Science.gov

Sample records for 420-500 nanometer nm

  1. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    NASA Astrophysics Data System (ADS)

    Attota, Ravikiran; Dixson, Ronald G.

    2014-07-01

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm-40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  2. Large-scale freestanding nanometer-thick graphite pellicles for mass production of nanodevices beyond 10 nm.

    PubMed

    Kim, Seul-Gi; Shin, Dong-Wook; Kim, Taesung; Kim, Sooyoung; Lee, Jung Hun; Lee, Chang Gu; Yang, Cheol-Woong; Lee, Sungjoo; Cho, Sang Jin; Jeon, Hwan Chul; Kim, Mun Ja; Kim, Byung-Gook; Yoo, Ji-Beom

    2015-09-21

    Extreme ultraviolet lithography (EUVL) has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10 nm. We present a new pellicle material, nanometer-thick graphite film (NGF), which shows an extreme ultraviolet (EUV) transmission of 92% at a thickness of 18 nm. The maximum temperature induced by laser irradiation (λ = 800 nm) of 9.9 W cm(-2) was 267 °C, due to the high thermal conductivity of the NGF. The freestanding NGF was found to be chemically stable during annealing at 500 °C in a hydrogen environment. A 50 × 50 mm large area freestanding NGF was fabricated using the wet and dry transfer (WaDT) method. The NGF can be used as an EUVL pellicle for the mass production of nanodevices beyond 10 nm. PMID:26159369

  3. Resolving three-dimensional shape of sub-50 nm wide lines with nanometer-scale sensitivity using conventional optical microscopes

    SciTech Connect

    Attota, Ravikiran Dixson, Ronald G.

    2014-07-28

    We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.

  4. [The heating effect of the Er3+/Yb3+ doped Y2O3 nanometer powder by 980 nm laser diode pumping].

    PubMed

    Zheng, Long-Jiang; Gao, Xiao-Yang; Liu, Hai-Long; Li, Bing; Xu, Chen-Xi

    2013-01-01

    The Er3+ and Yb3+ doped Y2O3 Nano powder was prepared by sol-gel method. Based on 2H11/2 --> 4I15/2 and 4S3/2 --> 4I15/2 green conversion luminescence intensity rate of Er3+, the sample surface temperature changes caused by the increase in 980 nm diode laser pump power were studied. The results show that with pump power increasing, the sample surface temperature substantially rises. And the surface temperature reached to 820 K when the pump power was 1 000 mW. The phenomenon plays an important role in the analysis of upconversion process, especially with saturation power. And this feature has a potential application prospect in the biomedicine, soft tissue hole burning as well as the field of temperature sensing materials.

  5. New Sub-nanometer Spectral Estimates of the 0-5 nm Solar Soft X-Ray Irradiance at Mars Using the Extreme UltraViolet Monitor (EUVM) Onboard MAVEN

    NASA Astrophysics Data System (ADS)

    Thiemann, E.; Eparvier, F. G.; Chamberlin, P. C.; Woods, T. N.; Peterson, W. K.; Mitchell, D. L.; Xu, S.; Liemohn, M. W.

    2015-12-01

    The Extreme UltraViolet Monitor (EUVM) onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) probe at Mars characterizes the solar extreme ultraviolet (EUV) and soft x-ray (SXR) input into the Martian atmosphere. EUVM measures solar irradiance at 0-7 nm, 17-22 nm and 121.6 nm at a nominal 1 second cadence. These bands were selected to capture variability originating at different heights in the solar atmosphere; and are used to drive the Flare Irradiance Solar Model at Mars (FISM-M) that is a model of the solar spectrum from 0.1-190 nm with 1 nm resolution and produced routinely as the EUVM Level 3 data product. The 0-5 nm range of the solar spectrum is of particular aeronomic interest because the primary species of the Mars upper atmosphere have Auger transitions in this range. When an Auger transition is excited by incident SXR radiation, secondary electrons are emitted with sufficient energy to further ionize the atmosphere. Because these transitions are highly structured, sub-nm resolution of the solar spectrum is needed in the 0-5 nm range to fully constrain the solar input and more accurately characterize the energetics of the upper atmosphere. At Earth, .1 nm resolution estimates of the solar 0-5 nm range are produced by the X-ray Photometer System (XPS) onboard the SOlar Radiation and Climate Experiment (SORCE) satellite by combining broad-band SXR measurements with solar flare temperature measurements to drive an atomic physics based forward model of solar coronal emissions. This spectrum has been validated with other models as well as with photo-electron and day glow measurements at Earth. Similar to XPS, the EUVM 0-7 nm and 17-22 nm bands can be used to produce an XPS-like model at Mars, but with reduced precision due to differences in the available bands. We present first results of this technique applied to a set of solar flares observed by MAVEN EUVM and Earth assets. In addition to comparing EUVM and Earth-asset derived 0-5 nm solar spectra to

  6. Glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of < 20 nm. Overlay specification of single digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  7. Surface characterization of commercial oral implants on the nanometer level.

