Science.gov

Sample records for 42-mev alpha-particle bombardment

  1. Stability of EUV multilayer coatings to low energy alpha particles bombardment.

    PubMed

    Nardello, M; Zuppella, Paola; Polito, V; Corso, Alain Jody; Zuccon, Sara; Pelizzo, M G

    2013-11-18

    Future solar missions will investigate the Sun from very close distances and optical components are constantly exposed to low energy ions irradiation. In this work we present the results of a new experiment related to low energy alpha particles bombardments on Mo/Si multilayer optical coatings. Different multilayer samples, with and without a protecting capping layer, have been exposed to low energy alpha particles (4keV), fixing the ions fluency and varying the time of exposure in order to change the total dose accumulated. The experimental parameters have been selected considering the potential application of the coatings to future solar missions. Results show that the physical processes occurred at the uppermost interfaces can strongly damage the structure.

  2. Characteristics of neutrons from Be targets bombarded with protons, deuterons and alpha particles

    NASA Astrophysics Data System (ADS)

    Lone, M. A.; Ferguson, A. J.; Robertson, B. C.

    1981-10-01

    Thick-target yields and average energies of neutrons emitted at 0° from bombardment of Be with protons and deuterons at energies below 50 MeV and alphas at energies below 30 MeV are given. The minimum projectile energy and current needed to satisfy the requirements of neutron sources for cancer therapy are discussed.

  3. Electrical characterization of deep levels created by bombarding nitrogen-doped 4H-SiC with alpha-particle irradiation

    NASA Astrophysics Data System (ADS)

    Omotoso, Ezekiel; Meyer, Walter E.; Auret, F. Danie; Paradzah, Alexander T.; Legodi, Matshisa J.

    2016-03-01

    Deep-level transient spectroscopy (DLTS) and Laplace-DLTS were used to investigate the effect of alpha-particle irradiation on the electrical properties of nitrogen-doped 4H-SiC. The samples were bombarded with alpha-particles at room temperature (300 K) using an americium-241 (241Am) radionuclide source. DLTS revealed the presence of four deep levels in the as-grown samples, E0.09, E0.11, E0.16 and E0.65. After irradiation with a fluence of 4.1 × 1010 alpha-particles-cm-2, DLTS measurements indicated the presence of two new deep levels, E0.39 and E0.62 with energy levels, EC - 0.39 eV and EC - 0.62 eV, with an apparent capture cross sections of 2 × 10-16 and 2 × 10-14 cm2, respectively. Furthermore, irradiation with fluence of 8.9 × 1010 alpha-particles-cm-2 resulted in the disappearance of shallow defects due to a lowering of the Fermi level. These defects re-appeared after annealing at 300 °C for 20 min. Defects, E0.39 and E0.42 with close emission rates were attributed to silicon or carbon vacancy and could only be separated by using high resolution Laplace-DLTS. The DLTS peaks at EC - (0.55-0.70) eV (known as Z1/Z2) were attributed to an isolated carbon vacancy (VC).

  4. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  5. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  6. Alpha-particle diagnostics

    SciTech Connect

    Young, K.M.

    1991-01-01

    This paper will focus on the state of development of diagnostics which are expected to provide the information needed for {alpha}- physics studies in the future. Conventional measurement of detailed temporal and spatial profiles of background plasma properties in DT will be essential for such aspects as determining heating effectiveness, shaping of the plasma profiles and effects of MHD, but will not be addressed here. This paper will address (1) the measurement of the neutron source, and hence {alpha}-particle birth profile, (2) measurement of the escaping {alpha}-particles and (3) measurement of the confined {alpha}-particles over their full energy range. There will also be a brief discussion of (4) the concerns about instabilities being generated by {alpha}-particles and the methods necessary for measuring these effects. 51 refs., 10 figs.

  7. Summary of Alpha Particle Transport

    SciTech Connect

    Medley, S.S.; White, R.B.; Zweben, S.J.

    1998-08-19

    This paper summarizes the talks on alpha particle transport which were presented at the 5th International Atomic Energy Agency's Technical Committee Meeting on "Alpha Particles in Fusion Research" held at the Joint European Torus, England in September 1997.

  8. Alpha Particle Diagnostic

    SciTech Connect

    Fisher, Ray, K.

    2009-05-13

    The study of burning plasmas is the next frontier in fusion energy research, and will be a major objective of the U.S. fusion program through U.S. collaboration with our international partners on the ITER Project. For DT magnetic fusion to be useful for energy production, it is essential that the energetic alpha particles produced by the fusion reactions be confined long enough to deposit a significant fraction of their initial ~3.5 MeV energy in the plasma before they are lost. Development of diagnostics to study the behavior of energetic confined alpha particles is a very important if not essential part of burning plasma research. Despite the clear need for these measurements, development of diagnostics to study confined the fast confined alphas to date has proven extremely difficult, and the available techniques remain for the most part unproven and with significant uncertainties. Research under this grant had the goal of developing diagnostics of fast confined alphas, primarily based on measurements of the neutron and ion tails resulting from alpha particle knock-on collisions with the plasma deuterium and tritium fuel ions. One of the strengths of this approach is the ability to measure the alphas in the hot plasma core where the interesting ignition physics will occur.

  9. Alpha-particle microdosimetry.

    PubMed

    Chouin, Nicolas; Bardies, Manuel

    2011-07-01

    With the increasing availability of alpha emitters, targeted α-particle therapy has emerged as a solution of choice to treat haematological cancers and micrometastatic and minimal residual diseases. Alpha-particles are highly cytotoxic because of their high linear energy transfer (LET) and have a short range of a few cell diameters in tissue, assuring good treatment specificity. These radiologic features make conventional dosimetry less relevant for that context. Stochastic variations in the energy deposited in cell nuclei are important because of the microscopic target size, low number of α- particle traversals, and variation in LET along the α-particle track. Microdosimetry provides a conceptual framework that aims at a systematic analysis of the stochastic distribution of energy deposits in irradiated matter. The different quantities of microdosimetry and the different methods of microdosimetric calculations were described in the early eighties. Since then, numerous models have been published through the years and applied to analyse experimental data or to model realistic therapeutic situations. Major results have been an accurate description of the high toxicity of α-particles, and the description of the predominant effect of activity distribution at the cellular scale on toxicity or efficacy of potential targeted α-particle therapies. This last factor represents a major limitation to the use of microdosimetry in vivo because determination of the source - target distribution is complicated. The future contributions of microdosimetry in targeted α-particle therapy research will certainly depend on the ability to develop high-resolution detectors and on the implementation of pharmaco-kinetic models at the tumour microenvironment scale.

  10. Long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; Wolf, Michael A.; McAtee, James L.; Unruh, Wesley P.; Cucchiara, Alfred L.; Huchton, Roger L.

    1993-01-01

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  11. Long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; Wolf, M.A.; McAtee, J.L.; Unruh, W.P.; Cucchiara, A.L.; Huchton, R.L.

    1993-02-02

    An alpha particle detector capable of detecting alpha radiation from distant sources. In one embodiment, a high voltage is generated in a first electrically conductive mesh while a fan draws air containing air molecules ionized by alpha particles through an air passage and across a second electrically conductive mesh. The current in the second electrically conductive mesh can be detected and used for measurement or alarm. The detector can be used for area, personnel and equipment monitoring.

  12. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  13. Alpha-particle spectrometer experiment

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

  14. Alpha particle confinement in tokamaks

    SciTech Connect

    White, R.B.; Mynick, H.E.

    1988-11-01

    An assessment of diffusive tokamak transport mechanisms of concern for alpha particles indicates that the ''stochastic regime'' is the only one which appears to pose a real danger for adequate alpha confinement. This fact, in conjunction with the threshold character of that mechanism, allows one to decide whether an alpha born at a given location will be lost or confined, according to a very simple criterion. Implementing this criterion numerically results in a new code for the assessment of alpha confinement, which is orders of magnitude faster than earlier codes used for this purpose. 13 refs., 3 figs., 1 tab.

  15. Alpha particle emitters in medicine

    SciTech Connect

    Fisher, D.R.

    1989-09-01

    Radiation-induced cancer of bone, liver and lung has been a prominent harmful side-effect of medical applications of alpha emitters. In recent years, however, the potential use of antibodies labeled with alpha emitting radionuclides against cancer has seemed promising because alpha particles are highly effective in cell killing. High dose rates at high LET, effectiveness under hypoxic conditions, and minimal expectancy of repair are additional advantages of alpha emitters over antibodies labeled with beta emitting radionuclides for cancer therapy. Cyclotron-produced astatine-211 ({sup 211}At) and natural bismuth-212 ({sup 212}Bi) have been proposed and are under extensive study in the United States and Europe. Radium-223 ({sup 223}Ra) also has favorable properties as a potential alpha emitting label, including a short-lived daughter chain with four alpha emissions. The radiation dosimetry of internal alpha emitters is complex due to nonuniformly distributed sources, short particle tracks, and high relative specific ionization. The variations in dose at the cellular level may be extreme. Alpha-particle radiation dosimetry, therefore, must involve analysis of statistical energy deposition probabilities for cellular level targets. It must also account fully for nonuniform distributions of sources in tissues, source-target geometries, and particle-track physics. 18 refs., 4 figs.

  16. Production of medical Sc radioisotopes with an alpha particle beam.

    PubMed

    Szkliniarz, Katarzyna; Sitarz, Mateusz; Walczak, Rafał; Jastrzębski, Jerzy; Bilewicz, Aleksander; Choiński, Jarosław; Jakubowski, Andrzej; Majkowska, Agnieszka; Stolarz, Anna; Trzcińska, Agnieszka; Zipper, Wiktor

    2016-12-01

    The internal α-particle beam of the Warsaw Heavy Ion Cyclotron was used to produce research quantities of the medically interesting Sc radioisotopes from natural Ca and K and isotopically enriched (42)Ca targets. The targets were made of metallic calcium, calcium carbonate and potassium chloride. New data on the production yields and impurities generated during the target irradiations are presented for the positron emitters (43)Sc, (44g)Sc and (44m)Sc. The different paths for the production of the long lived (44m)Sc/(44g)Sc in vivo generator, proposed by the ARRONAX team, using proton and deuteron beams as well as alpha-particle beams are discussed. Due to the larger angular momentum transfer in the formation of the compound nucleus in the case of the alpha particle induced reactions, the isomeric ratio of (44m)Sc/(44g)Sc at a bombarding energy of 29MeV is five times larger than previously determined for a deuteron beam and twenty times larger than for proton induced reactions on enriched CaCO3 targets. Therefore, formation of this generator via the alpha-particle route seems a very attractive way to form these isotopes. The experimental data presented here are compared with theoretical predictions made using the EMPIRE evaporation code. Reasonable agreement is generally observed.

  17. Prospects for alpha particle studies on TFTR

    SciTech Connect

    Zweben, S.J.

    1987-05-01

    TFTR is expected to produce approximately 5 MW of alpha heating during the D/T Q approx. = 1 phase of operation in 1990. At that point the collective confinement properties and the heating effects of alpha particles become accessible for study for the first time. This paper outlines the potential performance of TFTR with respect to alpha particle production, the diagnostics which will be available for alpha particle measurements, and the physics issues which can be studied both before and during D/T operation.

  18. Radioimmunotherapy with alpha-particle emitting radionuclides.

    PubMed

    Zalutsky, M R; Pozzi, O R

    2004-12-01

    An important consideration in the development of effective strategies for radioimmunotherapy is the nature of the radiation emitted by the radionuclide. Radionuclides decaying by the emission of alpha-particles offer the possibility of matching the cell specific reactivity of monoclonal antibodies with radiation with a range of only a few cell diameters. Furthermore, alpha-particles have important biological advantages compared with external beam radiation and beta-particles including a higher biological effectiveness, which is nearly independent of oxygen concentration, dose rate and cell cycle position. In this review, the clinical settings most likely to benefit from alpha-particle radioimmunotherapy will be discussed. The current status of preclinical and clinical research with antibodies labeled with 3 promising alpha-particle emitting radionuclides - (213)Bi, (225)Ac, and (211)At - also will be summarized.

  19. Nuclear diagnostic for fast alpha particles

    DOEpatents

    Grisham, L.R.; Post, D.E. Jr.; Dawson, J.M.

    1983-11-23

    This invention relates generally to high energy confined plasmas and more particularly is directed to measuring the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a confined energetic plasma.

  20. Alpha-particles for targeted therapy.

    PubMed

    Sgouros, George

    2008-09-01

    Alpha-particles are helium nuclei that deposit DNA damaging energy along their track that is 100 to 1000 times greater than that of conventionally used beta-particle emitting radionuclides for targeted therapy; the damage caused by alpha-particles is predominately double-stranded DNA breaks severe enough so as to be almost completely irreparable. This means that a small number of tracks through a cell nucleus can sterilize a cell and that, because the damage is largely irreparable, alpha-particle radiation is not susceptible to resistance as seen with external radiotherapy (e.g., in hypoxic tissue). The ability of a single track to influence biological outcome and the stochastic nature of alpha-particle decay require statistical or microdosimetric techniques to properly reflect likely biological outcome when the biologically relevant target is small or when a low number of radionuclide decays have occurred. In therapeutic implementations, microdosimetry is typically not required and the average absorbed dose over a target volume is typically calculated. Animal and cell culture studies have shown that, per unit absorbed dose, the acute biological effects of alpha-particles are 3 to 7 times greater than the damage caused by external beam or beta-particle radiation. Over the past ten to 15 years, alpha-particle emitting radionuclides have been investigated as a possible new class of radionuclides for targeted therapy. Results from the small number of clinical trials reported to date have shown efficacy without significant toxicity.

  1. Alpha-particle fluence in radiobiological experiments.

    PubMed

    Nikezic, Dragoslav; Yu, Kwan Ngok

    2016-11-03

    Two methods were proposed for determining alpha-particle fluence for radiobiological experiments. The first involved calculating the probabilities of hitting the target for alpha particles emitted from a source through Monte Carlo simulations, which when multiplied by the activity of the source gave the fluence at the target. The second relied on the number of chemically etched alpha-particle tracks developed on a solid-state nuclear track detector (SSNTD) that was irradiated by an alpha-particle source. The etching efficiencies (defined as percentages of latent tracks created by alpha particles from the source that could develop to become visible tracks upon chemical etching) were computed through Monte Carlo simulations, which when multiplied by the experimentally counted number of visible tracks would also give the fluence at the target. We studied alpha particles with an energy of 5.486 MeV emitted from an (241)Am source, and considered the alpha-particle tracks developed on polyallyldiglycol carbonate film, which is a common SSNTD. Our results showed that the etching efficiencies were equal to one for source-film distances of from 0.6 to 3.5 cm for a circular film of radius of 1 cm, and for source-film distances of from 1 to 3 cm for circular film of radius of 2 cm. For circular film with a radius of 3 cm, the etching efficiencies never reached 1. On the other hand, the hit probability decreased monotonically with increase in the source-target distance, and fell to zero when the source-target distance was larger than the particle range in air.

  2. Alpha-particle sensitive test SRAMs

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Blaes, B. R.

    1990-01-01

    A bench-level test is being developed to evaluate memory-cell upsets in a test SRAM designed with a cell offset voltage. This offset voltage controls the critical charge needed to upset the cell. The effect is demonstrated using a specially designed 2-micron n-well CMOS 4-kb test SRAM and a Po-208 5.1-MeV 0.61-LET alpha-particle source. This test SRAM has been made sensitive to alpha particles through the use of a cell offset voltage, and this has allowed a bench-level characterization in a laboratory setting. The experimental data are linked to a alpha-particle interaction physics and to SPICE circuit simulations through the alpha-particle collection depth. The collection depth is determined by two methods and found to be about 7 micron. In addition, alpha particles that struck outside the bloated drain were able to flip the SRAM cells. This lateral charge collection was observed to be more than 6 micron.

  3. The status of alpha-particle diagnostics

    SciTech Connect

    Young, K.M.; Johnson, D.W.

    1992-08-01

    There is a flurry of activity to complete alpha-particle diagnostics so that they can undergo some experimental testing in DT plasmas on JET or TFTR prior to implementation on ITER. Successful measurements of escaping charged fusion products have been made in DD plasmas, and the {alpha}-particle source can be well characterized by neutron profile measurement. These methods can be extrapolated to DT plasmas. Measurement of the confined {alpha}-particles requires a new technique. Collective Thomson scattering, methods involving charge-exchange interactions and nuclear reactions with impurities will be discussed. Some assessment is given of the capabilities of these techniques, bearing in mind the potential for their use in the physics phase of the ITER program.

  4. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; McAtee, James L.

    1993-01-01

    An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  5. Lunar surface outgassing and alpha particle measurements

    SciTech Connect

    Lawson, S. L.; Feldman, W. C.; Lawrence, David J. ,; Moore, K. R.; Elphic, R. C.; Maurice, S.; Belian, Richard D.; Binder, Alan B.

    2002-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particle?; produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-2 18 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238.

  6. Alpha particles diffusion due to charge changes

    SciTech Connect

    Clauser, C. F. Farengo, R.

    2015-12-15

    Alpha particles diffusion due to charge changes in a magnetized plasma is studied. Analytical calculations and numerical simulations are employed to show that this process can be very important in the pedestal-edge-SOL regions. This is the first study that presents clear evidence of the importance of atomic processes on the diffusion of alpha particles. A simple 1D model that includes inelastic collisions with plasma species, “cold” neutrals, and partially ionized species was employed. The code, which follows the exact particle orbits and includes the effect of inelastic collisions via a Monte Carlo type random process, runs on a graphic processor unit (GPU). The analytical and numerical results show excellent agreement when a uniform background (plasma and cold species) is assumed. The simulations also show that the gradients in the density of the plasma and cold species, which are large and opposite in the edge region, produce an inward flux of alpha particles. Calculations of the alpha particles flux reaching the walls or divertor plates should include these processes.

  7. Alpha particle spectrometry using superconducting microcalorimeters

    NASA Astrophysics Data System (ADS)

    Horansky, Robert; Ullom, Joel; Beall, James; Hilton, Gene; Stiehl, Gregory; Irwin, Kent; Plionis, Alexander; Lamont, Stephen; Rudy, Clifford; Rabin, Michael

    2009-03-01

    Alpha spectrometry is the preferred technique for analyzing trace samples of radioactive material because the alpha particle flux can be significantly higher than the gamma-ray flux from nuclear materials of interest. Traditionally, alpha spectrometry is performed with Si detectors whose resolution is at best 8 keV FWHM. Here, we describe the design and operation of a microcalorimeter alpha detector with an energy resolution of 1.06 keV FWHM at 5 MeV. We demonstrate the ability of the microcalorimeter to clearly resolve the alpha particles from Pu-239 and Pu-240, whose ratio differentiates reactor-grade Pu from weapons-grade. We also show the first direct observation of the decay of Po-209 to the ground state of Pb-205 which has traditionally been obscured by a much stronger alpha line 2 keV away. Finally, the 1.06 keV resolution observed for alpha particles is far worse than the 0.12 keV resolution predicted from thermal fluctuations and measurement of gamma-rays. The cause of the resolution degradation may be ion damage in the tin. Hence, alpha particle microcalorimeters may provide a novel tool for studying ion damage and lattice displacement energies in bulk materials.

  8. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.

    PubMed

    Das, Achintya; Duttagupta, Siddhartha P

    2015-12-01

    There is a growing requirement of alpha spectroscopy in the fields context of environmental radioactive contamination, nuclear waste management, site decommissioning and decontamination. Although silicon-based alpha-particle detection technology is mature, high leakage current, low displacement threshold and radiation hardness limits the operation of the detector in harsh environments. Silicon carbide (SiC) is considered to be excellent material for radiation detection application due to its high band gap, high displacement threshold and high thermal conductivity. In this report, an alpha-particle-induced electron-hole pair generation model for a reverse-biased n-type SiC Schottky diode has been proposed and verified using technology computer aided design (TCAD) simulations. First, the forward-biased I-V characteristics were studied to determine the diode ideality factor and compared with published experimental data. The ideality factor was found to be in the range of 1.4-1.7 for a corresponding temperature range of 300-500 K. Next, the energy-dependent, alpha-particle-induced EHP generation model parameters were optimised using transport of ions in matter (TRIM) simulation. Finally, the transient pulses generated due to alpha-particle bombardment were analysed for (1) different diode temperatures (300-500 K), (2) different incident alpha-particle energies (1-5 MeV), (3) different reverse bias voltages of the 4H-SiC-based Schottky diode (-50 to -250 V) and (4) different angles of incidence of the alpha particle (0°-70°).The above model can be extended to other (wide band-gap semiconductor) device technologies useful for radiation-sensing application.

  9. Nuclear diagnostic for fast alpha particles

    DOEpatents

    Grisham, Larry R.; Post, Jr., Douglass E.; Dawson, John M.

    1986-01-01

    Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.

  10. Nuclear diagnostic for fast alpha particles

    DOEpatents

    Grisham, Larry R.; Post Jr., Douglass E.; Dawson, John M.

    1986-06-03

    Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.

  11. Radioimmunotherapy with alpha-particle-emitting immunoconjugates

    SciTech Connect

    Macklis, R.M.; Kinsey, B.M.; Kassis, A.L.; Ferrara, J.L.M.; Atcher, R.W.; Hines, J.J.; Coleman, C.N.; Adelstein, S.J.; Burakoff, S.J.

    1988-05-20

    Alpha particles are energetic short-range ions whose higher linear energy transfer produces extreme cytotoxicity. An ..cap alpha..-particle-emitting radioimmunoconjugate consisting of a bismuth-212-labeled monoclonal immunoglobulin M specific for the murine T cell/neuroectodermal surface antigen Thy 1.2 was prepared. Analysis in vitro showed that the radioimmunoconjugate was selectively cytotoxic to a Thy 1.2/sup +/ EL-4 murine tumor cell line. Approximately three bismuth-212-labeled immunoconjugates per target cell reduced the uptake of (/sup 3/H)thymidine by the EL-4 target cells to background levels. Mice inoculated intraperitoneally with EL-4 cells were cured of their ascites after intraperitoneal injection of 150 microcuries of the antigen-specific radioimmunoconjugate, suggesting a possible role for such conjugates in intracavitary cancer therapy. 18 references, 3 figures.

  12. Alpha-particle Gas Pressure Gauge

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Bell, L. D.; Hecht, M. H.

    1995-01-01

    Described are preliminary results obtained on a novel gas pressure gauge that operates between 0.1 and 1000 mb. This gauge uses a 1- micron Ci alpha particle source to ionize the gas in a small chamber with an electric field imposed between anode and cathode electrodes that drives positive ions to the cathode where they are collected electronically. This gauge could make Martian pressure measurements.

  13. Diamond detector for alpha-particle spectrometry.

    PubMed

    Dueñas, J A; de la Torre Pérez, J; Martín Sánchez, A; Martel, I

    2014-08-01

    An artificially grown high purity diamond was used as a detector for alpha-particle spectrometry. Diamond detectors can match the performance of silicon detectors employed in standard continuous air monitoring systems. Its radiation hardness and electronic properties make them ideal to work under extreme condition such as high temperature and ambient lights. A 50 μm thickness single-crystal diamond detector has been compared with a 300 μm passivated implanted planar silicon detector, under ambient conditions.

  14. Lunar Surface Outgassing and Alpha Particle Measurements

    NASA Astrophysics Data System (ADS)

    Lawson, S. L.; Feldman, W. C.; Lawrence, D. J.; Moore, K. R.; Elphic, R. C.; Maurice, S.; Belian, R. D.; Binder, A. B.

    2002-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particles produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-218 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238. Radon reaches the lunar surface either at areas of high soil porosity or where fissures release the trapped gases in which radon is entrained. Once released, the radon spreads out by "bouncing" across the surface on ballistic trajectories in a randomwalk process. The half-life of radon-222 allows the gas to spread out by several 100 km before it decays (depositing approximately half of the polonium-218 recoil nuclides on the lunar surface) and allows the APS to detect gas release events up to several days after they occur. The long residence time of the lead-210 precursor to polonium-210 allows the mapping of gas vents which have been active over the last approximately 60 years. Because radon and polonium are daughter products of the decay of uranium, the background level of alpha particle activity is a function of the lunar crustal uranium distribution.

  15. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    SciTech Connect

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  16. Alpha particle collective Thomson scattering in TFTR

    SciTech Connect

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A.; Bindslev, H.

    1993-11-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques.

  17. Biomarkers of Alpha Particle Radiation Exposure

    DTIC Science & Technology

    2014-04-01

    i.e fingermarks, blood and saliva ). Alternatively, there is also potential to inhale the emitted alpha-particles, resulting in internal...contamination to organs, sensitive cells and blood. These biomarkers may be rapidly detected from a small sample of blood/ saliva using quantitative polymerase...ALP) U/L 39 32 33 37 Amylase (AMY) U/L 46 43 43 45 Aspartate Aminotransferase (AST) U/L 44 41 39 42 Blood Urea Nitrogen (BUN) mg/dL 18 19 18 18

  18. Alpha particles in effective field theory

    SciTech Connect

    Caniu, C.

    2014-11-11

    Using an effective field theory for alpha (α) particles at non-relativistic energies, we calculate the strong scattering amplitude modified by Coulomb corrections for a system of two αs. For the strong interaction, we consider a momentum-dependent interaction which, in contrast to an energy dependent interaction alone [1], could be more useful in extending the theory to systems with more than two α particles. We will present preliminary results of our EFT calculations for systems with two alpha particles.

  19. Evolution of the alpha particle driven toroidicity induced Alfven mode

    SciTech Connect

    Wu, Y.; White, R.B.; Cheng, C.Z.

    1994-04-01

    The interaction of alpha particles with a toroidicity induced Alfven eigenmode is investigated self-consistently by using a kinetic dispersion relation. All important poloidal harmonics and their radial mode profiles are included. A Hamiltonian guiding center code is used to simulate the alpha particle motion. The simulations include particle orbit width, nonlinear particle dynamics and the effects of the modes on the particles. Modification of the particle distribution leading to mode saturation is observed. There is no significant alpha particle loss.

  20. Alpha-Particle Gas-Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Buehler, M. C.; Bell, L. D.; Hecht, M. H.

    1996-01-01

    An approximate model was developed to establish design curves for the saturation region and a more complete model developed to characterize the current-voltage curves for an alpha-particle pressure sensor. A simple two-parameter current-voltage expression was developed to describe the dependence of the ion current on pressure. The parameters are the saturation-current pressure coefficient and mu/D, the ion mobility/diffusion coefficient. The sensor is useful in the pressure range between 0.1 and 1000 mb using a 1 - mu Ci(241) Am source. Experimental results, taken between 1 and up to 200 mb, show the sensor operates with an anode voltage of 5 V and a sensitivity of 20 fA/mb in nitrogen.

  1. [alpha]-particle transport-driven current in tokamaks

    SciTech Connect

    Heikkinen, J.A. ); Sipilae, S.K. )

    1995-03-01

    It is shown that the radial transport of fusion-born energetic [alpha] particles, induced by electrostatic waves traveling in one poloidal direction, is directly connected to a net momentum of [alpha] particles in the toroidal direction in tokamaks. Because the momentum change is almost independent of toroidal velocity, the energy required for the momentum generation remains small on an [alpha]-particle population sustained by an isotropic time-independent source. By numerical toroidal Monte Carlo calculations it is shown that the current carried by [alpha] particles in the presence of intense well penetrated waves can reach several mega-amperes in reactor-sized tokamaks. The current obtained can greatly exceed the neoclassical bootstrap current of the [alpha] particles.

  2. Genotoxicity of alpha particles in human embryonic skin fibroblasts

    SciTech Connect

    Chen, D.J.; Strniste, G.F.; Tokita, N.

    1984-11-01

    Cell inactivation and induced mutation frequencies at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus have been measured in cultured human fibroblasts (GM10) exposed to ..cap alpha.. particles from /sup 238/ Pu and 250 kVp X rays. The survival curves resulting from exposure to ..cap alpha.. particles are exponential. The mean lethal dose, D/sub 0/, is approximately 1.3 Gy for X rays and 0.25 Gy for ..cap alpha.. particles. As a function of radiation dose, mutation induction at the HGPRT locus was linear for ..cap alpha.. particles whereas the X-ray-induced mutation data were better fitted by a quadratic function. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in cells exposed to ..cap alpha.. particles than to X rays.

  3. Alpha particle analysis using PEARLS spectrometry

    SciTech Connect

    McKlveen, J.W.; Klingler, G.W.; McDowell, W.J.; Case, G.N.

    1984-01-01

    Alpha particle assay by conventional plate-counting methods is difficult because chemical separation, tracer techniques, and/or self-absorption losses in the final sample may cause either non-reproducible results or create unacceptable errors. PEARLS (Photon-Electron Rejecting Alpha Liquid Scintillation) Spectrometry is an attractive alternative since radionuclides may be extracted into a scintillator in which there would be no self-absorption or geometry problems and in which up to 100% chemical recovery and counting efficiency is possible. Sample preparation may include extraction of the alpha emitter of interest by a specific organic-phase-soluble compound directly into the liquid scintillator. Detection electronics use energy and pulse-shape discrimination to provide discrete alpha spectra and virtual absence of beta and gamma backgrounds. Backgrounds on the order of 0.01 cpm are readily achievable. Accuracy and reproducibility are typically in the 100 +-1% range. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium, and polonium assay. This paper will review liquid scintillation alpha counting methods and reference some of the specific applications. 8 refs., 1 fig.

  4. Cosmic bombardment

    SciTech Connect

    Hyde, R.A.

    1984-03-19

    Throughout its history, the earth has been constantly bombarded by interplanetary bodies. In the maelstrom of the earth Solar System, such collisions created our planet and then fed its growth. With time, the rate of such collisions has dropped enormously, as most of the loose matter has been swept either up or out of the Solar System. However, because our planet has evolved and acquired an increasingly sophisticated biosphere, the significance of cosmic bombardment has not decreased. Cosmic bombardment kills; in the past, individuals, species, even entire branches of the evolutionary tree have been terminated by it. Unlike our predecessors, we have the ability to protect ourselves from this danger. To do this, we need a two-part system, featuring passive surveillance to identify threats, followed by an active defense to deflect or destroy incoming projectiles. We should first build a set of automated telescopes, using them to warn us of first-pass deadly comets and asteroids. As this surveillance continues, we will develop a catalog of the Apollo asteroids, enabling us to predict collisions with ever smaller asteroids many years in advance. Such anticipated threats can be dealt with leisurely; with neutron-rich bombs, such as presently exist, or with magnetic guns, which need not be developed until the requirement arises. Comets and small asteroids will not give us much warning; when the alarm sounds there will be no time for dithering. Hence, we should position a small number of interceptor rockets in earth orbit; their warheads can be kept on the ground and delivered to them as needed. These interceptors will destroy comets by impact detonation, and deflect small asteroids by neutron ablation.

  5. Contemporary Issues in Ultra-Low Alpha Particle Counting

    NASA Astrophysics Data System (ADS)

    Gordon, Michael

    Single-Event Upsets (SEU) in CMOS devices are caused by the passage of ionizing radiation either from terrestrial neutrons or from the natural alpha particle radiation within the materials surrounding the transistors. Interactions of the neutrons with the silicon cause spallation reactions which emit energetic highly ionizing elements. Alpha particles, on the other hand, can upset the devices through direct ionization rather than through a nuclear reaction as in the case of the neutrons. In order to minimize the alpha-particle component of SEU, the radiation from the materials within a distance 100 μm of the transistors, currently needs to have an alpha particle emissivity of less than 2 alpha particles per khr per square centimeter. Many alpha particle detectors have background levels that are larger than this, which can make these measurements inaccurate and time consuming. This talk will discuss what is involved in making alpha particle emissivity measurements of materials used in the semiconductor industry using an ultra-low background commercially-available ionization detector. Detector calibration and efficiency, radon adsorption on the samples, and the effect of surface charge on electrically insulating samples will be discussed.

  6. Targeted alpha particle immunotherapy for myeloid leukemia.

    PubMed

    Jurcic, Joseph G; Larson, Steven M; Sgouros, George; McDevitt, Michael R; Finn, Ronald D; Divgi, Chaitanya R; Ballangrud, Ase M; Hamacher, Klaus A; Ma, Dangshe; Humm, John L; Brechbiel, Martin W; Molinet, Roger; Scheinberg, David A

    2002-08-15

    Unlike beta particle-emitting isotopes, alpha emitters can selectively kill individual cancer cells with a single atomic decay. HuM195, a humanized anti-CD33 monoclonal antibody, specifically targets myeloid leukemia cells and has activity against minimal disease. When labeled with the beta-emitters (131)I and (90)Y, HuM195 can eliminate large leukemic burdens in patients, but it produces prolonged myelosuppression requiring hematopoietic stem cell transplantation at high doses. To enhance the potency of native HuM195 yet avoid the nonspecific cytotoxicity of beta-emitting constructs, the alpha-emitting isotope (213)Bi was conjugated to HuM195. Eighteen patients with relapsed and refractory acute myelogenous leukemia or chronic myelomonocytic leukemia were treated with 10.36 to 37.0 MBq/kg (213)Bi-HuM195. No significant extramedullary toxicity was seen. All 17 evaluable patients developed myelosuppression, with a median time to recovery of 22 days. Nearly all the (213)Bi-HuM195 rapidly localized to and was retained in areas of leukemic involvement, including the bone marrow, liver, and spleen. Absorbed dose ratios between these sites and the whole body were 1000-fold greater than those seen with beta-emitting constructs in this antigen system and patient population. Fourteen (93%) of 15 evaluable patients had reductions in circulating blasts, and 14 (78%) of 18 patients had reductions in the percentage of bone marrow blasts. This study demonstrates the safety, feasibility, and antileukemic effects of (213)Bi-HuM195, and it is the first proof-of-concept for systemic targeted alpha particle immunotherapy in humans.

  7. Alpha particle destabilization of the toroidicity-induced Alfven eigenmodes

    SciTech Connect

    Cheng, C.Z.

    1990-10-01

    The high frequency, low mode number toroidicity-induced Alfven eigenmodes (TAE) are shown to be driven unstable by the circulating and/or trapped {alpha}-particles through the wave-particle resonances. Satisfying the resonance condition requires that the {alpha}-particle birth speed v{sub {alpha}} {ge} v{sub A}/2{vert bar}m-nq{vert bar}, where v{sub A} is the Alfven speed, m is the poloidal model number, and n is the toroidal mode number. To destabilize the TAE modes, the inverse Landau damping associated with the {alpha}-particle pressure gradient free energy must overcome the velocity space Landau damping due to both the {alpha}-particles and the core electrons and ions. The growth rate was studied analytically with a perturbative formula derived from the quadratic dispersion relation, and numerically with the aid of the NOVA-K code. Stability criteria in terms of the {alpha}-particle beta {beta}{sub {alpha}}, {alpha}-particle pressure gradient parameter ({omega}{sub {asterisk}}/{omega}{sub A}) ({omega}{sub {asterisk}} is the {alpha}-particle diamagnetic drift frequency), and (v{sub {alpha}}/v{sub A}) parameters will be presented for TFTR, CIT, and ITER tokamaks. The volume averaged {alpha}-particle beta threshold for TAE instability also depends sensitively on the core electron and ion temperature. Typically the volume averaged {alpha}-particle beta threshold is in the order of 10{sup {minus}4}. Typical growth rates of the n=1 TAE mode can be in the order of 10{sup {minus}2}{omega}{sub A}, where {omega}{sub A}=v{sub A}/qR. Other types of global Alfven waves are stable in D-T tokamaks due to toroidal coupling effects.

  8. Effect of alpha particles on Toroidal Alfven Eigenmodes

    SciTech Connect

    Berk, H.L.

    1992-11-01

    An overview is given of the analytic structure for the linear theory of the Toroidal Alfven Eigenmode (TAE), where multiple gap structures occur. A discussion is given of the alpha particle drive and the various dissipation mechanisms that can stabilize the system. A self-consistent calculation of the TAE mode, for a low-beta high-aspect-ratio plasma, indicates that though the alpha particle drive is comparable to the dissipation mechanisms, overall stability is still achieved for ignited ITER-like plasma. A brief discussion is given of the nonlinear theory for the TAE mode and how nonlinear alpha particle dynamics can be treated by mapping methods.

  9. The effects of intense gamma-irradiation on the alpha-particle response of silicon carbide semiconductor radiation detectors

    NASA Astrophysics Data System (ADS)

    Ruddy, Frank H.; Seidel, John G.

    2007-10-01

    Silicon Carbide (SiC) semiconductor radiation detectors are being developed for alpha-particle, X-ray and Gamma-ray, and fast-neutron energy spectrometry. SiC detectors have been operated at temperatures up to 306 °C and have also been found to be highly resistant to the radiation effects of fast-neutron and charged-particle bombardments. In the present work, the alpha-particle response of a SiC detector based on a Schottky diode design has been carefully monitored as a function of 137Cs gamma-ray exposure. The changes in response have been found to be negligible for gamma exposures up to and including 5.4 MGy, and irradiations to higher doses are in progress.

  10. Alpha-particle effects on ballooning flute modes in tokamaks

    SciTech Connect

    Andrushchenko, Z.N.; Bijko, A.Y.; Cheremnykh, O.K. )

    1990-11-01

    In this paper a more accurate dispersion equation for ideal ballooning flute modes in a plasma with alpha particles is obtained. It is shown that circulating and trapped alpha particles generate the eigenbranches of the mode oscillations with frequencies {omega} {approx lt} {omega}{sub *i}, where {omega}{sub *i}, is the ion drift frequency. The relevant growth rates and frequencies are found. It is ascertained that in the frequency range {omega}{sub *i} {lt} {omega} {lt} {bar {omega}{sub Db}}, where {bar {omega}{sub Db}} is the magnetic drift frequency average over a bounce period, trapped alpha particles may generate forced oscillations that influence the ideal ballooning flute mode stability boundary. It is shown that the stability may be improved for certain plasma parameters and trapped alpha-particle pressures.

  11. Full orbit calculation for lost alpha particle measurement on ITER

    SciTech Connect

    Funaki, D.; Isobe, M.; Nishiura, M.; Sato, Y.; Okamoto, A.; Kobuchi, T.; Kitajima, S.; Sasao, M.

    2008-10-15

    An orbit following calculation code with full gyromotion under the ITER magnetic field configuration has been developed to investigate escaping alpha particle orbits in ITER and to determine the geometrical arrangement for alpha particle detection. The code contained the full geometrical information of the first wall panels. It was carefully investigated whether an alpha particle escaping from the plasma through the last closed flux surface does not touch or intersect the first wall boundary before reaching the detection point. Candidates of blanket module modification have been studied to achieve effective measurement geometry for escaping alpha particle detection. The calculations showed that direct orbit loss and banana diffusion can be detected with a probe head recessed from the first wall surface.

  12. Alpha particle nonionizing energy loss (NIEL) for device applications

    NASA Technical Reports Server (NTRS)

    Jun, Insoo; Xapsos, Michael A.; Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Summers, Geoff; Jordan, Thomas

    2004-01-01

    A method developed for the proton NIEL calculation previously is extended to incident alpha particles in this study: ZBL screened potential for Coulomb interactions and MCNPX 'thin target approximation' for nuclear interactions.

  13. Depth Measurements Using Alpha Particles and Upsettable SRAMs

    NASA Technical Reports Server (NTRS)

    Buehler, M. G.; Reier, M.; Soli, G. A.

    1995-01-01

    A custom designed SRAM was used to measure the thickness of integrated circuit over layers and the epi-layer thickness using alpha particles and a test SRAM. The over layer consists of oxide, nitride, metal, and junction regions.

  14. Turbulent transport of alpha particles in reactor plasmas

    SciTech Connect

    Estrada-Mila, C.; Candy, J.; Waltz, R. E.

    2006-11-15

    A systematic study of the behavior of energetic ions in reactor plasmas is presented. Using self-consistent gyrokinetic simulations, in concert with an analytic asymptotic theory, it is found that alpha particles can interact significantly with core ion-temperature-gradient turbulence. Specifically, the per-particle flux of energetic alphas is comparable to the per-particle flux of thermal species (deuterium or helium ash). This finding opposes the conventional wisdom that energetic ions, because of their large gyroradii, do not interact with the turbulence. For the parameters studied, a turbulent modification of the alpha-particle density profile appears to be stronger than turbulent modification of the alpha-particle pressure profile. Crude estimates indicate that the alpha density modification, which is directly proportional to the core turbulence intensity, could be in the range of 15% at midradius in a reactor. The corresponding modification of the alpha-particle pressure profile is predicted to be smaller (in the 1% range)

  15. Preliminary Results from the Lunar Prospector Alpha Particle Spectrometer

    NASA Astrophysics Data System (ADS)

    Lawson, S. L.; Feldman, W. C.; Moore, K. R.; Lawrence, D. J.; Maurice, S.; Belian, R. D.; Binder, A. B.

    2001-03-01

    Data measured using the Lunar Prospector Alpha Particle Spectrometer were surveyed to search for surface deposits of polonium-210. Preliminary results show that a marginal, yet statistically-significant signal was indeed detected on the lunar front side.

  16. Alpha particle nonionizing energy loss (NIEL) for device applications

    NASA Technical Reports Server (NTRS)

    Jun, Insoo; Xapsos, Michael A.; Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Summers, Geoff; Jordan, Thomas

    2004-01-01

    A method developed for the proton NIEL calculation previously is extended to incident alpha particles in this study: ZBL screened potential for Coulomb interactions and MCNPX 'thin target approximation' for nuclear interactions.

  17. Mutagenicity of alpha particles in Ehrlich ascites tumor cells

    SciTech Connect

    Iliakis, G.

    1984-07-01

    Cell killing and the induction of mutation to thioguanine resistance were measured after exposure of Ehrlich ascites tumor cells to 150-kV X rays and /sup 241/Am ..cap alpha.. particles. The curve describing the induction of mutations was almost linear after exposure to ..cap alpha.. particles but upward bending after exposure to X rays, apparently reaching a final slope similar to that obtained after exposure to ..cap alpha.. particles. The number of mutants induced per viable cell by ..cap alpha.. particles at a given level of cell killing was similar to that induced by X rays. The RBE values obtained for cell killing and the induction of mutations are compared with each other, and the possible involvement of repair processes in determining the RBE is discussed.

  18. Shielding of manned space vehicles against protons and alpha particles

    NASA Technical Reports Server (NTRS)

    Alsmiller, R. G., Jr.; Santoro, R. T.; Barish, J.; Claiborne, H. C.

    1972-01-01

    The available information on the shielding of manned space vehicles against protons and alpha particles is summarized. The emphasis is placed on shielding against Van Allen belt protons and against solar-flare protons and alpha particles, but information on shielding against galactic cosmic rays is also presented. The approximation methods for use by nonexperts in the space shielding field are those that are standard in the space shielding literature.

  19. Alpha particle effects on the internal kink and fishbone modes

    SciTech Connect

    Wu, Y.; Cheng, C.Z.; White, R.B. )

    1994-10-01

    The effects of alpha particles on the internal kink and fishbone modes are studied analytically. The nonadiabatic contribution from untrapped alpha particles is negligible. Finite inverse aspect ratio, plasma [beta], and plasma shaping effects can significantly enhance the trapped particle drift reversal domain in the pitch angle space and reduce the bounce-averaged magnetic drift frequency. The decrease of the drift magnitude and drift reversal effects on the ideal kink mode is small, but the [beta][sub [alpha

  20. Utility of extracting {alpha}-particle energy by waves

    SciTech Connect

    Fisch, N.J.; Herrmann, M.C.

    1994-05-01

    The utility of extracting {alpha}-particle power, and then diverting this power to fast fuel ions, is investigated. As power is diverted to fast ions and then to ions, a number of effects come into play, as the relative amounts of pressure taken up by electrons, fuel ions, and fast {alpha}-particles shift. In addition, if the {alpha}-particle power is diverted to fast fuel ions, there is an enhanced fusion reactivity because of the nonthermal component of the ion distribution. Some useful expressions for describing these effects are derived, and it is shown that fusion reactors with power density about twice what otherwise might be obtained can be contemplated, so long as a substantial amount of the {alpha}-particle power can be diverted. Interestingly, in this mode of operation, once the electron heat is sufficiently confined, further improvement in confinement is actually not desirable. A similar improvement in fusion power density can be obtained for advanced fuel mixtures such as D-He{sup 3}, where the power of both the energetic {alpha}-particles and the energetic protons might be diverted advantageously.

  1. Actinium-225 in targeted alpha-particle therapeutic applications.

    PubMed

    Scheinberg, David A; McDevitt, Michael R

    2011-10-01

    Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium- 225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day halflife; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer.

  2. Actinium-225 in targeted alpha-particle therapeutic applications

    PubMed Central

    Scheinberg, David A.; McDevit, Michael R.

    2017-01-01

    Alpha particle-emitting isotopes are being investigated in radioimmunotherapeutic applications because of their unparalleled cytotoxicity when targeted to cancer and their relative lack of toxicity towards untargeted normal tissue. Actinium-225 has been developed into potent targeting drug constructs and is in clinical use against acute myelogenous leukemia. The key properties of the alpha particles generated by 225Ac are the following: i) limited range in tissue of a few cell diameters; ii) high linear energy transfer leading to dense radiation damage along each alpha track; iii) a 10 day half-life; and iv) four net alpha particles emitted per decay. Targeting 225Ac-drug constructs have potential in the treatment of cancer. PMID:22202153

  3. Alpha particle effects on the internal kink and fishbone modes

    SciTech Connect

    Wu, Y.; Cheng, C.Z.; White, R.B.

    1994-06-01

    The effects of alpha particles on the internal kink and fishbone modes are studied analytically. The nonadiabatic contribution from untrapped alpha particles is negligible. Finite inverse aspect ratio, plasma {beta} and plasma shaping effects can significantly enhance the trapped particle drift reversal domain in the pitch angle space and reduce the bounce-averaged magnetic drift frequency. The drift reversal effect on the ideal kink mode is small, but the {beta}{sub {alpha}} threshold for the fishbone mode can be much lower than previously predicted. Moreover, the fishbone mode could be excited by alpha particles even when the plasma is stable in the ideal MHD limit. In addition, the ion diamagnetic drift frequency (finite ion Larmor radius effect) has a strong destabilizing effect on the fishbone mode when it is comparable with the trapped alpha averaged precessional drift frequency, even though it stabilizes the plasma in the ideal MHD limit.

  4. Targeted alpha-particle immunotherapy for acute myeloid leukemia.

    PubMed

    Jurcic, Joseph G; Rosenblat, Todd L

    2014-01-01

    Because alpha-particles have a shorter range and a higher linear energy transfer (LET) compared with beta-particles, targeted alpha-particle immunotherapy offers the potential for more efficient tumor cell killing while sparing surrounding normal cells. To date, clinical studies of alpha-particle immunotherapy for acute myeloid leukemia (AML) have focused on the myeloid cell surface antigen CD33 as a target using the humanized monoclonal antibody lintuzumab. An initial phase I study demonstrated the safety, feasibility, and antileukemic effects of bismuth-213 ((213)Bi)-labeled lintuzumab. In a subsequent study, (213)Bi-lintuzumab produced remissions in some patients with AML after partial cytoreduction with cytarabine, suggesting the utility of targeted alpha-particle therapy for small-volume disease. The widespread use of (213)Bi, however, is limited by its short half-life. Therefore, a second-generation construct containing actinium-225 ((225)Ac), a radiometal that generates four alpha-particle emissions, was developed. A phase I trial demonstrated that (225)Ac-lintuzumab is safe at doses of 3 μCi/kg or less and has antileukemic activity across all dose levels studied. Fractionated-dose (225)Ac-lintuzumab in combination with low-dose cytarabine (LDAC) is now under investigation for the management of older patients with untreated AML in a multicenter trial. Preclinical studies using (213)Bi- and astatine-211 ((211)At)-labeled anti-CD45 antibodies have shown that alpha-particle immunotherapy may be useful as part conditioning before hematopoietic cell transplantation. The use of novel pretargeting strategies may further improve target-to-normal organ dose ratios.

  5. Luminescence imaging of water during alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  6. Analytic expressions for {alpha} particle preformation in heavy nuclei

    SciTech Connect

    Zhang, H. F.; Wang, Y. J.; Dong, J. M.; Royer, G.

    2009-11-15

    Experimental {alpha} decay energies and half-lives are investigated systematically to extract {alpha} particle preformation in heavy nuclei. Formulas for the preformation factors are proposed that can be used to guide microscopic studies on preformation factors and perform accurate calculations of the {alpha} decay half-lives. There is little evidence for the existence of an island of long stability of superheavy nuclei.

  7. 226Ra determination in phosphogypsum by alpha-particle spectrometry

    NASA Astrophysics Data System (ADS)

    Aguado, J. L.; Bolívar, J. P.; García-Tenorio, R.

    1999-01-01

    A radiochemical method for226Ra determination by alpha-particle spectrometry in environmental samples has been developed in our laboratory. The method has been validated by measurements in samples with known concentrations of this radionuclide and it has been applied in studies related to226Ra behaviour in phosphogypsum (the main by-product of producing phosphoric acid from phosphate rocks).

  8. Alpha particle backscattering measurements used for chemical analysis of surfaces

    NASA Technical Reports Server (NTRS)

    Patterson, J. H.

    1967-01-01

    Alpha particle backscattering performs a chemical analysis of surfaces. The apparatus uses a curium source and a semiconductor detector to determine the energy spectrum of the particles. This in turn determines the chemical composition of the surface after calibration to known samples.

  9. Measurement of alpha particle energy using windowless electret ion chambers.

    PubMed

    Dua, S K; Kotrappa, P; Srivastava, R; Ebadian, M A; Stieff, L R

    2002-10-01

    Electret ion chambers are inexpensive, lightweight, robust, commercially available, passive, charge-integrating devices for accurate measurement of different ionizing radiations. In an earlier work a chamber of dimensions larger than the range of alpha particles having aluminized Mylar windows of different thickness was used for measurement of alpha radiation. Correlation between electret mid-point voltage, alpha particle energy, and response was developed and it was shown that this chamber could be used for estimating the effective energy of an unknown alpha source. In the present study, the electret ion chamber is used in the windowless mode so that the alpha particles dissipate their entire energy inside the volume, and the alpha particle energy is determined from the first principles. This requires that alpha disintegration rate be accurately known or measured by an alternate method. The measured energies were within 1 to 4% of the true values for different sources (230Th, 237Np, 239Pu, 241Am, and 224Cm). This method finds application in quantitative determination of alpha energy absorbed in thin membrane and, hence, the absorbed dose.

  10. The promise of targeted {alpha}-particle therapy.

    PubMed

    Mulford, Deborah A; Scheinberg, David A; Jurcic, Joseph G

    2005-01-01

    The use of monoclonal antibodies to deliver radioisotopes directly to tumor cells has become a promising strategy to enhance the antitumor effects of native antibodies. Since the alpha- and beta-particles emitted during the decay of radioisotopes differ in significant ways, proper selection of isotope and antibody combinations is crucial to making radioimmunotherapy a standard therapeutic modality. Because of the short pathlength (50-80 microm) and high linear energy transfer ( approximately 100 keV/microm) of alpha-emitting radioisotopes, targeted alpha-particle therapy offers the potential for more specific tumor cell killing with less damage to surrounding normal tissues than beta-emitters. These properties make targeted alpha-particle therapy ideal for the elimination of minimal residual or micrometastatic disease. Radioimmunotherapy using alpha-emitters such as (213)Bi, (211)At, and (225)Ac has shown activity in several in vitro and in vivo experimental models. Clinical trials have demonstrated the safety, feasibility, and activity of targeted alpha-particle therapy in the treatment of small-volume and cytoreduced disease. Further advances will require investigation of more potent isotopes, new sources and methods of isotope production, improved chelation techniques, better methods for pharmacokinetic and dosimetric modeling, and new methods of isotope delivery such as pretargeting. Treatment of patients with less-advanced disease and, ultimately, randomized trials comparing targeted alpha-particle therapy with standard approaches will be required to determine the clinical utility of this approach.

  11. Alpha particle heating at comet-solar wind interaction regions

    NASA Technical Reports Server (NTRS)

    Sharma, A. S.; Papadopoulos, K.

    1995-01-01

    The satellite observations at comet Halley have shown strong heating of solar wind alpha particles over an extended region dominated by high-intensity, low-frequency turbulence. These waves are excited by the water group pickup ions and can energize the solar wind plasma by different heating processes. The alpha particle heating by the Landau damping of kinetic Alfven waves and the transit time damping of low-frequency hydromagnetic waves in this region of high plasma beta are studied in this paper. The Alfven wave heating was shown to be the dominant mechanism for the observed proton heating, but it is found to be insufficient to account for the observed alpha particle heating. The transit time damping due to the interaction of the ions with the electric fields associated with the magnetic field compressions of magnetohydrodynamic waves is found to heat the alpha particles preferentially over the protons. Comparison of the calculated heating times for the transit time damping with the observations from comet Halley shows good agreement. These processes contribute to the thermalization of the solar wind by the conversion of its directed energy into the thermal energy in the transition region at comet-solar wind interaction.

  12. Targeting Prostate Cancer Stem Cells with Alpha-Particle Therapy

    PubMed Central

    Ceder, Jens; Elgqvist, Jörgen

    2017-01-01

    Modern molecular and radiopharmaceutical development has brought the promise of tumor-selective delivery of antibody–drug conjugates to tumor cells for the diagnosis and treatment of primary and disseminated tumor disease. The classical mode of discourse regarding targeted therapy has been that the antigen targeted must be highly and homogenously expressed in the tumor cell population, and at the same time exhibit low expression in healthy tissue. However, there is increasing evidence that the reason cancer patients are not cured by current protocols is that there exist subpopulations of cancer cells that are resistant to conventional therapy including radioresistance and that these cells express other target antigens than the bulk of the tumor cells. These types of cells are often referred to as cancer stem cells (CSCs). The CSCs are tumorigenic and have the ability to give rise to all types of cells found in a cancerous disease through the processes of self-renewal and differentiation. If the CSCs are not eradicated, the cancer is likely to recur after therapy. Due to some of the characteristics of alpha particles, such as short path length and high density of energy depositions per distance traveled in tissue, they are especially well suited for use in targeted therapies against microscopic cancerous disease. The characteristics of alpha particles further make it possible to minimize the irradiation of non-targeted surrounding healthy tissue, but most importantly, make it possible to deliver high-absorbed doses locally and therefore eradicating small tumor cell clusters on the submillimeter level, or even single tumor cells. When alpha particles pass through a cell, they cause severe damage to the cell membrane, cytoplasm, and nucleus, including double-strand breaks of DNA that are very difficult to repair for the cell. This means that very few hits to a cell by alpha particles are needed in order to cause cell death, enabling killing of cells, such as CSCs

  13. Targeting Prostate Cancer Stem Cells with Alpha-Particle Therapy.

    PubMed

    Ceder, Jens; Elgqvist, Jörgen

    2016-01-01

    Modern molecular and radiopharmaceutical development has brought the promise of tumor-selective delivery of antibody-drug conjugates to tumor cells for the diagnosis and treatment of primary and disseminated tumor disease. The classical mode of discourse regarding targeted therapy has been that the antigen targeted must be highly and homogenously expressed in the tumor cell population, and at the same time exhibit low expression in healthy tissue. However, there is increasing evidence that the reason cancer patients are not cured by current protocols is that there exist subpopulations of cancer cells that are resistant to conventional therapy including radioresistance and that these cells express other target antigens than the bulk of the tumor cells. These types of cells are often referred to as cancer stem cells (CSCs). The CSCs are tumorigenic and have the ability to give rise to all types of cells found in a cancerous disease through the processes of self-renewal and differentiation. If the CSCs are not eradicated, the cancer is likely to recur after therapy. Due to some of the characteristics of alpha particles, such as short path length and high density of energy depositions per distance traveled in tissue, they are especially well suited for use in targeted therapies against microscopic cancerous disease. The characteristics of alpha particles further make it possible to minimize the irradiation of non-targeted surrounding healthy tissue, but most importantly, make it possible to deliver high-absorbed doses locally and therefore eradicating small tumor cell clusters on the submillimeter level, or even single tumor cells. When alpha particles pass through a cell, they cause severe damage to the cell membrane, cytoplasm, and nucleus, including double-strand breaks of DNA that are very difficult to repair for the cell. This means that very few hits to a cell by alpha particles are needed in order to cause cell death, enabling killing of cells, such as CSCs

  14. Quality factors for alpha particles emitted in tissue

    NASA Technical Reports Server (NTRS)

    Borak, Thomas B.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    A concept of a mean or dose averaged quality factor was defined in ICRP Publication 26 using relationships for quality factor as a function of LET. The concept of radiation weighting factors, wR, was introduced in ICRP Publication 60 in 1990. These are meant to be generalized factors that modify absorbed dose to reflect the risk of stochastic effects as a function of the quality of the radiation incident on the body or emitted by radioactivity within the body. The values of wr are equal to 20 for all alpha particles externally or internally emitted. This note compares the dose averaged quality factor for alpha particles originating in tissue using the old and revised recommendations for quality factor as a function of LET. The dose averaged quality factor never exceeds 20 using the old recommendations and is never less than 20 with the revised recommendations.

  15. CVD diamond alpha-particle detectors with different electrode geometry.

    PubMed

    Wang, Linjun; Lou, Yanyan; Su, Qingfeng; Shi, Weimin; Xia, Yiben

    2005-10-17

    In this paper, two types of detectors, one with a coplanar and the other with a sandwich geometry using an identical CVD diamond film, were fabricated in order to investigate the effects of the film microstructure on the performance of diamond film alpha-particle detectors. An average charge collection efficiency of 42.9% for the coplanar structure and of 37.4% for the sandwich structure detectors was obtained, respectively. Raman scattering studies directly demonstrated that the different counts, collection efficiencies and photocurrents of the two types of detectors mainly resulted from the different micro-structural features between the final growth side and the nucleation side of the diamond film. Under alpha particle irradiation the detector with sandwich geometry had a similar trend on energy resolution with coplanar geometry under different applied electric field. A good energy resolution of 1.1% was obtained for both detectors.

  16. Quality factors for alpha particles emitted in tissue

    NASA Technical Reports Server (NTRS)

    Borak, Thomas B.; Chatterjee, A. (Principal Investigator)

    2002-01-01

    A concept of a mean or dose averaged quality factor was defined in ICRP Publication 26 using relationships for quality factor as a function of LET. The concept of radiation weighting factors, wR, was introduced in ICRP Publication 60 in 1990. These are meant to be generalized factors that modify absorbed dose to reflect the risk of stochastic effects as a function of the quality of the radiation incident on the body or emitted by radioactivity within the body. The values of wr are equal to 20 for all alpha particles externally or internally emitted. This note compares the dose averaged quality factor for alpha particles originating in tissue using the old and revised recommendations for quality factor as a function of LET. The dose averaged quality factor never exceeds 20 using the old recommendations and is never less than 20 with the revised recommendations.

  17. FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY

    SciTech Connect

    Matteini, L.; Schwartz, S. J.; Hellinger, P.; Landi, S.

    2015-10-10

    We investigate properties of a solar wind-like plasma, including a secondary alpha particle population exhibiting a parallel temperature anisotropy with respect to the background magnetic field, using linear and quasi-linear predictions and by means of one-dimensional hybrid simulations. We show that anisotropic alpha particles can drive a parallel fire hose instability analogous to that generated by protons, but that, remarkably, can also be triggered when the parallel plasma beta of alpha particles is below unity. The wave activity generated by the alpha anisotropy affects the evolution of the more abundant protons, leading to their anisotropic heating. When both ion species have sufficient parallel anisotropies, both of them can drive the instability, and we observe the generation of two distinct peaks in the spectra of the fluctuations, with longer wavelengths associated to alphas and shorter ones to protons. If a non-zero relative drift is present, the unstable modes propagate preferentially in the direction of the drift associated with the unstable species. The generated waves scatter particles and reduce their temperature anisotropy to a marginally stable state, and, moreover, they significantly reduce the relative drift between the two ion populations. The coexistence of modes excited by both species leads to saturation of the plasma in distinct regions of the beta/anisotropy parameter space for protons and alpha particles, in good agreement with in situ solar wind observations. Our results confirm that fire hose instabilities are likely at work in the solar wind and limit the anisotropy of different ion species in the plasma.

  18. Alpha particle effects on the internal kink modes

    SciTech Connect

    Wu, Yanlin; Cheng, C.Z.

    1994-08-01

    The {alpha}-particle effects on the internal kink mode stability are studied. Finite Grad-Shafranov Shift, plasma {beta}, and plasma shape can significantly enhance the trapped particle drift reversal domain in pitch angle space and reduce average magnetic drift frequency. The drift reversal effect on the ideal kink mode is small, but the {beta}{sub {alpha}} threshold for the fishbone mode can be much lower than previously predicted. In addition, the ion diamagnetic drift has a stronger destabilizing effect.

  19. Michrochannel plate for position sensitive alpha particle detection

    SciTech Connect

    Paul Hurley and James Tinsley

    2007-08-31

    This paper will describe the use of a microchannel plate (MCP) as the associated particle detector on a sealed tube neutron generator. The generator produces neutrons and associated alpha particles for use as a probe to locate and identify hidden explosives in associated particle imaging (API). The MCP measures the position in two dimensions and precise timing of the incident alpha particle, information which is then used to calculate the emission time and direction of the corresponding neutron. The MCP replaces the position-sensitive photomultipler tube (PSPMT) which, until recently, had been the only detector available for measuring position and timing for alpha particles in neutron generator applications. Where the PSPMT uses charge division for generating position information, a process that requires a first order correction to each pulse, the MCP uses delay-line timing, which requires no correction. The result is a device with an order of magnitude improvement in both position resolution and timing compared to the PSPMT. Hardware and software development and the measurements made to characterize the MCP for API applications are described.

  20. Absorbed fractions for alpha particles in ellipsoidal volumes

    NASA Astrophysics Data System (ADS)

    Amato, Ernesto; Italiano, Antonio; Baldari, Sergio

    2013-08-01

    Internal dosimetry of alpha particles is gaining attention due to the increasing applications in cancer treatment and also for the assessment of environmental contamination from radionuclides. We developed a Monte Carlo simulation in GEANT4 in order to calculate the absorbed fractions for monoenergetic alpha particles in the energy interval between 0.1 and 10 MeV, uniformly distributed in ellipsoids made of soft tissue. For each volume, we simulated a spherical shape, three oblate and three prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a ‘generalized radius’ was found; and the dependence of the fit parameters on the alpha energy is discussed and fitted by parametric functions. With the proposed formulation, the absorbed fraction for alpha particles in the energy range explored can be calculated for volumes and for ellipsoidal shapes of practical interest. This method can be applied to the evaluation of absorbed fraction from alpha-emitting radionuclides. The contribution to the deposited energy coming from electron and photon emissions can be accounted for exploiting the specific formulations previously introduced. As an example of application, the dosimetry of 213Bi and its decay chain in ellipsoids is reported.

  1. Alpha-particle losses in compact torsatron reactors

    SciTech Connect

    Painter, S.L.; Lyon, J.F.

    1989-01-01

    Loss of alpha particles in compact torsatron reactors is studied. For 6, 9, and 12 field period reactors, the direct loss is a relatively weak function of radius and energy and varies from approx. =33% for M = 6 to approx. =18% for M = 12. Loss of alpha particles through scattering into the loss region is calculated using the Fokker-Plank equation for fast ions and found to contribute an additional alpha-particle energy loss of approx. =15%. The consequences of these relatively large losses for torsatron reactor design are discussed. The relationship between the direct particle losses and the magnetic field structure is also studied. Orbit losses from a variety of stellarator configurations are calculated and a figure-of-merit that characterizes the orbit confinement of a magnetic configuration is deduced from these calculations. This figure-of-merit is used to show how the direct losses might be reduced at low aspect-ratio. Effects of finite beta on the direct particle losses are also addressed, and are shown to significantly increase the direct losses in some configurations. 15 refs., 8 figs.

