Issues of time-related autocorrelation also are evaluated. Addition of lagged explanatory variables was used to account for autocorrelation in the turbidity, discharge, and SSC data. Final regression model equations and plots are presented for the two gaging stations. The regression models support near-real-time estimates of SSC and improved suspended-sediment discharge records by incorporating continuous instream turbidity. Future use of such models may potentially lower the costs of sediment monitoring by reducing time it takes to collect and process samples and to derive a sediment-discharge record.

  2. Statistical detection and imaging of objects hidden in turbid media using ballistic photons.

    PubMed

    Farsiu, Sina; Christofferson, James; Eriksson, Brian; Milanfar, Peyman; Friedlander, Benjamin; Shakouri, Ali; Nowak, Robert

    2007-08-10

    We exploit recent advances in active high-resolution imaging through scattering media with ballistic photons. We derive the fundamental limits on the accuracy of the estimated parameters of a mathematical model that describes such an imaging scenario and compare the performance of ballistic and conventional imaging systems. This model is later used to derive optimal single-pixel statistical tests for detecting objects hidden in turbid media. To improve the detection rate of the aforementioned single-pixel detectors, we develop a multiscale algorithm based on the generalized likelihood ratio test framework. Moreover, considering the effect of diffraction, we derive a lower bound on the achievable spatial resolution of the proposed imaging systems. Furthermore, we present the first experimental ballistic scanner that directly takes advantage of novel adaptive sampling and reconstruction techniques.

  3. Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption.

    PubMed

    Müller, M G; Georgakoudi, I; Zhang, Q; Wu, J; Feld, M S

    2001-09-01

    The fluorescence from a turbid medium such as biologic tissue contains information about scattering and absorption, as well as the intrinsic fluorescence, i.e., the fluorescence from an optically thin sample of pure fluorophores. The interplay of scattering and absorption can result in severe distortion of the intrinsic spectral features. These distortions can be removed by use of a photon-migration-based picture and information from simultaneously acquired fluorescence and reflectance spectra. We present experimental evidence demonstrating the validity of such an approach for extracting the intrinsic fluorescence for a wide range of scatterer and absorber concentrations in tissue models, ex vivo and in vivo tissues. We show that variations in line shape and intensity in intrinsic tissue fluorescence are significantly reduced compared with the corresponding measured fluorescence.

  4. Comprehensive analytical model for CW laser induced heat in turbid media.

    PubMed

    Erkol, Hakan; Nouizi, Farouk; Luk, Alex; Unlu, Mehmet Burcin; Gulsen, Gultekin

    2015-11-30

    In this work, we present a new analytical approach to model continuous wave laser induced temperature in highly homogeneous turbid media. First, the diffusion equation is used to model light transport and a comprehensive solution is derived analytically by obtaining a special Greens' function. Next, the time-dependent bio-heat equation is used to describe the induced heat increase and propagation within the medium. The bio-heat equation is solved analytically utilizing the separation of variables technique. Our theoretical model is successfully validated using numerical simulations and experimental studies with agarose phantoms and ex-vivo chicken breast samples. The encouraging results show that our method can be implemented as a simulation tool to determine important laser parameters that govern the magnitude of temperature rise within homogenous biological tissue or organs.

  5. Enhancement of optical coherence microscopy in turbid media by an optical parametric amplifier

    PubMed Central

    Zhao, Youbo; Tu, Haohua; Liu, Yuan; Bower, Andrew; Boppart, Stephen

    2015-01-01

    We report the enhancement in imaging performance of a spectral-domain optical coherence microscope (OCM) in turbid media by incorporating an optical parametric amplifier (OPA). The OPA provides a high level of optical gain to the sample arm, thereby improving the signal-to-noise ratio of the OCM by a factor of up to 15 dB. A unique nonlinear confocal gate is automatically formed in the OPA, which enables selective amplification of singly scattered (ballistic) photons against the multiply-scattered light background. Simultaneous enhancement in both imaging depth and spatial resolution in imaging microstructures in highly light-scattering media are demonstrated with the combined OPA-OCM setup. Typical OCM inteferograms (left) and images (right) without and with OPA. PMID:25196251

  6. Heterodyne detection through rain, snow, and turbid media - Effective receiver size at optical through millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Kazovsky, L. G.; Kopeika, N. S.

    1983-03-01

    An effective heterodyne receiver size for both a purely scattering channel and a real-world turbulent scatter channel is determined. Forward scattering reduces the effective heterodyne receiver area through spatial coherence degradation, and treatment of scattering as an attenuation phenomenon is demonstrated to be invalid in some cases, yielding an underestimation of the SNR. Dealing with scattering as attenuation is valid when the SNR is greater than 100, i.e., when the scattering angle is large. The SNR improves when the ratio of scattering particulate size to turbulence coherence diameter decreases. Arrays of small receivers are concluded to be more effective than large receivers for optically sampling the same area. The results are significant for optical sensing through fog, clouds, precipitation, and turbid media in general.

  7. High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media

    NASA Astrophysics Data System (ADS)

    Fiore, Antonio; Zhang, Jitao; Shao, Peng; Yun, Seok Hyun; Scarcelli, Giuliano

    2016-05-01

    Brillouin microscopy has recently emerged as a powerful technique to characterize the mechanical properties of biological tissue, cell, and biomaterials. However, the potential of Brillouin microscopy is currently limited to transparent samples, because Brillouin spectrometers do not have sufficient spectral extinction to reject the predominant non-Brillouin scattered light of turbid media. To overcome this issue, we combined a multi-pass Fabry-Perot interferometer with a two-stage virtually imaged phased array spectrometer. The Fabry-Perot etalon acts as an ultra-narrow band-pass filter for Brillouin light with high spectral extinction and low loss. We report background-free Brillouin spectra from Intralipid solutions and up to 100 μm deep within chicken muscle tissue.

  8. An innovative process to improve turbidity and Organics Removal by BAC filters

    NASA Astrophysics Data System (ADS)

    Miao, Jia; Zhao, Qingliang; Wang, Baozhen; Li, Ji; Zhang, Jinsong

    2006-10-01

    The turbidity criterion for the product water of a WTP according to the State Project ‘863’ on the safeguard technology of drinking water in the southern areas of China is 0.1 NTU. The turbidity removal in the activated carbon filter was analyzed in a pilot-scale test and an innovative technology to improve the turbidity removal in a biologically activated carbon (BAC) filter was put forward in order to meet the criterion. Experimental results showed that the enhanced filtration by adding polymerized aluminium chloride (PAC) into the BAC filter was quite effective in turbidity control. The effluent turbidity was kept at a stable level (mean) of 0.033 NTU with a high removal of about 80% for influent turbidity of 0.110 0240 NTU with an addition of PAC at 0.05 mg L-1, meeting the requirement for filtrate turbidity equal to or less than 0.1 NTUC totally. In addition, the larger the PAC dosage was, the lower the effluent turbidity was. However, further improvement of turbidity removal was not obvious for PAC dosages beyond 0.l0 mg L-, and an optimal PAC dosage in the range of 0.05 0.10 mg L- was proposed.

  9. Critical analysis of atmospheric turbidity and precipitable water at five Canadian stations

    SciTech Connect

    Garrison, J.; Gueymard, C.

    1997-12-31

    Global and diffuse radiation and surface meteorological measurements at Edmonton, Montreal, Port Hardy, Toronto and Winnipeg for the years 1977--1984 are analyzed to yield estimates of atmospheric precipitable water and turbidity. Three methods of estimating the precipitable water and two methods of estimating the turbidity are used and compared. Measurements of pyranometer response as a function of zenith angle are used to correct the global radiation measurements. Turbidity is corrected for the effect of circumsolar radiation included in the direct radiation obtained from the global and diffuse radiation measurements. A comparison with earlier precipitable water and turbidity results is included.

  10. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity.

    PubMed

    Ehlman, Sean M; Sandkam, Benjamin A; Breden, Felix; Sih, Andrew

    2015-12-01

    Increasing turbidity in streams and rivers near human activity is cause for environmental concern, as the ability of aquatic organisms to use visual information declines. To investigate how some organisms might be able to developmentally compensate for increasing turbidity, we reared guppies (Poecilia reticulata) in either clear or turbid water. We assessed the effects of developmental treatments on adult behavior and aspects of the visual system by testing fish from both developmental treatments in turbid and clear water. We found a strong interactive effect of rearing and assay conditions: fish reared in clear water tended to decrease activity in turbid water, whereas fish reared in turbid water tended to increase activity in turbid water. Guppies from all treatments decreased activity when exposed to a predator. To measure plasticity in the visual system, we quantified treatment differences in opsin gene expression of individuals. We detected a shift from mid-wave-sensitive opsins to long wave-sensitive opsins for guppies reared in turbid water. Since long-wavelength sensitivity is important in motion detection, this shift likely allows guppies to salvage motion-detecting abilities when visual information is obscured in turbid water. Our results demonstrate the importance of developmental plasticity in responses of organisms to rapidly changing environments.

  11. Effect of water turbidity on thermal performance of a salt-gradient solar pond

    SciTech Connect

    Wang, J.; Seyed-Yagoobi, J.

    1995-05-01

    The effect of water turbidity on the thermal performance of a salt-gradient solar pond is studied using a one-dimensional theoretical model. The theoretical model uses an empirical correlation that includes the effect of water turbidity on solar radiation penetration in water. The correlation is based on a uniform turbidity distribution in water; however, the correlation is extended to include a non-uniform turbidity distribution with respect to depth of water. The results indicate that water clarity plays a significant role on thermal performance for salt gradient solar ponds. 24 refs., 11 figs., 1 tab.

  12. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity.

    PubMed

    Ehlman, Sean M; Sandkam, Benjamin A; Breden, Felix; Sih, Andrew

    2015-12-01

    Increasing turbidity in streams and rivers near human activity is cause for environmental concern, as the ability of aquatic organisms to use visual information declines. To investigate how some organisms might be able to developmentally compensate for increasing turbidity, we reared guppies (Poecilia reticulata) in either clear or turbid water. We assessed the effects of developmental treatments on adult behavior and aspects of the visual system by testing fish from both developmental treatments in turbid and clear water. We found a strong interactive effect of rearing and assay conditions: fish reared in clear water tended to decrease activity in turbid water, whereas fish reared in turbid water tended to increase activity in turbid water. Guppies from all treatments decreased activity when exposed to a predator. To measure plasticity in the visual system, we quantified treatment differences in opsin gene expression of individuals. We detected a shift from mid-wave-sensitive opsins to long wave-sensitive opsins for guppies reared in turbid water. Since long-wavelength sensitivity is important in motion detection, this shift likely allows guppies to salvage motion-detecting abilities when visual information is obscured in turbid water. Our results demonstrate the importance of developmental plasticity in responses of organisms to rapidly changing environments. PMID:26427995

  13. Assessing the risk posed by high-turbidity water to water supplies.

    PubMed

    Chang, Chia-Ling; Liao, Chung-Sheng

    2012-05-01

    The objective of this study is to assess the risk of insufficient water supply posed by high-turbidity water. Several phenomena can pose risks to the sufficiency of a water supply; this study concerns risks to water treatment plants from particular properties of rainfall and raw water turbidity. High-turbidity water can impede water treatment plant operations; rainfall properties can influence the degree of soil erosion. Thus, water turbidity relates to rainfall characteristics. Exceedance probabilities are presented for different rainfall intensities and turbidities of water. When the turbidity of raw water is higher than 5,000 NTU, it can cause operational problems for a water treatment plant. Calculations show that the turbidity of raw water at the Ban-Sin water treatment plant will be higher than 5,000 NTU if the rainfall intensity is larger than 165 mm/day. The exceedance probability of high turbidity (turbidity >5,000 NTU) in the Ban-Sin water treatment plant is larger than 10%. When any water treatment plant cannot work regularly, its ability to supply water to its customers is at risk.

  14. Interrelation of surface tension, optical turbidity, and color of operational transformer oils

    SciTech Connect

    L'vov, S. Yu.; Lyut'ko, E. O.; Lankau, Ya. V.; Komarov, V. B.; Seliverstov, A. F.; Bondareva, V. N.; L'vov, Yu. N.; L'vov, M. Yu.; Ershov, B. G.

    2011-09-15

    Measurements of the acidity, optical turbidity, surface tension, and color of transformer oil from 54 power transformers, autotransformers, and shunt reactors are reported. Changes in surface tension, optical turbidity, and color are found to obey adequate linear correlations, while the acidity has no correlation with any of these properties. Numerical criteria for the maximum permissible state (quality) of the oil with respect to optical turbidity and color are obtained. Recommendations to operating staff are provided for cases in which the criteria for optical turbidity and color are exceeded.

  15. Evolutionary model of flexible exponential function to characterize decay pattern of OCT signal in turbid tissues

    NASA Astrophysics Data System (ADS)

    Chen, Bingling; Guo, Zhouyi

    2008-12-01

    Conventional analyses of OCT signal measurements resolve the signal decay profile in terms of single discrete exponential function with distinct exponential model. In symmetrical medium, mono-exponential decay function can appear to provide a well fit to OCT signal decay data, but the assuption of symmetrical components is essentially arbitrary and is often erroneous. Actually, the real biological samples such as tissue contained more complex components and are more heterogeneous. To avoid the shortages of mono-exponential decay function fitting to OCT signal decay data from heterogeneous biological tissues, a novel model of flexible exponential function has been developed. The main idea of the flexible exponential function modle is based on the assuption that heterogeneous biological tissue can be considered as a multi-layered tissue. Each layer is symmetric and the OCT signal decay profile in each layer obeies to a distinct single exponential function. If we can find out all the distinct single exponential function for each layer, the total flexible exponential function is determined by summing up all the single exponential functions. As pilot studies on the practical application of flexibleexponential decay model for monitoring and quantifying the diffusion of different analytes in turbid biological tissues in vivo by using OCT system, we demonstrate an experiment of monitoring of glucose diffusion in agar gel. In addition, the flexible-exponential decay model can provide a direct measure of the heterogeneity of the sample, and the analysis of turbid tissues OCT map using the flexible-exponential decay model can reveal subtle tissue differences that other models fail to show.

  16. Effect of sediment turbidity and color on light output measurement for Microtox Basic Solid-Phase Test.

    PubMed

    Campisi, T; Abbondanzi, F; Casado-Martinez, C; DelValls, T A; Guerra, R; Iacondini, A

    2005-06-01

    In this work, sediment samples collected from several Spanish harbours were tested with two toxicity procedures, designed for solid samples: the Microtox Basic Solid-Phase Test (BSPT) and a modified procedure of the previous test protocol (mBSPT). According to the BSPT procedure, after initial light readings, pure bacteria were exposed to sediment suspension dilutions and light production was directly measured on suspended sediments without any further manipulation. As measurements are likely to be affected by sediment turbidity and color, a variation in initial light measurement has been here suggested, in order to consider the sample effect at all time readings during the test. Firstly, when sediment suspensions at different concentrations were added to bacteria suspension, immediately the initial light output drastically decayed by more than 50% in signal difference, resulting in a false inhibition, as effect of sample turbidity/color. This effect was more evident at high EC50 values, when slightly or not toxic samples were assessed. Secondly, the comparison of the EC50 obtained with both procedures, demonstrated that the mBSPT produced higher EC50 values (less toxic) than those obtained with the standard procedure. The mBSPT procedure resulted rapid and effective and it could be applied simultaneously with BSPT, in order to better evaluate the toxicity.

  17. Detection limits for nanoparticles in solution with classical turbidity spectra

    NASA Astrophysics Data System (ADS)

    Le Blevennec, G.

    2013-09-01

    Detection of nanoparticles in solution is required to manage safety and environmental problems. Spectral transmission turbidity method has now been known for a long time. It is derived from the Mie Theory and can be applied to any number of spheres, randomly distributed and separated by large distance compared to wavelength. Here, we describe a method for determination of size, distribution and concentration of nanoparticles in solution using UV-Vis transmission measurements. The method combines Mie and Beer Lambert computation integrated in a best fit approximation. In a first step, a validation of the approach is completed on silver nanoparticles solution. Verification of results is realized with Transmission Electronic Microscopy measurements for size distribution and an Inductively Coupled Plasma Mass Spectrometry for concentration. In view of the good agreement obtained, a second step of work focuses on how to manage the concentration to be the most accurate on the size distribution. Those efficient conditions are determined by simple computation. As we are dealing with nanoparticles, one of the key points is to know what the size limits reachable are with that kind of approach based on classical electromagnetism. In taking into account the transmission spectrometer accuracy limit we determine for several types of materials, metals, dielectrics, semiconductors the particle size limit detectable by such a turbidity method. These surprising results are situated at the quantum physics frontier.

  18. Direct luminous efficacy and atmospheric turbidity - improving model performance

    SciTech Connect

    Molineaux, B.; Ineichen, P.; Delaunay, J.J.

    1995-08-01

    Of all the atmospheric constituents, aerosol content is shown to be responsible for the greatest variations in direct luminous efficacy. Some clarity is brought to the comparison between Linke`s and Angstrom`s turbidity coefficients, respectively T{sub L} and {Beta}. Grenier`s recent formulation of the optical thickness of a water and aerosol free atmosphere is presented here in a simplified expression. Based on these results and Dogniaux`s illuminance turbidity factor, T{sub il}, two direct luminous efficacy models are derived, one of which is tuned to our experimental data. The input parameters are optical air mass, {Beta}, and water vapor content in the tuned version. These models perform significantly better than any of twelve other models found in the literature when compared to 1 yr`s measurements from each of two sites in the U.S. and Switzerland. In both sites, {Beta} was derived from horizontal visibility estimated in a nearby airport. 43 refs., 5 figs., 2 tabs.

  19. Photometric and polarimetric mapping of water turbidity and water depth

    NASA Technical Reports Server (NTRS)

    Halajian, J.; Hallock, H.

    1973-01-01

    A Digital Photometric Mapper (DPM) was used in the Fall of 1971 in an airborne survey of New York and Boston area waters to acquire photometric, spectral and polarimetric data. The object of this study is to analyze these data with quantitative computer processing techniques to assess the potential of the DPM in the measurement and regional mapping of water turbidity and depth. These techniques have been developed and an operational potential has been demonstrated. More emphasis is placed at this time on the methodology of data acquisition, analysis and display than on the quantity of data. The results illustrate the type, quantity and format of information that could be generated operationally with the DPM-type sensor characterized by high photometric stability and fast, accurate digital output. The prototype, single-channel DPM is suggested as a unique research tool for a number of new applications. For the operational mapping of water turbidity and depth, the merits of a multichannel DPM coupled with a laser system are stressed.

  20. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    NASA Technical Reports Server (NTRS)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  1. Turbidity interferes with foraging success of visual but not chemosensory predators.

    PubMed

    Lunt, Jessica; Smee, Delbert L

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator-prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs.

  2. Turbidity interferes with foraging success of visual but not chemosensory predators

    PubMed Central

    Smee, Delbert L.

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator–prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs. PMID:26401444

  3. Turbidity interferes with foraging success of visual but not chemosensory predators.

    PubMed

    Lunt, Jessica; Smee, Delbert L

    2015-01-01

    Predation can significantly affect prey populations and communities, but predator effects can be attenuated when abiotic conditions interfere with foraging activities. In estuarine communities, turbidity can affect species richness and abundance and is changing in many areas because of coastal development. Many fish species are less efficient foragers in turbid waters, and previous research revealed that in elevated turbidity, fish are less abundant whereas crabs and shrimp are more abundant. We hypothesized that turbidity altered predatory interactions in estuaries by interfering with visually-foraging predators and prey but not with organisms relying on chemoreception. We measured the effects of turbidity on the predation rates of two model predators: a visual predator (pinfish, Lagodon rhomboides) and a chemosensory predator (blue crabs, Callinectes sapidus) in clear and turbid water (0 and ∼100 nephelometric turbidity units). Feeding assays were conducted with two prey items, mud crabs (Panopeus spp.) that rely heavily on chemoreception to detect predators, and brown shrimp (Farfantepenaus aztecus) that use both chemical and visual cues for predator detection. Because turbidity reduced pinfish foraging on both mud crabs and shrimp, the changes in predation rates are likely driven by turbidity attenuating fish foraging ability and not by affecting prey vulnerability to fish consumers. Blue crab foraging was unaffected by turbidity, and blue crabs were able to successfully consume nearly all mud crab and shrimp prey. Turbidity can influence predator-prey interactions by reducing the feeding efficiency of visual predators, providing a competitive advantage to chemosensory predators, and altering top-down control in food webs. PMID:26401444

  4. An integrated approach to monitoring the effect of sediment and turbidity on aquatic biota and water quality in the New York City water supply

    NASA Astrophysics Data System (ADS)

    McHale, M. R.; Baldigo, B. P.; Smith, A. J.; Mukundan, R.; Siemion, J.; Mulvihill, C.

    2011-12-01

    The New York City water supply system provides drinking water to more than 9 million people. About 90 percent of New York City's water is supplied by six surface-water reservoirs in the Catskill Mountains in southeastern New York State. The Ashokan Reservoir is a focus of concern because high turbidity and suspended sediment concentration can affect the drinking water supply and the integrity of aquatic biota in the reservoir and its tributaries. The U.S. Geological Survey, New York State Department of Environmental Conservation, and New York City Department of Environmental Protection are collaborating to identify suspended sediment and turbidity source areas and evaluate the effectiveness of stream stabilization projects to improve water quality in the 497 square kilometer Upper Esopus Creek watershed, the primary source of water to the Ashokan Reservoir. This research combines point measurements of stream habitat, macroinvertebrate, periphyton, and fish population sampling, and water quality sampling with continuous turbidity measurements and watershed modeling to integrate point measurements temporally and spatially throughout the watershed. Preliminary results suggest that although stream stabilization projects appear to have reduced sediment and turbidity concentrations and improved aquatic habitat, interpreting results has been confounded by a series of large storms during the last several years. Indeed, storms large enough to reshape channel morphology can have long-lasting effects on sediment and turbidity concentrations and aquatic biota. This framework for integrating temporal and spatial point measurements using high frequency monitoring and watershed modeling appears to hold great promise to inform policy concerning the water supply of one of the world's largest cities.

  5. Super- and subcritical turbidity currents and their deposits - a synthesis

    NASA Astrophysics Data System (ADS)

    Postma, George; Cartigny, Matthieu

    2014-05-01

    Popular facies schemes of turbidite deposits presently in use are based on an idealized sequence of turbidite units, such as those erected by Bouma (1962) and Lowe (1982). We discuss here that such approach is flawed, because these idealized sequences do not reveal the spectrum of bedforms produced by supercritical turbidity currents (TCs) that are now found to be common on slopes steeper than 0.6 degrees, i.e. on slopes of deepwater deltas, in canyons, and in confinement of supra-lobe channels. This paper shows and discusses how 'problematic' thick successions comprising structureless and crudely stratified deposits (top-cut out Bouma sequences) in conjunction with scours filled with backset stratification and Bouma Ta are specifically related to bedforms formed by high density super critical flows. It will also be shown that thick tabular and straight beds with Bouma Tb3-1, Tc, Tde, which are possibly linked with debrites (hybrid flows) and often traceable over long km distances (see Haugthon et al. 2009 and Tjalling et al. 2012) can be related to high-density subcritical flows. The ability to infer large-scale dynamics of turbidity currents from deposits allows rough estimates of slope on a basinal scale, and allows better differentiation and prediction of facies in sub-environments such as channel - lobe transitions, where supercritical confined flow transforms into subcritical flows. It will also aid modellers to better relate turbidite deposits with flow dynamics. The linking of turbidite units to large-scale flow dynamics resolves process-facies links that were hitherto unresolved in the Bouma sequence. References: Bouma, A.H. (1962) Sedimentology of Some Flysch Deposits: a Graphic Approach to Facies Interpretation. Elsevier, Amsterdam. 168 pp. Haughton, P.D.W., Davis, C., McCaffrey, W. and Barker, S.P. (2009) Hybrid sediment gravity flow deposits - classification, origin and significance. In: Hybrid and Transitional Submarine Flows (Eds. L.A. Amy, W.B. Mc

  6. EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Mahannah, R.; Edwards, T.

    2013-06-04

    Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the

  7. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    SciTech Connect

    Mahannah, R. N.; Edwards, T. B.

    2013-01-15

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards

  8. Study of the scattering of the light in aqueous samples collagen in the presence of nanoparticles and curcuma pigment

    NASA Astrophysics Data System (ADS)

    Silva, F. M. L.; Alencar, L. D. S.; Bernardi, M. I. B.; Lima, F. W. S.; Melo, C. A. S.

    2015-06-01

    In this work we investigate the scattering of light in means turbid in the presence or not of pigment and nanoparticles. For this we initially using a sample of collagen from means turbid with and without the presence of curcuma pigments and nanoparticles. Our results show that the light scattering is more intense in the samples with nanoparticles and curcuma pigment.

  9. Concurrent monitoring of vessels and water turbidity enhances the strength of evidence in remotely sensed dredging impact assessment.

    PubMed

    Wu, Guofeng; de Leeuw, Jan; Skidmore, Andrew K; Prins, Herbert H T; Liu, Yaolin

    2007-08-01

    Remotely sensed assessment of dredging impacts on water turbidity is straightforward when turbidity plumes show up in clear water. However, it is more complicated in turbid waters as the spatial or temporal changes in turbidity might be of natural origin. The plausibility of attributing turbidity patterns to dredging activities would be greatly enhanced when demonstrating association between dredging infrastructure and water turbidity. This study investigated the possibility to strengthen the inference of dredging impact while simultaneously monitoring vessels and water turbidity in the northern Poyang Lake, China, where dredging was first introduced in 2001 and rapidly extended onwards. Time-series of Landsat TM and MODIS images of 2000-2005 were used to estimate the distribution and number of vessels as well as water turbidity. MODIS images revealed a significant increase in water turbidity from 2001 onwards. Landsat TM image analysis indicated a simultaneous increase in the number of vessels. Regression analysis further showed a highly significant positive relationship (R2=0.92) between water turbidity and vessel number. Visual interpretation of ship locations led to the conclusion that clear upstream waters developed turbidity plumes while passing the first cluster of vessels. We concluded that dredging caused the increase in water turbidity, and simultaneously monitoring the water turbidity and vessels enhanced the strength of evidence in remotely sensed dredging impact assessment.

  10. Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons.

    PubMed

    Lee, Chih-Sheng; Lee, Yi-Chao; Chiang, Hui-Min

    2016-07-01

    River turbidity is of dynamic nature, and its stable state is significantly changed during the period of heavy rainfall events. The frequent occurrence of typhoons in Taiwan has caused serious problems in drinking water treatment due to extremely high turbidity. The aim of the present study is to evaluate impact of typhoons on river turbidity. The statistical methods used included analyses of paired annual mean and standard deviation, frequency distribution, and moving standard deviation, skewness, and autocorrelation; all clearly indicating significant state changes of river turbidity. Typhoon Morakot of 2009 (recorded high rainfall over 2000mm in three days, responsible for significant disaster in southern Taiwan) is assumed as a major initiated event leading to critical state change. In addition, increasing rate of turbidity in rainfall events is highly and positively correlated with rainfall intensity both for pre- and post-Morakot periods. Daily turbidity is also well correlated with daily flow rate for all the eleven events evaluated. That implies potential prediction of river turbidity by river flow rate during rainfall and typhoon events. Based on analysis of stable state changes, more effective regulations for better basin management including soil-water conservation in watershed are necessary. Furthermore, municipal and industrial water treatment plants need to prepare and ensure the adequate operation of water treatment with high raw water turbidity (e.g., >2000NTU). Finally, methodology used in the present of this study can be applied to other environmental problems with abrupt state changes.

  11. Potential of turbidity monitoring for real time control of pollutant discharge in sewers during rainfall events.

    PubMed

    Lacour, C; Joannis, C; Gromaire, M-C; Chebbo, G

    2009-01-01

    Turbidity sensors can be used to continuously monitor the evolution of pollutant mass discharge. For two sites within the Paris combined sewer system, continuous turbidity, conductivity and flow data were recorded at one-minute time intervals over a one-year period. This paper is intended to highlight the variability in turbidity dynamics during wet weather. For each storm event, turbidity response aspects were analysed through different classifications. The correlation between classification and common parameters, such as the antecedent dry weather period, total event volume per impervious hectare and both the mean and maximum hydraulic flow for each event, was also studied. Moreover, the dynamics of flow and turbidity signals were compared at the event scale. No simple relation between turbidity responses, hydraulic flow dynamics and the chosen parameters was derived from this effort. Knowledge of turbidity dynamics could therefore potentially improve wet weather management, especially when using pollution-based real-time control (P-RTC) since turbidity contains information not included in hydraulic flow dynamics and not readily predictable from such dynamics.

  12. Abrupt state change of river water quality (turbidity): Effect of extreme rainfalls and typhoons.

    PubMed

    Lee, Chih-Sheng; Lee, Yi-Chao; Chiang, Hui-Min

    2016-07-01

    River turbidity is of dynamic nature, and its stable state is significantly changed during the period of heavy rainfall events. The frequent occurrence of typhoons in Taiwan has caused serious problems in drinking water treatment due to extremely high turbidity. The aim of the present study is to evaluate impact of typhoons on river turbidity. The statistical methods used included analyses of paired annual mean and standard deviation, frequency distribution, and moving standard deviation, skewness, and autocorrelation; all clearly indicating significant state changes of river turbidity. Typhoon Morakot of 2009 (recorded high rainfall over 2000mm in three days, responsible for significant disaster in southern Taiwan) is assumed as a major initiated event leading to critical state change. In addition, increasing rate of turbidity in rainfall events is highly and positively correlated with rainfall intensity both for pre- and post-Morakot periods. Daily turbidity is also well correlated with daily flow rate for all the eleven events evaluated. That implies potential prediction of river turbidity by river flow rate during rainfall and typhoon events. Based on analysis of stable state changes, more effective regulations for better basin management including soil-water conservation in watershed are necessary. Furthermore, municipal and industrial water treatment plants need to prepare and ensure the adequate operation of water treatment with high raw water turbidity (e.g., >2000NTU). Finally, methodology used in the present of this study can be applied to other environmental problems with abrupt state changes. PMID:26994797

  13. 40 CFR 141.561 - What happens if my system's turbidity monitoring equipment fails?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... happens if my system's turbidity monitoring equipment fails? If there is a failure in the continuous... 40 Protection of Environment 22 2010-07-01 2010-07-01 false What happens if my system's turbidity monitoring equipment fails? 141.561 Section 141.561 Protection of Environment ENVIRONMENTAL PROTECTION...

  14. Ultra-high spectral extinction Brillouin spectroscopy for turbid tissue measurements (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhang, Jitao; Fiore, Antonio; Shao, Peng; Yun, Seok-Hyun; Scarcelli, Giuliano

    2016-03-01

    Brillouin spectroscopy allows non-invasive measurement of the mechanical properties of a sample by measuring the spectra of acoustically induced light scattering therein, and thus has been widely investigated for biomedical application. Recently, the development of fast Brillouin spectrometry based on virtually-imaged phased array (VIPA) has made in-situ measurement of biomedical sample possible. However, one limitation of current Brillouin technique is the low spectral extinction, which limits the measurement to nearly transparent sample. In order to measure turbid sample, multistage VIPA can be cascaded to gain spectral extinction. For example, spectral extinction of ~80 dB was achieved using three-stage VIPA; however, this approach significantly sacrificed measurement throughput. In this work, we develop a novel spectrometer that achieves high extinction without significant signal loss. To achieve this goal, we combine a two-stage VIPA spectrometer with a triple-pass Fabry-Perot interferometer. The triple-pass Fabry-Perot interferometer acts as a band-pass filter with ~3 GHz bandwidth and ~35-dB spectral extinction. Therefore, the overall extinction of this spectrometer greatly surpasses 80 dB with only ~20% excess loss. We demonstrated the performance of this spectrometer measuring background-free Brillouin spectra from Intralipid solutions and within chicken tissue.

  15. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes.

    PubMed

    Johansen, J L; Jones, G P

    2013-09-01

    Sedimentation is a substantial threat to aquatic ecosystems and a primary cause of habitat degradation on near-shore coral reefs. Although numerous studies have demonstrated major impacts of sedimentation and turbidity on corals, virtually nothing is known of the sensitivity of reef fishes. Planktivorous fishes are an important trophic group that funnels pelagic energy sources into reef ecosystems. These fishes are visual predators whose foraging is likely to be impaired by turbidity, but the threshold for such effects and their magnitude are unknown. This study examined the effect of sediment-induced turbidity on foraging in four species of planktivorous damselfishes (Pomacentridae) of the Great Barrier Reef, including inshore and offshore species that potentially differ in tolerance for turbidity. An experimental flow tunnel was used to quantify their ability to catch mobile and immobile planktonic prey under different levels of turbidity and velocity in the range encountered on natural and disturbed reefs. Turbidity of just 4 NTU (nephelometric turbidity units) reduced average attack success by up to 56%, with higher effect sizes for species with offshore distributions. Only the inshore species (Neopomacentrus bankieri), which frequently encounters this turbidity on coastal reefs, could maintain high prey capture success. At elevated turbidity similar to that found on disturbed reefs (8 NTU), attack success was reduced in all species examined by up to 69%. These reductions in attack success led to a 21-24% decrease in foraging rates for all mid to outer-shelf species, in spite of increasing attack rates at high turbidity. Although effects of turbidity varied among species, it always depended heavily on prey mobility and ambient velocity. Attack success was up to 14 times lower on mobile prey, leaving species relatively incapable of foraging on anything but immobile prey at high turbidity. Effects of turbidity were particularly prominent at higher velocities, as

  16. Satellite studies of turbidity and circulation patterns in Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Srna, R.; Treasure, W. M.; Rogers, R.

    1973-01-01

    Satellite imagery from four successful ERTS-1 passes over Delaware Bay during different portions of the tidal cycle are interpreted with special emphasis on visibility of suspended sediment and its use as a natural tracer for gross circulation patters. The MSS red band (band 5) appears to give the best contrast, although the sediment patterns are represented by only a few neighboring shades of grey. Color density slicing improves the differentiation of turbidity levels. However, color additive enhancements are of limited value since most of the information is in a single color band. The ability of ERTS-1 to present a synoptic view of the surface circulation over the entire bay is shown to be a valuable and unique contribution of ERTS-1 to coastal oceanography.

  17. Laser ablation of a turbid medium: Modeling and experimental results

    SciTech Connect

    Brygo, F.; Semerok, A.; Weulersse, J.-M.; Thro, P.-Y.; Oltra, R.

    2006-08-01

    Q-switched Nd:YAG laser ablation of a turbid medium (paint) is studied. The optical properties (absorption coefficient, scattering coefficient, and its anisotropy) of a paint are determined with a multiple scattering model (three-flux model), and from measurements of reflection-transmission of light through thin layers. The energy deposition profiles are calculated at wavelengths of 532 nm and 1.064 {mu}m. They are different from those described by a Lambert-Beer law. In particular, the energy deposition of the laser beam is not maximum on the surface but at some depth inside the medium. The ablated rate was measured for the two wavelengths and compared with the energy deposition profile predicted by the model. This allows us to understand the evolution of the ablated depth with the wavelength: the more the scattering coefficient is higher, the more the ablated depth and the threshold fluence of ablation decrease.

  18. Real-time control of sewer systems using turbidity measurements.

    PubMed

    Lacour, C; Schütze, M

    2011-01-01

    Real-time control (RTC) of urban drainage systems has been proven useful as a means to reduce pollution by combined sewer overflow discharges. So far, RTC has been investigated mainly with a sole focus on water quantity aspects. However, as measurement techniques for pollution of wastewater are advancing, pollution-based RTC might be of increasing interest. For example, turbidity data sets from an extensive measurement programme in two Paris catchments allow a detailed investigation of the benefits of using pollution-based data for RTC. This paper exemplifies this, comparing pollution-based RTC with flow-based RTC. Results suggest that pollution-based RTC indeed has some potential, particularly when measurements of water-quality characteristics are readily available.

  19. Fibrin powder turbidity measurement for rapid assessment of antiplasmins.

    PubMed

    Exner, T; Rickard, K A; Kronenberg, H

    1975-11-01

    Fibrinolytic activity was determined from the rate of disappearance of turbidity in a suspension of heat-treated fibrin powder. Using this method for estimating residual fibrinolytic activity in mixtures of serum and plasmin, antiplasmin behaviors of specimens from patients with various clinical disorders were determined after long and short preincubation times. Slow-acting antiplasmins were found to be increased in a variety of conditions among these patients, while immediate acting antiplasmins were generally decreased, compared with those in specimens from a large pool of normal, healthy vounteers. Normal women taking oral contraceptives had consitently high levels of slow antiplasmins. Tests in vitro showed that the antifibrinolytic agents epsilon-aminocaproic acid, Trasylol and soybean trypsin inhibitor act only as fast antiplasmins.