    PubMed

    Svanborg, Lory Melin; Andersson, Martin; Wennerberg, Ann

    2010-02-01

    Lately, there has been a growing interest in how the presence of nanometer structures on a bone integrated implant surface influences the healing process. Recent in vitro studies have revealed an increased osteoblast response to different nanophase surfaces. Some commercial implant brands claim their implants have nanometer structures. However, at present, there are no studies where the nano topography of today's commercially available oral implants has been investigated. The aim of this study was to characterize commercial oral implants on the nanometer level and to investigate whether or not the nanometer surface roughness was correlated to the more well-known micrometer roughness on the implants. Twelve different commercial screw-shaped oral implants with various surface modifications were examined using scanning electron microscopy and a white light interferometer. The interferometer is suitable for detection of nanoscale roughness in the vertical dimension; however, limitation exists on the horizontal due to the wavelength of the light. A 1 x 1 microm Gaussian filter was found to be useful for identifying nm roughness with respect to height deviation. The results demonstrated that an implant that was smooth on the micrometer level was not necessarily smooth on the nanometer level. Different structures in the nanometer scale was found on some of the implants, indicating that to fully understand the relationship between the properties of an implant surface and its osseointegration behavior, a characterization at the nanometer scale might be relevant.

  8. Nanoplasmonics: classical down to the nanometer scale.

    PubMed

    Duan, Huigao; Fernández-Domínguez, Antonio I; Bosman, Michel; Maier, Stefan A; Yang, Joel K W

    2012-03-14

    We push the fabrication limit of gold nanostructures to the exciting sub-nanometer regime, in which light-matter interactions have been anticipated to be strongly affected by the quantum nature of electrons in metals. Doing so allows us to (1) evaluate the validity of classical electrodynamics to describe plasmonic effects at this length scale and (2) witness the gradual (instead of sudden) evolution of plasmon modes when two gold nanoprisms are brought into contact. Using electron energy-loss spectroscopy and transmission electron microscope imaging, we investigated nanoprisms separated by gaps of only 0.5 nm and connected by conductive bridges as narrow as 3 nm. Good agreement of our experimental results with electromagnetic calculations and LC circuit models evidence the gradual evolution of the plasmonic resonances toward the quantum coupling regime. We demonstrate that down to the nanometer length scales investigated classical electrodynamics still holds, and a full quantum description of electrodynamics phenomena in such systems might be required only when smaller gaps of a few angstroms are considered. Our results show also the gradual onset of the charge-transfer plasmon mode and the evolution of the dipolar bright mode into a 3λ/2 mode as one literally bridges the gap between two gold nanoprisms.

  9. KINOFORM LENSES - TOWARD NANOMETER RESOLUTION.

    SciTech Connect

    STEIN, A.; EVANS-LUTTERODT, K.; TAYLOR, A.

    2004-10-23

    While hard x-rays have wavelengths in the nanometer and sub-nanometer range, the ability to focus them is limited by the quality of sources and optics, and not by the wavelength. A few options, including reflective (mirrors), diffractive (zone plates) and refractive (CRL's) are available, each with their own limitations. Here we present our work with kinoform lenses which are refractive lenses with all material causing redundant 2{pi} phase shifts removed to reduce the absorption problems inherently limiting the resolution of refractive lenses. By stacking kinoform lenses together, the effective numerical aperture, and thus the focusing resolution, can be increased. The present status of kinoform lens fabrication and testing at Brookhaven is presented as well as future plans toward achieving nanometer resolution.