  2. Alpha particle radioimmunotherapy: Animal models and clinical prospects

    SciTech Connect

    Macklis, R.M.; Kaplan, W.D.; Ferrara, J.L.; Atcher, R.W.; Hines, J.J.; Burakoff, S.J.; Coleman, C.N. )

    1989-06-01

    Short-lived isotopes that emit alpha particles have a number of physical characteristics which make them attractive candidates for radioimmunotherapy. Among these characteristics are high linear energy transfer and correspondingly high cytotoxicity; particle range limited to several cell diameters from the parent atom; low potential for repair of alpha-induced DNA damage; and low dependence on dose rate and oxygen enhancement effects. This report reviews the synthesis, testing and use in animal models of an alpha particle emitting radioimmunoconjugate constructed via the noncovalent chelation of Bismuth-212 to a monoclonal IgM antibody specific for the murine T cells/neuroectodermal surface antigen, Thy 1.2. These {sup 212}Bi-anti-Thy 1.2 immunoconjugates are capable of extraordinary cytotoxicity in vitro, requiring approximately three {sup 212}Bi-labeled conjugates per target cell to suppress {sup 3}H-thymidine incorporation to background levels. The antigen specificity afforded by the monoclonal antibody contributes a factor of approximately 40 to the radiotoxicity of the immunoconjugate. Animals inoculated with a Thy 1.2+ malignant ascites were cured of their tumor in an antigen-specific fashion by intraperitoneal doses of approximately 200 microCi per mouse. Alpha particle emitting radioimmunoconjugates show great potential for regional and intracavitary molecular radiotherapy.

  3. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    SciTech Connect

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J.; Bretz, N.L.; Park, H.K.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A.; Bindslev, H.

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies.

  4. Confined alpha particle diagnostics in JT-60U

    NASA Astrophysics Data System (ADS)

    Kusama, Y.; Tobita, K.; Itoh, T.; Nemoto, M.; Tsukahara, Y.; Kimura, H.; Takeuchi, H.

    1990-10-01

    In reactor-grade tokamaks, it is important to investigate confinement properties of alpha particles. A double charge-exchange method using a high-energy probing beam is considered to be the most reliable one in diagnostic methods proposed for the measurement. In JT-60U, an alpha particle production experiment by D-3He ICRF heating will be performed to study the behavior of fusion product alphas. The alpha particle measurement is planned using a helium diagnostic beam (200 keV) and a mass-resolved neutral particle energy analyzer. The expected flux and spectral shape were evaluated by taking into account multistep ionization of helium beam atoms and neutralized alphas. The beam energy is lower than desirable for measuring fast confined alphas near the birth energy. However, by using the beam system, it has been found from the evaluation that we can investigate the confinement properties of fusion product alphas from the spectral shape. And also such a system using a present-day He beam is useful to diagnose behavior of confined alphas in reactor-grade tokamak such as ITER.

  5. A Novel Experiment to Investigate the Attenuation of Alpha Particles in Air

    ERIC Educational Resources Information Center

    Andrews, D. G. H.

    2008-01-01

    A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium…

  6. A Novel Experiment to Investigate the Attenuation of Alpha Particles in Air

    ERIC Educational Resources Information Center

    Andrews, D. G. H.

    2008-01-01

    A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium…

  7. Search for {alpha}-states in {sup 13}C via elastic resonant scattering of {alpha} particles on {sup 9}Be

    SciTech Connect

    Lombardo, I.; Campajola, L.; Rosato, E.; Spadaccini, G.; Vigilante, M.

    2013-07-18

    We will discuss new experimental data concerning the elastic resonant scattering of {alpha}-particles on {sup 9}Be nuclei at bombarding energies from 3.5 MeV up to 9.9 MeV. Several excitation functions have been obtained at different polar angles, mainly in the backward hemisphere in the centre of mass frame. Excitation functions show various anomalies that can be linked to the presence of various excited states in the {sup 13}C compound nucleus. In the literature, some of these states have been proposed to belong to rotational bands built on deformed a-cluster excited state. Unfortunately, up to date the spin-parity assignment of many of these states is doubtful. The set of excitation functions we obtained from the present experiment can contribute to improve spectroscopy of highling excited states of {sup 13}C.

  8. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    NASA Astrophysics Data System (ADS)

    Al-Ta’Ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-05-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors.

  9. Humidity influenced capacitance and resistance of an Al/DNA/Al Schottky diode irradiated by alpha particles

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Amin, Yusoff Mohd; Periasamy, Vengadesh

    2016-01-01

    Deoxyribonucleic acid or DNA based sensors, especially as humidity and alpha particle sensors have become quite popular in recent times due to flexible and highly optimizable nature of this fundamental biomaterial. Application of DNA electronics allow for more sensitive, accurate and effective sensors to be developed and fabricated. In this work, we examined the effect of different humidity conditions on the capacitive and resistive response of Aluminum (Al)/DNA/Al Schottky barrier structure when bombarded by time-dependent dosages of alpha particles. Based on current-voltage profiles, which demonstrated rectifying behaviours, Schottky diode parameters such as ideality factor, barrier height and series resistance was calculated. Results observed generally pointed towards a decrease in the resistance value from the pristine to the radiated structures. It was also demonstrated that under the effect of humidity, the capacitance of the DNA thin film increased from 0.05894 to 92.736 nF, with rising relative humidity level. We also observed the occurrence of the hypersensitivity phenomena after alpha irradiation between 2 to 4 min by observing a drop in the series resistance, crucial in the study of DNA damage and repair mechanisms. These observations may also suggest the exciting possibility of utilizing Al/DNA/Al Schottky diodes as potentially sensitive humidity sensors. PMID:27160654

  10. Alpha particle spectra and microdosimetry of radon daughters

    SciTech Connect

    Caswell, R.S.; Coyne, J.J.

    1992-12-31

    We are interested in understanding the physics of the process by which radon-daughter alpha particles irradiate cells, leading to the induction of cancer. We are focusing initially on two aspects: the alpha spectra incident upon cells, which are needed for input to biophysical models of cancer induction; and microdosimetric spectra and parameters which give information on radiation quality. Adapting an analytical method previously developed for neutron radiation, we have calculated the alpha-particle slowing-down spectra (the spectra incident upon cells) and, subsequently, the microdosimetric spectra and parameters for various cell nuclei or site diameters. Results will be presented from three modes of program operation. MODE 1 is for the thin, plane source of radon-daughter activity adjacent to the epithelium. MODE 2 is for the thick source layer (the mucous-serous layer) adjacent to the epithelium. MODE4 is for cylindrical airways of various radii, lined by the mucous-serous layer. MODE 1 is most useful for understanding the problem; MODE 4 is most anatomically relevant. MODE 3 is not discussed in this paper. Alpha-particle spectra and microdosimetric spectra and parameters are studied as a function of cell depth, {sup 218}Po/{sup 214}Po ratio, airway radius, and cell nucleus or the site size. Also available from the calculation is mean dose as a function of depth below the airway surface. The results described here are available on personal computer diskettes. We are beginning to compare our studies with the calculations of other workers and plan to extend the calculations to the nanometer target level.

  11. Selective flow path alpha particle detector and method of use

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2002-01-01

    A method and apparatus for monitoring alpha contamination are provided in which ions generated in the air surrounding the item, by the passage of alpha particles, are moved to a distant detector location. The parts of the item from which ions are withdrawn can be controlled by restricting the air flow over different portions of the apparatus. In this way, detection of internal and external surfaces separately, for instance, can be provided. The apparatus and method are particularly suited for use in undertaking alpha contamination measurements during the commissioning operations.

  12. Protons and alpha particles in the solar wind

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Travnicek, Pavel M.; Passot, Thierry; Sulem, Pierre-Louis; Matteini, Lorenzo; Landi, Simone

    2014-05-01

    We investigate energetic consequences of ion kinetic instabilitities in the solar wind connected with beam and core protons and alpha particles drifting with respect to each other. We compare theoretical predictions, simulations and observation results. For theoretical prediction we assume drifting bi-Maxwellian ion populations and we calculate theoretical quasilinear heating rates (Hellinger et al., 2013b). The nonlinear evolution of beam-core protons, and alpha particles in the expanding solar wind we investigate using hybrid expanding box system (Hellinger and Travnicek, 2013). The expansion leads to many different kinetic instabilities. In the simulation the beam protons and alpha particles are decelerated with respect to the core protons and all the populations are cooled in the parallel direction and heated in the perpendicular one in agreement with theoretical expectations. On the macroscopic level the kinetic instabilities cause large departures of the system evolution from the double adiabatic prediction and lead to a perpendicular heating and parallel cooling rates. The simulated heating rates are comparable to the heating rates estimated from the Helios observations (Hellinger et al., 2013a); furthermore, the differential velocity between core and beam protons observed by Ulysses exhibits apparent bounds which are compatible with the theoretical constaints imposed by the linear theory for the magnetosonic instability driven by beam-core differential velocity (Matteini et al., 2013). References Hellinger, P., P. M. Travnicek, S. Stverak, L. Matteini, and M. Velli (2013a), Proton thermal energetics in the solar wind: Helios reloaded, J. Geophys. Res., 118, 1351-1365, doi:10.1002/jgra.50107. Hellinger, P., T. Passot, P.-L. Sulem, and P. M. Travnicek (2013b), Quasi-linear heating and acceleration in bi-Maxwellian plasmas, Phys. Plasmas, 20, 122306. Hellinger, P., and P. M. Travnicek (2013), Protons and alpha particles in the expanding solar wind: Hybrid

  13. The biological effectiveness of radon-progeny alpha particles. V. Comparison of oncogenic transformation by accelerator-produced monoenergetic alpha particles and by polyenergetic alpha particles from radon progeny.

    PubMed

    Miller, R C; Richards, M; Brenner, D J; Hall, E J; Jostes, R; Hui, T E; Brooks, A L

    1996-07-01

    Generation of estimates of risk caused by exposure to radon in the home, either from miner data or from A-bomb data, requires several scaling factors such as for dose, dose rate and radiation quality, and possible synergisms. Such scaling factors are best developed from laboratory-based studies. Two possible sources of alpha particles for such studies are (1) a polyenergetic spectrum, generated directly by radon and its progeny, or (2) a series of monoenergetic alpha particles. We compare here the results of oncogenic transformation from studies using both systems. At the Columbia University Radiological Research Accelerator Facility (RARAF), C3H 10T1/2 cells were irradiated with alpha particles of various energies, with defined LETs from 70 to 200 keV/mum. At Pacific Northwest Laboratory, cells from the same stock were exposed to alpha particles from radon gas and its progeny, which were in equilibrium with the culture medium. There was good agreement between the results of oncogenic transformation experiments using the two different exposure systems. Apart from the experimental transformation frequencies themselves, such a comparison requires (1) reliable dosimetry at both facilities and (2) estimated LET distributions for the polyenergetic alpha-particle irradiator. Thus this good agreement gives some confirmation to the technique which is used to fold together oncogenic transformation rates from monoenergetic alpha particles to yield a predicted rate for a spectrum of alpha particles.

  14. Flexible silicon-based alpha-particle detector

    NASA Astrophysics Data System (ADS)

    Schuster, C. S.; Smith, B. R.; Sanderson, B. J.; Mullins, J. T.; Atkins, J.; Joshi, P.; McNamara, L.; Krauss, T. F.; Jenkins, D. G.

    2017-08-01

    The detection of alpha particles in the field can be challenging due to their short range in air of often only a few centimeters or less. This short range is a particular issue for measuring radiation inside contaminated pipework in the nuclear industry, for which there is currently no simple method available without cutting the pipes open. Here, we propose an approach for low cost, rapid, and safe identification of internally contaminated pipework based on a flexible 30 × 10 mm2 sheet of 50 μm thin crystalline silicon. Following established fabrication steps of pn-junction diodes, we have constructed a device with a signal-to-noise ratio of >20 in response to 5.5 MeV alpha-particles using a bespoke amplifier circuit. As flexible detectors may readily conform to a curved surface and are able to adapt to the curvature of a given pipeline, our prototype device stands out as a viable solution for nuclear decommissioning and related applications.

  15. Alpha-particle Measurements Needed for Burning Plasma Experiments

    SciTech Connect

    Kenneth M. Young

    2001-09-26

    The next major step in magnetic fusion studies will be the construction of a burning plasma (BP) experiment where the goals will be to achieve and understand the plasma behavior with the internal heating provided by fusion-generated alpha particles. Two devices with these physics goals have been proposed: the International Thermonuclear Experimental Reactor (ITER) and the Fusion Ignition Research Experiment (FIRE). Extensive conceptual design work for the instrumentation to try to meet the physics demands has been done for these devices, especially ITER. This article provides a new look at the measurements specifically important for understanding the physics aspects of the alpha particles taking into account two significant events. The first is the completion of physics experiments on the Joint European Torus (JET) and the Tokamak Fusion Test Reactor (TFTR) with deuterium-tritium fueling with the first chances to study alpha physics and the second is the realization that relatively compact plasmas, making use of advanced tokamak plasma concepts, are the most probable route to burning plasmas and ultimately a fusion reactor.

  16. Preliminary results from the lunar prospector alpha particle spectrometer

    SciTech Connect

    Lawson, S. L.

    2001-01-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) builds on Apollo heritage and maps the distribution of outgassing sites on the Moon. The APS searches for lunar surface gas release events and maps their distribution by detecting alpha particles produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life) and solid polonium-210 (5.3 MeV, 138 day half-life, but remains on the surface with a 21 year half-life as lead-210), which are radioactive daughters from the decay of uranium-238. Radon is in such small quantities that it is not released directly from the lunar interior, rather it is entrained in a stream of gases and serves as a tracer for such gases. Once released, the radon spreads out by 'bouncing' across the surface on ballistic trajectories in a random-walk process. The 3.8 day half-life of radon-222 allows the gas to spread out by several 100 km before it decays and allows the APS to detect gas release events up to a few days after they occur. The long residence time (10s of years) of the lead-210 precursor to the polonium-210 allows the mapping of gas vents which have been active over the last approximately 50 years. Because radon and polonium are daughter products of the decay of uranium, the background level of alpha particle activity is a function of the lunar crustal uranium distribution. Using radioactive radon and polonium as tracers, the Apollo 15 and 16 Command Module orbital alpha particle experiments obtained evidence for the release of gases at several sites beneath the orbit tracks, especially over the Aristarchus Plateau and Mare Fecunditatis [1]. Aristarchus crater had previously been identified by ground-based observers as the site of transient optical events [2]. The Apollo 17 surface mass spectrometer showed that argon-40 is released from the lunar interior every few months, apparently in concert with some of the shallow moonquakes that are believed to be of tectonic origin [3]. The latter tectonic events could be

  17. A Shared Bombardment History

    NASA Image and Video Library

    2013-03-25

    Studying meteorites from the asteroid Vesta helps scientists understand the event known as the lunar cataclysm, when a repositioning of the gas giant planets destabilized a portion of the asteroid belt and triggered a solar-system-wide bombardment.

  18. TF ripple loss of alpha particles in TFTR DT experiments

    SciTech Connect

    Redi, M.H.; Budny, R.V.; Darrow, D.S.

    1995-08-01

    Quantitative evaluation of TF ripple loss of DT alpha particles is a central issue for reactor design because of potentially severe first wall heat load problems. DT experiments on TFTR allow experimental measurements to be compared to modeling of the underlying alpha physics, with code validation an important goal. Modeling of TF ripple loss of alphas in TFTR now includes neoclassical calculations of alpha losses arising from first orbit loss, stochastic ripple diffusion, ripple trapping and collisional effects. Recent Hamiltonian coordinate guiding center code (ORBIT) simulations for TFTR have shown that collisions enhance the stochastic TF ripple losses at TFTR. A faster way to simulate experiment has been developed and is discussed here which uses a simple stochastic domain model for TF ripple loss within the TRANSP analysis code.

  19. Effect of alpha particles on the shock structure

    NASA Astrophysics Data System (ADS)

    Gedalin, Michael

    2017-01-01

    The magnetic profile of a collisionless shock is shaped by ions. Dynamics of the ions is governed by the fields in the shock front. Species with different charge-to-mass ratio have different gyroradii; thus, their distributions upon crossing the shock became substantially different. Accordingly, the dependencies of the density and temperature on the coordinate along the shock normal should differ. In a stable one-dimensional stationary shock the total pressure must remain constant throughout. Therefore, the magnetic pressure should anticorrelate with the particle pressure. Since the particle pressure is not uniform, downstream spatial magnetic oscillations should arise. Each of the species results in its own dependence of the pressure on the coordinate along the shock normal; therefore, the oscillations are not spatially periodic. The magnetic compression in the shocks with alpha particles is higher than the magnetic compression in purely proton shocks, while the amplitude of the downstream magnetic oscillations is lower.

  20. MHD-Induced Alpha Particle Loss in TFTR

    SciTech Connect

    Darrow, D.S.; Fredrickson, E.D.; Taylor, G.; White, R.B.; Zweben, S.J.; von Goeler, S.

    1999-03-01

    MHD-induced increases in alpha particle loss to the wall were observed for both coherent modes and transient reconnection events using an array of scintillator detectors near the wall of Tokamak Fusion Test Reactor (TFTR). The magnitude of the coherent MHD-induced alpha loss as seen by these detectors was normally comparable to the MHD-quiescent first-orbit or toroidal-field ripple loss, but the magnitude of the alpha loss during reconnection events was up to 1000 times higher than this for a short time. Modeling suggest that the coherent MHD loss mechanism will be even less significant for future reactor-scale deuterium-tritium tokamaks due to the smaller ratio of the alpha gyroradius to minor radius.

  1. A self-consistent theory of collective alpha particle losses induced by Alfvenic turbulence

    SciTech Connect

    Biglari, H. . Plasma Physics Lab.); Diamond, P.H. . Dept. of Physics)

    1992-01-01

    The nonlinear dynamics of kinetic Alfven waves, resonantly excited by energetic ions/alpha particles, is investigated. It is shown that {alpha}-particles govern both linear instability and nonlinear saturation dynamics, while the background MHD turbulence results only in a nonlinear real frequency shift. The most efficient saturation mechanism is found to be self-induced profile modification. Expressions for the fluctuation amplitudes and the {alpha}-particle radial flux are self-consistently derived. The work represents the first self-consistent, turbulent treatment of collective {alpha}-particle losses by Alfvenic fluctuations.

  2. Detection of alpha particles using DNA/Al Schottky junctions

    SciTech Connect

    Al-Ta'ii, Hassan Maktuff Jaber E-mail: vengadeshp@um.edu.my; Periasamy, Vengadesh E-mail: vengadeshp@um.edu.my; Amin, Yusoff Mohd

    2015-09-21

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current–voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

  3. Detection of alpha particles using DNA/Al Schottky junctions

    NASA Astrophysics Data System (ADS)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-09-01

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current-voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

  4. Survival of human lung epithelial cells following in vitro alpha-particle irradiation with absolute determination of the number of alpha-particle traversals of individual cells.

    PubMed

    Søyland, C; Hassfjell, S P

    2000-10-01

    To throw light on human exposure to domestic radon and radon progeny, the effects of low doses of alpha-particle irradiation on normal human lung epithelial cells has been studied. At such low exposure levels the concept of dose is inadequate due to the stochastic variation in the number of alpha-particle traversals per cell. The objective of the current study was to establish an accurate survival curve for human lung epithelial cells with absolute determination of the exact number of alpha-particle traversals of individual cells. Irradiation of L132 cells growing in tracketch detector-based cell dishes, was performed using a collimated alpha-particle beam from a 210Po source. The number of alpha-particle traversals through each individual cell was scored by using a technique of retrospective track-etch dosimetry. This technique is based upon image matching and mapping of corresponding cell and alpha-particle track images. The spatial resolution of the hit determination procedure was +/-0.9/microm. Surviving fractions of cells (SF) showed strict dependence on the number of nuclear traversals (n), with SF(n)= a exp(-bn), a=0.957 (+/- 0.046), b = 0.587 (+/- 0.059), R2 =98.8%. No significant dependence on the number of nuclear membrane traversals (m) or the number of cytoplasm traversals (c) was observed.

  5. Ion bombardment of Europa

    NASA Astrophysics Data System (ADS)

    Cassidy, Timothy A.; Paranicas, C.; Hendrix, A.; Johnson, R. E.

    2010-10-01

    The spectral difference between Europa's leading and trailing hemispheres has long been explained as a result of magnetospheric bombardment. A closer look at the longitudinal variation of ultraviolet spectral features reveals, however, that several processes, both exogenic and endogenic, are operating on the surface (Hendrix et al., 2010, submitted; Dalton et al., 2010, in preparation). Even magnetospheric bombardment can produce a variety of exogenic patterns; each "population” of particles has a distinct bombardment pattern. Work is ongoing to connect exogenic and spectral patterns. Here we describe one piece of that ongoing work, the calculation of ion bombardment and sputtering rates. We calculated the ion bombardment rate using a program that traces ion motion given the magnetic and electric fields in the vicinity of Europa's orbit, along with information on ion composition and energies from the Voyager and Galileo missions. We conclude that the vast majority of sulfur ions impact Europa's trailing hemisphere, while the sputtering rate is more uniform, in qualitative agreement with previous work. Overall, we find that the sputtering rate at the trailing hemisphere apex (where ion flux peaks) is about 3 times that at the leading hemisphere apex. This likely results in a net erosion of Europa's entire surface, not, as some have suggested, a net deposition of ice onto the leading hemisphere. We also conclude that the energetic ion flux peaks at Europa's poles, though the sputtering rate still peaks at the equatorial trailing hemisphere apex, where the combined sputtering by "cold” and "suprathermal” ions is highest.

  6. Enhanced homologous recombination is induced by alpha-particle radiation in somatic cells of Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Bian, Po; Liu, Ping; Wu, Yuejin

    Almost 9 percent of cosmic rays which strike the earth's atmosphere are alpha particles. As one of the ionizing radiations (IR), its biological effects have been widely studied. However, the plant genomic instability induced by alpha-particle radiation was not largely known. In this research, the Arabidopsis thaliana transgenic for GUS recombination substrate was used to evaluate the genomic instability induced by alpha-particle radiation (3.3MeV). The pronounced effects of systemic exposure to alpha-particle radiation on the somatic homologous recombination frequency (HRF) were found at different doses. The 10Gy dose of radiation induced the maximal HRF which was 1.9-fold higher than the control. The local radiation of alpha-particle (10Gy) on root also resulted in a 2.5-fold increase of somatic HRF in non-radiated aerial plant, indicating that the signal(s) of genomic instability was transferred to non-radiated parts and initiated their genomic instability. Concurrent treatment of seedlings of Arabidopsis thaliana with alpha-particle and DMSO(ROS scavenger) both in systemic and local radiation signifi- cantly suppressed the somatic HR, indicating that the free radicals produced by alpha-particle radiation took part in the production of signal of genomic instability rather than the signal transfer. Key words: alpha-particle radiation, somatic homologous recombination, genomic instability

  7. {alpha}-particle production in {sup 6}He+{sup 120}Sn collisions

    SciTech Connect

    Faria, P. N. de; Lichtenthaeler, R.; Pires, K. C. C.; Lepine-Szily, A.; Guimaraes, V.; Mendes, D. R. Jr.; Barioni, A.; Morcelle, V.; Morais, M. C.; Moro, A. M.; Arazi, A.

    2010-09-15

    The collision {sup 6}He+{sup 120}Sn has been investigated at four energies near the Coulomb barrier. A large yield of {alpha} particles has been detected, with energies around the energy of the scattered {sup 6}He beam. The energy and angular distributions of the {alpha} particles have been analyzed and compared with breakup and neutron transfer calculations.

  8. Cooling a birth distribution of {alpha}-particles in a tokamak with waves

    SciTech Connect

    Herrmann, M C; Fisch, N J

    1996-01-01

    Alpha particles, the byproducts of the DT reaction in tokamak fusion reactor, might be cooled through interactions with waves. Numerical simulations employing two waves,one with frequency about the alpha cyclotron frequency, and one at much lower frequency, show the existence of parameter regimes where more than half of the {alpha}-particle power can be diverted to the waves.

  9. Use of /sup 3/He/sup + +/ ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, D.E. Jr.; Hwang, D.Q.; Hovey, J.

    1983-11-16

    It is an object of the present invention to provide a better understanding of alpha particle behavior in a magnetically confined, energetic plasma. Another object of the present invention is to provide an improved means and method for studying and measuring the energy distribution of heated alpha particles in a confined plasma. Yet another object of the present invention is to permit detailed analysis of energetic alpha particle behavior in a magnetically confined plasma for use in near term fusion reactor experiments. A still further object of the present invention is to simulate energetic alpha particle behavior in a deuterium-tritium plasma confined in a fusion reactor without producing the neutron activation associated with the thus produced alpha particles.

  10. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha-particle therapy applications

    PubMed Central

    Miederer, Matthias; Scheinberg, David A.; McDevitt, Michael R.

    2013-01-01

    Alpha particle-emitting isotopes have been proposed as novel cytotoxic agents for augmenting targeted therapy. Properties of alpha particle radiation such as their limited range in tissue of a few cell diameters and their high linear energy transfer leading to dense radiation damage along each alpha track are promising in the treatment of cancer, especially when single cells or clusters of tumor cells are targeted. Actinium-225 (225Ac) is an alpha particle-emitting radionuclide that generates 4 net alpha particle isotopes in a short decay chain to stable 209Bi, and as such can be described as an alpha particle nanogenerator. This article reviews the literature pertaining to the research, development, and utilization of targeted 225Ac to potently and specifically affect cancer. PMID:18514364

  11. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications.

    PubMed

    Miederer, Matthias; Scheinberg, David A; McDevitt, Michael R

    2008-09-01

    Alpha particle-emitting isotopes have been proposed as novel cytotoxic agents for augmenting targeted therapy. Properties of alpha particle radiation such as their limited range in tissue of a few cell diameters and their high linear energy transfer leading to dense radiation damage along each alpha track are promising in the treatment of cancer, especially when single cells or clusters of tumor cells are targeted. Actinium-225 (225 Ac) is an alpha particle-emitting radionuclide that generates 4 net alpha particle isotopes in a short decay chain to stable 209 Bi, and as such can be described as an alpha particle nanogenerator. This article reviews the literature pertaining to the research, development, and utilization of targeted 225 Ac to potently and specifically affect cancer.

  12. Development of an optical lens based alpha-particle imaging system using position sensitive photomultiplier tube

    NASA Astrophysics Data System (ADS)

    Ando, Koki; Oka, Miki; Yamamoto, Seiichi

    2017-02-01

    We developed an optical lens based alpha-particle imaging system using position sensitive photomultiplier tube (PSPMT). The alpha-particle imaging system consists of an optical lens, an extension tube and a 1 in. square high quantum efficiency (HQE) type PSPMT. After a ZnS(Ag) is attached to subject, the scintillation image of ZnS(Ag) is focused on the photocathode of the PSPMT by the use of the optical lens. With this configuration we could image the alpha particle distribution with energy information without contacting to the subject. The spatial resolution and energy resolution were 0.8 mm FWHM and 50% FWHM at 5 mm from the optical lens, respectively. We could successfully image the alpha particle distribution in uranium ore. The developed alpha-particle imaging system will be a new tool for imaging alpha emitters with energy information without contacting the subject.

  13. The Rosetta Alpha Particle X-Ray Spectrometer (APXS)

    NASA Astrophysics Data System (ADS)

    Klingelhöfer, G.; Brückner, J.; D'Uston, C.; Gellert, R.; Rieder, R.

    2007-02-01

    The Alpha Particle X-Ray Spectrometer (APXS) is a small instrument to determine the elemental composition of a given sample. For the ESA Rosetta mission, the periodical comet 67P/Churyumov-Gerasimenko was selected as the target comet, where the lander PHILAE (after landing) will carry out in-situ observations. One of the instruments onboard is the APXS to make measurements on the landing site. The APXS science goal is to provide basic compositional data of the comet surface. As comets consist of a mixture of ice and dust, the dust component can be characterized and compared with known meteoritic compositions. Various element ratios can be used to evaluate whether chemical fractionations occurred in cometary material by comparing them with known chondritic material. To enable observations of the local environment, APXS measurements of several spots on the surface and one spot as function of temperature can be made. Repetitive measurements as function of heliocentric distance can elucidate thermal processes at work. By measuring samples that were obtained by drilling subsurface material can be analyzed. The accumulated APXS data can be used to shed light on state, evolution, and origin of 67P/Churyumov- Gerasimenko.

  14. Enhanced production of low energy electrons by alpha particle impact

    PubMed Central

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard

    2011-01-01

    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion–atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He+ ions on isolated Ne atoms and on Ne dimers (Ne2). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation. PMID:21730184

  15. Enhanced production of low energy electrons by alpha particle impact.

    PubMed

    Kim, Hong-Keun; Titze, Jasmin; Schöffler, Markus; Trinter, Florian; Waitz, Markus; Voigtsberger, Jörg; Sann, Hendrik; Meckel, Moritz; Stuck, Christian; Lenz, Ute; Odenweller, Matthias; Neumann, Nadine; Schössler, Sven; Ullmann-Pfleger, Klaus; Ulrich, Birte; Fraga, Rui Costa; Petridis, Nikos; Metz, Daniel; Jung, Annika; Grisenti, Robert; Czasch, Achim; Jagutzki, Ottmar; Schmidt, Lothar; Jahnke, Till; Schmidt-Böcking, Horst; Dörner, Reinhard

    2011-07-19

    Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion-atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He(+) ions on isolated Ne atoms and on Ne dimers (Ne(2)). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation.

  16. The measurement of alpha particle emissions from semiconductor memory materials

    NASA Astrophysics Data System (ADS)

    Bouldin, D. P.

    1981-07-01

    With the increasing concern for the affects of alpha particles on the reliability of semiconductor memories, an interest has arisen in characterizing semiconductor manufacturing materials for extremely low-level alpha-emitting contaminants. It is shown that four elements are of primary concern: uranium, thorium, radium, and polonium. Measurement of contamination levels are given relevance by first correlating them with alpha flux emission levels and then corre1ating these flux values with device soft error rates. Measurement techniques involve either measurements of elemental concentrations-applicable to only uranium and thorium - or direct measurements of alpha emission fluxes. Alpha fluxes are most usefully measured by means of ZnS scintillation counting, practical details of which are discussed. Materials measurements are reported for ceramics, solder, silicon, quartz, and various metals and organic materials. Ceramics and most metals have contamination levels of concern, but the high temperature processing normally used in semiconductor manufacturing and low total amounts reduce problems, at least for metals. Silicon, silicon compounds, and organic materials have been found to have no detectable alpha emitters. Finally, a brief discussion of the calibration of alpha sources for accelerated device testing is given, including practical details on the affects of source/chip separation and alignment variations.

  17. {alpha} particle preformation in heavy nuclei and penetration probability

    SciTech Connect

    Zhang, H. F.; Royer, G.

    2008-05-15

    The {alpha} particle preformation in the even-even nuclei from {sup 108}Te to {sup 294}118 and the penetration probability have been studied. The isotopes from Pb to U have been firstly investigated since the experimental data allow us to extract the microscopic features for each element. The assault frequency has been estimated using classical methods and the penetration probability from tunneling through the Generalized Liquid Drop Model (GLDM) potential barrier. The preformation factor has been extracted from experimental {alpha} decay energies and half-lives. The shell closure effects play the key role in the {alpha} preformation. The more the nucleon number is close to the magic numbers, the more the formation of {alpha} cluster is difficult inside the mother nucleus. The penetration probabilities reflect that 126 is a neutron magic number. The penetration probability range is very large compared to that of the preformation factor. The penetration probability determines mainly the {alpha} decay half-life while the preformation factor allows us to obtain information on the nuclear structure. The study has been extended to the newly observed heaviest nuclei.

  18. Characterization of Makrofol ® DE 1-1 for alpha particle radiography

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdulkadir; Al-Thomali, Talal A.

    2017-09-01

    Makrofol ® DE 1-1 (bisphenol-A polycarbonate) was investigated for alpha particle radiography. The edge spread function (ESF) was measured by razor-blade's edge. Makrofol ® DE 1-1 detectors were irradiated with perpendicular incident alpha particles of energy 2.5, 4 and 5.4 MeV, thereafter they were etched in 75% 6N KOH+25% C2H5OH at a temperature of 50 °C for different durations. The etched Makrofol®DE 1-1 detectors were imaged with an optical microscope equipped with a CCD camera. The results revealed that the green channel of the original RGB image provides the highest contrast comparing with red and blue channel by a factor of 27.6% of the original RGB image. The image contrast of alpha particle-irradiated Makrofol®DE 1-1 detector was found to be inversely related to the etching time since the alpha particle tracks proceed from a conical phase to spherical phase. The spatial resolution of alpha particle-irradiated Makrofol®DE 1-1 detector, in terms of line spread function, was found to deteriorate as the etching time increases for all examined alpha particle energies. The results revealed the potential capability of Makrofol®DE 1-1 detector as an efficient detector for alpha particle radiography such as autoradiography.

  19. IL13RA2 targeted alpha particle therapy against glioblastomas

    PubMed Central

    Pandya, Darpan N.; Almaguel, Frankis G.; Wadas, Thaddeus J.; Herpai, Denise M.; Debinski, Waldemar; Mintz, Akiva

    2017-01-01

    Glioblastoma (GBM) is the most aggressive primary malignant brain cancer that invariably results in a dismal prognosis. Chemotherapy and radiotherapy have not been completely effective as standard treatment options for patients due to recurrent disease. We and others have therefore developed molecular strategies to specifically target interleukin 13 receptor alpha 2 (IL13RA2), a GBM restricted receptor expressed abundantly on over 75% of GBM patients. In this work, we evaluated the potential of Pep-1L, a novel IL13RA2 targeted peptide, as a platform to deliver targeted lethal therapies to GBM. To demonstrate GBM-specificity, we radiolabeled Pep-1L with Copper-64 and performed in vitro cell binding studies, which demonstrated specific binding that was blocked by unlabeled Pep-1L. Furthermore, we demonstrated real-time GBM localization of [64Cu]Pep-1L to orthotopic GBMs using small animal PET imaging. Based on these targeting data, we performed an initial in vivo safety and therapeutic study using Pep-1L conjugated to Actinium-225, an alpha particle emitter that has been shown to potently and irreversibly kill targeted cells. We infused [225Ac]Pep-1L into orthotopic GBMs using convection-enhanced delivery and found no significant adverse events at injected doses. Furthermore, our initial data also demonstrated significantly greater overall, median and mean survival in treated mice when compared to those in control groups (p < 0.05). GBM tissue extracted from mice treated with [225Ac]Pep-1L showed double stranded DNA breaks, lower Ki67 expression and greater propidium iodide internalization, indicating anti-GBM therapeutic effects of [225Ac]Pep-1L. Based on our results, Pep-1L warrants further investigation as a potential targeted platform to deliver anti-cancer agents. PMID:28562337

  20. Alpha particle losses from Tokamak Fusion Test Reactor deuterium-tritium plasmas

    SciTech Connect

    Darrow, D.S.; Zweben, S.J.; Batha, S.

    1996-01-01

    Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium-tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario.

  1. The interaction of energetic alpha-particles with intense lower hybrid waves

    SciTech Connect

    Fisch, N.J.; Rax, J.M.

    1992-06-01

    Lower hybrid waves are a demonstrated, continuous means of driving toroidal current in a tokamak. When these waves propagate in a tokamak fusion reactor, in which there are energetic {alpha}- particles, there are conditions under which the {alpha}-particles do not appreciably damp, and may even amplify, the wave, thereby enhancing the current-drive effect. Waves traveling in one poloidal direction, in addition to being directed in one toroidal direction, are shown to be the most efficient drivers of current in the presence of the energetic {alpha}-particles.

  2. Method for characterizing the upset response of CMOS circuits using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Nixon, Robert H. (Inventor); Soli, George A. (Inventor)

    1995-01-01

    A method for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. A technique utilizing test structures to quickly and inexpensively characterize the SEU sensitivity of standard cell latches intended for use in a space environment. This bench-level approach utilizes alpha particles to induce upsets in a low LET sensitive 4-k bit test SRAM. This SRAM consists of cells that employ an offset voltage to adjust their upset sensitivity and an enlarged sensitive drain junction to enhance the cell's upset rate.

  3. WIND measurements of proton and alpha particle flow and number density

    NASA Astrophysics Data System (ADS)

    Steinberg, J. T.; Lazarus, A. J.; Ogilvie, J. T.; Lepping, R.; Byrnes, J.; Chornay, D.; Keller, J.; Torbert, R. B.; Bodet, D.; Needell, G. J.

    1995-06-01

    We propose to review measurements of the solar wind proton and alpha particle flow velocities and densities made since launch with the WIND SWE instrument. The SWE Faraday cup ion sensors are designed to be able to determine accurately flow vector directions, and thus can be used to detect proton-alpha particle differential flow. Instances of differential flow, and the solar wind features with which they are associated will be discussed. Additionally, the variability of the percentage of alpha particles as a fraction of the total solar wind ion density will be presented.

  4. On the approximations of the distribution function of fusion alpha particles

    SciTech Connect

    Bilato, R. Brambilla, M.; Poli, E.

    2014-10-15

    The solution of the drift-kinetic equation for fusion-born alpha particles is derived in the limit of dominant parallel streaming, and it is related to the usual slowing-down distribution function. The typical approximations of the fast tail of fusion-born alpha particles are briefly compared and discussed. In particular, approximating the distribution function of fast-alpha particles with an “equivalent” Maxwellian is inaccurate to describe absorption of radio-frequency waves in the ion-cyclotron range of frequencies.

  5. Oncogenic Transformation of Mammalian Cells by Ultrasoft X-Rays and Alpha Particles

    NASA Astrophysics Data System (ADS)

    Yang, T. C.; Craise, L. M.; Raju, M. R.

    For a better understanding of oncogenic cell transformation by ionizing radiation, we conducted experiments with ultrasoft X rays and low energy alpha particles. Confluent C3HlOTl/2 cells were irradiated by Al-K (1.5 keV) X rays or alpha particles from plutonium through a thin mylar sheet, on which the cells attached and grew. Our results indicated that Al-K X rays were more effective in causing cell inactivation and oncogenic transformation than 60Co gamma rays but less effective than 1.0 and 3.7 MeV alpha particles. There was no significant difference between 1.0 and 3.7 MeV alpha particles in transforming cells although the latter were slightly more effective than the former in producing lethal effect. These results indicated that track structure is important in causing biological effects by ionizing radiation

  6. High-resolution alpha-particle spectrometry of the 230U decay series.

    PubMed

    Marouli, M; Pommé, S; Paepen, J; Van Ammel, R; Jobbágy, V; Dirican, A; Suliman, G; Stroh, H; Apostolidis, C; Abbas, K; Morgenstern, A

    2012-09-01

    High-resolution alpha-particle spectrometry was performed on the (230)U decay series. A (230)U source was prepared on a stainless steel disc by electrodeposition in an ammonium nitrate solution. Spectrometry of the alpha-particle energy spectrum was performed with ion-implanted planar silicon detectors in vacuum. A set of alpha emission probabilities is presented for (230)U and (226)Th. The measured peak intensities were corrected mathematically for coincidental detection of alpha-particles and conversion electrons emitted in the same decay. A good agreement with literature data was observed. The uncertainty budget and the correlation matrix are presented. The validity of the alpha-particle energies was tested and could be confirmed for most peaks within a few keV, but discrepancies were found for the 2nd peak of (226)Th and the main peak of (218)Rn. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Feasibility studies of colorless LR 115 SSNTD for alpha-particle radiobiological experiments

    NASA Astrophysics Data System (ADS)

    Chan, K. F.; Tse, A. K. W.; Fong, W. F.; Yu, K. N.

    2006-06-01

    The feasibility of using the active layer of the colorless LR 115 SSNTD for alpha-particle radiobiological experiments was studied. The track revelation time on the bottom side (the side attached to the polyester base) was much longer than that on the top side (the side not attached to the polyester base) of the active layer so track formation on the top side was more desirable. In relation to this, culture of HeLa cells on the bottom side of the active layer was found feasible although the cultured cell number was relatively smaller. The feasibility of using this SSNTD for alpha-particle radiobiological experiments was demonstrated by culturing cells on the bottom side while performing alpha-particle irradiation and chemical etching on the top side, and by taking photographs of the cells and alpha-particle tracks together under the optical microscope.

  8. Measurements of alpha particle energy using nuclear tracks in solids methodology.

    PubMed

    Espinosa, G; Amero, C; Gammage, R B

    2002-01-01

    In this paper we present a method for the measurement of alpha particle energy using polycarbonate materials as nuclear track detectors (NTDs). This method is based on the interaction of the radiation with the solid-state materials, using the relationship between the energy deposited in the material by the ionising particle and the track developed after an established chemical process. The determination of the geometrical parameters of the formed track, such as major axis, minor axis and overall track length, permit determination of the energy of the alpha particle. The track analysis is performed automatically using a digital image system, and the data are processed in a PC with commercial software. In this experiment 148Gd, 238U, 230Th, 239Pu and 244Cm alpha particle emitters were used. The values for alpha particle energy resolution, the linear response to energy, the confidence in the results and the automatisation of the procedure make this method a promising analysis system.

  9. Alpha-particle effects on high-n instabilities in tokamaks

    SciTech Connect

    Rewoldt, G.

    1988-06-01

    Hot ..cap alpha..-particles and thermalized helium ash particles in tokamaks can have significant effects on high toroidal mode number instabilities such as the trapped-electron drift mode and the kinetically calculated magnetohydrodynamic ballooning mode. In particular, the effects can be stabilizing, destabilizing, or negligible, depending on the parameters involved. In high-temperature tokamaks capable of producing significant numbers of hot ..cap alpha..-particles, the predominant interaction of the mode with the ..cap alpha..-particles is through resonances of various sorts. In turn, the modes can cause significant anomalous transport of the ..cap alpha..-particles and the helium ash. Here, results of comprehensive linear eigenfrequency-eigenfunction calculations are presented for relevant realistic cases to show these effects. 24 refs., 12 figs., 6 tabs.

  10. Alpha particles in solar cosmic rays over the last 80,000 years.

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.; Reedy, R. C.; Arnold, J. R.

    1973-01-01

    Present-day (1967 to 1969) fluxes of alpha particles from solar cosmic rays, determined from satellite measurements, were used to calculate the production rates of cobalt-57, cobalt-58, and nickel-59 in lunar surface samples. Comparisons with the activities of nickel-59 (half-life, 80,000 years) measured in lunar samples indicate that the long-term and present-day fluxes of solar alpha particles are comparable within a factor of approximately 4.

  11. Combined effects of alpha particles and depleted uranium on Zebrafish (Danio rerio) embryos

    PubMed Central

    Ng, Candy Y.P.; Pereira, Sandrine; Cheng, Shuk Han; Adam-Guillermin, Christelle; Garnier-Laplace, Jacqueline; Yu, Kwan Ngok

    2016-01-01

    The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined—(i) [ILUL]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [IHUH]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [IHUL]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure—in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5–6 hpf. The results were also compared with our previous work, which studied the effects of [ILUH]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [ILUL] and [IHUL] led to antagonistic effects, whereas [IHUH] led to an additive effect. The effect found for the previously studied case of [ILUH] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure. PMID:26937024

  12. Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple

    SciTech Connect

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.

  13. INSTABILITIES DRIVEN BY THE DRIFT AND TEMPERATURE ANISOTROPY OF ALPHA PARTICLES IN THE SOLAR WIND

    SciTech Connect

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G. E-mail: s.bourouaine@unh.edu

    2013-08-20

    We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which w{sub Parallel-To {alpha}} {approx}> 0.25v{sub A}, where w{sub Parallel-To {alpha}} is the parallel alpha-particle thermal speed and v{sub A} is the Alfven speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon w{sub Parallel-To {alpha}}/v{sub A}, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. We validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed U{sub {alpha}} than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which U{sub {alpha}} = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.

  14. Illusory Late Heavy Bombardments

    NASA Astrophysics Data System (ADS)

    Boehnke, P.; Harrison, M.

    2016-12-01

    The Late Heavy Bombardment (LHB), a hypothesized impact spike at 3.9 Ga, is one of the major scientific concepts to emerge from Apollo-era lunar exploration and a significant portion of the evidence now marshaled for its existence comes from histograms of 40Ar/39Ar "plateau" ages. Despite the lack of erosion and plate tectonics, the lunar crust does not retain a perfect impact record due to protracted crust formation, lunar volcanism, and overprinting from subsequent impact events. Indeed, virtually all Apollo-era samples show 40Ar/39Ar age spectrum disturbances due to later re-heating events. This provides evidence that partial 40Ar resetting is a significant feature of lunar 40Ar/39Ar analyses which could bias interpretation of bombardment histories due to "plateau" ages being misleadingly young. In order to examine the effects of partial resetting on the inference of bombardment histories from "plateau" ages, we combine chronologic information derived from the early heating steps of each 40Ar/39Ar analysis, as this represents a good approximation of the timing of the last reheating event, with a first-order physical model of 40Ar* diffusion in Apollo samples. We use this modeling framework and data compilation to examine the uniqueness of inverting "plateau" age histograms from synthetic impact histories. Our results show that "plateau" histograms tend to yield age peaks, even in those cases where the input impact history did not contain such a spike. That is, monotonically declining impact histories yield apparent episodes that could be misinterpreted as LHB-type events. Since H-chondrites and HED meteorites also show apparent impact spikes, we extend our conclusions to impact histories for meteorite parent bodies as well. We conclude that the assignment of apparent "plateau" ages bears an undesirably high degree of subjectivity. When compounded by inappropriately simplistic interpretations of histograms constructed from such "plateau" ages, impact spikes that

  15. Illusory Late Heavy Bombardments

    PubMed Central

    Boehnke, Patrick; Harrison, T. Mark

    2016-01-01

    The Late Heavy Bombardment (LHB), a hypothesized impact spike at ∼3.9 Ga, is one of the major scientific concepts to emerge from Apollo-era lunar exploration. A significant portion of the evidence for the existence of the LHB comes from histograms of 40Ar/39Ar “plateau” ages (i.e., regions selected on the basis of apparent isochroneity). However, due to lunar magmatism and overprinting from subsequent impact events, virtually all Apollo-era samples show evidence for 40Ar/39Ar age spectrum disturbances, leaving open the possibility that partial 40Ar* resetting could bias interpretation of bombardment histories due to plateaus yielding misleadingly young ages. We examine this possibility through a physical model of 40Ar* diffusion in Apollo samples and test the uniqueness of the impact histories obtained by inverting plateau age histograms. Our results show that plateau histograms tend to yield age peaks, even in those cases where the input impact curve did not contain such a spike, in part due to the episodic nature of lunar crust or parent body formation. Restated, monotonically declining impact histories yield apparent age peaks that could be misinterpreted as LHB-type events. We further conclude that the assignment of apparent 40Ar/39Ar plateau ages bears an undesirably high degree of subjectivity. When compounded by inappropriate interpretations of histograms constructed from plateau ages, interpretation of apparent, but illusory, impact spikes is likely. PMID:27621460

  16. Illusory Late Heavy Bombardments.

    PubMed

    Boehnke, Patrick; Harrison, T Mark

    2016-09-27

    The Late Heavy Bombardment (LHB), a hypothesized impact spike at ∼3.9 Ga, is one of the major scientific concepts to emerge from Apollo-era lunar exploration. A significant portion of the evidence for the existence of the LHB comes from histograms of (40)Ar/(39)Ar "plateau" ages (i.e., regions selected on the basis of apparent isochroneity). However, due to lunar magmatism and overprinting from subsequent impact events, virtually all Apollo-era samples show evidence for (40)Ar/(39)Ar age spectrum disturbances, leaving open the possibility that partial (40)Ar* resetting could bias interpretation of bombardment histories due to plateaus yielding misleadingly young ages. We examine this possibility through a physical model of (40)Ar* diffusion in Apollo samples and test the uniqueness of the impact histories obtained by inverting plateau age histograms. Our results show that plateau histograms tend to yield age peaks, even in those cases where the input impact curve did not contain such a spike, in part due to the episodic nature of lunar crust or parent body formation. Restated, monotonically declining impact histories yield apparent age peaks that could be misinterpreted as LHB-type events. We further conclude that the assignment of apparent (40)Ar/(39)Ar plateau ages bears an undesirably high degree of subjectivity. When compounded by inappropriate interpretations of histograms constructed from plateau ages, interpretation of apparent, but illusory, impact spikes is likely.

  17. Alpha Particles Play a Relatively Minor Role in Magnetized Target Fusion Systems

    SciTech Connect

    Ryutov, D.D.

    2002-03-15

    Two problems related to alpha particle physics in magnetized target fusion (MTF) systems are briefly discussed. First, we evaluate the pressure and density of alpha particles under the assumption that they are perfectly confined and have a classical slowing-down distribution. It turns out that because of a comparatively low plasma temperature in MTF systems, the relative pressure and density of alpha particles are more than an order of magnitude less than in fusion reactors based on ITER-type tokamaks. Therefore, one may expect that even in the extreme case of a perfect confinement of alpha particles, their presence will have a much weaker (than in the case of tokamaks) effect on plasma stability and transport. Second, we discuss the kinetics of plasma burn under the opposite extreme assumption that all the alpha particles are instantaneously lost, without leaving any energy in a plasma. It turns out that even in this case, the plasma energy yield in batch-burn systems is only weakly affected by burnout effects.

  18. The simulation of the response of superheated emulsion to alpha particles

    NASA Astrophysics Data System (ADS)

    Seth, Susnata; Das, Mala

    2016-04-01

    The response of superheated emulsion of liquid perfluorobutane (C4F10; b.p.: -1.7o C) to alpha particle has been studied by performing the simulation using GEANT3.21 toolkit. The simulations have been performed to generate two different experimental situations. In one case, the alpha contamination is present only in polymer and in another case, the alpha contamination is present both in polymer and active liquid. The value of the nucleation parameter, k, for bubble nucleation induced by alpha particle in superheated emulsion detector is determined by comparing the simulated normalized count rates with the available experimental results. The results show that the nucleation parameter for alpha particle in C4F10 liquid is about 0.19. The energy and position of alpha particle are not able to change the response of the alpha particle in C4F10 liquid. The recoiling nuclei associated with the alpha decay chain are responsible for making the detector sensitive at lower threshold temperatures.

  19. Absorbed fractions for alpha-particles in tissues of cortical bone

    NASA Astrophysics Data System (ADS)

    Watchman, Christopher J.; Bolch, Wesley E.

    2009-10-01

    Bone-seeking alpha-particle emitting radionuclides are common health physics hazards. Additionally, they are under consideration as an option for therapeutic molecular radiotherapy applications. Current dose models do not account for energy or bone-site dependence as shown by alpha-particle absorbed fractions given in ICRP Publication 30. Energy-dependent, yet bone-site independent, alpha-particle absorbed fractions have been presented by the models of Stabin and Siegel (2003 Health Phys. 85 294-310). In this work, a chord-based computational model of alpha-particle transport in cortical bone has been developed that explicitly accounts for both the bone-site and particle-energy dependence of alpha-particle absorbed fractions in this region of the skeleton. The model accounts for energy deposition to three targets: cortical endosteum, haversian space tissues and cortical bone. Path length distributions for cortical bone given in Beddoe (1977 Phys. Med. Biol. 22 298-308) provided additional transport regions in the absorbed fraction calculation. Significant variations in absorbed fractions between different skeletal sites were observed. Differences were observed between this model and the absorbed fractions given in ICRP Publication 30, which varied by as much as a factor of 2.1 for a cortical bone surface source irradiating cortical endosteum.

  20. Fast Atom Bombardment Mass Spectrometry.

    ERIC Educational Resources Information Center

    Rinehart, Kenneth L., Jr.

    1982-01-01

    Discusses reactions and characteristics of fast atom bombardment (FAB) mass spectroscopy in which samples are ionized in a condensed state by bombardment with xenon or argon atoms, yielding positive/negative secondary ions. Includes applications of FAB to structural problems and considers future developments using the technique. (Author/JN)

  1. Fast Atom Bombardment Mass Spectrometry.

    ERIC Educational Resources Information Center

    Rinehart, Kenneth L., Jr.

    1982-01-01

    Discusses reactions and characteristics of fast atom bombardment (FAB) mass spectroscopy in which samples are ionized in a condensed state by bombardment with xenon or argon atoms, yielding positive/negative secondary ions. Includes applications of FAB to structural problems and considers future developments using the technique. (Author/JN)

  2. Feasibility of alpha particle measurement by CO/sub 2/ laser Thomson scattering

    SciTech Connect

    Hutchinson, D.P.; Vander Sluis, K.L.; Sheffield, J.; Sigmar, D.J.

    1984-12-01

    The feasibility of O/sub 2/ laser Thomson scattering from a multicomponent burning plasma has been evaluated for the measurement of the velocity distribution of D-T produced alpha particles. The density and velocity distribution of the alpha particles from their initial energy of 3.5 MeV down to near-thermal energies may be measured by small angle (<1/sup 0/) Thomson scattering. A computer simulation of the experiment indicates that a 100 MW pulsed laser combined with a bank of heterodyne receivers will be able to measure a scattered signal from the alpha particles with a post-detection signal-to-noise ratio of 75 for an assumed alpha density of 7.5 x 10/sup 11/ cm/sup -3/.

  3. Fluorescent detection of single tracks of alpha particles using lithium fluoride crystals

    NASA Astrophysics Data System (ADS)

    Bilski, P.; Marczewska, B.

    2017-02-01

    Lithium fluoride single crystals were successfully used for fluorescent imaging of single tracks of alpha particles. This was realized with a standard wide-field fluorescent microscope equipped with a 100× objective. Alpha particles create F2 and F3+ color centers in LiF crystals. The subsequent illumination with the blue light (wavelength around 445 nm), excites these centers and produces fluorescence with a broad band peaked at 670 nm. The observed tracks of alpha particles have diameter of about 500 nm. Focusing of the microscope at different depths in a LiF crystal, enables imaging changes of shape and position of tracks, allowing for visualization of their paths. These encouraging results are the first step towards practical application of LiF as fluorescent nuclear track detectors.

  4. High resolution alpha particle detectors based on 4H-SiC epitaxial layer

    NASA Astrophysics Data System (ADS)

    Zat'ko, B.; Dubecký, F.; Šagátová, A.; Sedlačová, K.; Ryć, L.

    2015-04-01

    We fabricated and characterized 4H-SiC Schottky diodes as a spectrometric detector of alpha particles. A thin blocking contact of Ni/Au (15 nm) was used to minimize the influence on alpha particles energy. Current-voltage characteristics of the detector were measured and a low current density below 0.3 nAcm-2 was observed at room temperature. 239Pu241Am244Cm was used as a source of alpha particles within the energy range between 5.1 MeV and 5.8 MeV for detector testing. The charge collection efficiency close to 100 % at reverse bias exceeding 50 V was determined. The best spectrometric performance shows a pulse height spectrum at a reverse bias of 200 V giving an energy resolution of 0.25 % in the full width and half maximum for 5.486 MeV of 241Am.

  5. The effect of inelastic collisions on the transport of alpha particles in ITER-like plasmas

    NASA Astrophysics Data System (ADS)

    Clauser, C. F.; Farengo, R.

    2017-04-01

    The effect of charge changes on the transport of alpha particles in ITER-like plasmas is studied with a numerical code that follows the exact particle trajectories and includes the effect of elastic and inelastic collisions. It is shown that charge changing processes can produce significant changes in the transport of alpha particles in the edge-SOL region. The addition of inelastic collisions actually reduces the alpha particle loss rate below the level obtained when only elastic (Coulomb) collisions are included. This is due to the inward flux produced by the neutral density gradient. Power losses, on the other hand, remain at approximately the same level because the average energy of the lost particles is higher when inelastic collisions are included. Finally, the spatial distribution of the lost particles changes significantly when inelastic collisions are added, with a larger fraction of the lost particles reaching the wall.

  6. Use of .sup.3 He.sup.30 + ICRF minority heating to simulate alpha particle heating

    DOEpatents

    Post, Jr., Douglass E.; Hwang, David Q.; Hovey, Jane

    1986-04-22

    Neutron activation due to high levels of neutron production in a first heated deuterium-tritium plasma is substantially reduced by using Ion Cyclotron Resonance Frequency (ICRF) heating of energetic .sup.3 He.sup.++ ions in a second deuterium-.sup.3 He.sup.++ plasma which exhibit an energy distribution and density similar to that of alpha particles in fusion reactor experiments to simulate fusion alpha particle heating in the first plasma. The majority of the fast .sup.3 He.sup.++ ions and their slowing down spectrum can be studied using either a modulated hydrogen beam source for producing excited states of He.sup.+ in combination with spectrometers or double charge exchange with a high energy neutral lithium beam and charged particle detectors at the plasma edge. The maintenance problems thus associated with neutron activation are substantially reduced permitting energetic alpha particle behavior to be studied in near term large fusion experiments.

  7. Modelling NPA measurements of alpha-particle distributions in JET and TFTR

    NASA Astrophysics Data System (ADS)

    McClements, K. G.; Dendy, R. O.; Gondhalekar, A.

    1997-11-01

    Neutral particle analyser (NPA) measurements of the DT fusion alpha-particle energy distribution function are simulated by geometrically weighted spatial line integrals of the time-evolving population. The latter is modelled semi-analytically using a simplified Fokker-Planck equation, where the alpha-particle source term is derived from measured fusion reactivity, and plasma collisionality from measured electron density and temperature profiles. This model [1] is benchmarked by zero-free-parameters agreement with TFTR tritium beam blip results [2]. We can thus quantify the differences between the measured NPA spectrum and the local alpha-particle distribution in the plasma core. [1] K G McClements et al, JET Report JET-R(97)02. [2] S S Medley et al, Plasma Phys Contr Fusion 38, 1779 (1996). This work was supported in part by the UK Department of Trade and Industry and Euratom

  8. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  9. Recent outgassing from the lunar surface: The Lunar Prospector Alpha Particle Spectrometer

    NASA Astrophysics Data System (ADS)

    Lawson, Stefanie L.; Feldman, William C.; Lawrence, David J.; Moore, Kurt R.; Elphic, Richard C.; Belian, Richard D.; Maurice, Sylvestre

    2005-09-01

    The Lunar Prospector Alpha Particle Spectrometer (APS) was designed to detect characteristic-energy alpha particles from the decay of Rn-222, Po-218, and Po-210 and to therefore map sites of radon release on the lunar surface. These three nuclides are radioactive daughters from the decay of U-238 hence the background level of alpha particle activity is a function of the lunar crustal uranium distribution. Radon reaches the lunar surface either at areas of high soil porosity or where fissures release the trapped gases in which radon is entrained. Once released, the radon spreads out by ``bouncing'' across the surface on ballistic trajectories in a random-walk process. The half-life of Rn-222 allows the gas to spread out by several hundred kilometers before it decays (depositing approximately half of the Po-218 recoil nuclides on the lunar surface) and allows the APS to detect gas release events up to several days after they occur. The long residence time of the Pb-210 precursor to Po-210 allows the mapping of gas vents which have been active over the last approximately 60 years. The APS found only a faint indication of Po-218 alpha particles. However, the Rn-222 alpha particle map shows that radon gas was emanating from the vicinity of craters Aristarchus and Kepler at the time of Lunar Prospector. The Po-210 alpha particle distribution reveals a variability in time and space of lunar gas release events. Po-210 and Rn-222 detections are associated with both thorium enhancements and lunar pyroclastic deposits.

  10. Enhanced retention of the alpha-particle-emitting daughters of Actinium-225 by liposome carriers.

    PubMed

    Sofou, Stavroula; Kappel, Barry J; Jaggi, Jaspreet S; McDevitt, Michael R; Scheinberg, David A; Sgouros, George

    2007-01-01

    Targeted alpha-particle emitters hold great promise as therapeutics for micrometastatic disease. Because of their high energy deposition and short range, tumor targeted alpha-particles can result in high cancer-cell killing with minimal normal-tissue irradiation. Actinium-225 is a potential generator for alpha-particle therapy: it decays with a 10-day half-life and generates three alpha-particle-emitting daughters. Retention of (225)Ac daughters at the target increases efficacy; escape and distribution throughout the body increases toxicity. During circulation, molecular carriers conjugated to (225)Ac cannot retain any of the daughters. We previously proposed liposomal encapsulation of (225)Ac to retain the daughters, whose retention was shown to be liposome-size dependent. However, daughter retention was lower than expected: 22% of theoretical maximum decreasing to 14%, partially due to the binding of (225)Ac to the phospholipid membrane. In this study, Multivesicular liposomes (MUVELs) composed of different phospholipids were developed to increase daughter retention. MUVELs are large liposomes with entrapped smaller lipid-vesicles containing (225)Ac. PEGylated MUVELs stably retained over time 98% of encapsulated (225)Ac. Retention of (213)Bi, the last daughter, was 31% of the theoretical maximum retention of (213)Bi for the liposome sizes studied. MUVELs were conjugated to an anti-HER2/neu antibody (immunolabeled MUVELs) and were evaluated in vitro with SKOV3-NMP2 ovarian cancer cells, exhibiting significant cellular internalization (83%). This work demonstrates that immunolabeled MUVELs might be able to deliver higher fractions of generated alpha-particles per targeted (225)Ac compared to the relative fractions of alpha-particles delivered by (225)Ac-labeled molecular carriers.

  11. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  12. Prediction of Lung Cells Oncogenic Transformation for Induced Radon Progeny Alpha Particles Using Sugarscape Cellular Automata

    PubMed Central

    Baradaran, Samaneh; Maleknasr, Niaz; Setayeshi, Saeed; Akbari, Mohammad Esmaeil

    2014-01-01

    Background Alpha particle irradiation from radon progeny is one of the major natural sources of effective dose in the public population. Oncogenic transformation is a biological effectiveness of radon progeny alpha particle hits. The biological effects which has caused by exposure to radon, were the main result of a complex series of physical, chemical, biological and physiological interactions. The cellular and molecular mechanisms for radon-induced carcinogenesis have not been clear yet. Methods Various biological models, including cultured cells and animals, have been found useful for studying the carcinogenesis effects of radon progeny alpha particles. In this paper, sugars cape cellular automata have been presented for computational study of complex biological effect of radon progeny alpha particles in lung bronchial airways. The model has included mechanism of DNA damage, which has been induced alpha particles hits, and then formation of transformation in the lung cells. Biomarkers were an objective measure or evaluation of normal or abnormal biological processes. In the model, the metabolism rate of infected cell has been induced alpha particles traversals, as a biomarker, has been followed to reach oncogenic transformation. Results The model results have successfully validated in comparison with “in vitro oncogenic transformation data” for C3H 10T1/2 cells. This model has provided an opportunity to study the cellular and molecular changes, at the various stages in radiation carcinogenesis, involving human cells. Conclusion It has become well known that simulation could be used to investigate complex biomedical systems, in situations where traditional methodologies were difficult or too costly to employ. PMID:25250147

  13. MIRD Pamphlet No. 22 (Unabridged): Radiobiology and Dosimetry of alpha-Particle Emitters for Targeted Radionuclide Therapy

    SciTech Connect

    Sgouros, George; Roeske, John C.; McDevitt, Michael S.; Palm, Stig; Allen, Barry J.; Fisher, Darrell R.; Brill, Bertrand A.; Song, Hong; Howell, R. W.; Akabani, Gamal

    2010-02-28

    The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides, in radionuclide conjugation chemistry, and in the increased availability of alpha-emitters appropriate for clinical use have recently led to patient trials of alpha-particle-emitter labeled radiopharmaceuticals. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle-emitter therapy and to provide guidance and recommendations for human alpha-particle-emitter dosimetry.

  14. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy.