  20. A drifter for measuring water turbidity in rivers and coastal oceans.

    PubMed

    Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter

    2015-02-15

    A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding.

  1. Effects of UV intensity and water turbidity on microbial indicator inactivation.

    PubMed

    Liu, Wen-jun; Zhang, Yong-ji

    2006-01-01

    The effects of UV intensity and turbidity on selected microbial indicator inactivation were investigated. Results showed that UV disinfection was effective in killing all the selected microbial indicators, the resistance order of the microorganisms was as follows: MS-2 coliphage > Bacillus subtilis > E. coli > Staphylococcus aureus and Candida albicans. UV intensity had influence on the inactivation of all the microorganisms, high UV disinfection efficency was obtained with higher UV intensity. Turbidity had impact on the bacteria inactivation rate, but there was no evidence that turbidity had any negative contribution to MS-2 coliphage. Under the same UV dosage, higher UV intensity could overcome the negative influence of turbidity on UV performance, enhanced microorganism inactivation effect in turbidity water. PMID:17078540

  2. Effects of water turbidity and salt concentration levels on penetration of solar radiation under water

    SciTech Connect

    Wang, J.; Seyed-Yagoobi, J. )

    1994-05-01

    Two large, outdoor tanks were constructed in order to investigate the effects of water turbidity and salt concentration levels at various depths of water on penetration of solar radiation. These experiments were followed by a laboratory investigation that measured spectral transmittance and the extinction coefficient of water at different salt concentrations and turbidity levels. Both the outdoor and laboratory results indicate that the salt concentration level does not significantly affect solar radiation penetration. However, water clarity, quantified in terms of the turbidity level, plays a critical role on the magnitude of the solar radiation penetration, with the effect of turbidity on penetration increasing with the depth of water. A best-fit model is developed that gives the solar radiation penetration as a function of turbidity level and depth of water.

  3. Analysis of monthly average atmospheric precipitable water and turbidity in Canada and northern United States

    SciTech Connect

    Gueymard, C. )

    1994-07-01

    Atmospheric turbidity and precipitable water data are necessary as inputs to solar radiation or daylight availability models, and to daylighting simulation programs. A new model is presented to obtain precipitable water from long-term averages of temperature and humidity. Precipitable water data derived from this model are tabulated for some Canadian and northern U.S. sites. A discussion on the available turbidity data is presented. An analysis of the datasets from the WMO turbidity network is detailed. The effect of volcanic eruptions is discussed, as well as the possible comparisons with indirect determinations of turbidity from radiation data. A tabulation of the monthly average turbidity coefficients for ten Canadian stations and seven northern U.S. stations of the WMO network is presented.

  4. Mysis relicta: effects of turbidity and turbulence on short-term survival

    SciTech Connect

    Gregg, R.E.; Bergersen, E.P.

    1980-03-01

    The effects of wide range of turbidity and turbulence levels on the short-term survival of Mysis relicta under laboratory conditions were examined. The levels of turbulence and turbidity used bracket the conditions which Mysis relicta may be expected to encounter in one area of Twin Lakes, Colorado during the operation of a pumped storage power plant. Turbulence caused a highly significant increase in mortality; mortality was not significantly affected by the three levels of turbidity tested (0.735 to 779, and 1470 to 1558 American Public Health Association turbidity units of glacial flour sediments) nor by the interaction of turbidity and turbulence. Mortality of Mysis relicta subjected to turbulence increased significantly over the 8-day experiment. Exhaustion from inability to feed and from continuous swimming during turbulent periods is suggested as the possible cause of increased mortality observed over time during the experiment.

  5. Corals persisting in naturally turbid waters adjacent to a pristine catchment in Solomon Islands.

    PubMed

    Albert, Simon; Fisher, Paul L; Gibbes, Badin; Grinham, Alistair

    2015-05-15

    Few water quality measurements exist from pristine environments, with fewer reported studies of coastal water quality from Solomon Islands. Water quality benchmarks for the Solomons have relied on data from other geographic regions, often from quite different higher latitude developed nations, with large land masses. We present the first data of inshore turbidity and sedimentation rate for a pristine catchment on Isabel Island. Surveys recorded relatively high coral cover. The lowest cover was recorded at 22.7% (Jejevo) despite this site having a mean turbidity (continuous monitoring) of 32 NTU. However, a similar site (Jihro) was significantly less turbid (2.1 mean NTU) over the same period. This difference in turbidity is likely due to natural features of the Jihro River promoting sedimentation before reaching coastal sites. We provide an important baseline for Solomon Island inshore systems, whilst demonstrating the importance of continuous monitoring to capture episodic high turbidity events. PMID:25752531

  6. Reducing the impacts of flood-induced reservoir turbidity on a regional water supply system

    NASA Astrophysics Data System (ADS)

    Chou, Frederick N.-F.; Wu, ChiaWen

    2010-02-01

    This paper proposed an integrated simulation model to incorporate the impact of flood-induced reservoir turbidity into water supply. The integrated model includes a regional water allocation model and a one-dimensional settling model of cohesive particles based on Kynch's theory. It simulates the settling of sediment flocculation in a turbid reservoir. The restrictions of water supply during floods is mimicked by simulating turbidity profiles for control points and then quantifying the associated treatment capability of raw water in the regional water allocation model for each time step. This framework can simulate shortages caused by flood-induced high turbidity as well as extended droughts, thus provide a basis for comprehensive evaluations of emergent and regular water supply facilities. A case study of evaluating different measures to mitigate the impact of turbid reservoir on water supply in northern Taiwan is presented to demonstrate the efficacy of the proposed approach.

  7. Robust sensor for turbidity measurement from light scattering and absorbing liquids.

    PubMed

    Kontturi, Ville; Turunen, Petri; Uozumi, Jun; Peiponen, Kai-Erik

    2009-12-01

    Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid-prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.

  8. Study on backscattering spectral polarization characteristics of turbid medium

    NASA Astrophysics Data System (ADS)

    Wang, Xuezhen; Wang, Qinghua; Lai, Jiancheng; Li, Zhenhua

    2015-10-01

    Noninvasive monitoring of blood glucose is the current international academic research focus. Near-infrared (NIR) spectroscopy is the most prospective method of the present study, however, with the flaw of insufficient specificity to glucose. Tissue polarimetry has recently received considerable attention due to its specificity to glucose. Thus the glucose predicting accuracy would be improved by combining spectral intensity and polarization characteristics. However the backscattering spectral polarization characteristics of turbid media have not been reported within the wavelength range from visible to near-infrared light. In this paper, we simulated the backscattering spectral Mueller matrix of turbid medium by vector Monte Carlo. And the polarization characteristics, which are linear/circular degree of polarization (DOP) and linear/circular diattenuation, can be extracted from the simulated Mueller matrix by polar decomposition. Circular diattenuation is not discussed because it remains almost zero on the backscattering plane. While reduced scattering coefficient increases linearly with increasing wavelength, the spectral curves show distinct wavelength dependencies. Interestingly, the wavelength dependencies at center position are different from those at off-center position for linear/circular DOP and linear diattenuation. As expected, it is shown that both linear DOP and linear diattenuation increase with the increasing wavelength. However it is not the case for linear DOP in the central area around the incident point. In this area linear DOP decays approximately exponentially with increasing wavelength. As for circular DOP, it varies with wavelength non-monotonically. These results should be meaningful when spectral polarization characteristics are used to combine with spectral intensity to extract glucose concentration by chemometrics.

  9. Determination of struvite crystallization mechanisms in urine using turbidity measurement.

    PubMed

    Triger, Aurélien; Pic, Jean-Stéphane; Cabassud, Corinne

    2012-11-15

    Sanitation improvement in developing countries could be achieved through wastewater treatment processes. Nowadays alternative concepts such as urine separate collection are being developed. These processes would be an efficient way to reduce pollution of wastewater while recovering nutrients, especially phosphorus, which are lost in current wastewater treatment methods. The precipitation of struvite (MgNH(4)PO(4)∙6H(2)O) from urine is an efficient process yielding more than 98% phosphorus recovery with very high reaction rates. The work presented here aims to determine the kinetics and mechanisms of struvite precipitation in order to supply data for the design of efficient urine treatment processes. A methodology coupling the resolution of the population balance equation to turbidity measurement was developed, and batch experiments with synthetic and real urine were performed. The main mechanisms of struvite crystallization were identified as crystal growth and nucleation. A satisfactory approximation of the volumetric crystal size distribution was obtained. The study has shown the low influence on the crystallization process of natural organic matter contained in real urine. It has also highlighted the impact of operational parameters. Mixing conditions can create segregation and attrition which influence the nucleation rate, resulting in a change in crystals number, size, and thus final crystal size distribution (CSD). Moreover urine storage conditions can impact urea hydrolysis and lead to spontaneous struvite precipitation in the stock solution also influencing the final CSD. A few limits of the applied methodology and of the proposed modelling, due to these phenomena and to the turbidity measurement, are also discussed.

  10. Effects of turbidity and prey density on the foraging success of age 0 year yellow perch Perca flavescens.

    PubMed

    Wellington, C G; Mayer, C M; Bossenbroek, J M; Stroh, N A

    2010-05-01

    Laboratory experiments were conducted to determine how larval and juvenile yellow perch Perca flavescens respond to changes in prey density when exposed to different levels and types of turbidity (phytoplanktonic or sedimentary). Across prey densities, consumption by P. flavescens tended to be less in phytoplanktonic turbidity compared with sedimentary turbidity. For larvae, this effect was dependent on turbidity level (consumption differed between turbidity types only at high turbidity), while for juveniles the difference with turbidity type was equal across turbidity levels. These results suggest that phytoplankton blooms are detrimental to the ability of late season age 0 year P. flavescens to forage and support the need to control factors leading to excessive phytoplankton growth in lakes.

  11. Bacteria and Turbidity Survey for Blue Mountain Lake, Arkansas, Spring and Summer, 1994

    USGS Publications Warehouse

    Lasker, A. Dwight

    1995-01-01

    Introduction Blue Mountain Lake darn is located at river mile 74.4 on the Petit Jean River in Logan and Yell Counties in west-central Arkansas (fig. 1). Drainage area above the darn is 488 square miles. Blue Mountain Lake is located between two national forests-the Ozark National Forest and the Ouachita National Forest. The primary purpose for Blue Mountain Lake is flood control, but the lake is used for a variety of recreational purposes. The U.S. Geological Survey (USGS) in cooperation with the U.s. Army Corps of Engineers, Little Rock District, conducted a bacterial and turbidity study of the Blue Mountain Lake Basin during the spring and suri1mer 1994. Samples were collected weekly at 11 locations within the lake basin from May through September 1994. Eight sampling sites were located on tributaries to the lake and three sampling sites were located on the lake with one of the sites located at a swim beach (fig. 2; table 1).

  12. Determination of trace sulfides in turbid waters by gas dialysis/ion chromatography

    SciTech Connect

    Goodwin, L.R.; Francom, D.; Urso, A.; Dieken, F.P.

    1988-02-01

    The accuracy of the methylene blue colorimetric procedure for the determination of sulfide in environmental waters and waste waters is influenced by turbidity interferences even after application of recommended pretreatment techniques. The direct analysis of sulfide by ion chromatography (IC), without sample pretreatment, is complicated by field preservation of samples with zinc ion (or equivalent). A continuous-flow procedure has been developed that converts the acid-extractable sulfide to H/sub 2/S, which is separated from the sample matrix by a gas dialysis membrane and then trapped in a dilute sodium hydroxide solution. A 200-..mu..L portion of this solution is injected into the ion chromatograph for analysis with an electrochemical detector. Detection limits as low as 1.9 ng/mL have been obtained. Good agreement was found between the gas dialysis/IC and methylene blue methods for nonturbid standards. The addition of ascorbic acid as an antioxidant is required to obtain adequate recoveries from spiked tap and well waters.

  13. Spectrophotometric determination of turbid optical parameters without using an integrating sphere.

    PubMed

    Liang, Xiaohui; Li, Meihua; Lu, Jun Q; Huang, Chuanwei; Feng, Yuanming; Sa, Yu; Ding, Junhua; Hu, Xin-Hua

    2016-03-10

    Spectrophotometric quantification of turbidity by multiple optical parameters has wide-ranging applications in material analysis and life sciences. A robust system design needs to combine hardware for precise measurement of light signals with software to accurately model measurement configuration and rapidly solve a sequence of challenging inverse problems. We have developed and validated a design approach and performed system validation based on radiative transfer theory for determination of absorption coefficient, scattering coefficient, and anisotropy factor without using an integrating sphere. Accurate and rapid determination of parameters and spectra is achieved for microsphere suspension samples by combining photodiode-based measurement of four signals with the Monte Carlo simulation and perturbation-based inverse calculations. The three parameters of microsphere suspension samples have been determined from the measured signals as functions of wavelength from 400 to 800 nm and agree with calculated results based on the Mie theory. It has been shown that the inverse problems in the cases of microsphere suspension samples are well posed with convex cost functions to yield unique solutions, and it takes about 1 min to obtain the three parameters per wavelength.

  14. Application of a high-performance liquid chromatography fluorescence detector as a nephelometric turbidity detector following Field-Flow Fractionation to analyse size distributions of environmental colloids.

    PubMed

    v d Kammer, F; Baborowski, M; Friese, K

    2005-12-23

    A new operation mode for HPLC-type fluorescence detectors is presented and evaluated using synthetic and environmental particles in the colloidal size range. By applying identical wavelengths for excitation and emission a nephelometric turbidity or single angle light scattering detector is created which can be easily coupled to flow or sedimentation Field-Flow Fractionation (Flow FFF or Sed FFF) for the analysis of colloidal dispersions. The results are compared with standard UV-vis detection methods. Signals obtained are given as a function of particle size and selected detection wavelength. Conclusions can be drawn which affect the current practice of FFF but also for other techniques as groundwater sampling and laboratory column experiments when turbidity is measured in nephelometric mode and in small sample volumes or at low flow rates.

  15. Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions

    NASA Astrophysics Data System (ADS)

    Biggerstaff, A.; Smith, D. J.; Jompa, J.; Bell, J. J.

    2015-12-01

    Changes to coral reefs are occurring worldwide, often resulting in declining environmental quality which can be in the form of higher sedimentation rates and increased turbidity. While environmental acclimation to turbid and low-light conditions has been extensively studied in corals, far less is known about other phototrophic reef invertebrates. The photosynthetic cyanobacteria containing sponge Lamellodysidea herbacea is one of the most abundant sponges in the Wakatobi Marine National Park (WMNP, Indonesia), and its abundance is greatest at highly disturbed, turbid sites. This study investigated photoacclimation of L. herbacea symbionts to turbid reef sites using in situ PAM fluorometry combined with shading and transplant experiments at environmental extremes of light availability for this species. We found in situ photoacclimation of L. herbacea to both shallow, clear, high-light environments and deep, turbid, low-light environments. Shading experiments provide some evidence that L. herbacea are dependent on nutrition from their photosymbionts as significant tissue loss was seen in shaded sponges. Symbionts within surviving shaded tissue showed evidence of photoacclimation. Lamellodysidea herbacea transplanted from high- to low-light conditions appeared to have photoacclimated within 5 d with no significant effect of the lowered light level on survival. This ability of L. herbacea to photoacclimate to rapid and extreme changes in light availability may be one of the factors contributing to their survival on more turbid reef sites in the WMNP. Our study highlights the ability of some sponge species to acclimate to changes in light levels as a result of increased turbidity.

  16. Comparative influences of airborne pollutants and meteorological parameters on atmospheric visibility and turbidity

    NASA Astrophysics Data System (ADS)

    Wen, Chih-Chung; Yeh, Hui-Hsuan

    2010-06-01

    The purpose of this paper was to investigate how atmospheric air pollutants and meteorological conditions affect atmospheric visibility and turbidity. Meteorological parameter and anthropogenic air pollutant values were recorded during 2004 and 2005 at the Wuchi weather station and the Sha-lu environmental quality database station at the Taichung Harbor near the Taiwan Strait. Local weather conditions (temperature, relative humidity and solar radiation) and airborne pollutant (PM 10, SO 2, NO 2, CO and O 3) concentrations were used to analyze the relative effects of atmospheric air pollutants and meteorological conditions on atmospheric visibility and turbidity. Based on the analytic results, air pollutant concentrations significantly influence visibility and atmospheric turbidity. Wind speed is an important meteorological parameter that affects atmospheric turbidity parameters at the same atmospheric air pollutant concentrations throughout the periods of observation. At wind speeds of greater than 7 m/s, the turbidity factor β Vis is below 0.3 and visibility is greater than 6.5 km. Under very turbid conditions, β Vis > 0.4, the wind velocity is below 5 m/s, regardless of the atmospheric pollutant concentration. When visibility is ≥ 11 km, the PM 10 concentration is predicted to be below 150 μg/m 3 and the atmosphere is regarded as clear. Under very turbid conditions, the PM 10 concentration exceeds 250 μg/m 3.

  17. Point-of-use chlorination of turbid water: results from a field study in Tanzania.

    PubMed

    Mohamed, Hussein; Brown, Joe; Njee, Robert M; Clasen, Thomas; Malebo, Hamisi M; Mbuligwe, Steven

    2015-06-01

    Household-based chlorine disinfection is widely effective against waterborne bacteria and viruses, and may be among the most inexpensive and accessible options for household water treatment. The microbiological effectiveness of chlorine is limited, however, by turbidity. In Tanzania, there are no guidelines on water chlorination at household level, and limited data on whether dosing guidelines for higher turbidity waters are sufficient to produce potable water. This study was designed to assess the effectiveness of chlorination across a range of turbidities found in rural water sources, following local dosing guidelines that recommend a 'double dose' for water that is visibly turbid. We chlorinated water from 43 sources representing a range of turbidities using two locally available chlorine-based disinfectants: WaterGuard and Aquatabs. We determined free available chlorine at 30 min and 24 h contact time. Our data suggest that water chlorination with WaterGuard or Aquatabs can be effective using both single and double doses up to 20 nephelometric turbidity units (NTU), or using a double dose of Aquatabs up to 100 NTU, but neither was effective at turbidities greater than 100 NTU.

  18. DRINKING WATER TURBIDITY AND EMERGENCY DEPARTMENT VISITS FOR GASTROINTESTINAL ILLNESS IN ATLANTA, 1993 – 2004

    PubMed Central

    Tinker, Sarah C.; Moe, Christine L.; Klein, Mitchel; Flanders, W. Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E.

    2013-01-01

    Background The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well-understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the U.S., and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. Methods We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240 000 emergency department visits for gastrointestinal illness during 1993–2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. Results For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. This association was not observed for all treatment plants in plant-specific analyses. Conclusions Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants. PMID:18941478

  19. Drinking water turbidity and emergency department visits for gastrointestinal illness in Atlanta, 1993-2004.

    PubMed

    Tinker, Sarah C; Moe, Christine L; Klein, Mitchel; Flanders, W Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E

    2010-01-01

    The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the United States, and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant. We examined the relationship between turbidity levels of raw and filtered surface water measured at eight major drinking water treatment plants in the metropolitan area of Atlanta, Georgia, and over 240,000 emergency department visits for gastrointestinal illness during 1993-2004 among the population served by these plants. We fit Poisson time-series statistical regression models that included turbidity in a 21-day distributed lag and that controlled for meteorological factors and long-term time trends. For filtered water turbidity, the results were consistent with no association with emergency department visits for gastrointestinal illness. We observed a modest association between raw water turbidity and emergency department visits for gastrointestinal illness. Our results suggest that source water quality may contribute modestly to endemic gastrointestinal illness in the study area. The association between turbidity and emergency department visits for gastrointestinal illness was only observed when raw water turbidity was considered; filtered water turbidity may not serve as a reliable indicator of modest pathogen risk at all treatment plants.

  20. Effects of suspended sediment concentration and grain size on three optical turbidity sensors

    USGS Publications Warehouse

    Merten, Gustavo Henrique; Capel, Paul D.; Minella, Jean P.G.

    2014-01-01

    Purpose: Optical turbidity sensors have been successfully used to determine suspended sediment flux in rivers, assuming the relation between the turbidity signal and suspended sediment concentration (SSC) has been appropriately calibrated. Sediment size, shape and colour affect turbidity and are important to incorporate into the calibration process. Materials and methods: This study evaluates the effect of SSC and particle size (i.e. medium sand, fine sand, very fine sand, and fines (silt + clay)) on the sensitivity of the turbidity signal. Three different turbidity sensors were used, with photo detectors positioned at 90 and 180 degrees relative to the axis of incident light. Five different sediment ratios of sand:fines (0:100, 25:75, 50:50, 75:25 and 100:0) were also evaluated for a single SSC (1000 mg l-1). Results and discussion: The photo detectors positioned at 90 degrees were more sensitive than sensor positioned at 180 degrees in reading a wide variety of grain size particles. On average for the three turbidity sensors, the sensitivity for fines were 170, 40, and 4 times greater than sensitivities for medium sand, fine sand, and very fine sand, respectively. For an SSC of 1000 mg l-1 with the treatments composed of different proportions of sand and fines, the presence of sand in the mixture linearly reduced the turbidity signal. Conclusions: The results indicate that calibration of the turbidity signal should be carried out in situ and that the attenuation of the turbidity signal due to sand can be corrected, as long as the proportion of sand in the SSC can be estimated.

  1. Collagen I self-assembly: revealing the developing structures that generate turbidity.

    PubMed

    Zhu, Jieling; Kaufman, Laura J

    2014-04-15

    Type I collagen gels are routinely used in biophysical studies and bioengineering applications. The structural and mechanical properties of these fibrillar matrices depend on the conditions under which collagen fibrillogenesis proceeds, and developing a fuller understanding of this process will enhance control over gel properties. Turbidity measurements have long been the method of choice for monitoring developing gels, whereas imaging methods are regularly used to visualize fully developed gels. In this study, turbidity and confocal reflectance microscopy (CRM) were simultaneously employed to track collagen fibrillogenesis and reconcile the information reported by the two techniques, with confocal fluorescence microscopy (CFM) used to supplement information about early events in fibrillogenesis. Time-lapse images of 0.5 mg/ml, 1.0 mg/ml, and 2.0 mg/ml acid-solubilized collagen I gels forming at 27°C, 32°C, and 37°C were collected. It was found that in situ turbidity measured in a scanning transmittance configuration was interchangeable with traditional turbidity measurements using a spectrophotometer. CRM and CFM were employed to reveal the structures responsible for the turbidity that develops during collagen self-assembly. Information from CRM and transmittance images was collapsed into straightforward single variables; total intensity in CRM images tracked turbidity development closely for all collagen gels investigated, and the two techniques were similarly sensitive to fibril number and dimension. Complementary CRM, CFM, and in situ turbidity measurements revealed that fibril and network formation occurred before substantial turbidity was present, and the majority of increasing turbidity during collagen self-assembly was due to increasing fibril thickness.

  2. Fluvial suspended sediment characteristics by high-resolution, surrogate metrics of turbidity, laser-diffraction, acoustic backscatter, and acoustic attenuation

    NASA Astrophysics Data System (ADS)

    Landers, Mark Newton

    Sedimentation is a primary and growing environmental, engineering, and agricultural issue around the world. However, collection of the data needed to develop solutions to sedimentation issues has declined by about three-fourths since 1983. Suspended-sediment surrogates have the potential to obtain sediment data using methods that are more accurate, of higher spatial and temporal resolution, and with less manually intensive, costly, and hazardous methods. The improved quality of sediment data from high-resolution surrogates may inform improved understanding and solutions to sedimentation problems. The field experiments for this research include physical samples of suspended sediment collected concurrently with surrogate metrics from instruments including 1.2, 1.5, and 3.0 megahertz frequency acoustic doppler current profilers, a nephelometric turbidity sensor, and a laser-diffraction particle size analyzer. This comprehensive data set was collected over five storms in 2009 and 2010 at Yellow River near Atlanta, Georgia. Fluvial suspended sediment characteristics in this study can be determined by high-resolution surrogate parameters of turbidity, laser-diffraction and acoustics with model errors 33% to 49% lower than traditional methods using streamflow alone. Hysteresis in sediment-turbidity relations for single storm events was observed and quantitatively related to PSD changes of less than 10 microns in the fine silt to clay size range. Suspended sediment particle size detection (PSD) is significantly correlated with ratios of measured acoustic attenuation at different frequencies; however the data do not fit the theoretical relations. Using both relative acoustic backscatter (RB) and acoustic attenuation as explanatory variables results in a significantly improved model of suspended sediment compared with traditional sonar equations using only RB. High resolution PSD data from laser diffraction provide uniquely valuable information; however the size detection

  3. Bioremediation of Turbid Surface Water Using Seed Extract from the Moringa oleifera Lam. (Drumstick) Tree.

    PubMed

    Lea, Michael

    2014-05-01

    An indigenous water treatment method uses Moringa oleifera seeds in the form of a crude water-soluble extract in suspension, resulting in an effective natural clarification agent for highly turbid and untreated pathogenic surface water. Efficient reduction (80.0% to 99.5%) of high turbidity produces an aesthetically clear supernatant, concurrently accompanied by 90.00% to 99.99% (1 to 4 log) bacterial reduction. Application of this low-cost Moringa oleifera protocol is recommended for water treatment where rural and peri-urban people living in extreme poverty are presently drinking highly turbid and microbiologically contaminated water.

  4. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle.

    PubMed

    Hsieh, Chia-Lung; Pu, Ye; Grange, Rachel; Laporte, Grégoire; Psaltis, Demetri

    2010-09-27

    We demonstrate imaging through a turbid layer by using digital phase conjugation of the second harmonic field radiated from a beacon nanoparticle. We show that the phase-conjugated focus can be displaced from its initial position by illuminating the same region of the turbid layer with an angular offset. An image is obtained by scanning the phase-conjugated focus through the turbid layer in a region around the nanoparticle. We obtain a clear image of the target by measuring the light transmitted through it when scanning the focused beam.

  5. Rapid Evaluation of Water-in-Oil (w/o) Emulsion Stability by Turbidity Ratio Measurements.

    PubMed

    Song; Jho; Kim; Kim

    2000-10-01

    In this Note, we investigated the turbidity ratio method for the evaluation of water-in-oil emulsion stability. The slope of turbidity ratio of water-in-oil emulsions with time was taken as an index of stability; the higher the slope, the less stable the system. Various factors affecting the stability of emulsion such as HLB of emulsifier, amount of emulsifiers, and water were tested using this technique. The results of the turbidity ratio technique for the evaluation of emulsion stability were well consistent with those obtained by the measurement of phase separation when incubated for 30 days at room temperature. Copyright 2000 Academic Press.

  6. Removal of water turbidity by natural coagulants obtained from chestnut and acorn.

    PubMed

    Sćiban, Marina; Klasnja, Mile; Antov, Mirjana; Skrbić, Biljana

    2009-12-01

    The ability of seed extracts of several species of chestnut and acorn to act as natural coagulants was tested using a synthetic turbid water. Active components were extracted from ground seeds of Horse chestnut and acorns of some species of family Fagaceae: Common oak, Turkey oak, Northern red oak and European chestnut. All investigated extracts had coagulation capabilities and their amounts depended on pH values and initial turbidities. The seed extracts from European chestnut and Common oak acorn were the most efficient expressing the highest coagulation activities, about 80% and 70%, respectively, in both low and medium investigated water turbidities at the lowest coagulant dose 0.5 ml/L.

  7. Population structure and residency patterns of the blacktip reef shark Carcharhinus melanopterus in turbid coastal environments.

    PubMed

    Chin, A; Tobin, A J; Heupel, M R; Simpfendorfer, C A

    2013-04-01

    This study examined the characteristics of a blacktip reef shark Carcharhinus melanopterus population in turbid coastal habitats through a multi-year fishery-independent sampling and tag-recapture programme. Results revealed a highly structured population comprised almost entirely of juveniles and adult females with individuals between 850 and 1050 mm total length effectively absent. Mature males were also rarely encountered with adult sex ratio highly biased towards females (female:male = 7:1). Mating scars were observed on adult females between December and April, and parturition was observed from December to March. Regression analysis showed that catch rates were significantly higher during the summer wet season between November and May. Recapture data suggested a highly resident population with a recapture rate of 21% and a mean recapture distance of 0·8 km. In addition, 33% of recaptured animals were captured multiple times, indicating long-term residency. Most recaptures were, however, of adults with few juveniles recaptured. Widespread sampling at the study site and in adjacent areas suggested that the population was highly localized to a specific bay. The bimodal and sex-segregated population structure observed here differs from previous reports for this species, and in combination with reproductive observations, suggests population structuring to facilitate reproductive and recruitment success. These data also highlight the potential ecosystem functions performed by coastal habitats in sustaining C. melanopterus populations. PMID:23557299

  8. Beyond Rating Curves: Time Series Models for in-Stream Turbidity Prediction

    NASA Astrophysics Data System (ADS)

    Wang, L.; Mukundan, R.; Zion, M.; Pierson, D. C.

    2012-12-01

    The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies over 1 billion gallons of water per day to more than 9 million customers. DEP's "West of Hudson" reservoirs located in the Catskill Mountains are unfiltered per a renewable filtration avoidance determination granted by the EPA. While water quality is usually pristine, high volume storm events occasionally cause the reservoirs to become highly turbid. A logical strategy for turbidity control is to temporarily remove the turbid reservoirs from service. While effective in limiting delivery of turbid water and reducing the need for in-reservoir alum flocculation, this strategy runs the risk of negatively impacting water supply reliability. Thus, it is advantageous for DEP to understand how long a particular turbidity event will affect their system. In order to understand the duration, intensity and total load of a turbidity event, predictions of future in-stream turbidity values are important. Traditionally, turbidity predictions have been carried out by applying streamflow observations/forecasts to a flow-turbidity rating curve. However, predictions from rating curves are often inaccurate due to inter- and intra-event variability in flow-turbidity relationships. Predictions can be improved by applying an autoregressive moving average (ARMA) time series model in combination with a traditional rating curve. Since 2003, DEP and the Upstate Freshwater Institute have compiled a relatively consistent set of 15-minute turbidity observations at various locations on Esopus Creek above Ashokan Reservoir. Using daily averages of this data and streamflow observations at nearby USGS gauges, flow-turbidity rating curves were developed via linear regression. Time series analysis revealed that the linear regression residuals may be represented using an ARMA(1,2) process. Based on this information, flow-turbidity regressions with

  9. Escherichia coli bacteria density in relation to turbidity, streamflow characteristics, and season in the Chattahoochee River near Atlanta, Georgia, October 2000 through September 2008—Description, statistical analysis, and predictive modeling

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2012-01-01

    Regression analyses show that E. coli density in samples was strongly related to turbidity, streamflow characteristics, and season at both sites. The regression equation chosen for the Norcross data showed that 78 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), streamflow event (dry-weather flow or stormflow), season (cool or warm), and an interaction term that is the cross product of streamflow event and turbidity. The regression equation chosen for the Atlanta data showed that 76 percent of the variability in E. coli density (in log base 10 units) was explained by the variability in turbidity values (in log base 10 units), water temperature, streamflow event, and an interaction term that is the cross product of streamflow event and turbidity. Residual analysis and model confirmation using new data indicated the regression equations selected at both sites predicted E. coli density within the 90 percent prediction intervals of the equations and could be used to predict E. coli density in real time at both sites.

  10. Diffuse reflectance imaging to predict heterogeneities in turbid optical phantom

    NASA Astrophysics Data System (ADS)

    Fortunato, Thereza C.; Kurachi, Cristina; Bagnato, Vanderlei S.; Moriyama, Lilian T.

    2015-06-01

    The use of light as a therapeutic agent has been the subject of several studies; however, the dosimetry for its clinical application is still based on empirical data. The propagation of light in biological tissues depends on the tissue optical properties, and these properties may vary among people, tissues and sites, making it diffcult to establish dosimetry. In this context, the research for methods to determine the spatial distribution of light in individual biological tissues becomes essential, allowing the individual dosimetry. This study aims to image the diffuse reflectance at the optical phantom surface to infer the spatial distribution of light inside a phantom when an absorbing obstacle is present. Red laser were used as light source on solid turbid optical phantom; a small black sphere was used as absorbing obstacle. It is important to know, in real time and in a non-invasive way, about the existence of heterogeneities that may compromise the light propagation inside a biological tissue, so that the light dosimetry might be properly established.

  11. Navigation by light polarization in clear and turbid waters

    PubMed Central

    Lerner, Amit; Sabbah, Shai; Erlick, Carynelisa; Shashar, Nadav

    2011-01-01

    Certain terrestrial animals use sky polarization for navigation. Certain aquatic species have also been shown to orient according to a polarization stimulus, but the correlation between underwater polarization and Sun position and hence the ability to use underwater polarization as a compass for navigation is still under debate. To examine this issue, we use theoretical equations for per cent polarization and electric vector (e-vector) orientation that account for the position of the Sun, refraction at the air–water interface and Rayleigh single scattering. The polarization patterns predicted by these theoretical equations are compared with measurements conducted in clear and semi-turbid coastal sea waters at 2 m and 5 m depth over sea floors of 6 m and 28 m depth. We find that the per cent polarization is correlated with the Sun's elevation only in clear waters. We furthermore find that the maximum value of the e-vector orientation angle equals the angle of refraction only in clear waters, in the horizontal viewing direction, over the deeper sea floor. We conclude that navigation by use of underwater polarization is possible under restricted conditions, i.e. in clear waters, primarily near the horizontal viewing direction, and in locations where the sea floor has limited effects on the light's polarization. PMID:21282170

  12. Controlled light field concentration through turbid biological membrane for phototherapy

    PubMed Central

    Wang, Fujuan; He, Hexiang; Zhuang, Huichang; Xie, Xiangsheng; Yang, Zhenchong; Cai, Zhigang; Gu, Huaiyu; Zhou, Jianying

    2015-01-01

    Laser propagation through a turbid rat dura mater membrane is shown to be controllable with a wavefront modulation technique. The scattered light field can be refocused into a target area behind the rat dura mater membrane with a 110 times intensity enhancement using a spatial light modulator. The efficient laser intensity concentration system is demonstrated to imitate the phototherapy for human brain tumors. The power density in the target area is enhanced more than 200 times compared with the input power density on the dura mater membrane, thus allowing continued irradiation concentration to the deep lesion without damage to the dura mater. Multibeam inputs along different directions, or at different positions, can be guided to focus to the same spot behind the membrane, hence providing a similar gamma knife function in optical spectral range. Moreover, both the polarization and the phase of the input field can be recovered in the target area, allowing coherent field superposition in comparison with the linear intensity superposition for the gamma knife. PMID:26114042

  13. Quantitative turbidity assay for lipolytic enzymes in microtiter plates.

    PubMed

    Barig, Susann; Schiemann, Manja; Mirsky, Vladimir M; Stahmann, K Peter

    2013-10-01

    A clearing assay for lipolytic enzymes has been realized in 96-well microtiter plates. A thin layer containing emulsified tributyrin as turbidity-generating substrate was placed on a thicker supporting aqueous layer. Both layers were stabilized by a gel-forming agent. Enzyme addition leads to clearing of the emulsion detected with a standard microtiter plate reader as a decrease of extinction. Dependencies of the signal kinetics on the substrate and enzyme concentrations were studied. For 0.5-1% tributyrin content the reaction rate is not substrate-limited. An initial slope of the signal kinetics is proportional to the lipase activity. A detailed characterization of the assay was performed. Lipolysis of tributyrin was confirmed by glycerol detection. Various gel-forming agents were compared and diffusion conditions in these gels were analyzed. Agar and agarose were found to be the most suitable gel-forming agents, which do not affect enzyme diffusion whereas polyacrylamide gels block lipase diffusion and therefore are not suitable for the assay. The optimized assay prepared from 1% tributyrin emulsion in 2% agar gel was tested with six microbial lipases and porcine pancreatic lipase. The detection limit is 20-60 ng/well which is equivalent to 30 μU/well for T. lanuginosus lipase.

  14. The effect of submerged aquatic vegetation expansion on a declining turbidity trend in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Hestir, E.L.; Schoellhamer, David H.; Jonathan Greenberg,; Morgan, Tara; Ustin, S.L.

    2016-01-01

    Submerged aquatic vegetation (SAV) has well-documented effects on water clarity. SAV beds can slow water movement and reduce bed shear stress, promoting sedimentation and reducing suspension. However, estuaries have multiple controls on turbidity that make it difficult to determine the effect of SAV on water clarity. In this study, we investigated the effect of primarily invasive SAV expansion on a concomitant decline in turbidity in the Sacramento-San Joaquin River Delta. The objective of this study was to separate the effects of decreasing sediment supply from the watershed from increasing SAV cover to determine the effect of SAV on the declining turbidity trend. SAV cover was determined by airborne hyperspectral remote sensing and turbidity data from long-term monitoring records. The turbidity trends were corrected for the declining sediment supply using suspended-sediment concentration data from a station immediately upstream of the Delta. We found a significant negative trend in turbidity from 1975 to 2008, and when we removed the sediment supply signal from the trend it was still significant and negative, indicating that a factor other than sediment supply was responsible for part of the turbidity decline. Turbidity monitoring stations with high rates of SAV expansion had steeper and more significant turbidity trends than those with low SAV cover. Our findings suggest that SAV is an important (but not sole) factor in the turbidity decline, and we estimate that 21–70 % of the total declining turbidity trend is due to SAV expansion.