  10. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica; Holt, Jason; Noy, Aleksandr; Park, Hyung Gyu

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  11. Performance of a Nanometer Resolution BPM System

    SciTech Connect

    Walston, S.; Chung, C.; Fitsos, P.; Gronberg, J.; Meller, R.; Vogel, V.; Hayano, H.; Honda, Y.; Terunuma, N.; Urakawa, J.; Kolomensky, Y.; Orimoto, T.; Boogert, S.; Frisch, J.; May, J.; McCormick, D.; Ross, M.; Smith, S.; Smith, T.; White, G.; Slater, M.; /Cambridge U. /University Coll. London

    2007-04-24

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.

  12. Performance of a Nanometer Resolution BPM System

    SciTech Connect

    Vogel, V; Hayano, H; Honda, Y; Terunuma, N; Urakawa, J; Kolomensky, Y; Orimoto, T; Chung, C; Fitsos, P; Gronberg, J; Walston, S; White, G; Frisch, J; May, J; McCormick, D; Ross, M; Smith, S; Smith, T; Slater, M; Ward, D; Boogert, S; Lyapin, A; Malton, S; Miller, D

    2005-10-14

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. it is important to the ongoing ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that an RF cavity BPM with modern waveform processing could provide a position measurement resolution of less than one nanometer. Such a system could form the basis of the desired beam-based stability measurement, as well as be used for other specialized purposes. They have developed a high resolution RF cavity BPM and associated electronics. A triplet comprised of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on six variable-length struts which can be used to move the BPMs in position and angle. they have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, they have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of {+-} 20 {micro}m. They report on the progress of these ongoing tests.

  13. PERFORMANCE OF A NANOMETER RESOLUTION BPM SYSTEM

    SciTech Connect

    Walston, S; Chung, C; Fitsos, P; Gronberg, J; Meller, R; Vogel, V; Hayano, H; Honda, Y; Terunuma, N; Urakawa, J; Kolomensky, Y; Orimoto, T; Boogert, S; Frisch, J; May, J; McCormick, D; Ross, M; Smith, S; Smith, T; Slater, M; Thomson, M; Ward, D; Lyapin, A; Malton, S; Miller, D; White, G

    2006-06-21

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.

  14. Nanometer scale marker for fluorescent microscopy

    SciTech Connect

    Hiraga, Takashi; Iketaki, Yoshinori; Watanabe, Takeshi; Ohyi, Hideyuki; Kobayashi, Kazumasa; Yamamoto, Noritaka; Mizokuro, Toshiko; Fujii, Masaaki

    2005-07-15

    To establish a calibration method of optical performance in fluorescence microscopy, we fabricated a fluorescent nanometer-scale marker by combining a dry dye method for polymer film and fine lithography. The marker has a 50 nm line-and-space fluorescent pattern, finer than the optical diffraction limit. A spin-coated poly(methyl methacrylate) thin film on a silicon wafer was densely doped with Rhodamine 6G using a simple vacuum process, named the vapor-transportation method, and then the pattern was formed on the film using electron-beam lithography. The figure accuracy of the fabricated marker was calibrated by electron microscopes. Using this marker, one can quantitatively evaluate the optical properties; i.e., the contrast-transfer function, the point-spread function, magnification, and so on. To show practical use of the marker, we demonstrated the evaluation of a fluorescent microscope system.

  15. Free-Space Nanometer Wiring via Nanotip Manipulation

    PubMed Central

    Kizuka, Tokushi; Ashida, Shin

    2015-01-01

    Relentless efforts in semiconductor technology have driven nanometer-scale miniaturization of transistors, diodes, and interconnections in electronic chips. Free-space writing enables interconnections of stacked modules separated by an arbitrary distance, leading to ultimate integration of electronics. We have developed a free-space method for nanometer-scale wiring on the basis of manipulating a metallic nanotip while applying a bias voltage without radiative heating, lithography, etching, or electrodeposition. The method is capable of fabricating wires with widths as low as 1–6 nm and lengths exceeding 200 nm with a breakdown current density of 8 TA/m2. Structural evolution and conduction during wire formation were analyzed by direct atomistic visualization using in situ high-resolution transmission electron microscopy. PMID:26306613

  16. Free-Space Nanometer Wiring via Nanotip Manipulation

    NASA Astrophysics Data System (ADS)

    Kizuka, Tokushi; Ashida, Shin

    2015-08-01

    Relentless efforts in semiconductor technology have driven nanometer-scale miniaturization of transistors, diodes, and interconnections in electronic chips. Free-space writing enables interconnections of stacked modules separated by an arbitrary distance, leading to ultimate integration of electronics. We have developed a free-space method for nanometer-scale wiring on the basis of manipulating a metallic nanotip while applying a bias voltage without radiative heating, lithography, etching, or electrodeposition. The method is capable of fabricating wires with widths as low as 1-6 nm and lengths exceeding 200 nm with a breakdown current density of 8 TA/m2. Structural evolution and conduction during wire formation were analyzed by direct atomistic visualization using in situ high-resolution transmission electron microscopy.