    PubMed

    Sgouros, George; Roeske, John C; McDevitt, Michael R; Palm, Stig; Allen, Barry J; Fisher, Darrell R; Brill, A Bertrand; Song, Hong; Howell, Roger W; Akabani, Gamal; Bolch, Wesley E; Brill, A Bertrand; Fisher, Darrell R; Howell, Roger W; Meredith, Ruby F; Sgouros, George; Wessels, Barry W; Zanzonico, Pat B

    2010-02-01

    The potential of alpha-particle emitters to treat cancer has been recognized since the early 1900s. Advances in the targeted delivery of radionuclides and radionuclide conjugation chemistry, and the increased availability of alpha-emitters appropriate for clinical use, have recently led to patient trials of radiopharmaceuticals labeled with alpha-particle emitters. Although alpha-emitters have been studied for many decades, their current use in humans for targeted therapy is an important milestone. The objective of this work is to review those aspects of the field that are pertinent to targeted alpha-particle emitter therapy and to provide guidance and recommendations for human alpha-particle emitter dosimetry.

  15. Bose-Einstein condensation of {alpha} particles and Airy structure in nuclear rainbow scattering

    SciTech Connect

    Ohkubo, S.; Hirabayashi, Y.

    2004-10-01

    It is shown that the dilute density distribution of {alpha} particles in nuclei can be observed in the Airy structure in nuclear rainbow scattering. We have analyzed {alpha}+{sup 12}C rainbow scattering to the 0{sub 2}{sup +} (7.65 MeV) state of {sup 12}C in a coupled-channel method with the precise wave functions for {sup 12}C. It is found that the enhanced Airy oscillations in the experimental angular distributions for the 0{sub 2}{sup +} state is caused by the dilute density distribution of this state in agreement for the idea of Bose-Einstein condensation of the three alpha particles.

  16. Anomalous Loss of DT Alpha Particles in the Tokamak Fusion Test Reactor

    SciTech Connect

    Herrmann, Hans W.

    1997-06-01

    Princeton's Tokamak Fusion Test Reactor (TFTR) is the first experimental fusion device to routinely use tritium to study the deuterium-tritium (DT) fusion reaction,allowing the first systematic study of DT alpha particles in tokamak plasmas. A crucial aspect of alpha-particle physics is the fraction of alphas that escape from the plasma, particularly since these energetic particles can do severe damage to the first wall of a reactor. An escaping alpha collector probe has been developed for TFTR's DT phase. Energy distributions of escaping alphas have been determined by measuring the range of alpha-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous "delayed" loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on alpha-particle loss has led to a better understanding of alpha-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing alpha-particles forced to move toward higher magnetic field during an inward major radius shift (i.e. compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90 degree lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an alpha-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized alpha-particles near the

  17. Measurement of the Internal Magnetic Field of Plasmas using an Alpha Particle Source

    SciTech Connect

    S.J. Zweben; D.S. Darrow; P.W. Ross; J.L. Lowrance; G. Renda

    2004-05-13

    The internal magnetic fields of plasmas can be measured under certain conditions from the integrated v x B deflection of MeV alpha particles emitted by a small radioactive source. This alpha source and large-area alpha particle detector would be located inside the vacuum vessel but outside the plasma. Alphas with a typical energy of 5.5 MeV (241Am) can reach the center of almost all laboratory plasmas and magnetic fusion devices, so this method can potentially determine the q(r) profile of tokamaks or STs. Orbit calculations, background evaluations, and conceptual designs for such a vxB (or ''AVB'') detector are described.

  18. Self-consistent study of the alpha particle driven TAE mode

    SciTech Connect

    Wu, Y.; White, R.B.

    1994-04-01

    The interaction of high energy particles with an Alfven eigenmode is investigated self-consistently by using a realistic kinetic dispersion relation. All important poloidal mode numbers and their radial mode profiles as calculated with the NOVA-K code are included. A Hamiltonian guiding center code is used to simulate the alpha particle motion. The numerical simulations include particle orbit width, nonlinear particle dynamics and the effects of the modes on the particles. Modification of the particle distribution leading to mode saturation is observed. Particle loss is limited to devices in which the alpha particle gyro radius is a significant fraction of the minor radius.

  19. Sufficient condition for velocity-space stability of the alpha particle distribution in a tokamak reactor

    SciTech Connect

    Cordey, J.G.; Goldston, R.J.; Mikkelsen, D.R.

    1980-08-01

    A condition is derived for the velocity-space distribution of suprathermal alpha particles to be monotonically decreasing with energy - and hence stable to homogeneous plasma instabilities - during the heating phase of a tokamak reactor. This stability condition is easily satisfied for presently envisaged neutral injection heating of reactors, but may be violated in strong heating of smaller plasmas or during fast compressional heating.

  20. A Strange Box and a Stubborn Brit: Rutherford's Experiments with Alpha Particles.

    ERIC Educational Resources Information Center

    Digilov, M.

    1991-01-01

    Discusses 5 innovative experiments conducted by Rutherford in early 1900s utilizing the 30 milligrams of radium salt he personally carried from Europe to Canada in 1903. Traces his work with alpha particles from his original results which determined their nature, charge, and mass, to his technique of backscattering which helped to advance…

  1. Can Bose condensation of alpha particles be observed in heavy ion collisions?

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Townsend, Lawrence W.

    1993-01-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of alpha particles with a concomitant phase transition in heavy ion collisions. Suggestions for the experimental observation of the signature of the onset of this phenomenon are made.

  2. Nucleon-Alpha Particle Disequilibrium and Short-Lived r-Process Radioactivities

    NASA Technical Reports Server (NTRS)

    Meyer, B. S.; Clayton, D. D.; Chellapilla, S.; The, L.-S.

    2002-01-01

    r-Process yields can be extremely sensitive to expansion parameters when a persistent disequilibrium between free nucleons and alpha particles is present. This may provide a natural scenario for understanding the variation of heavy and light r-process isotopes in different r-process events. Additional information is contained in the original extended abstract.

  3. A comparison of different peak shapes for deconvolution of alpha-particle spectra

    NASA Astrophysics Data System (ADS)

    Marzo, Giuseppe A.

    2016-10-01

    Alpha-particle spectrometry is a standard technique for assessing the sample content in terms of alpha-decaying isotopes. A comparison of spectral deconvolutions performed adopting different peak shape functions has been carried out and a sensitivity analysis has been performed to test for the robustness of the results. As previously observed, there is evidence that the alpha peaks are well reproduced by a Gaussian modified by a function which takes into account the prominent tailing that an alpha-particle spectrum measured by means of a silicon detector exhibits. Among the different peak shape functions considered, that proposed by G. Bortels and P. Collaers, Int. J. Rad. Appl. Instrum. A 38, pp. 831-837 (1987) is the function which provides more accurate and more robust results when the spectral resolution is high enough to make such tailing significant. Otherwise, in the case of lower resolution alpha-particle spectra, simpler peak shape functions which are characterized by a lower number of fitting parameters provide adequate results. The proposed comparison can be useful for selecting the most appropriate peak shape function when accurate spectral deconvolution of alpha-particle spectra is sought.

  4. A Strange Box and a Stubborn Brit: Rutherford's Experiments with Alpha Particles.

    ERIC Educational Resources Information Center

    Digilov, M.

    1991-01-01

    Discusses 5 innovative experiments conducted by Rutherford in early 1900s utilizing the 30 milligrams of radium salt he personally carried from Europe to Canada in 1903. Traces his work with alpha particles from his original results which determined their nature, charge, and mass, to his technique of backscattering which helped to advance…

  5. Relative biological effectiveness of alpha-particle emitters in vivo at low doses.

    PubMed

    Howell, R W; Azure, M T; Narra, V R; Rao, D V

    1994-03-01

    The therapeutic potential of radionuclides that emit alpha particles, as well as their associated health hazards, have attracted considerable attention. The 224Ra daughters 212Pb and 212Bi, by virtue of their radiation properties which involve emission of alpha and beta particles in their decay to stable 208Pb, have been proposed as candidates for radioimmunotherapy. Using mouse testes as the experimental model and testicular spermhead survival as the biological end point, the present work examines the radiotoxicity of 212Pb and its daughters. When 212Pb, in equilibrium with its daughters 212Bi, 212Po and 208Tl, was administered directly into the testis, the dose required to achieve 37% survival (D37) was 0.143 +/- 0.014 Gy and the corresponding RBE of the mixed radiation field was 4.7 when compared to the D37 for acute external 120 kVp X rays. This datum, in conjunction with our earlier results for 210Po, was used to obtain an RBE-LET relationship for alpha particles emitted by tissue-incorporated radionuclides: RBE alpha = 4.8 - 6.1 x 10(-2) LET + 1.0 x 10(-3) LET2. Similarly, the dependence of RBE on alpha-particle energy E alpha was given by RBE alpha = 22 E(-0.73) alpha. These relationships, based on in vivo experimental data, may be valuable in predicting biological effects of alpha-particle emitters.

  6. Simple experimental method for alpha particle range determination in lead iodide films

    SciTech Connect

    Dmitriev, Yuri; Bennett, Paul R.; Cirignano, Leonard J.; Klugerman, Mikhail; Shah, Kanai S.

    2007-05-15

    An experimental method for determining the range of alpha particles in films based on I-V{sub s} analysis has been suggested. The range of 5.5 MeV alpha particles in PbI{sub 2} films determined by this technique is 30{+-}5 {mu}m, and this value is in agreement with the value calculated by SRIM (the stopping and range of ions in matter), r=24 {mu}m in PbI{sub 2}. More than 100 I-V{sub s} of PbI{sub 2} films with different thicknesses and quality have been analyzed, and the influence of alpha particle radiation on PbI{sub 2} I-V{sub s} curves has been studied. Developed analytical methods (dependence of current density on electric field and conception of surface defects) were used, and the method limitations are discussed. It was shown that I-V{sub s} demonstrate the tendency to obey Ohm's law under alpha radiation. On the other hand, dark conductivity of the lead iodide films shows a typical impure character that can lead to an overestimation of the alpha particles' range in PbI{sub 2} films. After films were exposed to alpha radiation, the dark resistivity and I-V shape of some films improved. Also, a weak decrease of the charge carrier concentration, due to a decrease of the ''surface defect'' concentration (''surface refining''), was registered after successive measurements of I-V{sub s}.

  7. Alpha-particle-induced p53 protein expression in a rat lung epithelial cell strain.

    PubMed

    Hickman, A W; Jaramillo, R J; Lechner, J F; Johnson, N F

    1994-11-15

    Other investigators have shown that both sparsely ionizing and UV radiation cause cell cycle arrest that is associated with increased expression of wild-type p53 protein. The effect of exposure to alpha-particles from 238Pu on the induction of the p53 protein has now been examined in cultured lung epithelial cells derived from male F344 rats. The number of cells having increased levels of p53 protein was determined by flow cytometry after the cells had been stained with a monoclonal antibody to p53. alpha-Particle irradiation caused a dose-dependent increase in p53 protein levels detectable at doses as low as 0.6 cGy, with no evidence of a threshold. An increase in p53 protein also occurred in X-irradiated cells. However, no increase was seen in cells exposed to less than 10 cGy of X-rays, indicating the existence of a relatively higher DNA damage threshold for sparsely ionizing radiation. In addition, more cells exposed to low doses of alpha radiation had increased p53 protein levels than would be predicted based on the number of nuclei expected to be traversed by an alpha-particle, suggesting that alpha-particles cause genetic damage by mechanisms in addition to direct interactions with DNA.

  8. Optimization of a CO[sub 2] laser Thomson scattering alpha particle diagnostic

    SciTech Connect

    Richards, R.K.; Hutchinson, D.P.; Ma, C.H.

    1993-01-01

    The optimization of a CO[sub 2] laser Thomson scattering system for measurement of the velocity distribution of fusion product alpha particles is studied. It is found that for the International Thermonuclear Experimental Reactor (ITER) plasma, the optimal system conditions are a 20-MW source laser and a receiver bandwidth of 15 GHz.

  9. Electron Bombardment Ion Thruster

    NASA Image and Video Library

    1970-08-21

    Researchers at the Lewis Research Center had been studying different methods of electric rocket propulsion since the mid-1950s. Harold Kaufman created the first successful engine, the electron bombardment ion engine, in the early 1960s. Over the ensuing decades Lewis researchers continued to advance the original ion thruster concept. A Space Electric Rocket Test (SERT) spacecraft was launched in June 1964 to test Kaufman’s engine in space. SERT I had one cesium engine and one mercury engine. The suborbital flight was only 50 minutes in duration but proved that the ion engine could operate in space. This was followed in 1966 by the even more successful SERT II, which operated on and off for over ten years. Lewis continued studying increasingly more powerful ion thrusters. These electric engines created and accelerated small particles of propellant material to high exhaust velocities. Electric engines have a very small amount of thrust and are therefore not capable of lifting a spaceship from the surface of the Earth. Once lofted into orbit, however, electric engines are can produce small, continuous streams of thrust for several years.

  10. Lung cancer risk from exposure to alpha particles and inhalation of other pollutants in rats

    SciTech Connect

    Burns, F.J.

    1990-01-01

    The goal of these experiments is to establish a quantitative correlation between early DNA damage and cancer incidence in a way that would be helpful for assessing the carcinogenic risk of radon alone or in combination with specific indoor pollutants. Rat tracheal epithelium has been exposed in vivo to {sup 210}Po alpha particles in the presence and absence of NO{sub 2} or cigarette smoke. The major accomplishments so far are: the design and implementation of a tracheal implant to simulate radon alpha particle exposure, the measurement of DNA breaks in a small 7.0 mm segment of the trachea exposed to external x-irradiation, the measurement of the rate of repair of the x-ray induced tracheal DNA strand breaks, the measurement of DNA strand breaks following inhalation of cigarette smoke or NO{sub 2}, the measurement of tracheal DNA stand breaks following exposure to high doses {sup 210}Po alpha particle radiation, the assessment of the amount of mucous in the goblet cells and in the underlying mucous glands. So far we have been unable to detect DNA strand breaks in the tracheal epithelium as a result of exposure to NO{sub 2} cigarette smoke or {sup 210}Po alpha particles. We have developed a simple artificial' trachea consisting of rat tracheal epithelial cells growing on a basement membrane coated millipore filter. Experiments are proposed to utilize these artificial tracheas to eliminate the potential interference of increased mucous secretion and/or inflammation that can significantly affect the radiation dose from the alpha particles. 61 refs., 17 figs.

  11. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos.

    PubMed

    Ng, Candy Yuen Ping; Cheng, Shuk Han; Yu, Kwan Ngok

    2017-02-11

    Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis.

  12. Alpha particle induced DNA damage and repair in normal cultured thyrocytes of different proliferation status.

    PubMed

    Lyckesvärd, Madeleine Nordén; Delle, Ulla; Kahu, Helena; Lindegren, Sture; Jensen, Holger; Bäck, Tom; Swanpalmer, John; Elmroth, Kecke

    2014-07-01

    Childhood exposure to ionizing radiation increases the risk of developing thyroid cancer later in life and this is suggested to be due to higher proliferation of the young thyroid. The interest of using high-LET alpha particles from Astatine-211 ((211)At), concentrated in the thyroid by the same mechanism as (131)I [1], in cancer treatment has increased during recent years because of its high efficiency in inducing biological damage and beneficial dose distribution when compared to low-LET radiation. Most knowledge of the DNA damage response in thyroid is from studies using low-LET irradiation and much less is known of high-LET irradiation. In this paper we investigated the DNA damage response and biological consequences to photons from Cobolt-60 ((60)Co) and alpha particles from (211)At in normal primary thyrocytes of different cell cycle status. For both radiation qualities the intensity levels of γH2AX decreased during the first 24h in both cycling and stationary cultures and complete repair was seen in all cultures but cycling cells exposed to (211)At. Compared to stationary cells alpha particles were more harmful for cycling cultures, an effect also seen at the pChk2 levels. Increasing ratios of micronuclei per cell nuclei were seen up to 1Gy (211)At. We found that primary thyrocytes were much more sensitive to alpha particle exposure compared with low-LET photons. Calculations of the relative biological effectiveness yielded higher RBE for cycling cells compared with stationary cultures at a modest level of damage, clearly demonstrating that cell cycle status influences the relative effectiveness of alpha particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of Photon Hormesis on Dose Responses to Alpha Particles in Zebrafish Embryos

    PubMed Central

    Ng, Candy Yuen Ping; Cheng, Shuk Han; Yu, Kwan Ngok

    2017-01-01

    Photon hormesis refers to the phenomenon where the biological effect of ionizing radiation with a high linear energy transfer (LET) value is diminished by photons with a low LET value. The present paper studied the effect of photon hormesis from X-rays on dose responses to alpha particles using embryos of the zebrafish (Danio rerio) as the in vivo vertebrate model. The toxicity of these ionizing radiations in the zebrafish embryos was assessed using the apoptotic counts at 20, 24, or 30 h post fertilization (hpf) revealed through acridine orange (AO) staining. For alpha-particle doses ≥ 4.4 mGy, the additional X-ray dose of 10 mGy significantly reduced the number of apoptotic cells at 24 hpf, which proved the presence of photon hormesis. Smaller alpha-particle doses might not have inflicted sufficient aggregate damages to trigger photon hormesis. The time gap T between the X-ray (10 mGy) and alpha-particle (4.4 mGy) exposures was also studied. Photon hormesis was present when T ≤ 30 min, but was absent when T = 60 min, at which time repair of damage induced by alpha particles would have completed to prevent their interactions with those induced by X-rays. Finally, the drop in the apoptotic counts at 24 hpf due to photon hormesis was explained by bringing the apoptotic events earlier to 20 hpf, which strongly supported the removal of aberrant cells through apoptosis as an underlying mechanism for photon hormesis. PMID:28208665

  14. Angular distribution of {alpha} particles from oriented {sup 253,254}Es and {sup 255}Fm nuclei

    SciTech Connect

    Severijns, N.; Golovko, V.V.; Kraev, I.S.; Phalet, T.; Belyaev, A.A.; Lukhanin, A.A.; Noga, V.I.; Erzinkyan, A.L.; Parfenova, V.P.; Eversheim, P.-D.; Herzog, P.; Tramm, C.; Filimonov, V.T.; Toporov, Yu.G.; Zotov, E.; Gurevich, G.M.; Rusakov, A.V.; Vyachin, V.N.; Zakoucky, D.

    2005-04-01

    The anisotropy in the angular distribution of {alpha} particles from oriented {sup 253,254}Es and {sup 255}Fm nuclei, which are among the strongest deformed {alpha} emitters, was measured. Large {alpha} anisotropies have been observed for all three nuclei. The results are compared with calculations based on {alpha}-particle tunneling through a deformed Coulomb barrier.

  15. Peroxidation of the dried thin film of lipid by high-energy alpha particles from a cyclotron

    SciTech Connect

    Agarwal, S.; Chatterjee, S.N.

    1984-11-01

    High-energy ..cap alpha.. particles produced a dose-dependent linear increase in different lipid peroxidation products (e.g., malondialdehyde (MDA), conjugated dienes, and hydroperoxides) in the dried thin film state. An inverse dose-rate effect was observed when the dose rate was varied by changing either the ..cap alpha..-particle fluence rate or the ..cap alpha..-particle energy. The antioxidants ..cap alpha..-tocopherol and butylated hydroxytoluene (BHT) suppressed the ..cap alpha..-particle-induced lipid peroxidation in the dried thin film state, and in this respect ..cap alpha..-tocopherol was found superior to BHT. It was found that ..cap alpha..-tocopherol was equally efficient in inhibiting lipid peroxidations by ..cap alpha.. particles and ultraviolet light.

  16. Further measurement of the {beta}-delayed {alpha}-particle emission of {sup 16}N

    SciTech Connect

    France III, R. H.; Wilds, E. L.; McDonald, J. E.; Gai, M.

    2007-06-15

    We measured the {beta}-delayed {alpha}-particle emission spectrum of {sup 16}N with a sensitivity for {beta}-decay branching ratios of the order of 10{sup -10}. The {sup 16}N nuclei were produced using the d({sup 15}N,{sup 16}N)p reaction with 70 MeV {sup 15}N beams and a deuterium gas target 7.5 cm long at a pressure of 1250 torr. The {sup 16}N nuclei were collected (over 10 s) using a thin aluminum foil with an areal density of 180 {mu}g/cm{sup 2} tilted at 7 deg. with respect to the beam. The activity was transferred to the counting area by means of a stepping motor in less than 3 s with the counting carried out over 8 s. The {beta}-delayed {alpha}-particles were measured using a time-of-flight method to achieve a sufficiently low background. Standard calibration sources ({sup 148}Gd, {sup 241}Am, {sup 208,209}Po, and {sup 227}Ac) as well as {alpha} particles and {sup 7}Li from the {sup 10}B(n,{alpha}){sup 7}Li reaction were used for an accurate energy calibration. The energy resolution of the catcher foil (180-220 keV) was calculated and the time-of-flight resolution (3-10 nsec) was measured using the {beta}-delayed {alpha}-particle emission from {sup 8}Li that was produced using the d({sup 7}Li,{sup 8}Li)p reaction with the same setup. The line shape was corrected to account for the variation in the energy and time resolution and a high statistics spectrum of the {beta}-delayed {alpha}-particle emission of {sup 16}N is reported. However, our data (as well as earlier Mainz data and unpublished Seattle data) do not agree with an earlier measurement of the {beta}-delayed {alpha}-particle emission of {sup 16}N taken at TRIUMF after averaging over the energy resolution of our collection system. This disagreement, among other issues, prohibits accurate inclusion of the f-wave component in the R-matrix analysis.

  17. Technique for measuring the losses of alpha particles to the wall in TFTR

    SciTech Connect

    England, A.C.

    1984-03-01

    It is proposed to measure the losses of alpha particles to the wall in the Tokamak Fusion Test Reactor (TFTR) or any large deuterium-tritium (D-T) burning tokamak by a nuclear technique. For this purpose, a chamber containing a suitable fluid would be mounted near the wall of the tokamak. Alpha particles would enter the chamber through a thin window and cause nuclear reactions in the fluid. The material would then be transported through a tube to a remote, low-background location for measurement of the activity. The most favorable reaction suggested here is /sup 10/B(..cap alpha..,n)/sup 13/N, although /sup 14/N(..cap alpha..,..gamma..)/sup 18/F and others may be possible. The system, the sensitivity, the probe design, and the sources of error are described.

  18. Development of scintillator plates with high energy resolution for alpha particles made of GPS scintillator grains

    NASA Astrophysics Data System (ADS)

    Shimaoka, Takehiro; Kaneko, Junichi H.; Izaki, Kenji; Tsubota, Youichi; Higuchi, Mikio; Nishiyama, Shusuke

    2014-01-01

    A scintillator plate with high energy resolution was developed to produce an alpha particle monitor used in nuclear fuel reprocessing plants and mixed plutonium-uranium oxide (MOX) fuel plants. Grains of a Gd2Si2O7 (GPS) scintillator of several 10 to 550 μm were fixed on a glass substrate and were then mechanically polished. By increasing the size of scintillator grains and removing fine powders, the collected light yield and energy resolution for alpha particles were drastically improved. Energy resolution of 9.3% was achieved using average grain size of 91 μm. Furthermore, the ratios between counts in a peak and total counts were improved by more than 60% by the further increase of grain size and adoption of mechanically polished surfaces on both sides. Beta and gamma ray influences were suppressed sufficiently by the thin 100 μm scintillator plates.

  19. An experimental quantification of the NOX production efficiency of energetic alpha particles in air

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Cooray, Vernon; Possnert, Göran; Nyberg, Johan

    2006-07-01

    An experimental study on the production of NOX by alpha particles impact in air at atmospheric pressure is presented. A mixed radioactive source of 208Po and 209Po with an integrated activity of 9.6 MBq over a solid angle of 2π and an average alpha particle energy of 4.5 MeV was used for ionization of atmospheric air in an airtight chamber and the NOX production was measured by the chemiluminescence method. The NOX production rate is found to be about 1.2 NOX molecules per ion-pair. The NOX production efficiency per Joule of dissipated energy is calculated to be 20×1016 NOX molecules per Joule. This efficiency is comparable to that of hot laboratory sparks discharges.

  20. New measurements of W-values for protons and alpha particles.

    PubMed

    Giesen, U; Beck, J

    2014-10-01

    The increasing importance of ion beams in cancer therapy and the lack of experimental data for W-values for protons and heavy ions in air require new measurements. A new experimental set-up was developed at PTB and consistent measurements of W-values in argon, nitrogen and air for protons and alpha particles with energies from 0.7 to 3.5 MeV u(-1) at PTB, and for carbon ions between 3.6 and 7.0 MeV u(-1) at GSI were carried out. This publication concentrates on the measurements with protons and alpha particles at PTB. The experimental methods and the determination of corrections for recombination effects, beam-induced background radiation and additional effects are presented.

  1. Preferential Heating and Acceleration of {alpha} Particles by Alfven-Cyclotron Waves

    SciTech Connect

    Araneda, J. A.; Maneva, Y.; Marsch, E.

    2009-05-01

    Preferential heating and acceleration of heavy ions in the solar wind and corona represent a long-standing theoretical problem in space physics, and are distinct experimental signatures of kinetic processes occurring in collisionless plasmas. We show that fast and slow ion-acoustic waves (IAW) and transverse waves, driven by Alfven-cyclotron wave parametric instabilities can selectively destroy the coherent fluid motion of different ion species and, in this way lead to their differential heating and acceleration. Trapping of the more abundant protons by the fast IAW generates a proton beam with drift speed of about the Alfven speed. Because of their larger mass, {alpha} particles do not become significantly trapped and start, by conservation of total ion momentum, drifting relative to the receding bulk protons. Thus the resulting core protons and the {alpha} particles are differentially heated via pitch-angle scattering.

  2. Optical and THz investigations of mid-IR materials exposed to alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Sporea, Dan; Mihai, Laura; Sporea, Adelina; Vâţã, Ion

    2017-01-01

    The paper is the first comprehensive study on alpha particle irradiation effects on four mid-IR materials: CaF2, BaF2, Al2O3 (sapphire) and ZnSe. The measurements of the optical spectral transmittance, spectral diffuse reflectance, radioluminescent emission, terahertz (THz) spectral response, transmittance, absorbance, refractive index, real and imaginary parts of the dielectric constant and THz imaging are used as complementary investigations to evaluate these effects. The simulations were run to estimate: (i) the penetration depth, (ii) the scattering of alpha particle beam, (iii) the amount of material affected by this interaction, and (iv) the number of vacancies produced by the radiation exposure for each type of material. The simulation results are compared to the off-line measurement outcomes. The delay and spectral composition change of the reflected THz signal highlight the modification induced in the tested materials by the irradiation process.

  3. Optical and THz investigations of mid-IR materials exposed to alpha particle irradiation.

    PubMed

    Sporea, Dan; Mihai, Laura; Sporea, Adelina; Vâţã, Ion

    2017-01-09

    The paper is the first comprehensive study on alpha particle irradiation effects on four mid-IR materials: CaF2, BaF2, Al2O3 (sapphire) and ZnSe. The measurements of the optical spectral transmittance, spectral diffuse reflectance, radioluminescent emission, terahertz (THz) spectral response, transmittance, absorbance, refractive index, real and imaginary parts of the dielectric constant and THz imaging are used as complementary investigations to evaluate these effects. The simulations were run to estimate: (i) the penetration depth, (ii) the scattering of alpha particle beam, (iii) the amount of material affected by this interaction, and (iv) the number of vacancies produced by the radiation exposure for each type of material. The simulation results are compared to the off-line measurement outcomes. The delay and spectral composition change of the reflected THz signal highlight the modification induced in the tested materials by the irradiation process.

  4. Optical and THz investigations of mid-IR materials exposed to alpha particle irradiation

    PubMed Central

    Sporea, Dan; Mihai, Laura; Sporea, Adelina; Vâţã, Ion

    2017-01-01

    The paper is the first comprehensive study on alpha particle irradiation effects on four mid-IR materials: CaF2, BaF2, Al2O3 (sapphire) and ZnSe. The measurements of the optical spectral transmittance, spectral diffuse reflectance, radioluminescent emission, terahertz (THz) spectral response, transmittance, absorbance, refractive index, real and imaginary parts of the dielectric constant and THz imaging are used as complementary investigations to evaluate these effects. The simulations were run to estimate: (i) the penetration depth, (ii) the scattering of alpha particle beam, (iii) the amount of material affected by this interaction, and (iv) the number of vacancies produced by the radiation exposure for each type of material. The simulation results are compared to the off-line measurement outcomes. The delay and spectral composition change of the reflected THz signal highlight the modification induced in the tested materials by the irradiation process. PMID:28067289

  5. Variation of the track etch rates of alpha-particle trajectory in PADC

    NASA Astrophysics Data System (ADS)

    Zaki, M. F.; Hegazy, T. M.; Seddik, U.; Morsy, A. A.

    2005-01-01

    The formation of etched tracks in solid-state nuclear track detectors is usually described by assuming an unequivocal correlation of the etch-rate ratio with the energy loss of charged particles. For alpha particles, this assumption could be verified within the scatter of the experimental data. In this article, the dependence of the depth (x) on the track etch rate (V-T) was determined experimentally by track length measurement. It is found that the track etch rate as a function of the depth within the detector follows the Bragg curve. The track etch rate has been found to be described by a generalization of the restricted energy loss, in good approximation along the trajectories of alpha particles.

  6. Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies.

    PubMed

    Zalutsky, Michael R; Reardon, David A; Pozzi, Oscar R; Vaidyanathan, Ganesan; Bigner, Darell D

    2007-10-01

    An attractive feature of targeted radionuclide therapy is the ability to select radionuclides and targeting vehicles with characteristics that are best suited for a particular clinical application. One combination that has been receiving increasing attention is the use of monoclonal antibodies (mAbs) specifically reactive to receptors and antigens that are expressed in tumor cells to selectively deliver the alpha-particle-emitting radiohalogen astatine-211 (211At) to malignant cell populations. Promising results have been obtained in preclinical models with multiple 211At-labeled mAbs; however, translation of the concept to the clinic has been slow. Impediments to this process include limited radionuclide availability, the need for suitable radiochemistry methods operant at high activity levels and lack of data concerning the toxicity of alpha-particle emitters in humans. Nonetheless, two clinical trials have been initiated to date with 211At-labeled mAbs, and others are planned for the near future.

  7. Effects of q(r) on the Alpha Particle Ripple Loss in TFTR

    SciTech Connect

    D.S. Darrow; M. Diesso; R.V. Budny; S. Batha; S.J. Zweben; et al.

    1997-09-01

    An experiment was done with TFTR DT plasmas to determine the effect of the q(r) profile on the alpha particle ripple loss to the outer midplane. The alpha particle loss measurements were made using a radially movable scintillator detector 20 degrees below the outer midplane. The experimental results were compared with TF ripple loss calculations done using a Monte Carlo guiding center orbit following code, ORBIT. Although some of the experimental results are consistent with the ORBIT code modeling, the variation of the alpha loss with the q(r) profiles is not well explained by this code. Quantitative interpretation of these measurements requires a careful analysis of the limiter shadowing effect, which strongly determines the diffusion of alphas into the detector aperture.

  8. Method for determining fast-alpha-particle confinement in tokamak plasmas using resonant nuclear reactors

    SciTech Connect

    Cecil, F.E.; Zweben, S.J.; Medley, S.S.

    1986-03-01

    The resonant nuclear reactions D(..cap alpha..,..gamma..)/sup 6/Li, /sup 6/Li(..cap alpha..,..gamma..)/sup 10/B, and /sup 7/Li(..cap alpha..,..gamma..)/sup 11/B are examined as diagnostics of fast-alpha-particle confinement in tokamak plasmas. Gamma rays from these resonant reactions with energies from 2.1 MeV to 9.2 MeV may be used to infer the alpha-particle population between energies of 0.4 MeV and 2.6 MeV. The ratio of these alpha-burnup reactions to the reactions T(D,..gamma..)/sup 5/He and /sup 3/He(D,..gamma..)/sup 5/Li provides a technique for the measurement of alpha confinement.

  9. Energetic protons, alpha particles, and electrons in magnetic flux transfer events

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1982-01-01

    Energetic proton, alpha particle, and electron data are presented for two magnetopause crossings, which show magnetic field signatures characteristic of flux transfer events (FTEs). Energetic proton and alpha particles are observed streaming along the magnetic field within the magnetosheath in all events showing magnetic signatures characteristic of the FTEs. Flux ratios as high as about 180 parallel and antiparallel to the magnetic field are observed, which means that ions of about 30 keV per charge are at times streaming almost scatter-free from the magnetopause into the magnetosheath. Energetic ion bursts with signatures equal to those observed in FTEs are reduced by more than an order of magnitude as compared to the trapped particle flux.

  10. Fusion alpha-particle losses in a high-beta rippled tokamak

    SciTech Connect

    Bunno, M.; Nakamura, Y.; Suzuki, Y.; Shinohara, K.; Matsunaga, G.; Tani, K.

    2013-08-15

    In tokamak plasmas, the confinement of energetic ions depends on the magnetic field structure. If the plasma pressure is finite, the equilibrium current (i.e., the Pfirsch-Schlüter current and diamagnetic current) flows in the plasma to maintain the magnetohydrodynamic (MHD) equilibrium. These plasma currents generate poloidal and toroidal magnetic field and alter the field structure. Moreover, if we consider the non-axisymmetry of magnetic field structures such as toroidal field (TF) ripples, the non-axisymmetric component of the equilibrium current can alter TF ripples themselves. When the plasma beta becomes high, the changes in the field structure due to the equilibrium current might affect the confinement of energetic ions significantly. We intend to clarify how these currents alter the field structure and affect the confinement of alpha particles in high-beta plasma. The MHD equilibrium is calculated using VMEC and the orbits of fusion alpha particles are followed by using the fully three-dimensional magnetic field orbit-following Monte Carlo code. In relatively low-beta plasma (e.g., the volume-averaged beta value <β>≤2%), the changes in the magnetic field component due to the plasma current negligibly affect the confinement of alpha particles except for the Shafranov shift effect. However, for <β>≥3%, the diamagnetic effect reduces the magnetic field strength and significantly increases alpha-particle losses. In these high-beta cases, the non-axisymmetric field component generated by the equilibrium current also increases these losses, but not as effectively as compared to the diamagnetic effect.

  11. Alpha particle condensation in {sup 12}C and nuclear rainbow scattering

    SciTech Connect

    Ohkubo, S.; Hirabayashi, Y.

    2008-05-12

    It is shown that the large radius of the Hoyle state of {sup 12}C with a dilute density distribution in an {alpha} particle condensate can be clearly seen in the shift of the rainbow angle (therefore the Airy minimum) to a larger angle in {alpha}+{sup 12}C rainbow scattering at the high energy region and prerainbow oscillations in {sup 3}He+{sup 12}C scattering at the lower energy region.

  12. Effect of radial electric field on alpha-particle loss in tokamaks

    NASA Astrophysics Data System (ADS)

    Itoh, Kimitaka; Sanuki, H.; Itoh, Sanae-I.; Tani, K.

    1990-12-01

    The effect of the radial electric field near the plasma edge on the ripple-trapped loss of fusion alpha particles is discussed. The order of magnitude of the potential difference, which substantially affects the localized wall heat load, is also studied. If the potential difference is of the order of the plasma temperature, the peaking of the localized heat deposition on the first wall becomes weaker owing to the energy distribution of the ripple-trapped loss particles.

  13. Ionization-cluster distributions of alpha-particles in nanometric volumes of propane: measurement and calculation.

    PubMed

    De Nardo, L; Colautti, P; Conte, V; Baek, W Y; Grosswendt, B; Tornielli, G

    2002-12-01

    The probability of the formation of ionization clusters by primary alpha-particles at 5.4 MeV in nanometric volumes of propane was studied experimentally and by Monte Carlo simulation, as a function of the distance between the center line of the particle beam and the center of the target volume. The volumes were of cylindrical shape, 3.7 mm in diameter and height. As the investigations were performed at gas pressures of 300 Pa and 350 Pa, the dimensions of the target volume were equivalent to 20.6 nm or 24.0 nm in a material of density 1.0 g/cm(3). The dependence of ionization-cluster formation on distance was studied up to values equivalent to about 70 nm. To validate the measurements, a Monte Carlo model was developed which allows the experimental arrangement and the interactions of alpha-particles and secondary electrons in the counter gas to be properly simulated. This model is supplemented by a mathematical formulation of cluster size formation in nanometric targets. The main results of our study are (i) that the mean ionization-cluster size in the delta-electron cloud of an alpha-particle track segment, decreases as a function of the distance between the center line of the alpha-particle beam and the center of the sensitive target volume to the power of 2.6, and (ii) that the mean cluster size in critical volumes and the relative variance of mean cluster size due to delta-electrons are invariant at distances greater than about 20 nm. We could imagine that the ionization-cluster formation in nanometric volumes might in future provide the physical basis for a redefinition of radiation quality.

  14. Results from the Lunar Prospector Alpha Particle Spectrometer: Detection of Radon-222 Over Craters Aristarchus and Kepler

    NASA Astrophysics Data System (ADS)

    Lawson, S. L.; Feldman, W. C.; Lawrence, D. J.; Moore, K. R.; Belian, R. D.; Maurice, S.; Binder, A. B.

    2001-11-01

    The Lunar Prospector Alpha Particle Spectrometer (LP APS) searched for lunar surface gas release events and mapped their distribution by detecting alpha particles produced by the decay of gaseous radon-222 (5.5 MeV, 3.8 day half-life), solid polonium-218 (6.0 MeV, 3 minute half-life), and solid polonium-210 (5.3 MeV, 138 day half-life, but held up in production by the 21 year half-life of lead-210). These three nuclides are radioactive daughters from the decay of uranium-238. Radon reaches the lunar surface either at areas of high soil porosity or where fissures release the trapped gases in which radon is entrained. We have examined APS data within +/- 45 degrees of the equator acquired during periods of low interplanetary alpha particle flux. The spectra were summed over all LP mapping cycles when the instrument was turned on (approximately 229 days over 16 months). To yield lunar alpha particle maps, we summed over a 0.2 MeV energy range centered on each of the three alpha particle energies noted above. The LP APS found only a faint indication of alpha particles resulting from the decay of polonium-218 and only a marginal detection of alpha particles from polonium-210. However, our radon-222 alpha particle map indicates that radon gas is presently emanating from the vicinity of craters Aristarchus and Kepler. The LP gamma-ray spectrometer, which effectively has significantly higher spatial resolution than the APS, identified thorium enrichments at these two craters. Thorium and uranium are both incompatible elements whose lunar surface abundances are highly correlated; thus, it is likely that the radon-222 alpha particles measured using the LP APS originate from Kepler and Aristarchus. Our detection of radon over Aristarchus is consistent with the results of the Apollo 15 APS.

  15. Calculations of alpha particle loss for reversed magnetic shear in the Tokamak Fusion Test Reactor

    SciTech Connect

    Redi, M.H.; White, R.B.; Batha, S.H.; Levinton, F.M.; McCune, D.C.

    1997-03-01

    Hamiltonian coordinate, guiding center code calculations of the toroidal field ripple loss of alpha particles from a reversed shear plasma predict both total alpha losses and ripple diffusion losses to be greater than those from a comparable non-reversed magnetic shear plasma in the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)]. High central q is found to increase alpha ripple losses as well as first orbit losses of alphas in the reversed shear simulations. A simple ripple loss model, benchmarked against the guiding center code, is found to work satisfactorily in transport analysis modelling of reversed and monotonic shear scenarios. Alpha ripple transport on TFTR affects ions within r/a=0.5, not at the plasma edge. The entire plasma is above threshold for stochastic ripple loss of alpha particles at birth energy in the reversed shear case simulated, so that all trapped 3.5 MeV alphas are lost stochastically or through prompt losses. The 40% alpha particle loss predictions for TFTR suggest that reduction of toroidal field ripple will be a critical issue in the design of a reversed shear fusion reactor.

  16. Registration of alpha particles in Makrofol-E nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Abdalla, Ayman M.; Ashraf, O.; Ashry, A. H.

    2016-06-01

    Fast detection of alpha particles in the range from 1 to 5 MeV in Makrofol-E polycarbonate nuclear track detectors (PCTDs) using a new chemical etchant was investigated. 252Cf and 241Am-thin open sources were used for irradiating Makrofol-E detectors with fission fragments and alpha particles in air at normal pressure and temperature (NPT). A chain of experimental work has been carried out using new etchants to register alpha particle in short time in Makrofol-E polycarbonate detectors. The etching efficiency were exhibited a clear dependence on the amount of methanol in the etching solution and etching time. The optimized chemical condition obtained at this stage of development for 200 μm Makrofol-E detectors are (8 ml of 10 N NaOH + 2 ml CH3OH) etching solutions at 60 °C for 3 h. In this study; it is possible to observe energy detection windows for Makrofol-E detectors according to applied etching duration. Makrofol-E introduced the characteristic Bragg peak, which indicates the advantages of this detector as alpha spectrometer. Consequently, the suggested new etchant can be developed for heavy ions detection and monitoring radon levels and its daughters.

  17. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles

    PubMed Central

    Al-Ta’ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-01-01

    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0–20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung’s and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung’s methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles. PMID:26007733

  18. Radioluminescence of solid neodymium-doped laser materials excited by {alpha}-particles and fission fragments

    SciTech Connect

    Seregina, E A; Seregin, A A

    2013-02-28

    The characteristics of radioluminescence of Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals and laser glasses under excitation by plutonium-239 ({sup 239}Pu) {alpha}-particles, as well as by {alpha}-particles and spontaneous fission fragments of californium-252 ({sup 252}Cf), are studied. The radioluminescence branching ratios {beta}{sub ij} for the transition from the {sup 2}F2{sub 5/2} level to the {sup 2S+1}L{sub J} levels in Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals are measured. Radioluminescence from the {sup 2}P{sub 3/2} level to low-lying levels is observed. The {beta}{sub ij} ratios for transitions from the high-lying {sup 2}F2{sub 5/2}, {sup 4}D{sub 3/2}, and {sup 2}P{sub 3/2} levels are theoretically calculated. The lifetimes of metastable levels of Nd{sup 3+} excited by {sup 252}Cf fission fragments are measured. The efficiency of the conversion of energy of {alpha}-particles and fission fragments to the energy of optical radiation of Nd{sup 3+} : Y{sub 3}Al{sub 5}O{sub 12} crystals and laser glasses is determined. (active media)

  19. Fast detection of alpha particles in DAM-ADC nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Rammah, Y. S.; Ashraf, O.; Abdalla, A. M.; Eisa, M.; Ashry, A. H.; Tsuruta, T.

    2015-02-01

    Fast detection of alpha particles in DAM-ADC nuclear track detectors using a new chemical etchant was investigated. 252Cf and 241Am sources were used for irradiating samples of DAM-ADC SSNTDs with fission fragments and alpha particles in air at normal temperature and pressure. A series of experimental chemical etching are carried out using new etching solution (8 ml of 10 N NaOH+ 1 ml CH3OH) at 60 °C to detect alpha particle in short time in DAM-ADC detectors. Suitable analyzing software has been used to analyze experimental data. From fission and alpha track diameters, the value of bulk etching rate is equal to 8.52 μm/h. Both of the sensitivity and etching efficiency were found to vary with the amount of methanol in the etching solution and etching time. The DAM-ADC detectors represent the best efficiency applicable in detectors in the entire range of alpha energies (from 1 to 5 MeV). The activation energies of this etchant have been calculated; track activation energy, ET, has been found to be lower than the bulk activation energy, EB, for the DAM-ADC nuclear track detectors. These results are in more agreement with the previous work.

  20. Energy and frequency dependence of the alpha particle redistribution produced by internal kink modes

    SciTech Connect

    Farengo, R.; Ferrari, H. E.; Garcia-Martinez, P. L.; Firpo, M.-C.; Ettoumi, W.; Lifschitz, A. F.

    2014-08-15

    The redistribution of alpha particles due to internal kink modes is studied. The exact particle trajectories in the total fields, equilibrium plus perturbation, are calculated. The equilibrium has circular cross section and the plasma parameters are similar to those expected in ITER. The alpha particles are initially distributed according to a slowing down distribution function and have energies between 18 keV and 3.5 MeV. The (1, 1), (2, 2), and (2, 1) modes are included and the effect of changing their amplitude and frequency is studied. When only the (1, 1) mode is included, the spreading of high energy (E≳1 MeV) alpha particles increases slowly with the energy and mode frequency. At lower energies, the redistribution is more sensitive to the mode frequency and particle energy. When a (2, 1) mode is added, the spreading increases significantly and particles can reach the edge of the plasma. Trapped particles are the most affected and the redistribution parameter can have maxima above 1 MeV, depending on the mode frequency. These results can have important implications for ash removal.

  1. Alpha-particle emissivity screening of materials used for semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Gordon, Michael; Rodbell, Kenneth

    2015-03-01

    Single-Event Upsets (SEU's) in semiconductor memory and logic devices continue to be a reliability issue in modern CMOS devices. SEU's result from deposited charge in the Si devices caused by the passage of ionizing radiation. With technology scaling, the device area decreases, but the critical charge required to flip bits decreases as well. The interplay between both determines how the SEU rate scales with shrinking device geometries and dimensions. In order to minimize the alpha-particle component of SEU, the radiation in the device environment has to be at the Ultra-Low Alpha (ULA) activity levels, e.g. less than 2 α/khr-cm2. Most detectors have background levels that are significantly larger than that level which makes making these measurements difficult and time consuming. A new class of alpha particle detector, utilizing pulse shape discrimination, is now available which allows one to make measurements quickly with ultra-low detector background. This talk will discuss what is involved in making alpha particle measurements of materials in the ULA activity levels, in terms of calibration, radon adsorption mitigation, the time required for obtaining reasonable statistics and comparisons to other detectors.

  2. Alpha-particle-induced luminescence of rare-earth-doped Y 2O 3 nanophosphors

    NASA Astrophysics Data System (ADS)

    Cress, Cory D.; Redino, Christopher S.; Landi, Brian J.; Raffaelle, Ryne P.

    2008-08-01

    The feasibility of utilizing Y 2O 3:Tb 3+ and Y 2O 3:Eu 3+ as radioluminescent nanophosphors under alpha-particle excitation is investigated. Materials synthesized by the urea homogeneous precipitation method were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The XRD analysis of as-produced precipitates and nanophosphors fired at temperatures ranging from 950 to 1100 °C indicated the presence of highly crystalline cubic Y 2O 3 with crystallite sizes of ˜40 nm. SEM and TEM analysis revealed that particles with average diameters of ˜200 nm and comprised of ˜40 nm grains were obtained. High-resolution radioluminescence and photoluminescence spectra were used to investigate the unwanted radioluminescence saturation effects associated with the high ionization rate of alpha-particles. Additionally, the radioluminescence intensity as a function of rare-earth ion dopant concentration is investigated for these materials under alpha-particle excitation. The prospect for utilizing these materials as intermediate absorbers in indirect-conversion radioisotope batteries is discussed.

  3. Electrostatic ion-acoustic-like instabilities in the solar wind with a backstreaming alpha particle beam

    SciTech Connect

    Gomberoff, L.; Gomberoff, K.; Deutsch, A.

    2010-06-15

    Nonlinear electrostatic instabilities have been shown to occur frequently and under very different conditions in plasma with two ion beams such as the fast solar wind. These instabilities can be triggered when the phase velocity of electrostatic ion-acoustic waves propagating forward and backward relative to the interplanetary magnetic field overlaps due to the presence of a finite amplitude of circularly polarized wave. The instabilities can be triggered by waves supported by the same ion component, or by waves supported by different ion components. By assuming a beam of alpha particles moving backward relative to the external magnetic field, as observed in some events in the fast solar wind, it is shown that a very small negative drift velocity of the alpha particle beam relative to the core plasma--a few percent of the local Alfven velocity--can trigger a very rich variety of nonlinear electrostatic acousticlike instabilities. Their growth rates can be rather large and they persist for larger negative alpha particles drift velocities and temperatures.

  4. Distributions and thermalization of protons and alpha particles at collisionless quasi-parallel shocks.

    NASA Astrophysics Data System (ADS)

    Trattner, K. J.; Scholer, M.

    1993-09-01

    The dissipation processes of protons and a minor ion component, alpha particles, at quasi-parallel supercritical collisionless shocks are investigated by one-dimensional hybrid simulations. For both ion components the dissipation at these shocks is due to two different mechanisms: Heating is either caused by the nonadiabatic transition of the ions through the shock ramp where ions move through the region of the sharp jump in the magnetic field magnitude and direction, or by a mechanism which involves the occurrence of specularly reflected ions and subsequent shock reformation. In the latter case, reflected ions form a counterstreaming beam and lead to re-formation of the shock at the leading edge of the reflected ion beam. The region between the re-formed and the old shock, where the initial solar wind and the reflected beam have not completely merged, exhibits a sharp increase of the total pressure. The authors have also investigated the dependence of the downstream alpha particle to proton temperature ratio as a function of the upstream density, the plasma beta and the Alfvén Mach number of the shock. Quasi-parallel collisionless shock heating of alpha particles is more efficient than heating of protons. The downstream temperature ratio is higher than the upstream solar wind temperature ratio.

  5. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.

    PubMed

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-05-21

    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  6. Lost alpha-particle diagnostics from a D-T plasma by using nuclear reactions

    SciTech Connect

    Sasao, Mamiko; Wada, Motoi; Isobe, Mitsutaka

    2014-08-21

    Among various methods proposed for alpha-particles loss measurement, we studied on those by measuring gamma rays of three cases, from (1) nuclear reactions induced by alpha particles, (2) those from short-life-time activities and (3) those from long-life-time activities induced by alpha particles. The time evolution of local alpha flux may possibly be measured by using the {sup 9}Be (a, n) {sup 12}C reaction (1). Using the same system, but with a target set up close to the first wall, activation measurement on site right after turning-off the discharge is possible (2). Nuclear reaction, {sup 25}Mg (a, p) {sup 28}Al, that produce radioisotopes of short lifetime of 2.2 minutes in one of the best candidates. As to the activation to a long lifetime (3), it is predicted that the gamma ray yield from {sup 19}F (a, n) {sup 22}Na reaction is enough for the measurement at the reactor site.

  7. RADON AND PROGENY ALPHA-PARTICLE ENERGY ANALYSIS USING NUCLEAR TRACK METHODOLOGY

    SciTech Connect

    Espinosa Garcia, Guillermo; Golzarri y Moreno, Dr. Jose Ignacio; Bogard, James S

    2008-01-01

    A preliminary procedure for alpha energy analysis of radon and progeny using Nuclear Track Methodology (NTM) is described in this paper. The method is based on the relationship between alpha-particle energies deposited in polycarbonate material (CR-39) and the track size developed after a well-established chemical etching process. Track geometry, defined by parameters such as major or minor diameters, track area and overall track length, is shown to correlate with alpha-particle energy over the range 6.00 MeV (218Po) to 7.69 MeV (214Po). Track features are measured and the data analyzed automatically using a digital imaging system and commercial PC software. Examination of particle track diameters in CR-39 exposed to environmental radon reveals a multi-modal distribution. Locations of the maxima in this distribution are highly correlated with alpha particle energies of radon daughters, and the distributions are sufficiently resolved to identify the radioisotopes. This method can be useful for estimating the radiation dose from indoor exposure to radon and its progeny.

  8. Track reconstruction and performance of DRIFT directional dark matter detectors using alpha particles

    NASA Astrophysics Data System (ADS)

    Burgos, S.; Forbes, J.; Ghag, C.; Gold, M.; Kudryavtsev, V. A.; Lawson, T. B.; Loomba, D.; Majewski, P.; Muna, D.; Murphy, A. StJ.; Nicklin, G. G.; Paling, S. M.; Petkov, A.; Plank, S. J. S.; Robinson, M.; Sanghi, N.; Smith, N. J. T.; Snowden-Ifft, D. P.; Spooner, N. J. C.; Sumner, T. J.; Turk, J.; Tziaferi, E.

    2008-01-01

    First results are presented from an analysis of data from the DRIFT-IIa and DRIFT-IIb directional dark matter detectors at Boulby Mine in which alpha particle tracks were reconstructed and used to characterise detector performance—an important step towards optimising directional technology. The drift velocity in DRIFT-IIa was 59.3±0.2 (stat)±7.5 (sys) ms-1 based on an analysis of naturally occurring alpha-emitting background. The drift velocity in DRIFT-IIb was 57±1 (stat)±3 (sys) ms-1 determined by the analysis of alpha particle tracks from a 210Po source. Three-dimensional range reconstruction and range spectra were used to identify alpha particles from the decay of 222Rn, 218Po, 220Rn and 216Po. This study found that (22±2)% of 218Po progeny (from 222Rn decay) did not plate out and remained suspended in the 40 Torr CS 2 gas fill until they decayed. A likely explanation for this is that some of the polonium progeny are produced in an uncharged state. For 216Po progeny (from 220Rn decay) the undeposited fraction was apparently much higher at (100-35+0)% most likely due to a shorter lifetime, causing a larger fraction of the progeny to decay whilst drifting to the cathode plane. This explanation implies a much slower drift time for positively charged polonium progeny compared to CS2- ions.

  9. Evidence for alpha-particle chain configurations in sup 24 Mg

    SciTech Connect

    Wuosmaa, A.H.; Back, B.B.; Betts, R.R.; Ferre, M.; Gehring, J.; Glagola, P.G.; Happ, Th.; Henderson, D.J.; Wilt, P. ); Bearden, I.G. . Dept. of Physics)

    1992-01-01

    Many theoretical models have been employed to described the structure of the nucleus {sup 24}Mg. Among these are the Cranked Shell model (CSM), the Cranked Cluster Model (CCM), and calculations have also been performed using the Hartree-Fock formalism. One very striking prediction of these calculations is that in this nucleus there exist very unusual configurations, with structures reminiscent of linear chains of alpha particles. In the CSM, for instance, such a configuration is identified with a pronounced minimum in the potential energy energy at very large prolate deformation. In the CCM, several very different alpha-particle duster configurations are identified, many having rather large deformations. These cluster configurations can be associated with the different potential-energy minima obtained in the CSM results. In the case of the CCM, a 6{alpha} chain-like configuration is predicted to occur at excitation energies between 40 and 50 MeV, with predicted rotational spacing given by {Dirac h}{sup 2}/2I=22 keV. At this excitation energy, such a chain configuration would lie well above the threshold for the decay of {sup 24}Mg into 6 alpha particles, and its identification poses a difficult experimental challenge. This report discusses this challenge.

  10. Evidence for alpha-particle chain configurations in {sup 24}Mg

    SciTech Connect

    Wuosmaa, A.H.; Back, B.B.; Betts, R.R.; Ferre, M.; Gehring, J.; Glagola, P.G.; Happ, Th.; Henderson, D.J.; Wilt, P.; Bearden, I.G.

    1992-09-01

    Many theoretical models have been employed to described the structure of the nucleus {sup 24}Mg. Among these are the Cranked Shell model (CSM), the Cranked Cluster Model (CCM), and calculations have also been performed using the Hartree-Fock formalism. One very striking prediction of these calculations is that in this nucleus there exist very unusual configurations, with structures reminiscent of linear chains of alpha particles. In the CSM, for instance, such a configuration is identified with a pronounced minimum in the potential energy energy at very large prolate deformation. In the CCM, several very different alpha-particle duster configurations are identified, many having rather large deformations. These cluster configurations can be associated with the different potential-energy minima obtained in the CSM results. In the case of the CCM, a 6{alpha} chain-like configuration is predicted to occur at excitation energies between 40 and 50 MeV, with predicted rotational spacing given by {Dirac_h}{sup 2}/2I=22 keV. At this excitation energy, such a chain configuration would lie well above the threshold for the decay of {sup 24}Mg into 6 alpha particles, and its identification poses a difficult experimental challenge. This report discusses this challenge.

  11. Inertially confined fusion plasmas dominated by alpha-particle self-heating

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Haan, S.; Hinkel, D. E.; Berzak Hopkins, L. F.; Jones, O.; Kritcher, A. L.; Le Pape, S.; Ma, T.; Macphee, A. G.; Milovich, J. L.; Moody, J.; Pak, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Robey, H. F.; Ross, J. S.; Salmonson, J. D.; Spears, B. K.; Springer, P. T.; Tommasini, R.; Albert, F.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Celliers, P. M.; Cerjan, C.; Church, J. A.; Dylla-Spears, R.; Edgell, D.; Edwards, M. J.; Fittinghoff, D.; Barrios Garcia, M. A.; Hamza, A.; Hatarik, R.; Herrmann, H.; Hohenberger, M.; Hoover, D.; Kline, J. L.; Kyrala, G.; Kozioziemski, B.; Grim, G.; Field, J. E.; Frenje, J.; Izumi, N.; Gatu Johnson, M.; Khan, S. F.; Knauer, J.; Kohut, T.; Landen, O.; Merrill, F.; Michel, P.; Moore, A.; Nagel, S. R.; Nikroo, A.; Parham, T.; Rygg, R. R.; Sayre, D.; Schneider, M.; Shaughnessy, D.; Strozzi, D.; Town, R. P. J.; Turnbull, D.; Volegov, P.; Wan, A.; Widmann, K.; Wilde, C.; Yeamans, C.

    2016-08-01

    Alpha-particle self-heating, the process of deuterium-tritium fusion reaction products depositing their kinetic energy locally within a fusion reaction region and thus increasing the temperature in the reacting region, is essential for achieving ignition in a fusion system. Here, we report new inertial confinement fusion experiments where the alpha-particle heating of the plasma is dominant with the fusion yield produced exceeding the fusion yield from the work done on the fuel (pressure times volume change) by a factor of two or more. These experiments have achieved the highest yield (26 +/- 0.5 kJ) and stagnation pressures (≍220 +/- 40 Gbar) of any facility-based inertial confinement fusion experiments, although they are still short of the pressures required for ignition on the National Ignition Facility (~300-400 Gbar). These experiments put us in a new part of parameter space that has not been extensively studied so far because it lies between the no-alpha-particle-deposition regime and ignition.

  12. Photoluminescence detection of alpha particle using DAM-ADC nuclear detector

    NASA Astrophysics Data System (ADS)

    Abdalla, Ayman M.; Harraz, Farid A.; Ali, Atif M.; Al-Sayari, S. A.; Al-Hajry, A.

    2016-09-01

    The photoluminescence (PL) and UV-vis spectral analysis of DAM-ADC (diallyl maleate: DAM, polyallyl diglycol carbonate: ADC) nuclear detector are demonstrated for the first time. The DAM-ADC surfaces were exposed to thin 241Am disk source that emits alpha particles with activity 333 kBq. It is found that the track density of the irradiated samples remarkably influences the PL characteristics of the DAM-ADC detector. The spectral peak heights and the integrated intensities under the peaks exhibit linear correlations with correlation coefficient R2=0.9636 and 0.9806, respectively for different alpha particle fluences ranging from 8.16-40.82×107 particles/cm2. Additionally, a correlation coefficient R2=0.9734 was achieved for the UV-vis spectral analysis. The linear fitting functions, along with the corresponding fitting parameters were evaluated in each case. Both the PL and the UV-vis data of the irradiated DAM-ADC samples showed considerable spectral differences, and hence they would be used to offer sensitive approaches for alpha particle detection.

  13. Energy loss of proton, alpha particle, and electron beams in hafnium dioxide films

    SciTech Connect

    Behar, Moni; Fadanelli, Raul C.; Nagamine, Luiz C. C. M.; Abril, Isabel; Denton, Cristian D.; Garcia-Molina, Rafael; Arista, Nestor R.

    2009-12-15

    The electronic stopping power, S, of HfO{sub 2} films for proton and alpha particle beams has been measured and calculated. The experimental data have been obtained by the Rutherford backscattering technique and cover the range of 120-900 and 120-3000 keV for proton and alpha particle beams, respectively. Theoretical calculations of the energy loss for the same projectiles have been done by means of the dielectric formalism using the Mermin energy loss function--generalized oscillator strength (MELF-GOS) model for a proper description of the HfO{sub 2} target on the whole momentum-energy excitation spectrum. At low projectile energies, a nonlinear theory based on the extended Friedel sum rule has been employed. The calculations and experimental measurements show good agreement for protons and a quite good one for alpha particles. In particular, the experimental maximums of both stopping curves (around 120 and 800 keV, respectively) are well reproduced. On the basis of this good agreement, we have also calculated the inelastic mean-free path (IMFP) and the stopping power for electrons in HfO{sub 2} films. Our results predict a minimum value of the IMFP and a maximum value of the S for electrons with energies around 120 and 190 eV, respectively.

  14. Bulk GaN alpha-particle detector with large depletion region and improved energy resolution

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Mulligan, Padhraic; Wang, Jinghui; Chuirazzi, William; Cao, Lei

    2017-03-01

    An alpha-particle detector was fabricated using a freestanding n-type bulk GaN wafer with a Au/Ni/GaN sandwich Schottky structure. Current-voltage measurements at room temperature revealed a Schottky contact with a leakage current of 7.53±0.3 nA at a reverse bias of 200 V. The detector had a large depletion depth that can capture much of the energy from 5.486 MeV alpha particles emitted from a 241Am source. The resolution of its alpha-particle energy spectrum was improved to 2.2±0.2% at 5.486 MeV under a bias of 550 V. This superior resolution was attributed to the shortening of the carrier transit time and the large energy deposition within the large depletion depth, i.e., 27 μm at -550 V, which all resulted in a more complete charge collection. A model developed using the ATLAS simulation framework from Silvaco Inc. was employed to study the charge collection process. The simulation results were found to agree closely with the experimental results. This detector will be beneficial for research at neutron scattering facilities, the International Thermonuclear Experimental Reactor, and the Large Hadron Collider, among other institutions, where the Si-based charged particle detectors could be quickly degraded in an intense radiation field.

  15. Electron Microscopy Study of Stainless Steel Radiation Damage Due to Long-Term Irradation by Alpha Particles Emitted From Plutonium

    SciTech Connect

    Unlu, Kenan; Rios-Martinez, Carlos; Saglam, Mehmet; Hart, Ron R.; Shipp, John D.; Rennie, John

    1998-04-16

    Radiation damage and associated surface and microstructural changes produced in stainless steel encapsulation by high-fluence alpha particle irradiations from weapons-grade plutonium of 316-stainless steel are being investigated.

  16. A survey of the physical processes which determine the response function of silicon detectors to alpha particles

    NASA Astrophysics Data System (ADS)

    Steinbauer, E.; Bortels, G.; Bauer, P.; Biersack, J. P.; Burger, P.; Ahmad, I.

    1994-01-01

    The spectra of monoenergetic alpha particles exhibit a well known asymmetric shape when measured with silicon detectors. The processes are described which determine the response of silicon detectors to alpha particles, particularly the energy dependence of the line shape. In this work particle implanted and passivated silicon (PIPS) detectors are assumed to have a thin dead layer at the front contact and an infinite sensitive volume. The incoming monoenergetic alpha particles lose energy in the dead layer where they develop a Gaussian energy distribution due to electronic energy-loss straggling. In the sensitive volume the alpha particles transfer most of their energy to electronic excitation and ionization ( Es,e) and the remaining fraction to the production of lattice vibrations and crystal damage. The statistical distribution of Es,e has been calculated by Monte Carlo simulation and shown to be asymmetric. The energy Es,e is subsequently used for the creation of electron-hole pairs, which are measured by an amplifier system with a Gaussian contribution to the energy resolution due to electronic noise. This model permits a quantitative calculation of the detector response function to alpha particles, and the result is in excellent agreement with measured spectra. On the basis of this model the energy dependence of the alpha particle line shape is also discussed.