  15. Trends in turbidity in the fluvial section of a highly turbid macrotidal estuary, the Gironde in SW France, based on continuous in-situ monitoring

    NASA Astrophysics Data System (ADS)

    Jalón Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2014-05-01

    The fluvial-estuarine system of the Gironde (SW France) is one of the largest European estuaries, in terms of surface area and of annual mean discharge. The upstream tidal asymmetry and subsequent tidal pumping are the main mechanisms that develop a pronounced Turbidity Maximum Zone (TMZ) characterized by high suspended sediment concentrations (SSC), over 1 g/L in surface waters. Freshwater inflow and tidal cycles are the major factors that affect the size, position and concentration of the TMZ along the estuary axis. In the context of global change, the decrease in freshwater flows (changes in rainfall, upstream land use) and sea level rise may lead to a progressive upstream displacement and an increasing persistence of TMZ, close to the uppermost limit of tidal influence. Understanding and predicting trends of turbidity are then crucial for a better present and future evaluation of the estuarine processes, as well as for a more sustainable management and planning of the landscape. At present, these tasks are difficult due to the limited available data, mainly obtained in the lower reaches. The upper Gironde estuary consists of two tidal rivers (Garonne and Dordogne), where sections are narrow, and where SSC and sediment fluxes are particularly sensitive to changes on river flow. Up to recently, the upper reaches were still poorly documented. Since 2004, as a part of the MAGEST network, a real-time continuous system records turbidity at representative stations of the fluvial (Bordeaux and Portets on the Garonne River; Libourne on the Dordogne River) and central estuary, aims to establish a long-term reference database. In this work, we present 9-years of records of turbidity for analysis and discussion of the trends at the limit of freshwater influence at different time scales. The turbidity sensor (Endress and Hauser, CUS31-W2A) measures values between 0 and 9999 NTU (9999 NTU correspond to about 8 g/L). Continuous measurements reveal the temporal changes in

  16. Field turbidity method for the determination of lead in acid extracts of dried paint.

    PubMed

    Studabaker, William B; McCombs, Michelle; Sorrell, Kristen; Salmons, Cynthia; Brown, G Gordon; Binstock, David; Gutknecht, William F; Harper, Sharon L

    2010-07-01

    Lead, which can be found in old paint, soil, and dust, has been clearly shown to have adverse health effects on the neurological systems of both children and adults. As part of an ongoing effort to reduce childhood lead poisoning, the US Environmental Protection Agency promulgated the Lead Renovation, Repair, and Painting Program (RRP) rule requiring that paint in target housing built prior to 1978 be tested for lead before any renovation, repair, or painting activities are initiated. This rule has led to a need for a rapid, relatively easy, and an inexpensive method for measuring lead in paint. This paper presents a new method for measuring lead extracted from paint that is based on turbidimetry. This method is applicable to paint that has been collected from a surface and extracted into 25% (v/v) of nitric acid. An aliquot of the filtered extract is mixed with an aliquot of solid potassium molybdate in 1 M ammonium acetate to form a turbid suspension of lead molybdate. The lead concentration is determined using a portable turbidity meter. This turbidimetric method has a response of approximately 0.9 NTU per microg lead per mL extract, with a range of 1-1000 Nephelometric Turbidity Units (NTUs). Precision at a concentration corresponding to the EPA-mandated decision point of 1 mg of lead per cm(2) is <2%. This method is insensitive to the presence of other metals common to paint, including Ba(2+), Ca(2+), Mg(2+), Fe(3+), Co(2+), Cu(2+), and Cd(2+), at concentrations of 10 mg mL(-1) or to Zn(2+) at 50 mg mL(-1). Analysis of 14 samples from six reference materials with lead concentrations near 1 mg cm(-2) yielded a correlation to inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of 0.97, with an average bias of 2.8%. Twenty-four sets of either 6 or 10 paint samples each were collected from different locations in old houses, a hospital, tobacco factory, and power station. Half of each set was analyzed using rotor/stator-25% (v/v) nitric acid

  17. Water-quality standards criteria summaries: a compilation of State/Federal criteria: turbidity

    SciTech Connect

    Not Available

    1988-01-01

    This report contains excerpts from the individual State water-quality standards establishing pollutant-specific criteria for interstate surface waters. Turbidity in state water-quality standards is the subject of the compilation.

  18. Evaluation of the uncertainties caused by the forward scattering in turbidity measurement of the coagulation rate.

    PubMed

    Xu, Shenghua; Sun, Zhiwei

    2010-05-18

    The forward scattering light (FSL) received by the detector can cause uncertainties in turbidity measurement of the coagulation rate of colloidal dispersion, and this effect becomes more significant for large particles. In this study, the effect of FSL is investigated on the basis of calculations using the T-matrix method, an exact technique for the computation of nonspherical scattering. The theoretical formulation and relevant numerical implementation for predicting the contribution of FSL in the turbidity measurement is presented. To quantitatively estimate the degree of the influence of FSL, an influence ratio comparing the contribution of FSL to the pure transmitted light in the turbidity measurement is introduced. The influence ratios evaluated under various parametric conditions and the relevant analyses provide a guideline for properly choosing particle size, measuring wavelength to minimize the effect of FSL in turbidity measurement of coagulation rate.

  19. Effect of enzymatic mash treatment and storage on phenolic composition, antioxidant activity, and turbidity of cloudy apple juice.

    PubMed

    Oszmiański, Jan; Wojdylo, Aneta; Kolniak, Joanna

    2009-08-12

    The effects of different commercial enzymatic mash treatments on yield, turbidity, color, and polyphenolic and sediment of procyanidins content of cloudy apple juice were studied. Addition of pectolytic enzymes to mash treatment had positive effect on the production of cloud apple juices by improving polyphenolic contents, especially procyanidins and juice yields (68.3% in control samples to 77% after Pectinex Yield Mash). As summary of the effect of enzymatic mash treatment, polyphenol contents in cloudy apple juices significantly increased after Pectinex Yield Mash, Pectinex Smash XXL, and Pectinex XXL maceration were applied but no effect was observed after Pectinex Ultra-SPL I Panzym XXL use, compared to the control samples. The content of polymeric procyanidins represented 50-70% of total polyphenols, but in the present study, polymeric procyanidins were significantly lower in juices than in fruits and also affected by enzymatic treatment (Pectinex AFP L-4 and Panzym Yield Mash) compared to the control samples. The enzymatic treatment decreased procyanidin content in most sediment with the exception of Pectinex Smash XXL and Pectinex AFP L-4. Generally in samples that were treated by pectinase, radical scavenging activity of cloudy apple juices was increased compared to the untreated reference samples. The highest radical scavenging activity was associated with Pectinex Yield Mash, Pectinex Smash XXL, and Pectinex XXL enzyme and the lowest activity with Pectinex Ultra SP-L and Pectinex APFL-4. However, in the case of enzymatic mash treatment cloudy apple juices showed instability of turbidity and low viscosity. These results must be ascribed to the much higher hydrolysis of pectin by enzymatic preparation which is responsible for viscosity. During 6 months of storage at 4 degrees C small changes in analyzed parameters of apple juices were observed.

  20. Context-dependent planktivory: interacting effects of turbidity and predation risk on adaptive foraging

    USGS Publications Warehouse

    Pangle, Kevin L.; Malinich, Timothy D.; Bunnell, David B.; DeVries, Dennis R.; Ludsin, Stuart A.

    2012-01-01

    By shaping species interactions, adaptive phenotypic plasticity can profoundly influence ecosystems. Predicting such outcomes has proven difficult, however, owing in part to the dependence of plasticity on the environmental context. Of particular relevance are environmental factors that affect sensory performance in organisms in ways that alter the tradeoffs associated with adaptive phenotypic responses. We explored the influence of turbidity, which simultaneously and differentially affects the sensory performance of consumers at multiple trophic levels, on the indirect effect of a top predator (piscivorous fish) on a basal prey resource (zooplankton) that is mediated through changes in the plastic foraging behavior of an intermediate consumer (zooplanktivorous fish). We first generated theoretical predictions of the adaptive foraging response of a zooplanktivore across wide gradients of turbidity and predation risk by a piscivore. Our model predicted that predation risk can change the negative relationship between intermediate consumer foraging and turbidity into a humped-shaped (unimodal) one in which foraging is low in both clear and highly turbid conditions due to foraging-related risk and visual constraints, respectively. Consequently, the positive trait-mediated indirect effect (TMIE) of the top predator on the basal resource is predicted to peak at low turbidity and decline thereafter until it reaches an asymptote of zero at intermediate turbidity levels (when foraging equals that which is predicted when the top predator is absent). We used field observations and a laboratory experiment to test our model predictions. In support, we found humped-shaped relationships between planktivory and turbidity for several zooplanktivorous fishes from diverse freshwater ecosystems with predation risk. Further, our experiment demonstrated that predation risk reduced zooplanktivory by yellow perch (Perca flavescens) at a low turbidity, but had no effect on consumption at

  1. Major Turbidity Events in the North Santiam River Basin, Oregon, Water Years 1999-2004

    USGS Publications Warehouse

    Sobieszczyk, Steven; Uhrich, Mark A.; Bragg, Heather M.

    2007-01-01

    Multiple high-turbidity events with values greater than 250 Formazin Nephelometric Units occurred in streams of the North Santiam River basin during water years 1999-2004. By using a combination of field reconnaissance, aerial photography, and geographic information systems, eight of these high-turbidity events were investigated and linked to at least one likely source area and became known as 'major turbidity events.' Sediment source type and location, the amount of material transported, and the results of any follow-up investigation of the source area were recorded for each event. Significant findings from this study include: * Although heavy precipitation caused basinwide erosion that increased turbidity in streams, a major turbidity event often required at least one landslide or similar type of contributing source to introduce enough sediment to raise the turbidity value to greater than 250 Formazin Nephelometric Units. * Different processes drove sediment loading at different times. In general, precipitation eroded sediment from source areas or induced landslides. However, in two cases, warm temperatures caused rapid snowmelt, which supplied the water necessary to erode unconsolidated glacial soils or other sediment material and increase turbidity. * Some source areas, such as existing earthflows, repeatedly supplied a large volume of sediment to streams, whereas other sources, such as landslides or debris flows, were unpredictable and sporadically supplied large volumes of sediment to streams. * Major turbidity events were well distributed throughout the North Santiam River basin; discrete events were observed in each of the five subbasins along unregulated streams. * Suspended-sediment loads and clay-water (persistently turbid water) volume estimates were event-specific and varied greatly between major turbidity events, even though, in some cases, the source area was the same; however, high yields generally were observed for events in the Blowout Creek

  2. Historical land-use influences the long-term stream turbidity response to a wildfire.

    PubMed

    Harrison, Evan T; Dyer, Fiona; Wright, Daniel W; Levings, Chris

    2014-02-01

    Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine (Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.

  3. Historical Land-Use Influences the Long-Term Stream Turbidity Response to a Wildfire

    NASA Astrophysics Data System (ADS)

    Harrison, Evan T.; Dyer, Fiona; Wright, Daniel W.; Levings, Chris

    2014-02-01

    Wildfires commonly result in an increase in stream turbidity. However, the influence of pre-fire land-use practices on post-fire stream turbidity is not well understood. The Lower Cotter Catchment (LCC) in south-eastern Australia is part of the main water supply catchment for Canberra with land in the catchment historically managed for a mix of conservation (native eucalypt forest) and pine ( Pinus radiata) plantation. In January 2003, wildfires burned almost all of the native and pine forests in the LCC. A study was established in 2005 to determine stream post-fire turbidity recovery within the native and pine forest areas of the catchment. Turbidity data loggers were deployed in two creeks within burned native forest and burned pine forest areas to determine turbidity response to fire in these areas. As a part of the study, we also determined changes in bare soil in the native and pine forest areas since the fire. The results suggest that the time, it takes turbidity levels to decrease following wildfire, is dependent upon the preceding land-use. In the LCC, turbidity levels decreased more rapidly in areas previously with native vegetation compared to areas which were previously used for pine forestry. This is likely because of a higher percentage of bare soil areas for a longer period of time in the ex-pine forest estate and instream stores of fine sediment from catchment erosion during post-fire storm events. The results of our study show that the previous land-use may exert considerable control over on-going turbidity levels following a wildfire.

  4. A combination turbidity and supernatant microplate assay to rank-order the supersaturation limits of early drug candidates.

    PubMed

    Morrison, John S; Nophsker, Michelle J; Haskell, Roy J

    2014-10-01

    A unique opportunity exists at the drug discovery stage to overcome inherently poor solubility by selecting drug candidates with superior supersaturation propensity. Existing supersaturation assays compare either precipitation-resistant or precipitation-inhibiting excipients, or higher-energy polymorphic forms, but not multiple compounds or multiple concentrations. Furthermore, these assays lack sufficient throughput and compound conservation necessary for implementation in the discovery environment. A microplate-based combination turbidity and supernatant concentration assay was therefore developed to determine the extent to which different compounds remain in solution as a function of applied concentration in biorelevant media over a specific period of time. Dimethyl sulfoxide stock solutions at multiple concentrations of four poorly soluble, weak base compounds (Dipyridamole, Ketoconazole, Albendazole, and Cinnarizine) were diluted with pH 6.5 buffer as well as FaSSIF. All samples were monitored for precipitation by turbidity at 600 nm over 1 h and the final supernatant concentrations were measured. The maximum supersaturation ratio was calculated from the supersaturation limit and the equilibrium solubility in each media. Compounds were rank-ordered by supersaturation ratio: Ketoconazole > Dipyridamole > Cinnarizine ∼ Albendazole. These in vitro results correlated well with oral AUC ratios from published in vivo pH effect studies, thereby confirming the validity of this approach.

  5. Velocity and concentration profiles of saline and turbidity currents flowing in a straight channel under quasi-uniform conditions

    NASA Astrophysics Data System (ADS)

    Stagnaro, M.; Bolla Pittaluga, M.

    2013-11-01

    We present a series of detailed experimental observations of saline and turbidity currents flowing in a straight channel. Experiments are performed by continuously feeding the channel with a dense mixture until a quasi-steady configuration is obtained. The flume, 12 m long, is characterized by a concrete fixed bed with a uniform slope of 0.005. Longitudinal velocity profiles are measured in ten cross sections, one meter apart, employing an Ultrasound Doppler Velocimeter Profiler. We also measure the density of the mixture using a rake of siphons sampling at different heights from the bottom in order to obtain the vertical density distributions in a cross sections where the flow already attained a quasi-uniform configuration. We performed 27 experiments changing the flow discharge, the fractional excess density, the character of the current (saline or turbidity) and the roughness of the bed in order to observe the consequences of these variations on the vertical velocity profiles and on the overall characteristics of the flow. Dimensionless velocity profiles under quasi-uniform flow conditions were obtained by scaling longitudinal velocity with its depth averaged value and the vertical coordinate with the flow thickness. They turned out to be influenced by the Reynolds number of the flow, by the relative bed roughness, and by the presence of sediment in suspension. Unexpectedly the densimetric Froude number of the current turned out to have no influence on the dimensionless velocity profiles.

  6. Velocity and concentration profiles of saline and turbidity currents flowing in a straight channel under quasi-uniform conditions

    NASA Astrophysics Data System (ADS)

    Stagnaro, M.; Bolla Pittaluga, M.

    2014-03-01

    We present a series of detailed experimental observations of saline and turbidity currents flowing in a straight channel. Experiments are performed by continuously feeding the channel with a dense mixture until a quasi-steady configuration is obtained. The flume, 12 m long, is characterized by a concrete fixed bed with a uniform slope of 0.005. Longitudinal velocity profiles are measured in ten cross sections, 1 m apart, employing an ultrasound Doppler velocity profiler. We also measure the density of the mixture using a rake of siphons sampling at different heights from the bottom in order to obtain the vertical density distributions in a cross section where the flow already attained a quasi-uniform configuration. We performed 27 experiments changing the flow discharge, the fractional excess density, the character of the current (saline or turbidity) and the roughness of the bed in order to observe the consequences of these variations on the vertical velocity profiles and on the overall characteristics of the flow. Dimensionless velocity profiles under quasi-uniform flow conditions were obtained by scaling longitudinal velocity with its depth averaged value and the vertical coordinate with the flow thickness. They turned out to be influenced by the Reynolds number of the flow, by the relative bed roughness, and by the presence of sediment in suspension. Unexpectedly, the densimetric Froude number of the current turned out to have no influence on the dimensionless velocity profiles.

  7. Progress in theoretical, experimental, and computational investigations in turbid tissue phantoms and human teeth using laser infrared photothermal radiometry

    NASA Astrophysics Data System (ADS)

    Mandelis, Andreas

    2002-03-01

    This paper reviews and describes the state-of-the-art in the development of frequency-domain infrared photothermal radiometry (FD-PTR) for biomedical and dental applications. The emphasis is placed on the measurement of the optical and thermal properties of tissue-like materials using FD-PTR. A rigorous three-dimensional thermal-wave formulation with three-dimensional diffuse and coherent photon-density-wave sources is presented, and is applied to data from model tissue phantoms and dental enamel samples. The combined theoretical, experimental and computational methodology shows good promise with regard to its analytical ability to measure optical properties of turbid media uniquely, as compared to PPTR, which exhibits uniqueness problems. From data sets obtained with calibrated test phantoms, the reduced optical scattering and absorption coefficients were found to be within 20% and 10%, respectively, from the independently derived values using Mie scattering theory and spectrophotometric measurements. Furthermore, the state-of-the-art and recent developments in applications of laser infrared FD-PTR to dental caries research is described, with examples and histological studies from carious dental tissue. The correlation of PTR signals with modulated dental luminescence is discussed as a very promising potential quantitative methodology for the clinical diagnosis of sub-surface incipient dental caries. The application of the turbid-medium thermal-wave model to the measurement of the optical absorption and scattering coefficients of enamel is also presented.

  8. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system

    SciTech Connect

    Spirou, Gloria M.; Mandelis, Andreas; Vitkin, I. Alex; Whelan, William M

    2008-05-10

    Photoacoustic (more precisely, photothermoacoustic) signals generated by the absorption of photons can be related to the incident laser fluence rate. The dependence of frequency domain photoacoustic (FD-PA) signals on the optical absorption coefficient ({mu}a) and the effective attenuation coefficient ({mu}eff) of a turbid medium [polyvinyl chloride-plastisol (PVCP)] with tissuelike optical properties was measured, and empirical relationships between these optical properties and the photoacoustic (PA) signal amplitude and the laser fluence rate were derived for the water (PVCP system with and without optical scatterers). The measured relationships between these sample optical properties and the PA signal amplitude were found to be linear, consistent with FD-PA theory: {mu}a=a(A/{phi})-b and {mu}eff=c(A/{phi})+d, where {phi} is the laser fluence, A is the FD-PA amplitude, and a,...,d are empirical coefficients determined from the experiment using linear frequency-swept modulation and a lock-in heterodyne detection technique. This quantitative technique can easily be used to measure the optical properties of general turbid media using FD-PAs.

  9. Estimation of turbidity profiles with ADCP in an oxbow in tidal compartment

    NASA Astrophysics Data System (ADS)

    Yokoyama, H.; Ebi, T.; Kitsuda, T.

    2011-12-01

    To clarify the mechanism of sediment resuspension, acoustic Doppler current profilers (ADCP) were set on the bottom of the Barato River, which is the oxbow of the Ishikari River, Japan. This oxbow is approximately 20km length and 200m width, which is located in tidal compartment. Velocity and echo intensity had been observed with ADCP from June to October in 2010 on two sites of the oxbow. Acoustic backscatter turbidity (ABT) was estimated from echo intensity data of ADCP. First, accuracy of ABT was discussed. Reproducibility of turbidity in this study by comparing ABT with observed turbidity was investigated. Error between ABT and observed turbidity had some patterns. Reason of this phenomenon was also investigated. As a next step, impacts of external factors (e.g. wind velocity and direction, tide, inflow, etc.) to stream and turbidity were discussed to understand mechanism of sediment resuspension. Characteristics of velocity and turbidity distribution were different between two observation sites. Then correlation of velocity, ABT distribution and external factors were considered.

  10. Characterization and modeling of turbidity density plume induced into stratified reservoir by flood runoffs.

    PubMed

    Chung, S W; Lee, H S

    2009-01-01

    In monsoon climate area, turbidity flows typically induced by flood runoffs cause numerous environmental impacts such as impairment of fish habitat and river attraction, and degradation of water supply efficiency. This study was aimed to characterize the physical dynamics of turbidity plume induced into a stratified reservoir using field monitoring and numerical simulations, and to assess the effect of different withdrawal scenarios on the control of downstream water quality. Three different turbidity models (RUN1, RUN2, RUN3) were developed based on a two-dimensional laterally averaged hydrodynamic and transport model, and validated against field data. RUN1 assumed constant settling velocity of suspended sediment, while RUN2 estimated the settling velocity as a function of particle size, density, and water temperature to consider vertical stratification. RUN3 included a lumped first-order turbidity attenuation rate taking into account the effects of particles aggregation and degradable organic particles. RUN3 showed best performance in replicating the observed variations of in-reservoir and release turbidity. Numerical experiments implemented to assess the effectiveness of different withdrawal depths showed that the alterations of withdrawal depth can modify the pathway and flow regimes of the turbidity plume, but its effect on the control of release water quality could be trivial.

  11. A spectral model of Linke's turbidity factor and its experimental implications

    SciTech Connect

    Grenier, J.C.; De La Casiniere, A.; Cabot, T. )

    1994-04-01

    A model of Linke's turbidity factor, T[sub L], is developed by means of updated spectral extraterrestrial irradiances and extinction coefficients of gaseous absorbers. It is shown that the new values of T[sub L] are clearly different from those obtained by Kasten's formula which parameterizes the optical thickness of the clean dry atmosphere. The model is used to investigate the dependence of T[sub L] on the relative optical air mass and to elucidate the relationships linking T[sub L] to Angstroem's turbidity coefficient and to the water vapor content. For any T[sub L], the corresponding value related to the air mass 2.0 can be determined. Such a standardized value is independent of solar elevation and is therefore strictly representative of the atmospheric turbidity. It can be linked to Angstroem's turbidity coefficient. Practical procedures and algorithms for computing the standard Linke's turbidity factor and determining Angstroem's turbidity coefficient are described. A relationship for converting the T[sub L] values obtained by Kasten's formula into the new values is proposed.

  12. Turbidity management during flushing-flows: A model for open-loop control

    NASA Astrophysics Data System (ADS)

    Fovet, Ophelie; Litrico, Xavier; Belaud, Gilles

    2012-04-01

    Fixed algae developments induce strong constraints for the management of open-channel networks. They cause clogging issues on hydraulic devices and can sometimes lead to water quality alteration. An original strategy to limit the algal biomass is to carry out regular flushes. A flush is performed by increasing the hydraulic shear conditions using the hydraulic structures of the canal. Consequently to the shear stress increase, a part of the fixed algae is detached, then re-suspended into the water column, and finally transported into the canal network. This leads to a peak of turbidity that needs to be controlled. The present paper proposes a quasi-linear model of the turbidity response to a discharge increase, that can be used for automatic controller design. The model parameters are identified on a real network. The calibration is based on continuous monitoring of water turbidity. Flushes are simulated on the whole branch and on an intermediate reach in order to test the ability of the model to simulate the propagation of a turbidity peak. Then, the model is used to develop an open-loop controller of turbidity for flush design. The efficiency of a flush will depend on its amplitude and duration. The design objective consists in maximizing the algae detachment without exceeding a maximal turbidity level, and using as little water as possible. The designed flush is finally tested on a nonlinear model.

  13. Diurnal variability in turbidity and coral fluorescence on a fringing reef flat: Southern Molokai, Hawaii

    NASA Astrophysics Data System (ADS)

    Piniak, Gregory A.; Storlazzi, Curt D.

    2008-03-01

    Terrigenous sediment in the nearshore environment can pose both acute and chronic stresses to coral reefs. The reef flat off southern Molokai, Hawaii, typically experiences daily turbidity events, in which trade winds and tides combine to resuspend terrigenous sediment and transport it alongshore. These chronic turbidity events could play a role in restricting coral distribution on the reef flat by reducing the light available for photosynthesis. This study describes the effects of these turbidity events on the Hawaiian reef coral Montipora capitata using in situ diurnal measurements of turbidity, light levels, and chlorophyll fluorescence yield via pulse-amplitude-modulated (PAM) fluorometry. Average surface irradiance was similar in the morning and the afternoon, while increased afternoon turbidity resulted in lower subsurface irradiance, higher fluorescence yield (Δ F/ Fm'), and lower relative electron transport rates (rETR). Model calculations based on observed light extinction coeffecients suggest that in the absence of turbidity events, afternoon subsurface irradiances would be 1.43 times higher than observed, resulting in rETR for M. capitata that are 1.40 times higher.

  14. A case study of dissolved air flotation for seasonal high turbidity water in Korea.

    PubMed

    Kwon, S B; Ahn, H W; Ahn, C J; Wang, C K

    2004-01-01

    A DAF (Dissolved-Air-Flotation) process has been designed considering raw water quality characteristics in Korea. Although direct filtration is usually operated, DAF is operated when freshwater algae blooms occur or raw water turbidity becomes high. Pre-sedimentation is operated in case when the raw water turbidity is very high due to rainstorms. A main feature of this plant is that the operation mode can be changed (controlled) based on the characteristics of the raw water to optimize the effluent quality and the operation costs. Treatment capacity (surface loading rate) and efficiency of DAF was found to be better than the conventional sedimentation process. Moreover, low-density particles (algae and alum flocs) are easily separated while the removal of them by sedimentation is more difficult. One of the main concerns for DAF operation is a high raw water turbidity. DAF is not adequate for raw water, which is more turbid than 100 NTU. In order to avoid this problem, pre-sedimentation basins are installed in the DAF plant to decrease the turbidity of the DAF inflow. For simulation of the actual operation, bench and full-scale tests were performed for highly turbid water conditions. Consequently, it is suggested that pre-sedimentation with optimum coagulation prior to DAF is the appropriate treatment scheme.

  15. Diurnal variability in turbidity and coral fluorescence on a fringing reef flat: Southern Molokai, Hawaii

    USGS Publications Warehouse

    Piniak, G.A.; Storlazzi, C.D.

    2008-01-01

    Terrigenous sediment in the nearshore environment can pose both acute and chronic stresses to coral reefs. The reef flat off southern Molokai, Hawaii, typically experiences daily turbidity events, in which trade winds and tides combine to resuspend terrigenous sediment and transport it alongshore. These chronic turbidity events could play a role in restricting coral distribution on the reef flat by reducing the light available for photosynthesis. This study describes the effects of these turbidity events on the Hawaiian reef coral Montipora capitata using in situ diurnal measurements of turbidity, light levels, and chlorophyll fluorescence yield via pulse-amplitude-modulated (PAM) fluorometry. Average surface irradiance was similar in the morning and the afternoon, while increased afternoon turbidity resulted in lower subsurface irradiance, higher fluorescence yield (??F/Fm???), and lower relative electron transport rates (rETR). Model calculations based on observed light extinction coeffecients suggest that in the absence of turbidity events, afternoon subsurface irradiances would be 1.43 times higher than observed, resulting in rETR for M. capitata that are 1.40 times higher.

  16. Turbidity currents and turbidites: towards quantitative interpretation and prediction of process and product.

    NASA Astrophysics Data System (ADS)

    Eggenhuisen, J. T.; Cartigny, M.; de Leeuw, J.; Pohl, F.

    2015-12-01

    Many decades of studies of deposits and seascapes formed by turbidity currents have established a robust observational framework that demonstrates that depositional and morphological patterns are repeated through time and space. The process-modeling community has similarly made progress in the understanding of the distribution of suspended sediment, velocity, and turbulence in turbidity currents, together shaping the "flow structure". Thus, now is the time to integrate, and investigate in more detail how the process of sediment erosion, transport, and deposition by turbidity currents is related to observed systematics in the physical products preserved in the geological record. Here we review recent breakthroughs in theoretical understanding of turbulent suspended sediment transport capacity. These breakthroughs allow us to understand the coupling between the flow field of turbidity currents, the kinematics of which have long been established, and the carrying capacity of sediment. This leads to robust first order estimators of the velocity and suspended sediment distribution within turbidity currents. These estimators can be applied straightforwardly to investigate natural systems. Two types of examples are explored: application to modern seafloor systems results in sediment budget estimations of natural turbidity current channels and canyons. Application to ancient turbidite deposits in the rock record displays how the present state of understanding can be used for quantitative process inversion from the product. This should ultimately lead to predictive capabilities of rock-body characteristics in the subsurface.

  17. Swept Away by a Turbidity Current in Mendocino Submarine Canyon, California

    NASA Astrophysics Data System (ADS)

    Sumner, E.; Paull, C. K.

    2015-12-01

    Direct observations of turbidity currents in the ocean are rare, yet essential for validating and developing conceptual models of these enigmatic flows. We present a novel set of observations and measurements collected by a remotely operated vehicle entrained within a turbidity current in Mendocino Canyon, California. The flow had a two layer structure with a thin (0.5 to 30 m), relatively dense (<0.04 vol %) and fast (up to ~1.7 m/s) wedge-shaped lower layer overlain by a thicker (up to 89m) more dilute and slower current. The fast moving lower layer lagged the slow moving, dilute flow front by 14 min, which we infer resulted from the interaction of two initial pulses. The two layers were strongly coupled, and the sharp interface between the layers was characterized by a wave-like instability. This is the first field-scale data from a turbidity current to show (i) the complex dynamics of the head of a turbidity current and (ii) the presence of multiple layers within the same event. This data set provides a new perspective on the character of turbidity currents in the ocean. The data pose challenges not simply for understanding the dynamics of turbidity currents but also for how we interpret existing data based on cable breaks and how we might measure similar flows in the future.

  18. Fluorescence tomography of targets in a turbid medium using non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Gayen, S. K.

    2014-04-01

    A near-infrared optical tomography approach for detection, three-dimensional localization, and cross-section imaging of fluorescent targets in a turbid medium is introduced. The approach uses multisource probing of targets, multidetector acquisition of diffusely transmitted fluorescence signal, and a non-negative matrix factorization based blind source separation scheme to obtain three-dimensional location of the targets. A Fourier transform back-projection algorithm provides an estimate of target cross section. The efficacy of the approach is demonstrated in an experiment involving two laterally separated small fluorescent targets embedded in a human breast tissue-simulating sample of thickness 60 times the transport mean free path. The approach could locate the targets within ˜1 mm of their known positions, and provide estimates of their cross sections. The high spatial resolution, fast reconstruction speed, noise tolerance, and ability to detect small targets are indicative of the potential of the approach for detecting and locating fluorescence contrast-enhanced breast tumors in early growth stages, when they are more amenable to treatment.

  19. A study on the properties of the deposited metal by flux cored wires 40GMFR and 40H3G2MF

    NASA Astrophysics Data System (ADS)

    Gusev, A. I.; Kibko, N. V.; Kozyrev, N. A.; Popova, M. V.; Osetkovsky, I. V.

    2016-09-01

    The effect of chemical composition on the microstructure, hardness and wear resistance of the deposited layer of steels 40GMFR and 40H3G2MF was studied. The influence of the content of alloying elements in the examined steels on the structure of the deposited layer was defined, as well the influence of the structure of this layer on the hardness and abrasive wear. A comparative analysis of two steels was performed. Steel 40H3G2MF showed a greater efficacy for surfacing. It had higher hardness, a lower wear rate and a more fine-grained structure.

  20. Relations Between Environmental and Water-Quality Variables and Escherichia coli in the Cuyahoga River With Emphasis on Turbidity as a Predictor of Recreational Water Quality, Cuyahoga Valley National Park, Ohio, 2008

    USGS Publications Warehouse

    Brady, Amie M.G.; Plona, Meg B.

    2009-01-01

    During the recreational season of 2008 (May through August), a regression model relating turbidity to concentrations of Escherichia coli (E. coli) was used to predict recreational water quality in the Cuyahoga River at the historical community of Jaite, within the present city of Brecksville, Ohio, a site centrally located within Cuyahoga Valley National Park. Samples were collected three days per week at Jaite and at three other sites on the river. Concentrations of E. coli were determined and compared to environmental and water-quality measures and to concentrations predicted with a regression model. Linear relations between E. coli concentrations and turbidity, gage height, and rainfall were statistically significant for Jaite. Relations between E. coli concentrations and turbidity were statistically significant for the three additional sites, and relations between E. coli concentrations and gage height were significant at the two sites where gage-height data were available. The turbidity model correctly predicted concentrations of E. coli above or below Ohio's single-sample standard for primary-contact recreation for 77 percent of samples collected at Jaite.

  1. Variability in turbidity current frequency within a central Portuguese margin canyon

    NASA Astrophysics Data System (ADS)

    Allin, Joshua R.; Talling, Peter J.; Hunt, James E.; Clare, Michael E.; Pope, Ed

    2015-04-01

    Submarine canyons constitute one of the most important pathways for sediment transport into ocean basins. For this reason, understanding canyon architecture and sedimentary processes has significance for oil and gas reservoir characterisation, carbon budgets and geohazard assessment. Canyon sedimentation in the form of turbidity-currents is known to operate on a variety of scales and result from a number of different processes, including landslides, river-derived hyperpycnal flows and tidal or storm resuspension. Despite the expanding knowledge of turbidity current triggers, the spatial variability in turbidity current frequency within most canyon systems is not well defined. Here, new chronologies from cores in the lower reaches of Nazaré Canyon illustrate changes in turbidity current frequency and their relationship to sea level. These flows were relatively frequent during the last glacial maximum and the last deglaciation, with an average recurrence interval of ~70 years. Mid to early Holocene slowdown in activity (avg. recurrence of 1625 years) appears to occur later than other systems along the Iberian margin. Cores from the Iberian Abyssal Plain also provide the first recurrence interval estimates for large run-out turbidity currents from the central Portuguese margin. These large turbidity currents have an average recurrence interval of 2750 years, broadly comparable to modern turbidity flow events in the lower Nazaré Canyon. This indicates that Nazaré Canyon acted as a depocentre, capturing large volumes of sediment during glacial periods prior to large scale canyon flushing events. However, this sediment capture has largely been restricted to the middle and upper canyon since stabilisation of Holocene sea level. Recurrence intervals suggest that large turbidity flows which flush the canyon operate on a timescale independent of the sea level forcing evident in the lower canyon. While instability-triggered landsliding and tidal/storm resuspension are

  2. Coupled Numerical Study of Turbidity Currents, Internal Hydraulic Jump and Morphological Signatures

    NASA Astrophysics Data System (ADS)

    Hu, P.; Cao, Z.; He, Z.; Gareth, P.

    2013-12-01

    Abstract: The last two decades have seen intensive experimental and numerical studies of the occurrence condition of internal hydraulic jump in turbidity currents and the induced morphological signatures (Garcia and Parker 1989; Kostic and Parker 2006). Yet there are two critical issues that remain insufficiently or inappropriately addressed. First, depositional turbidity currents are imposed on steep slopes in both flume experiments and numerical cases, exclusively based on a configuration consisting of an upstream sloping portion and a downstream horizontal portion linked by a slope break. This appears physically counterintuitive as steep slope should favour self-accelerating erosional turbidity currents (Parker et al. 1986). The second issue concerns the numerical studies. There exist significant interactions among the current, sediment transport and bed topography. Due to the slope break in bed, the current may experience an internal hydraulic jump, leaving morphological signatures on the bed, which in turn affects the current evolution. Nevertheless, simplified decoupled models are exclusively employed in previous numerical investigations, in which the interactions are either partly or completely ignored without sufficient justification. The present paper aims to address the above-mentioned two issues relevant to the occurrence condition of the internal hydraulic jump and the induced morphological signatures. A recently developed well-balanced coupled numerical model for turbidity currents (Hu et al. 2012) is applied. In contrast to previous studies, erosional turbidity currents will be imposed at the upstream boundary, which is much more typical of the field. The effects of sediment size, bed slope decrease, and upstream and downstream boundary conditions are revealed in detail. In addition, the evolution of turbidity currents over a bed characterized by gradual decrease in slope is also discussed. References Garcia, M. H., and Parker, G. (1989). Experiments

  3. Study of the effect introduced by an integrating sphere on the temporal profile characterization of short laser pulses propagating through a turbid medium.