  17. Ferromagnetic resonance of sputtered yttrium iron garnet nanometer films

    SciTech Connect

    Liu, Tao; Chang, Houchen; Sun, Yiyan; Kabatek, Michael; Wu, Mingzhong; Vlaminck, Vincent; Hoffmann, Axel; Deng, Longjiang

    2014-05-07

    Growth of nm-thick yttrium iron garnet (YIG) films by sputtering and ferromagnetic resonance (FMR) properties in the films were studied. The FMR linewidth of the YIG film decreased as the film thickness was increased from several nanometers to about 100 nm. For films with very smooth surfaces, the linewidth increased linearly with frequency. In contrast, for films with big grains on the surface, the linewidth-frequency response was strongly nonlinear. Films in the 7–26 nm thickness range showed a surface roughness between 0.1 nm and 0.4 nm, a 9.48-GHz FMR linewidth in the 6–10 Oe range, and a damping constant of about 0.001.

  18. Functional nanometer-scale structures

    NASA Astrophysics Data System (ADS)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some

  19. Nanometer voids prevent crack growth in polymer thin films

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hideaki; Dutriez, Cedric; Satoh, Kotaro; Kamigaito, Masami

    2007-03-01

    Macroscopic voids initiate cracks and cause catastrophic failure in brittle materials. The effect of micrometer voids in the mechanical properties of polymeric materials was studied in 1980's and 90's with the expectation that such small voids may initiate crazing, the toughening mechanism in polymer solids, similar to dispersed rubber particles widely used in industry. However, the micrometer voids showed only limited resistance against crack growth, and it was concluded that much smaller voids are necessary for the drastic change in mechanical properties. We have recently succeeded the nondestructive introduction of nanometer voids (30--70 nm) in polymeric materials using block copolymer template and carbon dioxide (CO2) by partitioning CO2 in CO2-philic nanodomains of block copolymers. The reduction of Young's modulus with such nanometer voids was minimal (2 to 1 GPa) due to the (short-range) ordered spherical voids. While the unprocessed copolymer films failed in brittle manner at around 2 % of tensile strain, the processed copolymer films with nanometer voids did not break up to at least 60 %. A microscopic observation under strain of the crack tip revealed that the nanometer voids were deformed under strain and directly converted into the networked fibrils near the crack tip similar to crazing and thus prevented the crack growth.

  20. Nanolithography based on the formation and manipulation of nanometer-size organic liquid menisci.

    PubMed

    Martinez, Ramsés V; Garcia, Ricardo

    2005-06-01

    Nanometer-size menisci of organic liquids such as octane and 1-octene have been formed and used to confine chemical reactions. The application of a bias voltage between a conductive scanning probe tip separated a few nanometers from a silicon surface allows the field-induced formation of nanometer-size liquid menisci that can subsequently be used to fabricate nanometer-size structures. We report the fabrication of sub-10-nm nanostructures in 0.1 ms. Growth kinetics studies reveal that the nanostructure composition and its formation mechanism are organic-solvent-dependent. Both voltage polarities can be used to grow nanostructures, although the growth rate is significantly higher for positively biased samples. These experiments allow us to produce in the same sample two chemically different nanostructures that are easily addressed and positioned and have sub-10-nm features.

  1. MoS2 transistors with 1-nanometer gate lengths

    NASA Astrophysics Data System (ADS)

    Desai, Sujay B.; Madhvapathy, Surabhi R.; Sachid, Angada B.; Llinas, Juan Pablo; Wang, Qingxiao; Ahn, Geun Ho; Pitner, Gregory; Kim, Moon J.; Bokor, Jeffrey; Hu, Chenming; Wong, H.-S. Philip; Javey, Ali

    2016-10-01

    Scaling of silicon (Si) transistors is predicted to fail below 5-nanometer (nm) gate lengths because of severe short channel effects. As an alternative to Si, certain layered semiconductors are attractive for their atomically uniform thickness down to a monolayer, lower dielectric constants, larger band gaps, and heavier carrier effective mass. Here, we demonstrate molybdenum disulfide (MoS2) transistors with a 1-nm physical gate length using a single-walled carbon nanotube as the gate electrode. These ultrashort devices exhibit excellent switching characteristics with near ideal subthreshold swing of ~65 millivolts per decade and an On/Off current ratio of ~106. Simulations show an effective channel length of ~3.9 nm in the Off state and ~1 nm in the On state.