  17. Alpha particles induce pan-nuclear phosphorylation of H2AX in primary human lymphocytes mediated through ATM.

    PubMed

    Horn, Simon; Brady, Darren; Prise, Kevin

    2015-10-01

    The use of high linear energy transfer radiations in the form of carbon ions in heavy ion beam lines or alpha particles in new radionuclide treatments has increased substantially over the past decade and will continue to do so due to the favourable dose distributions they can offer versus conventional therapies. Previously it has been shown that exposure to heavy ions induces pan-nuclear phosphorylation of several DNA repair proteins such as H2AX and ATM in vitro. Here we describe similar effects of alpha particles on ex vivo irradiated primary human peripheral blood lymphocytes. Following alpha particle irradiation pan-nuclear phosphorylation of H2AX and ATM, but not DNA-PK and 53BP1, was observed throughout the nucleus. Inhibition of ATM, but not DNA-PK, resulted in the loss of pan-nuclear phosphorylation of H2AX in alpha particle irradiated lymphocytes. Pan-nuclear gamma-H2AX signal was rapidly lost over 24h at a much greater rate than foci loss. Surprisingly, pan-nuclear gamma-H2AX intensity was not dependent on the number of alpha particle induced double strand breaks, rather the number of alpha particles which had traversed the cell nucleus. This distinct fluence dependent damage signature of particle radiation is important in both the fields of radioprotection and clinical oncology in determining radionuclide biological dosimetry and may be indicative of patient response to new radionuclide cancer therapies.

  18. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Hei, T. K.; Wu, L. J.; Liu, S. X.; Vannais, D.; Waldren, C. A.; Randers-Pehrson, G.

    1997-01-01

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

  19. Induction of a bystander mutagenic effect of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Vannais, D.; Hall, E. J.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    Ever since the discovery of X-rays was made by Rontgen more than a hundred years ago, it has always been accepted that the deleterious effects of ionizing radiation such as mutation and carcinogenesis are attributable mainly to direct damage to DNA. Although evidence based on microdosimetric estimation in support of a bystander effect appears to be consistent, direct proof of such extranuclear/extracellular effects are limited. Using a precision charged particle microbeam, we show here that irradiation of 20% of randomly selected A(L) cells with 20 alpha particles each results in a mutant fraction that is 3-fold higher than expected, assuming no bystander modulation effect. Furthermore, analysis by multiplex PCR shows that the types of mutants induced are significantly different from those of spontaneous origin. Pretreatment of cells with the radical scavenger DMSO had no effect on the mutagenic incidence. In contrast, cells pretreated with a 40 microM dose of lindane, which inhibits cell-cell communication, significantly decreased the mutant yield. The doses of DMSO and lindane used in these experiments are nontoxic and nonmutagenic. We further examined the mutagenic yield when 5-10% of randomly selected cells were irradiated with 20 alpha particles each. Results showed, likewise, a higher mutant yield than expected assuming no bystander effects. Our studies provide clear evidence that irradiated cells can induce a bystander mutagenic response in neighboring cells not directly traversed by alpha particles and that cell-cell communication process play a critical role in mediating the bystander phenomenon.

  20. Spatial resolution properties of digital autoradiography systems for pre-clinical alpha particle imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tanguay, Jesse; Benard, Francois; Celler, Anna; Ruth, Thomas; Schaffer, Paul

    2017-03-01

    Attaching alpha-emitting radionuclides to cancer-targeting agents increases the anti-tumor effects of targeted cancer therapies. The success of alpha therapy for treating bone metastases has increased interest in using targeted alpha therapy (TAT) to treat a broad spectrum of metastatic cancers. Estimating radiation doses to targeted tumors, including small (<250 μm) clusters of cancer cells, and to non-targeted tissues is critical in the pre-clinical development of TATs. However, accurate quantification of heterogeneous distributions of alpha-emitters in small metastases is not possible with existing pre-clinical in-vivo imaging systems. Ex-vivo digital autoradiography using a scintillator in combination with an image intensifier and a charged coupled device (CCD) has gained interest for pre-clinical ex-vivo alpha particle imaging. We present a simulation-based analysis of the fundamental spatial resolution limits of digital autoradiography systems. Spatial resolution was quantified in terms of the modulation transfer function (MTF) and Wagner's equivalent aperture. We modeled systems operating in either particle-counting (PC) or energy-integrating (EI) mode using a cascaded systems approach that accounts for: 1) the stopping power of alpha particles; 2) the distance alpha particles travel within the scintillator; 3) optical blur, and; 4) binning in detector elements. We applied our analysis to imaging of astatine-211 using an LYSO scintillator with thickness ranging from 10 μm to 20 μm. Our analysis demonstrates that when these systems are operated in particle-counting mode with a centroid-calculation algorithm, the effective apertures of 35 μm can be achieved, which suggests that digital autoradiography may enable quantifying the uptake of alpha emitters in tumors consisting of a few cancer cells. Future work will investigate the image noise and energy-resolution properties of digital autoradiography systems.

  1. Induction of a bystander mutagenic effect of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Vannais, D.; Hall, E. J.; Hei, T. K.; Chatterjee, A. (Principal Investigator)

    2000-01-01

    Ever since the discovery of X-rays was made by Rontgen more than a hundred years ago, it has always been accepted that the deleterious effects of ionizing radiation such as mutation and carcinogenesis are attributable mainly to direct damage to DNA. Although evidence based on microdosimetric estimation in support of a bystander effect appears to be consistent, direct proof of such extranuclear/extracellular effects are limited. Using a precision charged particle microbeam, we show here that irradiation of 20% of randomly selected A(L) cells with 20 alpha particles each results in a mutant fraction that is 3-fold higher than expected, assuming no bystander modulation effect. Furthermore, analysis by multiplex PCR shows that the types of mutants induced are significantly different from those of spontaneous origin. Pretreatment of cells with the radical scavenger DMSO had no effect on the mutagenic incidence. In contrast, cells pretreated with a 40 microM dose of lindane, which inhibits cell-cell communication, significantly decreased the mutant yield. The doses of DMSO and lindane used in these experiments are nontoxic and nonmutagenic. We further examined the mutagenic yield when 5-10% of randomly selected cells were irradiated with 20 alpha particles each. Results showed, likewise, a higher mutant yield than expected assuming no bystander effects. Our studies provide clear evidence that irradiated cells can induce a bystander mutagenic response in neighboring cells not directly traversed by alpha particles and that cell-cell communication process play a critical role in mediating the bystander phenomenon.

  2. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells.

    PubMed

    Hei, T K; Wu, L J; Liu, S X; Vannais, D; Waldren, C A; Randers-Pehrson, G

    1997-04-15

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

  3. Differential Velocity between Solar Wind Protons and Alpha Particles in Pressure Balance Structures

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Steinberg, John T.; Sakurai, Takashi

    2004-01-01

    Pressure balance structures (PBSs) are a common high-plasma beta feature in high-latitude, high-speed solar wind. They have been proposed as remnants of coronal plumes. If true, they should reflect the observation that plumes are rooted in unipolar magnetic flux concentrations in the photosphere and are heated as oppositely directed flux is advected into and reconnects with the flux concentration. A minimum variance analysis (MVA) of magnetic discontinuities in PBSs showed there is a larger proportion of tangential discontinuities than in the surrounding high-speed wind, supporting the hypothesis that plasmoids or extended current sheets are formed during reconnection at the base of plumes. To further evaluate the character of magnetic field discontinuities in PBSs, differential streaming between alpha particles and protons is analyzed here for the same sample of PBSs used in the MVA. Alpha particles in high-speed wind generally have a higher radial flow speed than protons. However, if the magnetic field is folded back on itself, as in a large-amplitude Alfven wave, alpha particles will locally have a radial flow speed less than protons. This characteristic is used here to distinguish between folded back magnetic fields (which would contain rotational discontinuities) and tangential discontinuities using Ulysses high-latitude, high-speed solar wind data. The analysis indicates that almost all reversals in the radial magnetic field in PBSs are folded back field lines. This is found to also be true outside PBSs, supporting existing results for typical high-speed, high-latitude wind. There remains a small number of cases that appear not to be folds in the magnetic field and which may be flux tubes with both ends rooted in the Sun. The distinct difference in MVA results inside and outside PBSs remains unexplained.

  4. Mutagenic effects of a single and an exact number of alpha particles in mammalian cells

    NASA Technical Reports Server (NTRS)

    Hei, T. K.; Wu, L. J.; Liu, S. X.; Vannais, D.; Waldren, C. A.; Randers-Pehrson, G.

    1997-01-01

    One of the main uncertainties in risk estimation for environmental radon exposure using lung cancer data from underground miners is the extrapolation from high- to low-dose exposure where multiple traversal is extremely rare. The biological effects of a single alpha particle are currently unknown. Using the recently available microbeam source at the Radiological Research Accelerator Facility at Columbia University, we examined the frequencies and molecular spectrum of S1- mutants induced in human-hamster hybrid (A(L)) cells by either a single or an exact number of alpha particles. Exponentially growing cells were stained briefly with a nontoxic concentration of Hoechst dye for image analysis, and the location of individual cells was computer-monitored. The nucleus of each cell was irradiated with either 1,2,4, or 8 alpha particles at a linear energy transfer of 90 keV/microm consistent with the energy spectrum of domestic radon exposure. Although single-particle traversal was only slightly cytotoxic to A(L) cells (survival fraction approximately 0.82), it was highly mutagenic, and the induced mutant fraction averaged 110 mutants per 10(5) survivors. In addition, both toxicity and mutant induction were dose-dependent. Multiplex PCR analysis of mutant DNA showed that the proportion of mutants with multilocus deletions increased with the number of particle traversals. These data provide direct evidence that a single a particle traversing a nucleus will have a high probability of resulting in a mutation and highlight the need for radiation protection at low doses.

  5. Quality assurance of alpha-particle dosimetry using peeled-off Gafchromic EBT3® film

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Chun, S. L.; Yu, K. N.

    2016-08-01

    A novel alpha-particle dosimetry technique using Gafchromic EBT3 film has recently been proposed for calibrating the activity of alpha-emitting radiopharmaceuticals. In the present paper, we outlined four measures which could further help assure the quality of the method. First, we suggested an alternative method in fabricating the peeled-off EBT3 film. Films with a chosen size were cut from the original films and all the edges were sealed with silicone. These were immersed into deionized water for 19 d and the polyester covers of the EBT3 films could then be easily peeled off. The active layers in these peeled-off EBT3 films remained intact, and these films could be prepared reproducibly with ease. Second, we proposed a check on the integrity of the peeled-off film by comparing the responses of the pristine and peeled-off EBT3 films to the same X-ray irradiation. Third, we highlighted the importance of scanning directions of the films. The "landscape" and "portrait" scanning directions were defined as the scanning directions perpendicular and parallel to the long edge of the original EBT3 films, respectively. Our results showed that the responses were different for different scanning directions. As such, the same scanning direction should be used every time. Finally, we cautioned the need to confirm the uniformity of the alpha-particle source used for calibration. Radiochromic films are well known for their capability of providing two-dimensional dosimetric information. As such, EBT3 films could also be conveniently used to check the uniformity of the alpha-particle source.

  6. Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Gellert, R.; Rieder, R.; Anderson, R. C.; Brueckner, J.; Clark, B. C.; Dreibus, G.; Economou, T.; Klingelhoefer, G.; Lugmair, G. W.; Ming, D. W.

    2005-01-01

    The alpha particle x-ray spectrometer on the Spirit rover determined major and minor elements of soils and rocks in Gusev crater in order to unravel the crustal evolution of planet Mars. The composition of soils is similar to those at previous landing sites, as a result of global mixing and distribution by dust storms. Rocks (fresh surfaces exposed by the rock abrasion tool) resemble volcanic rocks of primitive basaltic composition with low intrinsic potassium contents. High abundance of bromine (up to 170 parts per million) in rocks may indicate the alteration of surfaces formed during a past period of aqueous activity in Gusev crater.

  7. Critical temperature for {alpha}-particle condensation within a momentum-projected mean-field approach

    SciTech Connect

    Sogo, T.; Roepke, G.; Lazauskas, R.

    2009-05-15

    {alpha}-particle (quartet) condensation in homogeneous spin-isospin symmetric nuclear matter is investigated. The usual Thouless criterion for the critical temperature is extended to the quartet case. The in-medium four-body problem is strongly simplified by the use of a momentum-projected mean-field ansatz for the quartet. The self-consistent single-particle wave functions are shown and discussed for various values of the density at the critical temperature. Excellent agreement of the critical temperature with a numerical solution of the Faddeev-Yakubovsky equation is obtained.

  8. Map model for nonlinear alpha particle interaction with toroidal Alfven waves

    SciTech Connect

    Berk, H.L.; Breizman, B.N.; Ye, H.

    1992-09-01

    A map model has been developed for studying the nonlinear interaction of alpha particles with the toroidal Alfven eigenmodes. The map is constructed by assuming a linear interaction during a single poloidal transit, which allows the study of the nonlinear interaction over many transits. By using this map, analytic expressions are obtained for the particle nonlinear bounce frequency, and the wave amplitude threshold for the onset of particle orbit stochasticity. The map model can also facilitate self-consistent simulations which incorporate the time variation of the waves.

  9. The instrumental blank of the Mars Science Laboratory alpha particle X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.

    2012-10-01

    The alpha particle X-ray spectrometers on the Mars exploration rovers Spirit and Opportunity accomplished extensive elemental analysis of the Martian surface through a combination of XRF and PIXE. An advanced APXS is now part of the Mars Science Laboratory's Curiosity rover. APXS spectra contain contributions which enhance elemental peak areas but which do not arise from these elements within the sample under study, thereby introducing error into derived concentrations. A detailed examination of these effects in the MSL APXS enables us to test two schemes for making the necessary corrections.

  10. Chemistry of rocks and soils in Gusev Crater from the alpha particle x-ray spectrometer.

    PubMed

    Gellert, R; Rieder, R; Anderson, R C; Brückner, J; Clark, B C; Dreibus, G; Economou, T; Klingelhöfer, G; Lugmair, G W; Ming, D W; Squyres, S W; D'Uston, C; Wänke, H; Yen, A; Zipfel, J

    2004-08-06

    The alpha particle x-ray spectrometer on the Spirit rover determined major and minor elements of soils and rocks in Gusev crater in order to unravel the crustal evolution of planet Mars. The composition of soils is similar to those at previous landing sites, as a result of global mixing and distribution by dust storms. Rocks (fresh surfaces exposed by the rock abrasion tool) resemble volcanic rocks of primitive basaltic composition with low intrinsic potassium contents. High abundance of bromine (up to 170 parts per million) in rocks may indicate the alteration of surfaces formed during a past period of aqueous activity in Gusev crater.

  11. Chemistry of rocks and soils at Meridiani Planum from the Alpha Particle X-ray Spectrometer.

    PubMed

    Rieder, R; Gellert, R; Anderson, R C; Brückner, J; Clark, B C; Dreibus, G; Economou, T; Klingelhöfer, G; Lugmair, G W; Ming, D W; Squyres, S W; d'Uston, C; Wänke, H; Yen, A; Zipfel, J

    2004-12-03

    The Alpha Particle X-ray Spectrometer on the Opportunity rover determined major and minor elements of soils and rocks in Meridiani Planum. Chemical compositions differentiate between basaltic rocks, evaporite-rich rocks, basaltic soils, and hematite-rich soils. Although soils are compositionally similar to those at previous landing sites, differences in iron and some minor element concentrations signify the addition of local components. Rocky outcrops are rich in sulfur and variably enriched in bromine relative to chlorine. The interaction with water in the past is indicated by the chemical features in rocks and soils at this site.

  12. Alpha-Particle Angular Distributions of At and Rn Isotopes and Their Relation to Nuclear Structure

    SciTech Connect

    NICOLE Collaboration and ISOLDE Collaboration

    1996-12-01

    We report on an extensive on-line nuclear orientation study of the angular distribution of {alpha} particles emitted in the favored decay of neutron deficient At and Rn nuclei near the {ital N}=126 shell closure. Surprisingly large anisotropies were observed, showing pronounced changes from one isotope to another. Comparing these data with several theoretical models shows that anisotropic {alpha} emission in favored decays from near-spherical nuclei can well be explained within the shell model, implying that it is mainly determined by the structure of the decaying nucleus. {copyright} {ital 1996 The American Physical Society.}

  13. Alpha particles are extremely damaging to developing hemopoiesis compared to gamma irradiation

    SciTech Connect

    Tie-Nan Jiang ); Lord, B.I.; Hendry, J.H. )

    1994-03-01

    Estimates of risk of stochastic effects from contamination with [alpha]-particle-emitting radionuclides are based on equivalent doses which take into account the RBE of the high-LET radiation. It is assumed that the RBEs for deterministic effects are considerably less than those for stochastic effects. However, the offspring of mice injected with 30 Bq g[sup [minus]1] [sup 239]Pu at 13 days gestation develop a persistent deficit in hemopoietic stem cells which is primarily the result of damage to their regulatory microenvironment. Their spatial distribution in the marrow is also perturbed, and recent observations on those mice suggested a considerably higher factor than 20. To define a more realistic RBE for hemopoiesis, the effects of external [gamma] irradiation during the fetal development period have been compared directly with those of [sup 239]Pu incorporated via placental transfer on the development of hemopoietic tissue. Pregnant mice were irradiated with [sup 60]Co [gamma] rays (a) continuously from day 13 of gestation to birth at 0.15 or 0.6 Gy/day; (b) six repeated acute doses (0.6 Gy/min) at 0.1 or 0.3 Gy from day 13 of gestation; (c) one acute dose of 0.6 or 1.8 Gy on day 15 of gestation. The spatial distribution of hemopoietic stem cells in 8-week-old offspring was then determined and compared to that resulting from [alpha]-particle irradiation. In each case, the higher dose was required to match the results for [alpha] particles, suggesting an RBE for developing hemopoiesis of 250-360 compared to a continuous [gamma]-ray dose and a rather lower value of 130-180 compared to a single acute dose of [gamma] rays. This contrasts greatly to values for direct irradiation of the stem cells but argues that the effective RBE, measured for long-term effects in vivo, is the more realistic. It is concluded that an all-embracing factor can be grossly misleading and can greatly underestimate the risks of exposure to [alpha] particles. 21 refs., 3 figs., 1 tab.

  14. Quenching factor for alpha particles in ZnSe scintillating bolometers

    NASA Astrophysics Data System (ADS)

    Nagorny, S.; Cardani, L.; Casali, N.; Dafinei, I.; Pagnanini, L.; Pattavina, L.; Pirro, S.; Schaeffner, K.

    2017-02-01

    In the framework of the CUPID-0 experiment, a numbers of ZnSe single crystals were produced and subjected to different thermal treatments, and later tested as cryogenic scintillating bolometers. We have found that a specific thermal treatment (24 hours under argon atmosphere at 900 °C) has a strong impact on some properties of ZnSe crystals (amplitude of signal, light yield, specific resistivity) and most interestingly, changes the quenching factor for alpha particles from values > 1 to values < 1. Thus such thermal treatment opens the possibility to modify this experimental parameter for a various applications.

  15. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Cheng, S. H.; Yu, K. N.

    2017-04-01

    In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander

  16. Accuracy testing using thick source alpha-particle spectroscopy for the U and Th series estimations.

    PubMed

    Michael, C T; Zacharias, N; Hein, A

    2010-01-01

    The new technique for the calculation of U and Th based on the alpha particle spectrum taken from a thick sample by using a silicon detector (PIPS) is tested and some technical problems are encountered and also some notifications for better accuracy are addressed. This technique which is mainly developed to be used for dose rate determination in TL, OSL and ESR dating applications, gives also the possibility for detecting and estimating possible disequilibrium in U and Th series. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Matrix Characterization of Plutonium Residues by Alpha-Particle Self-Interrogation

    SciTech Connect

    Prettyman, T.H.; Foster, L.A.; Staples, P.

    1998-07-26

    Legacy plutonium residues often have inadequate item descriptions. Nondestructive characterization can help segregate these items for reprocessing or provide information needed for disposal or storage. Alpha particle-induced gamma-ray spectra contain a wealth of information that can be used for matrix characterization. We demonstrate how this information can be used for item identification. Gamma-ray spectra were recorded at the Los Alamos Plutonium Facility from a variety of legacy, plutonium-processing residues and product materials. The comparison and analysis of these spectra are presented.

  18. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    SciTech Connect

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.

  19. Alpha particle heating in hot diamagnetic cavities. [in solar wind near earth's bow shock

    NASA Technical Reports Server (NTRS)

    Galvez, Miguel; Fuselier, Stephen A.; Gary, S. Peter; Thomsen, Michelle F.; Winske, Dan

    1990-01-01

    Observational data from ISEE 1 are analyzed and a one-dimensional electromagnetic hybrid computer simulation is conducted for the heating of solar wind alpha particles in hot diamagnetic cavities (HDCs). In the simulation, which envisions alpha heating by ion-ion instabilities, low beam densities excite the proton/proton right-hand resonant instability that then pitch-angle scatters the beam without significantly heating the alphas. At greater beam densities, the proton/proton nonresonant instability undergoes saturation through a trapping of all three ion components. These results support the Thomsen et al. (1988) hypothesis that the nonresonant instability is the primary source of ion heating in hot diamagnetic cavities.

  20. Anomalous effect of trench-oxide depth on alpha-particle-induced charge collection

    SciTech Connect

    Shin, H.; Kim, N.M.

    1999-06-01

    The effect of trench-oxide depth on the alpha-particle-induced charge collection is analyzed for the first time. From the simulation results, it was found that the depth of trench oxide has a considerable influence on the amount of collected charge. The confining of generated charge by the trench oxide was identified as a cause of this anomalous effect. Therefore, the tradeoff between soft error rate and cell to cell isolation characteristics should be considered in optimizing the depth of trench oxide.

  1. Chemistry of Rocks and Soils in Gusev Crater from the Alpha Particle X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Gellert, R.; Rieder, R.; Anderson, R. C.; Brueckner, J.; Clark, B. C.; Dreibus, G.; Economou, T.; Klingelhoefer, G.; Lugmair, G. W.; Ming, D. W.

    2005-01-01

    The alpha particle x-ray spectrometer on the Spirit rover determined major and minor elements of soils and rocks in Gusev crater in order to unravel the crustal evolution of planet Mars. The composition of soils is similar to those at previous landing sites, as a result of global mixing and distribution by dust storms. Rocks (fresh surfaces exposed by the rock abrasion tool) resemble volcanic rocks of primitive basaltic composition with low intrinsic potassium contents. High abundance of bromine (up to 170 parts per million) in rocks may indicate the alteration of surfaces formed during a past period of aqueous activity in Gusev crater.

  2. Experimental Study of the Cross Sections of {alpha}-Particle Induced Reactions on 209Bi

    SciTech Connect

    Hermanne, A.; Tarkanyi, F.; Takacs, S.; Szucs, Z.

    2005-05-24

    Alpha particle induced reactions for generation of 211At used in therapeutic nuclear medicine and possible contaminants were investigated with the stacked foil activation technique on natural bismuth targets up to E{alpha}=39 MeV. Excitation functions for the reactions 209Bi({alpha},2n)211At, 209Bi({alpha},3n)210At, 209Bi({alpha},x) 210Po obtained from direct alpha emission measurements and gamma spectra from decay products are compared with earlier literature values. Thick target yields have been deduced from the experimental cross sections.

  3. Generation of volatile organic compounds by alpha particle degradation of WIPP plastic and rubber material

    SciTech Connect

    Reed, D.T.; Molecke, M.A.

    1993-12-31

    The generation of volatile organic compounds (VOCs), hydrogen, and carbon oxides due to alpha particle irradiation of polyethylene, polyvinylchloride, hypalon, and neoprene, is being investigated. A wide diversity of VOCs was found including alkenes, alkanes, alcohols, ketones, benzene derivatives, and nitro compounds. Their yields however, were quite low. The relative amounts of these compounds depended on the material, atmosphere present, and the absorbed dose. This investigation will help evaluate the effect of ionizing radiation on the long-term performance assessment and regulatory compliance issues related to the Waste Isolation Pilot Plant (WIPP).

  4. Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.

    2014-01-01

    Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.

  5. Ion bombardment of interplanetary dust

    SciTech Connect

    Johnson, R.E.; Lanzerotti, L.J.

    1986-06-01

    It is thought that a fraction of the interplanetary dust particles (IDP's) collected in the stratosphere by high-flying aircraft represent materials ejected from comets. An investigation is conducted regarding the effects of ion bombardment on these particles, taking into account information on ion tracks and carbon in IDP's and laboratory data on charged particle bombardment of surfaces. It is found that the observational discovery of particle tracks in certain IDP's clearly indicates the exposure of these particles to approximately 10,000 years of 1-AU equivalent solar-particle fluences. If some erasure of the tracks occurs, which is likely when an IDP enters the upper atmosphere, then somewhat longer times are implied. The effects of the erosion and enhanced adhesion produced by ions are considered. 46 references.

  6. Ion bombardment in RF photoguns

    SciTech Connect

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  7. Cereal transformation through particle bombardment

    NASA Technical Reports Server (NTRS)

    Casas, A. M.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.; Mitchell, C. A. (Principal Investigator)

    1995-01-01

    The review focuses on experiments that lead to stable transformation in cereals using microprojectile bombardment. The discussion of biological factors that affect transformation examines target tissues and vector systems for gene transfer. The vector systems include reporter genes, selectable markers, genes of agronomic interest, and vector constructions. Other topics include physical parameters that affect DNA delivery, selection of stably transformed cells and plant regeneration, and analysis of gene expression and transmission to the progeny.

  8. Ion bombardment of polyimide films

    SciTech Connect

    Bachman, B. J.; Vasile, M. J.

    1989-07-01

    Surface modification techniques such as wet chemical etching, oxidizing flames, and plasma treatments (inert ion sputtering and reactive ion etching) have been used to change the surface chemistry of polymers and improve adhesion. With an increase in the use of polyimides for microelectronic applications, the technique of ion sputtering to enhance polymer-to-metal adhesion is receiving increased attention. For this study, the argon-ion bombardment surfaces of pyromellitic dianhydride and oxydianiline (PMDA--ODA) and biphenyl tetracarboxylic dianhydride and phenylene diamine (BPDA--PDA) polyimide films were characterized with x-ray photoelectron spectroscopy (XPS) as a function of ion dose. Graphite and high-density polyethylene were also examined by XPS for comparison of C 1/ital s/ peak width and binding-energy assignments. Results indicate that at low ion doses the surface of the polyimide does not change chemically, although adsorbed species are eliminated. At higher doses the chemical composition is altered and is dramatically reflected in the C 1/ital s/ spectra where graphiticlike structures become evident and the prominent carbonyl peak is reduced significantly. Both polyimides demonstrate similar chemical changes after heavy ion bombardment. Atomic composition of PMDA--ODA and BPDA--PDA polymers are almost identical after heavy ion bombardment.

  9. Characterizing the Early Impact Bombardment

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.

    2005-01-01

    The early bombardment revealed in the larger impact craters and basins on the moon was a major planetary process that affected all bodies in the inner solar system, including the Earth and Mars. Understanding the nature and timing of this bombardment is a fundamental planetary problem. The surface density of lunar impact craters within a given size range on a given lunar surface is a measure of the age of that surface relative to other lunar surfaces. When crater densities are combined with absolute radiometric ages determined on lunar rocks returned to Earth, the flux of large lunar impactors through time can be estimated. These studies suggest that the flux of impactors producing craters greater than 1 km in diameter has been approximately constant over the past approx. 3 Gyr. However, prior to 3.0 - 3.5 Gyr the impactor flux was much larger and defines an early bombardment period. Unfortunately, no lunar surface feature older than approx. 4 Gyr is accurately dated, and the surface density of craters are saturated in most of the lunar highlands. This means that such data cannot define the impactor flux between lunar formation and approx. 4 Gyr ago.

  10. Irradiation of Mesenchymal Stromal Cells with Low and High Doses of Alpha Particles Induces Senescence and/or Apoptosis.

    PubMed

    Alessio, Nicola; Esposito, Giuseppe; Galano, Giovanni; De Rosa, Roberto; Anello, Pasquale; Peluso, Gianfranco; Tabocchini, Maria Antonella; Galderisi, Umberto

    2017-03-02

    The use of high-linear energy transfer charged particles is gaining attention as a medical tool because of the emission of radiations with an efficient cell-killing ability. Considerable interest has developed in the use of targeted alpha-particle therapy for the treatment of micrometastases. Moreover, the use of helium beams is gaining momentum, especially for treating pediatric tumors. We analyzed the effects of alpha particles on bone marrow mesenchymal stromal cells (MSCs), which have a subpopulation of stem cells capable of generating adipocytes, chondrocytes, and osteocytes. Further, these cells contribute toward maintenance of homeostasis in the body. MSCs were irradiated with low and high doses of alpha particles or X-rays and a comparative biological analysis was performed. At a low dose (40 mGy), alpha particles exhibited a limited negative effect on the biology of MSCs compared with X-rays. No significant perturbation of cell cycle was observed, and a minimal increase in apoptosis or senescence was detected. Self-renewal was preserved as revealed by the CFU assay. On the contrary, with 2000 mGy alpha particles we observed adverse effects on the vitality, functionality, and stemness of MSCs. These results are the consequence of different proportion of cells targeted by alpha particles or X-rays and the quality of induced DNA damage. The present study suggests that radiotherapy with alpha particles may spare healthy stem cells more efficaciously than X-ray treatments, an observation that should be taken into consideration by physicians while planning irradiation of tumor areas close to stem cell niches, such as bone marrow. This article is protected by copyright. All rights reserved.

  11. An alpha particle instrument with alpha, proton, and X-ray modes for planetary chemical analyses

    NASA Technical Reports Server (NTRS)

    Economou, T. E.; Turkevich, A. L.

    1976-01-01

    The interaction of alpha particles with matter is employed in a compact instrument that could provide rather complete in-situ chemical analyses of surfaces and thin atmospheres of extraterrestrial bodies. The instrument is a miniaturized and improved version of the Surveyor lunar instrument. The backscattering of alpha particles and (alpha, p) reactions provide analytical data on the light elements (carbon-iron). An X-ray mode that detects the photons produced by the alpha sources provides sensitivity and resolution for the chemical elements heavier than about silicon. The X-rays are detected by semiconductor detectors having a resolution between 150 and 250 eV at 5.9 keV. Such an instrument can identify and determine with good accuracy 99 percent of the atoms (except hydrogen) in rocks. For many trace elements, the detecting sensitivity is a few ppm. Auxiliary sources could be used to enhance the sensitivities for elements of special interest. The instrument could probably withstand the acceleration involved in semi-hard landings.

  12. Effect of Alpha-Particle Irradiation on Brain Glycogen in the Rat

    NASA Technical Reports Server (NTRS)

    Wolfe, L. S.; Klatzo, Igor; Miquel, Jaime; Tobias, Cornelius; Haymaker, Webb

    1962-01-01

    The studies of Klatzo, Miquel, Tobias and Haymaker (1961) have shown that one of the earliest and most sensitive indications of the effects of alpha-particle irradiation on rat bran is the appearance of glycogen granules mainly in the neuroglia of the exposed area of the brain. Periodic acid-Schiff (PAS) positive, alpha-amylase soluble granules were demonstrated within 12 hr after irradiation, preceding by approximately 36 hr the first microscopically detectable vascular permeability disturbances, as shown by the fluorescein labeled serum protein technique. These studies suggested that the injurious effects of alpha-particle energy were on cellular elements primarily, according to the physical properties and distribution of the radiation in the tissue, and that the vascular permeability disturbances played a secondary role in pathogenesis. The purpose of this study was to correlate the histochemical observations on glycogen with a quantitative assessment of the glycogen in the irradiated brain tissue. It is felt that such a study may contribute to the understanding of radiation injury at the molecular level. A practical aspect of this problem is that the information on biological radiation effects due to accelerated particles from the cyclotron source, is employed in this study, is applicable to radiation from cosmic particles both in free space and entrapped in the Van Allen belts.

  13. Calibration of the Mars Science Laboratory Alpha Particle X-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Perrett, G. M.; Campbell, J. L.; Gellert, R.; King, P. L.; Maxwell, J. A.; Andrushenko, S. M.

    2011-12-01

    We have used a suite of over 60 geochemical reference standards for the calibration of the Mars Science Laboratory (MSL) Alpha Particle X-ray Spectrometer (APXS). For the elements P, S, Cl and Br we have supplemented this suite by adding various amounts of relevant chemical compounds to a powdered basalt standard. Special attention has been paid to include phyllosilicates, sulphates and a broad selection of igneous basalts as these are predicted key deposits at the MSL landing site, Gale Crater. The calibration is performed from first principles using x-ray excitation cross sections for the alpha particle and x-ray radiation source and an assumed homogeneous sample matrix. Remaining deviations indicate significant influences of mineral phases especially for light elements in basalts, ultra-mafic rocks and trachytes. Supporting x-ray diffraction work has helped to derive empirical, iterative corrections for distinct rock types, based on the first APXS analysis, assuming a homogeneous sample. These corrections have the potential to significantly improve the accuracy of APXS analyses, especially when other MSL instrument results, such as x-ray diffraction data from ChemMin, are included in the overall analysis process.

  14. An alpha particle instrument with alpha, proton, and X-ray modes for planetary chemical analyses

    NASA Technical Reports Server (NTRS)

    Economou, T. E.; Turkevich, A. L.

    1976-01-01

    The interaction of alpha particles with matter is employed in a compact instrument that could provide rather complete in-situ chemical analyses of surfaces and thin atmospheres of extraterrestrial bodies. The instrument is a miniaturized and improved version of the Surveyor lunar instrument. The backscattering of alpha particles and (alpha, p) reactions provide analytical data on the light elements (carbon-iron). An X-ray mode that detects the photons produced by the alpha sources provides sensitivity and resolution for the chemical elements heavier than about silicon. The X-rays are detected by semiconductor detectors having a resolution between 150 and 250 eV at 5.9 keV. Such an instrument can identify and determine with good accuracy 99 percent of the atoms (except hydrogen) in rocks. For many trace elements, the detecting sensitivity is a few ppm. Auxiliary sources could be used to enhance the sensitivities for elements of special interest. The instrument could probably withstand the acceleration involved in semi-hard landings.

  15. Assessing the SEU resistance of CMOS latches using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Buehler, M.; Blaes, B.; Nixon, R.

    1990-01-01

    The importance of Cosmic Rays on the performance of integrated circuits (IC's) in a space environment is evident in the upset rate of the Tracking and Data Relay Satellite (TDRS) launched in Apr. 1983. This satellite experiences a single-event-upset (SEU) per day which must be corrected from the ground. Such experience caused a redesign of the Galileo spacecraft with SEU resistant IC's. The solution to the SEU problem continues to be important as the complexity of spacecraft grows, the feature size of IC's decreases, and as space systems are designed with circuits fabricated at non-radiation hardened foundries. This paper describes an approach for verifying the susceptibility of CMOS latches to heavy-ion induced state changes. The approach utilizes alpha particles to induce the upsets in test circuits. These test circuits are standard cells that have offset voltages which sensitize the circuits to upsets. These results are then used to calculate the upsetability at operating voltages. In this study results are presented for the alpha particle upset of a six-transistor static random access memory (SRAM) cell. Then a methodology is described for the analysis of a standard-cell inverter latch.

  16. Results of the Alpha-Particle-X-Ray Spectrometer on Board of the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Geller, R.; Zipfel, J.; Brueckner, J.; Dreibus, G.; Lugmair, G.; Rieder, R.; Waenke, H.; Klingelhoefer, G.; Clark, B. C.; Ming, D. W.

    2005-01-01

    The Mars Exploration Rovers Spirit and Opportunity landed at Gusev crater and Meridiani Planum. The Alpha Particle X-ray Spectrometer (APXS) is part of the instrument suite on both rovers. It is equipped with six 244Cm sources which provide x-ray excitation with alpha-particles (PIXE) and x-ray radiation (XRF). This combination allows x-ray spectroscopy of elements from Na to Br in the energy range of 0.9 to 16 keV. X-ray detectors with a high energy resolution of 160 eV at Fe K allow us to separate even closely spaced energy peaks, such as Na, Mg, Al and Si. The APXS is attached to the rover s arm and provides in-situ measurements of the chemical composition of soils, surfaces of rocks and outcrops and their abraded surfaces. This abstract gives an overview of APXS results obtained during the first year of operation on both landing sites.

  17. Activation cross sections of longer-lived radionuclides produced in germanium by alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Takács, S.; Takács, M. P.; Ditrói, F.; Aikawa, M.; Haba, H.; Komori, Y.

    2016-09-01

    The cross sections of alpha particles induced nuclear reactions on natural germanium were investigated by using the standard stacked foil target technique, the activation method and high resolution gamma spectrometry. Targets with thickness of about 1 μm were prepared from natural Ge by vacuum evaporation onto 25 μm thick polyimide (Kapton) backing foils. Stacks were composed of Kapton-Ge-Ge-Kapton sandwich target foils and additional titanium monitor foils with nominal thickness of 11 μm to monitor the beam parameters using the natTi(α,x)51Cr reaction. The irradiations were done with Eα = 20.7 and Eα = 51.25 MeV, Iα = 50 nA alpha particle beams for about 1 h. Direct or cumulative activation cross sections were determined for production of the 72,73,75Se, 71,72,74,76,78As, and 69Ge radionuclides. The obtained experimental cross sections were compared to the results of theoretical calculations taken from the TENDL data library based on the TALYS computer code. A comparison was made with available experimental data measured earlier. Thick target yields were deduced from the experimental cross sections and compared with the data published before.

  18. Plutonium-catalyzed oxidative DNA damage in the absence of significant alpha-particle decay

    SciTech Connect

    Claycamp, H.G.; Luo, D.

    1994-01-01

    Plutonium is considered to be a carcinogen because it emits {alpha} particles that may result in the irradiation of stem cell population. In the present study we show that plutonium can also catalyze reactions that induce hydroxyl radicals in the absence of significant {alpha}-particle irradiation. Using the low specific activity isotope, {sup 242}Pu, experiments were performed under conditions in which chemical generation of hydroxyl radicals was expected to exceed the radiolytic generation by 10{sup 5}-fold. The results showed that markers of oxidative DNA base damage, thymine glycol and 8-oxoguanine could be induced from plutonium-catalyzed reactions of hydrogen peroxide and ascorbate similarly to those occurring in the presence of iron catalysts. Plutonium-242, as a neutralized nitrate in phosphate buffer, was 4.8-fold more efficient than iron at catalyzing the oxidation of ascorbate at pH 7. The results suggest that plutonium complexes could participate in reactions at pH 7 that induce oxidative stress - a significant tumor-promoting factor in generally accepted models of carcinogenesis. 16 refs., 3 figs.

  19. Observation of lunar radon emanation with the Apollo 15 alpha particle spectrometer.

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    The alpha particle spectrometer, a component of the orbital Sim Bay group of 'geochemistry' experiments on Apollo 15, was designed to detect alpha particles emitted during the decay of isotopes of radon gas and her daughter products. The purpose was to measure the gross activity of radon on the lunar surface and to find possible regions of increased local activity. Results are presented from a partial analysis of Apollo 15 data. For the moon as a whole, Rn220 was not observed and the upper limit on its decay rate above the lunar surface is 0.00038 disintegrations/sq cm-sec. Rn222 was marginally observed. Possible variations of radon activity on the lunar surface are being investigated. Po210 (a daughter product of Rn222) has been detected in a broad region from west of Mare Crisium to the Van de Graaff-Orlov region. The observed count rate is (4.6 plus or minus 1.4) x 0.001 disintegrations/sq cm-sec. The observed level of Po210 activity is in excess of the amount that would be in equilibrium with Rn222 by about an order of magnitude. This implies that larger levels of radon emanation have occurred on the moon within a time scale of 10 to 100 years.

  20. Kinetic treatment of alpha-particle loss and energy deposition in ELMO Bumpy Torus

    SciTech Connect

    Fenstermacher, M.E.; Uckan, N.A.

    1982-12-01

    A formalism has been developed in terms of a drift kinetic equation with a Fokker-Planck collision operator to calculate alpha particle loss and energy deposition rate coefficients for one position in space and for steady-state operating conditions. A bounce-averaged drift kinetic equation for an ELMO Bumpy Torus (EBT) is expressed in invariant variables E = v/sup 2//2 and lambda = v/sub perpendicular//sup 2/B/sub MID//v/sup 2/B(l) and is used with energy scattering and pitch angle scattering terms in the collision operator. The alpha particle distribution function is expanded in terms of energy coefficients and pitch angle eigenfunctions. For the case of a square well magnetic field shape, the pitch angle eigenfunctions are the Legendre polynominals. With an expression for the distribution function the particle loss and energy deposition rates are calculated by taking the zeroth and first-order energy moments, respectively, of the kinetic equation.

  1. Crosschecking of alpha particle monitor reactions up to 50 MeV

    NASA Astrophysics Data System (ADS)

    Takács, S.; Ditrói, F.; Szűcs, Z.; Haba, H.; Komori, Y.; Aikawa, M.; Saito, M.

    2017-04-01

    Selected reactions with well-defined excitation functions can be used to monitor the parameters of charged particle beams. The frequently used reactions for monitoring alpha particle beams are the 27Al(α,x)22,24Na, natTi(α,x)51Cr, natCu(α,x)66,67Ga and natCu(α,x)65Zn reactions. The excitation functions for these reactions were studied using the activation method and stacked target irradiation technique to crosscheck and to compare the above six reactions. Thin metallic foils with natural isotopic composition and well defined thickness were stacked together in sandwich targets and were irradiated at the AVF cyclotron of RIKEN with an alpha particle beam of 51.2 MeV. The activity of the target foils were assessed by using high-resolution gamma spectrometers of high purity Ge detectors. The data sets of the six processes were crosschecked with each other to provide consistent, cross-linked numerical cross section data.

  2. Targeted Cytoplasmic Irradiation with Alpha Particles Induces Mutations in Mammalian Cells

    NASA Astrophysics Data System (ADS)

    Wu, Li-Jun; Randers-Pehrson, Gerhard; Xu, An; Waldren, Charles A.; Geard, Charles R.; Yu, Zengliang; Hei, Tom K.

    1999-04-01

    Ever since x-rays were shown to induce mutation in Drosophila more than 70 years ago, prevailing dogma considered the genotoxic effects of ionizing radiation, such as mutations and carcinogenesis, as being due mostly to direct damage to the nucleus. Although there was indication that alpha particle traversal through cellular cytoplasm was innocuous, the full impact remained unknown. The availability of the microbeam at the Radiological Research Accelerator Facility of Columbia University made it possible to target and irradiate the cytoplasm of individual cells in a highly localized spatial region. By using dual fluorochrome dyes (Hoechst and Nile Red) to locate nucleus and cellular cytoplasm, respectively, thereby avoiding inadvertent traversal of nuclei, we show here that cytoplasmic irradiation is mutagenic at the CD59 (S1) locus of human-hamster hybrid (AL) cells, while inflicting minimal cytotoxicity. The principal class of mutations induced are similar to those of spontaneous origin and are entirely different from those of nuclear irradiation. Furthermore, experiments with radical scavenger and inhibitor of intracellular glutathione indicated that the mutagenicity of cytoplasmic irradiation depends on generation of reactive oxygen species. These findings suggest that cytoplasm is an important target for genotoxic effects of ionizing radiation, particularly radon, the second leading cause of lung cancer in the United States. In addition, cytoplasmic traversal by alpha particles may be more dangerous than nuclear traversal, because the mutagenicity is accomplished by little or no killing of the target cells.

  3. An improved electrostatic integrating radon monitor with the CR-39 as alpha-particle detector.

    PubMed

    Fan, D; Zhuo, W; Chen, B; Zhao, C; Yi, Y; Zhang, Y

    2015-11-01

    In this study, based on the electrostatic integrating radon monitor (EIRM) developed by Iida et al., a new type of EIRM with the allyl glycol carbonate (CR-39) as alpha-particle detector was developed for outdoor radon measurements. Besides using the CR-39 to replace the cellulose nitrate film as alpha-particle detector, the electrode and the setting place of the CR-39 were also optimally designed based on the simulation results of the electric field and the detection efficiency. The calibration factor of the new EIRM was estimated to be 0.136±0.002 tracks cm(-2) (Bq m(-3) h)(-1), with the lower detection limit of 0.6 Bq m(-3) for a 2-month exposure. Furthermore, both the battery and the dry agent were also replaced to protect the environment. The results of intercomparison and field experiments showed that the performances of the new EIRM were much better than the original one. It suggests that the new type of ERIM is more suitable for large-scale and long-term outdoor radon surveys.

  4. SILICON DIODE AS AN ALPHA PARTICLE DETECTOR AND SPECTROMETER FOR DIRECT FIELD MEASUREMENTS.

    PubMed

    Ören, Ünal; Nilsson, Jonas; Herrnsdorf, Lars; Rääf, Christopher L; Mattsson, Sören

    2016-09-01

    A windowless silicon (Si) diode (4 mm(2)) was evaluated as alpha particle detector and spectrometer for field measurements. It was irradiated with alpha particles from a (241)Am (2.3 kBq) and a (210)Po (9 kBq) source at source-detector distances (SDD) of 0.5, 1.0 and 1.8 cm. The energy resolution in terms of full width at half maximum was 281, 148 and 113 keV for SDD of 0.5, 1.0 and 1.8 cm, respectively. The minimum detectable activity increased from 0.08 to 0.83 Bq when the SDD increased from 0.5 to 1.8 cm. The detector has the potential for several alpha spectrometric applications, such as monitoring for wound, skin and surface contamination at nuclear fuel facilities, nuclear power plants and facilities handling radioactive waste. Other areas are environmental surveys following releases of actinides at accidents in nuclear power plants and in connection with other radiological or nuclear scenarios.

  5. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization.

    PubMed

    Singh Jaggi, Jaspreet; Henke, Erik; Seshan, Surya V; Kappel, Barry J; Chattopadhyay, Debjit; May, Chad; McDevitt, Michael R; Nolan, Daniel; Mittal, Vivek; Benezra, Robert; Scheinberg, David A

    2007-03-07

    Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. Actinium-225 ((225)Ac)-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225)Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225)Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225)Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225)Ac-E4G10 therapy. The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy.

  6. Observation of lunar radon emanation with the Apollo 15 alpha particle spectrometer.

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Bjorkholm, P.

    1972-01-01

    The alpha particle spectrometer, a component of the orbital Sim Bay group of 'geochemistry' experiments on Apollo 15, was designed to detect alpha particles emitted during the decay of isotopes of radon gas and her daughter products. The purpose was to measure the gross activity of radon on the lunar surface and to find possible regions of increased local activity. Results are presented from a partial analysis of Apollo 15 data. For the moon as a whole, Rn220 was not observed and the upper limit on its decay rate above the lunar surface is 0.00038 disintegrations/sq cm-sec. Rn222 was marginally observed. Possible variations of radon activity on the lunar surface are being investigated. Po210 (a daughter product of Rn222) has been detected in a broad region from west of Mare Crisium to the Van de Graaff-Orlov region. The observed count rate is (4.6 plus or minus 1.4) x 0.001 disintegrations/sq cm-sec. The observed level of Po210 activity is in excess of the amount that would be in equilibrium with Rn222 by about an order of magnitude. This implies that larger levels of radon emanation have occurred on the moon within a time scale of 10 to 100 years.

  7. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  8. Feasibility study on the use of polyallyldiglycol-carbonate cell dishes in TUNEL assay for alpha particle radiobiological experiments

    NASA Astrophysics Data System (ADS)

    Chan, K. F.; Yum, E. H. W.; Wan, C. K.; Fong, W. F.; Yu, K. N.

    2007-08-01

    In the present work, we have studied the feasibility of a method based on polyallyldiglycol-carbonate (PADC) films to investigate the effects of alpha particles on HeLa cervix cancer cells. Thin PADC films with thickness of about 20 μm were prepared from commercially available CR-39 films by chemical etching to fabricate custom-made petri dishes for cell culture, which could accurately record alpha particle hit positions. A special method involving "base tracks" for aligning the images of cell nuclei and alpha particle hits has been proposed, so that alpha particle transversals of cell nuclei can be visually counted. Radiobiological experiments were carried out to induce DNA damages, with the TdT-mediated d UTP Nick- End Labeling (TUNEL) fluorescence method employed to detect DNA strand breaks. The staining results were investigated by flow cytometer. The preliminary results showed that more strand breaks occurred in cells hit by alpha particles with lower energies. Moreover, large TUNEL positive signals were obtained even with small percentages of cells irradiated and TUNEL signals were also obtained from non-targeted cells. These provided evidence for the bystander effect.

  9. THE ROLE OF ALPHA PARTICLES IN THE EVOLUTION OF THE SOLAR-WIND TURBULENCE TOWARD SHORT SPATIAL SCALES

    SciTech Connect

    Perrone, D.; Valentini, F.; Veltri, P.

    2011-11-01

    We present a numerical study of the kinetic dynamics of protons and alpha particles during the evolution of the solar-wind turbulent cascade, in which the energy injected in large-scale slab-type Alfvenic fluctuations is transferred toward short spatial scale lengths, across the proton skin depth. We make use of a hybrid Vlasov-Maxwell code that integrates numerically the Vlasov equation for both the ion species, while the electrons are considered as a fluid. The system evolution is investigated in terms of different values of the electron to proton and alpha particle to proton temperature ratios. The numerical results show that the previously studied kinetic dynamics of protons is not strongly affected by the presence of alpha particles, at least when they are present in low concentration. Our simulations not only provide a physical explanation for the generation of beams of accelerated particles along the direction of the ambient magnetic field for both protons and alpha particles, but also show that this mechanism is more efficient for protons than for alpha particles, in agreement with recent solar-wind data analyses.

  10. Vascular-targeted radioimmunotherapy with the alpha-particle emitter 211At.

    PubMed

    Kennel, S J; Mirzadeh, S; Eckelman, W C; Waldmann, T A; Garmestani, K; Yordanov, A T; Stabin, M G; Brechbiel, M W

    2002-06-01

    Astatine-211, an alpha-particle emitter, was employed in a model system for vascular-targeted radioimmunotherapy of small tumors in mouse lung to compare its performance relative to other radioisotopes in the same system. Astatine-211 was coupled to the lung blood vessel-targeting monoclonal antibody 201B with N-succinimidyl N-(4-[211At]astatophenethyl) succinamate linker. Biodistribution data showed that the conjugate delivered 211At to the lung (260-418% ID/g), where it remained with a biological half-time of about 30 h. BALB/c mice bearing about 100 lung tumor colonies of EMT-6 cells, each about 2000 cells in size, were treated with 211At-labeled monoclonal antibody 201B. The administered activity of 185 kBq per animal extended the life span of treated mice over untreated controls. Injections of 370 kBq, corresponding to an absorbed dose of 25-40 Gy, were necessary to eradicate all of the lung tumors. Mice receiving 740 kBq of 211At-labeled monoclonal antibody 201B developed pulmonary fibrosis 3-4 months after treatment, as did mice treated with 3700 kBq of the alpha-particle emitter 213Bi-labeled monoclonal antibody 201B in previous work. Animals that were injected with 211At bound to untargeted IgG or to glycine, as control agents, also demonstrated therapeutic effects relative to untreated controls. Control groups that received untargeted 211At required about twice as much administered activity for effective therapy as did groups with lung-targeted radioisotope. These results were not consistent with radioisotope biodistribution and dosimetry calculations that indicated that lung-targeted 211At should be at least 10-fold more efficient for lung colony therapy than 211At bound to nontargeting controls. The data showed that 211At is useful for vascular-targeted radioimmunotherapy because lung tumor colonies were eradicated in the mice. Work in this model system demonstrates that vascular targeting of alpha-particle emitters is an efficient therapy for small

  11. Bench-level characterization of a CMOS standard-cell D-latch using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Soli, G. A.; Buehler, M. G.

    1991-01-01

    A methodology is described for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. Measurements were made on a 1.6-micron n-well CMOS 4-kb test SRAM irradiated with an Am-241 alpha-particle source. A collection depth of 6.09 micron was determined using these results and TRIM computer code. Using this collection depth and SPICE derived critical charge results on the latch design, an LET threshold of 34 MeV sq cm/mg was predicted. Heavy ion tests were then performed on the latch and an LET threshold of 41 MeV sq cm/mg was determined.

  12. Bench-level characterization of a CMOS standard-cell D-latch using alpha-particle sensitive test circuits

    NASA Technical Reports Server (NTRS)

    Blaes, B. R.; Soli, G. A.; Buehler, M. G.

    1991-01-01

    A methodology is described for predicting the SEU susceptibility of a standard-cell D-latch using an alpha-particle sensitive SRAM, SPICE critical charge simulation results, and alpha-particle interaction physics. Measurements were made on a 1.6-micron n-well CMOS 4-kb test SRAM irradiated with an Am-241 alpha-particle source. A collection depth of 6.09 micron was determined using these results and TRIM computer code. Using this collection depth and SPICE derived critical charge results on the latch design, an LET threshold of 34 MeV sq cm/mg was predicted. Heavy ion tests were then performed on the latch and an LET threshold of 41 MeV sq cm/mg was determined.

  13. Feasibility of alpha particle measurement in a magnetically confined plasma by CO/sub 2/ laser Thomson scattering

    SciTech Connect

    Richards, R.K.; Vander Sluis, K.L.; Hutchinson, D.P.

    1987-08-01

    Fusion-product alpha particles will dominate the behavior of the next generation of ignited D-T fusion reactors. Advanced diagnostics will be required to characterize the energy deposition of these fast alpha particles in the magnetically confined plasma. For small-angle coherent Thomson scattering of a CO/sub 2/ laser beam from such a plasma, a resonance in the scattered power occurs near 90/sup 0/ with respect to the magnetic field direction. This spatial concentration permits a simplified detection of the scattered laser power from the plasma using a heterodyne system. The signal produced by the presence of fusion-product alpha particles in an ignited plasma is calculated to be well above the noise level, which results from statistical variations of the background signal produced by scattering from free electrons. 7 refs.

  14. The comparative effects of gamma radiation and in situ alpha particles on five strong-base anion exchange resins

    SciTech Connect

    Marsh, S.F.

    1991-01-01

    The effects of external gamma radiation and in situ alpha particles were measured on a recently available, macroporous, strong-base polyvinylpyridine resin and on four strong-base polystyrene anion exchange resins. Each resin was irradiated in 7 M nitric acid to 1--10 megaGray of gamma radiation from external {sup 60}Co, or to 5--14 megaGray of alpha particles from sorbed {sup 238}Pu. Each irradiated resin was measured for changes in dry weight, wet volume, weak-base and strong-base chloride exchange capacities, and exchange capacities for Pu(4) from nitric acid. Alpha-induced resin damage was significantly less than that caused by an equivalent dose of gamma radiation. The polyvinylpyridine resin offers the greatest resistance to damage from gamma radiation and from alpha particles. 5 refs., 1 figs. 5 tabs.

  15. Radiotoxicity of gadolinium-148 and radium-223 in mouse testes: relative biological effectiveness of alpha-particle emitters in vivo.

    PubMed

    Howell, R W; Goddu, S M; Narra, V R; Fisher, D R; Schenter, R E; Rao, D V

    1997-03-01

    The biological effects of radionuclides that emit alpha particles are of considerable interest in view of their potential for therapy and their presence in the environment. The present work is a continuation of our ongoing effort to study the radiotoxicity of alpha-particle emitters in vivo using the survival of murine testicular sperm heads as the biological end point. Specifically, the relative biological effectiveness (RBE) of very low-energy alpha particles (3.2 MeV) emitted by 148Gd is investigated and determined to be 7.4 +/- 2.4 when compared to the effects of acute external 120 kVp X rays. This datum, in conjunction with our earlier results for 210Po and 212Pb in equilibrium with its daughters, is used to revise and extend the range of validity of our previous RBE-energy relationship for alpha particles emitted by tissue-incorporated radionuclides. The new empirical relationship is given by RBE alpha = 9.14 - 0.510 E alpha where 3 < E alpha < 9 MeV. The validity of this empirical relationship is tested by determining the RBE of the prolific alpha-particle emitter 223Ra (in equilibrium with its daughters) experimentally in the same biological model and comparing the value obtained experimentally with the predicted value. The resulting RBE values are 5.4 +/- 0.9 and 5.6, respectively. This close agreement strongly supports the adequacy of the empirical RBE-E alpha relationship to predict the biological effects of alpha-particle emitters in vivo.

  16. Gas production due to alpha particle degradation of polyethylene and polyvinylchloride

    SciTech Connect

    Reed, D.T.; Hoh, J.; Emery, J.; Okajima, S.; Krause, T.

    1998-07-01

    Alpha particle degradation experiments were performed on polyethylene (PE) and polyvinylchloride (PVC) plastic samples typical of Westinghouse Savannah River Company (WSRC) transuranic (TRU) waste. This was done to evaluate the effects of sealing TRU waste during shipment. Experiments were conducted at three temperatures using low dose rates. Predominant products from both plastics were hydrogen, carbon dioxide, and various organic species, with the addition of hydrochloric acid from PVC. In all experiments, the total pressure decreased. Irradiation at 30 and 60 C and at various dose rates caused small changes for both plastics, but at 100 C coupled thermal-radiolytic effects included discoloration of the material as well as large differences in the gas phase composition.

  17. Cryogenic microcalorimeter system for ultra-high resolution alpha-particle spectrometry

    SciTech Connect

    Rabin, Michael W; Hoover, Andrew S; Bacrania, Mnesh K; Croce, Mark P; Hoteling, N J; Lamont, S P; Plionis, A A; Dry, D E; Ullom, J N; Bennett, D A; Horansky, R; Kotsubo, V; Cantor, R

    2009-01-01

    Microcalorimeters have been shown to yield unsurpassed energy resolution for alpha spectrometry, up to 1.06 keV FWHM at 5.3 MeV. These detectors use a superconducting transition-edge sensor (TES) to measure the temperature change in an absorber from energy deposited by an interacting alpha particle. Our system has four independent detectors mounted inside a liquid nitrogen/liquid helium cryostat. An adiabatic demagnetization refrigerator (ADR) cools the detector stage to its operating temperature of 80 mK. Temperature regulation with {approx}15 uK peak-to-peak variation is achieved by PID control of the ADR. The detectors are voltage-biased, and the current signal is amplified by a commercial SQUID readout system and digitized for further analysis, This paper will discuss design and operation of our microcalorimeter alpha spectrometer, and will show recent results.

  18. [Temperature effect correction for Chang'E-3 alpha particle X-ray spectrometer].

    PubMed

    Wu, Ming-Ye; Wang, Huan-Yu; Peng, Wen-Xi; Zhang, Cheng-Mo; Zhang, Jia-Yu; Cui, Xing-Zhu; Liang, Xiao-Hua; Wang, Jin-Zhou; Yang, Jia-Wei; Fan, Rui-Rui; Liu, Ya-Qing; Dong, Yi-Fan; Wu, Feng; Zhao, Xiao-Yun

    2012-07-01

    Alpha particle X-ray spectrometer (APXS) is one of the payloads of Chang'E-3 lunar rover of China's Lunar Exploration Project. The present paper introduces briefly the components of APXS, how it works and its working environment on the lunar surface. The environmental temperature effect has been studied with simulations and experiments, and the results show that the temperature of the APXS sensor will be varying during the measuring on the lunar surface. And another experiment reveals that the energy resolution becomes worse if the sensor's temperature is varying. In this paper, a correction method based on Pearson's chi-squared test is presented. The method can improve the energy resolution when the sensor's temperature is varying. We have tested the method with the spectra acquired by APXS in the temperature varying period of Temperature Cycling Test, and the results show that the method is efficient and reliable.

  19. Alpha Particle X-Ray Spectrometer (APXS) on-board Chandrayaan-2 rover

    NASA Astrophysics Data System (ADS)

    Shanmugam, M.; Murty, S. V. S.; Acharya, Y. B.; Goyal, S. K.; Patel, Arpit R.; Shah, Bhumi; Hait, A. K.; Patinge, Aditya; Subrahmanyam, D.

    2014-11-01

    Alpha Particle X-ray Spectrometer (APXS) payload configuration for Chandrayaan-2 rover has been completed recently and fabrication of mechanical assembly, PCB layout design and fabrication are in progress. Here we present the design and performance evaluation of various subsystems developed for APXS payload. The low energy threshold of <1 keV and the energy resolution of ∼150 eV at 5.9 keV, for the Silicon Drift Detector (SDD), as measured from the developed APXS electronics is comparable to the standard spectrometers available off-the-shelf. We have also carried out experiments for measuring fluorescent X-ray spectrum from various standard samples from the USGS catalog irradiated by the laboratory X-ray source 241Am with 1 mCi activity. It is shown that intensities of various characteristic X-ray lines are well correlated with the respective elemental concentrations.

  20. [Near infrared distance sensing method for Chang'e-3 alpha particle X-ray spectrometer].

    PubMed

    Liang, Xiao-Hua; Wu, Ming-Ye; Wang, Huan-Yu; Peng, Wen-Xi; Zhang, Cheng-Mo; Cui, Xing-Zhu; Wang, Jin-Zhou; Zhang, Jia-Yu; Yang, Jia-Wei; Fan, Rui-Rui; Gao, Min; Liu, Ya-Qing; Zhang, Fei; Dong, Yi-Fan; Guo, Dong-Ya

    2013-05-01

    Alpha particle X-ray spectrometer (APXS) is one of the payloads of Chang'E-3 lunar rover, the scientific objective of which is in-situ observation and off-line analysis of lunar regolith and rock. Distance measurement is one of the important functions for APXS to perform effective detection on the moon. The present paper will first give a brief introduction to APXS, and then analyze the specific requirements and constraints to realize distance measurement, at last present a new near infrared distance sensing algorithm by using the inflection point of response curve. The theoretical analysis and the experiment results verify the feasibility of this algorithm. Although the theoretical analysis shows that this method is not sensitive to the operating temperature and reflectance of the lunar surface, the solar infrared radiant intensity may make photosensor saturation. The solutions are reducing the gain of device and avoiding direct exposure to sun light.

  1. Simulations of alpha particle ripple loss from the International Thermonuclear Experimental Reactor

    SciTech Connect

    Redi, M.H.; Budny, R.V.; McCune, D.C.; Miller, C.O.; White, R.B.

    1996-05-01

    Calculations of collisional stochastic ripple loss of alpha particles from the new 20 toroidal field (TF) coil International Thermonuclear Experimental Reactor (ITER) predict small alpha ripple losses, less than 0.4%, close to the loss calculated for the full current operation of the earlier 24 TF coil design. An analytic fit is obtained to the ITER ripple data field demonstrating the nonlinear height dependence of the ripple minimum for D shaped ripple contours. In contrast to alpha loss simulations for the Tokamak Fusion Test Reactor (TFTR), a simple Goldston, White, Boozer stochastic loss criterion ripple loss model is found to require an increased renormalization of the stochastic threshold {delta}{sub s}/{delta}{sub GWB} {ge} 1. Effects of collisions, sawtooth broadening and reversal of the grad B drift direction are included in the particle following simulations.

  2. Alpha particle transport in the presence of ballooning type electrostatic driftwaves

    NASA Astrophysics Data System (ADS)

    Nishimura, Y.; Huang, B.; Cheng, C. Z.

    2015-07-01

    Employing Hamiltonian mechanics, the transport of fusion born alpha particles in the presence of driftwave turbulence is investigated. An analytical turbulence model based on the toroidal drift eigenmode is employed for guiding center orbit-following calculations. It is shown that high energy particles are less susceptible to driftwave turbulence. The passing particle transport is due to overlapping of guiding center electric islands whose widths are inversely proportional to the square root of the parallel velocity. For trapped particles, through a coordinate transformation from the poloidal angle and the parallel velocity to the action-angle variables, the resonance between the bounce motion and the toroidal precession motion, which can cause secondary island formation in the phase space, is demonstrated.

  3. Etching characteristic studies for the detection of alpha particles in DAM-ADC nuclear track detector

    NASA Astrophysics Data System (ADS)

    El-Samman, H.; Ashry, A. H.; Arafa, W.; Abou-leila, M.; Abdalla, A. M.; Tsuruta, T.