    PubMed

    Morales-Cruzado, Beatriz; Pérez-Gutiérrez, Francisco G; de Lange, Dirk Frederik; Romero-Méndez, Ricardo

    2015-03-20

    When a nanosecond laser pulse is transmitted through a highly scattering material, its irradiance decreases as it propagates; this is because of the spatial and temporal pulse profile stretching owing to multiple scattering events. Although the effect of temporal distortion is much less significant than that of the spatial distortion for applications where the laser beam is focused on a subsurface target (writing of waveguides, for example), it becomes significant for applications where the laser pulse must attain certain temporal width after the beam propagated is collimated through a turbid medium (photoacoustic tomography, for example). The objective of this work is to determine the transfer function associated to an integrating sphere measurement of the temporal intensity profile involving turbid media samples. The transfer function is found to be related to the geometrical characteristics of the integrating sphere and the optical properties of the turbid media. This procedure opens a new possibility for optical property characterization and enables the use of an integrating sphere for time-dependent intensity measurements. PMID:25968525

  4. Effect of the radiation intensity, water turbidity and exposure time on the survival of Cryptosporidium during simulated solar disinfection of drinking water.

    PubMed

    Gómez-Couso, Hipólito; Fontán-Sainz, María; McGuigan, Kevin G; Ares-Mazás, Elvira

    2009-10-01

    The solar disinfection (SODIS) technique is a highly effective process that makes use of solar energy to inactivate pathogenic microorganisms in drinking water in developing countries. The pathogenic protozoan parasite Cryptosporidium parvum is often found in surface waters and is associated with waterborne outbreaks of cryptosporidiosis. In the present study, a complete multi-factorial mathematical model was used to investigate the combined effects of the intensity of solar radiation (200, 600 and 900W/m(2) in the 320nm to 10microm range), water turbidity (5, 100 and 300 NTU) and exposure time (4, 8 and 12h) on the viability and infectivity of C. parvum oocysts during simulated SODIS procedures at a constant temperature of 30 degrees C. All three factors had significant effects (p<0.05) on C. parvum survival, as did the interactions of water turbidity with radiation intensity and radiation intensity with exposure time. However, the parameter with the greatest effect was the intensity of radiation; levels > or =600W/m(2) and times of exposure between 8 and 12h were required to reduce the oocyst infectivity in water samples with different degrees of turbidity.

  5. Changes of turbidity during the phenol oxidation by photo-Fenton treatment.

    PubMed

    Villota, Natalia; Camarero, Luis M; Lomas, Jose M; Perez, Jonatan

    2014-11-01

    Turbidity presented by phenol solutions oxidized with Fenton reagent shows the tendency of a first order intermediate kinetics. Thus, turbidity can be considered a representative parameter of the presence of intermediate oxidation species, which are generated along the decomposition of toxic and reluctant contaminants, such as phenol. Moreover, that parameter presents a linear dependence with the catalyst dosage, but is also determined by the initial contaminant load. When analyzing the oxidation mechanism of phenol, it is found that the maximum turbidity occurs when the treatment is carried out at oxidant to phenol molar ratios R = 4.0. These oxidation conditions correspond to the presence of a reaction mixture mainly composed of dihydroxylated rings, precursors of the muconic acid formation. The oxidation via "para" comprises the formation reactions of charge transfer complexes (quinhydrone), between the para-dihydroxylated intermediates (hydroquinone) and the para-substituted quinones (p-benzoquinone), which are quite unstable and reactive species, quickly decomposed into hydroxyhydroquinones. Working with oxidant ratios up to R = 6.0, the maximum observed value of turbidity in the oxidized solutions is kept almost constant. It is found that, in these conditions, the pyrogallol formation is maximal, what is generated through the degradation of ortho-species (catechol and ortho-benzoquinone) and meta-substituted (resorcinol). Operating with ratios over R = 6.0, these intermediates are decomposed into biodegradable acids, generating lower turbidity in the solution. Then, the residual turbidity is a function of the molar ratio of the ferrous ions vs. moles of oxidant utilized in the essays, that lets to estimate the stoichiometric dosage of catalyst as 20 mg/L at pH = 3.0, whereas operating in stoichiometric conditions, R = 14.0, the residual turbidity of water results almost null.

  6. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  7. Fluorescence and diffusive wave diffraction tomographic probes in turbid media

    NASA Astrophysics Data System (ADS)

    Li, Xingde

    1998-10-01

    Light transport over long distances in tissue-like highly scattering media is well approximated as a diffusive process. Diffusing photons can be used to detect, localize and characterize non-invasively optical inhomogeneities such as tumors and hematomas embedded in thick biological tissue. Most of the contrast relies on the endogenous optical property differences between the inhomogeneities and the surrounding media. Recently exogenous fluorescent contrast agents have been considered as a means to enhance the sensitivity and specificity for tumor detection. In the first part of the thesis (Chapter 2 and 3), a theoretical basis is established for modeling the transport, of fluorescent photons in highly scattering media. Fluorescent Diffuse Photon Density Waves (FDPDW) are used to describe the transport of fluorescent photons. A detailed analysis based upon a practical signal-to-noise model was used to access the utility of the fluorescent method. The analysis reveals that a small heterogeneity, embedded in deep tissue-like turbid media with biologically relevant parameters, and with a practically achievable 5-fold fluorophore concentration contrast, can be detected and localized when its radius is greater than 0.2 cm, and can be characterized when its radius is greater than 0.7 cm. In vivo and preliminary clinical studies demonstrate the feasibility of using FDPDW's for tumor diagnosis. Optical imaging with diffusing photons is challenging. Many of the imaging algorithms developed so far are either fundamentally incorrect as in the case of back- projection approach, or require a huge amount of computational resources and CPU time. In the second part of the thesis (Chapter 4), a fast, K-space diffraction tomographic imaging algorithm based upon spatial angular spectrum analysis is derived and applied. Absolute optical properties of thin inhomogeneities and relative optical properties of spatially extended inhomogeneities are reconstructed within a sub-second time

  8. Turbidity and sediment transport in a muddy sub-estuary

    NASA Astrophysics Data System (ADS)

    Uncles, R. J.; Stephens, J. A.

    2010-04-01

    Sub-estuaries, i.e. tidal creeks and also larger estuaries that branch off the stem of their main estuary, are commonplace in many estuarine systems. Their physical behaviour is affected not only by tributary inflows, winds and tides, but also by the properties and behaviour of their main estuary. Measurements extending over more than an annual cycle are presented for the Tavy Estuary, a sub-estuary of the Tamar Estuary, UK. Generally, waves are small in the Tavy because of the short wind fetch. A several-hour period of up-estuary winds, blowing at speeds of between 7 and 10 m s -1, generates waves with significant wave heights of 0.25 m and a wave periodicity of 1.7 s that are capable of eroding the bed over the shallow, ca. 1.5 m-deep mudflats. Waves also influence sedimentation within and near salt marsh areas. An estuarine turbidity maximum (ETM) occurs in the Tavy's main channel, close to the limit of salt intrusion at HW. Suspended particulate matter (SPM) concentrations typically are less than 40 mg l -1 at HW, although concentrations can exceed 80 mg l -1 when tides and winds are strong. Flood-tide SPM inputs to the Tavy from the Tamar are greater during high runoff events in the River Tamar and also at spring tides, when the Tamar has a high-concentration ETM. Higher SPM concentrations are experienced on the mudflats following initial inundation. Without wave resuspension, this is followed by a rapid decrease in SPM for most of the tide, indicating that the mudflats are depositional at those times. SPM concentrations on the mudflats again increase sharply prior to uncovering. Peak ebb tidal speeds at 0.15 m above the mudflat bed can exceed 0.26 m s -1 at spring tides and 0.4 m s -1 following high runoff events, which are sufficient to cause resuspension. Time-series measurements of sediment bed levels show strong seasonal variability. Higher and lower freshwater flows are associated with estimated, monthly-mean sediment transport that is directed out of

  9. Biogeochemical processes controlling methane in gassy coastal sediments—Part 2: groundwater flow control of acoustic turbidity in Eckernförde Bay Sediments

    NASA Astrophysics Data System (ADS)

    Albert, Daniel B.; Martens, Christopher S.; Alperin, Marc J.

    1998-12-01

    To understand the origin of the methane distributions in sediments of Eckernförde Bay, three sites were sampled in May 1994 for determination of methane, sulfate and chloride concentrations in the sediment porewaters. In much of the Bay, bubbles of biogenic methane gas within the sediments lead to widespread 'acoustic turbidity' seen in acoustic surveys, masking the sedimentary structure below the gassy horizon. Acoustic windows, where the gas does not appear to be present, occur in several locations in the Bay, often surrounded by acoustically turbid sediments. Pockmarks, shallow depressions in the sediment, are also found in Bay sediments and may show acoustic turbidity at even shallower depths below the interface than surrounding sediments. One site of each type was sampled in this study. The site probably representative of much of the bay below 20 m water depth, revealed methane saturated conditions by about 75 cm depth below the interface, confirming inferences from acoustic scattering data that free gas was present in the sediment. Above this, the methane concentration profile was concave-upward, indicative of methane oxidation in the overlying, sulfate-reducing sediments. These porewaters showed a slightly decreasing chlorinity with depth. At an acoustic window site, methane concentrations rose to a maximum at about 125 cm depth, but did not reach saturation. Below this depth they decreased in a concave-down pattern. Chloride concentrations decreased markedly with depth, indicative of vertical freshwater flow from below. The third site was a pockmark exhibiting very shallow acoustic turbidity at about 25 cm depth. Here methane concentrations rose to exceed saturation within 25 cm depth below the interface and the porewaters became almost fresh by 1.5 m depth, indicative of a stronger flow of freshwater from below. These groundwater flows have competing effects on the methane inventory. They help exclude sulfate from the sediment, allowing the earlier

  10. Characteristics of turbulent kinetic energy dissipation rate and turbidity near the coast of East China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwei; Xu, Huiping; Qin, Rufu; Xu, Changwei; Fan, Daidu

    2016-09-01

    The East China Sea (ECS) has a high suspended-sediment concentration because of the influence of the Changjiang River, indicated by high turbidity in the water. Considering the islands offthe coast and the complex topography, and the strong influence of tides and wind, the coast offthe ECS is a typical region with strong oceanic mixing processes. The changes in the dynamic processes near the bottom play an important role in the control of water turbidity. The turbulent kinetic energy dissipation rate ( ɛ ) is a parameter that shows the strength of ocean mixing. This is estimated based on a structure method using current velocity that is measured by a high-frequency Acoustic Doppler Current Profiler (ADCP) from a seafloor observatory in the ECS. The results indicate strong ocean mixing processes with a mean ɛ value of 5.7×10-5 W/kg and distinct tidal variations in the dissipation rate. Conversely, the variation of the water turbidity leads to changes in the water dynamical structure near the bottom. Comparing the dissipation rate with the turbidity near the bottom boundary layer, we find that the high turbidity mimics strong ocean mixing.

  11. A time series study of drug sales and turbidity of tap water in Le Havre, France.

    PubMed

    Beaudeau, Pascal; Le Tertre, Alain; Zeghnoun, Abdelkrim; Zanobetti, Antonella; Schwartz, Joel

    2012-06-01

    The 80,000 inhabitants of the lower part of Le Havre obtain their water supply from two karstic springs, Radicatel and Saint-Laurent. Until 2000, the Radicatel water was settled when turbidity exceeded 3 NTU, then filtered and chlorinated, whereas the Saint-Laurent water was simply chlorinated. Our study aimed to characterize the link between water turbidity and the incidence of acute gastroenteritis (AGE). Records on drug sales used for the treatment of AGE were collected from January 1994 to June 1996 (period 1) and from March 1997 to July 2000 (period 2). Daily counts of drug sales were modeled using a Poisson Regression. We used data set 2 as a discovery set, identifying relevant (i.e. both significant and plausible) exposure covariates and lags. We then tested this model on period 1 as a replication dataset. In period 2, the daily drug sales correlated with finished water turbidity at both resources. Settling substantially modified the risk related to turbidity of both raw and finished waters at Radicatel. Correlations were reproducible in period 1 for water from the Radicatel spring. Timeliness of treatment adaptation to turbidity conditions appears to be crucial for reducing the infectious risk due to karstic waters.

  12. Comparison of two online flocculation monitoring techniques for predicting turbidity removal by granular media filtration.

    PubMed

    Ball, T; Carrière, A; Barbeau, B

    2011-07-01

    Particulate matter removal in drinking water treatment via direct granular filtration requires specific flocculation conditions (a process typically termed 'high energy flocculation'). Predicting filtered water turbidity based on flocculated water characteristics remains difficult. This study has sought to establish a relationship between filtered water turbidity and the flocculated water characteristics. Flocculation oflow-turbidity raw water was evaluated online using a Photometric Dispersion Analyser (PDA) and a Dynamic Particle Analyser in a modified jar test followed by a bench-scale anthracite filter. Coagulants used were alum, PASS100 and ferric sulphate, in addition to a polydiallyldimethylammonium chloride (polyDADMAC) cationic polymer. They were dosed in warm and cold waters, and flocculated with intensities (G) from 0 to 100 s(-1). Of the two instruments selected to analyse flocculation performance, the Dynamic Particle Analyser was shown to be the most sensitive, detecting small changes in floc growth kinetics and even floc growth under low flocculation conditions which remained undetected by the PDA. Floc size was shown to be insufficient in predicting particulate matter removal by direct granular filtration as measured by turbidity, although a threshold d(v) value (50 microm) could be identified for the test conditions evaluated in this project, above which turbidity was systematically lower than 0.2 NTU.

  13. Comparison of two online flocculation monitoring techniques for predicting turbidity removal by granular media filtration.

    PubMed

    Ball, T; Carrière, A; Barbeau, B

    2011-07-01

    Particulate matter removal in drinking water treatment via direct granular filtration requires specific flocculation conditions (a process typically termed 'high energy flocculation'). Predicting filtered water turbidity based on flocculated water characteristics remains difficult. This study has sought to establish a relationship between filtered water turbidity and the flocculated water characteristics. Flocculation oflow-turbidity raw water was evaluated online using a Photometric Dispersion Analyser (PDA) and a Dynamic Particle Analyser in a modified jar test followed by a bench-scale anthracite filter. Coagulants used were alum, PASS100 and ferric sulphate, in addition to a polydiallyldimethylammonium chloride (polyDADMAC) cationic polymer. They were dosed in warm and cold waters, and flocculated with intensities (G) from 0 to 100 s(-1). Of the two instruments selected to analyse flocculation performance, the Dynamic Particle Analyser was shown to be the most sensitive, detecting small changes in floc growth kinetics and even floc growth under low flocculation conditions which remained undetected by the PDA. Floc size was shown to be insufficient in predicting particulate matter removal by direct granular filtration as measured by turbidity, although a threshold d(v) value (50 microm) could be identified for the test conditions evaluated in this project, above which turbidity was systematically lower than 0.2 NTU. PMID:21882562

  14. Nuptial coloration of red shiners ( Cyprinella lutrensis) is more intense in turbid habitats

    NASA Astrophysics Data System (ADS)

    Dugas, Matthew B.; Franssen, Nathan R.

    2011-03-01

    Communication is shaped and constrained by the signaling environment. In aquatic habitats, turbidity can reduce both the quantity and quality of ambient light and has been implicated in the breakdown of visual signaling. Here, we examined the relationship between turbidity (quantified with long-term data) and the expression of carotenoid-based nuptial coloration in the red shiner ( Cyprinella lutrensis), a small-bodied cyprinid. Males in more turbid habitats displayed redder fins, and an experimental manipulation of adult diet suggested that carotenoid intake alone did not explain among-population color differences. These results run counter to similar studies where signal expression decreased in turbid conditions, and may be explained by the non-territorial red shiner mating system, interactions between the mechanism of coloration and the signaling environment, or reduced cost of color expression in turbid habitats (e.g., reduced predation risk). Our results highlight how the behavioral and ecological contexts in which signals function can shape evolutionary responses to the environment.

  15. A new approach using coagulation rate constant for evaluation of turbidity removal

    NASA Astrophysics Data System (ADS)

    Al-Sameraiy, Mukheled

    2015-09-01

    Coagulation-flocculation-sedimentation processes for treating three levels of bentonite synthetic turbid water using date seeds (DS) and alum (A) coagulants were investigated in the previous research work. In the current research, the same experimental results were used to adopt a new approach on a basis of using coagulation rate constant as an investigating parameter to identify optimum doses of these coagulants. Moreover, the performance of these coagulants to meet (WHO) turbidity standard was assessed by introducing a new evaluating criterion in terms of critical coagulation rate constant (kc). Coagulation rate constants (k2) were mathematically calculated in second order form of coagulation process for each coagulant. The maximum (k2) values corresponded to doses, which were obviously to be considered as optimum doses. The proposed criterion to assess the performance of coagulation process of these coagulants was based on the mathematical representation of (WHO) turbidity guidelines in second order form of coagulation process stated that (k2) for each coagulant should be ≥ (kc) for each level of synthetic turbid water. For all tested turbid water, DS coagulant could not satisfy it. While, A coagulant could satisfy it. The results obtained in the present research are exactly in agreement with the previous published results in terms of finding optimum doses for each coagulant and assessing their performances. On the whole, it is recommended considering coagulation rate constant to be a new approach as an indicator for investigating optimum doses and critical coagulation rate constant to be a new evaluating criterion to assess coagulants' performance.

  16. The use of chitosan as a coagulant in the pre-treatment of turbid sea water.

    PubMed

    Altaher, Hossam

    2012-09-30

    One of the problems that encounters desalination industry is the fouling that takes place due to the poor quality of the sea water received, especially when it rains. In such a situation, the sea water reaches the desalination plant having high turbidity. Chitosan was tested as a coagulant in the removal of the turbidity of sea water to replace inorganic coagulants having hazardous effects. Jar test was performed to test some factors that may affect the coagulation process. The factors tested were dose of coagulant (0-370 mg/L), initial pH (2-11), type of coagulant (chitosan versus metal coagulants), and the chitosan solvent. Chitosan's turbidity removal efficiency was found to be greater than ferrous sulfate and comparable to that of alum. While most researches emphasize the use of chitosan in acidic or neutral media, it worked well in the alkaline pH. The highest turbidity removal efficiency of 97.5% was obtained at initial pH of 8.1. The optimum dose was found to be 18 mg/L. Chitosan dissolved in HCl was found to perform better than that dissolved in acetic acid. Comparable turbidity removal efficiencies were obtained using alum and chitosan. However, much higher doses were used when using alum which implies higher cost and increase of residual aluminum concentration in treated water.

  17. Simulation study of second-harmonic microscopic imaging signals through tissue-like turbid media.

    PubMed

    Deng, Xiaoyuan; Wang, Xianju; Liu, Hanping; Zhuang, Zhengfei; Guo, Zhouyi

    2006-01-01

    We establish, for the first time, a simulation model for dealing with the second-harmonic signals under a microscope through a tissue-like turbid medium, based on the Monte Carlo method. With this model, the angle-resolved distribution and the signal level eta of second-harmonic light through a slab of the turbid medium are demonstrated and the effects of the thickness (d) of the turbid medium, the numerical aperture (NA) of the objective as well as the size (rho) of the scatterers forming the turbid medium are explored. Simulation results reveal that the use of a small objective NA results in a narrow angle distribution but strong second-harmonic signals. A turbid medium consisting of large scattering particles has a strong influence on the angle distribution and the signal level eta, which results in a low penetration limit for second-harmonic signals made up of ballistic photons. It is approximately 30 microm in our situation. PMID:16674203

  18. Extraction of natural coagulant from peanut seeds for treatment of turbid water

    NASA Astrophysics Data System (ADS)

    Birima, A. H.; Hammad, H. A.; Desa, M. N. M.; Muda, Z. C.

    2013-06-01

    This study investigates the potential of peanut seeds as an environmental friendly and natural coagulant for the treatment of high turbid water. The peanut seeds have been used after oil extraction; and the active coagulation component was extracted by distilled water and salt solution of different salt concentrations. The salts used were NaCl, KNO3, KCl, NH4Cl and NaNO3. Synthetic water with 200 NTU turbidity was used. Peanut extracted with NaCl (PC-NaCl) could effectively remove 92% of the 200 NTU turbidity using only 20 mg/l, while peanut seeds extracted with distilled water (PC-DW) could remove only 31.5% of the same turbidity with the same dosage. The coagulant dosage did not affected by the concentration of the salt solution, however, residual turbidity decreased with increasing the concentration of the salt; and the relationship was found to be a second order polynomial curve with R2 of 0.9312. The other salts tested were also found to be good solvents to extract the active coagulation component with no much difference from NaCl solution in terms of efficiency.

  19. Effects of turbidity on the spontaneous and prey-searching activity of juvenile Atlantic cod (Gadus morhua).

    PubMed

    Meager, Justin J; Batty, Robert S

    2007-11-29

    Increasing turbidity in coastal waters in the North Atlantic and adjacent seas has raised concerns about impacts on Atlantic cod (Gadus morhua) using these areas as nurseries. A previous experiment (Meager et al. 2005 Can. J. Fish. Aquat. Sci. 62, 1978-1984) has shown that turbidity (up to 28 beam attenuation m-1) had little effect on the foraging rate of juvenile cod. Although this was attributed to cod using chemoreception in conjunction with vision to locate prey, foraging rates may also be maintained by increased activity. Higher activity, however, is energetically costly and may offset benefits from increased foraging return. We examined the effects of turbidity on prey searching and spontaneous activity of juvenile cod in the laboratory, by measuring activity with and without prey cues. Activity of juvenile cod was nonlinearly affected by turbidity and was lower at intermediate turbidity, regardless of the presence of prey odour. Activity increased over time when prey odour was present and decreased when absent, but the effects of prey odour were similar across all turbidity levels. Position in the tank was unaffected by turbidity or prey odour. Reduced activity at intermediate turbidities is likely to offset longer prey-search times. At high turbidity (greater than 17m-1), both longer prey-search times and higher activity indicate that increased energetic costs are probable.

  20. Extraction of anisotropic parameters of turbid media using hybrid model comprising differential- and decomposition-based Mueller matrices.

    PubMed

    Liao, Chia-Chi; Lo, Yu-Lung

    2013-07-15

    A hybrid model comprising the differential Mueller matrix formalism and the Mueller matrix decomposition method is proposed for extracting the linear birefringence (LB), linear dichroism (LD), circular birefringence (CB), circular dichroism (CD), and depolarization properties (Dep) of turbid optical samples. In contrast to the differential-based Mueller matrix method, the proposed hybrid model provides full-range measurements of all the anisotropic properties of the optical sample. Furthermore, compared to the decomposition-based Mueller matrix method, the proposed model is insensitive to the multiplication order of the constituent basis matrices. The validity of the proposed method is confirmed by extracting the anisotropic properties of a compound chitosan-glucose-microsphere sample with LB/CB/Dep properties and two ferrofluidic samples with CB/CD/Dep and LB/LD/Dep properties, respectively. It is shown that the proposed hybrid model not only yields full-range measurements of all the anisotropic parameters, but is also more accurate and more stable than the decomposition method. Moreover, compared to the decomposition method, the proposed model more accurately reflects the dependency of the phase retardation angle and linear dichroism angle on the direction of the external magnetic field for ferrofluidic samples. Overall, the results presented in this study confirm that the proposed model has significant potential for extracting the optical parameters of real-world samples characterized by either single or multiple anisotropic properties.

  1. Nutrient variability and its influence on nitrogen processes in a highly turbid tropical estuary (Bangpakong, Gulf of Thailand).

    PubMed

    Bordalo, Adriano A; Chalermwat, Kashane; Teixeira, Catarina

    2016-07-01

    Estuarine ecosystems in SE Asia have been poorly studied when compared to other tropical environments. Important gaps exist particularly in the understanding of their biogeochemical function and contribution to global change. In this work we looked into N-turnover in the water column and sediments of the Bangpakong estuary (13°N). A seasonal sampling program was performed along the salinity gradient covering different stretches of the estuary (68km). Key physical and chemical characteristics were also monitored in order to unravel possible environmental controls. Results showed the occurrence of active denitrification in sediments (5.7-50.9nmol N-N2/(cm(3)·hr)), and water column (3.5-1044pmol N-N2/(cm(3)·hr)). No seasonal or spatial variability was detected for denitrification potential in sediment samples. However, in the water column, the denitrification activity peaked during the transition season in the downstream sites coinciding with high turbidity levels. Therefore, in that period of the year, the water column compartment may be an important contributor to nitrate reduction within the estuary. The rather low nitrification rates detected were not always measurable, probably due to the reduced oxygen content and high siltation. This study is one of the few dealing simultaneously with sediments and water column processes in a highly turbid tropical estuary. Therefore, it emerges as a valuable contribution for the understanding of the dynamics of the nitrogen cycle in tropical environments by exploring the role of estuarine N microbial activity in reducing the effects of increased nitrogen loads. PMID:27372127

  2. Temperature- and Turbidity-Dependent Competitive Interactions Between Invasive Freshwater Mussels.

    PubMed

    Huang, Qihua; Wang, Hao; Ricciardi, Anthony; Lewis, Mark A

    2016-03-01

    We develop a staged-structured population model that describes the competitive dynamics of two functionally similar, congeneric invasive species: zebra mussels and quagga mussels. The model assumes that the population survival rates are functions of temperature and turbidity, and that the two species compete for food. The stability analysis of the model yields conditions on net reproductive rates and intrinsic growth rates that lead to competitive exclusion. The model predicts quagga mussel dominance leading to potential exclusion of zebra mussels at mean water temperatures below [Formula: see text] and over a broad range of turbidities, and a much narrower set of conditions that favor zebra mussel dominance and potential exclusion of quagga mussels at temperatures above [Formula: see text] and turbidities below 35 NTU. We then construct a two-patch dispersal model to examine how the dispersal rates and the environmental factors affect competitive exclusion and coexistence. PMID:26842390

  3. Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates.

    PubMed

    Sommaruga, Ruben; Kandolf, Georg

    2014-02-17

    Heterotrophic (phagotrophic) flagellates are key components of planktonic food webs in freshwater and marine ecosystems because they are the main consumers of bacteria. Although they are ubiquitous in aquatic ecosystems, they were numerically undetectable in turbid glacier-fed lakes. Here we show that glacial particles had negative effects on the survival and growth of heterotrophic flagellates. The effect of glacial particles was concentration-dependent and was caused by their interference with bacterial uptake rather than by physical damage. These results are the first to reveal why establishment of heterotrophic flagellates populations is hindered in very turbid glacial lakes. Because glaciers are vanishing around the world, recently formed turbid meltwater lakes represent an excellent opportunity to understand the environmental conditions that probably shaped the establishment of lake communities at the end of the last glaciation.

  4. Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate

    DOEpatents

    Sappey, Andrew D.

    1998-04-14

    Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.

  5. Temperature- and Turbidity-Dependent Competitive Interactions Between Invasive Freshwater Mussels.

    PubMed

    Huang, Qihua; Wang, Hao; Ricciardi, Anthony; Lewis, Mark A

    2016-03-01

    We develop a staged-structured population model that describes the competitive dynamics of two functionally similar, congeneric invasive species: zebra mussels and quagga mussels. The model assumes that the population survival rates are functions of temperature and turbidity, and that the two species compete for food. The stability analysis of the model yields conditions on net reproductive rates and intrinsic growth rates that lead to competitive exclusion. The model predicts quagga mussel dominance leading to potential exclusion of zebra mussels at mean water temperatures below [Formula: see text] and over a broad range of turbidities, and a much narrower set of conditions that favor zebra mussel dominance and potential exclusion of quagga mussels at temperatures above [Formula: see text] and turbidities below 35 NTU. We then construct a two-patch dispersal model to examine how the dispersal rates and the environmental factors affect competitive exclusion and coexistence.

  6. Swept away by a turbidity current in Mendocino submarine canyon, California

    NASA Astrophysics Data System (ADS)

    Sumner, E. J.; Paull, C. K.

    2014-11-01

    We present unique observations and measurements of a dilute turbidity current made with a remotely operated vehicle in 400 m water depth near the head of Mendocino Canyon, California. The flow had a two-layer structure with a thin (0.5 to 30 m), relatively dense (<0.04 vol %) and fast (up to ~1.7 m/s) wedge-shaped lower layer overlain by a thicker (up to 89 m) more dilute and slower current. The fast moving lower layer lagged the slow moving, dilute flow front by 14 min, which we infer resulted from the interaction of two initial pulses. The two layers were strongly coupled, and the sharp interface between the layers was characterized by a wave-like instability. This is the first field-scale data from a turbidity current to show (i) the complex dynamics of the head of a turbidity current and (ii) the presence of multiple layers within the same event.

  7. Turbidity as a method of preparing sperm dilutions in the echinoid sperm/egg bioassay

    SciTech Connect

    Hall, T.J.; Haley, R.K.; Battan, K.J. )

    1993-11-01

    The use of turbidimeter for preparing sperm dilutions used in the echinoid sperm/egg bioassay was evaluated. Regression analyses of the relationship between sperm density and turbidity for the sea urchins Strongylocentrotus purpuratus and Strongylocentrotus droebachiensis and the sand dollar Dendraster excentricus indicated that although there were slope differences for each species, each coefficient of determination was highly significant. For Dendraster excentricus, triplicate hemacytometer counts over a range of turbidities as well as repeated preparations of a single sperm turbidity indicated similar variability for each. The use of the turbidimeter has time-saving advantages over conventional hemacytometer methods without sacrificing precision. Sperm dilutions can be prepared rapidly, minimizing seawater sperm preactivation before test initiation, and may therefore contribute to increased test precision.

  8. Granular activated carbon for removal of organic matter and turbidity from secondary wastewater.

    PubMed

    Hatt, J W; Germain, E; Judd, S J

    2013-01-01

    A range of commercial granular activated carbon (GAC) media have been assessed as pretreatment technologies for a downstream microfiltration (MF) process. Media were assessed on the basis of reduction in both organic matter and turbidity, since these are known to cause fouling in MF membranes. Isotherm adsorption analysis through jar testing with supplementary column trials revealed a wide variation between the different adsorbent materials with regard to organics removal and adsorption kinetics. Comparison with previous work using powdered activated carbon (PAC) revealed that for organic removal above 60% the use of GAC media incurs a significantly lower carbon usage rate than PAC. All GACs tested achieved a minimum of 80% turbidity removal. This combination of turbidity and organic removal suggests that GAC would be expected to provide a significant reduction in fouling of a downstream MF process with improved product water quality. PMID:23306264

  9. Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy.

    PubMed

    Conti, Claudia; Realini, Marco; Colombo, Chiara; Sowoidnich, Kay; Afseth, Nils Kristian; Bertasa, Moira; Botteon, Alessandra; Matousek, Pavel

    2015-06-01

    Here, we demonstrate, for the first time, the extension of applicability of recently developed microscale spatially offset Raman spectroscopy (SORS), micro-SORS, from the area of cultural heritage to a wider range of analytical problems involving thin, tens of micrometers thick diffusely scattering turbid layers. The method can be applied in situations where a high turbidity of layers prevents the deployment of conventional confocal Raman microscopy with its depth resolving capability. The method was applied successfully to detect noninvasively the presence of thin, highly turbid layers within polymers, wheat seeds, and paper. An invasive, cross sectional analysis confirmed the micro-SORS findings. Micro-SORS represents a new Raman imaging modality expanding the portfolio of noninvasive, chemically specific analytical tools.

  10. FAMIS (Frequency Agile Modulated Imaging System) sensor for imaging in turbid water

    NASA Astrophysics Data System (ADS)

    Mullen, Linda J.; Laux, Alan E.; Cochenour, Brandon; Zege, Eleonora P.

    2006-05-01

    Optical imaging in turbid ocean water is a challenge due to the high probability that light will scatter multiple times as it propagates to and from the object of interest. Techniques have been developed to suppress the contribution from scattered light and increase the image contrast, such as those using a pulsed source with a gated receiver or a modulated source with a coherent RF receiver. While improving the amplitude contrast of underwater images, these two approaches also have the capability of providing target range information. The effectiveness of each approach for both 2D and 3D imagery depends highly on the turbidity of the intervening water medium. This paper describes a system based on the optical modulation approach, the Frequency Agile Modulated Imaging System (FAMIS), and the techniques that have been developed to improve both amplitude and range imaging in turbid water.

  11. Measurement of vascular permeability in spinal cord using Evans Blue spectrophotometry and correction for turbidity.

    PubMed

    Warnick, R E; Fike, J R; Chan, P H; Anderson, D K; Ross, G Y; Gutin, P H

    1995-05-01

    Vascular permeability can be visualized by Evans Blue (EB) extravasation and quantified by spectrophotometry after formamide extraction of the tissue. However, formamide extracts show significant turbidity, which may contribute to the total optical density at the wavelength of measurement (e.g., 620 lambda). We developed a simple method for estimating the component of the total optical density of a dyed specimen contributed by turbidity. Our method, which uses a determination of turbidity made at another point of the light spectrum (740 lambda), was more precise than two other EB quantification techniques. We therefore recommend it for individual correction of formamide extracts of spinal cord specimens. The application of this technique to the brain remains to be determined.

  12. Assessing the health implications of turbidity and suspended particles in protected catchments.

    PubMed

    Cinque, K; Stevens, M A; Roser, D J; Ashbolt, N J; Leeming, R

    2004-01-01

    The supply of unfiltered disinfected drinking water from Melbourne's fully protected catchments means that the water-quality managers must ensure that the source water poses no public health risk. High turbidity is currently used as a surrogate of pathogens, and harvesting of water is based on its measurement. The work presented here summarises suspended particle and associated pathogen, microbial indicator and faecal biomarker concentrations collected to (a) quantify turbidity in an Australian water supply system and (b) assess the possibility of increasing water harvesting from selected tributaries. Pathogens and microbial indicators were present in low numbers in these source waters; increased turbidity during storm events was not associated with an increase in pathogen concentration. The results confirmed that protected catchments, along with good management, were effective barriers to pathogen contamination. Aesthetic issues still need to be addressed, but no measurable increase in microbiological risk was associated with storm-generated particles.

  13. Accuracy of plasma turbidity measurement for determining fat intolerance during total parenteral nutrition.

    PubMed

    Nordenström, J; Thörne, A; Lindholm, M

    1990-06-01

    The accuracy of plasma turbidity measurements in predicting ability to metabolise intravenous fat emulsions during total parenteral nutrition was studied in 35 adult surgical patients. Plasma turbidity, expressed as a light scattering index (LSI), was determined by nephelometry and compared with measured triglyceride (TG) concentrations. A poor coefficient of correlation was found between LSI and TG (r = 0.52). The sensitivity and specificity of LSI in predicting TG concentration were 19% and 96% respectively. This indicates that the measurement of LSI is more useful in ruling out hypertriglyceridaemia than in detecting it. Consequently, clinical tolerance of intravenous fat emulsion cannot be monitored by measuring plasma turbidity. In order to avoid metabolic complications which may occasionally occur during intravenous nutritional therapy including fat emulsion, determination of plasma TG levels at timed intervals are recommended.

  14. A note on the comparative turbidity of some estuaries of the Americas

    USGS Publications Warehouse

    Uncles, R.J.; Smith, R.E.

    2005-01-01

    Field data from 27 estuaries of the Americas are used to show that, in broad terms, there is a large difference in turbidity between the analyzed east and west-coast estuaries and that tidal range and tidal length have an important influence on that turbidity. Generic, numerical sediment-transport modeling is used to illustrate this influence, which exists over a range of space scales from, e.g., the Rogue River Estuary (few km, few mg l-1) to the Bay of Fundy (hundreds of km, few g l-1). The difference in Pacific and Atlantic seaboard estuarine turbidity for the analyzed estuaries is ultimately related to the broad-scale geomorphology of the two continents.

  15. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    PubMed

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install.