  2. First Observation of Mechanochromism at the Nanometer Scale

    SciTech Connect

    Carpick, R.W.; Sasaki, D.Y.; Burns, A.R.

    1999-07-07

    A mechanically-induced color transition (''mechanochromism'') in polydiacetylene thin films has been generated at the nanometer scale using the tips of two different scanning probe microscopes. A blue-to-red chromatic transition in polydiacetylene molecular trilayer films, polymerized from 10,12-pentacosadiynoic acid (poly-PCDA), was found to result from shear forces acting between the tip and the poly-PCDA molecules, as independently observed with near-field scanning optical microscopy and atomic force microscopy (AFM). Red domains were identified by a fluorescence emission signature. Transformed regions as small as 30 nm in width were observed with AFM. The irreversibly transformed domains preferentially grow along the polymer backbone direction. Significant rearrangement of poly-PCDA bilayer segments is observed by AFM in transformed regions. The removal of these segments appears to be a characteristic feature of the transition. To our knowledge, this is the first observation of nanometer-scale mechanochromism in any material.

  3. Electrochemistry at Nanometer-Scaled Electrodes

    ERIC Educational Resources Information Center

    Watkins, John J.; Bo Zhang; White, Henry S.

    2005-01-01

    Electrochemical studies using nanometer-scaled electrodes are leading to better insights into electrochemical kinetics, interfacial structure, and chemical analysis. Various methods of preparing electrodes of nanometer dimensions are discussed and a few examples of their behavior and applications in relatively simple electrochemical experiments…

  4. Nanometer stepping drives of surface acoustic wave motor.

    PubMed

    Shigematsu, Takashi; Kurosawa, Minoru Kuribayashi; Asai, Katsuhiko

    2003-04-01

    High resolution (from nanometer to subnanometer) stepping drives of a surface acoustic wave motor are presented. It was shown that step displacement was easily controlled by adjusting a number of driving waves, using a steel ball slider equipped with permanent magnet for preload. By means of this open loop control, the step displacement was controlled from centimeter-order to submicrometer-order. In this paper, using a silicon slider equipped with a ball bearing linear guide, the stepping motions of a surface acoustic wave motor were investigated. A laser interferometer equipped with a 2-picometer resolution displacement demodulator was introduced. Motions of the slider ranging from several hundreds of nanometers to several nanometers in each step displacement were observed. Reduction of the driving waves down to 25 cycles, under a 100 Vpeak driving voltage and a 30 N preload condition, generated about 2 nm stepping motion using our experimental setup under an open loop condition. We also demonstrated subnanometer step movements. These experimental results indicated that the surface acoustic wave motor has an ability of subnanometer positioning with a centimeter-level stroke. PMID:12744393

  5. High-speed nanometer-resolved imaging vibrometer and velocimeter

    SciTech Connect

    Mahjoubfar, Ata; Goda, Keisuke; Fard, Ali; Ayazi, Ali; Kim, Sang Hyup; Jalali, Bahram

    2011-03-07

    Conventional laser vibrometers are incapable of performing multidimensional vibrometry at high speeds because they build on single-point measurements and rely on beam scanning, significantly limiting their utility and precision. Here we introduce a laser vibrometer that performs high-speed multidimensional imaging-based vibration and velocity measurements with nanometer-scale axial resolution without the need for beam scanning. As a proof-of-concept, we demonstrate real-time microscopic imaging of acoustic vibrations with 1 nm axial resolution, 1200 image pixels, and 30 ps dwell time at 36.7 MHz scan rate.

  6. Fluorescence Axial Localization with Nanometer Accuracy and Precision

    SciTech Connect

    Li, Hui; Yen, Chi-Fu; Sivasankar, Sanjeevi

    2012-06-15

    We describe a new technique, standing wave axial nanometry (SWAN), to image the axial location of a single nanoscale fluorescent object with sub-nanometer accuracy and 3.7 nm precision. A standing wave, generated by positioning an atomic force microscope tip over a focused laser beam, is used to excite fluorescence; axial position is determined from the phase of the emission intensity. We use SWAN to measure the orientation of single DNA molecules of different lengths, grafted on surfaces with different functionalities.