    2014-09-01

    This study reports the characteristic studies for the detection of alpha particles in DAM-ADC nuclear track detector. Several important parameters that control the track formation such as, the bulk etch rate (VB), track etching rate (VT), dependence of VB and VT on etching concentration and temperature have been extensively studied. The activation energy (Eb) of the bulk etching rate for the DAM-ADC sheets has been calculated, the dependence of etching efficiency and sensitivity upon etchant concentrations and temperature has been investigated, registration efficiency of DAM-ADC detector etched at the optimum etching condition has been examined. The detailed studied results presented in this study provide various useful information about the mechanism of track formation in polymers.

  4. Orbit-averaged drift kinetic equation for the study of alpha-particle transport in tokamaks

    SciTech Connect

    Sager, G.T.; Miley, G.H. . Fusion Studies Lab.); Burrell, K.H. )

    1990-11-01

    Neoclassical transport of minority suprathermal alpha particles is investigated. This paper departs from previous investigations in that (a) the banana-width ordering parameter {rho}{sub {theta}}/L is not formally restricted to be a small parameter and (b) a linearized collision operator that retains the effects of pitch-angle scattering, electron and ion drag, and speed diffusion is used. A step model approximation for the large-aspect-ratio, circular-cross-section tokamak magnetic field is adopted to simplify the orbit-averaging procedure. Assuming that the suprathermal alphas are in the banana regime, an asymptotic expansion in {tau}{sub B}/{tau}{sub S} {much lt} l is carried out.

  5. Study of a sealed high gas pressure THGEM detector and response of alpha particle spectra

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Ning; Liu, Qian; Liu, Hong-Bang; Xie, Yi-Gang; Lyu, Xiao-Rui; Chen, Shi; Huang, Wen-Qian; Hong, Dao-Jin; Zheng, Yang-Heng

    2017-04-01

    A sealed high gas pressure detector working in pure argon is assembled. It consists of a 5 cm × 5 cm PCB THGEM (THick Gaseous Electron Multiplier). The detector structure and experimental setup are described. The performance under high pressure (2 atm) is examined, selecting optimal voltages for the ionization region and induction region. The dependence of the shape of alpha particle spectra measured with relative gas gain on gas pressure (1.3-2.0 atm) has been studied. Eight data sets of relative gas gain versus working voltage of THGEM, expressed by weighting field E/P, are normalized, consistent with theory. The results show that the air tightness of the chamber is good, measured by a sensitive barometer and checked with gas gain. The experimental results are compared with Monte Carlo simulation of energy deposition without gas gain involved. Supported by National Natural Science Foundation of China (11575193, 11205240, 11265003, U1431109)

  6. Collisional stochastic ripple diffusion of alpha particles and beam ions on TFTR

    SciTech Connect

    Redi, M.H.; Zarnstorff, M.C.; White, R.B.; Budny, R.V.; Janos, A.C.; Owens, D.K.; Schivell, J.F.; Scott, S.D.; Zweben, S.J.

    1995-07-01

    Predictions for ripple loss of fast ions from TFTR are investigated with a guiding center code including both collisional and ripple effects. A synergistic enhancement of fast ion diffusion is found for toroidal field ripple with collisions. The total loss is calculated to be roughly twice the sum of ripple and collisional losses calculated separately. Discrepancies between measurements and calculations of plasma beta at low current and large major radius are resolved when both effects are included for neutral beam ions. A 20--30% reduction in alpha particle heating is predicted for q{sub a} = 6--14, R = 2.6 m DT plasmas on TFTR due to first orbit and collisional stochastic ripple diffusion.

  7. An alpha particle experiment for chemical analysis of the Martian surface and atmosphere.

    NASA Technical Reports Server (NTRS)

    Economou, T. E.; Turkevich, A. L.; Patterson, J. H.

    1973-01-01

    An alpha particle experiment similar to the one performed successfully on the Surveyor lunar missions is described. It is designed to provide a chemical analysis of the Martian surface and atmosphere. Analyses of rocks of known and unknown compositions have been made under simulated Martian conditions. The accuracies attained are generally comparable to those of the Surveyor lunar analyses. Improvements have been achieved in determining carbon and oxygen, so that a few per cent of water or carbonates in rocks can be detected. Some aspects of the integration of such an experiment with the spacecraft, a possible mission profile, and some other problems associated with a soft-landing mission to Mars are discussed. The importance of such a chemical analysis experiment in answering current questions about the nature and history of Martian surface material and its suitability for life processes is presented.

  8. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited)

    SciTech Connect

    Sasao, M.; Tanaka, N.; Terai, K.; Kaneko, O.; Kisaki, M.; Kobuchi, T.; Tsumori, K.; Okamoto, A.; Kitajima, S.; Shinto, K.; Wada, M.

    2012-02-15

    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He{sup +} ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He{sup +} ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  9. Positron study of alpha particles effect on oxide-dispersion-strengthened steels

    NASA Astrophysics Data System (ADS)

    Veternikova, J.; Slugen, V.; Stancek, S.; Degmova, J.; Sabelova, V.; Sojak, S.; Petriska, M.; Hinca, R.

    2013-06-01

    Microstructure of oxide-dispersion-strengthened steels with different chromium content - MA 956 (20% Cr), ODM 751 (16% Cr) and MA 957 (14% Cr) were studied by positron annihilation lifetime spectroscopy. Samples were measured before and after helium ion implantation (He2+); therefore microstructure changes and radiation resistance to alpha particles of these steels were observed. Defect accumulation due to the radiation treatment was proven in all investigated materials. After ion implantation, mean lifetimes increased of about ~ 10 ps, which indicates significant change in microstructure. According to calculations of a defect volume from defect concentration and pre-dominant size of defects, ODM 751 is the most resistant steel in comparison to other investigated materials.

  10. Traversal of cells by radiation and absorbed fraction estimates for electrons and alpha particles

    SciTech Connect

    Eckerman, K.F.; Ryman, J.C.; Taner, A.C.; Kerr, G.D.

    1985-01-01

    Consideration of the pathlength which radiation traverses in a cell is central to algorithms for estimating energy deposition on a cellular level. Distinct pathlength distributions occur for radionuclides: (1) uniformly distributed in space about the cell (referred to as -randomness); (2) uniformly distributed on the surface of the cell (S-randomness); and (3) uniformly distributed within the cell volume (I-randomness). For a spherical cell of diameter d, the mean pathlengths are 2/3d, 1/2d, and 3/4d, respectively, for these distributions. Algorithms for simulating the path of radiation through a cell are presented and the absorbed fraction in the cell and its nucleus are tabulated for low energy electrons and alpha particles emitted on the surface of spherical cells. The algorithms and absorbed fraction data should be of interest to those concerned with the dosimetry of radionuclide-labeled monoclonal antibodies. 8 refs., 3 figs., 2 tabs.

  11. Characterization of coal and charcoal by alpha-particle and gamma-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Carrasco Lourtau, A. M.; Rubio Montero, M. P.; Jurado Vargas, M.

    2015-11-01

    Although coal and charcoal have similar physical and chemical characteristics, there are several crystallographic procedures used to distinguish and characterize them. But if the matrix is crushed, there is no standard procedure to distinguish coal from charcoal. In this work, a procedure to characterize coal and charcoal samples based on the radioactive content is proposed. The first assay is by gamma-ray spectrometry, which allows a part of the radioactive content to be determined rapidly and non-destructively. Then, alpha-particle spectrometry is applied to assay the content of those radionuclides which are difficult to determine precisely by gamma-ray spectrometry. This second technique requires prior chemical purification of the carbon sample in order to separate the corresponding radionuclides of interest.

  12. Scattering of 42-MeV alpha particles from Cu-65

    NASA Technical Reports Server (NTRS)

    Stewart, W. M.; Seth, K. K.

    1972-01-01

    The extended particle-core coupling model was used to predict the properties of low-lying levels of Cu-65. A 42-MeV alpha particle cyclotron beam was used for the experiment. The experiment included magnetic analysis of the incident beam and particle detection by lithium-drifted silicon semiconductors. Angular distributions were measured for 10 to 50 degrees in the center of mass system. Data was reduced by fitting the peaks with a skewed Gaussian function using a least squares computer program with a linear background search. The energy calibration of each system was done by pulsar, and the excitation energies are accurate to + or - 25 keV. The simple weak coupling model cannot account for the experimentally observed quantities of the low-lying levels of Cu-65. The extended particle-core calculation showed that the coupling is not weak and that considerable configuration mixing of the low-lying states results.

  13. /sup 212/Bismuth linked to an antipancreatic carcinoma antibody: model for alpha-particle-emitter radioimmunotherapy

    SciTech Connect

    Kurtzman, S.H.; Russo, A.; Mitchell, J.B.; DeGraff, W.; Sindelar, W.F.; Brechbiel, M.W.; Gansow, O.A.; Friedman, A.M.; Hines, J.J.; Gamson, J.

    1988-05-18

    For comparison of cytotoxicity from alpha-particle irradiation with that from conventional x-irradiation, /sup 212/Bi, an alpha-emitting radionuclide, was attached to a monoclonal antibody that recognizes a cell surface antigen on human pancreatic carcinoma cells. For a given level of survival, the /sup 212/Bi-antibody complex was found to be approximately 20 times more efficient in cell killing than x-irradiation and 5 times more cytotoxic when compared with the cytotoxicity of an antigen-negative cell line or an isotype-matched control antibody. High linear energy transfer radioimmunotherapy using alpha emitters linked to monoclonal antibodies may be useful in vivo and in vitro for selectively killing target cell populations, especially those resistant to other forms of treatment.

  14. Alpha-particle-induced charge collection in scaled dram cells with advanced structures

    NASA Astrophysics Data System (ADS)

    Takeuchi, K.; Aoki, M.; Watanabe, Y.; Itoh, K.

    1990-11-01

    Alpha-particle-induced charge collection in scaled DRAM cells with advanced structures are experimentally examined. It is concluded that the storage charge necessary to avoid the soft-errors, QC, is proportional to the diagonal length of the depletion region in most types of scaled DRAM cells including PMOS cells. For some types of DRAM cells, however, additional effects on the QC should be considered: (a) for DRAM cells with LOCOS isolation, the collected charge enhancement caused by the charge multiplication at the LOCOS junction edge becomes prominent with scaling, (b) for substrate-plate SPC (Sheat Plate Capacitor) trench cells, the potential slope towards the surface caused by the p+ plate regions enhance the charge collection, (c) for PMOS cells, the collected charge enhancement through the charge multiplication can be weaker than that in NMOS cells.

  15. Optical Model Potentials for {alpha}-Particles Scattering around the Coulomb Barrier on Medium-Mass Nuclei

    SciTech Connect

    Avrigeanu, M.; Roman, F.L.; Avrigeanu, V.

    2005-05-24

    Following a semi-microscopic and phenomenological analyses of {alpha}-particle elastic scattering on A{approx}100 nuclei at energies below 32 MeV, a regional optical potential is involved in (n,{alpha}) reaction cross-sections analysis for the stable Mo isotopes. Focus on the uncertainties in the OMP parameters found to describe the {alpha}-particle emission from excited compound residual nuclei is thus obtained, looking for understanding of the related questions on the basis of microscopic models.

  16. Effect of crystal thickness and geometry on the alpha-particle resolution of CsI (Tl)

    USGS Publications Warehouse

    Martinez, P.; Senftle, F.E.

    1960-01-01

    The resolution of CsI(Tl) for Po210 alpha particles has been measured as a function of crystal thickness. The best resolution of a 12;-in. diam cylindrical crystal was obtained for a thickness of 0.38 mm, and the effect of thickness on the resolution is discussed. Based on the proposed model, a conical crystal was designed, which yielded a line width of 1.8% for Po 210 alpha particles with a selected photomultiplier tube. ?? 1960 The American Institute of Physics.

  17. Measurement of ion cascade energies through resolution degradation of alpha particle microcalorimeters

    SciTech Connect

    Horansky, Robert D.; Stiehl, Gregory M.; Beall, James A.; Irwin, Kent D.; Ullom, Joel N.; Plionis, Alexander A.; Rabin, Michael W.

    2010-02-15

    Atomic cascades caused by ions impinging on bulk materials have remained of interest to the scientific community since their discovery by Goldstein in 1902. While considerable effort has been spent describing and, more recently, simulating these cascades, tools that can study individual events are lacking and several aspects of cascade behavior remain poorly known. These aspects include the material energies that determine cascade magnitude and the variation between cascades produced by monoenergetic ions. We have recently developed an alpha particle detector with a thermodynamic resolution near 100 eV full-width-at-half-maximum (FWHM) and an achieved resolution of 1.06 keV FWHM for 5.3 MeV particles. The detector relies on the absorption of particles by a bulk material and a thermal change in a superconducting thermometer. The achieved resolution of this detector provides the highest resolving power of any energy dispersive technique and a factor of 8 improvement over semiconductor detectors. The exquisite resolution can be directly applied to improved measurements of fundamental nuclear decays and nuclear forensics. In addition, we propose that the discrepancy between the thermodynamic and achieved resolution is due to fluctuations in lattice damage caused by ion-induced cascades in the absorber. Hence, this new detector is capable of measuring the kinetic energy converted to lattice damage in individual atomic cascades. This capability allows new measurements of cascade dynamics; for example, we find that the ubiquitous modeling program, SRIM, significantly underestimates the lattice damage caused in bulk tin by 5.3 MeV alpha particles.

  18. Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherapy.

    PubMed

    Zalutsky, M R; Vaidyanathan, G

    2000-09-01

    Targeted radiotherapy or endoradiotherapy is an appealing approach to cancer treatment because of the potential for delivering curative doses of radiation to tumor while sparing normal tissues. Radionuclides that decay by the emission of alpha-particles such as the heavy halogen astatine-211 (211At) offer the exciting prospect of combining cell-specific molecular targets with radiation having a range in tissue of only a few cell diameters. Herein, the radiobiological advantages of alpha-particle targeted radiotherapy will be reviewed, and the rationale for using 211At for this purpose will be described. The chemistry of astatine is similar to that of iodine; however, there are important differences which make the synthesis and evaluation of 211At-labeled compounds more challenging. Perhaps the most successful approach that has been developed involves the astatodemetallation of tin, silicon or mercury precursors. Astatine-211 labeled agents that have been investigated for targeted radiotherapy include [211At]astatide, 211At- labeled particulates, 211At-labeled naphthoquinone derivatives, 211At-labeled methylene blue, 211At-labeled DNA precursors, meta-[211At]astatobenzylguanidine, 211At-labeled biotin conjugates, 211At-labeled bisphosphonates, and 211At-labeled antibodies and antibody fragments. The status of these 211At-labeled compounds will be discussed in terms of their labeling chemistry, cytotoxicity in cell culture, as well as their tissue distribution and therapeutic efficacy in animal models of human cancers. Finally, an update on the status of the first clinical trial with an 211At-labeled targeted therapeutic, 211At-labeled chimeric anti-tenascin antibody 81C6, will be provided.

  19. Radiation risk to low fluences of alpha particles may be greater than we thought.

    PubMed

    Zhou, H; Suzuki, M; Randers-Pehrson, G; Vannais, D; Chen, G; Trosko, J E; Waldren, C A; Hei, T K

    2001-12-04

    Based principally on the cancer incidence found in survivors of the atomic bombs dropped in Hiroshima and Nagasaki, the International Commission on Radiation Protection (ICRP) and the United States National Council on Radiation Protection and Measurements (NCRP) have recommended that estimates of cancer risk for low dose exposure be extrapolated from higher doses by using a linear, no-threshold model. This recommendation is based on the dogma that the DNA of the nucleus is the main target for radiation-induced genotoxicity and, as fewer cells are directly damaged, the deleterious effects of radiation proportionally decline. In this paper, we used a precision microbeam to target an exact fraction (either 100% or < or =20%) of the cells in a confluent population and irradiated their nuclei with exactly one alpha particle each. We found that the frequencies of induced mutations and chromosomal changes in populations where some known fractions of nuclei were hit are consistent with non-hit cells contributing significantly to the response. In fact, irradiation of 10% of a confluent mammalian cell population with a single alpha particle per cell results in a mutant yield similar to that observed when all of the cells in the population are irradiated. This effect was significantly eliminated in cells pretreated with a 1 mM dose of octanol, which inhibits gap junction-mediated intercellular communication, or in cells carrying a dominant negative connexin 43 vector. The data imply that the relevant target for radiation mutagenesis is larger than an individual cell and suggest a need to reconsider the validity of the linear extrapolation in making risk estimates for low dose, high linear-energy-transfer (LET) radiation exposure.

  20. Spectroscopic performance studies of 4H-SiC detectors for fusion alpha-particle diagnostics

    NASA Astrophysics Data System (ADS)

    Raja, P. Vigneshwara; Akhtar, Jamil; Rao, C. V. S.; Vala, Sudhirsinh; Abhangi, Mitul; Murty, N. V. L. Narasimha

    2017-10-01

    The spectroscopic performances of Schottky barrier diodes (SBDs) and bulk detectors fabricated on n-type epitaxial 4H-SiC and high-purity semi-insulating (HPSI) 4H-SiC substrates are studied using 241Am alpha-particles. The spectral responses of the SBD detectors reveal a good energy resolution of 55 keV FWHM (∼1%) at -60 V, and ∼90% charge collection efficiency (CCE) at -100 V. The collected signal charge is stable with time in the SBD detectors; hence polarization effects are not noticed, indicating the good crystalline quality of the epitaxial 4H-SiC for detector applications. On the contrary, a poor energy resolution of 675 keV FWHM (12.3%) at -400 V and a maximum CCE of 28% at -500 V are obtained for the bulk detectors. Moreover, the CCE is found to decrease with time after the application of bias voltage implying the polarization phenomenon. Accordingly, the steady-state CCE of the bulk detectors at -500V is decreased to 13% from its initial value. The inferior spectral response of the bulk detectors is possibly due to the charge trapping and polarization effects. Furthermore, the neutron irradiation effects on the α-particle spectral response of the detectors are examined up to a fluence of 1011 n/cm2. To study the reliability of the SBD detectors at higher irradiation levels, the 14.1 MeV neutron irradiation induced changes in the electrical characteristics of the SBD are investigated up to a fluence of 2 × 1015n/cm2 by device simulations and the probable degradation in the detector response is analyzed. Finally, the possibility of employing 4H-SiC detectors for the fusion alpha-particle diagnostics is discussed.

  1. Alpha Particles and X Rays Interact in Inducing DNA Damage in U2OS Cells.

    PubMed

    Sollazzo, Alice; Brzozowska, Beata; Cheng, Lei; Lundholm, Lovisa; Haghdoost, Siamak; Scherthan, Harry; Wojcik, Andrzej

    2017-10-01

    Survivors of the atomic bombings of Hiroshima and Nagasaki are monitored for health effects within the Life Span Study (LSS). The LSS results represent the most important source of data about cancer effects from ionizing radiation exposure, which forms the foundation for the radiation protection system. One uncertainty connected to deriving universal risk factors from these results is related to the problem of mixed radiation qualities. The A-bomb explosions generated a mixed beam of the sparsely ionizing gamma radiation and densely ionizing neutrons. However, until now the possible interaction of the two radiation types of inducing biological effects has not been taken into consideration. The existence of such interaction would suggest that the application of risk factors derived from the LSS to predict cancer effects after pure gamma-ray irradiation (such as in the Fukushima prefecture) leads to an overestimation of risk. To analyze the possible interaction of radiation types, a mixed-beam exposure facility was constructed where cells can be exposed to sparsely ionizing X rays and densely ionizing alpha particles. U2OS cells were used, which are stably transfected with a plasmid coding for the DNA repair gene 53BP1 coupled to a gene coding for the green fluorescent protein (GFP). The induction and repair of DNA damage, which are known to be related to cancer induction, were analyzed. The results suggest that alpha particles and X rays interact, leading to cellular and possibly cancer effects, which cannot be accurately predicted based on assuming simple additivity of the individual mixed-beam components.

  2. Renal tubulointerstitial changes after internal irradiation with alpha-particle-emitting actinium daughters.

    PubMed

    Jaggi, Jaspreet Singh; Seshan, Surya V; McDevitt, Michael R; LaPerle, Krista; Sgouros, George; Scheinberg, David A

    2005-09-01

    The effect of external gamma irradiation on the kidneys is well described. However, the mechanisms of radiation nephropathy as a consequence of targeted radionuclide therapies are poorly understood. The functional and morphologic changes were studied chronologically (from 10 to 40 wk) in mouse kidneys after injection with an actinium-225 (225Ac) nanogenerator, a molecular-sized, antibody-targeted, in vivo generator of alpha-particle-emitting elements. Renal irradiation from free, radioactive daughters of 225Ac led to time-dependent reduction in renal function manifesting as increase in blood urea nitrogen. The histopathologic changes corresponded with the decline in renal function. Glomerular, tubular, and endothelial cell nuclear pleomorphism and focal tubular cell injury, lysis, and karyorrhexis were observed as early as 10 wk. Progressive thinning of the cortex as a result of widespread tubulolysis, collapsed tubules, glomerular crowding, decrease in glomerular cellularity, interstitial inflammation, and an elevated juxtaglomerular cell count were noted at 20 to 30 wk after treatment. By 35 to 40 wk, regeneration of simplified tubules with tubular atrophy and loss with focal, mild interstitial fibrosis had occurred. A lower juxtaglomerular cell count with focal cytoplasmic vacuolization, suggesting increased degranulation, was also observed in this period. A focal increase in tubular and interstitial cell TGF-beta1 expression starting at 20 wk, peaking at 25 wk, and later declining in intensity with mild increase in the extracellular matrix deposition was noticed. These findings suggest that internally delivered alpha-particle irradiation-induced loss of tubular epithelial cells triggers a chain of adaptive changes that result in progressive renal parenchymal damage accompanied by a loss of renal function. These findings are dissimilar to those seen after gamma or beta irradiation of kidneys.

  3. Measurement of ion cascade energies through resolution degradation of alpha particle microcalorimeters

    NASA Astrophysics Data System (ADS)

    Horansky, Robert D.; Stiehl, Gregory M.; Beall, James A.; Irwin, Kent D.; Plionis, Alexander A.; Rabin, Michael W.; Ullom, Joel N.

    2010-02-01

    Atomic cascades caused by ions impinging on bulk materials have remained of interest to the scientific community since their discovery by Goldstein in 1902. While considerable effort has been spent describing and, more recently, simulating these cascades, tools that can study individual events are lacking and several aspects of cascade behavior remain poorly known. These aspects include the material energies that determine cascade magnitude and the variation between cascades produced by monoenergetic ions. We have recently developed an alpha particle detector with a thermodynamic resolution near 100 eV full-width-at-half-maximum (FWHM) and an achieved resolution of 1.06 keV FWHM for 5.3 MeV particles. The detector relies on the absorption of particles by a bulk material and a thermal change in a superconducting thermometer. The achieved resolution of this detector provides the highest resolving power of any energy dispersive technique and a factor of 8 improvement over semiconductor detectors. The exquisite resolution can be directly applied to improved measurements of fundamental nuclear decays and nuclear forensics. In addition, we propose that the discrepancy between the thermodynamic and achieved resolution is due to fluctuations in lattice damage caused by ion-induced cascades in the absorber. Hence, this new detector is capable of measuring the kinetic energy converted to lattice damage in individual atomic cascades. This capability allows new measurements of cascade dynamics; for example, we find that the ubiquitous modeling program, SRIM, significantly underestimates the lattice damage caused in bulk tin by 5.3 MeV alpha particles.

  4. Alpha particle spectra in coincidence with normal and superdeformed states in {sup 150}Tb

    SciTech Connect

    Viesti, G.; Lunardon, M.; Bazzacco, D. |

    1996-12-31

    The study of correlations between particle evaporation from highly excited compound nuclei at large angular momenta and the states in the final evaporation residues (ER) is a field of investigation which has been opened, in the last years, with the advent of the new large {gamma}-ray arrays. It is now possible to correlate the evaporation spectra to various bands with shapes ranging from spherical to superdeformed (SD) in the same final nucleus. It is generally accepted that the particle evaporation from the compound nucleus is chaotic and that only in the near-yrast {gamma} cascade, where the feeding of different classes of states takes place, the ordered motion is restored. The sensitivity of the particle spectra on the feeding of specific states in the residual nuclei can be taken as an indication that additional degrees of freedom might be important in the evaporation process or that particular regions of the phase space open to the decay populate preferentially some selected structures in the final cold nucleus. This latter point is important for the understanding of the feeding mechanism of SD states. Several experiments performed so far did not find a clear dependence of the shapes of the particle spectra on the excited states having different deformations in the ER. For example, the proton spectra in coincidence with transitions in the SD bands of {sup 133}Nd and {sup 152}Dy nuclei were found to be similar to those in coincidence with transitions in the normal deformed (ND) bands. Alpha particles have been proposed since long as a sensitive probe of the deformation of the emitting nucleus. Results are presented here of an experiment in which the authors have measured the energy spectra of alpha particles associated with different classes of states (ND and SD) in the {sup 150}Tb nucleus populated in the reaction {sup 37}Cl({sup 120}Sn, {alpha}3n{gamma}){sup 150}Tb.

  5. Selective Alpha-Particle Mediated Depletion of Tumor Vasculature with Vascular Normalization

    PubMed Central

    Seshan, Surya V.; Kappel, Barry J.; Chattopadhyay, Debjit; May, Chad; McDevitt, Michael R.; Nolan, Daniel; Mittal, Vivek; Benezra, Robert; Scheinberg, David A.

    2007-01-01

    Background Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. Methodology and Principal Findings Actinium-225 (225Ac)-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, 225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in 225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following 225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following 225Ac-E4G10 therapy. Conclusions The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy. PMID:17342201

  6. Cytotoxicity of alpha-particle-emitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia.

    PubMed Central

    Hauck, M. L.; Larsen, R. H.; Welsh, P. C.; Zalutsky, M. R.

    1998-01-01

    The high linear energy transfer, alpha-particle-emitting radionuclide astatine-211 (211At) is of interest for certain therapeutic applications; however, because of the 55- to 70-microm path length of its alpha-particles, achieving homogeneous tracer distribution is critical. Hyperthermia may enhance the therapeutic efficacy of alpha-particle endoradiotherapy if it can improve tracer distribution. In this study, we have investigated whether hyperthermia increased the cytotoxicity of an 211At-labelled monoclonal antibody (MAb) in tumour spheroids with a radius (approximately 100 microm) greater than the range of 211At alpha-particles. Hyperthermia for 1 h at 42 degrees C was used because this treatment itself resulted in no regrowth delay. Radiolabelled chimeric MAb 81C6 reactive with the extracellular matrix antigen tenascin was added to spheroids grown from the D-247 MG human glioma cell line at activity concentrations ranging from 0.125 to 250 kBq ml(-1). A significant regrowth delay was observed at 125 and 250 kBq ml(-1) in both hyperthermia-treated and untreated spheroids. For groups receiving hyperthermia, no increase in cytotoxicity was seen compared with normothermic controls at any activity concentration. These results and those from autoradiographs indicate that hyperthermia at 42 degrees C for 1 h had no significant effect on the uptake or distribution of this antitenascin MAb in D-247 MG spheroids. Images Figure 4 Figure 5 PMID:9514054

  7. Cytotoxicity of alpha-particle-emitting astatine-211-labelled antibody in tumour spheroids: no effect of hyperthermia.

    PubMed

    Hauck, M L; Larsen, R H; Welsh, P C; Zalutsky, M R

    1998-03-01

    The high linear energy transfer, alpha-particle-emitting radionuclide astatine-211 (211At) is of interest for certain therapeutic applications; however, because of the 55- to 70-microm path length of its alpha-particles, achieving homogeneous tracer distribution is critical. Hyperthermia may enhance the therapeutic efficacy of alpha-particle endoradiotherapy if it can improve tracer distribution. In this study, we have investigated whether hyperthermia increased the cytotoxicity of an 211At-labelled monoclonal antibody (MAb) in tumour spheroids with a radius (approximately 100 microm) greater than the range of 211At alpha-particles. Hyperthermia for 1 h at 42 degrees C was used because this treatment itself resulted in no regrowth delay. Radiolabelled chimeric MAb 81C6 reactive with the extracellular matrix antigen tenascin was added to spheroids grown from the D-247 MG human glioma cell line at activity concentrations ranging from 0.125 to 250 kBq ml(-1). A significant regrowth delay was observed at 125 and 250 kBq ml(-1) in both hyperthermia-treated and untreated spheroids. For groups receiving hyperthermia, no increase in cytotoxicity was seen compared with normothermic controls at any activity concentration. These results and those from autoradiographs indicate that hyperthermia at 42 degrees C for 1 h had no significant effect on the uptake or distribution of this antitenascin MAb in D-247 MG spheroids.

  8. Evaluate an impact of incident alpha particle and gamma ray on human blood components: A comparison study

    SciTech Connect

    Ismail, Asaad H.; Yaba, Sardar P.; Ismail, Haider J.

    2015-07-01

    An impact of alpha and gamma irradiation on human blood components have been evaluated and compared for healthy blood samples (male and females). Irradiation dose and time of irradiation calibrated and considered as a main comparison factors. Density of blood components measured for each in vitro irradiation before and after irradiation for males and females. Survey radiation dosimeter (Inspector Exp) and nuclear track detectors type CR-39 used to evaluate exposure dose rate and incident density of alpha particles, respectively. Experiment results verified that the irradiation of blood makes ionizing of blood components, either alpha or gamma irradiation dose, and the impacts of ionizing radiation were relativity for WBC, RBC, and PLT. Limited irradiation doses of 1-5 μSv/hr considered as a low radiation dose of alpha and gamma radiation sources ({sup 226}Ra, and {sup 137}Cs). Density of alpha particles accumulated on the blood surface was 34 (alpha particle/cm{sup 2}) for selected dose of incident alpha particle. Optimum value of irradiation dose and time of irradiation were 5 μSv/hr and 4 second for males and females. On the other hands, the values of irradiation dose and time of irradiation were 2.1 μSv/hr and 2 second for males and females for gamma irradiation. Thus, present results demonstrated that densities of RBC and WBC cells are capable of inducing reproduction in vitro for both type of irradiation. (authors)

  9. Lower hybrid instability driven by mono-energy {alpha}-particles with finite pitch angle spread in a plasma

    SciTech Connect

    Kumar, Pawan; Singh, Vishwesh; Tripathi, V. K.

    2013-02-15

    A kinetic formalism of lower hybrid wave instability, driven by mono-energy {alpha}-particles with finite pitch angle spread, is developed. The instability arises through cyclotron resonance interaction with high cyclotron harmonics of {alpha}-particles. The {alpha}-particles produced in D-T fusion reactions have huge Larmor radii ({approx}10 cm) as compared to the wavelength of the lower hybrid wave, whereas their speed is an order of magnitude smaller than the speed of light in vacuum. As a result, large parallel phase velocity lower hybrid waves, suitable for current drive in tokamak, are driven unstable via coupling to high cyclotron harmonics. The growth rate decreases with increase in pitch angle spread of the beam. At typical electron density of {approx}10{sup 19} m{sup -3}, magnetic field {approx}4 Tesla and {alpha}-particle concentration {approx}0.1%, the large parallel phase velocity lower hybrid wave grows on the time scale of 20 ion cyclotron periods. The growth rate decreases with plasma density.

  10. Micronuclei in human peripheral blood lymphocytes exposed to mixed beams of X-rays and alpha particles.

    PubMed

    Staaf, Elina; Brehwens, Karl; Haghdoost, Siamak; Nievaart, Sander; Pachnerova-Brabcova, Katerina; Czub, Joanna; Braziewicz, Janusz; Wojcik, Andrzej

    2012-08-01

    The purpose of this study was to analyse the cytogenetic effect of exposing human peripheral blood lymphocytes (PBL) to a mixed beam of alpha particles and X-rays. Whole blood collected from one donor was exposed to different doses of alpha particles ((241)Am), X-rays and a combination of both. All exposures were carried out at 37 °C. Three independent experiments were performed. Micronuclei (MN) in binucleated PBL were scored as the endpoint. Moreover, the size of MN was measured. The results show that exposure of PBL to a mixed beam of high and low linear energy transfer radiation led to significantly higher than expected frequencies of MN. The measurement of MN size did not reveal any differences between the effect of alpha particles and mixed beam. In conclusion, a combined exposure of PBL to alpha particles and X-rays leads to a synergistic effect as measured by the frequency of MN. From the analysis of MN distributions, we conclude that the increase was due to an impaired repair of X-ray-induced DNA damage.

  11. Low doses of alpha particles do not induce sister chromatid exchanges in bystander Chinese hamster cells defective in homologous recombination

    SciTech Connect

    Nagasawa, H; Wilson, P F; Chen, D J; Thompson, L H; Bedford, J S; Little, J B

    2007-10-26

    We reported previously that the homologous recombinational repair (HRR)-deficient Chinese hamster mutant cell line irs3 (deficient in the Rad51 paralog Rad51C) showed only a 50% spontaneous frequency of sister chromatid exchange (SCE) as compared to parental wild-type V79 cells. Furthermore, when irradiated with very low doses of alpha particles, SCEs were not induced in irs3 cells, as compared to a prominent bystander effect observed in V79 cells (Nagasawa et al., Radiat. Res. 164, 141-147, 2005). In the present study, we examined additional Chinese hamster cell lines deficient in the Rad51 paralogs Rad51C, Rad51D, Xrcc2, and Xrcc3 as well as another essential HRR protein, Brca2. Spontaneous SCE frequencies in non-irradiated wild-type cell lines CHO, AA8 and V79 were 0.33 SCE/chromosome, whereas two Rad51C-deficient cell lines showed only 0.16 SCE/chromosome. Spontaneous SCE frequencies in cell lines defective in Rad51D, Xrcc2, Xrcc3, and Brca2 ranged from 0.23-0.33 SCE/chromosome, 0-30% lower than wild-type cells. SCEs were induced significantly 20-50% above spontaneous levels in wild-type cells exposed to a mean dose of 1.3 mGy of alpha particles (<1% of nuclei traversed by an alpha particle). However, induction of SCEs above spontaneous levels was minimal or absent after {alpha}-particle irradiation in all of the HRR-deficient cell lines. These data suggest that Brca2 and the Rad51 paralogs contribute to DNA damage repair processes induced in bystander cells (presumably oxidative damage repair in S-phase cells) following irradiation with very low doses of alpha particles.

  12. Radiation-induced genomic instability: delayed mutagenic and cytogenetic effects of X rays and alpha particles.

    PubMed

    Little, J B; Nagasawa, H; Pfenning, T; Vetrovs, H

    1997-10-01

    The frequency of mutations at the Hprt locus was measured in clonal populations of Chinese hamster ovary cells derived from single cells surviving exposure to 0-12 Gy of X rays or 2 Gy of alpha particles. Approximately 8-9% of 446 clonal populations examined 23 population doublings after irradiation showed high frequencies of late-arising mutations as indicated by mutant fractions 10(2)-10(4)-fold above background. The frequency with which such clones occurred was similar for alpha-particle irradiation and X irradiation, with no apparent dose dependence for X irradiation over the range of 4-12 Gy. The molecular structure of Hprt mutations was determined by analysis by multiplex polymerase chain reaction of all nine exons. Of mutations induced directly after exposure to X rays, 75% involved partial or total gene deletions. Only 19-23% of late-arising (delayed) mutations were associated with deletions, the preponderance of these being partial deletions involving one or two exons. This spectrum was very similar to that for spontaneously arising mutations. To determine whether delayed mutations were non-clonal, the spectrum of exons deleted was examined among 29 mutants with partial deletions derived from a single clonal population. The results indicated that at least 15 of these mutants arose independently. To examine the relationship between the occurrence of delayed mutations and chromosomal instability, 60 Hprt mutant subclones isolated from a clonal population showing a high frequency of delayed mutations were serially cultivated in vitro. Of these, 14 showed a slow-growth phenotype with a high frequency of polyploid cells (10-38%) and a markedly enhanced frequency of non-clonal chromosomal rearrangements including both chromosome-type and chromatid-type aberrations. These clones also showed a 3- to 30-fold increase in the frequency of ouabain-resistant mutations; no ouabain-resistant mutants were induced directly by X irradiation. These results suggest that among

  13. Cytotoxicity of alpha-particle-emitting m-[211At]astatobenzylguanidine on human neuroblastoma cells.

    PubMed

    Strickland, D K; Vaidyanathan, G; Zalutsky, M R

    1994-10-15

    Radioiodinated m-iodobenzylguanidine (MIBG) has been used with only limited success for the treatment of neural crest tumors including neuroblastoma. Use of an MIBG analogue labeled with 211At could be advantageous because of the shorter range and higher linear energy transfer of its alpha-particle emissions compared with the beta-particles emitted by 131I. The potential utility of m-[211At]astatobenzylguanidine for the treatment of neuroblastoma was investigated in vitro using 3 human neuroblastoma cell lines known to take up MIBG [SK-N-SH, SK-N-BE(2C), and SK-SY5Y] and a control line lacking MIBG uptake (SK-N-MC). Maximum binding of m-[211At]astatobenzylguanidine ([211At] MABG) to 5 x 10(5) cells after a 2-h incubation ranged from 61% for SK-N-SH to 1% for SK-N-MC. Using a limiting dilution clonogenic assay, the cytotoxicity for SK-N-SH cells of [211At]MABG was compared with [211At]astatide and no-carrier-added [131I]MIBG. A D0 of 5.8 nCi/ml was calculated for [211At]MABG compared with 482 nCi/ml for [211At] astatide, indicating a more than 80-fold enhanced cytotoxicity for the specifically targeted alpha-particles of [211At]MABG. For [211At]MABG, the D0 corresponded to only 6.4 211At atoms bound/cell compared with 9000 atoms/cell for no-carrier-added [131I]MIBG. The D0 values measured for [211At]MABG treatment of SK-SY5Y, SK-N-BE(2C), and SK-N-MC cells were 50, 5.8, and 11,043 nCi/ml, respectively, corresponding to 7.04, 6.46, and 171.79 211At atoms bound/cell. In conclusion, these results have demonstrated that [211At]MABG is considerably more cytotoxic than [131I]MIBG and that [211At]MABG could have great potential as a radiotherapeutic agent for the treatment of neuroblastoma.

  14. Engineered liposomes for potential alpha-particle therapy of metastatic cancer.

    PubMed

    Sofou, Stavroula; Thomas, James L; Lin, Hung-yin; McDevitt, Michael R; Scheinberg, David A; Sgouros, George

    2004-02-01

    Disseminated, metastatic cancer is frequently incurable. Targeted alpha-particle emitters hold great promise as therapeutic agents for disseminated disease. (225)Ac is a radionuclide generator that has a 10-d half-life and results in alpha-emitting daughter elements ((221)Fr, (217)At, (213)Bi) that lead to the emission of a total of 4 alpha-particles. The aim of this study was to develop approaches for stable and controlled targeting of (225)Ac to sites of disseminated tumor metastases. Liposomes with encapsulated (225)Ac were developed to retain the potentially toxic daughters at the tumor site. (225)Ac was passively entrapped in liposomes. To experimentally test the retention of actinium and its daughters by the liposomes, the gamma-emissions of (213)Bi were measured in liposome fractions, which were separated from the parent liposome population and the free radionuclides, at different times. Under equilibrium conditions the decay rate of (213)Bi was used to determine the concentration of (225)Ac. Measurements of the kinetics of (213)Bi activity were performed to estimate the entrapment of (213)Bi, the last alpha-emitting daughter in the decay chain. Stable pegylated phosphatidylcholine-cholesterol liposomes of different sizes and charge were prepared. Multiple (more than 2) (225)Ac atoms were successfully entrapped per liposome. (225)Ac retention by zwitterionic liposomes was more than 88% over 30 d. Retention by cationic liposomes was lower. A theoretical calculation showed that for satisfactory (213)Bi retention (>50%), liposomes of relatively large sizes (>650 nm in diameter) are required. (213)Bi retention was experimentally verified to be liposome-size dependent. For large liposomes, the measured (213)Bi retention was lower than theoretically predicted (less than 10%). This work supports the hypothesis that it may be possible to develop (225)Ac-based therapies by delivering multiple (225)Ac atoms in liposomes. Improvements in the retention of (225)Ac

  15. Characterization of compositional modifications in metal-organic frameworks using carbon and alpha particle microbeams

    NASA Astrophysics Data System (ADS)

    Paneta, V.; Fluch, U.; Petersson, P.; Ott, S.; Primetzhofer, D.

    2017-08-01

    Zirconium-oxide based metal-organic frameworks (MOFs) were grown on p-type Si wafers. A modified linker molecule containing iodine was introduced by post synthetic exchange (PSE). Samples have been studied using Rutherford Backscattering Spectrometry (RBS) and Particle Induced X-ray Emission (PIXE) techniques, employing the 5 MV 15SDH-2 Pelletron Tandem accelerator at the Ångström laboratory. The degree of post synthetic uptake of the iodine-containing linker has been investigated with both a broad beam and a focused beam of carbon and alpha particles targeting different kind of MOF crystals which were of ∼1-10 μm in size, depending on the linker used. Iodine concentrations in MOF crystallites were also measured by Nuclear Magnetic Resonance Spectroscopy (NMR) and are compared to the RBS results. In parallel to the ion beam studies, samples were investigated by Scanning Electron Microscopy (SEM) to quantify possible crystallite clustering, develop optimum sample preparation routines and to characterize the potential ion beam induced sample damage and its dependence on different parameters. Based on these results the reliability and accuracy of ion beam data is assessed.

  16. Alpha particle density and energy distributions in tandem mirrors using Monte-Carlo techniques

    SciTech Connect

    Kerns, J.A.

    1986-05-01

    We have simulated the alpha thermalization process using a Monte-Carlo technique, in which the alpha guiding center is followed between simulated collisions and Spitzer's collision model is used for the alpha-plasma interaction. Monte-Carlo techniques are used to determine the alpha radial birth position, the alpha particle position at a collision, and the angle scatter and dispersion at a collision. The plasma is modeled as a hot reacting core, surrounded by a cold halo plasma (T approx.50 eV). Alpha orbits that intersect the halo lose 90% of their energy to the halo electrons because of the halo drag, which is ten times greater than the drag in the core. The uneven drag across the alpha orbit also produces an outward, radial, guiding center drift. This drag drift is dependent on the plasma density and temperature radial profiles. We have modeled these profiles and have specifically studied a single-scale-length model, in which the density scale length (r/sub pD/) equals the temperature scale length (r/sub pT/), and a two-scale-length model, in which r/sub pD//r/sub pT/ = 1.1.

  17. Lognormal distribution of cellular uptake of radioactivity: statistical analysis of alpha-particle track autoradiography.

    PubMed

    Neti, Prasad V S V; Howell, Roger W

    2008-06-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a lognormal (LN) distribution function (J Nucl Med. 2006;47:1049-1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. The measured distributions of alpha-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained lognormal. The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution.

  18. CHARGE-EXCHANGE LIMITS ON LOW-ENERGY {alpha}-PARTICLE FLUXES IN SOLAR FLARES

    SciTech Connect

    Hudson, H. S.; Fletcher, L.; MacKinnon, A. L.; Woods, T. N.

    2012-06-20

    This paper reports on a search for flare emission via charge-exchange radiation in the wings of the Ly{alpha} line of He II at 304 A, as originally suggested for hydrogen by Orrall and Zirker. Via this mechanism a primary {alpha} particle that penetrates into the neutral chromosphere can pick up an atomic electron and emit in the He II bound-bound spectrum before it stops. The Extreme-ultraviolet Variability Experiment on board the Solar Dynamics Observatory gives us our first chance to search for this effect systematically. The Orrall-Zirker mechanism has great importance for flare physics because of the essential roles that particle acceleration plays; this mechanism is one of the few proposed that would allow remote sensing of primary accelerated particles below a few MeV nucleon{sup -1}. We study 10 events in total, including the {gamma}-ray events SOL2010-06-12 (M2.0) and SOL2011-02-24 (M3.5) (the latter a limb flare), seven X-class flares, and one prominent M-class event that produced solar energetic particles. The absence of charge-exchange line wings may point to a need for more complete theoretical work. Some of the events do have broadband signatures, which could correspond to continua from other origins, but these do not have the spectral signatures expected from the Orrall-Zirker mechanism.

  19. Effects of magnetic ripple on 3D equilibrium and alpha particle confinement in the European DEMO

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Cooper, W. A.; Fasoli, A.; Graves, J. P.

    2016-11-01

    An assessment of alpha particle confinement is performed in the European DEMO reference design. 3D MHD equilibria with nested flux-surfaces and single magnetic axis are obtained with the VMEC free-boundary code, thereby including the plasma response to the magnetic ripple created by the finite number of TF coils. Populations of fusion alphas that are consistent with the equilibrium profiles are evolved until slowing-down with the VENUS-LEVIS orbit code in the guiding-centre approximation. Fast ion losses through the last-closed flux-surface are numerically evaluated with two ripple models: (1) using the 3D equilibrium and (2) algebraically adding the non-axisymmetric ripple perturbation to the 2D equilibrium. By virtue of the small ripple field and its non-resonant nature, both models quantitatively agree. Differences are however noted in the toroidal location of particles losses on the last-closed flux-surface, which in the first case is 3D and in the second not. Superbanana transport, i.e. ripple-well trapping and separatrix crossing, is expected to be the dominant loss mechanism, the strongest effect on alphas being between 100-200 KeV. Above this, stochastic ripple diffusion is responsible for a rather weak loss rate, as the stochastisation threshold is observed numerically to be higher than analytic estimates. The level of ripple in the current 18 TF coil design of the European DEMO is not found to be detrimental to fusion alpha confinement.

  20. The Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev Crater and Calibration Report

    NASA Technical Reports Server (NTRS)

    Gellert, R.; Rieder, R.; Brueckner, J.; Clark, B.; Dreibus, G.; Klingelhoefer, G.; Lugmair, G.; Ming, D.; Waenke, H.; Yen, A.; Zipfel, J.; Squyres, S.

    2006-01-01

    The chemical composition of rocks and soils on Mars analyzed during the Mars Exploration Rover Spirit Mission was determined by X-ray analyses with the Alpha Particle X-Ray Spectrometer (APXS). Details of the data analysis method and the instrument calibration are presented. Measurements performed on Mars to address geometry effects and background contributions are shown. Cross calibration measurements among several instrument sensors and sources are discussed. An unintentional swap of the two flight instruments is evaluated. New concentration data acquired during the first 470 sols of rover Spirit in Gusev Crater are presented. There are two geological regions, the Gusev plains and the Columbia Hills. The plains contain soils that are very similar to previous landing sites on Mars. A meteoritic component in the soil is identified. Rocks in the plains revealed thin weathering rinds. The underlying abraded rock was classified as primitive basalt. One of these rocks contained significant Br that is probably associated with vein-filling material of different composition. One of the trenches showed large subsurface enrichments of Mg, S, and Br. Disturbed soils and rocks in the Columbia Hills revealed different elemental compositions. These rocks are significantly weathered and enriched in mobile elements, such as P, S, Cl, or Br. Even abraded rock surfaces have high Br concentrations. Thus, in contrast to the rocks and soils in the Gusev Plains, the Columbia Hills material shows more significant evidence of ancient aqueous alteration.

  1. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents.

    PubMed

    Henriksen, Gjermund; Bruland, Oyvind S; Larsen, Roy H

    2004-01-01

    The present study explores the use of alpha-particle-emitting, bone-seeking agents as candidates for targeted radiotherapy. Actinium and thorium 1,4,7,10 tetraazacyclododecane N,N',N'',N''' 1,4,7,10-tetra(methylene) phosphonic acid (DOTMP) and thorium-diethylene triamine N,N',N'' penta(methylene) phosphonic acid (DTMP) were prepared and their biodistribution evaluated in conventional Balb/C mice at four hours after injection. All three bone-seeking agents showed a high uptake in bone and a low uptake in soft tissues. Among the soft tissue organs, only kidney had a relatively high uptake. The femur/kidney ratios for 227Th-DTMP, 228-Ac-DOTMP and 227Th-DOTMP were 14.2, 7.6 and 6.0, respectively. A higher liver uptake of 228Ac-DOTMP was seen than for 227Th-DTMP and 227Th-DOTMP. This suggests that some demetallation of the 228Ac-DOTMP complex had occurred. The results indicate that 225Ac-DOTMP, 227Th-DOTMP and 227Th-DTMP have promising properties as potential therapeutic bone-seeking agents.

  2. Experimental detection of alpha-particles from the radioactive decay of natural bismuth.

    PubMed

    de Marcillac, Pierre; Coron, Noël; Dambier, Gérard; Leblanc, Jacques; Moalic, Jean-Pierre

    2003-04-24

    The only naturally occurring isotope of bismuth, 209Bi, is commonly regarded as the heaviest stable isotope. But like most other heavy nuclei abundant in nature and characterized by an exceptionally long lifetime, it is metastable with respect to alpha-decay. However, the decay usually evades observation because the nuclear structure of 209Bi gives rise to an extremely low decay probability and, moreover, generates low-energy alpha-particles difficult to detect. Indeed, dedicated experiments attempting to record the alpha-decay of 209Bi in nuclear emulsions failed. However, scintillating bolometers operated at temperatures below 100 mK offer improved detection efficiency and sensitivity, whereas a broad palette of targets could be available. Here we report the successful use of this method for the unambiguous detection of 209Bi alpha-decay in bismuth germanate detectors cooled to 20 mK. We measure an energy release of 3,137 +/- 1 (statistical) +/- 2 (systematic) keV and a half-life of (1.9 +/- 0.2) x 10(19) yr, which are in agreement with expected values.

  3. Scattering of 42 MeV alpha particles from copper-65

    NASA Technical Reports Server (NTRS)

    Stewart, W. M.; Seth, K. K.

    1973-01-01

    Beams of 42-MeV alpha particles were elastically and inelastically scattered from Cu-65 in an attempt to excite states which may be described in terms of an excited core model. Angular distributions were measured for 17 excited states. Seven of the excited states had angular distributions similar to a core quadrupole excitation and eight of the excited states had angular distributions similar to a core octupole excitation. The excited state at 2.858 MeV had an angular distribution which suggests that it may have results from the particle coupling to a two-phonon core state. An extended particle-core coupling calculation was performed and the predicted energy levels and reduced transition probabilities compared to the experimental data. The low lying levels are described quite well and the wavefunctions of these states explain the large spectroscopic factors measured in stripping reactions. For Cu-65 the coupling of the particle to the core is no larger weak as in the simpler model, and configuration mixing results.

  4. Log Normal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of Alpha Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2008-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log normal distribution function (J Nucl Med 47, 6 (2006) 1049-1058) with the aid of an autoradiographic approach. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analyses of these data. Methods The measured distributions of alpha particle tracks per cell were subjected to statistical tests with Poisson (P), log normal (LN), and Poisson – log normal (P – LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL 210Po-citrate. When cells were exposed to 67 kBq/mL, the P – LN distribution function gave a better fit, however, the underlying activity distribution remained log normal. Conclusions The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:16741316

  5. Gamma-Ray, Neutron, and Alpha-Particle Spectrometers for the Lunar Prospector mission

    NASA Astrophysics Data System (ADS)

    Feldman, W. C.; Ahola, K.; Barraclough, B. L.; Belian, R. D.; Black, R. K.; Elphic, R. C.; Everett, D. T.; Fuller, K. R.; Kroesche, J.; Lawrence, D. J.; Lawson, S. L.; Longmire, J. L.; Maurice, S.; Miller, M. C.; Prettyman, T. H.; Storms, S. A.; Thornton, G. W.

    2004-07-01

    Gamma-Ray, Neutron, and Alpha-Particle Spectrometers (GRS, NS, and APS, respectively) were included in the payload complement of Lunar Prospector (LP). Specific objectives of the GRS were to map abundances of Fe, Ti, Th, K, Si, O, Mg, Al, and Ca to depths of 20 cm. Those of the NS were to search for water ice to depths of 100 cm near the lunar poles and to map regolith maturity. Objectives of the APS were to search for, map, and provide a measure of the time history of gaseous release events at the lunar surface. The purpose of this paper is to document the mechanical, analog electronic, digital electronic, and microprocessor designs of the suite of spectrometers, present a representative sample of the calibrated response functions of all sensors, and document the operation of all three LP spectrometers in sufficient detail as to enable the full knowledgeable use of all data products that were archived in the Planetary Data System for future use by the planetary-science community.

  6. Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak

    SciTech Connect

    Wang, Jianbing Zhang, Xianmei Yu, Limin Zhao, Xiang

    2014-02-12

    Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the α particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient γ{sub α} of LH waves due to α particles. Results show that, the γ{sub α} increases with the parallel refraction index n{sub ∥} while deceases with increasing the frequency of LH waves ω{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of γ{sub α} when n{sub e}≈8×10{sup 19}m{sup −3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, η ≈ 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.

  7. Fabrication, characterization and simulation of 4H-SiC Schottky diode alpha particle detectors for pyroprocessing actinide monitoring

    NASA Astrophysics Data System (ADS)

    Garcia, Timothy Richard

    Pyroprocessing is a method of using high-temperature molten salts and electric fields to separate and collect fuel isotopes of used nuclear fuel. It has been has been tested in the U.S. at Idaho National Laboratory as a key step in closing the nuclear fuel cycle. One technical problem with the pyroprocessing method is a lack of knowledge regarding the actinide concentrations in the salt bath during operation, since on-line techniques for measuring these concentrations are not presently available. 4H-SiC Schottky diode detectors can potentially fulfill this need. Such detectors would operate in contact with the molten salt, and measure concentrations via alpha-particle spectroscopy. This work seeks to fabricate and characterize 4H-SiC Schottky diode detectors at high temperature, model the alpha particle spectrum expected in a molten salt, and model the operation of the detectors to confirm the physics of operation is as expected. In this work, 4H-SiC Schottky diode detectors were fabricated at OSU Nanotech West. After fabrication, these detectors were characterized using both I-V curves and Am-241 alpha-particle energy spectra. All measurements were made as a function of temperature, from room temperature up to 500°C. The average energy required to create an electron-hole pair was observed to decrease with an increase of temperature, due to a decrease of both the 4H-SiC bandgap and non-linear energy loss terms. Furthermore, the FWHM of the spectra was observed to be dependent on the leakage current at a certain temperature, and not dependent on the temperature itself. Secondly, the alpha particle energy spectrum in the pyroprocessing environment was modeled using SRIM. The molten salt was modeled in 3 different geometries, with or without a protective cover material on top of the detector. Due to the loss of alpha-particle energy in the molten salt itself, a high-energy alpha emitter may completely cover the spectrum from a lower-energy alpha emitter. Each of the

  8. Ion Beam Bombardment of Biological Tissue

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Yu, L. D.; Vilaithong, T.; Phanchaisri, B.; Anuntalabhochai, S.; Brown, I. G.

    2003-10-01

    While ion implantation has become a well-established technique for the surface modification of inorganic materials, the ion bombardment of cellular tissue has received little research attention. A program in ion beam bioengineering has been initiated at Chiang Mai University, and the ion beam induced transfer of plasmid DNA molecules into bacterial cells (E. coli) has been demonstrated. Subsequent work has been directed toward exploration of ion beam bombardment of plant cells in an effort to understand the possible mechanisms involved in the DNA transfer. In particular, ion beam bombardment of onion cells was carried out and the effects investigated. Among the novel features observed is the formation of "microcraters" - sub-micron surface features that could provide a pathway for the transfer of large molecules into the interior cell region. Here we describe our onion skin ion bombardment investigations.

  9. Computation of Cosmic Ray Ionization and Dose at Mars: a Comparison of HZETRN and Planetocosmics for Proton and Alpha Particles

    NASA Technical Reports Server (NTRS)

    Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.

    2014-01-01

    The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

  10. Alpha-particle-driven instability of alfven waves in a tandem mirror. Final summary report, 21 February-20 May 1985

    SciTech Connect

    Ho, S.K.

    1985-08-20

    Alpha particles born at D-T fusion are mirror confined in the tandem mirror due to their relatively high energy. Therefore, they have a loss-cone type distribution in the velocity space. This anisotropy is susceptible to microinstability. The objective of this work is to study the possible instability that can be driven by the alpha loss-cone. The low frequency (at the order of the ion cyclotron frequency) wave spectrum is studied to seek the waves that can be destabilized by the alphas. The radial mode structure is found for the growth rate calculation. The alpha particle distribution with a loss-cone is obtained from a Legendre function expansion and a diffusion front method. The growth rate of the instability is formulated from linear stability theory and computed numerically. A marginal stability boundary in the ion density and temperature parameters is calculated.

  11. Nanodosimetry and nanodosimetric-based models of radiation action for radon alpha particles. Final performance technical report

    SciTech Connect

    Zaider, M.

    1997-12-31

    The goal of this project was to develop theoretical/computational tools for evaluating the risks incurred by populations exposed to radon alpha particles. Topics of concern include the following: compound dual radiation action (general aspects); a mathematical formalism describing the yield of radiation induced single-and double-strand DNA breaks, and its dependence on radiation quality; a study of the excited states in cytosine and guanine stacks in the Hartree-Fock and exciton approximations; nanodosimetry of radon alpha particles; application of the HSEF to assessing radiation risks in the practice of radiation protection; carcinogenic risk coefficients at environmental levels of radon exposures: a microdosimetric approach; and hit-size effectiveness approach in radiation protection.

  12. The induction of chromosome aberrations in human lymphocytes by in vitro irradiation with alpha-particles from plutonium-239.

    PubMed

    Purrott, R J; Edwards, A A; Lloyd, D C; Stather, J W

    1980-09-01

    The yields of unstable chromosome aberrations induced in human lymphocytes by alpha-particles from plutonium-239 have been measured. Plutonium citrate solution was mixed with heparinized blood so that doses of 13--160 rad were delivered in 24 hours. Dicentric aberration yields (Y) fitted best to the linear expression Y = 3 . 72 +/- 0 . 23 x 10(-3) rad-1. Inclusion of a 6 . 5 rad point resulting from a 1 . 7 hour irradiation raised the yield coefficient insignificantly to 3 . 75 +/- 0 . 24 x 10(-3). The aberration yields are in good agreement with data from curium-242 alpha-particles obtained in this laboratory but they are much lower than those obtained in two other laboratories. Reasons for this disagreement are examined.

  13. Automated Grouping of Opportunity Rover Alpha Particle X-Ray Spectrometer Compositional Data

    NASA Technical Reports Server (NTRS)

    VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. W.; Schroder, C.; Yen, A. S.

    2016-01-01

    The Alpha Particle X-ray Spectrometer (APXS) conducts high-precision in situ measurements of rocks and soils on both active NASA Mars rovers. Since 2004 the rover Opportunity has acquired around 440 unique APXS measurements, including a wide variety of compositions, during its 42+ kilometers traverse across several geological formations. Here we discuss an analytical comparison algorithm providing a means to cluster samples due to compositional similarity and the resulting automated classification scheme. Due to the inherent variance of elements in the APXS data set, each element has an associated weight that is inversely proportional to the variance. Thus, the more consistent the abundance of an element in the data set, the more it contributes to the classification. All 16 elements standard to the APXS data set are considered. Careful attention is also given to the errors associated with the composition measured by the APXS - larger uncertainties reduce the weighting of the element accordingly. The comparison of two targets, i and j, generates a similarity score, S(sub ij). This score is immediately comparable to an average ratio across all elements if one assumes standard weighted uncertainty. The algorithm facilitates the classification of APXS targets by chemistry alone - independent of target appearance and geological context which can be added later as a consistency check. For the N targets considered, a N by N hollow matrix, S, is generated where S = S(sup T). The average relation score, S(sub av), for target N(sub i) is simply the average of column i of S. A large S(sub av) is indicative of a unique sample. In such an instance any targets with a low comparison score can be classified alike. The threshold between classes requires careful consideration. Applying the algorithm to recent Marathon Valley targets indicates similarities with Burns formation and average-Mars-like rocks encountered earlier at Endeavour Crater as well as a new class of felsic rocks.

  14. Quantitative autoradiography of alpha particle emission in geo-materials using the Beaver™ system

    NASA Astrophysics Data System (ADS)

    Sardini, Paul; Angileri, Axel; Descostes, Michael; Duval, Samuel; Oger, Tugdual; Patrier, Patricia; Rividi, Nicolas; Siitari-Kauppi, Marja; Toubon, Hervé; Donnard, Jérôme

    2016-10-01

    In rocks or artificial geo-materials, radioactive isotopes emitting alpha particles are dispersed according to the mineralogy. At hand specimen scale, the achievement of quantitative chemical mapping of these isotopes takes on a specific importance. Knowledge of the distribution of the uranium and thorium series radionuclides is of prime interest to several disciplines, from the geochemistry of uranium deposits, to the dispersion of uranium mill tailings in the biosphere. The disequilibrium of these disintegration chains is also commonly used for dating. However, some prime importance isotopes, such as 226Ra, are complicated to localize in geo-materials. Because of its high specific activity, 226Ra is found in very low concentrations ( ppq), preventing its accurate localization in rock forming minerals. This paper formulates a quantitative answer to the following question: at hand specimen scale, how can alpha emitters in geo-materials be mapped quantitatively? In this study, we tested a new digital autoradiographic method (called the Beaver™) based on a Micro Patterned Gaseous Detector (MPGD) in order to quantitatively map alpha emission at the centimeter scale rock section. Firstly, for two thin sections containing U-bearing minerals at secular equilibrium, we compared the experimental and theoretical alpha count rates, measured by the Beaver™ and calculated from the uranium content, respectively. We found that they are very similar. Secondly, for a set of eight homemade standards made up of a mixture of inactive sand and low-radioactivity mud, we compared the count rates obtained by the Beaver™ and by an alpha spectrometer. The results indicate (i) a linearity between both count rates, and (ii) that the count obtained by the Beaver™ can be estimated from the count obtained by the alpha spectrometry using a factor of 0.82.

  15. Automated Grouping of Opportunity Rover Alpha Particle X-ray Spectrometer Compositional Data

    NASA Astrophysics Data System (ADS)

    VanBommel, S.; Gellert, R.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. W.; Schröder, C.; Yen, A.

    2016-12-01

    The Alpha Particle X-ray Spectrometer (APXS) conducts high-precision in situ measurements of rocks and soils on both active NASA Mars rovers. Since 2004 the rover Opportunityhas acquired 440 unique APXS measurements, on a wide variety of compositions, during its 43+ kilometer traverse across different geological terranes. Here we discuss an analytical comparison algorithm providing a means to cluster samples due to compositional similarity and the resulting automated classification scheme. Due to the inherent variance of elements in rocks and soils, each element has an associated weight that is inversely proportional to its variance. Elements whose abundances do not fluctuate much, such as SiO2, are thus weighted more, and an atypically large deviation from what is commonly observed becomes a more defining characteristic for that rock. Elements that naturally fluctuate widely, for example Br, then have a lesser influence on defining rock and soil classes. All elements standard to the APXS data set are considered. Measurement errors are used to weight the data - larger uncertainties reduce the weighting of the element. The comparison of two targets, i and j, generates a similarity score, Sij. The algorithm facilitates the initial classification of APXS targets by chemistry alone independent of target appearance and geological context. The latter can be added later as a consistency check and for final lithological assignment. For the N targets considered, a NxN hollow matrix, S, is generated where the matrix S is equal to its transpose. The average relation score, Sav, for target Ni is simply the average of column i of S. A large Sav is indicative of a unique sample. In such an instance any targets with a low comparison score can be classified as being alike. Applying the algorithm to recent Marathon Valley targets indicates similarities with Burns formation and average-Mars-like rocks encountered earlier at Endeavour Crater as well as a new class of felsic rocks.