  16. Factors contributing to hypoxia in a highly turbid, macrotidal estuary (the Gironde, France).

    PubMed

    Lanoux, Aurélie; Etcheber, Henri; Schmidt, Sabine; Sottolichio, Aldo; Chabaud, Gérard; Richard, Marion; Abril, Gwenaël

    2013-03-01

    Dissolved oxygen (DO) is a fundamental parameter of coastal water quality, as it is necessary to aquatic biota, and it provides an indication of organic matter decomposition in waters and their degree of eutrophication. We present here a 7 year time series of DO concentration and ancillary parameters (river discharge, water level, turbidity, temperature, and salinity) from the MAGEST high-frequency monitoring network, at four automated stations in the central and fluvial regions of the macrotidal Gironde Estuary, one of the largest European estuaries. The spatio-temporal variability of DO at different time scales was first related to the migration and position of the maximum turbidity zone in this extremely turbid estuary. Since 2005, the Gironde Estuary has recorded several borderline hypoxic situations (DO close to 2 mg L(-1)) and a 7 day-long hypoxic event (DO < 2 mg L(-1)) in July 2006. Summer hypoxia occurred exclusively in the fluvial, low salinity, and high turbidity sections of the estuary and was significantly more pronounced in front of the large urban area of Bordeaux (715 000 inhabitants). Detailed analysis of the data at the seasonal, neap-spring and semi-diurnal tidal time scales, reveals that hypoxia in this area occurred: (i) in the maximum turbidity zone; (ii) during the spring to neap tide transition; (iii) at highest water temperature; and (iv) at lowest river discharge; there was also evidence of an additional negative impact of sewage treatment plants of Bordeaux city. Enhancement of respiration by turbidity, temperature and inputs of domestic biodegradable organic matter and ammonia, versus renewal of waters and dispersion of reduced pollutants with the river discharge, appeared as the dominant antagonist processes that controlled the occurrence of summer hypoxia. In the context of long-term environmental changes (increase in temperature and population, decrease in summer river discharge), the occurrence of severe hypoxia could not be excluded

  17. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.

    PubMed

    Dutt-Ballerstadt, Ralph; Evans, Colton; Pillai, Arun P; Gowda, Ashok

    2014-11-15

    In this paper, we describe the concept of a novel implantable fiber-optic Turbidity Affinity Sensor (TAS) and report on the findings of its in-vitro performance for continuous glucose monitoring. The sensing mechanism of the TAS is based on glucose-specific changes in light scattering (turbidity) of a hydrogel suspension consisting of small particles made of crosslinked dextran (Sephadex G100), and a glucose- and mannose-specific binding protein - Concanavalin A (ConA). The binding of ConA to Sephadex particles results in a significant turbidity increase that is much greater than the turbidity contribution by the individual components. The turbidity of the TAS was measured by determining the intensity of light passing through the suspension enclosed within a small semi-permeable hollow fiber (OD: 220 μm, membrane thickness: 20 μm, molecular weight cut-off: 10 kDa) using fiber optics. The intensity of measured light of the TAS was proportional to the glucose concentration over the concentration range from 50mg/dL to 400mg/dL in PBS and whole blood at 37°C (R>0.96). The response time was approximately 4 min. The stability of the glucose response of the TAS decreased only slightly (by 20%) over an 8-day study period at 37°C. In conclusion, this study demonstrated proof-of-concept of the TAS for interstitial glucose monitoring. Due to the large signal amplitude of the turbidity change, and the lack of need for wavelength-specific emission and excitation filters, a very small, robust and compact TAS device with an extremely short optical pathlength could be feasibly designed and implemented for in-vivo glucose monitoring in people with diabetes.

  18. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    USGS Publications Warehouse

    Landers, Mark N.; Sturm, Terry W.

    2013-01-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC~T) for single stormflow events was observed and quantified for a data set of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009–2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine-silt and smaller sizes (finer than 16 microns). This study shows that small changes in the often assumed stability of the PSD are significant to SSC~T relations. Changes of only 5 microns in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC~T rating that can increase error and produce bias. Observed SSC~T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity-limited for sand-sized sediment in the channel and supply-limited for fine silt and smaller sediment from the hillslope.

  19. Effects of turbidity on predation vulnerability of juvenile humpback chub to rainbow and brown trout

    USGS Publications Warehouse

    Ward, David L.; Morton-Starner, Rylan; Vaage, Benjamin M.

    2016-01-01

    Predation on juvenile native fish by introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta is considered a significant threat to the persistence of endangered humpback chub Gila cypha in the Colorado River in Grand Canyon. Diet studies of rainbow and brown trout in Glen and Grand canyons indicate that these species eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable depending on the physical conditions under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile humpback chub changes in response to changes in turbidity. In overnight laboratory trials, we exposed hatchery-reared juvenile humpback chub and bonytail Gila elegans (a surrogate for humpback chub) to adult rainbow and brown trout at turbidities ranging from 0 to 1,000 formazin nephlometric units. We found that turbidity as low as 25 formazin nephlometric units significantly reduced predation vulnerability of bonytail to rainbow trout and led to a 36% mean increase in survival (24–60%, 95% CI) compared to trials conducted in clear water. Predation vulnerability of bonytail to brown trout at 25 formazin nephlometric units also decreased with increasing turbidity and resulted in a 25% increase in survival on average (17–32%, 95% CI). Understanding the effects of predation by trout on endangered humpback chub is important when evaluating management options aimed at preservation of native fishes in Grand Canyon National Park. This research suggests that relatively small changes in turbidity may be sufficient to alter predation dynamics of trout on humpback chub in the mainstem Colorado River and that turbidity manipulation may warrant further investigation as a fisheries management tool.

  20. Coagulation of highly turbid suspensions using magnesium hydroxide: effects of slow mixing conditions.

    PubMed

    Ayoub, George M; BinAhmed, Sara W; Al-Hindi, Mahmoud; Azizi, Fouad

    2014-09-01

    Laboratory experiments were carried out to study the effects of slow mixing conditions on magnesium hydroxide floc size and strength and to determine the turbidity and total suspended solid (TSS) removal efficiencies during coagulation of highly turbid suspensions. A highly turbid kaolin clay suspension (1,213 ± 36 nephelometric turbidity units (NTU)) was alkalized to pH 10.5 using a 5 M NaOH solution; liquid bittern (LB) equivalent to 536 mg/L of Mg(2+) was added as a coagulant, and the suspension was then subjected to previously optimized fast mixing conditions of 100 rpm and 60 s. Slow mixing speed (20, 30, 40, and 50 rpm) and time (10, 20, and 30 min) were then varied, while the temperature was maintained at 20.7 ± 1 °C. The standard practice for coagulation-flocculation jar test ASTM D2035-13 (2013) was followed in all experiments. Relative floc size was monitored using an optical measuring device, photometric dispersion analyzer (PDA 2000). Larger and more shear resistant flocs were obtained at 20 rpm for both 20- and 30-min slow mixing times; however, given the shorter duration for the former, the 20-min slow mixing time was considered to be more energy efficient. For slow mixing camp number (Gt) values in the range of 8,400-90,000, it was found that the mixing speed affected floc size and strength more than the time. Higher-turbidity removal efficiencies were achieved at 20 and 30 rpm, while TSS removal efficiency was higher for the 50-rpm slow mixing speed. Extended slow mixing time of 30 min yielded better turbidity and TSS removal efficiencies at the slower speeds.

  1. An improved atmospheric correction algorithm for applying MERIS data to very turbid inland waters

    NASA Astrophysics Data System (ADS)

    Jaelani, Lalu Muhamad; Matsushita, Bunkei; Yang, Wei; Fukushima, Takehiko

    2015-07-01

    Atmospheric correction (AC) is a necessary process when quantitatively monitoring water quality parameters from satellite data. However, it is still a major challenge to carry out AC for turbid coastal and inland waters. In this study, we propose an improved AC algorithm named N-GWI (new standard Gordon and Wang's algorithms with an iterative process and a bio-optical model) for applying MERIS data to very turbid inland waters (i.e., waters with a water-leaving reflectance at 864.8 nm between 0.001 and 0.01). The N-GWI algorithm incorporates three improvements to avoid certain invalid assumptions that limit the applicability of the existing algorithms in very turbid inland waters. First, the N-GWI uses a fixed aerosol type (coastal aerosol) but permits aerosol concentration to vary at each pixel; this improvement omits a complicated requirement for aerosol model selection based only on satellite data. Second, it shifts the reference band from 670 nm to 754 nm to validate the assumption that the total absorption coefficient at the reference band can be replaced by that of pure water, and thus can avoid the uncorrected estimation of the total absorption coefficient at the reference band in very turbid waters. Third, the N-GWI generates a semi-analytical relationship instead of an empirical one for estimation of the spectral slope of particle backscattering. Our analysis showed that the N-GWI improved the accuracy of atmospheric correction in two very turbid Asian lakes (Lake Kasumigaura, Japan and Lake Dianchi, China), with a normalized mean absolute error (NMAE) of less than 22% for wavelengths longer than 620 nm. However, the N-GWI exhibited poor performance in moderately turbid waters (the NMAE values were larger than 83.6% in the four American coastal waters). The applicability of the N-GWI, which includes both advantages and limitations, was discussed.

  2. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions

    NASA Astrophysics Data System (ADS)

    Landers, Mark N.; Sturm, Terry W.

    2013-09-01

    Turbidity (T) is the most ubiquitous of surrogate technologies used to estimate suspended-sediment concentration (SSC). The effects of sediment size on turbidity are well documented; however, effects from changes in particle size distributions (PSD) are rarely evaluated. Hysteresis in relations of SSC-to-turbidity (SSC˜T) for single stormflow events was observed and quantified for a dataset of 195 concurrent measurements of SSC, turbidity, discharge, velocity, and volumetric PSD collected during five stormflows in 2009-2010 on Yellow River at Gees Mill Road in metropolitan Atlanta, Georgia. Regressions of SSC-normalized turbidity (T/SSC) on concurrently measured PSD percentiles show an inverse, exponential influence of particle size on turbidity that is not constant across the size range of the PSD. The majority of the influence of PSD on T/SSC is from particles of fine silt and smaller sizes (finer than 16 µm). This study shows that small changes in the often assumed stability of the PSD are significant to SSC˜T relations. Changes of only 5 µm in the fine silt and smaller size fractions of suspended sediment PSD can produce hysteresis in the SSC˜T rating that can increase error and produce bias. Observed SSC˜T hysteresis may be an indicator of changes in sediment properties during stormflows and of potential changes in sediment sources. Trends in the PSD time series indicate that sediment transport is capacity limited for sand-sized sediment in the channel and supply limited for fine silt and smaller sediment from the hillslope.

  3. Optical imaging through turbid media using a degenerate-four-wave mixing correlation time gate

    SciTech Connect

    Bigio, I.J.; Strauss, C.E.M.; Zerkle, D.K.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have demonstrated the use of a degenerate-four-wave-mixing time gate to allow imaging through turbid media, with potential application to tissue imaging. A near infrared (NIR), long-pulse Cr{sup +3}:Li{sub 2}SrAlF{sub 6} laser was used as the light source (during most the project) for imaging through clear and turbid media. Preliminary experiments were also carried out with a continuous diode laser.

  4. Influence of dissolved organic materials on turbid water optical properties and remote-sensing reflectance

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Harriss, R. C.; Usry, J. W.; Poole, L. R.; Houghton, W. M.; Morris, W. D.; Gurganus, E. A.

    1982-01-01

    The effects of dissolved organic materials on turbid-water optical properties are assessed, by means of field measurements and laboratory simulations in which upwelled reflectance, attenuation, absorption, and backscatter spectral properties at wavelengths from 450 to 800 nm are examined in relation to water chemistry. The data show that dissolved organic materials decrease upwelled reflectance from turbid waters, and that the decrease in reflectance is a nonlinear function of concentration with the largest gradients at low carbon concentrations, depending on wavelength. Upwelled reflectance is found to be highly correlated with two backscatter-absorption parameters used in some optical models, which are nonlinear with dissolved organic material concentration change.

  5. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications.

    PubMed Central

    Boas, D A; O'Leary, M A; Chance, B; Yodh, A G

    1994-01-01

    We present an analytic solution for the scattering of diffuse photon density waves by spherical inhomogeneities within turbid media. The analytic result is compared to experimental measurements. Close agreement between theory and experiment permits the use of the theory to determine the properties of unknown sphere-like objects embedded in turbid media. The analytic solution is extended to encompass several problems of practical interest in imaging, including the influence of multiple sources, multiple objects, and boundaries on the characterization of spherical inhomogeneities. We also extend the solution to encompass time-domain measurements. Images PMID:8197151

  6. Turbidity and salinity affect feeding performance and physiological stress in the endangered delta smelt.

    PubMed

    Hasenbein, Matthias; Komoroske, Lisa M; Connon, Richard E; Geist, Juergen; Fangue, Nann A

    2013-10-01

    Coastal estuaries are among the most heavily impacted ecosystems worldwide with many keystone fauna critically endangered. The delta smelt (Hypomesus transpacificus) is an endangered pelagic fish species endemic to the Sacramento-San Joaquin Estuary in northern California, and is considered as an indicator species for ecosystem health. This ecosystem is characterized by tidal and seasonal gradients in water parameters (e.g., salinity, temperature, and turbidity), but is also subject to altered water-flow regimes due to water extraction. In this study, we evaluated the effects of turbidity and salinity on feeding performance and the stress response of delta smelt because both of these parameters are influenced by water flows through the San Francisco Bay Delta (SFBD) and are known to be of critical importance to the completion of the delta smelt's life cycle. Juvenile delta smelt were exposed to a matrix of turbidities and salinities ranging from 5 to 250 nephelometric turbidity units (NTUs) and 0.2 to 15 parts per thousand (ppt), respectively, for 2 h. Best statistical models using Akaike's Information Criterion supported that increasing turbidities resulted in reduced feeding rates, especially at 250 NTU. In contrast, best explanatory models for gene transcription of sodium-potassium-ATPase (Na/K-ATPase)-an indicator of osmoregulatory stress, hypothalamic pro-opiomelanocortin-a precursor protein to adrenocorticotropic hormone (expressed in response to biological stress), and whole-body cortisol were affected by salinity alone. Only transcription of glutathione-S-transferase, a phase II detoxification enzyme that protects cells against reactive oxygen species, was affected by both salinity and turbidity. Taken together, these data suggest that turbidity is an important determinant of feeding, whereas salinity is an important abiotic factor influencing the cellular stress response in delta smelt. Our data support habitat association studies that have shown greater

  7. Observed parameters for turbidity-current flow in channels, Reserve Fan, Lake Superior

    USGS Publications Warehouse

    Normark, W.R.

    1989-01-01

    Fine-grained tailings discharged from a taconite-ore processing operation produced turbidity currents that transported the sediment from a small delta into deep water at Silver Bay, Minnesota. Calculations using the average flow speeds (8 to 12 cm/sec) and the dilute concentration of the flow as measured during the experiment yield a value for the drag coefficient that is in remarkable agreement with estimated values commonly used for deriving speeds of turbidity currents using dimensions of submarine channels and properties of the sediments. -from Author

  8. Focusing light into desired patterns through turbid media by feedback-based wavefront shaping

    NASA Astrophysics Data System (ADS)

    Wan, Lipeng; Chen, Ziyang; Huang, Huiling; Pu, Jixiong

    2016-07-01

    We demonstrate that the focusing of light into desired patterns through turbid media can be realized using feedback-based wavefront shaping. Three desired focused patterns—a triangle, a circle, and a rectangle—are used as examples to study this ability. During the process of modulating scattered light, the Pearson's correlation coefficient is introduced as a feedback signal. It is found that the speckle field formed by the turbid media gradually transforms into the desired pattern through a process of modulation of the input beam wave front. The proposed approach has potential applications in biomedical treatment and laser material processing.

  9. Determination of scattering functions and their effects on remote sensing of turbidity in natural waters

    NASA Technical Reports Server (NTRS)

    Ghovanlou, A. H.; Gupta, J. N.; Henderson, R. G.

    1977-01-01

    The development of quantitative analytical procedures for relating scattered signals, measured by a remote sensor, was considered. The applications of a Monte Carlo simulation model for radiative transfer in turbid water are discussed. The model is designed to calculate the characteristics of the backscattered signal from an illuminated body of water as a function of the turbidity level, and the spectral properties of the suspended particulates. The optical properties of the environmental waters, necessary for model applications, were derived from available experimental data and/or calculated from Mie formalism. Results of applications of the model are presented.

  10. Species of dissolved Cu and Ni and their adsorption kinetics in turbid riverwater

    NASA Astrophysics Data System (ADS)

    Herzl, V. M. C.; Millward, G. E.; Wollast, R.; Achterberg, E. P.

    2003-01-01

    Time-dependent sorption experiments have been carried out under controlled laboratory conditions, using filtered river water and particles from the turbidity maximum zone (TMZ) of the Tamar Estuary (UK). Adsorptive cathodic stripping voltammetry (ACSV) was used to determine ACSV labile and total dissolved Cu and Ni, without prior sample handling and/or pre-concentration. The ACSV metal lability is theoretically defined and is dependent upon the α-coefficient ( αMAL) of the added ACSV ligand. The fraction of labile dissolved Cu in the river water was in the range 28-41% of the total, while labile Ni was 80-90% of the total dissolved Ni. After 24 h incubation with the particles, the concentration of total dissolved Cu was reduced to half the original value and involved the removal of 40% of labile Cu and 70% of the non-labile Cu. Removal of total dissolved Ni after 24 h ranged from 40 to 60% and the uptake kinetics were dominated by adsorption of labile Ni. The kinetics of adsorption for the different chemical forms of Cu and Ni were interpreted by assuming a first-order reversible reaction between the dissolved components and the particulate phase. The chemical response time for the removal of labile Cu was 1.1 and 0.5 h for non-labile Cu. The chemical response time for labile Ni was in a range from 0.7 to 0.3 h. The results are interpreted in terms of the role played by chemical kinetics in determining the phase transport of metals in the reactive zones of estuaries.

  11. Organic matter exploitation in a highly turbid environment: Planktonic food web in the Charente estuary, France

    NASA Astrophysics Data System (ADS)

    Modéran, Julien; David, Valérie; Bouvais, Pierre; Richard, Pierre; Fichet, Denis

    2012-02-01

    Estuaries are highly dynamic systems where multiple organic matter sources coexist and where complex biogeochemical processes greatly affect their fate. Although zooplankton plays a key role of in the energy fluxes between primary sources and exploited macrofauna, there is still a critical lack of field information concerning the spatio-temporal variability of the trophic pathways supporting its high biomasses in estuaries. From January 2007 to January 2008, suspended matter, microphytobenthos and zooplankton were sampled along the salinity gradient of the Charente estuary to determine their carbon and nitrogen stable isotope composition. The relative homogeneity of the δ 13C values of particulate organic matter (POM) all along the estuary (-23.6 to -26.5‰ except in March and June, ˜ -28.5‰) was attributed to physical mixing of marine and terrestrially derived organic matter with the great load of tidally resuspended particles. The five zooplankton taxa analysed displayed a wide range of δ 13C (from -34.9 to -17.4‰) and δ 15N values (3.4-15.2‰) over the year, providing strong evidence for high selectivity toward different organic matter sources and reinforcing the idea that a spatio-temporal succession of species assemblages lead to multiple trophic pathways and may stabilize the estuarine trophic network. The high δ 15N values of Eurytemora affinis in the maximum turbidity zone were believed to reflect a higher carnivorous tendency as a functional response to the strong decrease of phytoplankton availability. Conversely, Acartia spp. appeared unable to change their diet in the same way and was thus unable to colonize upstream areas. Stable isotope analysis also revealed that Mesopodopsis slabberi mostly relied on fresh phytoplankton and microphytobenthos while Neomysis integer presented a clear carnivorous tendency toward copepods, at least during the warm period. Additionally evidence was provided for passive (downstream advection of freshwater

  12. Nitrification and its oxygen consumption along the turbid Changjiang River plume

    NASA Astrophysics Data System (ADS)

    Hsiao, S. S.-Y.; Hsu, T.-C.; Liu, J.-W.; Xie, X.; Zhang, Y.; Lin, J.; Wang, H.; Yang, J.-Y. T.; Hsu, S.-C.; Dai, M.; Kao, S.-J.

    2013-05-01

    Nitrification rates of bulk water (NRb) and particle free (NRpf, particle > 3 μm eliminated) were determined along the Changjiang River plume in August 2011 by nitrogen isotope tracer technique. Dissolved oxygen (DO), community respiration rate (CR), nutrients, dissolved organic nitrogen, total suspended matter (TSM), particulate organic carbon/nitrogen (POC/PON), acid-leachable iron and manganese on suspended particles and both archaeal and β-proteobacterial amoA abundance on size-fractioned particle (> 3 μm and 0.22-3 μm) were measured. The NRb ranged from undetectable up to 4.6 μmol L-1 d-1 peaking at salinity of ~ 29. NRb values were positively correlated with ammonia concentration suggesting the importance of substrate in nitrification. In river mouth and inner plume, NRb was much higher than NRpf indicating nitrifying bacteria is mainly particle-associated, which was supported by amoA gene abundance and regression analysis of TSM and NRb. The estimated oxygen demand of nitrification accounted for 0.4% to 317% of CR. The nitrification oxygen demand is much higher than Redfield model's estimation (23%) indicating that oxygen might not be the sole oxidant though DO was sufficient (> 58 μmol kg-1). The excess nitrification oxygen demand showed tendency to occur at lower DO samples accompanying with higher acid-leachable Fe/Mn, which implied reactive Fe3+/Mn4+ may play a role as oxidant in nitrification process. Stoichiometric calculation suggested reactive Fe on particles was even 10-fold the oxidant demand for complete ammonia oxidation along all areas of the plume. The involvement of reactive iron and manganese in nitrification process in oxygenated water further complicated the nitrogen cycling in turbid river plume.

  13. Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media

    SciTech Connect

    Berger, Andrew J.; Venugopalan, Vasan; Durkin, Anthony J.; Pham, Tuan; Tromberg, Bruce J.

    2000-04-01

    Frequency-domain photon migration (FDPM) is a widely used technique for measuring the optical properties (i.e., absorption, {mu}{sub a}, and reduced scattering, {mu}{sub s}{sup '}, coefficients) of turbid samples. Typically, FDPM data analysis is performed with models based on a photon diffusion equation; however, analytical solutions are difficult to obtain for many realistic geometries. Here, we describe the use of models based instead on representative samples and multivariate calibration (chemometrics). FDPM data at seven wavelengths (ranging from 674 to 956 nm) and multiple modulation frequencies (ranging from 50 to 600 MHz) were gathered from turbid samples containing mixtures of three absorbing dyes. Values for {mu}{sub a} and {mu}{sub s}{sup '} were extracted from the FDPM data in different ways, first with the diffusion theory and then with the chemometric technique of partial least squares. Dye concentrations were determined from the FDPM data by three methods, first by least-squares fits to the diffusion results and then by two chemometric approaches. The accuracy of the chemometric predictions was comparable or superior for all three dyes. Our results indicate that chemometrics can recover optical properties and dye concentrations from the frequency-dependent behavior of photon density waves, without the need for diffusion-based models. Future applications to more complicated geometries, lower-scattering samples, and simpler FDPM instrumentation are discussed. (c) 2000 Optical Society of America.

  14. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    USGS Publications Warehouse

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  15. Virus-Bacterium Coupling Driven by both Turbidity and Hydrodynamics in an Amazonian Floodplain Lake ▿ † ‡

    PubMed Central

    Barros, Nathan; Farjalla, Vinicius F.; Soares, Maria C.; Melo, Rossana C. N.; Roland, Fábio

    2010-01-01

    The importance of viruses in aquatic ecosystem functioning has been widely described. However, few studies have examined tropical aquatic ecosystems. Here, we evaluated for the first time viruses and their relationship with other planktonic communities in an Amazonian freshwater ecosystem. Coupling between viruses and bacteria was studied, focusing both on hydrologic dynamics and anthropogenic forced turbidity in the system (Lake Batata). Samples were taken during four hydrologic seasons at both natural and impacted sites to count virus-like particles (VLP) and bacteria. In parallel, virus-infected bacteria were identified and quantified by transmission electron microscopy (TEM). Viral abundance ranged from 0.5 × 107 ± 0.2 × 107 VLP ml−1 (high-water season, impacted site) to 1.7 × 107 ± 0.4 × 107 VLP ml−1 (low-water season, natural site). These data were strongly correlated with the bacterial abundance (r2 = 0.84; P < 0.05), which ranged from 1.0 × 106 ± 0.5 × 106 cells ml−1 (high water, impacted site) to 3.4 × 106 ± 0.7 × 106 cells ml−1 (low water, natural site). Moreover, the viral abundance was weakly correlated with chlorophyll a, suggesting that most viruses were bacteriophages. TEM quantitative analyses revealed that the frequency of visibly infected cells was 20%, with 10 ± 3 phages per cell section. In general, we found a low virus-bacterium ratio (<7). Both the close coupling between the viral and bacterial abundances and the low virus-bacterium ratio suggest that viral abundance tends to be driven by the reduction of hosts for viral infection. Our results demonstrate that viruses are controlled by biological substrates, whereas in addition to grazing, bacteria are regulated by physical processes caused by turbidity, which affect underwater light distribution and dissolved organic carbon availability. PMID:20833790

  16. The impact of extreme turbidity events on the nursery function of a temperate European estuary with regulated freshwater inflow

    NASA Astrophysics Data System (ADS)

    González-Ortegón, E.; Subida, M. D.; Cuesta, J. A.; Arias, A. M.; Fernández-Delgado, C.; Drake, P.

    2010-04-01

    Estuaries are used as nursery grounds by numerous marine species despite being usually subject to strong anthropogenic disturbances. Abundances of marine recruits (fish and crustacean decapods) and their main prey (mysids) were monitored by monthly sampling, from June 1997 to February 2009, in the lower reaches of the Guadalquivir estuary (SW Spain). During that period, unusually high and persistent turbidity events (HPTEs) were observed twice. Both HPTEs started with strong and sudden freshwater discharges after relatively long periods of very low freshwater inflow. Data from this time-series were used to test the hypothesis that HPTEs may negatively impact the nursery function of estuaries either by decreasing prey availability or by decreasing survival/arrival of marine recruits. During HPTEs, the commonest mysid ( Mesopodopsis slabberi), a key species in the estuarine food web, showed a significant decrease in abundance. Likewise, some marine recruits that prey on M. slabberi and whose peaks of abundance within the estuary occur in summer-autumn ( Engraulis encrasicolus and Pomadasys incisus) were less abundant during HPTEs. It is also suggested that HPTEs might have triggered a shift in the distribution of the most euryhaline prey ( Neomysis integer) and predator ( Dicentrarchus punctatus and Crangon crangon) species, towards more saline waters. This could have contributed to an increase in the inter-specific competition (for food/habitat) within the estuarine nursery area. The results discussed in this study call attention to the need to reduce as much as possible the anthropogenic pressures that may stimulate the occurrence of high and persistent turbidity events (HPTEs) in order to preserve the nursery function of temperate estuaries.

  17. The effect of turbidity levels and Moringa oleifera concentration on the effectiveness of coagulation in water treatment.

    PubMed

    Nkurunziza, T; Nduwayezu, J B; Banadda, E N; Nhapi, I

    2009-01-01

    Laboratory experiments were carried out to assess the water purification and antimicrobial properties of Moringa oleifera (MO). Hence different concentrations (25 to 300 mg/L) were prepared from a salt (1 M NaCl) extract of MO fine powder and applied to natural surface water whose turbidity levels ranged from 50 to 450 NTU. The parameters determined before and after coagulation were turbidity, pH, colour, hardness, iron, manganese and Escherichia coli. The experiments showed that turbidity removal is influenced by the initial turbidity since the lowest turbidity removal of 83.2% was observed at 50 NTU, whilst the highest of 99.8% was obtained at 450 NTU. Colour removal followed the same trend as the turbidity. The pH exhibited slight variations through the coagulation. The hardness removal was very low (0 to 15%). However, high removals were achieved for iron (90.4% to 100%) and manganese (93.1% to 100%). The highest E. coli removal achieved was 96.0%. Its removal was associated with the turbidity removal. The optimum MO dosages were 150 mg/L (50 NTU and 150 NTU) and 125 mg/L for the rest of the initial turbidity values. Furthermore all the parameters determined satisfied the WHO guidelines for drinking water except for E. coli.

  18. Burdigalian turbid water patch reef environment revealed by larger benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Novak, V.; Renema, W.; Throughflow-project

    2012-04-01

    Ancient isolated patch reefs outcropping from siliciclastic sediments are a trademark for the Miocene carbonate deposits occurring in East Kalimantan, Indonesia. They develop in transitional shelf sediments deposited between deltaic and deep marine deposits (Allen and Chambers, 1998). The Batu Putih Limestone (Wilson, 2005) and similar outcrops in adjacent areas have been characterized as shallow water carbonates influenced by high siliciclastic input, showing low relief patch reefs in turbid waters. Larger benthic foraminifera (LBF) are excellent markers for biochronology and paleoenvironmental reconstruction. This study aims to reveal age and paleoenvironment of a shallow water carbonate patch reef developed in mixed depositional system by using LBF and microfacies analysis. The studied section is located near Bontang, East Kalimantan, and is approximately 80 m long and 12 m high. It is placed within Miocene sediments in the central part of the Kutai Basin. Patch reef and capping sediments were logged through eight transects along section and divided into nine different lithological units from which samples were collected. Thin sections and isolated specimens of larger benthic foraminifera were analyzed and recognized to species level (where possible) providing age and environmental information. Microfacies analysis of thin sections included carbonate classification (textural scheme of Dunham, 1962) and assemblage composition of LBF, algae and corals relative abundance. Three environmentally indicative groups of LBF were separated based on test morphology, habitat or living relatives (Hallock and Glenn, 1986). Analysed foraminifera assemblage suggests Burdigalian age (Tf1). With use of microfacies analysis nine successive lithological units were grouped into five facies types. Paleoenvironmental reconstruction of LBF fossil assemblage indicate two cycles of possible deepening recorded in the section. Based on high muddy matrix ratio in analyzed thin-sections we

  19. Turbidity alters pre-mating social interactions between native and invasive stream fishes

    USGS Publications Warehouse

    Glotzbecker, Gregory J.; Ward, Jessica L.; Walters, David M.; Blum, Michael J.

    2015-01-01

    These findings suggest that elevated turbidity can increase pre-mating social interactions between native and invasive species, which could result in greater hybridisation and promote the genetic assimilation of native species following species introductions. Thus, integrating knowledge of species behaviour into conservation and management planning can help deter the establishment and spread of invasive species.

  20. Natural Ferrihydrite as an Agent for Reducing Turbidity Caused by Suspended Clays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The turbidity of water can be reduced by the addition of positively charged compounds which coagulate negatively charged clay particles in suspension causing them to flocculate. This research was conducted to determine the effectiveness of the Fe oxide mineral ferrihydrite as a flocculating agent fo...

  1. Turbidimeter design and analysis: a review on optical fiber sensors for the measurement of water turbidity.

    PubMed

    Omar, Ahmad Fairuz Bin; Matjafri, Mohd Zubir Bin

    2009-01-01

    Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ.

  2. Modelling a turbidity current in Soyang reservoir (Korea) and its control using a selective withdrawal facility.

    PubMed

    Ryu, I G; Chung, S W; Yoon, S W

    2011-01-01

    Persistent turbidity in reservoirs and their downstream after flood events is one of most important environmental issues in Korea. Recently, modification of withdrawal facility and installation of a new selective withdrawal structure (SWS) have been implemented for the mitigation of downstream impact and sediment loading into water treatment facilities. This study was to explore the characteristics of flood density flow induced into Soyang Reservoir and the transport processes of suspended sediments (SS) through application of coupled two-dimensional hydrodynamic and particle dynamic models (TM-1, TM-2 and TM-3). The TM-3 including a turbidity attenuation rate as a lumped parameter showed best performance in reproducing the magnitude and distribution of SS in the reservoir. The validated model was applied to evaluate the effectiveness of SWS, which was designed for the reservoir, with 6 different historical flood events. The magnitude of vertical mixing of the turbidity plume and its persistence within the reservoir were closely correlated to the ratio of the volume of turbidity flow to the total reservoir storage (the theta value). The operation of SWS showed a positive effect as long as theta is between 0.3 and 0.6 but negative when theta = 0.83 for the study reservoir, thus it should be optimized based on the theta value for a better management of the reservoir.

  3. 40 CFR 141.551 - What strengthened combined filter effluent turbidity limits must my system meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false What strengthened combined filter... REGULATIONS Enhanced Filtration and Disinfection-Systems Serving Fewer Than 10,000 People Combined Filter Effluent Requirements § 141.551 What strengthened combined filter effluent turbidity limits must my...

  4. Turbidity-based sediment monitoring in northern Thailand: Hysteresis, variability, and uncertainty

    EPA Science Inventory

    Annual total suspended solid (TSS) loads in the Mae Sa Catchment in northern Thailand, determined with an automated, turbidity-based monitoring approach, were approximately 62,000, 33,000, and 14,000 Mg during the three years of observation. These loads were equivalent to basin y...

  5. Turbidimeter Design and Analysis: A Review on Optical Fiber Sensors for the Measurement of Water Turbidity

    PubMed Central

    Omar, Ahmad Fairuz Bin; MatJafri, Mohd Zubir Bin

    2009-01-01

    Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ. PMID:22408507

  6. UV-induced DNA damage in Cyclops abyssorum tatricus populations from clear and turbid alpine lakes

    PubMed Central

    Tartarotti, Barbara; Saul, Nadine; Chakrabarti, Shumon; Trattner, Florian; Steinberg, Christian E. W.; Sommaruga, Ruben

    2014-01-01

    Zooplankton from clear alpine lakes thrive under high levels of solar UV radiation (UVR), but in glacially turbid ones they are more protected from this damaging radiation. Here, we present results from experiments done with Cyclops abyssorum tatricus to assess UV-induced DNA damage and repair processes using the comet assay. Copepods were collected from three alpine lakes of differing UV transparency ranging from clear to glacially turbid, and exposed to artificial UVR. In addition, photoprotection levels [mycosporine-like amino acids (MAAs) and lipophilic antioxidant capacity] were estimated in the test populations. Similar UV-induced DNA damage levels were observed among the copepods from all lakes, but background DNA damage (time zero and dark controls) was lowest in the copepods from the glacially turbid lake, resulting in a higher relative DNA damage accumulation. Most DNA strand breaks were repaired after recovery in the dark. Low MAA concentrations were found in the copepods from the glacially turbid lake, while the highest levels were observed in the population from the most UV transparent lake. However, the highest lipophilic antioxidant capacities were measured in the copepods from the lake with intermediate UV transparency. Photoprotection and the ability to repair DNA damage, and consequently reducing UV-induced damage, are part of the response mechanisms in zooplankton to changes in water transparency caused by glacier retreat. PMID:24616551

  7. Precision Cleaning Verification of Nonvolatile Residues by Using Water, Ultrasonics, and Turbidity Analyses

    NASA Technical Reports Server (NTRS)

    Skinner, S. Ballou

    1991-01-01

    Chlorofluorocarbons (CFC's) in the atmosphere are believed to present a major environmental problem because they are able to interact with and deplete the ozone layer. NASA has been mandated to replace chlorinated solvents in precision cleaning, cleanliness verification, and degreasing of aerospace fluid systems hardware and ground support equipment. KSC has a CFC phase-out plan which provides for the elimination of over 90 percent of the CFC and halon use by 1995. The Materials Science Laboratory and KSC is evaluating four analytical methods for the determination of nonvolatile residues removal by water: (1) infrared analyses using an attenuated total reflectance; (2) surface tension analyses, (3) total organic content analyses, and (4) turbidity analyses. This research project examined the ultrasonic-turbidity responses for 22 hydrocarbons in an effect to determine: (1) if ultrasonics in heated water (70 C) will clean hydrocarbons (oils, greases, gels, and fluids) from aerospace hardware; (2) if the cleaning process by ultrasonics will simultaneously emulsify the removed hydrocarbons in the water; and (3) if a turbidimeter can be used successfully as an analytical instrument for quantifying the removal of hydrocarbons. Sixteen of the 22 hydrocarbons tested showed that ultrasonics would remove it at least 90 percent of the contaminated hydrocarbon from the hardware in 10 minutes or less giving a good ultrasonic-turbidity response. Six hydrocarbons had a lower percentage removal, a slower removal rate, and a marginal ultrasonic-turbidity response.

  8. Are viruses important in the plankton of highly turbid glacier-fed lakes?

    PubMed Central

    Drewes, Fabian; Peter, Hannes; Sommaruga, Ruben

    2016-01-01

    Viruses are ubiquitous in aquatic ecosystems where they significantly contribute to microbial mortality. In glacier-fed turbid lakes, however, viruses not only encounter low host abundances, but also a high number of suspended mineral particles introduced by glacier meltwaters. We hypothesized that these particles potentially lead to unspecific adsorption and removal of free virus from the plankton, and thus significantly reduce their abundance in this type of lake. We followed the distribution of free virus-like particles (VLP) during the ice-free season across a turbidity gradient in four alpine lakes including one adjacent clear system where hydrological connectivity to the receding glacier is already lost. In the glacier-fed turbid lakes, VLP abundance increased with distance to the glacier, but the highest numbers were observed in the clear lake by the end of August, coinciding with the maximum in prokaryotic abundance. Our results suggest that viral loss by attachment to particles is less important than expected. Nevertheless, the relatively lower variability in VLP abundance and the lower virus-to-prokaryote ratio found in the turbid lakes than in the clear one point to a rather low temporal turnover and thus, to a reduced impact on microbial communities. PMID:27094854

  9. A non-stochastic iterative computational method to model light propagation in turbid media

    NASA Astrophysics Data System (ADS)

    McIntyre, Thomas J.; Zemp, Roger J.