  7. Fabrication of 20 nm embedded longitudinal nanochannels transferred from metal nanowire patterns

    NASA Technical Reports Server (NTRS)

    Choi, D.; Yang, E. H.

    2003-01-01

    bstract we describe a technique for fabricating nanometer-scale channels embedded by dielectric materials. Longitudinal 'embedded ' nanochannels with an opening size 20 nm x 80 nm have been successfully fabricated on silicon wafer by transferring sacrificial nanowire structures.

  8. New electron optical column with large field for nanometer e-beam lithography system

    NASA Astrophysics Data System (ADS)

    Ohta, Hiroya; Matsuzaka, Takashi; Saitou, Norio

    1995-05-01

    An electron beam lithography system for nanometer devices has been developed. The target specifications of the system are a Gaussian beam diameter of 10 nm and a beam current of 1 nA, an acceleration voltage of 50 kV, a 500 micrometers X 500 micrometers deflection field and an overlay accuracy of 10 nm (3(sigma) ). To realize such high performance, the following two technologies have been developed for the design of the electron optical column: (1) a low aberration objective lens system with a one stage electrostatic deflector and (2) a thermal field emission (TFE) gun system with a low energy spread and a high brightness Zr/O/W cathode. The exposed results shown are a 30 nm isolated line and a 40 nm lines and spaces. An overlay accuracy of 10 nm are also obtained. This system is capable of being put into practical use in the fabrication of nanometer devices.

  9. Nanometer thick elastic graphene engine.

    PubMed

    Lee, Jong Hak; Tan, Jun You; Toh, Chee-Tat; Koenig, Steven P; Fedorov, V E; Castro Neto, Antonio H; Ozyilmaz, Barbaros

    2014-05-14

    Significant progress has been made in the construction and theoretical understanding of molecular motors because of their potential use. Here, we have demonstrated fabrication of a simple but powerful 1 nm thick graphene engine. The engine comprises a high elastic membrane-piston made of graphene and weakly chemisorbed ClF3 molecules as the high power volume changeable actuator, while a 532 nm LASER acts as the ignition plug. Rapid volume expansion of the ClF3 molecules leads to graphene blisters. The size of the blister is controllable by changing the ignition parameters. The estimated internal pressure per expansion cycle of the engine is about ∼10(6) Pa. The graphene engine presented here shows exceptional reliability, showing no degradation after 10,000 cycles. PMID:24773247

  10. Fluorescence Imaging with One-nanometer Accuracy (FIONA)

    PubMed Central

    Sheung, Janet; Lee, Sang Hak; Teng, Kai Wen; Selvin, Paul R.

    2014-01-01

    Fluorescence imaging with one-nanometer accuracy (FIONA) is a simple but useful technique for localizing single fluorophores with nanometer precision in the x-y plane. Here a summary of the FIONA technique is reported and examples of research that have been performed using FIONA are briefly described. First, how to set up the required equipment for FIONA experiments, i.e., a total internal reflection fluorescence microscopy (TIRFM), with details on aligning the optics, is described. Then how to carry out a simple FIONA experiment on localizing immobilized Cy3-DNA single molecules using appropriate protocols, followed by the use of FIONA to measure the 36 nm step size of a single truncated myosin Va motor labeled with a quantum dot, is illustrated. Lastly, recent effort to extend the application of FIONA to thick samples is reported. It is shown that, using a water immersion objective and quantum dots soaked deep in sol-gels and rabbit eye corneas (>200 µm), localization precision of 2-3 nm can be achieved. PMID:25286081

  11. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  12. Nanometer x-ray lithography

    NASA Astrophysics Data System (ADS)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  13. Optical anisotropy in packed isotropic spherical particles: indication of nanometer scale anisotropy in packing structure.