  16. Mitigation of radiation nephropathy after internal alpha-particle irradiation of kidneys.

    PubMed

    Jaggi, Jaspreet Singh; Seshan, Surya V; McDevitt, Michael R; Sgouros, George; Hyjek, Elizabeth; Scheinberg, David A

    2006-04-01

    Internal irradiation of kidneys as a consequence of radioimmunotherapy, radiation accidents, or nuclear terrorism can result in radiation nephropathy. We attempted to modify pharmacologically, the functional and morphologic changes in mouse kidneys after injection with the actinium ((225)Ac) nanogenerator, an in vivo generator of alpha- and beta-particle emitting elements. The animals were injected with 0.35 muCi of the (225)Ac nanogenerator, which delivers a dose of 27.6 Gy to the kidneys. Then, they were randomized to receive captopril (angiotensin-converting enzyme inhibitor), L-158,809 (angiotensin II receptor-1 blocker), spironolactone (aldosterone receptor antagonist), or a placebo. Forty weeks after the (225)Ac injection, the placebo-control mice showed a significant increase in blood urea nitrogen (BUN) (87.6 +/- 6.9 mg/dL), dilated Bowman spaces, and tubulolysis with basement membrane thickening. Captopril treatment accentuated the functional (BUN 119.0 +/- 4.0 mg/dL; p <0.01 vs. placebo controls) and histopathologic damage. In contrast, L-158,809 offered moderate protection (BUN 66.6 +/- 3.9 mg/dL; p = 0.02 vs. placebo controls). Spironolactone treatment, however, significantly prevented the development of histopathologic and functional changes (BUN 31.2 +/- 2.5 mg/dL; p <0.001 vs. placebo controls). Low-dose spironolactone and, to a lesser extent, angiotensin receptor-1 blockade can offer renal protection in a mouse model of internal alpha-particle irradiation.

  17. Mitigation of radiation nephropathy after internal {alpha}-particle irradiation of kidneys

    SciTech Connect

    Jaggi, Jaspreet Singh; Seshan, Surya V.; McDevitt, Michael R.; Sgouros, George; Hyjek, Elizabeth; Scheinberg, David A. . E-mail: d-scheinberg@ski.mskcc.org

    2006-04-01

    Purpose: Internal irradiation of kidneys as a consequence of radioimmunotherapy, radiation accidents, or nuclear terrorism can result in radiation nephropathy. We attempted to modify pharmacologically, the functional and morphologic changes in mouse kidneys after injection with the actinium ({sup 225}Ac) nanogenerator, an in vivo generator of {alpha}- and {beta}-particle emitting elements. Methods and Materials: The animals were injected with 0.35 {mu}Ci of the {sup 225}Ac nanogenerator, which delivers a dose of 27.6 Gy to the kidneys. Then, they were randomized to receive captopril (angiotensin-converting enzyme inhibitor), L-158,809 (angiotensin II receptor-1 blocker), spironolactone (aldosterone receptor antagonist), or a placebo. Results: Forty weeks after the {sup 225}Ac injection, the placebo-control mice showed a significant increase in blood urea nitrogen (BUN) (87.6 {+-} 6.9 mg/dL), dilated Bowman spaces, and tubulolysis with basement membrane thickening. Captopril treatment accentuated the functional (BUN 119.0 {+-} 4.0 mg/dL; p <0.01 vs. placebo controls) and histopathologic damage. In contrast, L-158,809 offered moderate protection (BUN 66.6 {+-} 3.9 mg/dL; p = 0.02 vs. placebo controls). Spironolactone treatment, however, significantly prevented the development of histopathologic and functional changes (BUN 31.2 {+-} 2.5 mg/dL; p <0.001 vs. placebo controls). Conclusions: Low-dose spironolactone and, to a lesser extent, angiotensin receptor-1 blockade can offer renal protection in a mouse model of internal {alpha}-particle irradiation.

  18. Optical Model Potential Parameters for p, d, {sup 3}He and Alpha-Particle Scattering on Lithium Nuclei

    SciTech Connect

    Burtebayev, N.; Nassurlla, Marzhan; Nassurlla, Maulen; Kerimkulov, Zh. K.; Sakuta, S. B.

    2008-11-11

    Analysis of the p, d, {sup 3}He and {alpha}-particles elastic scattering on the {sup 6}Li and {sup 7}Li nuclei has been done in the framework of the optical model at the beam energies up to 72 MeV. It was shown that the account of the cluster exchange mechanism together with the potential scattering allow reproducing the experimental cross-sections in the whole angular range.

  19. A multi-port low-fluence alpha-particle irradiator: fabrication, testing and benchmark radiobiological studies.

    PubMed

    Neti, Prasad V S V; de Toledo, Sonia M; Perumal, Venkatachalam; Azzam, Edouard I; Howell, Roger W

    2004-06-01

    A new multi-port irradiator, designed to facilitate the study of the effects of low fluences of alpha particles on monolayer cultures, has been developed. The irradiator consists of four individual planar (241)Am alpha-particle sources that are housed inside a helium-filled Lucite chamber. Three of the radioactive sources consist of 20 MBq of (241)Am dioxide foil. The fourth source, used to produce higher dose rates, has an activity of 500 MBq. The four sources are mounted on rotating turntables parallel to their respective 1.5-microm-thick Mylar exit windows. A stainless steel honeycomb collimator is placed between the four sources and their exit windows by a cantilever attachment to the platform of an orbital shaker that moves its table in an orbit of 2 cm. Each exit window is equipped with a beam delimiter to optimize the uniformity of the beam and with a high-precision electronic shutter. Opening and closing of the shutters is controlled with a high-precision timer. Custom-designed stainless steel Mylar-bottomed culture dishes are placed on an adapter on the shutter. The alpha particles that strike the cells have a mean energy of 2.9 MeV. The corresponding LET distribution of the particles has a mean value of 132 keV/microm. Clonogenic cell survival experiments with AG1522 human fibroblasts indicate that the RBE of the alpha particles compared to (137)Cs gamma rays is about 7.6 for this biological end point.

  20. Calculation of the Physical and Microdosimetric Parameters of Electron and Alpha-Particle Radiation Using Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Geng, Jin-Peng; Cao, Tian-Guang; Li, Duo-Fang; An, Hai-Long; Han, Ying-Rong; Li, Jin; Hu, Jin-Shan; Li, Nan-Nan; Zhan, Yong

    2014-03-01

    Various ionizing radiations, such as electrons and alpha particles, transfer their energy to media by produced secondary electrons and induce double- or single-strand break of DNA, which result in variable effects. To understand how the ionizing radiations interact with DNA and break it, several models have been developed, most of them consider the water as a vapor state. Actually, the ionizing particles interact with DNA which is solved in liquid water. To compare the difference of vapor and liquid water models, we calculate the stopping power, continuous slowing down approximation (CSDA) range and S value of electrons and alpha particles at cellular scale in liquid and vapor by Monte Carlo simulations, respectively. Our data show that the stopping power and CSDA range are different in liquid and vapor water in a special energy range. For many S values, the liquid model is better than the vapor model when the energy of the electrons is higher than 100 keV and the vapor model is higher than the liquid model for the 1 MeV alpha particles.

  1. Construction of an Alpha Particle Spark Detector and Fusor for research in plasma physics and radiation detection

    NASA Astrophysics Data System (ADS)

    Akinsulire, Olorunsola; Fils-Aime, Fabrice; Hecla, Jake; Short, Michael; White, Anne

    2016-10-01

    This project delves into the realms of plasma physics and nuclear engineering by exploring systems used to generate plasmas and detect radiation. Basic plasma processes can be explored using inertial electrostatic confinement, in a device commonly called a ``fusor''. The fusor will generate neutrons and x-rays. The breakdown of air within a spark gap can be achieved with alpha particles and the avalanche effect; and constitutes an Alpha Particle Spark Detector (APSD), relevant for studies of basic nuclear processes and detectors. In the fusor, preliminary data was collected on breakdown voltage versus pressure in an air plasma to see how well the current system and geometry match up with expectations for the Paschen curve. A stable plasma was observed, at voltages roughly consistent with expectations, and it was concluded that a more controlled gas introduction system is needed to maintain a steady plasma over wider pressure ranges, and will allow for introduction of D2 gas for the study of neutron and x-ray producing plasmas. This poster will discuss the design, construction, and initial operation of the Alpha Particle Spark Detector and the fusor as part of an Undergraduate Research Opportunity (UROP) project. MIT UROP Program and the NSE department.

  2. Differential gene expression in human fibroblasts after alpha-particle emitter (211)At compared with (60)Co irradiation.

    PubMed

    Danielsson, Anna; Claesson, Kristina; Parris, Toshima Z; Helou, Khalil; Nemes, Szilárd; Elmroth, Kecke; Elgqvist, Jörgen; Jensen, Holger; Hultborn, Ragnar

    2013-04-01

    The aim of this study was to identify gene expression profiles distinguishing alpha-particle (211)At and (60)Co irradiation. Gene expression microarray profiling was performed using total RNA from confluent human fibroblasts 5 hours after exposure to (211)At labeled trastuzumab monoclonal antibody (0.25, 0.5, and 1 Gy) and (60)Co (1, 2, and 3 Gy). We report gene expression profiles that distinguish the effect different radiation qualities and absorbed doses have on cellular functions in human fibroblasts. In addition, we identified commonly expressed transcripts between (211)At and (60)Co irradiation. A greater number of transcripts were modulated by (211)At than (60)Co irradiation. In addition, down-regulation was more prevalent than up-regulation following (211)At irradiation. Several biological processes were enriched for both irradiation qualities such as transcription, cell cycle regulation, and cell cycle arrest, whereas mitosis, spindle assembly checkpoint, and apoptotic chromosome condensation were uniquely enriched for alpha particle irradiation. LET-dependent transcriptional modulations were observed in human fibroblasts 5 hours after irradiation exposure. These findings suggest that in comparison with (60)Co, (211)At has the clearest influence on both tumor protein p53-activated and repressed genes, which impose a greater overall burden to the cell following alpha particle irradiation.

  3. Dependence of alpha particle track diameter on the free volume holes size using positron annihilation lifetime technique

    NASA Astrophysics Data System (ADS)

    El-Gamal, S.; Abdalla, Ayman M.; Abdel-Hady, E. E.

    2015-09-01

    The alpha particle track diameter dependence of the free volume holes size (Vf) in DAM-ADC and CR-39 nuclear track detectors was investigated using positron annihilation lifetime technique. The effect of temperature on the alpha particle track diameter and free volume were also investigated in the T-range (RT-130 °C). The obtained results revealed that the values of ortho-positronium lifetime τ3 and Vf increases while I3 slightly increases as T increases for the two detectors. The values of τ3, Vf and I3 are higher in CR-39 than DAM-ADC. The interpretation of obtained results is based on the fact that increasing T leads to significant enhancement of thermal expansion of the polymer matrix and consequently Vf increases. The track diameter increases as T increases. This can be explained by the fact that the increase in T increases the crystal size and Vf in the polymer. A relationship between Vf and the alpha particle track diameter was obtained. Moreover results of detector irradiation, along with free volume evaluation are addressed and thoroughly discussed.

  4. Collisionless current generation in the center of the tokamak plasma by an isotropic source of {alpha}-particles

    SciTech Connect

    Ilgisonis, V. I.; Sorokina, E. A.; Yurchenko, E. I.

    2010-01-15

    The density of the noninductive current generated due to collisionless motion of {alpha}-particles in the tokamak magnetic field is calculated. The analysis is based on fully three-dimensional calculations of charged particle trajectories without simplifying assumptions typical for drift and neoclassical approaches. The current is calculated over the entire cross section of the plasma column, including the magnetic axis. It is shown that the current density is not a function of a magnetic surface and is strongly polarized over the poloidal angle. The current density distribution in the tokamak poloidal cross section is obtained, and the current density as a function of the safety factor, the tokamak aspect ratio, and the ratio of the particle Larmor radius on the axis to the tokamak minor radius is determined. It is shown that, when the source of {alpha}-particles is spatially nonuniform, the current density in the center of the tokamak is nonzero due to asymmetry of the phase-space boundary between trapped and passing particles. The current density scaling in the tokamak center differs from the known approximations for the bootstrap current and is sensitive to the spatial distribution of {alpha}-particles.

  5. Complementary optical-potential analysis of {alpha}-particle elastic scattering and induced reactions at low energies

    SciTech Connect

    Avrigeanu, M. Obreja, A.C.; Roman, F.L.; Avrigeanu, V.; Oertzen, W. von

    2009-07-15

    A previously derived semi-microscopic analysis based on the Double Folding Model, for {alpha}-particle elastic scattering on A{approx}100 nuclei at energies below 32 MeV, is extended to medium mass A{approx}50-120 nuclei and energies from {approx}13 to 50 MeV. The energy-dependent phenomenological imaginary part for this semi-microscopic optical model potential was obtained including the dispersive correction to the microscopic real potential, and used within a concurrent phenomenological analysis of the same data basis. A regional parameter set for low-energy {alpha}-particles entirely based on elastic scattering data analysis was also obtained for nuclei within the above mentioned mass and energy ranges. Then, an ultimate assessment of ({alpha},{gamma}), ({alpha},n), and ({alpha},p) reaction cross sections considered target nuclei from {sup 45}Sc to {sup 118}Sn and incident energies below {approx}12 MeV. The former diffuseness of the real part of optical potential as well as the surface imaginary potential depth have been found to be responsible for the actual difficulties in the description of these data, and modified in order to obtain an optical potential which describes equally well both the low-energy elastic scattering and induced reaction data for {alpha}-particles.

  6. ON THE RELATIVE SPEED AND TEMPERATURE RATIO OF SOLAR WIND ALPHA PARTICLES AND PROTONS: COLLISIONS VERSUS WAVE EFFECTS

    SciTech Connect

    Bourouaine, Sofiane; Marsch, Eckart; Neubauer, Fritz M.

    2011-02-10

    We study the relative flow speed and the temperature ratio of alpha particles and protons and their connections to the helium ion abundance, the collisional age, and the power of transverse fluctuations within the inertial range. It is found that the alpha-to-proton temperature ratio, T{sub {alpha}}/T{sub p} , anti-correlates with the helium ion abundance. Despite a relatively high collisional age and small wave power, the ratio T{sub {alpha}}/T{sub p} can reach comparatively high values (even above 2) whenever the helium ion abundance is below about 0.02. In contrast, the differential speed of alpha particles with respect to protons is correlated with the total wave power and anti-correlated with the collisional age. Ultimately, the individual heating of each ion species is positively correlated with the total wave power. Our findings suggest that a high-friction collision could be efficient in reducing the differential speed between alpha particles and protons, but appears not to be sufficient to equalize the alpha and proton temperatures, i.e., to make T{sub {alpha}} {approx_equal} T{sub p} . This is a hint that the local wave heating process is acting on a timescale shorter than the collision time.

  7. EFFECT OF DIFFERENTIAL FLOW OF ALPHA PARTICLES ON PROTON PRESSURE ANISOTROPY INSTABILITIES IN THE SOLAR WIND

    SciTech Connect

    Podesta, John J.; Gary, S. Peter

    2011-11-20

    In the solar wind, when the effects of proton-proton Coulomb collisions are negligible, alpha particles usually flow faster than the protons in such a way that the differential alpha-proton flow velocity V{sub d} = V{sub {alpha}} - V{sub p} is on the order of the Alfven speed, is directed away from the Sun, and is nearly aligned with the local mean magnetic field. When this differential flow is taken into account, solutions of the hot plasma dispersion relation show that for the parallel propagating electromagnetic ion cyclotron (EMIC) instability driven by the proton temperature anisotropy T{sub perpendicularp} > T{sub ||p}, the maximum growth rate occurs in the + V{sub d} direction and for the parallel firehose instability driven by the opposite proton temperature anisotropy T{sub ||p} > T{sub perpendicularp}, the maximum growth rate occurs in the - V{sub d} direction. Thus, the EMIC instability preferentially generates left circularly polarized Alfven-ion-cyclotron waves propagating away from the Sun and the parallel firehose instability preferentially generates right circularly polarized magnetosonic-whistler waves propagating toward the Sun with the maximum growth rates occurring for frequencies on the order of the proton cyclotron frequency and wavenumbers on the order of the proton inertial length. Because of the Doppler shift caused by the motion of the solar wind, both types of waves are left circularly polarized in the spacecraft frame for observations taken when the local mean magnetic field is collinear with the solar wind flow velocity. Theoretical investigation of these instabilities also shows that regions of parameter space exist where the unstable waves are generated propagating unidirectionally such as, for the EMIC instability for example, when the temperature anisotropy is small |(T{sub perpendicular{sub p}}/T{sub ||{sub p}}) - 1| < 1. Taken together, the above properties can explain the origin of parallel propagating electromagnetic waves

  8. Effect of Differential Flow of Alpha Particles on Proton Pressure Anisotropy Instabilities in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Podesta, John J.; Gary, S. Peter

    2011-11-01

    In the solar wind, when the effects of proton-proton Coulomb collisions are negligible, alpha particles usually flow faster than the protons in such a way that the differential alpha-proton flow velocity V d = V α - V p is on the order of the Alfvén speed, is directed away from the Sun, and is nearly aligned with the local mean magnetic field. When this differential flow is taken into account, solutions of the hot plasma dispersion relation show that for the parallel propagating electromagnetic ion cyclotron (EMIC) instability driven by the proton temperature anisotropy T bottomp > T parp , the maximum growth rate occurs in the + V d direction and for the parallel firehose instability driven by the opposite proton temperature anisotropy T parp > T bottomp , the maximum growth rate occurs in the - V d direction. Thus, the EMIC instability preferentially generates left circularly polarized Alfvén-ion-cyclotron waves propagating away from the Sun and the parallel firehose instability preferentially generates right circularly polarized magnetosonic-whistler waves propagating toward the Sun with the maximum growth rates occurring for frequencies on the order of the proton cyclotron frequency and wavenumbers on the order of the proton inertial length. Because of the Doppler shift caused by the motion of the solar wind, both types of waves are left circularly polarized in the spacecraft frame for observations taken when the local mean magnetic field is collinear with the solar wind flow velocity. Theoretical investigation of these instabilities also shows that regions of parameter space exist where the unstable waves are generated propagating unidirectionally such as, for the EMIC instability for example, when the temperature anisotropy is small |(T bottomp /T parp ) - 1| < 1. Taken together, the above properties can explain the origin of parallel propagating electromagnetic waves recently observed near the proton inertial length in high-speed solar wind. The observed

  9. Ion bombardment and disorder in amorphous silicon

    SciTech Connect

    Sidhu, L.S.; Gaspari, F.; Zukotynski, S.

    1997-07-01

    The effect of ion bombardment during growth on the structural and optical properties of amorphous silicon are presented. Two series of films were deposited under electrically grounded and positively biased substrate conditions. The biased samples displayed lower growth rates and increased hydrogen content relative to grounded counterparts. The film structure was examined using Raman spectroscopy. The transverse optic like phonon band position was used as a parameter to characterize network order. Biased samples displayed an increased order of the amorphous network relative to grounded samples. Furthermore, biased samples exhibited a larger optical gap. These results are correlated and attributed to reduced ion bombardment effects.

  10. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    NASA Astrophysics Data System (ADS)

    Omotoso, E.; Meyer, W. E.; Auret, F. D.; Diale, M.; Ngoepe, P. N. M.

    2016-01-01

    Irradiation experiments have been carried out on 1.9×1016 cm-3 nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×1010 to 9.2×1011 cm-2. Current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBHI-V) decreased from 1.47 to 1.34 eV. Free carrier concentration, Nd decreased with increasing fluence from 1.7×1016 to 1.1×1016 cm-2 at approximately 0.70 μm depth. The reduction in Nd shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm-1. Alpha-particle irradiation introduced two electron traps (E0.39 and E0.62), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E0.39 as attribute related to silicon or carbon vacancy, while the E0.62 has the attribute of Z1/Z2.

  11. Radioimmunotherapy of breast cancer metastases with alpha-particle emitter 225Ac: comparing efficacy with 213Bi and 90Y.

    PubMed

    Song, Hong; Hobbs, Robert F; Vajravelu, Ravy; Huso, David L; Esaias, Caroline; Apostolidis, Christos; Morgenstern, Alfred; Sgouros, George

    2009-12-01

    alpha-Particles are suitable to treat cancer micrometastases because of their short range and very high linear energy transfer. alpha-Particle emitter (213)Bi-based radioimmunotherapy has shown efficacy in a variety of metastatic animal cancer models, such as breast, ovarian, and prostate cancers. Its clinical implementation, however, is challenging due to the limited supply of (225)Ac, high technical requirement to prepare radioimmunoconjugate with very short half-life (T(1/2) = 45.6 min) on site, and prohibitive cost. In this study, we investigated the efficacy of the alpha-particle emitter (225)Ac, parent of (213)Bi, in a mouse model of breast cancer metastases. A single administration of (225)Ac (400 nCi)-labeled anti-rat HER-2/neu monoclonal antibody (7.16.4) completely eradicated breast cancer lung micrometastases in approximately 67% of HER-2/neu transgenic mice and led to long-term survival of these mice for up to 1 year. Treatment with (225)Ac-7.16.4 is significantly more effective than (213)Bi-7.16.4 (120 microCi; median survival, 61 days; P = 0.001) and (90)Y-7.16.4 (120 microCi; median survival, 50 days; P < 0.001) as well as untreated control (median survival, 41 days; P < 0.0001). Dosimetric analysis showed that (225)Ac-treated metastases received a total dose of 9.6 Gy, significantly higher than 2.0 Gy from (213)Bi and 2.4 Gy from (90)Y. Biodistribution studies revealed that (225)Ac daughters, (221)Fr and (213)Bi, accumulated in kidneys and probably contributed to the long-term renal toxicity observed in surviving mice. These data suggest (225)Ac-labeled anti-HER-2/neu monoclonal antibody could significantly prolong survival in HER-2/neu-positive metastatic breast cancer patients.

  12. Initial evaluation of (227)Th-p-benzyl-DOTA-rituximab for low-dose rate alpha-particle radioimmunotherapy.

    PubMed

    Dahle, Jostein; Borrebaek, Jørgen; Melhus, Katrine B; Bruland, Oyvind S; Salberg, Gro; Olsen, Dag Rune; Larsen, Roy H

    2006-02-01

    Radioimmunotherapy has proven clinically effective in patients with non-Hodgkin's lymphoma. Radioimmunotherapy trials have so far been performed with beta-emitting isotopes. In contrast to beta-emitters, the shorter range and high linear energy transfer (LET) of alpha particles allow for more efficient and selective killing of individually targeted tumor cells. However, there are several obstacles to the use of alpha-particle immunotherapy, including problems with chelation chemistry and nontarget tissue toxicity. The alpha-emitting radioimmunoconjugate (227)Th-DOTA-p-benzyl-rituximab is a new potential anti-lymphoma agent that might overcome some of these difficulties. The present study explores the immunoreactivity, in vivo stability and biodistribution, as well as the effect on in vitro cell growth, of this novel radioimmunoconjugate. To evaluate in vivo stability, uptake in balb/c mice of the alpha-particle-emitting nuclide (227)Th alone, the chelated form, (227)Th-p-nitrobenzyl-DOTA and the radioimmunoconjugate (227)Th-DOTA-p-benzyl-rituximab was compared in a range of organs at increasing time points after injection. The immunoreactive fraction of (227)Th-DOTA-p-benzyl-rituximab was 56-65%. During the 28 days after injection of radioimmunoconjugate only, very modest amounts of the (227)Th had detached from DOTA-p-benzyl-rituximab, indicating a relevant stability in vivo. The half-life of (227)Th-DOTA-p-benzyl-rituximab in blood was 7.4 days. Incubation of lymphoma cells with (227)Th-DOTA-p-benzyl-rituximab resulted in a significant antigen-dependent inhibition of cell growth. The data presented here warrant further studies of (227)Th-DOTA-p-benzyl-rituximab.

  13. Radioimmunotherapy of Breast Cancer Metastases with Alpha-Particle-emitter 225Ac: Comparing Efficacy with 213Bi, 90Y

    PubMed Central

    Song, Hong; Hobbs, Robert F.; Vajravelu, Ravy; Huso, David L.; Esaias, Caroline; Apostolidis, Christos; Morgenstern, Alfred; Sgouros, George

    2009-01-01

    Alpha-particles are suitable to treat cancer micrometastases because of their short range and very high linear energy transfer. Alpha-particle-emitter 213Bi based radioimmunotherapy has shown efficacy in a variety of metastatic animal cancer models, such as breast, ovarian, prostate cancer and leukemia. Its clinical implementation, however, is challenging due to the limited supply of 225Ac, the high technical requirement to prepare radioimmunoconjugate with very short half-life (T1/2=45.6 mins) on site and prohibitive cost. In this study, we investigated the efficacy of the alpha-particle-emitter 225Ac, parent of 213Bi, in a mouse model of breast cancer metastases. A single administration of 225Ac (400 nCi) labeled anti-rat HER-2/neu monoclonal antibody (7.16.4) completely eradicated breast cancer lung micrometastases in about 67% of HER-2/neu transgenic mice and led to long-term survival of these mice for up to one year. Treatment with 225Ac-7.16.4 is significantly more effective than 213Bi-7.16.4 (120 μCi) (median survival = 61 days, P=0.001), and 90Y-7.16.4 (120 μCi) (median survival = 50 days, P<0.001), as well as untreated control (median survival = 41 days, P=0.0001). Dosimetric analysis showed that 225Ac treated metastases received a total dose of 9.6 Gy, significantly higher than 2.0 Gy from 213Bi and 2.4 Gy from 90Y. Biodistribution studies revealed that 225Ac daughters, 221Fr and 213Bi, accumulated in kidneys and probably contributed to the long-term renal toxicity observed in surviving mice. These data suggest 225Ac labeled anti-HER-2/neu monoclonal antibody could significantly prolong survival in HER-2/neu-positive metastatic breast cancer patients. PMID:19920193

  14. The measurement of 240Pu/ 239Pu and 238Pu/ 239Pu isotopic ratios by alpha-particle spectrometry

    NASA Astrophysics Data System (ADS)

    Raab, W.; Parus, J. L.

    1994-01-01

    The measurement of the alpha-activity ratio of {238Pu }/{( 239Pu + 240Pu) } is a routine practice in the determination of the isotopic composition of plutonium. However, measurement of the atomic ratio of 240Pu/ 239Pu by alpha-particle spectrometry is hampered due to insufficient energy resolution for the set of closely spaced peaks of these two isotopes. Passivated and implanted, planar silicon (PIPS) detectors have recently become available with an energy resolution of 10 keV or better, which significantly improves the deconvolution of spectra from plutonium samples. A set of alpha sources was prepared on porcelain disks by ignition, and the spectra were accumulated at a gain of approximately 1 keV per channel. The GRPANL computer program as developed by Lawrence Livermore National Laboratory was used to analyze the spectra. The isotopic ratios were measured in parallel by mass spectrometry. It was found that the agreement on the ratios of 240Pu/ 239Pu and 238Pu/ 239Pu between mass spectrometry and measurements by PIPS detectors was within ±2%. Half-life values were obtained from the literature (M. Lammer and O. Schwerer, Handbook of Nuclear Data for Safeguards, Rep. INDC(NDS)-248, IAEA, Vienna, 1991; ref. [5]). Other factors were also studied to improve the accuracy of the data. The alpha-particle emission probabilities of highly enriched 239Pu and 240Pu have been measured. The alpha-particle energies obtained in the fitting were in agreement with those in ref. [5]. The fitted energy values were used throughout this work.

  15. 1.5D Quasilinear Model for Alpha Particle-TAE Interaction in ARIES ACT-I

    SciTech Connect

    K. Ghantous, N.N. Gorelenkov, C. Kessel, F. Poli

    2013-01-30

    We study the TAE interaction with alpha particle fusion products in ARIES ACT-I using the 1.5D quasilinear model. 1.5D uses linear analytic expressions for growth and damping rates of TAE modes evaluated using TRANSP pro les to calculates the relaxation of pressure pro les. NOVA- K simulations are conducted to validate the analytic dependancies of the rates, and to normalize their absolute value. The low dimensionality of the model permits calculating loss diagrams in large parameter spaces.

  16. Profiling Cesium Iodide Detectors and Using Pulse Shape Discrimination to Identify Alpha Particles, Neutrons, and Gamma Rays

    NASA Astrophysics Data System (ADS)

    Hudson, Emily; Rogachev, Grigory; Hooker, Joshua; Salyer, Kaitlin

    2016-09-01

    The purpose of this research was to investigate the properties of detectors that are to be used in future experiments. First, we investigated the properties of a cesium iodide detector. We placed a mask over the detector's face and used an alpha source to measure the detector's resolution on different areas of the detector. In the second part, we investigated the pulse shape discrimination capabilities of a plastic scintillator. We used the scintillator to detect alpha particles, neutrons, and gamma rays and applied various analysis techniques to identify the waveforms of each type. Texas A&M, NSF.

  17. The role of nuclear reactions and {alpha}-particle transport in the dynamics of inertial confinement fusion capsules

    SciTech Connect

    Garnier, Josselin; Cherfils-Clerouin, Catherine

    2008-10-15

    This paper is devoted to the study of the deceleration phase of inertial confinement capsules. The purpose is to obtain a zero-dimensional model that has the form of a closed system of ordinary differential equations for the main hydrodynamic quantities. The model takes into account the energy released by nuclear reactions, a nonlocal model for the {alpha}-particle energy deposition process, and radiation loss by electron bremsstrahlung. The asymptotic analysis is performed in the case of a strong temperature dependence of the thermal conductivity. We finally study the beginning of the expansion phase after stagnation to derive an ignition criterion.

  18. Values of "S," , and <(z1)2> for dosimetry using alpha-particle emitters.

    PubMed

    Stinchcomb, T G; Roeske, J C

    1999-09-01

    In a recent paper [J. Nucl. Med. 38, 1923-1929 (1997)], the authors presented a dosimetry system which combines the computational ease of the MIRD schema with additional information provided by microdosimetry for use with alpha-particle emitters. In addition to the absorbed dose (average specific energy) to the targets (cell nuclei), this system gives the spread (standard deviation) in values of this specific energy received by individual targets. It also gives the fraction of targets receiving zero (or any number of) hits. In this paper, input quantities are presented for alpha-particle energies and cell and nuclear sizes appropriate for the radionuclides being investigated. The quantities include S values for the usual determination of the absorbed dose along with the microdosimetric quantities, and <(z1)2>, the average and average square, respectively, of the single-hit specific energy. Using analytical procedures described previously [Med. Phys. 19, 1385-1393 (1992)], the single-hit distributions of specific energy are determined for the given alpha-particle energies, source locations, and target sizes. From these distributions, the values for the input quantities are calculated. Sources considered are (1) those located inside and on the surface of the target cell and an unbounded source in the medium external to the cell; (2) those distributed uniformly on either side of a plane boundary or on the surface of the plane with a spherical target at various distances from the plane; and (3) those located either inside or on the surface of a spherical boundary centered externally to the target. Examples show how the input quantities are used to provide the spread in specific-energy values and the probability of any number of hits for nuclei of cells exposed to these sources. Thus a complete micro-dosimetric analysis involving the calculation of multi-hit specific energy distributions is not necessary to provide this information. Such information may be useful

  19. Gamma-H2AX foci in cells exposed to a mixed beam of X-rays and alpha particles

    PubMed Central

    2012-01-01

    Background Little is known about the cellular effects of exposure to mixed beams of high and low linear energy transfer radiation. So far, the effects of combined exposures have mainly been assessed with clonogenic survival or cytogenetic methods, and the results are contradictory. The gamma-H2AX assay has up to now not been applied in this context, and it is a promising tool for investigating the early cellular response to mixed beam irradiation. Purpose To determine the dose response and repair kinetics of gamma-H2AX ionizing radiation-induced foci in VH10 human fibroblasts exposed to mixed beams of 241Am alpha particles and X-rays. Results VH10 human fibroblasts were irradiated with each radiation type individually or both in combination at 37°C. Foci were scored for repair kinetics 0.5, 1, 3 and 24 h after irradiation (one dose per irradiation type), and for dose response at the 1 h time point. The dose response effect of mixed beam was additive, and the relative biological effectiveness for alpha particles (as compared to X-rays) was of 0.76 ± 0.52 for the total number of foci, and 2.54 ± 1.11 for large foci. The repair kinetics for total number of foci in cells exposed to mixed beam irradiation was intermediate to that of cells exposed to alpha particles and X-rays. However, for mixed beam-irradiated cells the frequency and area of large foci were initially lower than predicted and increased during the first 3 hours of repair (while the predicted number and area did not). Conclusions The repair kinetics of large foci after mixed beam exposure was significantly different from predicted based on the effect of the single dose components. The formation of large foci was delayed and they did not reach their maximum area until 1 h after irradiation. We hypothesize that the presence of low X-ray-induced damage engages the DNA repair machinery leading to a delayed DNA damage response to the more complex DNA damage induced by alpha particles. PMID:23121736

  20. New interpretation of alpha-particle-driven instabilities in deuterium-tritium experiments on the Tokamak Fusion Test Reactor.

    PubMed

    Nazikian, R; Kramer, G J; Cheng, C Z; Gorelenkov, N N; Berk, H L; Sharapov, S E

    2003-09-19

    The original description of alpha particle driven instabilities in the Tokamak Fusion Test Reactor in terms of toroidal Alfvén eigenmodes (TAEs) remained inconsistent with three fundamental characteristics of the observations: (i) the variation of the mode frequency with toroidal mode number, (ii) the chirping of the mode frequency for a given toroidal mode number, and (iii) the antiballooning density perturbation of the modes. It is now shown that these characteristics can be explained by observing that cylindrical-like modes can exist in the weak magnetic shear region of the plasma that then make a transition to TAEs as the central safety factor decreases in time.

  1. Induction of single- and double-strand breaks in plasmid DNA by monoenergetic alpha-particles with energies below the Bragg-maximum.

    PubMed

    Scholz, V; Weidner, J; Köhnlein, W; Frekers, D; Wörtche, H J

    1997-01-01

    The yield of single-strand breaks (ssb) and double-strand breaks (dsb) produced by alpha-particles at the end of their track in DNA-films was determined experimentally. Helium nuclei were accelerated to 600 keV in the 400 kV ion accelerator and scattered at a carbon target. The elastically scattered alpha-particles with energies of 344 keV and 485 keV were used to irradiate supercircular plasmid DNA in vacuo. For the dosimetry of the alpha-particles a surface barrier detector was used and the energy distribution of the alpha-particles determined. The energy loss of the particles in the DNA-layer was calculated. DNA samples were separated into the three conformational isomers using agarose gel electrophoresis. After fluorochromation the number of ssb and dsb per plasmid DNA molecule was established from the band intensities assuming the validity of Poisson statistics. Linear dose effect correlations were found for ssb and dsb per plasmid molecule. In the case of 344 keV-alpha-particles the yield of dsb was (8.6 +/- 0.9) x 10(-11) breaks/Gy x dalton. The ratio of ssb/dsb was 0.5 +/- 0.2. This is at least a factor of six larger than the ratio found in experiments with higher energy alpha-particles and from model calculations. Similar experiments with protons yielded a relative biological effectiveness (rbe) value of 2.8 for the induction of double-strand breaks by track end alpha-particles.

  2. Induction of mutations by bismuth-212 alpha particles at two genetic loci in human B-lymphoblasts.

    PubMed

    Metting, N F; Palayoor, S T; Macklis, R M; Atcher, R W; Liber, H L; Little, J B

    1992-12-01

    The human lymphoblast cell line TK6 was exposed to the alpha-particle-emitting radon daughter 212Bi by adding DTPA-chelated 212Bi directly to the cell suspension. Cytotoxicity and mutagenicity at two genetic loci were measured, and the molecular nature of mutant clones was studied by Southern blot analysis. Induced mutant fractions were 2.5 x 10(-5)/Gy at the hprt locus and 3.75 x 10(-5)/Gy at the tk locus. Molecular analysis of HPRT- mutant DNAs showed a high frequency (69%) of clones with partial or full deletions of the hprt gene among radiation-induced mutants compared with spontaneous mutants (31%). Chi-squared analyses of mutational spectra show a significant difference (P < or = 0.005) between spontaneous mutants and alpha-particle-induced mutants. Comparison with published studies of accelerator-produced heavy-ion exposures of TK6 cells indicates that the induction of mutations at the hprt locus, and perhaps a subset of mutations at the tk locus, is a simple linear function of particle fluence regardless of the ion species or its LET.

  3. Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles.

    PubMed

    Freeman, C G; Fiksel, G; Stoeckl, C; Sinenian, N; Canfield, M J; Graeper, G B; Lombardo, A T; Stillman, C R; Padalino, S J; Mileham, C; Sangster, T C; Frenje, J A

    2011-07-01

    A Thomson parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility at the Laboratory for Laser Energetics (LLE) at the University of Rochester. This device uses parallel electric and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector plane. Once calibrated, the position of the ions on the detector plane can be used to determine the particle energy. The position dispersion of both the electric and magnetic fields of the Thomson parabola was measured using monoenergetic proton and alpha particle beams from the SUNY Geneseo 1.7 MV tandem Pelletron accelerator. The sensitivity of Fujifilm BAS-TR imaging plates, used as a detector in the Thomson parabola, was also measured as a function of the incident particle energy over the range from 0.6 MeV to 3.4 MeV for protons and deuterons and from 0.9 MeV to 5.4 MeV for alpha particles. The device was used to measure the energy spectrum of laser-produced protons at MTW.

  4. Gene amplification and microsatellite instability induced in tumorigenic human bronchial epithelial cells by alpha particles and heavy ions

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    2001-01-01

    Gene amplification and microsatellite alteration are useful markers of genomic instability in tumor and transformed cell lines. It has been suggested that genomic instability contributes to the progression of tumorigenesis by accumulating genetic changes. In this study, amplification of the carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase (CAD) gene in transformed and tumorigenic human bronchial epithelial (BEP2D) cells induced by either alpha particles or (56)Fe ions was assessed by measuring resistance to N-(phosphonacetyl)-l-aspartate (PALA). In addition, alterations of microsatellite loci located on chromosomes 3p and 18q were analyzed in a series of primary and secondary tumor cell lines generated in nude mice. The frequency of PALA-resistant colonies was 1-3 x 10(-3) in tumor cell lines, 5-8 x 10(-5) in transformed cells prior to inoculation into nude mice, and less than 10(-7) in control BEP2D cells. Microsatellite alterations were detected in all 11 tumor cell lines examined at the following loci: D18S34, D18S363, D18S877, D3S1038 and D3S1607. No significant difference in either PALA resistance or microsatellite instability was found in tumor cell lines that were induced by alpha particles compared to those induced by (56)Fe ions.

  5. Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+

    NASA Astrophysics Data System (ADS)

    Mesick, K. E.; Coupland, D. D. S.; Stonehill, L. C.

    2017-01-01

    Cs2LiLaBr6:Ce3+(CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. We also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas. A linear quenching relationship Lα =Eα × q +L0 was found at alpha particle energies above 5 MeV, with a quenching factor q = 0.71 MeVee / MeV and an offset L0 = - 1.19 MeVee .

  6. Characterisation of a setup for mixed beam exposures of cells to 241Am alpha particles and X-rays.

    PubMed

    Staaf, Elina; Brehwens, Karl; Haghdoost, Siamak; Pachnerová-Brabcová, Katerina; Czub, Joanna; Braziewicz, Janusz; Nievaart, Sander; Wojcik, Andrzej

    2012-09-01

    Exposure of humans to mixed fields of high- and low-linear energy transfer (LET) radiation occurs in many situations-for example, in urban areas with high levels of indoor radon as well as background gamma radiation, during airplane flights or certain forms of radiation therapy. From the perspective of health risk associated with exposure to mixed fields, it is important to understand the interactions between different radiation types. In most cellular investigations on mixed beams, two types of irradiations have been applied sequentially. Simultaneous irradiation is the desirable scenario but requires a dedicated irradiation facility. The authors have constructed a facility where cells can be simultaneously exposed to (241)Am alpha particles and 190-kV X-rays at 37°C. This study presents the technical details and the dosimetry of the setup, as well as validates the performance of the setup for clonogenic survival in AA8 Chinese hamster ovary cells. No significant synergistic effect was observed. The relative biological effectiveness of the alpha particles was 2.56 for 37 % and 1.90 for 10 % clonogenic survival.

  7. Gene amplification and microsatellite instability induced in tumorigenic human bronchial epithelial cells by alpha particles and heavy ions

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    2001-01-01

    Gene amplification and microsatellite alteration are useful markers of genomic instability in tumor and transformed cell lines. It has been suggested that genomic instability contributes to the progression of tumorigenesis by accumulating genetic changes. In this study, amplification of the carbamyl-P-synthetase, aspartate transcarbamylase, dihydro-orotase (CAD) gene in transformed and tumorigenic human bronchial epithelial (BEP2D) cells induced by either alpha particles or (56)Fe ions was assessed by measuring resistance to N-(phosphonacetyl)-l-aspartate (PALA). In addition, alterations of microsatellite loci located on chromosomes 3p and 18q were analyzed in a series of primary and secondary tumor cell lines generated in nude mice. The frequency of PALA-resistant colonies was 1-3 x 10(-3) in tumor cell lines, 5-8 x 10(-5) in transformed cells prior to inoculation into nude mice, and less than 10(-7) in control BEP2D cells. Microsatellite alterations were detected in all 11 tumor cell lines examined at the following loci: D18S34, D18S363, D18S877, D3S1038 and D3S1607. No significant difference in either PALA resistance or microsatellite instability was found in tumor cell lines that were induced by alpha particles compared to those induced by (56)Fe ions.

  8. Bombardment history of the Saturn system

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Squyres, Steven W.; Hartmann, William K.

    1988-01-01

    Crater distributions on Voyager images of Saturn's satellites are analyzed and models of relative cratering rates on these bodies are developed on the basis of orbital dynamics. A history of satellite bombardment, disruption, and resurfacing in the Saturn system is constructed, concentrating on Rhea. It is suggested that the surface of Rhea has approached saturation equilibrium for craters with diameters up to 32 km. Also, the disruption probabilities of Saturn's inner moons are estimated.

  9. Surface layer modification of ion bombarded HDPE

    NASA Astrophysics Data System (ADS)

    Bielinski, D.; Lipinski, P.; Slusarski, L.; Grams, J.; Paryjczak, T.; Jagielski, J.; Turos, A.; Madi, N. K.

    2004-08-01

    Press-moulded, high density polyethylene (HDPE) samples were subjected to ion bombardment and effects of the modification studied. He + ions of energy 100 keV or Ar + ions of energy 130 keV were applied in the range of dose 1-30 × 10 15/cm 2 or 1-100 × 10 14/cm 2, respectively. This paper has been focused on structural changes of the surface layer. The consequences of the modification were studied with TOF-SIMS and FTIR-IRS techniques. The results point on two mechanisms taking place simultaneously: ionization of polymer macromolecules and chain scission--resulting in creation of macroradicals. Both of them produce oxidation and lead to significant release of hydrogen. The former diminishes for the highest ion doses, however, creation of molecular oxygen cannot be excluded. The latter in the case of Ar + ion bombardment is reflected by prevailing degradation of the surface layer of HDPE. Contrary to the effect of heavy ions, He + ion bombardment was found to produce significant increase of the material hardness, which was explained by crosslinking of polyethylene. A mechanism of polyacetylene formation, proceeding finally to cross-polymerization of the polymer was proposed. Apart from structural changes, the modification revealed additionally a possibility to improve the wettability of the polymer.

  10. On resonant destabilization of toroidal Alfven eigenmodes by circulating and trapped energetic ions/alpha particles in tokamaks

    SciTech Connect

    Biglari, H.; Zonca, F.; Chen, L.

    1991-10-01

    Toroidal Alfven eigenmodes are shown to be resonantly destabilized by both circulating and trapped energetic ions/alpha particles. In particular, the energetic circulating ions are shown to resonate with the mode not only at the Alfven speed ({upsilon}{sub A}), but also one-third of this speed, while resonances exist between trapped energetic ions and the wave when {upsilon} = {upsilon}{sub A}/21{epsilon}{sup {1/2}} (l=integer, {epsilon}=r/R is the local inverse aspect ratio), although the instability becomes weaker for resonances other than the fundamental. The oft-quoted criterion that instability requires super-Alfvenic ion velocities is thus sufficient but not necessary. 14 refs.

  11. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S.; Kruglikov, I. L.

    1992-01-01

    Factors relating the local concentration of a bone-seeking alpha-particle emitter to the mean hit rate have been determined for nuclei of bone lining cells using a Monte Carlo procedure. Cell nuclei were approximated by oblate spheroids with dimensions and location taken from a previous histomorphometric study. The Monte Carlo simulation is applicable for planar and diffuse labels at plane or cylindrical bone surfaces. Additionally, the mean nuclear dose per hit, the dose mean per hit, the mean track segment length and its second moment, the percentage of stoppers, and the frequency distribution of the dose have been determined. Some basic features of the hit statistics for bone lining cells have been outlined, and the consequences of existing standards of radiation protection with regard to the hit frequency to cell nuclei are discussed.

  12. Determination of oxygen in silicon and carbide by activation with 27.2 meV alpha particles

    NASA Technical Reports Server (NTRS)

    Dolgolenko, A. P.; Kornienko, N. D.; Lithovchenko, P. G.

    1978-01-01

    The Si sample was polished on one side, and on the other side Ni was applied chemically and soldered with Pb to a water cooled Cu substrate. Optical quartz standard was fixed from the other side. Si carbide samples were soldered to a substrated with In. The prepared samples were irradiated in a cyclotron with a 27.2 MeV alpha particle beam. The layers were removed from the Si and Si carbide samples by grinding and the positron activity of F-18(t sub 1/2 110 min) was measured by using a gamma, gamma coincidence spectrometer with two NaI(TI) crystals. For analysis of Si carbide, the activity decay curve of the samples was recorded to find the contribution of the positron activity of Cu-65(t sub 1/2 12.9 hr) which formed from Ni impurity on irradiation.

  13. Time-dependent Occurrence Rate of Electromagnetic Cyclotron Waves in the Solar Wind: Evidence for the Effect of Alpha Particles?

    NASA Astrophysics Data System (ADS)

    Zhao, G. Q.; Feng, H. Q.; Wu, D. J.; Chu, Y. H.; Huang, J.

    2017-09-01

    Previous studies revealed that electromagnetic cyclotron waves (ECWs) near the proton cyclotron frequency exist widely in the solar wind, and the majority of ECWs are left-handed (LH) polarized waves. Using the magnetic field data from the STEREO mission, this Letter carries out a survey of ECWs over a long period of 7 years and calculates the occurrence rates of ECWs with different polarization senses. Results show that the occurrence rate is nearly a constant for the ECWs with right-handed polarization, but it varies significantly for the ECWs with LH polarization. Further investigation of plasma conditions reveals that the LH ECWs take place preferentially in a plasma characterized by higher temperature, lower density, and larger velocity. Some considerable correlations between the occurrence rate of LH ECWs and the properties of ambient plasmas are discussed. The present research may provide evidence for the effect of alpha particles on the generation of ECWs.

  14. Hit rates and radiation doses to nuclei of bone lining cells from alpha-particle-emitting radionuclides

    NASA Technical Reports Server (NTRS)

    Polig, E.; Jee, W. S.; Kruglikov, I. L.

    1992-01-01

    Factors relating the local concentration of a bone-seeking alpha-particle emitter to the mean hit rate have been determined for nuclei of bone lining cells using a Monte Carlo procedure. Cell nuclei were approximated by oblate spheroids with dimensions and location taken from a previous histomorphometric study. The Monte Carlo simulation is applicable for planar and diffuse labels at plane or cylindrical bone surfaces. Additionally, the mean nuclear dose per hit, the dose mean per hit, the mean track segment length and its second moment, the percentage of stoppers, and the frequency distribution of the dose have been determined. Some basic features of the hit statistics for bone lining cells have been outlined, and the consequences of existing standards of radiation protection with regard to the hit frequency to cell nuclei are discussed.

  15. Characterization of alpha-particle tracks in cellulose nitrate LR-115 detectors at various incident energies and angles.

    PubMed

    Mheemeed, A K; Hussein, A Kh; Kheder, R B

    2013-09-01

    Cellulose nitrate LR-115 detectors were irradiated with alpha particles in the energy range from 1 to 5 MeV at incident angles from 20° to 90°, using an (241)Am source. After etching in a 2.5 N NaOH solution kept at 60 °C for various periods, the diameters of the major and minor axes of the track openings, track growing rate, track etch rate, etching ratio, and track length were found as a function of energies and incident angles. The measured track parameters were compared to calculated values, and the etching ratio was formulated as a Durrani-Green's function of the incident energy and angle. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Concept design of a time-of-flight spectrometer for the measurement of the energy of alpha particles.

    PubMed

    García-Toraño, E

    2017-07-20

    The knowledge of the energies of the alpha particles emitted in the radioactive decay of a nuclide is a key factor in the construction of its decay scheme. Virtually all existing data are based on a few absolute measurements made by magnetic spectrometry (MS), to which most other MS measurements are traced. An alternative solution would be the use of time-of-flight detectors. This paper discusses the main aspects to be considered in the design of such detectors, and the performances that could be reasonably expected. Based on the concepts discussed here, it is estimated that an energy resolution about 2.5keV may be attainable with a good quality source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Suppression of the chain nuclear fusion reaction based on the p+{sup 11}B reaction because of the deceleration of alpha particles

    SciTech Connect

    Shmatov, M. L.

    2016-09-15

    It is shown that a rapid deceleration of alpha particles in matter of electron temperature up to 100 keV leads a strong suppression of the chain nuclear fusion reaction on the basis of the p+{sup 11}B reaction with the reproduction of fast protons in the α+{sup 11}B and n+{sup 10}B reactions. The statement that the chain nuclear fusion reaction based on the p+{sup 11}B reaction with an acceleration of {sup 11}B nuclei because of elastic alpha-particle scattering manifests itself in experiments at the PALS (Prague Asterix Laser System) facility is analyzed.

  18. On the confinement of passing alpha particles in a tokamak-reactor with resonant magnetic field perturbations shielded by plasma currents

    NASA Astrophysics Data System (ADS)

    Heyn, M. F.; Ivanov, I. B.; Kasilov, S. V.; Kernbichler, W.; Loarte, A.; Nemov, V. V.; Runov, A. M.

    2012-05-01

    Alpha-particle losses due to the resonant magnetic field perturbations (RMPs) created by the coil system for edge-localized mode mitigation in ITER are studied numerically. If shielding of RMPs by the plasma is not taken into account, passing α-particles are the main loss channel which, together with the trapped particle contribution leads to a loss of more than 5% of fusion alpha particle power. Shielding of RMPs practically eliminates this channel so that the overall losses are reduced to about 1%.

  19. Effect of low-energy alpha-particles irradiation on surface structure and physical-mechanical properties of high-purity tungsten

    NASA Astrophysics Data System (ADS)

    Aldabergenova, T. M.; Kislitsin, S. B.; Larionov, A. S.; Yar-Mukhamedova, G. S.

    2016-11-01

    Effect of radiation by low-energy alpha-particles on the surface structure and physical-mechanical properties of high-purity tungsten was studied. Samples of tungsten were irradiated by 4He+2 ions with the energy of 45 keV at low-energy channel of accelerator DC-60 in Astana branch of Institute Nuclear Physics. Irradiation fluence was 1.5 × 1018 cm-2, irradiation temperature was 150°C. Experimentally found that irradiation with low-energy alpha particles results in formation of helium filled bubbles in the straggling region.

  20. Effects of complex symmetry-breakings on alpha particle power loads on first wall structures and equilibrium in ITER

    NASA Astrophysics Data System (ADS)

    Shinohara, K.; Kurki-Suonio, T.; Spong, D.; Asunta, O.; Tani, K.; Strumberger, E.; Briguglio, S.; Koskela, T.; Vlad, G.; Günter, S.; Kramer, G.; Putvinski, S.; Hamamatsu, K.; ITPA Topical Group on Energetic Particles

    2011-06-01

    Within the ITPA Topical Group on Energetic Particles, we have investigated the impact that various mechanisms breaking the tokamak axisymmetry can have on the fusion alpha particle confinement in ITER as well as on the wall power loads due to these alphas. In addition to the well-known TF ripple, the 3D effect due to ferromagnetic materials (in ferritic inserts and test blanket modules) and ELM mitigation coils are included in these mechanisms. ITER scenario 4 was chosen since, due to its lower plasma current, it is more vulnerable for various off-normal features. First, the validity of using a 2D equilibrium was investigated: a 3D equilibrium was reconstructed using the VMEC code, and it was verified that no 3D equilibrium reconstruction is needed but it is sufficient to add the vacuum field perturbations onto an axisymmetric equilibrium. Then the alpha particle confinement was studied using three independent codes, ASCOT, DELTA5D and F3D OFMC, all of which assume MHD quiescent background plasma and no anomalous diffusion. All the codes gave a loss power fraction of about 0.2%. The distribution of the peak power load was found to depend on the first wall shape. We also made the first attempt to accommodate the effect of fast-ion-related MHD on the wall loads in ITER using the HMGC and ASCOT codes. The power flux to the wall was found to increase due to the redistribution of fast ions by the MHD activity. Furthermore, the effect of the ELM mitigation field on the fast-ion confinement was addressed by simulating NBI ions with the F3D OFMC code. The loss power fraction of NBI ions was found to increase from 0.3% without the ELM mitigation field to 4-5% with the ELM mitigation field.

  1. Complex aberrations in lymphocytes exposed to mixed beams of (241)Am alpha particles and X-rays.

    PubMed

    Staaf, Elina; Deperas-Kaminska, Marta; Brehwens, Karl; Haghdoost, Siamak; Czub, Joanna; Wojcik, Andrzej

    2013-08-30

    Modern radiotherapy treatment modalities are associated with undesired out-of-field exposure to complex mixed beams of high and low energy transfer (LET) radiation that can give rise to secondary cancers. The biological effectiveness of mixed beams is not known. The aim of the investigation was the analysis of chromosomal damage in human peripheral blood lymphocytes (PBL) exposed to a mixed beam of X-rays and alpha particles. Using a dedicated exposure facility PBL were exposed to increasing doses of alpha particles (from (241)Am), X-rays and a mixture of both. Chromosomal aberrations were analysed in chromosomes 2, 8 and 14 using fluorescence in situ hybridisation. The found and expected frequencies of simple and complex aberrations were compared. Simple aberrations showed linear dose-response relationships with doses. A higher than expected frequency of simple aberrations was only observed after the highest mixed beam dose. A linear-quadratic dose response curve for complex aberrations was observed after mixed-beam exposure. Higher than expected frequencies of complex aberrations were observed for the two highest doses. Both the linear-quadratic dose-response relationship and the calculation of expected frequencies show that exposure of PBL to mixed beams of high and low LET radiation leads to a higher than expected frequency of complex-type aberrations. Because chromosomal changes are associated with cancer induction this result may imply that the cancer risk of exposure to mixed beams in radiation oncology may be higher than expected based on the additive action of the individual dose components.

  2. Excitation of high-n toroidicity-induced shear Alfven eigenmodes by energetic particles and fusion alpha particles in tokamaks

    SciTech Connect

    Fu, G.Y.; Cheng, C.Z.

    1992-07-01

    The stability of high-n toroidicity-induced shear Alfven eigenmodes (TAE) in the presence of fusion alpha particles or energetic ions in tokamaks is investigated. The TAE modes are discrete in nature and thus can easily tap the free energy associated with energetic particle pressure gradient through wave particle resonant interaction. A quadratic form is derived for the high-n TAE modes using gyro-kinetic equation. The kinetic effects of energetic particles are calculated perturbatively using the ideal MHD solution as the lowest order eigenfunction. The finite Larmor radius (FLR) effects and the finite drift orbit width (FDW) effects are included for both circulating and trapped energetic particles. It is shown that, for circulating particles, FLR and FDW effects have two opposite influences on the stability of the high-n TAE modes. First, they have the usual stabilizing effects by reducing the wave particle interaction strength. Second, they also have destabilizing effects by allowing more particles to resonate with the TAE modes. It is found that the growth rate induced by the circulating alpha particles increase linearly with toroidal mode number n for small {kappa}{sub {theta}}{rho}{sub {alpha}}, and decreases as 1/n for {kappa}{sub {theta}}{rho}{sub {alpha}} {much_gt} 1. The maximum growth rate is obtained at {kappa}{sub {theta}}{rho}{sub {alpha}} on the order of unity and is nearly constant for the range of 0.7 < {upsilon}{sub {alpha}}/{upsilon}{sub A} < 2.5. On the other hand, the trapped particle response is dominated by the precessional drift resonance. The bounce resonant contribution is negligible. The growth rate peaks sharply at the value of {kappa}{sub {theta}}{rho}{sub {alpha}} such that the precessional drift resonance occurs for the most energetic trapped particles. The maximum growth rate due to the energetic trapped particles is comparable to that of circulating particles.

  3. Excitation of high-n toroidicity-induced shear Alfven eigenmodes by energetic particles and fusion alpha particles in tokamaks

    SciTech Connect

    Fu, G.Y.; Cheng, C.Z.

    1992-07-01

    The stability of high-n toroidicity-induced shear Alfven eigenmodes (TAE) in the presence of fusion alpha particles or energetic ions in tokamaks is investigated. The TAE modes are discrete in nature and thus can easily tap the free energy associated with energetic particle pressure gradient through wave particle resonant interaction. A quadratic form is derived for the high-n TAE modes using gyro-kinetic equation. The kinetic effects of energetic particles are calculated perturbatively using the ideal MHD solution as the lowest order eigenfunction. The finite Larmor radius (FLR) effects and the finite drift orbit width (FDW) effects are included for both circulating and trapped energetic particles. It is shown that, for circulating particles, FLR and FDW effects have two opposite influences on the stability of the high-n TAE modes. First, they have the usual stabilizing effects by reducing the wave particle interaction strength. Second, they also have destabilizing effects by allowing more particles to resonate with the TAE modes. It is found that the growth rate induced by the circulating alpha particles increase linearly with toroidal mode number n for small {kappa}{sub {theta}}{rho}{sub {alpha}}, and decreases as 1/n for {kappa}{sub {theta}}{rho}{sub {alpha}} {much gt} 1. The maximum growth rate is obtained at {kappa}{sub {theta}}{rho}{sub {alpha}} on the order of unity and is nearly constant for the range of 0.7 < {upsilon}{sub {alpha}}/{upsilon}{sub A} < 2.5. On the other hand, the trapped particle response is dominated by the precessional drift resonance. The bounce resonant contribution is negligible. The growth rate peaks sharply at the value of {kappa}{sub {theta}}{rho}{sub {alpha}} such that the precessional drift resonance occurs for the most energetic trapped particles. The maximum growth rate due to the energetic trapped particles is comparable to that of circulating particles.

  4. Bismuth-212-labeled anti-Tac monoclonal antibody: alpha-particle-emitting radionuclides as modalities for radioimmunotherapy

    SciTech Connect

    Kozak, R.W.; Atcher, R.W.; Gansow, O.A.; Friedman, A.M.; Hines, J.J.; Waldmann, T.A.

    1986-01-01

    Anti-Tac, a monoclonal antibody directed to the human interleukin 2 (IL-2) receptor, has been successfully conjugated to the alpha-particle-emitting radionuclide bismuth-212 by use of a bifunctional ligand, the isobutylcarboxycarbonic anhydride of diethylenetriaminepentaacetic acid. The physical properties of 212Bi are appropriate for radioimmunotherapy in that it has a short half-life, deposits its high energy over a short distance, and can be obtained in large quantities from a radium generator. Antibody specific activities of 1-40 microCi/microgram (1 Ci = 37 GBq) were achieved. Specificity of the 212Bi-labeled anti-Tac was demonstrated for the IL-2 receptor-positive adult T-cell leukemia line HUT-102B2 by protein synthesis inhibition and clonogenic assays. Activity levels of 0.5 microCi or the equivalent of 12 rad/ml of alpha radiation targeted by anti-Tac eliminated greater than 98% the proliferative capabilities of HUT-102B2 cells with more modest effects on IL-2 receptor-negative cell lines. Specific cytotoxicity was blocked by excess unlabeled anti-Tac but not by human IgG. In addition, an irrelevant control monoclonal antibody of the same isotype labeled with 212Bi was unable to target alpha radiation to cell lines. Therefore, 212Bi-labeled anti-Tac is a potentially effective and specific immunocytotoxic reagent for the elimination of IL-2 receptor-positive cells. These experiments thus provide the scientific basis for use of alpha-particle-emitting radionuclides in immunotherapy.

  5. Frequencies of complex chromosome exchange aberrations induced by 238Pu alpha-particles and detected by fluorescence in situ hybridization using single chromosome-specific probes.

    PubMed

    Griffin, C S; Marsden, S J; Stevens, D L; Simpson, P; Savage, J R

    1995-04-01

    We undertook an analysis of chromosome-type exchange aberrations induced by alpha-particles using fluorescence in situ hybridization (FISH) with whole chromosome-specific probes for human chromosomes 1 or 4, together with a pan-centromeric probe. Contact-inhibited primary human fibroblasts (in G1) were irradiated with 0.41-1.00 Gy 238Pu alpha-particles and aberrations were analysed at the next mitosis following a single chromosome paint. Exchange and aberration painting patterns were classified according to Savage and Simpson (1994a). Of exchange aberrations, 38-47% were found to be complex derived, i.e. resulting from three or more breaks in two or more chromosomes, and the variation with dose was minimal. The class of complex aberrations most frequently observed were insertions, derived from a minimum of three breaks in two chromosomes. There was also an elevated frequency of rings. The high level of complex aberrations observed after alpha-particle irradiation indicates that, when chromosome domains are traversed by high linear energy transfer alpha-particle tracks, there is an enhanced probability of production of multiple localized double-strand breaks leading to more complicated interactions.

  6. TASTRAK spectroscopy of polonium-210 alpha-particle activity at bone surfaces: Evidence for a concentrated surface deposit less than 3 {mu}m deep

    SciTech Connect

    Salmon, P.L.; Henshaw, D.L.; Keitch, P.A.; Allen, J.E.; Fews, A.P.

    1994-10-01

    The technique of {alpha}-particle spectroscopy by CR-39 type TASTRAK plastic has been used to study the depth distribution of natural {alpha}-particle emitters at the surface of human bone. The predominant component of this {alpha}-particle activity was {sup 210}Po supported by {sup 210}Pb, although a smaller activity of {sup 226}Ra was also detected. Autopsy samples of human femur and cranium were obtained from subjects age 63 to 86. Both cortical and trabecular surfaces were analyzed. The results indicate that {sup 210}Pb-supported {sup 210}Po is concentrated at the surfaces of human bone from elderly subjects, in a narrow band 3 {mu}m deep or less, by a factor of about four. As a result, the {alpha}-particle dose to the nuclei of cells lining bone surfaces is around 1.8 times greater than that calculated for a uniform volume distribution. Polonium-210 activity indicates the distribution of {sup 210}Pb, and of stable lead, received by continuous intake throughout life at a very low level. A persistent bone surface concentration of lead and other osteotropic metals may be associated with the hypermineralized layer about 1 {mu}m thick which occurs at the surface of resting bone mineral. 31 refs., 9 figs., 3 tabs.

  7. X-ray production cross-sections measurements for high-energy alpha particle beams: New dedicated set-up and first results with aluminum

    NASA Astrophysics Data System (ADS)

    Dupuis, T.; Chêne, G.; Mathis, F.; Marchal, A.; Garnir, H.-P.; Strivay, D.

    2011-12-01

    The "IPNAS" laboratory, in collaboration with the "Centre Européen d'Archéométrie" is partly focused on material analysis by means of IBA techniques: PIXE, PIGE and RBS. A new transport beam line has been developed at our CGR-520 MeV cyclotron to analyze Cultural Heritage objects using these techniques. This facility allows us to produce proton and alpha particle beams with energies up to 20 MeV. A vacuum chamber dedicated to X-ray production and Non-Rutherford cross-section measurements has been recently constructed. After determination of the chamber's geometry for X-ray detection using thin foils of several elements (11 ⩽ Z ⩽ 82) and 3 MeV proton beams, the measurement of the X-ray production cross-sections in the 6-12 MeV energy range has started using alpha particle beams on light element targets. These experiments contribute to the filling a serious lack of experimental values for alpha particles of this particular energy range in databases. The recent decision to focus our work on the alpha particle interaction with light elements was taken because of the high interest of the low Z elements in the field of archaeometry.