    2015-03-01

    Monte Carlo models are widely used to model light transport in turbid media, however their results implicitly contain stochastic variations. These fluctuations are not ideal, especially for inverse problems where Jacobian matrix errors can lead to large uncertainties upon matrix inversion. Yet Monte Carlo approaches are more computationally favorable than solving the full Radiative Transport Equation. Here, a non-stochastic computational method of estimating fluence distributions in turbid media is proposed, which is called the Non-Stochastic Propagation by Iterative Radiance Evaluation method (NSPIRE). Rather than using stochastic means to determine a random walk for each photon packet, the propagation of light from any element to all other elements in a grid is modelled simultaneously. For locally homogeneous anisotropic turbid media, the matrices used to represent scattering and projection are shown to be block Toeplitz, which leads to computational simplifications via convolution operators. To evaluate the accuracy of the algorithm, 2D simulations were done and compared against Monte Carlo models for the cases of an isotropic point source and a pencil beam incident on a semi-infinite turbid medium. The model was shown to have a mean percent error less than 2%. The algorithm represents a new paradigm in radiative transport modelling and may offer a non-stochastic alternative to modeling light transport in anisotropic scattering media for applications where the diffusion approximation is insufficient.

  10. Study of the effect of scattering from turbid water on the polarization of a laser beam

    NASA Technical Reports Server (NTRS)

    Henderson, R. G.; Hovanlou, A. H.

    1978-01-01

    A Monte Carlo simulation method was used to determine the effect of scattering from turbid water on the polarization of a backscattered beam of laser light. The relationship between the polarization and the type and amount of suspended particulates in the water was investigated.

  11. Dynamics of turbidity plumes in Lake Ontario. [Welland Canal and Niagara, Genesee, and Oswego Rivers

    NASA Technical Reports Server (NTRS)

    Pluhowski, E. J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Large turbidity features along the 275 km south shore of Lake Ontario were analyzed using LANDSAT-1 images. The Niagara River plume, ranging from 30 to 500 sq km in area is, by far, the largest turbidity feature in the lake. Based on image tonal comparisons, turbidity in the Welland Canal is usually higher than that in any other water course discharging into the lake during the shipping season. Less turbid water enters the lake from the Port Dalhousie diversion channel and the Genesee River. Relatively clear water resulting from the deposition of suspended matter in numerous upstream lakes is discharged by the Niagara and Oswego Rivers. Plume analysis corroborates the presence of a prevailing eastward flowing longshore current along the entire south shore. Plumes resulting from beach erosion were detected in the images. Extensive areas of the south shore are subject to erosion but the most severely affected beaches are situated between Fifty Mile Point, Ontario and Thirty Mile Point, New York along the Rochester embayment, and between Sodus Bay and Nine Mile Point.

  12. Automatic on-line analyser of microbial growth using simultaneous measurements of impedance and turbidity.

    PubMed

    Madrid, R E; Felice, C J; Valentinuzzi, M E

    1999-11-01

    An apparatus for the measurement of bacterial growth is described. The instrument applies alternate adequate sequential currents of two different frequencies through a pair of electrodes immersed in a cultured medium. It monitors, detects and quantifies the growth of micro-organisms based on the measurement of the impedance across the two electrodes and, simultaneously, it measures the variation in the medium turbidity. The medium conductivity and the interface electrode impedance changes can be extracted from the measured impedance. The variations in turbidity can be calibrated in absorbance or optical density units. Moreover, all these parameters are also proportional to bacterial proliferation. The computer-controlled apparatus processes and displays the parameters on a monitor showing bulk resistance, electrode impedance and turbidity changes as time course events. The equipment can detect aerobic or anaerobic micro-organisms and permits the operator simultaneously to assess impedance and turbidity, or it can produce each parameter as a separate event. Time growth curves of different micro-organisms are presented in the results.

  13. Gill structural change in response to turbidity has no effect on the oxygen uptake of a juvenile sparid fish

    PubMed Central

    Cumming, H.; Herbert, N. A.

    2016-01-01

    Turbidity as a result of increased suspended sediments in coastal waters is an environmental stress of worldwide concern. Recent research on fish suggests that detrimental changes to gill structure can occur in turbid waters, with speculation that these alterations diminish fitness variables, such as growth and development, by negatively impacting the O2 uptake capacity (respiration) of fish. Specifically to address this unknown, the impact of turbid water on the gill structure, somatic growth rate and O2 uptake rates of a juvenile sparid species (Pagrus auratus) was addressed following exposure to five different turbidity treatments (<10, 20, 40, 60 or 80 nephelometric turbidity units) for 30 days. Significant gill structural change was apparent with a progressive increase in turbidity and was quantified as a reduction in lamellar density, as well as an increase in basal hyperplasia, epithelial lifting and increased oxygen diffusion distance across the lamellae. The weight of control fish did not change throughout the experiment, but all fish exposed to turbid waters lost weight, and weight loss increased with nephelometric turbidity units, confirming that long-term turbidity exposure is detrimental to growth productivity. The growth of fish could be impacted in a variety of ways, but the specific hypothesis that structural alteration of the gills impairs O2 uptake across the gills and limits growth fitness was not supported because there was no measurable difference in the standard metabolic rate, maximal metabolic rate, aerobic metabolic scope or critical oxygen saturation limit of fish measured in clear water after 30 days of exposure. Although impaired O2 uptake as a result of structurally adjusted gills is unlikely to be the cause of poor fish growth, the exact mechanism by which growth productivity is affected in turbid conditions remains unclear and warrants further investigation. PMID:27766155

  14. Are stream stabilization projects reducing suspended sediment concentrations and turbidity in the New York City Water Supply Watershed?

    NASA Astrophysics Data System (ADS)

    McHale, M. R.; Siemion, J.; Davis, W. D.

    2015-12-01

    Turbidity and suspended sediment concentrations (SSCs) are primary water quality concerns in the upper Esopus Creek watershed, the main tributary to the Ashokan reservoir. The Ashokan reservoir is one of 6 surface water reservoirs that constitute about 90% of New York City's drinking water supply. This study quantified turbidity levels and SSCs at 10 locations throughout the upper Esopus Creek watershed for 3 years prior to the implementation of 2 stream stabilization projects and for 18 months after the projects were completed. More than 93 percent of the total-suspended sediment load occurred on days with flows greater than or equal to the 90th percentile of flows observed during the study period. Discharge, SSC, and turbidity were strongly related at the outlet of the upper Esopus Creek, but not at every monitoring site. In general, relations between discharge and SSC and turbidity were strongest at sites with high SSCs, with the exception of Stony Clove Creek, the largest tributary. Stony Clove Creek, consistently produced higher SSCs and turbidity than any of the other Esopus Creek tributaries. Nonetheless, there was not a strong relation between either turbidity or SSC and discharge because there was a series of eroding banks in contact with fine grained glacio-lacustrine deposits and associated hill slope failures within the Stony Clove Creek watershed that delivered elevated turbidity and SSCs to the stream during all flow conditions. Stream bank stabilization projects were completed at two of the largest bank failures. After the projects were completed there was decrease in stream SSC and turbidity however, flows during the 18 months following the projects were lower than before the projects. Nevertheless, a shift in the SSC and turbidity discharge rating curves suggests that the stream stabilization projects resulted in lower turbidity levels and SSCs for similar discharge conditions as compared to before the projects thereby reducing sediment yields

  15. Drinking Water Turbidity and Emergency Department Visits for Gastrointestinal Illness in New York City, 2002-2009

    PubMed Central

    Hsieh, Jennifer L.; Nguyen, Trang Quyen; Matte, Thomas; Ito, Kazuhiko

    2015-01-01

    Background Studies have examined whether there is a relationship between drinking water turbidity and gastrointestinal (GI) illness indicators, and results have varied possibly due to differences in methods and study settings. Objectives As part of a water security improvement project we conducted a retrospective analysis of the relationship between drinking water turbidity and GI illness in New York City (NYC) based on emergency department chief complaint syndromic data that are available in near-real-time. Methods We used a Poisson time-series model to estimate the relationship of turbidity measured at distribution system and source water sites to diarrhea emergency department (ED) visits in NYC during 2002-2009. The analysis assessed age groups and was stratified by season and adjusted for sub-seasonal temporal trends, year-to-year variation, ambient temperature, day-of-week, and holidays. Results Seasonal variation unrelated to turbidity dominated (~90% deviance) the variation of daily diarrhea ED visits, with an additional 0.4% deviance explained with turbidity. Small yet significant multi-day lagged associations were found between NYC turbidity and diarrhea ED visits in the spring only, with approximately 5% excess risk per inter-quartile-range of NYC turbidity peaking at a 6 day lag. This association was strongest among those aged 0-4 years and was explained by the variation in source water turbidity. Conclusions Integrated analysis of turbidity and syndromic surveillance data, as part of overall drinking water surveillance, may be useful for enhanced situational awareness of possible risk factors that can contribute to GI illness. Elucidating the causes of turbidity-GI illness associations including seasonal and regional variations would be necessary to further inform surveillance needs. PMID:25919375

  16. Evaluation of using aluminum sulfate and water-soluble Moringa oleifera seed lectin to reduce turbidity and toxicity of polluted stream water.

    PubMed

    Freitas, José Henrique Edmilson Souza; de Santana, Keissy Vanderley; do Nascimento, Ana Cláudia Claudina; de Paiva, Sérgio Carvalho; de Moura, Maiara Celine; Coelho, Luana Cassandra Breitenbach Barroso; de Oliveira, Maria Betânia Melo; Paiva, Patrícia Maria Guedes; do Nascimento, Aline Elesbão; Napoleão, Thiago Henrique

    2016-11-01

    Aluminum salts are used as coagulants in water treatment; however, the exposure to residual aluminum has been associated with human brain lesions. The water-soluble Moringa oleifera lectin (WSMoL), which is extracted with distilled water and isolated by chitin chromatography, has coagulant activity and is able to reduce the concentration of metal ions in aqueous solutions. This study evaluated the potential of using aluminum sulfate and WSMoL to reduce the turbidity and toxicity of water from the Cavouco stream located in Recife, Pernambuco, Brazil. The water sample used (called P1) was collected from the stream source, which was found to be strongly polluted based on physicochemical and water quality analyses, as well as ecotoxicity assays with Artemia salina and seeds of Eruca sativa and Lactuca sativa. The assays combining WSMoL and aluminum sulfate were more efficient than those that used these agents separately. Furthermore, the greatest reduction in turbidity (96.8%) was obtained with the treatment using aluminum sulfate followed by WSMoL, compared to when they were applied simultaneously (91.3%). In addition, aluminum sulfate followed by WSMoL treatment resulted in residual aluminum concentration (0.3 mg/L) that was much lower than that recorded after the treatment using only the salt (35.5 mg/L). The ecotoxicity of P1 was also strongly reduced after the treatments. In summary, the combined use of aluminum sulfate and WSMoL was efficient in promoting a strong reduction of turbidity and ecotoxicity of a polluted water sample, without resulting in a high residual aluminum concentration at the conclusion of the treatment. PMID:27526060

  17. Evaluation of using aluminum sulfate and water-soluble Moringa oleifera seed lectin to reduce turbidity and toxicity of polluted stream water.

    PubMed

    Freitas, José Henrique Edmilson Souza; de Santana, Keissy Vanderley; do Nascimento, Ana Cláudia Claudina; de Paiva, Sérgio Carvalho; de Moura, Maiara Celine; Coelho, Luana Cassandra Breitenbach Barroso; de Oliveira, Maria Betânia Melo; Paiva, Patrícia Maria Guedes; do Nascimento, Aline Elesbão; Napoleão, Thiago Henrique

    2016-11-01

    Aluminum salts are used as coagulants in water treatment; however, the exposure to residual aluminum has been associated with human brain lesions. The water-soluble Moringa oleifera lectin (WSMoL), which is extracted with distilled water and isolated by chitin chromatography, has coagulant activity and is able to reduce the concentration of metal ions in aqueous solutions. This study evaluated the potential of using aluminum sulfate and WSMoL to reduce the turbidity and toxicity of water from the Cavouco stream located in Recife, Pernambuco, Brazil. The water sample used (called P1) was collected from the stream source, which was found to be strongly polluted based on physicochemical and water quality analyses, as well as ecotoxicity assays with Artemia salina and seeds of Eruca sativa and Lactuca sativa. The assays combining WSMoL and aluminum sulfate were more efficient than those that used these agents separately. Furthermore, the greatest reduction in turbidity (96.8%) was obtained with the treatment using aluminum sulfate followed by WSMoL, compared to when they were applied simultaneously (91.3%). In addition, aluminum sulfate followed by WSMoL treatment resulted in residual aluminum concentration (0.3 mg/L) that was much lower than that recorded after the treatment using only the salt (35.5 mg/L). The ecotoxicity of P1 was also strongly reduced after the treatments. In summary, the combined use of aluminum sulfate and WSMoL was efficient in promoting a strong reduction of turbidity and ecotoxicity of a polluted water sample, without resulting in a high residual aluminum concentration at the conclusion of the treatment.

  18. The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time

    NASA Astrophysics Data System (ADS)

    Uncles, R. J.; Stephens, J. A.; Smith, R. E.

    2002-07-01

    It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Patos Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low 'intrinsic' SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing

  19. The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time

    USGS Publications Warehouse

    Uncles, R.J.; Stephens, J.A.; Smith, R.E.

    2002-01-01

    It is shown that there is a marked tendency for long, strongly tidal estuaries to have greater suspended particulate matter (SPM) concentrations within their high-turbidity regions than shorter estuaries with comparable tidal ranges at their mouths, or weakly tidal estuaries. Using consistently derived data from 44 estuaries in Europe and the Americas, contours of the logarithm of maximum estuarine SPM concentration are shown to be reasonably smooth when plotted against the logarithm of mean spring tidal range (at the estuary mouth) and the logarithm of estuarine tidal length. Predictions from the plot are compared with published observations made in the Delaware, Scheldt, Rio de la Plata, Gironde, Bay of Fundy, Changjiang (Yangtze), Amazon, Paros Lagoon and the Hawkesbury Estuary and it is shown that, qualitatively, there are no serious discrepancies. Short, weakly tidal estuaries are predicted to have very low 'intrinsic' SPM concentrations. High SPM concentrations in these estuaries would most likely be the result of either locally generated wave resuspension, high freshwater sediment loads due to freshets, or intruding seawater carrying suspended sediments derived from wave activity in the coastal zone. Application of a generic tidal model demonstrates that longer estuaries possess faster tidal currents for a given tidal range at their mouth and, in the presence of a supply of erodable fine sediment, therefore (by implication) produce greater concentrations of SPM that can be accumulated within a turbidity maximum. The same is true if the tidal range is increased for estuaries of a given length. These features are illustrated by comparing surveys of SPM data from two large estuaries possessing greatly different tidal ranges (the microtidal, medium turbidity Potomac and the macrotidal, highly turbid Humber-Ouse) and a third, much smaller but strongly tidal estuary (the low-turbidity Tweed). It is demonstrated that longer estuaries tend to have longer flushing

  20. Integrating in situ reflectance with satellite imagery to determine chlorophyll and turbidity for inland waters

    NASA Astrophysics Data System (ADS)

    Marshall, Tina

    The overall objective of this study was to use hyperspectral field spectra to find possible spectral regions in which chlorophyll- a and turbidity could be identified to assist in the assessment and monitoring of water quality using satellite remote sensing technology. Using statistical analysis between the mean reflectance values measured with the GER1500 field spectroradiometer across the spectrum and the concentrations of chlorophyll-a (mug/L) and turbidity (NTU) acquired simultaneously, regression analyses were applied to determine the best wavelengths for determining the concentration of these parameters. Each regression model (512 in total) corresponded to a measured wavelength of the GER1500 field spectrometer. The achieved correlations presented as R2 values against wavelengths, indicated the regions with high correlation values, chlorophyll-a , and turbidity. Based on the results from this study and by matching the spectral bands of the field spectroradiometer with those of the Landsat Thematic Mapper (TM) satellite sensor, several suitable spectral regions were determined for monitoring water quality in Kentucky Lake. For chlorophyll- a, the spectral region of 0.45-0.52 mum (TM band 1), and for turbidity the region 0.52-0.60 mum (TM bands 1 and 2) were determined to be suitable wavelengths to determine such data. In this study, the wavelengths of 700 nm and 675 nm from the GER1500 spectroradiometer were found to be the most suitable wavelengths for predicting chlorophyll-a concentrations. Correlation analysis between remotely sensed data and chlorophyll- a data indicated the possibility of mapping chlorophyll- a concentrations accurately. The wavelengths that represented the difference of 770.82nm-742.60nm correlated best to turbidity (R2 = 0.74).

  1. Direct measurements by submersible of surge-type turbidity currents in a fjord channel, southeast Alaska

    SciTech Connect

    Cowan, E.A. . Dept. of Geology); Powell, R.D. . Geology Dept.); Lawson, D.E. ); Carlson, P.R. )

    1992-01-01

    High density, high-speed turbidity currents were observed and their properties measured in submarine channels in Queen Inlet, southeast Alaska during June, 1990 and 1991. A ROV submersible fitted with two video cameras, a CTD, an optical backscatter turbidity monitor (OBS), and electromagnetic current meter, and sidescan sonar was used to collect data from within and above the flows. Multiple flows were recorded during a ROV dive at 2.3 km from the delta front in a channel at 104 m depth. Flows were marked by sudden increases in turbidity and current velocity. In one flow, turbidity increased from 300 to 1,600 OBS units (instrument maximum) in 10 sec, and within 9.4 min, salinity (S) steadily decreased by 12.1 ppt, with only a 0.2 C temperature (T) increase. Density differences between the flow and ambient water require a minimum sediment concentration of 97 g/l. Maximum flow velocity exceeded 3.3 m/s. A vertical ROV profile indicated a flow thickness of 10 m. The upper surface was visually identified by billowing suspended sediment and by fluctuating OBS and T as ambient and flow water mixed in turbulent eddies. A faster S decrease and slower T increase with distance into and away from the flow indicate that thermal diffusive processes were less efficient than convective mass transfer. The S change indicates that flow water and ambient water mixed well beyond the flow defined by high turbidity. Warm water temperatures within the flow and low meltwater stream discharge suggest that these flows originated from the delta front and are not continuous underflows.

  2. Direct Monitoring of Turbidity Currents: New Insights, Challenging Preconceptions and Future Directions

    NASA Astrophysics Data System (ADS)

    Clare, M. A.; Talling, P. J.; Cartigny, M.; Vardy, M. E.; Azpiroz, M.; Hunt, J.; Sumner, E.; Hizzett, J.; Vellinga, A.; Hughes Clarke, J. E.

    2015-12-01

    Turbidity currents are, volumetrically, the most important process for the transportation of sediment on the face of our planet. The combination of large volume and fast speeds can damage globally important seafloor cables and offshore structures and may transport sediment over hundreds of kilometres. Despite their significance for sediment flux and as geohazards, very few examples of direct monitoring of real-world turbidity currents exist. Until recently, there has been a reliance on depositional records, scaled-down experiments and numerical models to understand the nature of turbidity currents. The results of direct monitoring obtained over the past few years now provide us with ground-breaking insights into the real-world behaviour of full-scale turbidity currents. We present results of recent flow monitoring acquired using an array of acoustic and geophysical tools, from multiple sites worldwide, including the deep-sea Congo Canyon, Canadian fjords, and a dredging experiment offshore Holland. This advent in turbidity current monitoring, largely driven by step-changes in technology, has reinforced some existing interpretations, but also challenges some preconceptions. Our results are based on monitoring using multibeam sonars, sub-bottom and acoustic Doppler current profilers. First, we provide insights into the triggering of flows that include landslides, tidal and wave effects, and other more cryptic events with no clear initiation point. Second, the influence of dense layers at the base of flows is shown to be important for sediment transport and bedform migration; however, most acoustic techniques struggle to penetrate. Initial results from a novel Chirp profiler provide imaging of the lowermost part of the flow. Third, the morphology of the flow and its development through time are shown to deviate from that observed in classical flume tank experiments. Finally, we summarise some future directions for flow monitoring to push forward our understanding of

  3. Nitrification and its oxygen consumption along the turbid Chang Jiang River plume

    NASA Astrophysics Data System (ADS)

    Hsiao, S. S.-Y.; Hsu, T.-C.; Liu, J.-w.; Xie, X.; Zhang, Y.; Lin, J.; Wang, H.; Yang, J.-Y. T.; Hsu, S.-C.; Dai, M.; Kao, S.-J.

    2014-04-01

    Nitrification is a series of processes that oxidizes ammonia to nitrate, which contributes to hypoxia development in coastal oceans, especially in eutrophicated regions. The nitrification rate of bulk water (NRb) and particle free water (NRpf, particle > 3 μm eliminated) were determined along the Chang Jiang River plume in August 2011 by nitrogen isotope tracer technique. Measurements of dissolved oxygen (DO), community respiration rate (CR), nutrients, dissolved organic nitrogen (DON), total suspended matter (TSM), particulate organic carbon/nitrogen (POC / PON), acid-leachable iron and manganese on suspended particles and both archaeal and β-proteobacterial ammonia monooxygenase subunit A gene (amoA) abundance on size-fractioned particles (> 3 μm and 0.22-3 μm) were conducted. The NRb ranged from undetectable up to 4.6 μmol L-1 day-1, peaking at a salinity of ~ 29. NRb values were positively correlated with ammonium concentration, suggesting the importance of substrate in nitrification. In the river mouth and the inner plume, NRb was much higher than NRpf, indicating that the nitrifying microorganism is mainly particle associated, which was supported by its significant correlation with amoA gene abundance and TSM concentration. The estimated oxygen demands of nitrification accounted for 0.32 to 318% of CR, in which 50% samples demanded more oxygen than that predicted by by the Redfield model (23%), indicating that oxygen might not be the sole oxidant though DO was sufficient (> 58 μmol kg-1) throughout the observation period. The excess nitrification-associated oxygen demand (NOD) showed a tendency to occur at lower DO samples accompanied by higher acid-leachable Fe / Mn, which implied reactive Fe3+ / Mn4+ may play a role as oxidant in the nitrification process. Stoichiometric calculation suggested that reactive Fe on particles was 10 times the oxidant demand required to complete ammonia oxidation in the entire plume. The potential involvement of reactive

  4. 40 CFR 141.563 - What follow-up action is my system required to take based on continuous turbidity monitoring?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... required to take based on continuous turbidity monitoring? 141.563 Section 141.563 Protection of... Individual Filter Turbidity Requirements § 141.563 What follow-up action is my system required to take based on continuous turbidity monitoring? Follow-up action is required according to the following...

  5. 40 CFR 141.563 - What follow-up action is my system required to take based on continuous turbidity monitoring?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... required to take based on continuous turbidity monitoring? 141.563 Section 141.563 Protection of... Individual Filter Turbidity Requirements § 141.563 What follow-up action is my system required to take based on continuous turbidity monitoring? Follow-up action is required according to the following...

  6. 40 CFR 141.563 - What follow-up action is my system required to take based on continuous turbidity monitoring?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... required to take based on continuous turbidity monitoring? 141.563 Section 141.563 Protection of... Individual Filter Turbidity Requirements § 141.563 What follow-up action is my system required to take based on continuous turbidity monitoring? Follow-up action is required according to the following...

  7. 40 CFR 141.563 - What follow-up action is my system required to take based on continuous turbidity monitoring?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... required to take based on continuous turbidity monitoring? 141.563 Section 141.563 Protection of... Individual Filter Turbidity Requirements § 141.563 What follow-up action is my system required to take based on continuous turbidity monitoring? Follow-up action is required according to the following...

  8. 40 CFR 141.563 - What follow-up action is my system required to take based on continuous turbidity monitoring?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Individual Filter Turbidity Requirements § 141.563 What follow-up action is my system required to take based...: If * * * Your system must * * * (a) The turbidity of an individual filter (or the turbidity of combined filter effluent (CFE) for systems with 2 filters that monitor CFE in lieu of individual...

  9. The relative influence of the anthropogenic air pollutants on the atmospheric turbidity factors measured at an urban monitoring station.

    PubMed

    Elminir, Hamdy K; Hamid, R H; El-Hussainy, F; Ghitas, Ahmed E; Beheary, M M; Abdel-Moneim, Khaled M

    2006-09-15

    This work is based on simultaneous measurements of direct solar radiation along with other chemical measurements, with the objective of investigating the diurnal and seasonal variations of atmospheric turbidity factors (i.e., Linke's factor, Angström's coefficient, and aerosol optical depth). Relationships between atmospheric turbidity factors, expressing the solar radiation extinction, and anthropogenic air pollutants were also evaluated. The frequency of occurrence of the individual indices has been established to describe the sky conditions. The preliminary results obtained indicate high variability of aerosol loading, leading to high turbidity for most of the year. Annual averages of 0.2 and 6 with standard deviations of 0.096 and 0.98 were found for Angström and Linke turbidities, respectively. On the base of the frequency of occurrence, it has been found that over 50% of the dataset are around 0.25 and 6.3 for Angström and Linke turbidities, respectively. On average, the month of September experienced the highest turbidity, while December experienced the lowest. A possible reason for this is that the vertical distribution of the aerosol particles moves up in September due to the extent of the Sudan monsoon trough. We also note that spring values of the turbidity factors are closer to summer values, whereas the pronounced difference between the summer values in comparison with the winter values may be attributed to relatively greater difference in the water vapor level in the atmosphere.

  10. Modelling the risk of mortality of Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) exposed to different turbidity conditions.

    PubMed

    Avelar, W E P; Neves, F F; Lavrador, M A S

    2014-05-01

    The provision of sediment in rivers, due to erosion processes that occur in the environment, consists of a major source of pollution and alteration of the physicochemical conditions of water resources. In addition, the increase in water turbidity may cause siltation, dramatically impacting aquatic communities. Specifically considering the bivalve Corbicula fluminea (Müller, 1774), the aim of this study was to analyse the effect of exposure to different turbidity conditions of sediments, as a risk factor for the animals. For this purpose, a docking device was designed to ensure water circulation in a closed system and to maintain the desired levels of turbidity. Although C. fluminea can generally tolerate environmental changes in aquatic systems, an intolerance to high turbidity levels was experimentally observed, expressed by the mortality rate of the animals when exposed to conditions above 150 nephelometric turbidity units (NTU). This value was similar to the one recorded at study sites in the rivers Pardo (Serrana-SP-Brazil) and Mogi Guaçu (Porto Ferreira-SP-Brazil) during the rainy season. Using a logistic regression model, the experimental results were analysed and the observed mortality rates indicate that the exposure of the animals to turbidity levels above 150 nephelometric turbidity units (NTU), for periods longer than 120 hours, may be considered a probable cause of mortality for the species.

  11. Toward an understanding of the turbidity measurement of heterocoagulation rate constants of dispersions containing particles of different sizes.

    PubMed

    Liu, Jie; Xu, Shenghua; Sun, Zhiwei

    2007-11-01

    Our previous studies have shown that the determination of coagulation rate constants by turbidity measurement becomes impossible for a certain operating wavelength (that is, its blind point) because at this wavelength the change in the turbidity of a dispersion completely loses its response to the coagulation process. Therefore, performing the turbidity measurement in the wavelength range near the blind point should be avoided. In this article, we demonstrate that the turbidity measurement of the rate constant for coagulation of a binary dispersion containing particles of two different sizes (heterocoagulation) presents special difficulties because the blind point shifts with not only particle size but also with the component fraction. Some important aspects of the turbidity measurement for the heterocoagulation rate constant are discussed and experimentally tested. It is emphasized that the T-matrix method can be used to correctly evaluate extinction cross sections of doublets formed during the heterocoagulation process, which is the key data determining the rate constant from the turbidity measurement, and choosing the appropriate operating wavelength and component fraction are important to achieving a more accurate rate constant. Finally, a simple scheme in experimentally determining the sensitivity of the turbidity changes with coagulation over a wavelength range is proposed.

  12. Estimation of suspended-sediment concentration from total suspended solids and turbidity data for Kentucky, 1978-1995

    USGS Publications Warehouse

    Williamson, Tanja N.; Crawford, Charles G.

    2011-01-01

    Suspended sediment is a constituent of water quality that is monitored because of concerns about accelerated erosion, nonpoint contamination of water resources, and degradation of aquatic environments. In order to quantify the relationship among different sediment parameters for Kentucky streams, long-term records were obtained from the National Water Information System of the U.S. Geological Survey. Suspended-sediment concentration (SSC), the parameter traditionally measured and reported by the U.S. Geological Survey, was statistically compared to turbidity and total suspended solids (TSS), two parameters that are considered surrogate data. A linear regression of log-transformed observations was used to estimate SSC from TSS; 72% of TSS observations were less than coincident SSC observations; however, the estimated SSC values were almost as likely to be overestimated as underestimated. The SSC-turbidity relationship also used log-transformed observations, but required a nonlinear, breakpoint regression that separated turbidity observations ???6nephelometric turbidity units. The slope for these low turbidity values was not significantly different than zero, indicating that low turbidity observations provide no real information about SSC; in the case of the Kentucky sediment record, this accounts for 30% of the turbidity observations. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  13. New turbidity current model based on high-resolution monitoring of the longest flow ever measured

    NASA Astrophysics Data System (ADS)

    Azpiroz, Maria; Cartigny, Matthieu; Talling, Peter; Parsons, Daniel; Simmons, Steve; Clare, Michael; Sumner, Esther; Pope, Ed

    2016-04-01

    Turbidity currents transport large amounts of sediment from shallow waters towards deep ocean basins. Little is known about these flows, despite their potential hazard for damaging expensive and strategically important seafloor infrastructure. So far turbidity currents have been profiled in only 6 deep ocean locations worldwide. Our current knowledge of these flows is therefore mainly based on scaled-down experimental and computationally-limited numerical modelling. Here we present results from the monitoring of a one-week long turbidity current in the Congo Canyon that had a discharge close to that of the Mississippi River. Measurements taken every 5 seconds give the most detailed image yet of a turbidity current deep-water over an unprecedented duration. Our analysis reveals a different flow structure than that presented in previous models. Classical models display a thick front of the flow followed by a thinner and faster flow, which gives way to a short and quasi-steady body. Instead, we observe a thin frontal cell that outruns a thicker (~80 m), long and slower quasi-steady flow. In contrast to the previous model, where the thinner faster flow feeds sediment into the head, the Congo Canyon turbidity current shows a frontal cell that feeds sediment into, and at the same time outruns, the succeeding quasi-steady flow. As a result of the faster moving frontal cell, the flow should continuously stretch and grow in length while propagating down the system. Within the quasi-steady body, the flow switches between what appears to be two stable flow modes. One mode exhibits a fast and thin velocity profile whose maximum is a low distance from the seabed and resembles Froude-supercritical flow conditions, while the other mode is similar to Froude-subcritical flow conditions as the flow is thicker and slower. These first observations provide new insights into the behaviour of deep water long duration flows that differ from traditional models and provide an exciting

  14. Speckle contrast diffuse correlation tomography of complex turbid medium flow

    PubMed Central

    Huang, Chong; Irwin, Daniel; Lin, Yu; Shang, Yu; He, Lian; Kong, Weikai; Luo, Jia; Yu, Guoqiang

    2015-01-01

    Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupled to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary

  15. Speckle contrast diffuse correlation tomography of complex turbid medium flow

    SciTech Connect

    Huang, Chong; Irwin, Daniel; Lin, Yu; Shang, Yu; He, Lian; Kong, Weikai; Yu, Guoqiang; Luo, Jia

    2015-07-15

    Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupled to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary

  16. Removal of Giardia spp. and Cryptosporidium spp. from water supply with high turbidity: analytical challenges and perspectives.

    PubMed

    Maciel, P M F; Sabogal-Paz, L P

    2016-06-01

    Giardia and Cryptosporidium species are a serious problem if present in water supplies. The removal of these protozoans and the adaptation of existing protocols are essential for supplying drinking water to developing countries. Considering this, the aim of this study is to evaluate, on a bench level, the removal of Giardia spp. cysts and of Cryptosporidium spp. oocysts from water with high turbidity, using polyaluminium chloride as a coagulant. Filtration using mixed cellulose ester membranes, followed, or not, by purification through immunomagnetic separation (IMS) was used for detecting protozoans. By evaluating the adopted protocol, without using IMS, retrievals of 80% of cysts and 5% of oocysts were obtained, whereas by using IMS, recoveries of 31.5% of cysts and 5.75% of oocysts were reached. When analyzing the coagulant performance, a dosage of 65 mg L(-1) showed contamination from protozoans in all the samples of filtered water. A dosage of 25 mg L(-1) presented protozoans in 50% of the filtered water samples. The results showed an improved performance for the 25 mg L(-1) dosage; therefore, the control of coagulation and adaptation of detection protocols must be evaluated according to the features of raw water and availability of local resources.

  17. Removal of Giardia spp. and Cryptosporidium spp. from water supply with high turbidity: analytical challenges and perspectives.

    PubMed

    Maciel, P M F; Sabogal-Paz, L P

    2016-06-01

    Giardia and Cryptosporidium species are a serious problem if present in water supplies. The removal of these protozoans and the adaptation of existing protocols are essential for supplying drinking water to developing countries. Considering this, the aim of this study is to evaluate, on a bench level, the removal of Giardia spp. cysts and of Cryptosporidium spp. oocysts from water with high turbidity, using polyaluminium chloride as a coagulant. Filtration using mixed cellulose ester membranes, followed, or not, by purification through immunomagnetic separation (IMS) was used for detecting protozoans. By evaluating the adopted protocol, without using IMS, retrievals of 80% of cysts and 5% of oocysts were obtained, whereas by using IMS, recoveries of 31.5% of cysts and 5.75% of oocysts were reached. When analyzing the coagulant performance, a dosage of 65 mg L(-1) showed contamination from protozoans in all the samples of filtered water. A dosage of 25 mg L(-1) presented protozoans in 50% of the filtered water samples. The results showed an improved performance for the 25 mg L(-1) dosage; therefore, the control of coagulation and adaptation of detection protocols must be evaluated according to the features of raw water and availability of local resources. PMID:27280604

  18. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 2. On the possibility of light absorption coefficient measurement in a turbid medium from the amplitude of the opto-acoustic signal

    SciTech Connect

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-09-30

    The second part of this work describes the experimental technique of measuring the local light absorption in turbid media. The technique is based on the measurement of the amplitude of an opto-acoustic (OA) signal excited in a turbid medium under the condition of one-sided access to the object under study. An OA transducer is developed to perform the proposed measurement procedure. Experiments are conducted for the turbid media with different optical properties (light absorption and reduced scattering coefficients) and for different diameters of the incident laser beam. It is found that the laser beam diameter can be chosen so that the dependences of the measured OA signal amplitude on the light absorption coefficient coincide upon varying the reduced scattering coefficient by more than twice. The obtained numerical and experimental results demonstrate that the OA method is applicable for measuring the local light absorption coefficient in turbid media, for example, in biological tissues. (measurement of parametrs of laser radiation)

  19. Mercury fluxes out of glacial and non-glacial streams, as determined by continuous measurements of turbidity and CDOM

    NASA Astrophysics Data System (ADS)

    Vermilyea, A.; Nagorski, S. A.; Lamborg, C. H.; Scott, D.; Hood, E. W.