  8. Radiosensitivity of Prostate Cancer Cell Lines for Irradiation from Beta Particle-emitting Radionuclide ¹⁷⁷Lu Compared to Alpha Particles and Gamma Rays.

    PubMed

    Elgqvist, Jörgen; Timmermand, Oskar Vilhelmsson; Larsson, Erik; Strand, Sven-Erik

    2016-01-01

    The purpose of the present study was to investigate the radiosensitivity of the prostate cancer cell lines LNCaP, DU145, and PC3 when irradiated with beta particles emitted from (177)Lu, and to compare the effect with irradiation using alpha particles or gamma rays. Cells were irradiated with beta particles emitted from (177)Lu, alpha particles from (241)Am, or gamma rays from (137)Cs. A non-specific polyclonal antibody was labeled with (177)Lu and used to irradiate cells in suspension with beta particles. A previously described in-house developed alpha-particle irradiator based on a (241)Am source was used to irradiate cells with alpha particles. External gamma-ray irradiation was achieved using a standard (137)Cs irradiator. Cells were irradiated to absorbed doses equal to 0, 0.5, 1, 2, 4, 6, 8, or 10 Gy. The absorbed doses were calculated as mean absorbed doses. For evaluation of cell survival, the tetrazolium-based WST-1 assay was used. After irradiation, WST-1 was added to the cell solutions, incubated, and then measured for level of absorbance at 450 nm, indicating the live and viable cells. LNCaP, DU145, and PC3 cell lines all had similar patterns of survival for the different radiation types. No significant difference in surviving fractions were observed between cells treated with beta-particle and gamma-ray irradiation, represented for example by the surviving fraction values (mean±SD) at 2, 6, and 10 Gy (SF2, SF6, and SF10) for DU145 after beta-particle irradiation: 0.700±0.090, 0.186±0.050 and 0.056±0.010, respectively. A strong radiosensitivity to alpha particles was observed, with SF2 values of 0.048±0.008, 0.018±0.006 and 0.015±0.005 for LNCaP, DU145, and PC3, respectively. The surviving fractions after irradiation using beta particles or gamma rays did not differ significantly at the absorbed dose levels and dose rates used. Irradiation using alpha particles led to a high level of cell killing. The results show that the beta-particle emitter

  9. Recovery dynamics in proton-bombarded semiconductor saturable absorber mirrors

    NASA Astrophysics Data System (ADS)

    Gopinath, Juliet T.; Thoen, Erik R.; Koontz, Elisabeth M.; Grein, Matthew E.; Kolodziejski, Leslie A.; Ippen, Erich P.; Donnelly, Joseph P.

    2001-05-01

    Reduction of device response time, resulting from the proton bombardment of InGaAs/InP-based semiconductor saturable absorbers, was studied experimentally using an ultrafast degenerate, cross- polarized pump-probe technique. Proton bombardment is shown to reduce device response times to ˜1 ps at low optical excitation densities. Under high excitation, the device dynamics are dominated by induced absorption. The extended recovery of highly excited carriers appears to be less sensitive to defects created by bombardment. Mode locking was demonstrated with the proton-bombarded samples in an erbium-doped fiber laser.

  10. Nanoconjugation of PSMA-targeting ligands enhances perinuclear localization and improves efficacy of delivered alpha-particle emitters against tumor endothelial analogues

    PubMed Central

    Sempkowski, Michelle; Banerjee, Sangeeta Ray; Pomper, Martin G.; Bruchertseifer, Frank; Morgenstern, Alfred; Sofou, Stavroula

    2015-01-01

    This study aims to evaluate the effect on killing efficacy of the intracellular trafficking patterns of alpha-particle emitters by using different radionuclide carriers in the setting of targeted antivascular alpha-radiotherapy. Nanocarriers (lipid vesicles) targeted to the prostate-specific-membrane-antigen (PSMA), which is unique to human neovasculature for a variety of solid tumors, were loaded with the alpha-particle generator actinium-225 and were compared to a PSMA-targeted radiolabeled antibody. Actinium-225 emits a total of four alpha-particles per decay, providing highly lethal and localized irradiation of targeted cells with minimal exposure to surrounding healthy tissues. Lipid vesicles were derivatized with two types of PSMA-targeting ligands: a fully human PSMA antibody (mAb), and a urea-based, low-molecular-weight agent. Target selectivity and extent of internalization were evaluated on monolayers of human endothelial cells (HUVEC) induced to express PSMA in static incubation conditions and in a flow field. Both types of radiolabeled PSMA-targeted vesicles exhibit similar killing efficacy, which is greater than the efficacy of the radiolabeled control mAb when compared on the basis of delivered radioactivity per cell. Fluorescence confocal microscopy demonstrates that targeted vesicles localize closer to the nucleus, unlike antibodies which localize near the plasma membrane. In addition, targeted vesicles cause larger numbers of DNA double strand breaks per nucleus of treated cells compared to the radiolabeled mAb. These findings demonstrate that radionuclide carriers, such as PSMA-targeted lipid-nanocarriers, which localize close to the nucleus increase the probability of alpha-particle trajectories crossing the nuclei, and, therefore, enhance the killing efficacy of alpha-particle emitters. PMID:26586724

  11. Energetic ion bombarded Fe/Al multilayers

    SciTech Connect

    Al-Busaidy, M.S.; Crapper, M.D.

    2006-05-15

    The utility of ion-assisted deposition is investigated to explore the possibility of counteracting the deficiency of back-reflected current of Ar neutrals in the case of lighter elements such as Al. A range of energetically ion bombarded Fe/Al multilayers sputtered with applied surface bias of 0, -200, or -400 V were deposited onto Si(111) substrates in an argon atmosphere of 4 mTorr using a computer controlled dc magnetron sputtering system. Grazing incidence reflectivity and rocking curve scans by synchrotron x rays of wavelength of 1.38 A were used to investigate the structures of the interfaces produced. Substantial evidence has been gathered to suggest the gradual suppression of interfacial mixing and reduction in interfacial roughness with increases of applied bias. The densification of the Al microstructure was noticeable and may be a consequence of resputtering attributable to the induced ion bombardment. The average interfacial roughnesses were calculated for the 0, -200, and -400 V samples to be 7{+-}0.5, 6{+-}0.5, and 5{+-}0.5 A respectfully demonstrating a 30% improvement in interface quality. Data from rocking curve scans point to improved long-range correlated roughness in energetically deposited samples. The computational code based on the recursive algorithm developed by Parratt [Phys. Rev. 95, 359 (1954)] was successful in the simulation of the specular reflectivity curves.

  12. Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks

    SciTech Connect

    Wang, J.; Zhang, X. Yu, L.; Zhao, X.

    2014-12-15

    In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

  13. A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale Crater

    NASA Astrophysics Data System (ADS)

    Berger, Jeff A.; Schmidt, Mariek E.; Gellert, Ralf; Campbell, John L.; King, Penelope L.; Flemming, Roberta L.; Ming, Douglas W.; Clark, Benton C.; Pradler, Irina; VanBommel, Scott J. V.; Minitti, Michelle E.; Fairén, Alberto G.; Boyd, Nicholas I.; Thompson, Lucy M.; Perrett, Glynis M.; Elliott, Beverley E.; Desouza, Elstan

    2016-01-01

    Modern Martian dust is similar in composition to the global soil unit and bulk basaltic Mars crust, but it is enriched in S and Cl. The Alpha Particle X-ray Spectrometer (APXS) on the Mars Science Laboratory Curiosity rover analyzed air fall dust on the science observation tray (o-tray) in Gale Crater to determine dust oxide compositions. The o-tray dust has the highest concentrations of SO3 and Cl measured in Mars dust (SO3 8.3%; Cl 1.1 wt %). The molar S/Cl in the dust (3.35 ± 0.34) is consistent with previous studies of Martian dust and soils (S/Cl = 3.7 ± 0.7). Fe is also elevated ~25% over average Mars soils and the bulk crust. These enrichments link air fall dust with the S-, Cl-, and Fe-rich X-ray amorphous component of Gale Crater soil. Dust and soil have the same S/Cl, constraining the surface concentrations of S and Cl on a global scale.

  14. Cell growth kinetics of the human cell line Colo-205 irradiated with photons and astatine-211 alpha-particles.

    PubMed

    Palm, S; Andersson, H; Bäck, T; Claesson, I; Delle, U; Hultborn, R; Jacobsson, L; Köpf, I; Lindegren, S

    2000-01-01

    Cell growth kinetics following Astatine-211 (211At, alpha-particle emitter) and photon irradiation were studied for the human colorectal cell line Colo-205. A growth assay using 96-well plates was chosen. The growth kinetics could be simulated by assuming certain fractions of cells with various proliferative capacities, i.e. from none up to 5 cell doublings, in addition to the defined survivors with remaining unlimited clonogenic capacity. No significant difference in cell growth characteristics was seen between 211At and photon irradiation. The cell doubling time, as calculated from the increment in optical density, was compared with the results from BrdU experiments in the early phases of growth (Tpot = 18.5 +/- 0.6 h for LDR (low dose rate) photon irradiated and 20.3 +/- 0.8 hours for sham-irradiated cells 40-45 hours post-irradiation) confirming the transient accelerated growth of irradiated cells. No statistically significant difference in growth was found between LDR, MDR (medium dose rate) and HDR (high dose rate) photon irradiation.

  15. Microdosimetry of rat alveolar type II cells irradiated with alpha particles from 239PuO2

    SciTech Connect

    Shen, Z.Y.; Ye, C.Q.; Wu, D.C. )

    1989-11-01

    The alveolar type II cell is one of the critical cells for radiation damage in the lungs after inhalation of radioactive aerosols. With the aid of a Quantimet-970 image analyzer and a VAX-11/780 computer, we calculated the radiation dose to rat alveolar type II cells from alpha particles emitted by {sup 239}PuO{sub 2}. A series of dosimetric parameters for type II cells, including track length distribution, linear energy transfer (LET), values of the specific energy for a single hit of a spherical target (z1), cellular dose, hit number, and their spatial distributions were calculated. By comparing the volume density of type II cells and lung tissue with energy deposited in alveolar type II cells, we found that the energy deposited per unit volume of type II cells was larger than that of lung tissue excluding type II cells. The z1 for spherical targets and the LET across type II cells were less than those in lung tissue excluding type II cells. The age of the rat and damage to lung by inhalation may significantly influence some of the parameters. The neoplastic transformation probability for type II cells is also discussed. The results suggest that the type II cell is an important target cell in the rat lung for exposure to inhaled {sup 239}PuO{sub 2}.

  16. Microdosimetry of rat alveolar type II cells irradiated with alpha particles from 239PuO2.

    PubMed

    Shen, Z Y; Ye, C Q; Wu, D C

    1989-11-01

    The alveolar type II cell is one of the critical cells for radiation damage in the lungs after inhalation of radioactive aerosols. With the aid of a Quantimet-970 image analyzer and a VAX-11/780 computer, we calculated the radiation dose to rat alveolar type II cells from alpha particles emitted by 239PuO2. A series of dosimetric parameters for type II cells, including track length distribution, linear energy transfer (LET), values of the specific energy for a single hit of a spherical target (z1), cellular dose, hit number, and their spatial distributions were calculated. By comparing the volume density of type II cells and lung tissue with energy deposited in alveolar type II cells, we found that the energy deposited per unit volume of type II cells was larger than that of lung tissue excluding type II cells. The z1 for spherical targets and the LET across type II cells were less than those in lung tissue excluding type II cells. The age of the rat and damage to lung by inhalation may significantly influence some of the parameters. The neoplastic transformation probability for type II cells is also discussed. The results suggest that the type II cell is an important target cell in the rat lung for exposure to inhaled 239PuO2.

  17. Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

  18. Characteristics and mechanisms of the bystander response in monolayer cell cultures exposed to very low fluences of alpha particles

    NASA Astrophysics Data System (ADS)

    Little, John B.; Azzam, Edouard I.; de Toledo, Sonia M.; Nagasawa, Hatsumi

    2005-02-01

    When confluent cultures of mammalian cells are irradiated with very low fluences of alpha particles whereby only occasional cells receive any radiation exposure, genetic changes are observed in the non-irradiated ("bystander") cells. Upregulation of the p53 damage-response pathway as well as activation of proteins in the MAPK family occurred in bystander cells; p53 was phosphorylated on the serine 15 residue suggesting that the upregulation of p53 was a consequence of DNA damage. Damage signals were transmitted to bystander cells through gap junctions, as confirmed by the use of genetically manipulated cells including connexin43 knockouts. Expression of connexin43 was markedly enhanced by irradiation. A moderate bystander effect was observed for specific gene mutations and chromosomal aberrations. This effect was markedly enhanced in cells defective in the non-homologous end joining DNA repair pathway. Finally, an upregulation of oxidative metabolism occurred in bystander cells; the increased levels of reactive oxygen species appeared to be derived from flavine-containing oxidase enzymes. We hypothesize that genetic effects observed in non-irradiated bystander cells are a consequence of oxidative base damage; >90% of mutations in bystander cells were point mutations. When bystander cells cannot repair DNA double strand breaks, they become much more sensitive to the induction of chromosomal aberrations and mutations, the latter consisting primarily of deletion mutants. While we propose that the genetic effects occurring in bystander cells are a consequence of oxidative stress, the nature of the signal that initiates this process remains to be determined.

  19. Microdosimetry of alpha particles for simple and 3D voxelised geometries using MCNPX and Geant4 Monte Carlo codes.

    PubMed

    Elbast, M; Saudo, A; Franck, D; Petitot, F; Desbrée, A

    2012-07-01

    Microdosimetry using Monte Carlo simulation is a suitable technique to describe the stochastic nature of energy deposition by alpha particle at cellular level. Because of its short range, the energy imparted by this particle to the targets is highly non-uniform. Thus, to achieve accurate dosimetric results, the modelling of the geometry should be as realistic as possible. The objectives of the present study were to validate the use of the MCNPX and Geant4 Monte Carlo codes for microdosimetric studies using simple and three-dimensional voxelised geometry and to study their limit of validity in this last case. To that aim, the specific energy (z) deposited in the cell nucleus, the single-hit density of specific energy f(1)(z) and the mean-specific energy were calculated. Results show a good agreement when compared with the literature using simple geometry. The maximum percentage difference found is <6 %. For voxelised phantom, the study of the voxel size highlighted that the shape of the curve f(1)(z) obtained with MCNPX for <1 µm voxel size presents a significant difference with the shape of non-voxelised geometry. When using Geant4, little differences are observed whatever the voxel size is. Below 1 µm, the use of Geant4 is required. However, the calculation time is 10 times higher with Geant4 than MCNPX code in the same conditions.

  20. Cell Cycle Checkpoint Proteins p21 and Hus1 Regulating Intercellular Signaling Induced By Alpha Particle Irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Lijun; Zhao, Ye; Wang, Jun; Hang, Haiying

    In recent years, the attentions for radiation induced bystander effects (RIBE) have been paid on the intercellular signaling events connecting the irradiated and non-irradiated cells. p21 is a member of the Cip/Kip family and plays essential roles in cell cycle progression arrest after cellular irradiation. DNA damage checkpoint protein Hus1 is a member of the Rad9-Rad1-Hus1 complex and functions as scaffold at the damage sites to facilitate the activation of downstream effectors. Using the medium trasfer method and the cells of MEF, MEF (p21-/-), MEF (p21-/-Hus1-/-) as either medium donor or receptor cells, it was found that with 5cGy alpha particle irradiation, the bystander cells showed a significant induction of -H2AX for normal MEFs (p¡0.05). However, the absence of p21 resulted in deficiency in inducing bystander effects. Further results indicated p21 affected the intercellular DNA damage signaling mainly through disrupting the production or release of the damage signals from irradiated cells. When Hus1 and p21 were both knocked out, an obvious induction of -H2AX recurred in bystander cells and the induction of -H2AX was GJIC (gap junction-mediated intercellular communication) dependent, indicating the interrelationship between p21 and Hus1 regulated the production and relay of DNA damage signals from irradiated cells to non-irradiated bystander cells.

  1. Design of a neutron-TPC prototype and its performance evaluation based on an alpha-particle test

    NASA Astrophysics Data System (ADS)

    Huang, Meng; Li, Yu-Lan; Niu, Li-Bo; Li, Jin; Deng, Zhi; He, Li; Zhang, Hong-Yan; Cheng, Xiao-Lei; Fu, Jian-Qiang; Li, Yuan-Jing

    2015-08-01

    A neutron-TPC (nTPC) is being developed for use as a fast neutron spectrometer in the fields of nuclear physics, nuclear reactor operation monitoring, and thermo-nuclear fusion plasma diagnostics. An nTPC prototype based on a GEM-TPC (Time Projection Chamber with Gas Electron Multiplier amplification) has been assembled and tested using argon-hydrocarbon mixture as the working gas. By measuring the energy deposition of the recoil proton in the sensitive volume and the angle of the proton track, the incident neutron energy can be deduced. A Monte Carlo simulation was carried out to analyze the parameters affecting the energy resolution of the nTPC, and gave an optimized resolution under ideal conditions. An alpha particle experiment was performed to verify its feasibility, and to characterize its performance, including energy resolution and spatial resolution. Based on the experimental measurement and analysis, the energy resolution (FWHM) of the nTPC prototype is predicted to be better than 3.2% for 5 MeV incident neutrons, meeting the performance requirement (FWHM<5%) for the nTPC prototype.

  2. Properties of a previously unobserved donor-related electrically active defect in Ge induced by alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Barnard, Abraham W.; Meyer, Walter E.; Auret, F. Danie

    2017-09-01

    Alpha particle irradiation was used to study the radiation-induced defects in n-type germanium (Ge). Investigation of the well-known antimony (Sb)-vacancy complex (commonly known as the E-center) in Ge, with an activation energy of 0.37 eV (E0.37), has led to the discovery of another defect with a DLTS signature virtually indistinguishable from the E-center, but with different annealing characteristics. We shall refer to this new defect as the E-prime. Although the two defects are easily distinguishable by annealing, the DLTS signal produced by the E-center and E-prime were not distinguishable through conventional deep level transient spectroscopy (DLTS). Separation of the two peaks was only possible through the use of low noise equipment in conjunction with high resolution Laplace-DLTS. The activation energy of the Sb-vacancy and the E-prime was determined to be 0.370 ± 0.005 eV and 0.375 ± 0.005 eV. Depth profiles showed uniform distributions of both defects below the Schottky junction.

  3. Alpha-particle and proton probes of nuclear shapes in the rare earth and mass 80 regions

    SciTech Connect

    Sarantites, D.G.; Nicolis, N.G.; Abenante, V.; Majka, Z.; Semkow, T.M.; Baktash, C.; Beene, J.R.; Garcia-Bermudez, G.; Halbert, M.L.; Hensley, D.C.; Johnson, N.R.; Lee, I.Y.; McGowan, F.K.; Riley, M.A.; Virtanen, A.; Griffin, H.C.; Oak Ridge National Lab., TN; Michigan Univ., Ann Arbor, MI )

    1989-01-01

    Low emission barriers and large subbarrier anisotropies in the alpha-particle decay with respect to the spin direction, of Sn and rare earth compound nuclei, are examined in the light of recent calculations incorporating deformation. To explore the possibility of a correlation between the proton emission barriers and nuclear deformation, we studied proton spectra from the {sup 52}Cr({sup 34}S,2p2n){sup 82}Sr reaction. The proton spectra were observed with the Dwarf-Ball 4{pi} CsI(Tl) array, in coincidence with 18 Compton suppressed Ge detectors operated in conjunction with the Spin Spectrometer, a 4{pi} NaI(Tl) array. We found significant changes and shifts in the proton energy spectra as we selected gating transitions from bands of different moments of inertia or transitions from states of different spin in the same band. Substantial differences were also seen as a function of the {gamma}-ray multiplicity. These results are discussed in terms of statistical model calculations incorporating deformation and structure effects of the emitting system. 20 refs., 9 figs.

  4. Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

  5. Beyond Bombardment: Subjectivity, Visual Culture, and Art Education

    ERIC Educational Resources Information Center

    Eisenhauer, Jennifer F.

    2006-01-01

    Beginning with an understanding of visual culture as a postmodern discourse, this article argues for more focused attention to how visual culture presents a critical rethinking of subjectivity within art education. Through an analysis of a language of bombardment, a discourse that positions the subject as bombarded by media messages, this article…

  6. The presence of defects and their influence on the performance of CVD diamond as an alpha-particle radiation sensing element.

    PubMed

    Mavunda, R D; Zakari, Y I; Nam, T L; Keddy, R J

    2008-08-01

    Three types of diamonds produced by chemical vapor deposition (CVD) and broadly classified as detector grade, optical grade and single crystal were evaluated in terms of their response to alpha-particle radiation when used as detection elements. It is well known that the presence of defects in diamond, including CVD specimens, not only dictates but also affects the response of diamond to radiation in different ways. In this investigation, tools such as electron spin resonance (ESR), thermo-luminescence (TL), Raman spectroscopy and ultraviolet (UV) spectroscopy were used to probe each of the samples, which were then graded on their performance as alpha-particle radiation detectors. The presentation discusses the presence of defects identifiable by the techniques used and correlates the radiation performances of the three types of crystals to their presence.

  7. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  8. Simulation of the alpha particle heating and the helium ash source in an International Thermonuclear Experimental Reactor-like tokamak with an internal transport barrier

    SciTech Connect

    Ye, Lei Guo, Wenfeng; Xiao, Xiaotao; Dai, Zongliang; Wang, Shaojie

    2014-12-15

    A guiding center orbit following code, which incorporates a set of non-singular coordinates for orbit integration, was developed and applied to investigate the alpha particle heating in an ITER-like tokamak with an internal transport barrier. It is found that a relatively large q (safety factor) value can significantly broaden the alpha heating profile in comparison with the local heating approximation; this broadening is due to the finite orbit width effects; when the orbit width is much smaller than the scale length of the alpha particle source profile, the heating profile agrees with the source profile, otherwise, the heating profile can be significantly broadened. It is also found that the stagnation particles move to the magnetic axis during the slowing-down process, thus the effect of stagnation orbits is not beneficial to the helium ash removal. The source profile of helium ash is broadened in comparison with the alpha source profile, which is similar to the heating profile.

  9. Evidence of DNA double strand breaks formation in Escherichia coli bacteria exposed to alpha particles of different LET assessed by the SOS response.

    PubMed

    Serment-Guerrero, Jorge; Breña-Valle, Matilde; Aguilar-Moreno, Magdalena; Balcázar, Miguel

    2012-12-01

    Ionizing radiation produces a plethora of lesion upon DNA which sometimes is generated among a relatively small region due to clustered energy deposition events, the so called locally multiply damaged sites that could change to DSB. Such clustered damages are more likely to occur in high LET radiation exposures. The effect of alpha particles of different LET was evaluated on the bacterium Escherichia coli either by survival properties or the SOS response activity. Alpha radiation and LET distribution was controlled by means of Nuclear Track Detectors. The results suggest that alpha particles produce two types of lesion: lethal lesions and SOS inducing-mutagenic, a proportion that varies depending on the LET values. The SOS response as a sensitive parameter to assess RBE is mentioned.

  10. Computation of cosmic ray ionization and dose at Mars. I: A comparison of HZETRN and Planetocosmics for proton and alpha particles

    NASA Astrophysics Data System (ADS)

    Gronoff, Guillaume; Norman, Ryan B.; Mertens, Christopher J.

    2015-04-01

    The ability to evaluate the cosmic ray environment at Mars is of interest for future manned exploration. To support exploration, tools must be developed to accurately access the radiation environment in both free space and on planetary surfaces. The primary tool NASA uses to quantify radiation exposure behind shielding materials is the space radiation transport code, HZETRN. In order to build confidence in HZETRN, code benchmarking against Monte Carlo radiation transport codes is often used. This work compares the dose calculations at Mars by HZETRN and the Geant4 application Planetocosmics. The dose at ground and the energy deposited in the atmosphere by galactic cosmic ray protons and alpha particles has been calculated for the Curiosity landing conditions. In addition, this work has considered Solar Energetic Particle events, allowing for the comparison of varying input radiation environments. The results for protons and alpha particles show very good agreement between HZETRN and Planetocosmics.

  11. Redefining Relative Biological Effectiveness in the Context of the EQDX Formalism: Implications for Alpha-Particle Emitter Therapy.

    PubMed

    Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George

    2013-12-30

    Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from

  12. Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy.

    PubMed

    Hobbs, Robert F; Howell, Roger W; Song, Hong; Baechler, Sébastien; Sgouros, George

    2014-01-01

    Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from

  13. Redefining Relative Biological Effectiveness in the Context of the EQDX Formalism: Implications for Alpha-Particle Emitter Therapy

    PubMed Central

    Hobbs, Robert F.; Howell, Roger W.; Song, Hong; Baechler, Sébastien; Sgouros, George

    2014-01-01

    Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from

  14. Engineered Modular Recombinant Transporters: Application of New Platform for Targeted Radiotherapeutic Agents to {alpha}-Particle Emitting {sup 211}At

    SciTech Connect

    Rosenkranz, Andrey A.; Vaidyanathan, Ganesan; Pozzi, Oscar R.; Lunin, Vladimir G.; Zalutsky, Michael R. Sobolev, Alexander S.

    2008-09-01

    Purpose: To generate and evaluate a modular recombinant transporter (MRT) for targeting {sup 211}At to cancer cells overexpressing the epidermal growth factor receptor (EGFR). Methods and Materials: The MRT was produced with four functional modules: (1) human epidermal growth factor as the internalizable ligand, (2) the optimized nuclear localization sequence of simian vacuolating virus 40 (SV40) large T-antigen, (3) a translocation domain of diphtheria toxin as an endosomolytic module, and (4) the Escherichia coli hemoglobin-like protein (HMP) as a carrier module. MRT was labeled using N-succinimidyl 3-[{sup 211}At]astato-5-guanidinomethylbenzoate (SAGMB), its {sup 125}I analogue SGMIB, or with {sup 131}I using Iodogen. Binding, internalization, and clonogenic assays were performed with EGFR-expressing A431, D247 MG, and U87MG.wtEGFR human cancer cell lines. Results: The affinity of SGMIB-MRT binding to A431 cells, determined by Scatchard analysis, was 22 nM, comparable to that measured before labeling. The binding of SGMIB-MRT and its internalization by A431 cancer cells was 96% and 99% EGFR specific, respectively. Paired label assays demonstrated that compared with Iodogen-labeled MRT, SGMIB-MRT and SAGMB-MRT exhibited more than threefold greater peak levels and durations of intracellular retention of activity. SAGMB-MRT was 10-20 times more cytotoxic than [{sup 211}At]astatide for all three cell lines. Conclusion: The results of this study have demonstrated the initial proof of principle for the MRT approach for designing targeted {alpha}-particle emitting radiotherapeutic agents. The high cytotoxicity of SAGMB-MRT for cancer cells overexpressing EGFR suggests that this {sup 211}At-labeled conjugate has promise for the treatment of malignancies, such as glioma, which overexpress this receptor.

  15. The thermoluminescence response of doped SiO2 optical fibres subjected to alpha-particle irradiation.

    PubMed

    Ramli, Ahmad Termizi; Bradley, D A; Hashim, Suhairul; Wagiran, Husin

    2009-03-01

    Ion beams are used in radiotherapy to deliver a more precise dose to the target volume while minimizing dose to the surrounding healthy tissue. For optimum dose monitoring in ion-beam therapy, it is essential to be able to measure the delivered dose with a sensitivity, spatial resolution and dynamic range that is sufficient to meet the demands of the various therapy situations. Optical fibres have been demonstrated by this group to show promising thermoluminescence properties with respect to photon, electron and proton irradiation. In particular, and also given the flexibility and small size of optical fibre cores, for example 125.0+/-0.1 microm for the Al- and Ge-doped fibres used in this study, these fibres have the potential to fulfill the above requirements. This study investigates the thermoluminescence dosimetric characteristics of variously doped SiO(2) optical fibres irradiated with alpha particles from (241)Am. Following subtraction of the gamma contribution from the above source, the thermoluminescence characteristics of variously doped SiO(2) optical fibres have been compared with that of TLD-100 rods. The irradiations were performed in a bell jar. Of related potential significance is the effective atomic number, Z(eff) of the fibre, modifying measured dose from that deposited in tissues; in the present work, a scanning electron microscope and associated energy dispersive X-ray spectroscopy facility have been used to provide evaluation of Z(eff). For Ge-doped fibres, the effective atomic numbers value was 11.4, the equivalent value for Al-doped fibres was 12.3. This paper further presents results on dose response and the glow curves obtained. The results obtained indicate there to be good potential for use of variously doped SiO(2) optical fibres in measuring ion-beam doses in radiotherapeutic applications.

  16. Evaluation of Melt-Grown, ZnO Single Crystals for Use as Alpha-Particle Detectors

    SciTech Connect

    Neal, John S; Giles, N. C.; Yang, Xiaocheng; Wall, R. Andrew; Ucer, Burak; Williams, Richard T.; Wisniewski, Dariusz J; Boatner, Lynn A; Rengarajan, Varatharajan; Nause, Jeff E; Nemeth, Bell

    2008-01-01

    As part of an ongoing investigation of the scintillation properties of zinc-oxide-based scintillators, several melt-grown, ZnO single crystals have been characterized using -particle excitation, infrared reflectance, and room temperature photoluminescence. The crystals, grown by Cermet, Inc. using a pressurized melt growth process, were doped with Group 1 elements (Li), Group 2 elements (Mg), Group 3 elements (Ga, In) and Lanthanides (Gd, Er, Tm). The goals of these studies are to better understand the scintillation mechanisms associated with various members of the ZnO scintillator family and to then use this knowledge to improve the radiation detection capabilities of ZnO-based scintillators. One application for which ZnO is particularly well suited as a scintillator is as the associated particle detector in a deuterium-tritium (D-T) neutron generator. Application requirements include the exclusion of organic materials, outstanding timing resolution, and high radiation resistance. ZnO(Ga) and ZnO(In) have demonstrated fast (sub-nanosecond) decay times with relatively low light yields, and ZnO(Ga) has been used in a powder form as the associated particle detector for a D-T neutron generator. Four promising candidate materials, ZnO, ZnO:Ga, ZnO:In,Li, and ZnO:Er,Li, were identified in this study. These four samples demonstrated sub-nanosecond decay times and alpha particle excited luminescence comparable to BC-400 fast plastic scintillator. The ZnO:Mg,Ga, ZnO:Gd, and ZnO:Li samples demonstrated appreciable slow (microsecond) decay components that would be incompatible with high-counting-rate applications.

  17. Risk of Lung Cancer Mortality in Nuclear Workers from Internal Exposure to Alpha Particle-emitting Radionuclides.

    PubMed

    Grellier, James; Atkinson, Will; Bérard, Philippe; Bingham, Derek; Birchall, Alan; Blanchardon, Eric; Bull, Richard; Guseva Canu, Irina; Challeton-de Vathaire, Cécile; Cockerill, Rupert; Do, Minh T; Engels, Hilde; Figuerola, Jordi; Foster, Adrian; Holmstock, Luc; Hurtgen, Christian; Laurier, Dominique; Puncher, Matthew; Riddell, Anthony E; Samson, Eric; Thierry-Chef, Isabelle; Tirmarche, Margot; Vrijheid, Martine; Cardis, Elisabeth

    2017-09-01

    Carcinogenic risks of internal exposures to alpha-emitters (except radon) are poorly understood. Since exposure to alpha particles-particularly through inhalation-occurs in a range of settings, understanding consequent risks is a public health priority. We aimed to quantify dose-response relationships between lung dose from alpha-emitters and lung cancer in nuclear workers. We conducted a case-control study, nested within Belgian, French, and UK cohorts of uranium and plutonium workers. Cases were workers who died from lung cancer; one to three controls were matched to each. Lung doses from alpha-emitters were assessed using bioassay data. We estimated excess odds ratio (OR) of lung cancer per gray (Gy) of lung dose. The study comprised 553 cases and 1,333 controls. Median positive total alpha lung dose was 2.42 mGy (mean: 8.13 mGy; maximum: 316 mGy); for plutonium the median was 1.27 mGy and for uranium 2.17 mGy. Excess OR/Gy (90% confidence interval)-adjusted for external radiation, socioeconomic status, and smoking-was 11 (2.6, 24) for total alpha dose, 50 (17, 106) for plutonium, and 5.3 (-1.9, 18) for uranium. We found strong evidence for associations between low doses from alpha-emitters and lung cancer risk. The excess OR/Gy was greater for plutonium than uranium, though confidence intervals overlap. Risk estimates were similar to those estimated previously in plutonium workers, and in uranium miners exposed to radon and its progeny. Expressed as risk/equivalent dose in sieverts (Sv), our estimates are somewhat larger than but consistent with those for atomic bomb survivors.See video abstract at, http://links.lww.com/EDE/B232.

  18. Calculation of effective atomic number and electron density of essential biomolecules for electron, proton, alpha particle and multi-energetic photon interactions

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat; Onaran, Tayfur

    2015-07-01

    Effective atomic numbers (Zeff) and electron densities (Ne) of some essential biomolecules have been calculated for total electron interaction, total proton interaction and total alpha particle interaction using an interpolation method in the energy region 10 keV-1 GeV. Also, the spectrum weighted Zeff for multi-energetic photons has been calculated using Auto-Zeff program. Biomolecules consist of fatty acids, amino acids, carbohydrates and basic nucleotides of DNA and RNA. Variations of Zeff and Ne with kinetic energy of ionizing charged particles and effective photon energies of heterogeneous sources have been studied for the given materials. Significant variations in Zeff and Ne have been observed through the entire energy region for electron, proton and alpha particle interactions. Non-uniform variation has been observed for protons and alpha particles in low and intermediate energy regions, respectively. The maximum values of Zeff have found to be in higher energies for total electron interaction whereas maximum values have found to be in relatively low energies for total proton and total alpha particle interactions. When it comes to the multi-energetic photon sources, it has to be noted that the highest Zeff values were found at low energy region where photoelectric absorption is the pre-dominant interaction process. The lowest values of Zeff have been shown in biomolecules such as stearic acid, leucine, mannitol and thymine, which have highest H content in their groups. Variation in Ne seems to be more or less the same with the variation in Zeff for the given materials as expected.

  19. Determination of primary energy in nucleus-nucleus collisions and the high P(sub)T tail of alpha-particles

    NASA Technical Reports Server (NTRS)

    Freier, P. S.; Atwater, T. W.

    1985-01-01

    A determination of primary energy is required in order to study the energy dependence of meson multiplicity in A-A collisions in cosmic rays. Various procedures which estimate the energy of a primary nucleus from its interaction were investigated. An average of two methods were used, one using the pions and wounded protons and the other using spectator protons and alpha particles. The high P sub T tail observed for Z = 2 fragments requires a modification of the latter method.

  20. Observation of alpha particle loss from JET plasmas during ion cyclotron resonance frequency heating using a thin foil Faraday cup detector array.

    PubMed

    Darrow, D S; Cecil, F E; Kiptily, V; Fullard, K; Horton, A; Murari, A

    2010-10-01

    The loss of MeV alpha particles from JET plasmas has been measured with a set of thin foil Faraday cup detectors during third harmonic heating of helium neutral beam ions. Tail temperatures of ∼ 2 MeV have been observed, with radial scrape off lengths of a few centimeters. Operational experience from this system indicates that such detectors are potentially feasible for future large tokamaks, but careful attention to screening rf and MHD induced noise is essential.

  1. Energy dependence of W for alpha particles in N2, CO2, CH4, Ar, H2 and Rossi-type tissue-equivalent gases.

    PubMed

    Varma, M N; Baum, J W

    1978-11-01

    Average energy required to form an ion pair (W) was determined in N2, CO2, CH4, Ar, H2 and Rossi-type tissue-equivalent gas. Alpha particles from a 241Am source were used. W was determined at alpha energies of 5.37, 3.12, 1.08 and 0.46 MeV. The ratio of total ionisation produced (for fixed alpha particle energy) in experimental gas to that produced in argon was measured. This ratio was then multiplied by the previously determined W value for argon gas (26.29 eV per ion pair) to yield W for various experimental gases. Energy of the 241Am alpha particles was degraded by using air as an absorbing material. Empirical relations W = alpha + betaE-1/2 and W = alpha1 + beta1E-1 were fitted to the experimental data. Both functions fit reasonably well in the range 0.4--5.37 MeV. Below about 0.4 MeV the first function provides a better fit to the data of Boring et al. (1965).

  2. Numerical investigation on the stabilization of the deceleration phase Rayleigh-Taylor instability due to alpha particle heating in ignition target

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Zhu, Shaoping; Pei, Wenbing; Ye, Wenhua; Li, Meng; Xu, Xiaowen; Wu, Junfeng; Dai, Zhensheng; Wang, Lifeng

    2012-09-01

    Tritium-hydrogen-deuterium (THD) target is adopted in order to experimentally diagnose the properties of the ignition hot spot and the highly compressed main fusion fuel (Edwards M. J. et al., Phys. Plasmas, 18 (2011) 051003). As compared with deuterium-tritium (DT) target, the thermonuclear alpha particles which are needed to heat the fusion fuel, are much less in the THD target. In the present paper, the effect of alpha particle heating on the deceleration phase Rayleigh-Taylor instability (dp-RTI), which is one of the key problems in hot spot formation, is investigated systematically through numerical simulations. It is found that the mass ablation at the hot spot boundary is greatly increased due to the direct alpha particle heating. As a result, the dp-RTI growth rates are greatly reduced and the cut-off mode number decreases greatly from about 33 to 17. This explains why the hydrodynamic instability in the THD target grows more severely than in the DT ignition target.

  3. Predictive nonlinear studies of TAE-induced alpha-particle transport in the Q  =  10 ITER baseline scenario

    NASA Astrophysics Data System (ADS)

    Fitzgerald, M.; Sharapov, S. E.; Rodrigues, P.; Borba, D.

    2016-11-01

    We use the HAGIS code to compute the nonlinear stability of the Q  =  10 ITER baseline scenario to toroidal Alfvén eigenmodes (TAE) and the subsequent effects of these modes on fusion alpha-particle redistribution. Our calculations build upon an earlier linear stability survey (Rodrigues et al 2015 Nucl. Fusion 55 083003) which provides accurate values of bulk ion, impurity ion and electron thermal Landau damping for our HAGIS calculations. Nonlinear calculations of up to 129 coupled TAEs with toroidal mode numbers in the range n  =  1-35 have been performed. The effects of frequency sweeping were also included to examine possible phase space hole and clump convective transport. We find that even parity core localised modes are dominant (expected from linear theory), and that linearly stable global modes are destabilised nonlinearly. Landau damping is found to be important in reducing saturation amplitudes of coupled modes to below δ {{B}r}/{{B}0}˜ 3× {{10}-4} . For these amplitudes, stochastic transport of alpha-particles occurs in a narrow region where predominantly core localised modes are found, implying the formation of a transport barrier at r/a≈ 0.5 , beyond which, the weakly driven global modes are found. We find that for flat q profiles in this baseline scenario, alpha particle transport losses and redistribution by TAEs is minimal.

  4. Improvement of Makrofol® De 7-2 polycarbonate optical properties by thermal annealing for the registration of alpha particles

    NASA Astrophysics Data System (ADS)

    El Ghazaly, M.; Aydarous, Abdilkadir

    Translucent Makrofol® DE 7-2 polycarbonate samples are thermally-annealed at 200 °C for different durations in the air. UV-Vis spectra of the thermally-annealed Makrofol® DE 7-2 were measured. The results reveal that the light absorbance by thermally-annealed Makrofol® DE 7-2 is significantly minimized which enhances the visualization of the charged particle track registered on it. Both direct and indirect band gaps show pronounced stability over all thermal annealing durations; the same behavior was observed to Urbach's energy and the number of carbon atoms per cluster where no reasonable alteration was observed. The thermally-annealed Makrofol® DE 7-2 was irradiated with 3 MeV alpha particles and etched for different durations in 75% 6 N KOH + 25% C2H5OH at 50 °C. Alpha particle track diameter is found to be linearly correlated with the etching time up to 3 h before the Bragg peak. The chemical etching efficiency of alpha particle tracks ranges from 0.22 to 0.26. The current new findings indicate the possibility to improve the optical properties of translucent Makrofol® DE 7-2 by a thermal annealing for its utilization in charged particle registration.

  5. Genetic transformation of wheat via particle bombardment.

    PubMed

    Sparks, Caroline A; Jones, Huw D

    2014-01-01

    Since its first invention in the late 1980s the particle gun has evolved from a basic gunpowder driven machine firing tungsten particles to one more refined which uses helium gas as the propellant to launch alternative heavy metal particles such as gold and silver. The simple principle is that DNA-coated microscopic particles (microcarriers) are accelerated at high speed by helium gas within a vacuum and travel at such a velocity as to penetrate target cells. However, the process itself involves a range of parameters which are open to variation: microparticle type and size, gun settings (rupture pressure, target distance, vacuum drawn, etc.), preparation of components (e.g., gold coating), and preparation of plant tissues. Here is presented a method optimized for transformation of wheat immature embryos using the Bio-Rad PDS-1000/He particle gun to deliver gold particles coated with a gene of interest and the selectable marker gene bar at 650 psi rupture pressure. Following bombardment, various tissue culture phases are used to encourage embryogenic callus formation and regeneration of plantlets and subsequent selection using glufosinate ammonium causes suppression of non-transformed tissues, thus assisting the detection of transformed plants. This protocol has been used successfully to generate transgenic plants for a wide range of wheat varieties, both spring and winter bread wheats (T. aestivum L.) and durum wheats (T. turgidum L.).

  6. Observational signatures of extrasolar Late Heavy Bombardments

    NASA Astrophysics Data System (ADS)

    Thommes, Edward; Rasio, Fred; Bryden, Geoffrey

    2007-05-01

    Spitzer observations have revealed hot dust around some Sun-like stars, at luminosities about three orders of magnitude higher than predicted by quasi-steady state disk evolution models. These findings have been interpreted as the signposts of a system-wide cataclysmic event analogous to the Late Heavy Bombardment (LHB) experienced by our own Solar System. At the same time, the frequency of detection of these events is consistent with ALL Solar-type stars passing through such a phase at some point in their lifetime. We propose to undertake an in-depth theoretical investigation of the ramifications of this intriguing result, which seems to be telling us something profound about the planet formation process---including how our own system fits into the picture. Using N-body simulations of planets embedded in planetesimal disks, and building on existing models, we intend to explore the pathways by which a planetary system can undergo a LHB-like event, and the different ways in which such events can play out. For each simulated system, we will calculate the dust generated by planetesimal collisions. In this way, we will generate a library of time-evolving dust distributions; these will allow us to make direct comparisons to existing Spitzer data, as well as testable predictions to guide future observations. Our results will be made available to the astronomy community via a series of papers to be published over the funding period.

  7. Transgenic sorghum plants via microprojectile bombardment.

    PubMed

    Casas, A M; Kononowicz, A K; Zehr, U B; Tomes, D T; Axtell, J D; Butler, L G; Bressan, R A; Hasegawa, P M

    1993-12-01

    Transgenic sorghum plants have been obtained after microprojectile bombardment of immature zygotic embryos of a drought-resistant sorghum cultivar, P898012. DNA delivery parameters were optimized based on transient expression of R and C1 maize anthocyanin regulatory elements in scutellar cells. The protocol for obtaining transgenic plants consists of the delivery of the bar gene to immature zygotic embryos and the imposition of bialaphos selection pressure at various stages during culture, from induction of somatic embryogenesis to rooting of regenerated plantlets. One in about every 350 embryos produced embryogenic tissues that survived bialaphos treatment; six transformed callus lines were obtained from three of the eight sorghum cultivars used in this research. Transgenic (T0) plants were obtained from cultivar P898012 (two independent transformation events). The presence of the bar and uidA genes in the T0 plants was confirmed by Southern blot analysis of genomic DNA. Phosphinothricin acetyltransferase activity was detected in extracts of the T0 plants. These plants were resistant to local application of the herbicide Ignite/Basta, and the resistance was inherited in T1 plants as a single dominant locus.

  8. Chemical damage and aging of ion bombarded PPS

    NASA Astrophysics Data System (ADS)

    Rizzatti, M. R.; de Araújo, M. A.; Livi, R. P.

    2000-09-01

    Thin foils of commercial grade polyphenylene sulfide (PPS), 2 μm thick, were bombarded with energetic H + (300 keV), He + (350 keV), B + (350 keV) and Ar ++ (700 keV) ions at fluences ranging from 10 12 to 10 15 ions/cm2. Fourier transform infrared spectroscopy (FTIR), Rutherford backscattering analysis (RBS) and chemical elemental analysis (CHN) were performed to evaluate the chemical changes induced by ion bombardment in the polymeric samples. It was verified that the S-S and C-S acyclic bonds were more susceptible to ion bombardment, and the aromatic ring bonds are the most resistant ones. The effective modification radii for the bond breaking and recombination processes were extracted. The aging of bombarded PPS was monitored and oxygen and nitrogen uptake increased linearly with time.

  9. Exploring Planet Migration and Early Solar System Bombardment

    NASA Astrophysics Data System (ADS)

    Bottke, W. F.; Nesvorny, D.; Marchi, S.; Levison, H.; Canup, R.

    2017-02-01

    Understanding planet migration and early bombardment are key Decadal Survey goals because they define the nature of many solar system worlds. Both can be constrained by dating ancient terrains, basins, and craters found on the Moon and Mars.

  10. Radiopharmaceutical chemistry of targeted radiotherapeutics, Part 3: alpha-particle-induced radiolytic effects on the chemical behavior of (211)At.

    PubMed

    Pozzi, Oscar R; Zalutsky, Michael R

    2007-07-01

    Two characteristics of alpha-particles that enhance their potential for targeted radiotherapy are their high energy and approximately cellular range. Unfortunately, these properties also can have negative consequences, confounding the production of clinically relevant levels of radiopharmaceutical because of radiolytic effects. The purpose of this study was to evaluate the effect of radiation dose on the astatine species present before initiation of a labeling reaction and the potential role of these molecules in the efficiency of N-succinimidyl 3-(211)At-astatobenzoate (SAB) synthesis. The ranges of radiation dose evaluated were selected to reflect those that might be encountered in SAB synthesis for the preparation of clinical doses of (211)At-labeled radiopharmaceuticals. The distribution of astatine species present in methanol, and the yields for the synthesis of SAB from N-succinimidyl 3-(tri-n-butylstannyl)benzoate as a function of radiation dose, were determined by high-performance liquid chromatography. Radiation doses in the range of 500-12,000 Gy were evaluated using different (211)At time-activity combinations, and the effect of acetic acid, a normal component of astatodestannylation reactions, also was studied. Finally, the effect of the reducing agent sodium sulfite also was evaluated to characterize the nature of the species produced by radiolysis. At radiation doses below 1,000 Gy, high-performance liquid chromatography analysis indicated that more than 90% of the (211)At was present in methanol as a single species, At(1), whereas at higher doses, a second peak, At(2), emerged. At(1) decreased and At(2) increased in a radiation dose-dependent fashion, with At(2) becoming the predominant species at about 3,000 Gy. At(2) was identified as a reduced form of astatine, presumably astatide, which could not be efficiently oxidized to a species suitable for electrophilic astatination. In methanol/acetic acid, more than 95% of the astatine was present as At(2

  11. Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone

    PubMed Central

    2014-01-01

    Background Hormone-refractory breast cancer metastatic to bone is a clinically challenging disease associated with high morbidity, poor prognosis, and impaired quality of life owing to pain and skeletal-related events. In a preclinical study using a mouse model of breast cancer and bone metastases, Ra-223 dichloride was incorporated into bone matrix and inhibited proliferation of breast cancer cells and differentiation of osteoblasts and osteoclasts (all P values < .001) in vitro. Ra-223 dichloride also induced double-strand DNA breaks in cancer cells in vivo. Methods The US Food and Drug Administration recently approved radium-223 (Ra-223) dichloride (Ra-223; Xofigo injection) alpha-particle therapy for the treatment of symptomatic bone metastases in patients with castration-resistant prostate cancer. On the basis of a strong preclinical rationale, we used Ra-223 dichloride to treat bone metastases in a patient with breast cancer. Results A 44-year-old white woman with metastatic breast cancer who was estrogen receptor–positive, BRCA1-negative, BRCA2-negative, PIK3CA mutation (p.His1047Arg) positive presented with diffuse bony metastases and bone pain. She had hormone refractory and chemotherapy refractory breast cancer. After Ra-223 therapy initiation her bone pain improved, with corresponding decrease in tumor markers and mixed response in 18F-FDG PET/CT and 18F-NaF bone PET/CT. The patient derived clinical benefit from therapy. Conclusion We have shown that Ra-223 dichloride can be safely administered in a patient with hormone-refractory bone metastasis from breast cancer at the US FDA–approved dose for prostate cancer. Furthermore, because the treatment did not cause any drop in hematologic parameters, it has the potential to be combined with other radiosensitizing therapies, which may include chemotherapy or targeted therapies. Given that Ra-223 dichloride is already commercially available, this case report may help future patients and provide a

  12. Bombardment-induced segregation and redistribution

    SciTech Connect

    Lam, N.Q.; Wiedersich, H.

    1986-04-01

    During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilbrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed. 74 refs., 7 figs., 1 tab.

  13. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  14. Elemental Analysis of the Surface of Comet 67p/Churyumov-Gerasimenko with the Alpha Particle X-Ray Spectrometer APXS on the Rosetta Lander Philae: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, G.; Schmanke, D.; Girones-Lopez, J.; Brueckner, J.; d'Uston, C.; Economou, T.; Gellert, R.; Markovski, C.

    2014-12-01

    After a 10 years cruise the Rosetta probe has reached its final target, the comet 67P/Churyumov-Gerasimenko. The main objectives of the mission are to gain more knowledge of the composition, the origin and formation of comets and the solar system. After extensive remote exploration of the comet the lander Philae will be separated to land on the comet surface, starting immediately examining its landing site with its scientific payload. Part of this payload is the APXS (Alpha Particle X-Ray Spectrometer). It will measure in situ the chemical composition of the comet's surface and it's changes during the journey of the comet towards the sun. APXS is a combination of two spectrometers in one single instrument. It will irradiate the comet surface using Curium 244 sources, which are emitting alpha-particle and X-rays. In the alpha-mode the instrument uses alpha backscattering spectroscopy to detect lower Z elements like C, N and O and groups of elements with higher Z. In the X-ray mode alpha particle / X-ray induced X-ray spectroscopy (XRF) will allow the detection of most of the higher Z elements from Na up to Ni and above. Both modes will be always run in parallel allowing to determine lower and higher Z elements simultaneously. For 3 years the solar powered Rosetta probe had to pass a hibernation phase because of a long passage far away to the sun. After wakeup in January 2014 an extensive test phase of all instruments and subsystems has been performed, including the APXS. After landing on the comet an intense initial measurement phase of all instruments is planned, the First Science Sequence (FSS). It will be followed by a long term science phase (LTS). As long as possible APXS and the other instruments will continue to measure and monitor the changes and increasing activity of the comet during its journey towards the inner region of the solar system.The project is funded by the German Space Agency DLR under contracts 50 QP 0404 and 50 QP 0902. References: G

  15. The use of alpha particle tagged neutrons for the inspection of objects on the sea floor for the presence of explosives

    NASA Astrophysics Data System (ADS)

    Valkovic, V.; Sudac, D.; Obhodas, J.; Eleon, C.; Perot, B.; Carasco, C.; Sannié, G.; Boudergui, K.; Kondrasovs, V.; Corre, G.; Normand, S.; Woo, R.; Bourbotte, J. M.

    2013-03-01

    A system using a neutron sensor installed within a Remotely Operated Vehicle (ROV) for underwater inspection has been developed. The system can inspect objects for the presence of threat materials, such as explosives and chemical agents, by using alpha particle tagged neutrons from a sealed tube d+t neutron generator to produce characteristic gamma rays within the interrogated object. Here we show that the measured gamma spectra for commonly found ammunition charged with TNT explosives are dominated by C, O and Fe peaks enabling the underwater determination of explosives inside an ammunition shell.

  16. Role of exchange effects in elastic scattering of. cap alpha. particles and /sup 3/He ions by /sup 6/Li nuclei

    SciTech Connect

    Bragin, V.N.; Burtebaev, N.T.; Dui-brevesebaev, A.D.; Ivanov, G.N.; Sakuta, S.B.; Chuev, V.I.; Chulkov, L.V.

    1986-08-01

    Measurements in the entire angular range are carried out for elastic scattering of ..cap alpha.. particles with energies 36.6 and 50.5 MeV and /sup 3/He ions with energies 34, 50, 60, and 72 MeV by /sup 6/Li nuclei. The experimental data obtained have been analyzed within the framework of the optical model. The contribution to the scattering of the mechanism of elastic transfer of clusters was calculated by the distorted-wave method with a finite interaction radius.

  17. Magnetospheric ion bombardment profiles of satellites - Europa and Dione

    NASA Technical Reports Server (NTRS)

    Pospieszalska, M. K.; Johnson, R. E.

    1989-01-01

    Bombardment profiles generated by tracking ions in magnetospheric plasmas onto the surface of a satellite with a suitable description of the ion motion are used to calculate the spatial dependence across a satellite surface of the ion bombardment/implantation rate for satellites embedded in planetary magnetospheric plasmas. Attention is given to the results of a parameter study; a general dependency on ion gyroradius and pitch angle is noted, together with a strong dependence of access to the leading hemisphere on pitch-angle distribution. Gyromotion is found to cause differences in the bombardment of the inner and outer hemisphere. Reasonable speed and pitch-angle distributions are used to calculate profiles for sulfur ions incident on Europa and oxygen ones incident on Dione.

  18. Genetic transformation of silver birch (Betula pendula) by particle bombardment.

    PubMed

    Valjakka, Maarit; Aronen, Tuija; Kangasjärvi, Jaakko; Vapaavuori, Elina; Häggman, Hely

    2000-05-01

    We used in vitro callus and shoot cultures as target material for genetic transformation of silver birch (Betula pendula Roth) by particle bombardment. Cultivation of in vitro shoot cultures before particle bombardment and a long selection period, combined with a high concentration of selective agent after bombardment, led to the production of transformed plantlets that were stable, and no escapes were found among the tree lines produced. Clonal variation in transformation efficiency was found in transient expression of the beta-glucuronidase gene in callus cultures and in plantlets transformed by stable integration of the ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (RbcS) and neomycin phosphotransferase (npt2) genes.

  19. Non-linearity issues and multiple ionization satellites in the PIXE portion of spectra from the Mars alpha particle X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Campbell, John L.; Heirwegh, Christopher M.; Ganly, Brianna

    2016-09-01

    Spectra from the laboratory and flight versions of the Curiosity rover's alpha particle X-ray spectrometer were fitted with an in-house version of GUPIX, revealing departures from linear behavior of the energy-channel relationships in the low X-ray energy region where alpha particle PIXE is the dominant excitation mechanism. The apparent energy shifts for the lightest elements present were attributed in part to multiple ionization satellites and in part to issues within the detector and/or the pulse processing chain. No specific issue was identified, but the second of these options was considered to be the more probable. Approximate corrections were derived and then applied within the GUAPX code which is designed specifically for quantitative evaluation of APXS spectra. The quality of fit was significantly improved. The peak areas of the light elements Na, Mg, Al and Si were changed by only a few percent in most spectra. The changes for elements with higher atomic number were generally smaller, with a few exceptions. Overall, the percentage peak area changes are much smaller than the overall uncertainties in derived concentrations, which are largely attributable to the effects of rock heterogeneity. The magnitude of the satellite contributions suggests the need to incorporate these routinely in accelerator-based PIXE using helium beams.

  20. Effects of Alpha Particle and Proton Beam Irradiation as Putative Cross-Talk between A549 Cancer Cells and the Endothelial Cells in a Co-Culture System

    PubMed Central

    Riquier, Hélène; Abel, Denis; Wera, Anne-Catherine; Heuskin, Anne-Catherine; Genard, Géraldine; Lucas, Stéphane; Michiels, Carine

    2015-01-01

    Background: High-LET ion irradiation is being more and more often used to control tumors in patients. Given that tumors are now considered as complex organs composed of multiple cell types that can influence radiosensitivity, we investigated the effects of proton and alpha particle irradiation on the possible radioprotective cross-talk between cancer and endothelial cells. Materials and Methods: We designed new irradiation chambers that allow co-culture study of cells irradiated with a particle beam. A549 lung carcinoma cells and endothelial cells (EC) were exposed to 1.5 Gy of proton beam or 1 and 2 Gy of alpha particles. Cell responses were studied by clonogenic assays and cell cycle was analyzed by flow cytometry. Gene expression studies were performed using Taqman low density array and by RT-qPCR. Results: A549 cells and EC displayed similar survival fraction and they had similar cell cycle distribution when irradiated alone or in co-culture. Both types of irradiation induced the overexpression of genes involved in cell growth, inflammation and angiogenesis. Conclusions: We set up new irradiation chamber in which two cell types were irradiated together with a particle beam. We could not show that tumor cells and endothelial cells were able to protect each other from particle irradiation. Gene expression changes were observed after particle irradiation that could suggest a possible radioprotective inter-cellular communication between the two cell types but further investigations are needed to confirm these results. PMID:25794049

  1. Recoil proton, alpha particle, and heavy ion impacts on microdosimetry and RBE of fast neutrons: analysis of kerma spectra calculated by Monte Carlo simulation.

    PubMed

    Pignol, J P; Slabbert, J

    2001-02-01

    Fast neutrons (FN) have a higher radio-biological effectiveness (RBE) compared with photons, however the mechanism of this increase remains a controversial issue. RBE variations are seen among various FN facilities and at the same facility when different tissue depths or thicknesses of hardening filters are used. These variations lead to uncertainties in dose reporting as well as in the comparisons of clinical results. Besides radiobiology and microdosimetry, another powerful method for the characterization of FN beams is the calculation of total proton and heavy ion kerma spectra. FLUKA and MCNP Monte Carlo code were used to simulate these kerma spectra following a set of microdosimetry measurements performed at the National Accelerator Centre. The calculated spectra confirmed major classical statements: RBE increase is linked to both slow energy protons and alpha particles yielded by (n,alpha) reactions on carbon and oxygen nuclei. The slow energy protons are produced by neutrons having an energy between 10 keV and 10 MeV, while the alpha particles are produced by neutrons having an energy between 10 keV and 15 MeV. Looking at the heavy ion kerma from <15 MeV and the proton kerma from neutrons <10 MeV, it is possible to anticipate y* and RBE trends.

  2. A DLTS and RBS analysis of the angular dependence of defects introduced in Si during ion beam channelling using 435keV alpha-particles

    NASA Astrophysics Data System (ADS)

    Deenapanray, P. N. K.; Ridgway, M. C.; Auret, F. D.; Friedland, E.

    1998-03-01

    It is generally assumed that ion beams (IBs) used during channelling experiments create little damage when incident along a direction of low crystallographic index of a crystal lattice. We have employed deep level transient spectroscopy (DLTS) to characterise the defects produced by 435 keV alpha-particles in a Si lattice incident along the <1 0 0> axis ( α = 0°) as well as at small angles ( α ≤ 7°) with respect to this direction. The commonly observed high energy (MeV) alpha-particle-induced point defects (VO and VSb pairs and the two charge states of the divacancy, V 2) could be observed for angles of incidence as small as 0.35°. The concentration of the primary defects was observed to decrease for α ≥ 2.45°. Furthermore, isochronal annealing experiments showed that a DLTS defect peak which is superimposed on the V2{=}/{-}, and observed predominantly for α ≥ 2.45°, could be a V-related defect. Current-voltage ( I- V) and capacitance-voltage ( C- V) measurements also showed that Schottky barrier diodes (SBDs) fabricated on the exposed samples became less rectifying with increasing angle of incidence.

  3. Do the various radiations present in BNCT act synergistically? Cell survival experiments in mixed alpha-particle and gamma-ray fields.

    PubMed

    Phoenix, Ben; Green, Stuart; Hill, Mark A; Jones, Bleddyn; Mill, Andrew; Stevens, David L

    2009-07-01

    In many radiotherapy situations patients are exposed to mixed field radiation. In particular in BNCT, as with all neutron beam exposures, a significant fraction of the dose is contributed by low LET gamma ray photons. The components of such a mixed field may show a synergistic interaction and produce a greater cell kill effect than would be anticipated from the independent action of the different radiation types. Such a synergy would have important implications for treatment planning and in the interpretation of clinical results. An irradiation setup has been created at the Medical Research Council in Harwell to allow simultaneous irradiation of cells by cobalt-60 gamma rays and plutonium-238 alpha-particles. The setup allows for variation of dose and dose rates for both sources along with variation of the alpha particle energy. A series of cell survival assays for this mixed field have been carried out using V79-4 cells and compared to exposures to the individual components of the field under identical conditions. In the experimental setup described no significant synergistic effect was observed.

  4. Thermal effects of impact bombardments on Noachian Mars

    NASA Astrophysics Data System (ADS)

    Abramov, Oleg; Mojzsis, Stephen J.

    2016-05-01

    Noachian (prior to ca. 3700 Ma) terranes are the oldest and most heavily cratered landscapes on Mars, with crater densities comparable to the ancient highlands of the Moon and Mercury. Intense early cratering affected Mars by melting and fracturing its crust, draping large areas in impact ejecta, generating regional-scale hydrothermal systems, and increasing atmospheric pressure (and thereby, temperature) to periodically re-start an otherwise moribund hydrological cycle. Post primary-accretionary bombardment scenarios that shaped early Mars can be imagined in two ways: either as a simple exponential decay with an approximately 100 Myr half-life, or as a ;sawtooth; timeline characterized by both faster-than-exponential decay from primary accretion and relatively lower total delivered mass. Indications are that a late bombardment spike was superposed on an otherwise broadly monotonic decline subsequent to primary accretion, of which two types are investigated: a classical ;Late Heavy Bombardment; (LHB) peak of impactors centered at ca. 3900 Ma that lasted 100 Myr, and a protracted bombardment typified by a sudden increase in impactor flux at ca. 4100-4200 Ma with a correspondingly longer decay time (≤400 Myr). Numerical models for each of the four bombardment scenarios cited above show that the martian crust mostly escaped exogenic melting from bombardment. We find that depending on the chosen scenario, other physical effects of impacts were more important than melt generation. Model output shows that between 10 and 100% of the Noachian surface was covered by impact craters and blanketed in resultant (hot) ejecta. If early Mars was generally arid and cold, impact-induced heating punctuated this surface state by intermittently destabilizing the near-subsurface cryosphere to generate regional-scale hydrothermal systems. Rather than being deleterious to the proclivity of Noachian Mars to host an emergent biosphere, this intense early impact environment instead

  5. Genetic Transformation of Maize Cells by Particle Bombardment

    PubMed Central

    Klein, Theodore M.; Kornstein, Laura; Sanford, John C.; Fromm, Michael E.

    1989-01-01

    Intact maize cells were bombarded with microprojectiles bearing plasmid DNA coding for selectable (neomycin phosphotransferase [NPT II]) and screenable (β-glucuronidase [GUS]) marker genes. Kanamycin-resistant calli were selected from bombarded cells, and these calli carried copies of the NPT II and GUS genes as determined by Southern blot analysis. All such calli expressed GUS although the level of expression varied greatly between transformed cell lines. These results show that intact cells of important monocot species can be stably transformed by microprojectiles. Images Figure 2 Figure 3 PMID:16667039

  6. Spectroscopic strengths for /sup 6/Li-induced alpha-particle transfers on /sup 18/O at 72 MeV

    SciTech Connect

    Tanabe, T.; Ogino, K.; Kadota, Y.; Haga, K.; Kitahara, T.; Shiba, T.

    1982-08-01

    The /sup 18/O(/sup 6/Li,d)/sup 22/Ne reaction has been studied at 72-MeV bombarding energy. The angular distributions for transitions to low-lying states in /sup 22/Ne are fitted by exact finite-range distorted-wave Born approximation calculations and yield relative spectroscopic factors in good agreement with theoretical predictions.

  7. JOVIAN EARLY BOMBARDMENT: PLANETESIMAL EROSION IN THE INNER ASTEROID BELT

    SciTech Connect

    Turrini, D.; Coradini, A.; Magni, G.

    2012-05-01

    The asteroid belt is an open window on the history of the solar system, as it preserves records of both its formation process and its secular evolution. The progenitors of the present-day asteroids formed in the Solar Nebula almost contemporary to the giant planets. The actual process producing the first generation of asteroids is uncertain, strongly depending on the physical characteristics of the Solar Nebula, and the different scenarios produce very diverse initial size-frequency distributions (SFDs). In this work, we investigate the implications of the formation of Jupiter, plausibly the first giant planet to form, on the evolution of the primordial asteroid belt. The formation of Jupiter triggered a short but intense period of primordial bombardment, previously unaccounted for, which caused an early phase of enhanced collisional evolution in the asteroid belt. Our results indicate that this Jovian Early Bombardment caused the erosion or the disruption of bodies smaller than a threshold size, which strongly depends on the SFD of the primordial planetesimals. If the asteroid belt was dominated by planetesimals less than 100 km in diameter, the primordial bombardment would have caused the erosion of bodies smaller than 200 km in diameter. If the asteroid belt was instead dominated by larger planetesimals, the bombardment would have resulted in the destruction of bodies as big as 500 km.

  8. Dating Howardite Melt Clasts: Evidence for an Extended Vestan Bombardment?

    NASA Technical Reports Server (NTRS)

    Cartwright, J. A.; Hodges, K. V.; Wadhwa, M.; Mittlefehldt, D. W.

    2016-01-01

    Howardites are polymict breccias that, together with eucrites and diogenites (HED), likely originate from the vestan surface (regolith/ megaregolith), and display a heterogeneous distribution of eucritic and diogenitic material. Melt clasts are also present alongside other regolithic features within howardites, and are noteworthy for their compositional variability and appearance. Melt clasts formed by impact events provide a snapshot of the timings and conditions of surface gardening and bombardment on the vestan surface. By dating such clasts, we aim to better constrain the timings of impact events on Vesta, and to establish whether the impact flux in the asteroid belt was similar to that on the Moon. As the Moon is used as the basis for characterising impact models of the inner solar system, it is necessary to verify that apparent wide-scale events are seen in other planetary bodies. In particular, the observed clustering of Apollo melt clast ages between 3.8-4.0 Ga has led to two hypotheses: 1) The Moon was subjected to a sudden event - 'Lunar Cataclysm' or period of 'Late Heavy Bombardment' (LHB), 2) The age cluster represents the end of an epoch of declining bombardment or 'Heavy Bombardment. No consensus has emerged regarding one or other hypothesis. We are testing these hypotheses by seeking evidence for such events in materials other than those derived from the Moon.

  9. A New Dynamical Model for the Lunar Late Heavy Bombardment

    NASA Technical Reports Server (NTRS)

    Chambers, J. E.; Lissauer, J. J.

    2002-01-01

    We describe a new dynamical model for the late heavy bombardment in which a 5th terrestrial planet existed on an orbit that became unstable after 600 Myr, began crossing the asteroid belt, and enhanced the flux of impactors into the inner Solar System. Additional information is contained in the original extended abstract.

  10. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Treesearch

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  11. Advances in fast-atom-bombardment mass spectroscopy

    SciTech Connect

    Hemling, M.E.

    1986-01-01

    A comparison of fast atom bombardment and field desorption mass spectrometry was made to determine relative sensitivity and applicability. A series of glycosphingolipids and a series of protected oligonucleotides of known structure were analyzed to ascertain the potential utility of fast atom bombardment mass spectrometry in the structural elucidation of novel compounds in these classes. Negative ion mass markers were also developed. Fast atom bombardment was found to be one-to-two orders of magnitude more sensitive than field desorption based on the analysis of a limited number of compounds from several classes. Superior sensitivity was not universal and field desorption was clearly better in certain cases. In the negative ion mode in particular, fast atom bombardment was found to be a useful tool for the determination of the primary structure of glycosphingolipids and oligonucleotides. Carbohydrate sequence and branching information, and a fatty acid and lipid base composition were readily obtained from the mass spectra of glycosphingolipids while bidirectional nucleotide sequence, nucleotide base, and protecting group assignments were obtained for oligonucleotides. Based on this knowledge, a tentative structure of a human peripheral nervous system glycosphingolipid implicated in certain cases of disorders such as amyotrophic lateral sclerosis, Lou Gehrig's Disease, was proposed. Suitable negative ion mass markers were found in dispersions of poly(ethylene) and poly(propylene)glycols in a triethylenetetramine matrix, a matrix which also proved useful in the analysis of glycosphingolipids. These polyglycol dispersions provided ions for calibration to 2300 daltons.

  12. Cosmic bombardment 2: Intercepting the bomblets cost-efficiently

    NASA Astrophysics Data System (ADS)

    Wood, Lowell; Hyde, Rod; Ishikawa, Muriel Y.

    1990-05-01

    In the present paper, we consider ways-and-means of dealing with earthstrikes of micro-asteroids, bodies which are so small --- and so numerous --- that they strike the Earth every century to every year. These are time-scales so brief that they are of interest to contemporary human individuals and institutions. We are particularly concerned with not only the detection and disposal of cosmic objects which threaten to bombard the Earth, but with practical questions such as cost-to-benefit ratios and implementing means for planetary defenses which are at once near-term, robust and unquestionably acceptable. In the sections which follow, we briefly review those aspects of the cosmic bombardment of the Earth which are of concern during the next several decades. We first take note of the frequency with which the Earth will be struck by asteroids of various sizes and note the corresponding physical damage levels. Then, we translate this into economic damage levels, so as to arrive at the denominator of the cost-benefit ratio of a shield against such bombardment. Next, we consider how such a shield might be realized, emphasizing minimization of its total operating cost (amortization plus operation-and-maintenance) while providing the required reliability. Having developed a cost estimate, we then discuss the cost-benefit ratio of defending humans and their works on this planet from cosmic bombardment.

  13. Alpha-particle emitting atomic generator (Actinium-225)-labeled trastuzumab (herceptin) targeting of breast cancer spheroids: efficacy versus HER2/neu expression.

    PubMed

    Ballangrud, Ase M; Yang, Wei-Hong; Palm, Stig; Enmon, Richard; Borchardt, Paul E; Pellegrini, Virginia A; McDevitt, Michael R; Scheinberg, David A; Sgouros, George

    2004-07-01

    The humanized monoclonal antibody, trastuzumab (Herceptin), directed against HER2/neu, has been effective in the treatment of breast cancer malignancies. However, clinical activity has depended on HER2/neu expression. Radiolabeled trastuzumab has been considered previously as a potential agent for radioimmunotherapy. The objective of this study was to investigate the efficacy of trastuzumab labeled with the alpha-particle emitting atomic generator, actinium-225 ((225)Ac), against breast cancer spheroids with different HER2/neu expression levels. (225)Ac has a 10-day half-life and a decay scheme yielding four alpha-particles. The breast carcinoma cell lines MCF7, MDA-MB-361 (MDA), and BT-474 (BT) with relative HER2/neu expression (by flow cytometry) of 1:4:18 were used. Spheroids of these cell lines were incubated with different concentrations of (225)Ac-trastuzumab, and spheroid growth was measured by light microscopy over a 50-day period. The activity concentration required to yield a 50% reduction in spheroid volume at day 35 was 18.1, 1.9, and 0.6 kBq/ml (490, 52, 14 nCi/ml) for MCF7, MDA, and BT spheroids, respectively. MCF7 spheroids continued growing but with a 20-30 day growth delay at 18.5 kBq/ml. MDA spheroid growth was delayed by 30-40 days at 3.7 kBq/ml; at 18.5 kBq/ml, 12 of 12 spheroids disaggregated after 70, days and cells remaining from each spheroid failed to form colonies within 2 weeks of being transferred to adherent dishes. Eight of 10 BT spheroids failed to regrow at 1.85 kBq/ml. All of the BT spheroids at activity concentrations 3.7 kBq/ml failed to regrow and to form colonies. The radiosensitivity of these three lines as spheroids was evaluated as the activity concentration required to reduce the treated to untreated spheroid volume ratio to 0.37, denoted DVR(37). An external beam radiosensitivity of 2 Gy was found for spheroids of all three of the cell lines. After alpha-particle irradiation a DVR(37) of 1.5, 3.0, and 2.0 kBq/ml was

  14. Elementary Analysis of a Cometary Surface - the Alpha Particle X-Ray Spectrometer APXS on the Rosetta Mission to Comet 67P/CHURYUMOV-GERASIMENKO

    NASA Astrophysics Data System (ADS)

    Schmanke, Dirk; Economou, Thanasis; Brueckner, Johannes; Gellert, Ralf; Rodionov, Daniel; Klingelhoefer, Goestar; Girones Lopez, Jordi; Uston, Lionel D.

    After a 10 years cruise the Rosetta probe will reach its final target in the middle of this year, the comet 67P/Churyumov-Gerasimenko. The main objectives of the mission are to gain more knowledge of the composition, the origin and formation of comets and the solar system. After extensive remote examination of the comet the lander Philae will be separated to land on the comet surface. It will start immediately examining the landing site with its scientific payload. A part of this payload is the APXS (Alpha Particle X-Ray Spectrometer), it will measure in situ the chemical composition of the comet's surface and its changes during the journey of the comet towards the sun. APXS is a combination of two spectrometers in one single instrument, being low in mass and power consumption. It will irradiate the cometary surface with Curium 244 sources, which are emitting alpha-particle and X-rays. In the alpha-mode the instrument uses alpha backscattering spectroscopy to detect lower Z elements like C, N and O and groups of elements with higher Z. In the X-ray mode alpha particle/X-ray induced X-ray spectroscopy (XRF) will allow the detection of most of the higher Z elements from Na up to Ni and above. Both modes will be always run in parallel allowing to determine lower and higher Z elements simultaneously. During the long duration travel to the comet checkouts and software updates of the Rosetta probe and its payload were performed at regular intervals. In recent 3 years the solar powered Rosetta probe had to pass a hibernation phase because of a long passage far away from the sun. After the successful wakeup in January 2014 an extensive test phase of all instruments and subsystems has to be performed, including the APXS. After the landing on the comet an intense long measurement phase of all instruments is planned, the First Science Sequence (FSS). It will be followed by a long term science phase (LTS), determined by periodical changes between measurements and forced breaks

  15. Two Years of Chemical Sampling on Meridiani Planum by the Alpha Particle X-Ray Spectrometer Onboard the Mars Exploration Rover Opportunity

    NASA Technical Reports Server (NTRS)

    Bruckner, J.; Gellert, R.; Clark, B.C.; Dreibus, G.; Rieder, R.; Wanke, H.; d'Uston, C.; Economou, T.; Klingelhofer, G.; Lugmair, G.; hide

    2006-01-01

    For over two terrestrial years, the Mars Exploration Rover Opportunity has been exploring the martian surface at Meridiani Planum using the Athena instrument payload [1], including the Alpha Particle X-Ray Spectrometer (APXS). The APXS has a small sensor head that is mounted on the robotic arm of the rover. The chemistry, mineralogy and morphology of selected samples were investigated by the APXS along with the Moessbauer Spectrometer (MB) and the Microscopic Imager (MI). The Rock Abrasion Tool (RAT) provided the possibility to dust and/or abrade rock surfaces down to several millimeters to expose fresh material for analysis. We report here on APXS data gathered along the nearly 6-kilometers long traverse in craters and plains of Meridiani.

  16. Study of LiOH etching of polyethyleneterephtalate irradiated with 11.4 MeV/amu Pb ions by neutron depth profiling and alpha particle transmission

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Fink, D.; Strauss, P.

    1998-12-01

    Polyethyleneterephtalate (PETP) foils, 23 μm thick, irradiated with 11.4 MeV/amu Pb ions to the fluence of about 1 × 107 cm-2 were etched in 5M LiOH solution at the temperature of 40°C for 30-570 min and the etching process kinetics was examined by combined alpha particle transmission (APT) and neutron depth profiling (NDP) techniques. The etching process was visualized from very initial stages up to the breakthrough and the appearance of first openings after about 300 min of etching. Several parameters characterizing the etching process were determined and the pore internal profile was determined by comparing the measured APT spectra with those simulated by Monte-Carlo method.

  17. Pulse-shape discrimination and energy quenching of alpha particles in Cs2LiLaBr6:Ce3+

    SciTech Connect

    Mesick, Katherine Elizabeth; Coupland, Daniel David S.; Stonehill, Laura Catherine

    2016-10-19

    Cs2LiLaBr6:Ce3+ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. Here, we also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from 227Ac to determine the quenching factor of the alphas.

  18. Scaling of cross sections for K-electron capture by high-energy protons and alpha-particles from the multielectron atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1979-01-01

    Electron capture by protons from H, He, and the K shell of Ar, and electron capture by alpha particles from He are considered. Using the experimental data, a function of the capture cross section is formed. It is shown that when this function is plotted versus the inverse of the collision energies, at high energies a straight line is obtained. At lower energies the line is concave up or down, depending on the charge of the projectile and/or the effective charge and the ionization potential of the electron that is being captured. The plot can be used to predict cross sections where experimental data are not available, and as a guide in future experiments. High-energy scaling formulas for K-electron capture by low-charge projectiles are given.

  19. Scaling of cross sections for K-electron capture by high-energy protons and alpha-particles from the multielectron atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1976-01-01

    Electron capture by protons from H, He, and the K-shell of Ar, and alpha particles from He are considered. It is shown that when a certain function of the experimental cross sections is plotted versus the inverse of the collision energy, at high energies the function falls on a straight line. At lower energies the function concaves up or down, depending on the charge of the projectile, the effective charge and the ionization potential of the electron that is being captured. The plot can be used to predict cross sections where experimental data are not available, and as a guide in future experiments. High energy scaling formulas for K-electron capture by low-charge projectiles are given.

  20. Investigation of three-dimensional distribution functions of the basic ions of the solar wind, i.e., protons and alpha particles, in the Phobos project - The TAUS experiment (The MPK complex)

    NASA Astrophysics Data System (ADS)

    Rosenbauer, H.; Apathy, I.; Shutte, N. M.; Verigin, M.; Galeev, A.

    The TAUS instrument was designed to collect comprehensive data on solar-wind ions, and to reliably separate their basic components, protons and alpha particles. Measurements of three-dimensional energy-angle distributions and their processing via onboard microcomputer are designed to yield information on the density, velocity, and temperature of solar-wind protons and alpha particles, as well as on the spatial and temporal variations of these parameters. The TAUS instrument is described in detail with attention given to the measurement method and the operating modes.

  1. Evaluation of internal alpha-particle radiation exposure and subsequent fertility among a cohort of women formerly employed in the radium dial industry

    SciTech Connect

    Schieve, L.A.; Davis, F.; Freels, S.

    1997-02-01

    This study examined the effect of internal exposure to {alpha}-particle radiation on subsequent fertility among women employed in radium dial industry prior to 1930, when appreciable amounts of radium were often ingested through the practice of pointing the paint brush with the lips. The analysis was limited to women for whom a radium body burden measurement had been obtained and who were married prior to age 45 (n = 603). Internal radiation dose to the ovary was calculated based on initial intakes of radium-226 and radium-228, average ovarian mass, number and energy of {alpha} particles emitted, fraction of energy absorbed within the ovary, effective retention integrals and estimated photon irradiation. Time between marriage and pregnancy, number of pregnancies and number of live births served as surrogates for fertility. Radiation appeared to have no effect on fertility at estimated cumulative ovarian dose equivalents below 5 Sv; above this dose, however, statistically significant declines in both number of pregnancies and live births were observed. These trends persisted after multivariable adjustment for potential confounding variables and after exclusion of subjects contributing a potential classification or selection bias to the study. Additionally, the high-dose group experienced fewer live births than would have been expected based on population rates. There were no differences in time to first pregnancy between high- and low-dose groups. These results are consistent with earlier studies of {gamma}-ray exposures and suggest that exposure to high doses of radiation from internally deposited radium reduces fertility rather than inducing sterility. 42 refs., 5 tabs.

  2. Intratumour injection of immunoglobulins labelled with the alpha-particle emitter 211At: analyses of tumour retention, microdistribution and growth delay.

    PubMed Central

    Larsen, R. H.; Bruland, O. S.

    1998-01-01

    To determine the effects of 211At-labelled antibodies in solid tumour tissue, nude mice carrying OHS human osteosarcoma xenografts received intratumour injections at dosages of 1, 2 or 4 MBq (-1) tumour. The radioisotope was conjugated to either the osteosarcoma-specific monoclonal antibody TP-3 or the non-specific polyclonal antibody hlgGkappa. Tumour retention of injected radioimmunoconjugate (RIC), measured as the percentage of injected activity dosage per gram, was significantly higher for the [211At]TP-3 (203 +/- 93 at 24.1 h post injection) compared with the [211At]hlgGkappa (57 +/- 22 at 23.2 h post injection). The radioactive count rates in body (measured at neck and abdomen) were significantly lower with the TP-3 than with the hlgGkappa. Microautoradiography of the tumour radionuclide distribution was different for the two RICs, i.e. the [211At]TP-3 was to a larger extent concentrated near the injection site, whereas the [211At]hlgGkappa was more evenly distributed all over the tumour. The tumour growth was significantly delayed as a function of the injected activity dosage but without significant difference between the specific and the non-specific RIC. According to this study, it is possible to deliver highly selective radiation doses to solid tumours using intratumour injection of alpha-particle-emitting RICs. Improved tumour retention caused by antigen binding indicates that reduced normal tissue exposure can be obtained with antigen-specific antibodies. The heterogeneous tumour dose distribution observed is, however, a major impediment to the use of alpha-particle emitters against solid tumours. Images Figure 2 Figure 3 PMID:9569048

  3. DISSIPATION OF PARALLEL AND OBLIQUE ALFVÉN-CYCLOTRON WAVES—IMPLICATIONS FOR HEATING OF ALPHA PARTICLES IN THE SOLAR WIND

    SciTech Connect

    Maneva, Y. G.; Poedts, Stefaan; Viñas, Adolfo F.; Moya, Pablo S.; Wicks, Robert T.

    2015-11-20

    We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies, and velocity distribution functions in relation to the dissipation and turbulent evolution of a broadband spectrum of parallel and obliquely propagating Alfvén-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfvén-cyclotron waves in the observed heating and acceleration of alpha particles in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons, and a minor component of drifting α particles in a finite-β fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop nonthermal features and temperature anisotropies when a broadband spectrum of low-frequency nonresonant, ω ≤ 0.34 Ω{sub p}, Alfvén-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures, and relative drift speeds, are supplied by fast solar wind observations made by the Wind spacecraft at 1 AU. The imposed broadband wave spectra are left-hand polarized and resemble Wind measurements of Alfvénic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope α = −3/2. We vary the propagation angle from θ = 0° to θ = 30° and θ = 60°, and find that the heating of alpha particles is most efficient for the highly oblique waves propagating at 60°, whereas the protons exhibit perpendicular cooling at all propagation angles.

  4. Benchmarking the Geant4 full system simulation of an associated alpha-particle detector for use in a D-T neutron generator.

    PubMed

    Zhang, Xiaodong; Hayward, Jason P; Cates, Joshua W; Hausladen, Paul A; Laubach, Mitchell A; Sparger, Johnathan E; Donnald, Samuel B

    2012-08-01

    The position-sensitive alpha-particle detector used to provide the starting time and initial direction of D-T neutrons in a fast-neutron imaging system was simulated with a Geant4-based Monte Carlo program. The whole detector system, which consists of a YAP:Ce scintillator, a fiber-optic faceplate, a light guide, and a position-sensitive photo-multiplier tube (PSPMT), was modeled, starting with incident D-T alphas. The scintillation photons, whose starting time follows the distribution of a scintillation decay curve, were produced and emitted uniformly into a solid angle of 4π along the track segments of the alpha and its secondaries. Through tracking all photons and taking into account the quantum efficiency of the photocathode, the number of photoelectrons and their time and position distributions were obtained. Using a four-corner data reconstruction formula, the flood images of the alpha detector with and without optical grease between the YAP scintillator and the fiber-optic faceplate were obtained, which show agreement with the experimental results. The reconstructed position uncertainties of incident alpha particles for both cases are 1.198 mm and 0.998 mm respectively across the sensitive area of the detector. Simulation results also show that comparing with other faceplates composed of 500 μm, 300 μm, and 100 μm fibers, the 10-μm-fiber faceplate is the best choice to build the detector for better position performance. In addition, the study of the background originating inside the D-T generator suggests that for 500-μm-thick YAP:Ce coated with 1-μm-thick aluminum, and very good signal-to-noise ratio can be expected through application of a simple threshold.

  5. Characteristics of ultra-low-energy Cs + ion beam bombardments

    NASA Astrophysics Data System (ADS)

    Li, Zhanping; Hoshi, Takahiro; Oiwa, Retsu

    2003-01-01

    Shallow arsenic implants and extra-thin film (SiON) are routinely analyzed by modern SIMS under ultra-low-energy Cs + ion beam bombardment, either at oblique (<60°) or glancing (˜80°) incident angle [J. Surf. Anal. 6 (3) (1999) A-3; in: A. Benninghoven, et al. (Eds.), Proceedings of the SIMS XII, Elsevier, Amsterdam, 1999, p. 549]. This article investigates the basic aspects of ultra-low-energy Cs + ion beam bombardment using a delta-doped boron sample (four layers, 5.3 nm per cycle), such as useful yield, depth resolution and changes in sputter rate in the near surface region. Our results indicated that there is a magic incidence angle (˜70°) at which the depth resolution is very poor, and at glancing (˜80°) incident angle the best depth resolution is observed.

  6. Step edge sputtering yield at grazing incidence ion bombardment.

    PubMed

    Hansen, Henri; Polop, Celia; Michely, Thomas; Friedrich, Andreas; Urbassek, Herbert M

    2004-06-18

    The surface morphology of Pt(111) was investigated by scanning tunneling microscopy after 5 keV Ar+ ion bombardment at grazing incidence in dependence of the ion fluence and in the temperature range between 625 and 720 K. The average erosion rate was found to be strongly dependent on the ion fluence and the substrate temperature during bombardment. This dependence is traced back to the variation of step concentration with temperature and fluence. We develop a simple model allowing us to determine separately the constant sputtering yields for terraces and for impact area stripes in front of ascending steps. The experimentally determined yield of these stripes--the step-edge sputtering yield--is in excellent agreement with our molecular dynamics simulations performed for the experimental situation.

  7. Ion Bombardment of Microprotrusions in High Gradient Accelerating Structures

    SciTech Connect

    Nusinovich, Gregory S.; Kashyn, Dmytro; Antonsen, Thomas Jr.; Haber, Irving

    2010-11-04

    This paper starts from a brief overview of theoretical studies of high-gradient accelerating structures at the University of Maryland. The rest of the paper is devoted to the analysis of ion bombardment of small protrusions in such structures. First, this problem is studied analytically. Then, some results of particle-in-cell simulations performed with the use of code WARP are presented and discussed.

  8. Electron Bombardment of Certain Thin Films during Deposition

    NASA Astrophysics Data System (ADS)

    Browning, Stephen Douglas

    The performance of multilayer thin film optical filters depends largely on the microstructure of the component layers. This microstructure varies with the deposition parameters inside the coating chamber. By controlling these parameters, optical filters can be produced to exacting specifications. In 1947, R. M. Rice established the technique of bombarding the substrate with electrons of several kilovolts as the fils were being deposited. This process improved the durability of zinc sulfide films dramatically. This study was performed to quantitatively analyze the effects of bombardment on film microstructure and subsequent effects on optical and mechanical properties. I installed an electron source filament inside the coating chamber and electrically isolated the substrate holder, which was connected to a positive high voltage supply. An accelerating loop placed just above the filament enhanced its efficiency. The source was calibrated by measuring the current through the substrate holder. Single layer films of five different materials were deposited, each at its own set of electron bombardment parameters. The microstructure was analyzed with an X -ray diffractometer and a transmission electron microscope. Optical properties were measured with guided waves, induced absorption, and spectrophotometric analysis. Film durability was analyzed with scotch tape, eraser, and controlled humidity tests. Antimony trioxide films showed a shift in lattice orientation, but this did not affect columnar structure or macroscopic quantities. Potassium hexafluorozirconate films showed elimination of both crystal structure and columnar growth, resulting in slightly reduced durability and some absorption. Silicon monoxide films suffered no change in structure or properties. Zinc sulfide films demonstrated the change in crystal structure, which was quantified and shown to improve moisture resistance. Optical properties were unaffected. Magnesium fluoride films showed a slight increase

  9. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    NASA Technical Reports Server (NTRS)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  10. Water and tissue equivalence properties of biological materials for photons, electrons, protons and alpha particles in the energy region 10 keV-1 GeV: a comparative study.

    PubMed

    Kurudirek, Murat

    2016-09-01

    To compare some biological materials in respect to the water and tissue equivalence properties for photon, electron, proton and alpha particle interactions as means of the effective atomic number (Zeff) and electron density (Ne). A Z-wise interpolation procedure has been adopted for calculation of Zeff using the mass attenuation coefficients for photons and the mass stopping powers for charged particles. At relatively low energies (100 keV-3 MeV), Zeff and Ne for photons and electrons were found to be constant while they vary much more for protons and alpha particles. In contrast, Zeff and Ne for protons and alpha particles were found to be constant after 3 MeV whereas for photons and electrons they were found to increase with the increasing energy. Also, muscle eq. liquid (with sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) within low relative differences below 9%. Muscle eq. liquid (without sucrose) have Zeff and Ne values close to the Muscle Skeletal (ICRP) and Muscle Striated (ICRU) with difference below 10%. The reported data should be useful in determining best water as well as tissue equivalent materials for photon, electron, proton and alpha particle interactions.

  11. The role of impact bombardment history in lunar evolution

    NASA Astrophysics Data System (ADS)

    Rolf, T.; Zhu, M.-H.; Wünnemann, K.; Werner, S. C.

    2017-04-01

    The lunar surface features diverse impact structures originating from its early bombardment; the largest among them are the lunar basins. Basin-forming impacts delivered large amounts of energy to the target and expelled lots of material that deposited as an insulating blanket in the vicinity of the impact. Here, we investigate how such processes may have altered the lunar evolution. We combine lunar basin chronologies with numerical models of basin formation and 3D thermochemical mantle convection and analyse the role of single generic impacts resulting in basins with varying diameter, formation time, location and ejecta properties. The direct effects of a single impact are enhanced melt generation as well as thermal and heat flux anomalies, but these are limited to ∼ 100 Myr following the impact. We use these insights in multi-impact scenarios more relevant for the Moon, which lead to a widespread ejecta blanket and make impact-induced effects more substantial. Lunar contraction history may be altered by the impact bombardment in favour of an early expansion phase as suggested by recent observations. Moreover, imprints of the early bombardment may be kept in the thermal and compositional state of the Moon's interior until modern times. These can be as large as those induced by uncertainties in bulk lunar heat content, if surface insulation due to ejecta is efficient. In this case, model-predicted present-day thermal profiles match independent constraints better if the bulk Moon is not significantly enriched in refractory elements compared to Earth.

  12. Metal ion bombardment of onion skin cell wall

    SciTech Connect

    Sangyuenyongpipat, S.; Vilaithong, T.; Yu, L.D.; Verdaguer, A.; Ratera, I.; Ogletree, D.F.; Monteiro, O.R.; Brown, I.G.

    2004-05-10

    Ion bombardment of living cellular material is a novel subfield of ion beam surface modification that is receiving growing attention from the ion beam and biological communities. Although it has been demonstrated that the technique is sound, in that an adequate fraction of the living cells can survive both the vacuum environment and energetic ion bombardment, there remains much uncertainty about the process details. Here we report on our observations of onion skin cells that were subjected to ion implantation, and propose some possible physical models that tend to support the experimental results. The ion beams used were metallic (Mg, Ti, Fe, Ni, Cu), mean ion energy was typically 30keV, and the implantation fluence was in the range 1014 1016 ions/cm2. The cells were viewed using Atomic Force Microscopy, revealing the formation of microcrater-like structures due to ion bombardment. The implantation depth profile was measured with Rutherford backscattering spectrometry and compared to the results of the TRIM, T-DYN and PROFILE computer codes.

  13. The Role of Impact Bombardment History in Lunar Evolution

    NASA Astrophysics Data System (ADS)

    Rolf, T.; Zhu, M. H.; Wuennemann, K.; Werner, S. C.

    2016-12-01

    The lunar surface features diverse impact structures originating from its early bombardment; the largest among them are the lunar basins. Basin-forming impacts delivered large amounts of energy to the target and expelled lots of material that deposited as an insulating blanket in the vicinity of the impact. Here, we investigate how such impact processes have altered the early Moon and its subsequent thermochemical evolution by combining proposed lunar basin chronologies with numerical models of basin formation and 3D thermochemical mantle convection. We analyze the effects of single impacts resulting in different basin size and at different times of lunar evolution. The direct effects of a single impact are enhanced melt generation as well as thermal and heat flux anomalies, but these are limited to 100-200 Myr following the impact. Considering numerous impacts and a widespread ejecta blanket make impact-induced effects more substantial. Lunar contraction history may be altered by the impact bombardment in favor of an early extension phase as suggested by recent observations. Moreover, imprints of the early bombardment may be kept in the thermal and compositional state of the Moon's interior until modern times. These can be as large as those induced by uncertainties in bulk lunar heat content, if surface insulation due to ejecta is efficient. In this case, model-predicted present-day thermal profiles match independent constraints better if the bulk Moon is not significantly enriched in refractory elements compared to Earth.

  14. Simulation of carbon nanotube welding through Ar bombardment.

    PubMed

    Kucukkal, Mustafa U; Stuart, Steven J

    2017-04-01

    Single-walled carbon nanotubes show promise as nanoscale transistors for nanocomputing applications. This use will require appropriate methods for creating electrical connections between distinct nanotubes, analogous to welding of metallic wires at larger length scales, but methods for performing nanoscale chemical welding are not yet sufficiently understood. This study examines the effect of Ar bombardment on the junction of two crossed single-walled carbon nanotubes, to understand the value and limitations of this method for generating connections between nanotubes. A geometric criterion was used to assess the quality of the junctions formed, with the goal of identifying the most productive conditions for experimental ion bombardment. In particular, the effects of nanotube chirality, Ar impact kinetic energy, impact particle flux and fluence, and annealing temperature were considered. The most productive bombardment conditions, leading to the most crosslinking of the tubes with the smallest loss of graphitic (i.e., conductive) character, were found to be at relatively mild impact energies (100 eV), with low flux and high-temperature (3000 K) annealing. Particularly noteworthy for experimental application, a high junction quality is maintained for a relatively broad range of fluences, from 3 × 10(19) m(-2) to at least 1 × 10(20) m(-2).

  15. Metal ion bombardment of onion skin cell wall

    NASA Astrophysics Data System (ADS)

    Sangyuenyongpipat, S.; Vilaithong, T.; Yu, L. D.; Verdaguer, A.; Ratera, I.; Ogletree, D. F.; Monteiro, O. R.; Brown, I. G.

    2005-01-01

    Ion bombardment of living cellular material is a novel subfield of ion beam surface modification that is receiving growing attention from the ion beam and biological communities. Although it has been demonstrated that the technique is sound, in that an adequate fraction of the living cells can survive both the vacuum environment and energetic ion bombardment, there remains much uncertainty about the process details. Here we report on our observations of onion skin cells that were subjected to ion implantation, and propose some possible physical models that tend to support the experimental results. The ion beams used were metallic (Mg, Ti, Fe, Ni, Cu), mean ion energy was typically 30 keV, and the implantation fluence was in the range 1014-1016 ions/cm2. The cells were viewed using Atomic Force Microscopy, revealing the formation of microcrater-like structures due to ion bombardment. The implantation depth profile was measured with Rutherford backscattering spectrometry and compared to the results of the TRIM, T-DYN and PROFILE computer codes.

  16. Nanoscale surface structuring during ion bombardment of elemental semiconductors

    NASA Astrophysics Data System (ADS)

    Anzenberg, Eitan

    2013-01-01

    Nano-patterning of surfaces with uniform ion bombardment yields a rich phase-space of topographic patterns. Particle irradiation can cause surface ultra-smoothing or self-organized nanoscale pattern formation in surface topography. Topographic pattern formation has previously been attributed to the effects of the removal of target atoms by sputter erosion. In this thesis, the surface morphology evolution of Si(100) and Ge(100) during low energy ion bombardment of Ar+ and Kr+ ions, respectively, is studied. Our facilities for studies of surface processes at the National Synchrotron Light Source (NSLS) allow in-situ characterization of surface morphology evolution during ion bombardment using grazing incidence small angle x-ray scattering (GISAXS). This technique is used to measure in reciprocal space the kinetics of formation or decay of correlated nanostructures on the surface, effectively measuring the height-height correlations. A linear model is used to characterize the early time kinetic behavior during ion bombardment as a function of ion beam incidence angle. The curvature coefficients predicted by the widely used erosive model of Bradley and Harper are quantitatively negligible and of the wrong sign when compared to the observed effect in both Si and Ge. A mass-redistribution model explains the observed ultra-smoothing at low angles, exhibits an instability at higher angles, and predicts the observed 45° critical angle separating these two regimes in Si. The Ge surface evolution during Kr+ irradiation is qualitatively similar to that observed for Ar+ irradiation of Si at the same ion energy. However, the critical angle for Ge cannot be quantitatively reproduced by the simple mass redistribution model. Crater function theory, as developed by Norris et al., incorporates both mass redistributive and erosive effects, and predicts constraining relationships between curvature coefficients. These constraints are compared to experimental data of both Si and Ge

  17. Relative toxicity of chronic irradiation by 45Ca beta particles and 242Cm alpha particles with respect to the production of lung tumors in CBA/Ca mice.

    PubMed

    Priest, N D; Hoel, D G; Brooks, P N

    2006-11-01

    Approximately 1800 female CBA/Ca mice were exposed by inhalation at three dose levels to beta particles from (45)Ca-labeled fused aluminosilicate particles (FAP), to alpha particles from (242)Cm-labeled FAP, or to carrier control FAP. Another group of mice inhaled no FAP and were designated as untreated cage controls. The FAP in combination with these radionuclides was used to achieve the same spatial and temporal distribution of alpha- and beta-particle dose within the irradiated mice. Some mice were killed to determine the clearance of radiolabeled FAP from their lungs, and the remainder were allocated to a life-span study. All animals were subjected to a detailed necropsy. To facilitate the identification of small tumors, the lungs were rendered transparent in methyl salicylate and examined under back illumination for the presence of lesions. Lung nodules and other microscopic lesions were excised for histological examination. The median survival of mice in all groups was approximately 910 days. The control animals lived longer than those that were irradiated, but it was difficult to determine a dose-response relationship for survival among the exposed mice. Benign adenomas and, less frequently, malignant adenocarcinomas were identified in all animal groups. The prevalence of these tumors was approximately 28.8% in the control mice, which is consistent with the results of other studies using the same strain of mouse. After exposure to radionuclide-labeled FAP, there was a significant dose-related increase in the prevalence of lung tumors in (242)Cm- (peak prevalence 55%) and (45)Ca-exposed (peak prevalence 48.6%) mice. The prevalence of tumors in the mice that received (242)Cm-labeled FAP was approximately twice that in the mice that inhaled (45)Ca-labeled FAP within the range of doses employed (0.55-4.69 Gy). Using the ratio of the slope of the linear component of the dose-response curves, the toxicity of the alpha particles relative to the beta particles was 1

  18. The Alpha Particle X-Ray Spectrometer APXS on the Rosetta lander Philae to explore the surface of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Girones-Lopez, Jordi; Schmanke, Dirk; Klingelhoefer, Goestar; Maul, Jasmine; Brueckner, Johannes; Duston, Claude; Gellert, Ralf; Klingelhöfer, Göstar

    The Rosetta Mission was launched in 2004 with the main objectives to gain a better under-standing of the origin and formation of comets and the solar system. After 10 years of cruise the comet 67P/Churyumov-Gerasimenko will be reached in 2014 and the lander Philae will be deployed on the surface. As a part of the lander payload the APXS will measure in situ the chemical composition of the comet's surface and it's changes during the journey of the comet towards the sun. APXS combines an alpha mode for alpha backscattering spectroscopy and an x-ray mode for alpha particle/x-ray induced x-ray spectroscopy (XRF) in one single instrument, being low in mass and power consumption. The comet surface will be irradiated by a Curium 244 source exciting characteristic x-rays of the elements present in the surface material. The alpha mode will allow detection of elements like C and O and groups of elements with higher Z. The x-ray-SD-detector will allow the detection of most of the elements from Na up to Ni and above. During the long duration travel to the comet checkouts and software updates of the Rosetta probe and its payload are performed at regular intervals. These are used to opti-mise and improve the quality of the x-ray and alpha-spectra of the APXS. Soon the Rosetta probe will go into a 3 year long hibernation mode. It will awake when approaching it's target, providing us with new exiting data that will shed light on state, evolution and origin of comets and the solar system. Acknowledgements: This project is funded by the German Space Agency DLR under contracts 50 QP 0404 and 50 QP 0902. References: G. Klingelhüfer, J. Brückner, C. d'Uston, R. Gellert, and R. Rieder, The Rosetta Alpha Particle X-ray Spectrometer (APXS), Space Science Reviews, Vol.128 (2007) 383-396; doi:10.1007/s11214-006-9137-3

  19. Influence of ion beam bombardment on surface roughness of K9 glass substrate

    NASA Astrophysics Data System (ADS)

    Pan, Yongqiang; Huang, Guojun; Hang, Lingxia

    2010-10-01

    Ion beam bombardment optical substrate surface has become an important part of process of optical thin films deposition. In this work, the K9 optical glass is bombarded by the broad beam cold cathode ion source. The dependence of the K9 glass surface roughness on the ion beam bombardment time, the ion energy, the distance and incident angle are all investigated, respectively. Surface roughness of K9 glass is measured using Talysurf CCI. The experimental results show that when the ion energy is 800ev, the bombardment distance of 20cm, with the ion beam bombardment time increased, the K9 substrate surface roughness first increase and then decrease. When the ion beam bombardment distance is 20cm, bombardment time is 10min, with the bombardment energy increases, substrate surface roughness increase first and then decrease, especially in the ion energy greater than 1200ev, the optical substrate surface roughness rapidly increases. When the ion energy is 800 eV, bombardment time is 10min, with the bombardment distance increase, substrate surface roughness decrease gradually. Furthermore, the incident angle of ion beam plays an important role in improving the K9 glass surface roughness.

  20. Excitation function of the alpha particle induced nuclear reactions on enriched 116Cd, production of the theranostic isotope 117mSn

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Haba, H.; Komori, Y.; Aikawa, M.; Szűcs, Z.; Saito, M.

    2016-10-01

    117mSn is one of the radioisotopes can be beneficially produced through alpha particle irradiation. The targets were prepared by deposition of 116Cd metal onto high purity 12 μm thick Cu backing. The average deposited thickness was 21.9 μm. The beam energy was thoroughly measured by Time of Flight (TOF) methods and proved to be 51.2 MeV. For the experiment the well-established stacked foil technique was used. In addition to the Cd targets, Ti foils were also inserted into the stacks for energy and intensity monitoring. The Cu backings were also used for monitoring and as recoil catcher of the reaction products from the cadmium layer. The activities of the irradiated foils were measured with HPGe detector for gamma-ray spectrometry and cross section values were determined. As a result excitation functions for the formation of 117mSn, 117m,gIn, 116mIn, 115mIn and 115m,gCd from enriched 116Cd were deduced and compared with the available literature data and with the results of the nuclear reaction model code calculations EMPIRE 3.2 and TALYS 1.8. Yield curves were also deduced for the measured nuclear reactions and compared with the literature.

  1. Labeling monoclonal antibodies and F(ab')2 fragments with the alpha-particle-emitting nuclide astatine-211: preservation of immunoreactivity and in vivo localizing capacity.

    PubMed Central

    Zalutsky, M R; Garg, P K; Friedman, H S; Bigner, D D

    1989-01-01

    alpha-Particles such as those emitted by 211At may be advantageous for radioimmunotherapy since they are radiation of high linear energy transfer, depositing high energy over a short distance. Here we describe a strategy for labeling monoclonal antibodies and F(ab')2 fragments with 211At by means of the bifunctional reagent N-succinimidyl 3-(trimethylstannyl)benzoate. An intact antibody, 81C6, and the F(ab')2 fragment of Me1-14 (both reactive with human gliomas) were labeled with 211At in high yield and with a specific activity of up to 4 mCi/mg in a time frame compatible with the 7.2-hr half-life of 211At. Quantitative in vivo binding assays demonstrated that radioastatination was accomplished with maintenance of high specific binding and affinity. Comparison of the biodistribution of 211At-labeled Me1-14 F(ab')2 to that of a nonspecific antibody fragment labeled with 211At and 131I in athymic mice bearing D-54 MG human glioma xenografts demonstrated selective and specific targeting of 211At-labeled antibody in this human tumor model. PMID:2476813

  2. Refinement of the Compton-Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer: II - Extraction of invisible element content

    NASA Astrophysics Data System (ADS)

    Perrett, Glynis M.; Campbell, John L.; Gellert, Ralf; King, Penelope L.; Nield, Emily; O'Meara, Joanne M.; Pradler, Irina

    2016-02-01

    The intensity ratio C/R between Compton and Rayleigh scatter peaks of the exciting Pu L X-rays in the alpha particle X-ray spectrometer (APXS) is strongly affected by the presence of very light elements such as oxygen which cannot be detected directly by the APXS. C/R values are determined along with element concentrations by fitting APXS spectra of geochemical reference materials (GRMs) with the GUAPX code. A quantity K is defined as the ratio between the C/R value determined by Monte Carlo simulation based on the measured element concentrations and the fitted C/R value from the spectrum. To ensure optimally accurate K values, the choice of appropriate GRMs is explored in detail, with attention paid to Rb and Sr, whose characteristic Kα X-ray peaks overlap the Pu Lα scatter peaks. The resulting relationship between the ratio K and the overall oxygen fraction is linear. This provides a calibration from which the concentration of additional light invisible constituents (ALICs) such as water may be estimated in unknown rock and conglomerate samples. Several GRMs are used as 'unknowns' in order to evaluate the accuracy of ALIC concentrations derived in this manner.

  3. Refinement of the Compton-Rayleigh scatter ratio method for use on the Mars Science Laboratory alpha particle X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Campbell, J. L.; Perrett, G. M.; Maxwell, J. A.; Nield, E.; Gellert, R.; King, P. L.; Lee, M.; O'Meara, J. M.; Pradler, I.

    2013-05-01

    Spectra from the Mars rover alpha particle X-ray spectrometers contain the elastic and inelastic scatter peaks of the plutonium L X-rays emitted by the instrument's 244Cm source. Various spectrum fitting approaches are tested using the terrestrial twin of the APXS instrument on the Mars Science Laboratory Curiosity rover, in order to provide accurate extraction of the Lα and Lβ Compton/Rayleigh intensity ratios, which can provide information about light "invisible" constituents such as water in geological samples. A well-defined dependence of C/R ratios upon mean sample atomic number is established using a large and varied set of geochemical reference materials, and the accuracy of this calibration is examined. Detailed attention is paid to the influence of the rubidium and strontium peaks which overlap the Lα scatter peaks. Our Monte Carlo simulation code for prediction of C/R ratios from element concentrations is updated. The ratio between measured and simulated C/R ratios provides a second means of calibration.

  4. Evaluation of nuclear reaction cross section data for the production of (87)Y and (88)Y via proton, deuteron and alpha-particle induced transmutations.

    PubMed

    Zaneb, H; Hussain, M; Amjad, N; Qaim, S M

    2016-06-01

    Proton, deuteron and alpha-particle induced reactions on (87,88)Sr, (nat)Zr and (85)Rb targets were evaluated for the production of (87,88)Y. The literature data were compared with nuclear model calculations using the codes ALICE-IPPE, TALYS 1.6 and EMPIRE 3.2. The evaluated cross sections were generated; therefrom thick target yields of (87,88)Y were calculated. Analysis of radio-yttrium impurities and yield showed that the (87)Sr(p, n)(87)Y and (88)Sr(p, n)(88)Y reactions are the best routes for the production of (87)Y and (88)Y respectively. The calculated yield for the (87)Sr(p, n)(87)Y reaction is 104 MBq/μAh in the energy range of 14→2.7MeV. Similarly, the calculated yield for the (88)Sr(p, n)(88)Y reaction is 3.2 MBq/μAh in the energy range of 15→7MeV.

  5. Effective cancer therapy with the alpha-particle emitter [211At]astatine in a mouse model of genetically modified sodium/iodide symporter-expressing tumors.

    PubMed

    Petrich, Thorsten; Quintanilla-Martinez, Leticia; Korkmaz, Zekiye; Samson, Elenore; Helmeke, Hans Jürgen; Meyer, Geerd Jürgen; Knapp, Wolfram H; Pötter, Eyck

    2006-02-15

    The sodium/iodide symporter (NIS) gene is currently explored in several trials to eradicate experimental cancer with radiodine ((131)I) by its beta-emission. We recently characterized NIS-specific cellular uptake of an alternative halide, radioastatine ((211)At), which emits high-energy alpha-particles. The aim of this study was to investigate in vivo effects of the high linear energy transfer (LET) emitter (211)At on tumor growth and outcome in nude mice. We administered radioastatide in a fractionated therapy scheme to NMRI nude mice harboring rapidly growing solid tumors established from a papillary thyroid carcinoma cell line genetically modified to express NIS (K1-NIS). Animals were observed over 1 year. Tumor growth, body weight, blood counts, survival, and side effects were measured compared with control groups without therapy and/or lack of NIS expression. Within 3 months, radioastatide caused complete primary tumor eradication in all cases of K1-NIS tumor-bearing nude mice (n = 25) with no tumor recurrence during 1 year follow-up. Survival rates of the K1-NIS/(211)At group were 96% after 6 months and 60% after 1 year, in contrast to those of control groups (maximum survival 40 days). Our study indicates that (211)At represents a promising substrate for NIS-mediated therapy of various cancers either with endogenous or gene transfer-mediated NIS expression.

  6. Overview of Mars surface geochemical diversity through Alpha Particle X-Ray Spectrometer data multidimensional analysis: First attempt at modeling rock alteration

    NASA Astrophysics Data System (ADS)

    Tréguier, Erwan; d'Uston, Claude; Pinet, Patrick C.; Berger, Gilles; Toplis, Michael J.; McCoy, Timothy J.; Gellert, Ralf; Brückner, Johannes

    2008-11-01

    Principal component analysis and a hierarchical clustering method have been employed to describe and quantify the compositional variability of Martian rocks and soils measured by the Alpha Particle X-Ray Spectrometers onboard the Mars Exploration Rovers. A robust classification of samples emerges which defines distinct rock classes and sheds light on the petrogenetic relationships between rocks. This is particularly useful in the case of rocks from Gusev Crater, where significant chemical diversity is observed. This approach also highlights that compositional variability of rocks at Meridiani is dominated by variations in sulfur content; the relative proportions of other elements remaining approximately constant. For soils, variations in Fe concentration dominate because of the presence of hematite-rich ``berry''-bearing samples. On the basis of this observation, a simple geochemical model of acid fog alteration of Martian basalts has been tested, assuming either equivalent alteration of all phases or preferential alteration of certain phases (thus taking into account kinetic considerations). The results show that for certain ranges of SO3/basalt, many of the compositional and mineralogical features measured at both sites may be explained. The secondary mineralogy and bulk rock compositions predicted by the model are broadly consistent with rock and soil compositions from Gusev and Meridiani, especially if the role of brine circulation and evaporation are considered. Although agreement is not perfect, comparison of observations and models argues in favor of variable interaction of the Martian surface with sour gas, explaining the high local abundance of sulfates, for example.

  7. Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate

    NASA Astrophysics Data System (ADS)

    Ming, D. W.; Gellert, R.; Morris, R. V.; Arvidson, R. E.; Brückner, J.; Clark, B. C.; Cohen, B. A.; d'Uston, C.; Economou, T.; Fleischer, I.; Klingelhöfer, G.; McCoy, T. J.; Mittlefehldt, D. W.; Schmidt, M. E.; Schröder, C.; Squyres, S. W.; Tréguier, E.; Yen, A. S.; Zipfel, J.

    2008-12-01

    Geochemical diversity of rocks and soils has been discovered by the Alpha Particle X-Ray Spectrometer (APXS) during Spirit's journey over Husband Hill and down into the Inner Basin from sol 470 to 1368. The APXS continues to operate nominally with no changes in calibration or spectral degradation over the course of the mission. Germanium has been added to the Spirit APXS data set with the confirmation that it occurs at elevated levels in many rocks and soils around Home Plate. Twelve new rock classes and two new soil classes have been identified at the Spirit landing site since sol 470 on the basis of the diversity in APXS geochemistry. The new rock classes are Irvine (alkaline basalt), Independence (low Fe outcrop), Descartes (outcrop similar to Independence with higher Fe and Mn), Algonquin (mafic-ultramafic igneous sequence), Barnhill (volcaniclastic sediments enriched in Zn, Cl, and Ge), Fuzzy Smith (high Si and Ti rock), Elizabeth Mahon (high Si, Ni, and Zn outcrop and rock), Halley (hematite-rich outcrop and rock), Montalva (high K, hematite-rich rock), Everett (high Mg, magnetite-rich rock), Good Question (high Si, low Mn rock), and Torquas (high K, Zn, and Ni magnetite-rich rock). New soil classes are Gertrude Weise (very high Si soil) and Eileen Dean (high Mg, magnetite-rich soil). Aqueous processes have played a major role in the formation and alteration of rocks and soils on Husband Hill and in the Inner Basin.

  8. Membrane-Dependent Bystander Effect Contributes to Amplification of the Response to Alpha-Particle Irradiation in Targeted and Nontargeted Cells

    SciTech Connect

    Hanot, Maite; Hoarau, Jim; Carriere, Marie; Angulo, Jaime F.; Khodja, Hicham

    2009-11-15

    Purpose: Free radicals are believed to play an active role in the bystander response. This study investigated their origin as well as their temporal and spatial impacts in the bystander effect. Methods and Materials: We employed a precise alpha-particle microbeam to target a small fraction of subconfluent osteoblastic cells (MC3T3-E1). gammaH2AX-53BP1 foci, oxidative metabolism changes, and micronuclei induction in targeted and bystander cells were assessed. Results: Cellular membranes and mitochondria were identified as two distinct reactive oxygen species producers. The global oxidative stress observed after irradiation was significantly attenuated after cells were treated with filipin, evidence for the primal role of membrane in the bystander effect. To determine the membrane's impact at a cellular level, micronuclei yield was measured when various fractions of the cell population were individually targeted while the dose per cell remained constant. Induction of micronuclei increased in bystander cells as well as in targeted cells and was attenuated by filipin treatment, demonstrating a role for bystander signals between irradiated cells in an autocrine/paracrine manner. Conclusions: A complex interaction of direct irradiation and bystander signals leads to a membrane-dependent amplification of cell responses that could influence therapeutic outcomes in tissues exposed to low doses or to environmental exposure.

  9. Evidence of extranuclear cell sensitivity to alpha-particle radiation using a microdosimetric model. I. Presentation and validation of a microdosimetric model.

    PubMed

    Chouin, N; Bernardeau, K; Davodeau, F; Chérel, M; Faivre-Chauvet, A; Bourgeois, M; Apostolidis, C; Morgenstern, A; Lisbona, A; Bardiès, M

    2009-06-01

    A microdosimetric model that makes it possible to consider the numerous biological and physical parameters of cellular alpha-particle irradiation by radiolabeled mAbs was developed. It allows for the calculation of single-hit and multi-hit distributions of specific energy within a cell nucleus or a whole cell in any irradiation configuration. Cells are considered either to be isolated or to be packed in a monolayer or a spheroid. The method of calculating energy deposits is analytical and is based on the continuous-slowing-down approximation. A model of cell survival, calculated from the microdosimetric spectra and the microdosimetric radiosensitivity, z(0), was also developed. The algorithm of calculations was validated by comparison with two general Monte Carlo codes: MCNPX and Geant4. Microdosimetric spectra determined by these three codes showed good agreement for numerous geometrical configurations. The analytical method was far more efficient in terms of calculation time: A gain of more than 1000 was observed when using our model compared with Monte Carlo calculations. Good agreements were also observed with previously published results.

  10. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test.

    PubMed

    Pesnya, Dmitry S; Romanovsky, Anton V

    2013-01-20

    The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9h. A positive control group was treated during 20min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields.

  11. Coulomb-nuclear interference with {alpha} particles in the excitation of the 2{sup +}{sub 1} states in {sup 100,102,104}Ru

    SciTech Connect

    Gomes, L.C.; Horodynski-Matsushigue, L.B.; Borello-Lewin, T.; Duarte, J.L.; Hirata, J.H.; Salem-Vasconcelos, S.; Dietzsch, O.

    1996-11-01

    Coulomb-nuclear interference data for incident energies between 9 and 17 MeV were obtained in the form of elastic and inelastic (to the 2{sup +}{sub 1} states) excitation functions of backscattered ({theta}{approx_equal}172.8{degree}) alpha particles on {sup 100,102,104}Ru. The analysis was done in a distorted-wave Born approximation within a deformed optical model approach. {ital B}({ital E}2) values, obtained from the charge deformation lengths {delta}{sup {ital C}} extracted from the low energy data, are compatible for the three isotopes within {approximately} 2{sigma} with published values. The nuclear quadrupolar deformation lengths {delta}{sup {ital N}}, obtained from the analysis of the interference region of the excitation functions, and also of one angular distribution at 22 MeV measured for {sup 100}Ru are generally lower than the corresponding charge deformation lengths, the difference increasing with increasing {ital A} of the isotope, {delta}{sup {ital N}} being 18{percent} lower than {delta}{sup {ital C}} for {sup 104}Ru (2{sup +}{sub 1}). Nuclear deformation lengths associated with the 3{sub 1}{sup {minus}} states of {sup 100,102,104}Ru and with the 4{sup +}{sub 2} state of {sup 100}Ru at 2.367 MeV were also obtained as a by-product of the present work. {copyright} {ital 1996 The American Physical Society.}

  12. The relationship between internally deposited alpha-particle radiation and subsite-specific liver cancer and liver cirrhosis: an analysis of published data.

    PubMed

    Sharp, Gerald B

    2002-12-01

    Chronic exposure to high LET radiation has been shown to cause liver cancer in humans based on studies of patients who received Thorotrast, a colloidal suspension of thorium dioxide formerly used as a radiological contrast agent, and on studies of Russian nuclear weapons workers exposed to internally ingested plutonium. Risk estimates for these exposures and specific subtypes of liver cancer have not been previously reported. Combining published data with tumor registry data pertinent to the Thorotrast cohorts in Germany, Denmark, Portugal, and Japan and to Russian workers, we generally found significantly elevated risks of three major histologic types of liver tumors: hepatocellular carcinoma (HCC), cholangiocarcinoma (CC), and hemangiosarcoma (HS) for Thorotrast exposures. In contrast, HS was the only liver tumor significantly associated with the lower alpha-particle doses experienced by the Russian workers. Excess cases per 1,000 persons exposed to Thorotrast were similar for the three liver cancer subtypes but lower for plutonium exposure. Odds ratios (OR) of HS and CC for Thorotrast were from 26 to 789 and from 1 to 31 times higher than those for HCC, respectively. ORs of liver cirrhosis for Thorotrast exposure ranged from 2.7 (95% confidence interval (CI): 2.2-3.4) to 6.7 (5.1-8.7).

  13. Generation of temperature anisotropy for alpha particle velocity distributions in solar wind at 0.3 AU: Vlasov simulations and Helios observations

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Bourouaine, S.; Valentini, F.; Marsch, E.; Veltri, P.

    2014-04-01

    Solar wind "in situ" measurements from the Helios spacecraft in regions of the Heliosphere close to the Sun (˜0.3 AU), at which typical values of the proton plasma beta are observed to be lower than unity, show that the alpha particle distribution functions depart from the equilibrium Maxwellian configuration, displaying significant elongations in the direction perpendicular to the background magnetic field. In the present work, we made use of multi-ion hybrid Vlasov-Maxwell simulations to provide theoretical support and interpretation to the empirical evidences above. Our numerical results show that, at variance with the case of βp≃1 discussed in Perrone et al. (2011), for βp=0.1 the turbulent cascade in the direction parallel to the ambient magnetic field is not efficient in transferring energy toward scales shorter than the proton inertial length. Moreover, our numerical analysis provides new insights for the theoretical interpretation of the empirical evidences obtained from the Helios spacecraft, concerning the generation of temperature anisotropy in the particle velocity distributions.

  14. Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel Schottky diodes on 4H-SiC

    NASA Astrophysics Data System (ADS)

    Omotoso, E.; Meyer, W. E.; Auret, F. D.; Paradzah, A. T.; Diale, M.; Coelho, S. M. M.; Janse van Rensburg, P. J.; Ngoepe, P. N. M.

    2015-12-01

    Current-voltage, capacitance-voltage and conventional deep level transient spectroscopy at temperature ranges from 40 to 300 K have been employed to study the influence of alpha-particle irradiation from an 241Am source on Ni/4H-SiC Schottky contacts. The nickel Schottky barrier diodes were resistively evaporated on n-type 4H-SiC samples of doping density of 7.1 × 1015 cm-3. It was observed that radiation damage caused an increase in ideality factors of the samples from 1.04 to 1.07, an increase in Schottky barrier height from 1.25 to 1.31 eV, an increase in series resistance from 48 to 270 Ω but a decrease in saturation current density from 55 to 9 × 10-12 A m-2 from I-V plots at 300 K. The free carrier concentration of the sample decreased slightly after irradiation. Conventional DLTS showed peaks due to four deep levels for as-grown and five deep levels after irradiation. The Richardson constant, as determined from a modified Richardson plot assuming a Gaussian distribution of barrier heights for the as-grown and irradiated samples were 133 and 151 A cm-2 K-2, respectively. These values are similar to literature values.

  15. Enhanced diffusion and precipitation in Cu: In alloys due to low energy ion bombardment

    NASA Astrophysics Data System (ADS)

    Rivaud, L.; Ward, I. D.; Eltoukhy, A. H.; Greene, J. E.

    1981-01-01

    The effects of low energy Ar + ion bombardment on supersaturated Cu: 10at%-In alloys at room temperature were investigated using scanning transmission electron microscopy and Auger electron spectroscopy. Both 1 and 3 keV Ar + bombardment resulted in the preferential sputter removal of In. The surface and altered layer remained supersaturated however, and ion bombardment enhanced diffusion was sufficient to allow the precipitation of In-rich δ-phase (~30 at% In) particles in the near-surface region. The average precipitate size and number density in samples bombarded with 3 keV Ar + ions were ~200 Å and 10 10 cm -2 as compared to 150 A and 10 9 cm -2 in samples bombarded at 1 keV. The ion bombardment induced precipitates nucleated within the grains rather than, as was observed for thermally induced precipitates, at grain boundaries.

  16. Exploring the Early Bombardment of the Inner Solar System

    NASA Astrophysics Data System (ADS)

    Bottke, W.

    2014-04-01

    The early bombardment history of the Inner Solar System is recorded in a number of interesting places (e.g., the surprisingly high abundance of highly siderophile abundances found in the Earth, Moon, and Mars, the observed impact basins found on Mercury, the Moon and Mars, various properties of main belt asteroids and meteorites, etc.). To date, two dominant scenarios have been used to explain these constraints: (i) most impacts came from the tail end of a monotonically-decreasing impactor population created by planet formation processes, and (ii) most impacts were produced by a terminal cataclysm that caused a spike in the impactor flux starting ~4 Gy ago. Interestingly, using numerical studies linked to the available constraints, we find that both scenarios are needed to explain observations. For (i), we will show that leftover planetesimals from the terrestrial planet region were long-lived enough to hit various worlds long after the end of core formation. The record left behind can be used in interesting ways to probe the nature of terrestrial planet formation. For (ii), we will explore new applications of the so-called Nice model, which provides a plausible dynamical mechanism capable of creating a spike of comets/asteroid impactors. Our results suggest that many "late heavy bombardment" impactors came from an unexpected source, and that they possibly continued to hit Earth, Venus, and Mars well after basin formation terminated on the Moon. Interestingly, the history of the Hadean Earth (ca. 4.0-4.5 billion years ago) may be closely linked to this bombardment. With few known rocks older than ~3.8 Ga, the main constraints from this era come from ancient submillimeter zircon grains. Using our bombardment model, we will argue that the surface of the Hadean Earth was widely reprocessed by impacts through mixing and heating of its uppermost layers. This model not only may explains the Pb-Pb age distribution of ancient zircons but also the absence of most early

  17. Optical, mass, and auger spectra from e-bombarded KBr

    SciTech Connect

    Arakawa, E.T.; Kamada, M.

    1988-01-01

    We have measured the mass spectrum and optical emission lines of neutral potassium atoms ejected from KBr at T = 300/degree/K and 443/degree/K bombarded by 2-keV electrons. The room-temperature data may be complicated by the nonstoichiometry of the alkali-enriched sample surface and seem difficult to interpret. The high-temperature sample, which maintains the proper stoichiometry, produces data in support of gas-phase excitation of alkali atoms desorbed from the surface. 15 refs., 4 figs.

  18. Propulsion of ripples on glass by ion bombardment.

    PubMed

    Alkemade, P F A

    2006-03-17

    The propulsion of surface ripples on SiO(2) by an ion beam was investigated by in situ electron microscopy. The observed propagation of the ripples contradicts existing models for ion-beam-induced ripple development. A new model based on the Navier-Stokes relations for viscous flow in a thin layer is introduced. It includes inhomogeneous viscous flow, driven by spatial variations in the deposition of the energy of the ion beam. The model explains the observed reversed propagation. The hitherto unknown propulsion mechanism is important for understanding nanoscale pattern formation by ion bombardment.

  19. Propulsion of Ripples on Glass by Ion Bombardment

    SciTech Connect

    Alkemade, P.F.A.

    2006-03-17

    The propulsion of surface ripples on SiO{sub 2} by an ion beam was investigated by in situ electron microscopy. The observed propagation of the ripples contradicts existing models for ion-beam-induced ripple development. A new model based on the Navier-Stokes relations for viscous flow in a thin layer is introduced. It includes inhomogeneous viscous flow, driven by spatial variations in the deposition of the energy of the ion beam. The model explains the observed reversed propagation. The hitherto unknown propulsion mechanism is important for understanding nanoscale pattern formation by ion bombardment.

  20. Cluster Ion Bombardment-Induced Surface Damage of Si

    NASA Astrophysics Data System (ADS)

    Ascheron, C. E.; Akizuki, M.; Matsuo, J.; Insepov, Z.; Takaoka, G. H.; Yamada, I.

    Surface damage of single-crystalline Si caused by irradiation with Ar-ion cluster beams of different energies has been studied in comparison with that caused by Ar-monomer ion beams. The defected layers have been characterized by RBS channeling, XTEM, and ellipsometry. The experimental results are interpreted on the basis of TRIM and molecular dynamics simulations of the interaction processes with the target. It is found that cluster irradiation damages only a very thin near-surface layer which has a smooth interface to the undamaged substrate. Cluster-ion bombardment forms an oxide layer on the surface by the activation of adsorbed O atoms and substrate atoms.