    2011-12-01

    Glaciers and icefields along the Alaskan coast contribute nearly half of the freshwater discharge to the Gulf of Alaska and can play an important role in near-shore marine ecosystems. In southeastern Alaska, glaciers are rapidly thinning and retreating and are being replaced by temperate forests and wetlands. This ongoing landscape evolution is altering the sensitivity of coastal watersheds to atmospheric Hg inputs. The influence of glacial runoff with high suspended sediment loads on in-stream mercury fluxes and dynamics is poorly understood. In contrast, numerous studies have shown that streams with large contributions from wetlands typically carry high dissolved organic matter (DOM) and filtered methylmercury (FMHg) loads. This study compares and contrasts the mercury concentrations, fluxes, partitioning, and speciation in two coastal watersheds in southeastern Alaska. The two watersheds are separated by only 23 km and are relatively similar in area, however one is heavily glaciated (Lemon Creek) and one is dominated by temperate forest and wetlands (Peterson Creek). Grab samples for unfiltered total mercury (UTHg), particulate total mercury (PTHg), filtered total mercury (FTHg), and FMHg were taken during three, 4-day sampling periods within the glacial melt season (May-Sept) while continuously monitoring in-situ chromophoric dissolved organic matter (CDOM) fluorescence and stream turbidity. While UTHg concentration-discharge relationships were poor (R2=0.38-0.55) in both streams, flux estimates for UTHg were greatly improved using CDOM fluorescence (R2=0.82) for Peterson Creek, and turbidity (R2=0.81) for Lemon Creek. UTHg concentrations were consistently greater in Peterson Creek (factor of 1.7-2.3); however, the watershed area normalized UTHg flux was 3-6 times greater in glacial Lemon Creek than Peterson Creek across all time periods. In Peterson Creek, the majority of the UTHg was in the filtered phase, whereas in Lemon Creek the majority of the mercury

  20. Characterisation of the turbid particles in the extraction of sugar beet pectins.

    PubMed

    Guo, Xiao-Ming; Zhu, Si-Ming; Tang, Qiang; Yu, Shu-Juan

    2014-11-01

    This paper was aimed at characterising the insoluble substances (IS) responsible for the turbidity of the extract and impurity of the resulting pectins. Results showed that the IS caused a significant increase in the turbidity of the extract. The IS had bi-pyramidal shapes under the SEM observation. The observed XRD peaks for the IS were similar to those of calcium oxalate dihydrate (COD). Moreover, the IS consisted of mainly oxalate and calcium. Results from the present study indicate the IS is COD. The influence of the IS on the purity of pectin was also studied. The presence of the IS in the pectins indicated the IS can precipitate with pectins during the alcohol precipitation, thereby contaminating the resulting pectins.

  1. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics

    NASA Astrophysics Data System (ADS)

    Hughes Clarke, John E.

    2016-06-01

    Field observations of turbidity currents remain scarce, and thus there is continued debate about their internal structure and how they modify underlying bedforms. Here, I present the results of a new imaging method that examines multiple surge-like turbidity currents within a delta front channel, as they pass over crescent-shaped bedforms. Seven discrete flows over a 2-h period vary in speed from 0.5 to 3.0 ms-1. Only flows that exhibit a distinct acoustically attenuating layer at the base, appear to cause bedform migration. That layer thickens abruptly downstream of the bottom of the lee slope of the bedform, and the upper surface of the layer fluctuates rapidly at that point. The basal layer is inferred to reflect a strong near-bed gradient in density and the thickening is interpreted as a hydraulic jump. These results represent field-scale flow observations in support of a cyclic step origin of crescent-shaped bedforms.

  2. New method to determine Angstrom`s turbidity coefficient: Its application for Valencia

    SciTech Connect

    Pinazo, J.M.; Canada, J.; Bosca, J.V.

    1995-04-01

    Traditionally the Angstrom turbidity coefficient has been derived from either spectral direct solar radiation measurements or broadband direct solar radiation and precipitable water measurements. The new method for calculating the Angstrom turbidity coefficient presented here is based on the ratio of direct solar radiation to global solar radiation on a horizontal surface and on the `C` model of Iqbal. For this method, it is not necessary to know the precipitable water and the ozone content of the atmosphere. The results of the present model are compared against those of a prior study using experimental data measured at Valencia during 1989-1990. Finally, a graphic method to calculate $beta for any location and standard meteorological conditions is presented. 8 refs., 16 figs., 2 tabs.

  3. An improved 96-well turbidity assay for T4 lysozyme activity.

    PubMed

    Toro, Tasha B; Nguyen, Thao P; Watt, Terry J

    2015-01-01

    T4 lysozyme (T4L) is an important model system for investigating the relationship between protein structure and function. Despite being extensively studied, a reliable, quantitative activity assay for T4L has not been developed. Here, we present an improved T4L turbidity assay as well as an affinity-based T4L expression and purification protocol. This assay is designed for 96-well format and utilizes conditions amenable for both T4L and other lysozymes. This protocol enables easy, efficient, and quantitative characterization of T4L variants and allows comparison between different lysozymes. Our method: •Is applicable for all lysozymes, with enhanced sensitivity for T4 lysozyme compared to other 96-well plate turbidity assays;•Utilizes standardized conditions for comparing T4 lysozyme variants and other lysozymes; and•Incorporates a simplified expression and purification protocol for T4 lysozyme.

  4. What are the implications of rapid global warming for landslide-triggered turbidity current activity?

    NASA Astrophysics Data System (ADS)

    Clare, Michael; Peter, Talling; James, Hunt

    2014-05-01

    A geologically short-lived (~170kyr) episode of global warming occurred at ~55Ma, termed the Initial Eocene Thermal Maximum (IETM). Global temperatures rose by up to 8oC over only ~10kyr and a massive perturbation of the global carbon cycle occurred; creating a negative carbon isotopic (~-4% δ13C) excursion in sedimentary records. This interval has relevance to study of future climate change and its influence on geohazards including submarine landslides and turbidity currents. We analyse the recurrence frequency of turbidity currents, potentially initiated from large-volume slope failures. The study focuses on two sedimentary intervals that straddle the IETM and we discuss implications for turbidity current triggering. We present the results of statistical analyses (regression, generalised linear model, and proportional hazards model) for extensive turbidite records from an outcrop at Zumaia in NE Spain (N=285; 54.0 to 56.5 Ma) and based on ODP site 1068 on the Iberian Margin (N=1571; 48.2 to 67.6 Ma). The sedimentary sequences provide clear differentiation between hemipelagic and turbiditic mud with only negligible evidence of erosion. We infer dates for turbidites by converting hemipelagic bed thicknesses to time using interval-averaged accumulation rates. Multi-proxy dating techniques provide good age constraint. The background trend for the Zumaia record shows a near-exponential distribution of turbidite recurrence intervals, while the Iberian Margin shows a log-normal response. This is interpreted to be related to regional time-independence (exponential) and the effects of additive processes (log-normal). We discuss how a log-normal response may actually be generated over geological timescales from multiple shorter periods of random turbidite recurrence. The IETM interval shows a dramatic departure from both these background trends, however. This is marked by prolonged hiatuses (0.1 and 0.6 Myr duration) in turbidity current activity in contrast to the

  5. A highly sensitive underwater video system for use in turbid aquaculture ponds.

    PubMed

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C

    2016-01-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds' benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system's high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health. PMID:27554201

  6. Time-resolved backscattering of circularly and linearly polarized light in a turbid medium.

    PubMed

    Ni, Xiaohui; Alfano, R R

    2004-12-01

    Time-resolved backscattering profiles of circularly and linearly polarized light were measured from a turbid medium composed of small and large polystyrene sphere particles in water. It is shown that, based on the measurements of the time-resolved backscattered copolarized and cross-polarized components of the incident polarized light, either linearly or circularly polarized light can be used to effectively image an object that is deep inside a turbid medium composed of small particles, depending on the depolarization properties of the object itself. For large particles such as in tissue, fog, and clouds, the experimentally observed polarization memory effect on the backscattering temporal profiles suggests that a significant improvement in the image contrast can be achieved by use of circularly polarized light.

  7. LASERS IN MEDICINE: Determination of the optical characteristics of turbid media by the laser optoacoustic method

    NASA Astrophysics Data System (ADS)

    Karabutov, Aleksander A.; Pelivanov, Ivan M.; Podymova, N. B.; Skipetrov, S. E.

    1999-12-01

    A method, based on the optoacoustic effect for determination of the spatial distribution of the light intensity in turbid media and of the optical characteristics of such media was proposed (and implemented experimentally). A temporal profile of the pressure of a thermo-optically excited acoustic pulse was found to be governed by the absorption coefficient and by the spatial distribution of the light intensity in the investigated medium. The absorption coefficient and the reduced light-scattering coefficient of model turbid water-like media were measured by the optoacoustic method. The results of a direct determination of the spatial light-intensity distribution agreed with a theoretical calculation made in the diffusion approximation.

  8. A highly sensitive underwater video system for use in turbid aquaculture ponds

    PubMed Central

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C.

    2016-01-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds’ benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system’s high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health. PMID:27554201

  9. Turbidity currents: monitoring their occurrence and movement with a three-dimensional sensor network.

    PubMed

    Weirich, F H

    1984-04-27

    Detailed field data on the occurrence, flow pattern, and internal dynamics of both surge and continuous turbidity currents have been obtained with a three-dimensional array of optical and thermal sensors. The array, operated in a glacial lake in southeastern British Columbia, collected detailed information on the character of surge events with velocities reaching 110 centimeters per second and continuous underflows exceeding 90 centimeters per second. Thefindings (i) indicate that such currents are frequent events, occurring with density differences between the incoming stream water and the lake water as low as 0.19 kilogram per cubic meter of water; (ii) document the differences in the initiation and internal characteristics of the continuous and surge events; and (iii) support the concept of erosion by turbidity currents.

  10. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect

    PubMed Central

    Edrei, Eitan; Scarcelli, Giuliano

    2016-01-01

    Several phenomena have been recently exploited to circumvent scattering and have succeeded in imaging or focusing light through turbid layers. However, the requirement for the turbid medium to be steady during the imaging process remains a fundamental limitation of these methods. Here we introduce an optical imaging modality that overcomes this challenge by taking advantage of the so-called shower-curtain effect, adapted to the spatial-frequency domain via speckle correlography. We present high resolution imaging of objects hidden behind millimeter-thick tissue or dense lens cataracts. We demonstrate our imaging technique to be insensitive to rapid medium movements (> 5 m/s) beyond any biologically-relevant motion. Furthermore, we show this method can be extended to several contrast mechanisms and imaging configurations. PMID:27347498

  11. Theory of scattering of electromagnetic waves of the microwave range in a turbid medium

    NASA Astrophysics Data System (ADS)

    Konstantinov, O. V.; Matveentsev, A. V.

    2013-02-01

    The coefficient of extinction of electromagnetic waves of the microwave range due to their scattering from clusters suspended in an amorphous medium and responsible for turbidity is calculated. Turbidity resembles the case when butter clusters transform water into milk. In the case under investigation, the clusters are conductors (metallic or semiconducting). The extinction coefficient is connected in a familiar way with the cross section of light scattering from an individual cluster. A new formula is derived for the light scattering cross section in the case when damping of oscillations of an electron is due only to spontaneous emission of light quanta. In this case, the resonant scattering cross section for light can be very large. It is shown that this can be observed only in a whisker nanocluster. In addition, the phonon energy on a whisker segment must be higher than the photon energy, which is close to the spacing between the electron energy levels in the cluster.

  12. A highly sensitive underwater video system for use in turbid aquaculture ponds.

    PubMed

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C

    2016-01-01

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds' benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system's high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health.

  13. Determination of turbidity patterns in Lake Chicot from LANDSAT MSS imagery

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R.

    1982-01-01

    A historical analysis of all the applicable LANDSAT imagery was conducted on the turbidity patterns of Lake Chicot, located in the southeastern corner of Arkansas. By examining the seasonal and regional turbidity patterns, a record of sediment dynamics and possible disposition can be obtained. Sketches were generated from the suitable imagery, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. Additionally, the upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.

  14. Measuring turbidity, and indicator to evaluate drinkability of waters in Southern countries? Approaches from Burkina Faso, Sudan and Argentina case studies

    NASA Astrophysics Data System (ADS)

    Lavie, Emilie; Robert, Elodie

    2013-04-01

    and its tributaries were not transformed upstream our sample points (Lavie et al., 2013, under press). Finally, we studied an urban drinking waters network, in Khartoum, the capital of Sudan, one of the least developed countries, with chronic political crises. The nearly 6 million inhabitants of this settlement suffer many cuts and bad pressure at tap. Furthermore, Nile's waters that feed the network are summarily treated and then quite turbid, especially in summer during Nile's floods. This situation obliges the population to store and to decant water, transforming it into clear ones (Lavie and Hamza, 2013, under press). The results of our studies demonstrate that, generally, we can observe a correlation between increasing turbidity and bacteriology, and decreasing oximetry. This assumption is disproven in many cases: (1) the stagnant waters of Khartoum and (2) the clarified Mendoza River waters. Finally, (3) the seasonal anthropogenic uses of soil and waters in the Doubegue and Tunuyán Rivers have more impact on the bacteriological quality than the natural seasonality of the suspended solids because soil erosion has increased.

  15. The Response of Suspended Sediment, Turbidity, and Velocity to Historical Alterations of the Missouri River

    USGS Publications Warehouse

    Blevins, Dale W.

    2006-01-01

    The heavy sediment load and large amounts of floating debris generated by the constantly caving banks of the Missouri River was documented in the first written description of the river by Father Jacques Marquette in 1673 as he approached the mouth of the Missouri River from the upper Mississippi River: '[We]' heard the noise of a rapid, into which we were about to run. I have seen nothing more dreadful. An accumulation of large and entire trees, branches, and floating islands, was issuing from the mouth of the river Pekitanoui (Missouri River), with such impetuosity that we could not without great danger risk passing through it. So great was its agitation that the water was so very muddy, and could not become clear.' However, large changes in suspended sediment and turbidity in the lower Missouri River below Gavins Point Dam have occurred in response to extensive structural changes that have been imposed on the Missouri River and its watershed during the last two centuries. Efforts to shape the channel, remove snags and sawyers, dredge shallows, and stabilize banks for navigation began as early as 1838 ( http://www.lewis-clark.org/ri_mo-snagboats.htm , Chittenden, 1903). However, bank stabilization efforts were sporadic and scattered in comparison to large scale changes that occurred after 1929. In the early 1930s the numerous small channels were combined into a single-fixed channel with 4,745 stone and wood-pile dikes, 3,371 dike extensions, streambank protection works on concave banks, man-made cutoffs, the closing of chutes with dikes, the removal of snags, and dredging (Keown and others, 1981). The resulting navigation channel was 6-ft (feet) deep by 200-ft wide and was expanded to 9 by 300 ft in the 1950s and early 1960s. Construction of six dams was started in 1933 and their reservoirs were filled by 1967. Three of these reservoirs are among the five largest in the United States. Nearly one-third of the Missouri River is now submerged below these massive

  16. Relevance of different spectral techniques to describe estuarine suspended sediment dynamics based on a high-frequency, long-term turbidity dataset

    NASA Astrophysics Data System (ADS)

    Jalón Rojas, Isabel; Schmidt, Sabine; Sottolichio, Aldo

    2015-04-01

    Sediment dynamics in estuaries are complex and strongly variable over time scales ranging from seconds to years. Various forcings (turbulence, tides, river inflow, wind waves, morphological and climatic changes) may cause the temporal and spatial variability of suspended sediment (SS) concentrations. The evaluation of these SS dynamics by in-situ measurements have traditionally faced three difficulties: (1) the quantification of low-frequency variability that requires continuous measures over long time periods; (2) inevitable gaps in data limiting the post-processing; (3) the need for recording other environmental variables in the same period and at a coherent sampling frequency. To record a high-frequency and long-term turbidity dataset, an automatic monitoring network (MAGEST) has been implemented in the Gironde estuary, a macrotidal and highly turbid system in the South-West France, in 2004. This 10-year turbidity time series is rather unique in European estuaries, enabling the evaluation of SS dynamics at all the significant time scales in one single analysis of the dataset. To achieve this, several methodologies of data analysis using different approaches are available, but their relevance, especially for the more recently developed ones, is almost unexplored. In this work, we present the test of four spectral techniques to the analysis of a high-frequency turbidity time series of an estuary such as the Gironde, to discuss advantages and limitations of each method. We compare the Power Spectral Analysis (PSA), the Singular Spectral Analysis (SSA), the Wavelet Transform (WT) and the Empirical Mode Decomposition (EMD). Advantages and limitations of each method are evaluated on the basis of five criteria: efficiency for incomplete time series, appropriateness for time-varying analysis, ability to recognize processes without the need of complementary environmental variables, capacity to calculate the relative importance of processes, and capacity to identify long

  17. Light availability may control extracellular phosphatase production in turbid environments.

    PubMed

    Rychtecký, Pavel; Řeháková, Klára; Kozlíková, Eliška; Vrba, Jaroslav

    2015-01-01

    Extracellular phosphatase production by phytoplankton was investigated in the moderately eutrophic Lipno reservoir, Czech Republic during 2009 and 2010. We hypothesized that production of extracellular phosphatases is an additional mechanism of phosphorus acquisition enabling producers to survive rather than to dominate the phytoplankton. Hence, we examined the relationship between light availability and phosphatase production, as light plays an important role in polymictic environments. Bulk phosphatase activity was measured using a common fluorometric assay, and the production of phosphatases was studied using the Fluorescently Labelled Enzyme Activity technique, which enabled direct microscopic detection of phosphatase-positive cells. In total, 29 taxa of phytoplankton were identified during both years. Only 17 taxa from the total number of 29 showed production of extracellular phosphatases. Species dominating the phytoplankton rarely produced extracellular phosphatases. In contrast, taxa exhibiting phosphatase activity were present in low biomass in the phytoplankton assemblage. Moreover, there was a significant relationship between the proportion of phosphatase positive species in samples and the Z(eu):Z(mix) ratio (a proxy of light availability). A laboratory experiment with different light intensities confirmed the influence of light on production of phosphatases. Our seasonal study confirmed that extracellular phosphatase production is common in low-abundance populations but not in dominant taxa of the phytoplankton. It also suggested the importance of sufficient light conditions for the production of extracellular phosphatases.

  18. Are flood-driven turbidity currents hot spots for priming effect in lakes?

    NASA Astrophysics Data System (ADS)

    Bouffard, Damien; Perga, Marie-Elodie

    2016-06-01

    In deep stratified lakes, such as Lake Geneva, flood-driven turbidity currents are thought to contribute to the replenishment of deep oxygen by significant transport of river waters saturated with oxygen into the hypolimnion. The overarching aim of this study was to test this long-standing hypothesis directly. It combines direct observational data collected during an extreme flooding event that occurred in May 2015 with dark bioassays designed to evaluate the consequences of river-borne inputs for the hypolimnetic respiration. The exceptional precipitation events of May 2015 caused floods with an annual return time for the Rhône River, the dominant tributary of Lake Geneva, and with 50-year return time for the Dranse River, the second-most important tributary. Sediment-loaded river flows generated turbidity currents plunging into the lake hypolimnion. The observed river intrusions contributed to the redistribution of dissolved oxygen, with no net gain, when occurring in the lowermost hypolimnetic layer. In the uppermost hypolimnion above the last deep-mixing event, the intrusions coincided with a net oxygen deficit. Consistent with field observations, dark bioassays showed that 1 to 50 % substitution of riverine organic matter to deep (< 200 m) hypolimnetic water did not affect microbial respiration, while the addition of 1 to 10 % of riverine water to the uppermost hypolimnetic waters resulted in a respiration over-yielding, i.e. excess respiration of both river-borne and lacustrine organic matter. The results of our study conflict with the hypothesis that flood-driven turbidity currents necessarily increase hypolimnetic oxygen stocks in Lake Geneva. In contrast, results show that flood-driven turbidity currents can be potential hot spots for priming effect in lakes.

  19. Temporal variability of atmospheric turbidity and DNI attenuation in the sugarcane region, Botucatu/SP

    NASA Astrophysics Data System (ADS)

    Santos, Cícero Manoel dos; Escobedo, João Francisco

    2016-11-01

    In this study, attenuation of direct normal solar irradiance (DNI) in Botucatu / São Paulo, an area under the influence of local and adjacent agricultural burning, is expressed using the Linke's turbidity factor (TL) in the period from 1996 to 2008. Two methodologies represented as TLDj and TLLi were used. Temporal variability (hourly average for the season and monthly average) is presented. Turbidity was correlated with wind speed and air temperature. Frequency distribution and cumulative frequency are analyzed to determine turbidity predominance levels in the local atmosphere. Optical depth information of aerosols at 550 nm (AOD550nm) and water vapor were obtained by the Terra satellite using the MODIS sensor. The highest degree of DNI transmission is observed in the morning. Close to solar noon, transmission is smaller (greatest TL value). Diurnal TL variability is more evident in the hot period than in the cold period. May and June were the months of lowest DNI attenuation (highest atmospheric transparency). The highest DNI attenuation occurs in spring (TLDj = 4.22 ± 0.05 and TLLi = 4.65 ± 0.06) and summer (TLDj = 4.27 ± 0.14 and TLLi = 4.69 ± 0.15). Wind speed and air temperature were positively correlated with TL. In > 28% of hours of clear sky, turbidity exceeded the value of 4.0. The region of Botucatu seems to be influenced by water vapor and aerosols from different origins. This study concludes that these factors significantly reduce DNI incidence on the surface, with higher atmospheric transparency in the cold period and lower atmospheric transparency in the warm period.

  20. Effects of spatial and temporal variability of turbidity on phytoplankton blooms

    USGS Publications Warehouse

    May, Christine L.; Koseff, Jeffrey R.; Lucas, Lisa; Cloern, James E.; Schoellhamer, David H.

    2003-01-01

    A central challenge of coastal ecology is sorting out the interacting spatial and temporal components of environmental variability that combine to drive changes in phytoplankton biomass. For 2 decades, we have combined sustained observation and experimentation in South San Francisco Bay (SSFB) with numerical modeling analyses to search for general principles that define phytoplankton population responses to physical dynamics characteristic of shallow, nutrient-rich coastal waters having complex bathymetry and influenced by tides, wind and river flow. This study is the latest contribution where we investigate light-limited phytoplankton growth using a numerical model, by modeling turbidity as a function of suspended sediment concentrations (SSC). The goal was to explore the sensitivity of estuarine phytoplankton dynamics to spatial and temporal variations in turbidity, and to synthesize outcomes of simulation experiments into a new conceptual framework for defining the combinations of physical-biological forcings that promote or preclude development of phytoplankton blooms in coastal ecosystems. The 3 main conclusions of this study are: (1) The timing of the wind with semidiurnal tides and the spring-neap cycle can significantly enhance spring-neap variability in turbidity and phytoplankton biomass; (2) Fetch is a significant factor potentially affecting phytoplankton dynamics by enhancing and/or creating spatial variability in turbidity; and (3) It is possible to parameterize the combined effect of the processes influencing turbidity‹and thus affecting potential phytoplankton bloom development‹with 2 indices for vertical and horizontal clearing of the water column. Our conceptual framework is built around these 2 indices, providing a means to determine under what conditions a phytoplankton bloom can occur, and whether a potential bloom is only locally supported or system-wide in scale. This conceptual framework provides a tool for exploring the inherent light

  1. Optical imaging of objects in turbid media using heterodyned optical Kerr gate

    NASA Astrophysics Data System (ADS)

    Zhan, Pingping; Tan, Wenjiang; Si, Jinhai; Xu, Shichao; Tong, Junyi; Hou, Xun

    2014-05-01

    In this paper, we demonstrated optical imaging of objects hidden behind highly turbid media with a femtosecond heterodyned optical Kerr gate (HOKG). The experimental results showed that when compared with traditional optical Kerr gated (OKG) imaging, the HOKG imaging system provided higher image sharpness and higher spatial resolution. In traditional OKG imaging system, low pass filtering due to a photoinduced soft aperture decreased the image sharpness. When the HOKG was used, the high spatial frequency components of the object could be effectively compensated.

  2. Irreversible denaturation of maltodextrin glucosidase studied by differential scanning calorimetry, circular dichroism, and turbidity measurements.

    PubMed

    Goyal, Megha; Chaudhuri, Tapan K; Kuwajima, Kunihiro

    2014-01-01

    Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5-1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).

  3. In situ tryptophan-like fluorometers: assessing turbidity and temperature effects for freshwater applications.

    PubMed

    Khamis, K; Sorensen, J P R; Bradley, C; Hannah, D M; Lapworth, D J; Stevens, R

    2015-04-01

    Tryptophan-like fluorescence (TLF) is an indicator of human influence on water quality as TLF peaks are associated with the input of labile organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time measurement of TLF could be particularly useful for monitoring water quality at a higher temporal resolution than available hitherto. However, current understanding of TLF quenching/interference is limited for field deployable sensors. We present results from a rigorous test of two commercially available submersible tryptophan fluorometers (ex ∼ 285, em ∼ 350). Temperature quenching and turbidity interference were quantified in the laboratory and compensation algorithms developed. Field trials were then undertaken involving: (i) an extended deployment (28 days) in a small urban stream; and, (ii) depth profiling of an urban multi-level borehole. TLF was inversely related to water temperature (regression slope range: -1.57 to -2.50). Sediment particle size was identified as an important control on the turbidity specific TLF response, with signal amplification apparent <150 NTU for clay particles and <650 NTU for silt particles. Signal attenuation was only observed >200 NTU for clay particles. Compensation algorithms significantly improved agreement between in situ and laboratory readings for baseflow and storm conditions in the stream. For the groundwater trial, there was an excellent agreement between laboratory and raw in situ TLF; temperature compensation provided only a marginal improvement, and turbidity corrections were unnecessary. These findings highlight the potential utility of real time TLF monitoring for a range of environmental applications (e.g. tracing polluting sources and monitoring groundwater contamination). However, in situations where high/variable suspended sediment loads or rapid changes in temperature are anticipated concurrent monitoring of turbidity and temperature is required and site specific calibration is

  4. Observations of the Columbia River salt wedge and estuarine turbidity maximum using AUVs

    NASA Astrophysics Data System (ADS)

    McNeil, C. L.; Shcherbina, A.; Litchendorf, T.; Sanford, T. B.; Martin, D.; Baptista, A. M.; Lopez, J.; Crump, B.

    2012-12-01

    We present detailed observations of the salt wedge and estuarine turbidity maxima (ETM) in the North Channel of the Columbia River estuary (OR, USA) under conditions of high river discharge during May 2012. Measurements were made using two REMUS-100 autonomous underwater vehicles (AUVs; Hydroid, Inc.) equipped with SBE-49 CTDs (Seabird-Electronics, Inc.) for water temperature and salinity, upward/downward looking ADCPs (Teledyne RDI, Inc.) for currents, and ECO Puck triplets (WET Labs, Inc.) for optical backscatter measurement of turbidity. The acoustic backscatter intensity from the ADCP was also used as a proxy measurement for suspended sediments and was found to correlate quite well with the optical backscatter measurements. Daily forecasts of tidal currents in the estuary were used to simulate the AUV path in advance of deployment to aid data collection. Repeat AUV sections were made along and across the channel during flood tide. The turbidity and height above riverbed of the bottom boundary layer was observed to increase toward the deeper waters at the center of the channel. An ETM-like feature was observed ahead of the advancing salt wedge front with locally higher turbidity levels, presumably the result of flocculation and resuspension. To visualize better the repeat section measurements we made data movies. Each frame of the movie is our best estimate of a synoptic snapshot of along-section tracer distribution at a given point in time. These snapshots were created by re-location of non-synoptic AUV measurements to account for the advection of water parcels. An example data movie showing the intrusion of the salt wedge during the flood tide will be presented.

  5. Processes that initiate turbidity currents and their influence on turbidites: A marine geology perspective

    USGS Publications Warehouse

    Piper, David J.W.; Normark, William R.

    2009-01-01

    How the processes that initiate turbidity currents influence turbidite deposition is poorly understood, and many discussions in the literature rely on concepts that are overly simplistic. Marine geological studies provide information on the initiation and flow path of turbidity currents, including their response to gradient. In case studies of late Quaternary turbidites on the eastern Canadian and western U.S. margins, initiation processes are inferred either from real-time data for historical flows or indirectly from the age and contemporary paleogeography, erosional features, and depositional record. Three major types of initiation process are recognized: transformation of failed sediment, hyperpycnal flow from rivers or ice margins, and resuspension of sediment near the shelf edge by oceanographic processes. Many high-concentration flows result from hyperpycnal supply of hyperconcentrated bedload, or liquefaction failure of coarse-grained sediment, and most tend to deposit in slope conduits and on gradients < 0.5?? at the base of slope and on the mid fan. Highly turbulent flows, from transformation of retrogressive failures and from ignitive flows that are triggered by oceanographic processes, tend to cannibalize these more proximal sediments and redeposit them on lower gradients on the basin plain. Such conduit flushing provides most of the sediment in large turbidites. Initiation mechanism exerts a strong control on the duration of turbidity flows. In most basins, there is a complex feedback between different types of turbidity-current initiation, the transformation of the flows, and the associated slope morphology. As a result, there is no simple relationship between initiating process and type of deposit. ?? 2009, SEPM (Society for Sedimentary Geology).

  6. In situ tryptophan-like fluorometers: assessing turbidity and temperature effects for freshwater applications.

    PubMed

    Khamis, K; Sorensen, J P R; Bradley, C; Hannah, D M; Lapworth, D J; Stevens, R

    2015-04-01

    Tryptophan-like fluorescence (TLF) is an indicator of human influence on water quality as TLF peaks are associated with the input of labile organic carbon (e.g. sewage or farm waste) and its microbial breakdown. Hence, real-time measurement of TLF could be particularly useful for monitoring water quality at a higher temporal resolution than available hitherto. However, current understanding of TLF quenching/interference is limited for field deployable sensors. We present results from a rigorous test of two commercially available submersible tryptophan fluorometers (ex ∼ 285, em ∼ 350). Temperature quenching and turbidity interference were quantified in the laboratory and compensation algorithms developed. Field trials were then undertaken involving: (i) an extended deployment (28 days) in a small urban stream; and, (ii) depth profiling of an urban multi-level borehole. TLF was inversely related to water temperature (regression slope range: -1.57 to -2.50). Sediment particle size was identified as an important control on the turbidity specific TLF response, with signal amplification apparent <150 NTU for clay particles and <650 NTU for silt particles. Signal attenuation was only observed >200 NTU for clay particles. Compensation algorithms significantly improved agreement between in situ and laboratory readings for baseflow and storm conditions in the stream. For the groundwater trial, there was an excellent agreement between laboratory and raw in situ TLF; temperature compensation provided only a marginal improvement, and turbidity corrections were unnecessary. These findings highlight the potential utility of real time TLF monitoring for a range of environmental applications (e.g. tracing polluting sources and monitoring groundwater contamination). However, in situations where high/variable suspended sediment loads or rapid changes in temperature are anticipated concurrent monitoring of turbidity and temperature is required and site specific calibration is

  7. Turbidity in extreme western Lake Superior. [contamination of Duluth, Minnesota water intake

    NASA Technical Reports Server (NTRS)

    Sydor, M.

    1975-01-01

    Data were obtained from ERTS images for western Lake Superior for 1972-74. Data examination showed that for easterly winds the turbidity originating along the Wisconsin shore and the resuspension areas are transported northward then out along a N.E. path where it disperses, and often, for large storms, contaminates the Duluth water intake. Contaminants such as dredging fines anywhere along these paths would likewise find their way to the intake areas in concentrations comparable to the relative red clay concentration.

  8. Effect of storage of shelled Moringa oleifera seeds from reaping time on turbidity removal.

    PubMed

    Golestanbagh, M; Ahamad, I S; Idris, A; Yunus, R

    2011-09-01

    Moringa oleifera is an indigenous plant to Malaysia whose seeds are used for water purification. Many studies on Moringa oleifera have shown that it is highly effective as a natural coagulant for turbidity removal. In this study, two different methods for extraction of Moringa's active ingredient were investigated. Results of sodium chloride (NaCl) and distilled water extraction of Moringa oleifera seeds showed that salt solution extraction was more efficient than distilled water in extracting Moringa's active coagulant ingredient. The optimum dosage of shelled Moringa oleifera seeds extracted by the NaCl solution was comparable with that of the conventional chemical coagulant alum. Moreover, the turbidity removal efficiency was investigated for shelled Moringa oleifera seeds before drying in the oven under different storage conditions (i.e. open and closed containers at room temperature, 27 °C) and durations (fresh, and storage for 2, 4, 6 and 8 weeks from the time the seeds were picked from the trees). Our results indicate that there are no significant differences in coagulation efficiencies and, accordingly, turbidity removals between the examined storage conditions and periods.

  9. Loss of capacity, not competence, as the fundamental process governing deposition from turbidity currents

    SciTech Connect

    Hiscott, R.N. . Dept. of Earth Sciences)

    1994-04-01

    A common procedure in paleohydraulic analysis is to use some measure of the size of particles in a deposit to estimate flow velocity of the depositing current, assuming that the selected size reflects the competence of the flow. For deposition from turbidity currents, a seemingly logical selection for determination of the suspension competence is the median size, because just prior to deposition all of the particles in the mixture must have been in suspension. Many papers in the literature use grain size of turbidites to estimate flow strength in this way. Komar (1985) discovered, however, that use of the median size can lead to serious underestimation of the flow velocity as determined independently from stability fields for bed forms. This discrepancy can be explained if deposition from turbidity currents is controlled mainly by decreasing capacity of the decelerating flow to carry particles of all sizes, including those that a clear current of the same speed would be fully competent to suspend. An important consequence is that suspension criteria (e.g., u[sub *] > settling velocity) cannot be used to reliably estimate the flow velocity of a turbidity current from its deposit. The hypothesis that deposition is controlled mainly by decrease of capacity is supported by the results of a computer simulation of turbidite deposition. The deposit'' predicted by the simulation differs from poorly sorted natural turbidites due to settling lags and lateral grading in the bodies of natural currents.

  10. Turbidity and Total Suspended Solids on the Lower Cache River Watershed, AR.

    PubMed

    Rosado-Berrios, Carlos A; Bouldin, Jennifer L

    2016-06-01

    The Cache River Watershed (CRW) in Arkansas is part of one of the largest remaining bottomland hardwood forests in the US. Although wetlands are known to improve water quality, the Cache River is listed as impaired due to sedimentation and turbidity. This study measured turbidity and total suspended solids (TSS) in seven sites of the lower CRW; six sites were located on the Bayou DeView tributary of the Cache River. Turbidity and TSS levels ranged from 1.21 to 896 NTU, and 0.17 to 386.33 mg/L respectively and had an increasing trend over the 3-year study. However, a decreasing trend from upstream to downstream in the Bayou DeView tributary was noted. Sediment loading calculated from high precipitation events and mean TSS values indicate that contributions from the Cache River main channel was approximately 6.6 times greater than contributions from Bayou DeView. Land use surrounding this river channel affects water quality as wetlands provide a filter for sediments in the Bayou DeView channel.

  11. Active imaging with the aids of polarization retrieve in turbid media system

    NASA Astrophysics Data System (ADS)

    Tao, Qiangqiang; Sun, Yongxuan; Shen, Fei; Xu, Qiang; Gao, Jun; Guo, Zhongyi

    2016-01-01

    We propose a novel active imaging based on the polarization retrieve (PR) method in turbid media system. In our simulations, the Monte Carlo (MC) algorithm has been used to investigate the scattering process between the incident photons and the scattering particles, and the visually concordant object but with different polarization characteristics in different regions, has been selected as the original target that is placed in the turbid media. Under linearly and circularly polarized illuminations, the simulation results demonstrate that the corresponding polarization properties can provide additional information for the imaging, and the contrast of the polarization image can also be enhanced greatly compared to the simplex intensity image in the turbid media. Besides, the polarization image adjusted by the PR method can further enhance the visibility and contrast. In addition, by PR imaging method, with the increasing particles' size in Mie's scale, the visibility can be enhanced, because of the increased forward scattering effect. In general, in the same circumstance, the circular polarization images can offer a better contrast and visibility than that of linear ones. The results indicate that the PR imaging method is more applicable to the scattering media system with relatively larger particles such as aerosols, heavy fog, cumulus, and seawater, as well as to biological tissues and blood media.

  12. Effects of turbidity, light level, and cover on predation of white sturgeon larvae by prickly sculpins

    USGS Publications Warehouse

    Gadomski, D.M.; Parsley, M.J.

    2005-01-01

    White sturgeon Acipenser transmontanus occur in rivers of the western United States and southwestern Canada, but some populations are in decline because of recruitment failure. Many river systems in this area have been altered as a result of development that has caused major environmental changes. Our goal was to examine how three changes - lower turbidity levels, higher light levels, and altered substrates - might affect predation by prickly sculpin Cottus asper on white sturgeon larvae. We experimentally investigated predation at various turbidity levels and found that significantly more white sturgeon yolk sac larvae were eaten at lower turbidity levels. The effects of light level (1-4 and 7-15 1x), the presence or absence of rocks as cover, and prey size (14-17 mm and 20-24 mm total length) on the outcome of predator-prey interactions were also examined. Significantly fewer white sturgeon were eaten during trials that combined the lowest light level, cover, and the smallest larvae. Our results suggest that altered river conditions caused by impoundment and other factors have increased predation on white sturgeon larvae. ?? Copyright by the American Fisheries Society 2005.

  13. Turbidity and nitrate transfer in karstic aquifers in rural areas: the Brionne Basin case-study.

    PubMed

    Nebbache, S; Feeny, V; Poudevigne, I; Alard, D

    2001-08-01

    The degradation of water quality in many groundwaters of Europe is a major source of concern. Rises in turbidity and nitrate concentrations represent present or potential threats for the quality of drinking water in rural areas. They are for the most part a consequence of agricultural intensification which has considerably affected land cover and land use in recent decades. In our case-study (a karstic catchment) the mechanisms which explain changes in water quality, as far as turbidity and nitrate are concerned, result from a strong continuity between surface and underground waters. The karstic system of the Brionne Basin can be considered as both the focus of rapid horizontal flows (runoff, a rapid process in which rainwater reaches the spring directly through sinkholes) and slow vertical flows (leaching, in which rainwater filters through the soil to the spring). A hierarchical approach to the water pollution problem of the basin suggests that turbidity or nitrate concentrations peak during heavy rain episodes and are short-term events. In terms of management, this implies that the solution to water pollution caused by such events is also short-term and can therefore be addressed at a local scale. The rise of nitrate concentrations during the past twenty years is the main concern. The solution can only be found at a global scale (all the catchment area must be taken in account: land plots and their spatial configuration), and by taking a long-term approach.

  14. Research on Efficiency of Ozonation and Bromate Formation in Low Temperature and Low Turbidity Water

    NASA Astrophysics Data System (ADS)

    Zhu, Qi; Liu, Dongmei; Cui, Fuyi; Fang, Lei; Zhao, Zhiwei; Liu, Tongmian

    2010-11-01

    The efficiency of ozonation and the influence factor of bromate formation were studied in filtered water at low temperature and low turbidity in Harbin Shaohe water treatment plant, of which source water was from Songhua river. The results showed that when adding 3 mg/L O3 to the filtered water, the average removal rate of UV254 were 22.31%, the removal rate of TOC in filtered water were 6.33%. When adding 2 mg/L O3 and 4 mg/L O3 to the filtered water, the CODMn decreased by 21.53% and 24.68%, respectively. Ozonation had no obvious effect on reducing turbidity and the content of ammonia nitrogen of filtered water in Shaohe water treatment plant. It could be found that the formation amount of BrO3- would increase with the concentration of Br- increasing in low temperature and low turbidity water. When Ct value of filtered water in Shaohe water treatment plant was less than 30 mgṡL-1ṡmin, the formation amount of BrO3- could be controlled under 10 μg/L.

  15. Turbidity and Total Suspended Solids on the Lower Cache River Watershed, AR.

    PubMed

    Rosado-Berrios, Carlos A; Bouldin, Jennifer L

    2016-06-01

    The Cache River Watershed (CRW) in Arkansas is part of one of the largest remaining bottomland hardwood forests in the US. Although wetlands are known to improve water quality, the Cache River is listed as impaired due to sedimentation and turbidity. This study measured turbidity and total suspended solids (TSS) in seven sites of the lower CRW; six sites were located on the Bayou DeView tributary of the Cache River. Turbidity and TSS levels ranged from 1.21 to 896 NTU, and 0.17 to 386.33 mg/L respectively and had an increasing trend over the 3-year study. However, a decreasing trend from upstream to downstream in the Bayou DeView tributary was noted. Sediment loading calculated from high precipitation events and mean TSS values indicate that contributions from the Cache River main channel was approximately 6.6 times greater than contributions from Bayou DeView. Land use surrounding this river channel affects water quality as wetlands provide a filter for sediments in the Bayou DeView channel. PMID:27073112

  16. Novel Bio, Chemical, Environmental Sensing Based on New Model of Total Internal Reflection in Turbid Media

    NASA Astrophysics Data System (ADS)

    Bali, Samir; Judge, Patrick; Phillip, Nathan; Boivin, Jordan; Scaffidi, Jonathan; Berberich, Jason; Bali, Lalit

    2014-05-01

    We have initiated a collaborative experimental research program that combines new advances in optical physics, field portable chemical analysis, and biosensing. Our goal is to discover and characterize new optical sensing methodologies in opaque, highly scattering (i.e., ``turbid'') media, and demonstrate new paradigms for optical sensing in research and industry. We have three specific objectives. First, we propose to fully characterize and validate a new model of total internal reflection (TIR) from highly turbid media thus enabling a first demonstration of non-invasive, in-situ, real-time particle sizing for the case of arbitrary scattering particle size-a holy grail in colloidal science. Second, we propose to implement a first demonstration of real-time non-invasive measurement of nanoparticle aggregation in highly turbid media. Third, we propose to use our new sensing methodology to demonstrate real-time in-situ label-free monitoring of molecular interactions and adsorption at surfaces. We gratefully acknowledge support from the American Chemical Society Petroleum Research Fund and Miami University's Interdisciplinary Roundtable Fund. We also gratefully acknowledge experimental help from the Miami University Instrumentation Laboratory.

  17. Scaling of Turbidity Currents and Riverine Flows for Laboratory Experiments: similarities and differences

    NASA Astrophysics Data System (ADS)

    Garcia, M. H.

    2011-12-01

    Riverine flows are commonly studies in the laboratory with the help of Froude scale models. While Froude scaling ensures similarity between model and prototype regarding flow velocity magnitude and distribution, the presence of a movable erodible bed makes it necessary to use another criterion to ensure similarity of sediment transport. This results in the need to use material that has a smaller specific gravity than the sediment in the protototype (e.g. crushed walnut shells, coal). Often times the model has to be "tilted" in order to have measurable flow depths and sediment transport. However, scale effects can still manifest themselves through the development of bedforms in the model that do not correspond to those observed in nature for the equivalent flow conditions. On the other hand, turbidity currents, capable of transporting sediment for very long distances in lakes, reservoirs and the ocean, have to be modeled with help of a densimetric Froude number or equivalently the Richardson number. Unlike the case of riverine flows, light weight materials can not be used to model turbidity currents since this would result in volumetric concentrations that are too large and make the suspension non-dilute. Examples of small scale models of the Tanana River in Alaska and lake sedimentation by turbidity currents generated by the disposal of mining tailing in Labrador, Canada, will be presented. Interpretation of physical modeling results and potential scale effects will be discussed together with some of the challenges associated with physical modeling of sediment transport phenomena.

  18. Analytical solution of the simplified spherical harmonics equations in spherical turbid media

    NASA Astrophysics Data System (ADS)

    Edjlali, Ehsan; Bérubé-Lauzière, Yves

    2016-10-01

    We present for the first time an analytical solution for the simplified spherical harmonics equations (so-called SPN equations) in the case of a steady-state isotropic point source inside a spherical homogeneous absorbing and scattering medium. The SPN equations provide a reliable approximation to the radiative transfer equation for describing light transport inside turbid media. The SPN equations consist of a set of coupled partial differential equations and the eigen method is used to obtain a set of decoupled equations, each resembling the heat equation in the Laplace domain. The equations are solved for the realistic partial reflection boundary conditions accounting for the difference in refractive indices between the turbid medium and its environment (air) as occurs in practical cases of interest in biomedical optics. Specifically, we provide the complete solution methodology for the SP3, which is readily applicable to higher orders as well, and also give results for the SP5. This computationally easy to obtain solution is investigated for different optical properties of the turbid medium. For validation, the solution is also compared to the analytical solution of the diffusion equation and to gold standard Monte Carlo simulation results. The SP3 and SP5 analytical solutions prove to be in good agreement with the Monte Carlo results. This work provides an additional tool for validating numerical solutions of the SPN equations for curved geometries.

  19. Turbidity characterizes the reproduction areas of pikeperch ( Sander lucioperca (L.)) in the northern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Veneranta, L.; Urho, L.; Lappalainen, A.; Kallasvuo, M.

    2011-11-01

    The pikeperch ( Sander lucioperca (L.)) is an economically important fish species occurring in the fresh and brackish waters of Europe. To evaluate the distribution and extent of the reproduction areas in the northern Baltic Sea, a field survey was carried out in two separate coastal areas. Presence/absence data were used to develop a geographic information system (GIS)-based predictive spatial distribution model, where high resolution raster maps of the focal environmental variables and a logistic regression equation were used to predict the probability of larval occurrence. The results indicated that the pikeperch reproduction areas are located in the innermost archipelago zone where high water turbidity best explained their presence. Turbidity was related to several other variables such as fetch and depth. Contrary to our preliminary hypothesis, surface water temperatures measured during the survey had no significant effect in the model due to the low spatial variation in the measured values. Since turbidity is possible to determine by remote sensing methods, the probability maps can be cost-effectively extended to more extensive coastal areas with proper validation.

  20. Study on improving the turbidity measurement of the absolute coagulation rate constant.

    PubMed

    Sun, Zhiwei; Liu, Jie; Xu, Shenghua

    2006-05-23

    The existing theories dealing with the evaluation of the absolute coagulation rate constant by turbidity measurement were experimentally tested for different particle-sized (radius = a) suspensions at incident wavelengths (lambda) ranging from near-infrared to ultraviolet light. When the size parameter alpha = 2pi a/lambda > 3, the rate constant data from previous theories for fixed-sized particles show significant inconsistencies at different light wavelengths. We attribute this problem to the imperfection of these theories in describing the light scattering from doublets through their evaluation of the extinction cross section. The evaluations of the rate constants by all previous theories become untenable as the size parameter increases and therefore hampers the applicable range of the turbidity measurement. By using the T-matrix method, we present a robust solution for evaluating the extinction cross section of doublets formed in the aggregation. Our experiments show that this new approach is effective in extending the applicability range of the turbidity methodology and increasing measurement accuracy.

  1. Extraction of optical rotation from chiral turbid medium with Mueller matrix decomposition

    NASA Astrophysics Data System (ADS)

    Ma, Yongchao; Sun, Ping; Liu, Wei; Yang, Qinghua; Jia, Qiongzhen

    2013-09-01

    Optical activity is the intrinsic property of chiral molecules. Investigation of optical activity is particularly important for diagnosing and monitoring blood glucose of diabetes. The experimental setup to obtain the Mueller matrix in the forward detection geometry is used. Three kinds of chiral turbid media are selected to be studied in the experiment. The first is the tissue phantom composed of an aqueous solution of glucose mixed with PST sphere suspensions. The second is the actual chicken blood mixed with glucose solution. The last is the vein blood plasma of diabetic patients. The results presented in this study demonstrate that the method of Mueller matrix decomposition can be used to quantitatively extract the optical rotation of chiral molecule in turbid medium. The rotation angle has linear relationship with the concentration of the optical activity material when the scattering coefficient of the turbid medium maintains unchanged. The scattering effect enlarges the rotation angle. Furthermore, optical rotation abides by the Drude's dispersion equation. The decomposition method also has been found useful applications in quantifying the optical rotations due to blood glucose in diabetic patients. The diabetic severity status can be distinguished with the rotation angle of glucose by using the decomposition method and also are in accordance with the clinical diagnosis. Thus, the method of Mueller matrix decomposition has promising applications in diabetic diagnosis.

  2. Suspended sediment concentration and optical property observations of mixed-turbidity, coastal waters through multispectral ocean color inversion

    EPA Science Inventory

    Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...

  3. 40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... utilize filtration other than slow sand filtration or diatomaceous earth filtration must meet the combined... diatomaceous earth filtration you are not required to meet the combined filter effluent turbidity limits...

  4. 40 CFR 141.550 - Is my system required to meet subpart T combined filter effluent turbidity limits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... utilize filtration other than slow sand filtration or diatomaceous earth filtration must meet the combined... diatomaceous earth filtration you are not required to meet the combined filter effluent turbidity limits...

  5. Measurement of neonatal equine immunoglobulins for assessment of colostral immunoglobulin transfer: comparison of single radial immunodiffusion with the zinc sulfate turbidity test, serum electrophoresis, refractometry for total serum protein, and the sodium sulfite precipitation test.

    PubMed

    Rumbaugh, G E; Ardans, A A; Ginno, D; Trommershausen-Smith, A

    1978-02-01

    Four procedures for assessment of adequacy of colostral immunoglobulin (Ig) transfer in foals were evaluated. Results of zinc sulfate turbidity test, serum electrophoresis, total serum protein refractometry, and sodium sulfite precipitation test were compared with immunoglobulin G content determined by single radial immunodiffusion. The zinc sulfate turbidity test gave acceptable results for IgG, except that hemolyzed serum samples gave higher than expected values. A correction factor for hemolyzed serum was found to be useful. Serum electrophoresis was a satisfactory method of estimating IgG content. Total serum protein values may not be a valid basis for estimating IgG content, inasmuch as postsuckling total protein values were found to decrease in some foals in which passive transfer of IgG had been adequate. Sodium sulfite precipitation reactions were too unpredictable to be of value for determination of neonatal IgG concentration.

  6. Formation and structure of the turbidity maximum in the macrotidal Charente estuary (France): Influence of fluvial and tidal forcing

    NASA Astrophysics Data System (ADS)

    Toublanc, F.; Brenon, I.; Coulombier, T.

    2016-02-01

    Understanding estuarine sediment dynamics and particularly turbidity maximum dynamics is crucial for the management of these coastal systems. Various processes impact the formation, movement and structure of the turbidity maximum. Several studies have shown that tidal asymmetry and density gradients are responsible for the presence of this suspended sedimentary mass. The Charente estuary is a highly turbid system (with suspended sediment concentrations often in excess of 5 g/L) that remains poorly understood despite its strong impact on local activities. In this study, a three-dimensional hydrosedimentary model is developed to represent the sediment dynamics of this estuary. Model validation demonstrates good accuracy, especially on reproducing semi-diurnal and spring-neap variability. Several simulations are performed to evaluate the influence of tides and river discharge on the turbidity maximum. Mean and maximum suspended sediment concentrations (SSC) and sediment stratification are calculated. SSC transects are also used to visualize the suspended sediment distribution along the estuary. The turbidity maximum generally oscillates between the river mouth and the Rochefort area (20-30 km upstream). The model shows strong variations at different time scales, and demonstrates that SSC is mainly driven by deposition/resuspension processes. Spring-neap comparisons show that the turbidity maximum is not well-defined during neap tides for low and mean runoff conditions. Simulations of spring tides and/or high runoff conditions all result in a compact suspended sedimentary mass. Performing simulations without taking density gradients into account demonstrates that tidal asymmetry is the main mechanism leading to the formation of the turbidity maximum. However, density gradients contribute to maintaining the stability of the turbidity maximum. Vertical stratification traps sediments at the bottom. Longitudinal stratification ensures a sharper edge at the downstream limit

  7. Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements.

    PubMed

    Wang, Menghua; Nim, Carl J; Son, Seunghyun; Shi, Wei

    2012-10-15

    This paper describes the use of ocean color remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to characterize turbidity in Lake Okeechobee and its primary drainage basins, the Caloosahatchee and St. Lucie estuaries from 2002 to 2010. Drainage modification and agricultural development in southern Florida transport sediments and nutrients from watershed agricultural areas to Lake Okeechobee. As a result of development around Lake Okeechobee and the estuaries that are connected to Lake Okeechobee, estuarine conditions have also been adversely impacted, resulting in salinity and nutrient fluctuations. The measurement of water turbidity in lacustrine and estuarine ecosystems allows researchers to understand important factors such as light limitation and the potential release of nutrients from re-suspended sediments. Based on a strong correlation between water turbidity and normalized water-leaving radiance at the near-infrared (NIR) band (nL(w)(869)), a new satellite water turbidity algorithm has been developed for Lake Okeechobee. This study has shown important applications with satellite-measured nL(w)(869) data for water quality monitoring and measurements for turbid inland lakes. MODIS-Aqua-measured water property data are derived using the shortwave infrared (SWIR)-based atmospheric correction algorithm in order to remotely obtain synoptic turbidity data in Lake Okeechobee and normalized water-leaving radiance using the red band (nL(w)(645)) in the Caloosahatchee and St. Lucie estuaries. We found varied, but distinct seasonal, spatial, and event driven turbidity trends in Lake Okeechobee and the Caloosahatchee and St. Lucie estuary regions. Wind waves and hurricanes have the largest influence on turbidity trends in Lake Okeechobee, while tides, currents, wind waves, and hurricanes influence the Caloosahatchee and St. Lucie estuarine areas.

  8. Sustained turbidity currents and their interaction with debrite-related topography; Labuan Island, offshore NW Borneo, Malaysia

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher A.-L.; Johnson, Howard D.

    2009-07-01

    The Temburong Fm (Early Miocene), Labuan Island, offshore NW Borneo, was deposited in a lower-slope to proximal basin-floor setting, and provides an opportunity to study the deposits of sustained turbidity currents and their interaction with debrite-related topography. Two main gravity-flow facies are identified; (i) slump-derived debris-flow deposits (debrites) — characterised by ungraded silty mudstones in beds 1.5 to > 60 m thick which are rich in large (> 5 m) lithic clasts; and (ii) turbidity current deposits (turbidites) — characterised by medium-grained sandstone in beds up to 2 m thick, which contain structureless (T a) intervals alternating with planar-parallel (T b) and current-ripple (T c) laminated intervals. Laterally discontinuous, cobble-mantled scours are also locally developed within turbidite beds. Based on these characteristics, these sandstones are interpreted to have been deposited by sustained turbidity currents. The cobble-mantled scours indicate either periods of intense turbidity current waxing or individual flow events. The sustained turbidity currents are interpreted to have been derived from retrogressive collapse of sand-rich mouth bars (breaching) or directly from river effluent (hyperpycnal flow). Analysis of the stratal architecture of the two facies indicates that routing of the turbidity currents was influenced by topographic relief developed at the top of the underlying debrite. In addition, turbidite beds are locally eroded at the base of an overlying debrite, possibly due to clast-related substrate 'ploughing' during the latter flow event. This study highlights the difficulty in constraining the origin of sustained turbidity currents in ancient sedimentary sequences. In addition, this study documents the importance large debrites may have in generating topography on submarine slopes and influencing routing of subsequent turbidity currents and the geometry of their associated deposits.

  9. Influence of variable water depth and turbidity on microalgae production in a shallow estuarine lake system - A modelling study

    NASA Astrophysics Data System (ADS)

    Tirok, Katrin; Scharler, Ursula M.

    2014-06-01

    Strongly varying water levels and turbidities are typical characteristics of the large shallow estuarine lake system of St. Lucia, one of the largest on the African continent. This theoretical study investigated the combined effects of variable water depth and turbidity on seasonal pelagic and benthic microalgae production using a mathematical model, in order to ascertain productivity levels during variable and extreme conditions. Simulated pelagic and benthic net production varied between 0.3 and 180 g C m-2 year-1 and 0 and 220 g C m-2 year-1, respectively, dependent on depth, turbidity, and variability in turbidity. Although not surprising production and biomass decreased with increasing turbidity and depth. A high variability in turbidity, i.e. an alteration of calm and windy days, could reduce or enhance the seasonal pelagic and benthic production by more than 30% compared to a low variability. The day-to-day variability in wind-induced turbidity therefore influences production in the long term. On the other hand, varying water depth within a year did not significantly influence the seasonal production for turbidities representative of Lake St. Lucia. Reduced lake area and volume as observed during dry periods in Lake St. Lucia did not reduce primary production of the entire system since desiccation resulted in lower water depth and thus increased light availability. This agrees with field observations suggesting little light limitation and high areal microalgal biomass during a period with below average rainfall (2005-2011). Thus, microalgae potentially fulfil their function in the lake food-web even under extreme drought conditions. We believe that these results are of general interest to shallow aquatic ecosystems that are sensitive to drought periods due to either human or natural causes.

  10. Hydrodynamic analysis of fully developed turbidity currents over plane beds based on self-preserving velocity and concentration distributions

    NASA Astrophysics Data System (ADS)

    Cantero-Chinchilla, Francisco Nicolás.; Dey, Subhasish; Castro-Orgaz, Oscar; Ali, Sk Zeeshan

    2015-10-01

    This paper presents a hydrodynamic analysis for the fully developed turbidity currents over a plane bed stemming from the classical three-equation model (depth-averaged fluid continuity, sediment continuity, and fluid momentum equations). The streamwise velocity and the concentration distributions preserve self-similarity characteristics and are expressed as single functions of vertical distance over the turbidity current layer. Using the experimental data of turbidity and salinity currents, the undetermined coefficients and exponents are approximated. The proposed relationships for velocity and concentration distributions exhibit self-preserving characteristics for turbidity currents. The depth-averaged velocity, momentum, and energy coefficients are thus obtained using the proposed expression for velocity law. Also, from the expressions for velocity and concentration, the turbulent diffusivity and the Reynolds shear stress distributions are deduced with the aid of the diffusion equation of sediment concentration and the Boussinesq hypothesis. The generalized equation of unsteady nonuniform turbidity current is developed by using the velocity and concentration distributions in the moments of the integral scales over the turbidity current layer. Then, the equation is applied to analyze the gradually varied turbidity currents considering closure relationships for boundary interaction and shear velocity. The streamwise variations of current depth, velocity, concentration, reduced sediment flux, and Richardson number are presented. Further, the self-accelerating and depositional characteristics of turbidity currents including the transitional feature from erosional to depositional modes are addressed. The effects of the streamwise bed slope are also accounted for in the mathematical derivations. The results obtained from the present model are compared with those from the classical model.

  11. The relative contribution of processes driving variability in flow, shear, and turbidity over a fringing coral reef: West Maui, Hawaii

    USGS Publications Warehouse

    Storlazzi, C.D.; Jaffe, B.E.

    2008-01-01

    High-frequency measurements of waves, currents and water column properties were made on a fringing coral reef off northwest Maui, Hawaii, for 15 months between 2001 and 2003 to aid in understanding the processes governing flow and turbidity over a range of time scales and their contributions to annual budgets. The summer months were characterized by consistent trade winds and small waves, and under these conditions high-frequency internal bores were commonly observed, there was little net flow or turbidity over the fore reef, and over the reef flat net flow was downwind and turbidity was high. When the trade winds waned or the wind direction deviated from the dominant trade wind orientation, strong alongshore flows occurred into the typically dominant wind direction and lower turbidity was observed across the reef. During the winter, when large storm waves impacted the study area, strong offshore flows and high turbidity occurred on the reef flat and over the fore reef. Over the course of a year, trade wind conditions resulted in the greatest net transport of turbid water due to relatively strong currents, moderate overall turbidity, and their frequent occurrence. Throughout the period of study, near-surface current directions over the fore reef varied on average by more than 41?? from those near the seafloor, and the orientation of the currents over the reef flat differed on average by more than 65?? from those observed over the fore reef. This shear occurred over relatively short vertical (order of meters) and horizontal (order of hundreds of meters) scales, causing material distributed throughout the water column, including the particles in suspension causing the turbidity (e.g. sediment or larvae) and/or dissolved nutrients and contaminants, to be transported in different directions under constant oceanographic and meteorologic forcing.

  12. Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements.

    PubMed

    Wang, Menghua; Nim, Carl J; Son, Seunghyun; Shi, Wei

    2012-10-15

    This paper describes the use of ocean color remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to characterize turbidity in Lake Okeechobee and its primary drainage basins, the Caloosahatchee and St. Lucie estuaries from 2002 to 2010. Drainage modification and agricultural development in southern Florida transport sediments and nutrients from watershed agricultural areas to Lake Okeechobee. As a result of development around Lake Okeechobee and the estuaries that are connected to Lake Okeechobee, estuarine conditions have also been adversely impacted, resulting in salinity and nutrient fluctuations. The measurement of water turbidity in lacustrine and estuarine ecosystems allows researchers to understand important factors such as light limitation and the potential release of nutrients from re-suspended sediments. Based on a strong correlation between water turbidity and normalized water-leaving radiance at the near-infrared (NIR) band (nL(w)(869)), a new satellite water turbidity algorithm has been developed for Lake Okeechobee. This study has shown important applications with satellite-measured nL(w)(869) data for water quality monitoring and measurements for turbid inland lakes. MODIS-Aqua-measured water property data are derived using the shortwave infrared (SWIR)-based atmospheric correction algorithm in order to remotely obtain synoptic turbidity data in Lake Okeechobee and normalized water-leaving radiance using the red band (nL(w)(645)) in the Caloosahatchee and St. Lucie estuaries. We found varied, but distinct seasonal, spatial, and event driven turbidity trends in Lake Okeechobee and the Caloosahatchee and St. Lucie estuary regions. Wind waves and hurricanes have the largest influence on turbidity trends in Lake Okeechobee, while tides, currents, wind waves, and hurricanes influence the Caloosahatchee and St. Lucie estuarine areas. PMID:22858282

  13. Sea-floor undulations formation by turbidity flow in the Adra prodeltaic system, western Mediterranean Basin: comparison between numerical simulation and real data

    NASA Astrophysics Data System (ADS)

    Fernández-Salas, Luis Miguel; Barcenas, Patricia; Macias, Jorge

    2016-04-01

    Numerical simulation of turbidity currents are used to study the formation of the seafloor undulations in the Adra prodeltaic system, western Mediterranean basin. A series of elongated and subparallel bathymetric undulations are distinguished in the foreset-bottomsets domain of the Holocene pro-deltaic wedge associated with the Adra river. In this study, multibeam data and surficial sediment samples have been used in comparison with numerical simulation to propose an evolutionary model of the seafloor undulations. Numerical model suggests that the depositional basin slope gradient is one of the factors more influent in the seafloor undulations formation. The simulations allowed to observe as seafloor undulations are approximately in phase with the undulations of the turbidity layer. Therefore, undulations are associated with Froude-supercritical flow. The upslope and downslope undulations boundaries are limited by a hydraulic jump where the flow makes a conversion from supercriticial flow (Fr>1) to subcritical flow (Fr<1), respectively. The undulations axis are characterized by a point where Fr=1. The subcritical zone generates net sediment deposition and the supercritical zone produces erosion. This explains why seafloor undulations migrate upslope. ACKNOWLEDGMENTS This research has been partially supported by the Junta de Andalucía research project TESELA (P11-RNM7069)

  14. Evaluating the Impacts of Unexpected Forest Disturbances on Paired Catchment Calibrations of Sediment Yield and Turbidity

    NASA Astrophysics Data System (ADS)

    Herlein, K.; Silins, U.; Williams, C.; Wagner, M. J.; Martens, A. M.

    2015-12-01

    The paired catchment approach of studying the impacts of disturbance on catchment hydrology remains as perhaps the most powerful approach for direct verification of catchment scale impacts from disturbance. However, paired catchment studies are also dependent on the stability of the relationships between treated and reference catchments during calibration and evaluation periods. A long-term paired catchment study of forest harvest impacts on sediment yield and turbidity in the Rocky Mountains of southwestern Alberta, Canada has a robust 11-year pre-treatment data record. The study intends to evaluate three alternative logging practices: clear-cutting, strip-shelterwood, and partial cutting. 3 sub-catchments in Star Creek (1035 ha) underwent harvest treatments while North York Creek (865 Ha) serves as the reference. The objective of this particular study was to explore the potential effects of unplanned and unanticipated watershed changes in two watersheds during an 11-year calibration. Sediment yield (kg ha-1 d-1) and turbidity (NTU) were monitored throughout the calibration period (2004-2014) prior to the 2015 harvest in Star Creek. Two unanticipated disturbances including backcountry trail rehabilitation in North York (2010) followed by a >100 year storm event in both watersheds in June 2013 may have affected the sediment yield and turbidity calibration relationships. Analysis of covariance (ANCOVA) was used to evaluate the effects of this trail rehabilitation and flooding by comparing the calibration relationships before and after these disturbances. Despite qualitative field observations of periodically affected sediment regimes, no impact on pre- or post- calibration relationships was observed. Backcountry trail rehabilitation in North York (p=0.904 and 0.416 for sediment yield and turbidity, respectively) or flooding in both watersheds (p=0.364 and 0.204 for sediment yield and turbidity, respectively) did not produce significant changes to the calibrations

  15. Flow Dynamics and Sediment Entrainment in Natural Turbidity Currents Inferred from Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Traer, M. M.; Hilley, G. E.; Fildani, A.

    2009-12-01

    Submarine turbidity currents derive their momentum from gravity acting upon the density contrast between sediment-laden and clear water, and so unlike fluvial systems, the dynamics of such flows are inextricably linked to the rates at which they deposit and entrain sediment. We have analyzed the sensitivity of the growth and maintenance of turbidity currents to sediment entrainment and deposition using the layer-averaged equations of conservation of fluid and sediment mass, and conservation of momentum and turbulent kinetic energy. Our model results show that the dynamics of turbidity currents are extremely sensitive to the functional form and empirical constants of the relationship between sediment entrainment and friction velocity. Data on the relationship between sediment entrainment and friction velocity for submarine density flows are few and as a result, entrainment formulations are populated with data from sub-aerial flows not driven by the density contrast between clear and turbid water. If we entertain the possibility that sediment entrainment in sub-aerial rivers is different than in dense underflows, flow parameters such as velocity, height, and concentration were found nearly impossible to predict beyond a few hundred meters based on the limited laboratory data available that constrain the sediment entrainment process in turbidity currents. The sensitivity of flow dynamics to the functional relationship between friction velocity and sediment entrainment indicates that independent calibration of a sediment entrainment law in the submarine environment is necessary to realistically predict the dynamics of these flows and the resulting patterns of erosion and deposition. To calibrate such a relationship, we have developed an inverse methodology that utilizes existing submarine channel morphology as a means of constraining the sediment entrainment function parameters. We use a Bayesian Metropolis-Hastings sampler to determine the sediment entrainment

  16. Modeling turbidity and flow at daily steps in karst using ARIMA/ARFIMA-GARCH error models

    NASA Astrophysics Data System (ADS)

    Massei, N.

    2013-12-01

    Hydrological and physico-chemical variations recorded at karst springs usually reflect highly non-linear processes and the corresponding time series are then very often also highly non-linear. Among others, turbidity, as an important parameter regarding water quality and management, is a very complex response of karst systems to rain events, involving direct transfer of particles from point-source recharge as well as resuspension of particles previously deposited and stored within the system. For those reasons, turbidity modeling has not been well taken in karst hydrological models so far. Most of the time, the modeling approaches would involve stochastic linear models such ARIMA-type models and their derivatives (ARMA, ARMAX, ARIMAX, ARFIMA...). Yet, linear models usually fail to represent well the whole (stochastic) process variability, and their residuals still contain useful information that can be used to either understand the whole variability or to enhance short-term predictability and forecasting. Model residuals are actually not i.i.d., which can be identified by the fact that squared residuals still present clear and significant serial correlation. Indeed, high (low) amplitudes are followed in time by high (low) amplitudes, which can be seen on residuals time series as periods of time during which amplitudes are higher (lower) then the mean amplitude. This is known as the ARCH effet (AutoRegressive Conditional Heteroskedasticity), and the corresponding non-linear process affecting residuals of a linear model can be modeled using ARCH or generalized ARCH (GARCH) non-linear modeling, which approaches are very well known in econometrics. Here we investigated the capability of ARIMA-GARCH error models to represent a ~20-yr daily turbidity time series recorded at a karst spring used for water supply of the city of Le Havre (Upper Normandy, France). ARIMA and ARFIMA models were used to represent the mean behavior of the time series and the residuals clearly

  17. Direct-normal solar irradiance measurements and turbidity coefficient evaluation in central Spain.

    NASA Astrophysics Data System (ADS)

    Bllbao, Julia; Román, Roberto; Miguel, Argimiro

    2013-04-01

    In order to study the characteristics of solar direct radiation and the atmospheric turbidity in Valladolid, Spain, global, diffuse and direct irradiance data were recorded from May 2010 to December 2011, with a frequency of 10 minute. Measurements used were taken by the Energy and Atmosphere Group (http://www3.uva.es/renova), University of Valladolid, Spain at the Solar Radiometric Station (41,81°N 4.93°W, 840m a.s.l.) located on the Atmosphere Researcher Centre, Villalba de los Alcores, Valladolid, Spain. Sensors were installed in a Sun tracker (Solys 2, Kipp & Zonen) that blocks direct solar radiation using a shadow ball. The system consists of two pyranometers CMP-21 and one pyrheliometer CHP-1 (Kipp & Zonen), respectively. Based on these measurements, the characteristics of direct solar irradiance data were evaluated in order to know the main statistical parameters of the distribution. Angström turbidity coefficient values, beta, were estimated from direct solar irradiance and clear sky conditions. The beta coefficient values were obtained from MODIS satellite instrument, and the aerosol optical depth values, AOD(550nm), were evaluated. The turbidity coefficient beta shows seasonal variation, with higher values in summer (< 0.15) and lower in winter (< 0.05). It could be due to high temperatures in summer and less rainy days which would induce more atmospheric turbidity, increasing vertical convection and particles enhancement. The scattered graph of aerosol optical depth from satellite and the obtained from Angström expression has been plotted. The slope presents a value around the unity, 0.96, and the correlation coefficient shows a value of 0.6 . It was observed that turbidity coefficients increased in April 2011, and in order to now the origin the change, air masses trajectories, deduced from HYSPLIT model (http://ready.arl.noaa.gov/HYSPLIT.php) were studied. From the results it has been obtained that a situation of low pressures in the Atlantic

  18. Influence of salinity, bottom topography, and tides on locations of estuarine turbidity maxima in northern San Francisco Bay

    USGS Publications Warehouse

    Schoellhamer, David H.

    2000-01-01

    Time series of salinity and suspended-solids concentration measured at four locations and vertical profiles of salinity and suspended-solids concentration measured during 48 water-quality cruises from January 1993 to September 1997 are analyzed to describe the influence of salinity, bottom topography, and tides on locations of estuarine turbidity maxima in northern San Francisco Bay, California. Estuarine turbidity maxima form when salinity is present but they are not associated with a singular salinity. Bottom topography enhances salinity stratification, gravitational circulation and estuarine turbidity maxima formation seaward of sills. The spring/neap tidal cycle affects locations of estuarine turbidity maxima. Salinity stratification in Carquinez Strait, which is seaward of a sill, is greatest during neap tides, which is the only time when tidally averaged suspended-solids concentration in Carquinez Strait was less than that observed landward at Mallard Island. Spring tides cause the greatest vertical mixing and suspended-solids concentration in Carquinez Strait. Therefore, surface estuarine turbidity maxima always were located in or near the Strait (seaward of Middle Ground) during spring tide cruises, regardless of salinity. During neap tides, surface estuarine turbidity maxima always were observed in the landward half of the study area (landward of Middle Ground) and between 0–2 practical salinity units.

  19. Turbidity in the fluvial Gironde Estuary (S-W France) based on 10 year continuous monitoring: sensitivity to hydrological conditions

    NASA Astrophysics Data System (ADS)

    Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A.

    2015-03-01

    Climate change and human activities impact the volume and timing of freshwater input to estuaries. These modifications in fluvial discharges are expected to influence estuarine suspended sediment dynamics, and in particular the turbidity maximum zone (TMZ). Located in the southwest France, the Gironde fluvial-estuarine systems has an ideal context to address this issue. It is characterized by a very pronounced TMZ, a decrease in mean annual runoff in the last decade, and it is quite unique in having a long-term and high-frequency monitoring of turbidity. The effect of tide and river flow on turbidity in the fluvial estuary is detailed, focusing on dynamics related to changes in hydrological conditions (river floods, periods of low-water, inter-annual changes). Turbidity shows hysteresis loops at different time scales: during river floods and over the transitional period between the installation and expulsion of the TMZ. These hysteresis patterns, that reveal the origin of sediment, locally resuspended or transported from the watershed, may be a tool to evaluate the presence of remained mud. Statistics on turbidity data bound the range of river flow that promotes the TMZ installation in the fluvial stations. Hydrological indicators of the persistence and turbidity level of the TMZ are also defined. The long-term evolution of these indicators confirms the influence of discharge decrease on the intensification of the TMZ in tidal rivers, and provides a tool to evaluate future scenarios.

  20. Visual Detection of Speckles in the Fish Xenotoca variata by the Predatory Snake Thamnophis melanogaster in Water of Different Turbidity.

    PubMed

    Manjarrez, Javier; Rivas-González, Eric; Venegas-Barrera, Crystian S; Moyaho, Alejandro

    2015-01-01

    Semi-aquatic snakes integrate visual and chemical stimuli, and prey detection and capture success are therefore linked to the display of visual predatory behavior. The snake Thamnophis melanogaster responds preferentially to individuals of the fish Xenotoca variata with a greater number of bright, colorful spots (lateral speckles) compared with those with a smaller number; however, water turbidity can reduce underwater visibility and effect the vulnerability of fish. In this study, we tested whether the presence of iridescent speckles on the flanks of male X. variata interacted with water turbidity to modify the predatory behavior displayed by the snake T. melanogaster. We predicted that in an experimental laboratory test, the snakes would increase the frequency of their predatory behavior to the extent that the water turbidity decreases. The snakes were tested at six different levels of water turbidity, in combination with three categories of male fish (with few, a median number of, or many speckles). The results showed that in a pool with high or zero turbidity, the number of speckles is not a determining factor in the deployment of the predatory behavior of the snake T. melanogaster toward X. variata. Our findings suggest that snakes can view the fish at intermediate percentages of turbidity, but the number of speckles in male X. variata is irrelevant as an interspecific visual signal in environments with insufficient luminosity. The successful capture of aquatic prey is influenced by integration between chemical and visual signals, according to environmental factors that may influence the recognition of individual traits.