    PubMed

    Yamaguchi, Kohei; Inasawa, Susumu; Yamaguchi, Yukio

    2013-02-28

    We investigated the origin of birefringence in colloidal films of spherical silica particles. Although each particle is optically isotropic in shape, colloidal films formed by drop drying demonstrated birefringence. While periodic particle structures were observed in silica colloidal films, no regular pattern was found in blended films of silica and latex particles. However, since both films showed birefringence, regular film structure patterns were not required to exhibit birefringence. Instead, we propose that nanometer-scale film structure anisotropy causes birefringence. Due to capillary flow from the center to the edge of a cast suspension, particles are more tightly packed in the radial direction. Directional packing results in nanometer-scale anisotropy. The difference in the interparticle distance between radial and circumferential axes was estimated to be 10 nm at most. Nanometer-scale anisotropy in colloidal films and the subsequent optical properties are discussed.

  14. Nanometer Scale Hard/Soft Bilayer Magnetic Antidots.

    PubMed

    Béron, Fanny; Kaidatzis, Andreas; Velo, Murilo F; Arzuza, Luis C C; Palmero, Ester M; Del Real, Rafael P; Niarchos, Dimitrios; Pirota, Kleber R; García-Martín, José Miguel

    2016-12-01

    The effect of arrays of nanometer scale pores on the magnetic properties of thin films has been analyzed. Particularly, we investigated the influence of the out-of-plane magnetization component created by the nanopores on the in-plane magnetic behavior of patterned hard/soft magnetic thin films in antidot morphology. Its influence on the coupling in Co/Py bilayers of few tens of nanometer thick is compared for disordered and ordered antidots of 35-nm diameter. The combination of magneto-optical Kerr effect (MOKE) and first-order reversal curve (FORC) technique allows probing the effects of the induced perpendicular magnetization component on the bilayer magnetic behavior, while magnetic force microscopy (MFM) is used to image it. We found that ordered antidots yield a stronger out-of-plane component than disordered ones, influencing in a similar manner the hard layer global in-plane magnetic behavior if with a thin or without soft layer. However, its influence changes with a thicker soft layer, which may be an indication of a weaker coupling.

  15. Progress on glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Weber, Peter; Westerhoff, Thomas

    2016-03-01

    The Semiconductor Industry is making continuous progress in shrinking feature size developing technologies and process to achieve < 10 nm feature size. The required Overlay specification for successful production is in the range one nanometer or even smaller. Consequently, materials designed into metrology systems of exposure or inspection tools need to fulfill ever tighter specification on the coefficient of thermal expansion (CTE). The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion, the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR®. This paper is focusing on the "Advanced Dilatometer" for determination of the CTE developed at SCHOTT in the recent years and introduced into production in Q1 2015. The achievement for improving the absolute CTE measurement accuracy and the reproducibility are described in detail. Those achievements are compared to the CTE measurement accuracy reported by the Physikalische Technische Bundesanstalt (PTB), the National Metrology Institute of Germany. The CTE homogeneity is of highest importance to achieve nanometer precision on larger scales. Additionally, the paper presents data on the short scale CTE homogeneity and its improvement in the last two years. The data presented in this paper will explain the capability of ZERODUR® to enable the extreme precision required for future generation of lithography equipment and processes.

  16. Nanometer Scale Hard/Soft Bilayer Magnetic Antidots.

    PubMed

    Béron, Fanny; Kaidatzis, Andreas; Velo, Murilo F; Arzuza, Luis C C; Palmero, Ester M; Del Real, Rafael P; Niarchos, Dimitrios; Pirota, Kleber R; García-Martín, José Miguel

    2016-12-01

    The effect of arrays of nanometer scale pores on the magnetic properties of thin films has been analyzed. Particularly, we investigated the influence of the out-of-plane magnetization component created by the nanopores on the in-plane magnetic behavior of patterned hard/soft magnetic thin films in antidot morphology. Its influence on the coupling in Co/Py bilayers of few tens of nanometer thick is compared for disordered and ordered antidots of 35-nm diameter. The combination of magneto-optical Kerr effect (MOKE) and first-order reversal curve (FORC) technique allows probing the effects of the induced perpendicular magnetization component on the bilayer magnetic behavior, while magnetic force microscopy (MFM) is used to image it. We found that ordered antidots yield a stronger out-of-plane component than disordered ones, influencing in a similar manner the hard layer global in-plane magnetic behavior if with a thin or without soft layer. However, its influence changes with a thicker soft layer, which may be an indication of a weaker coupling. PMID:26873261

  17. Atomistic Insight on the Charging Energetics in Sub-nanometer Pore Supercacitors

    SciTech Connect

    Qiao, Rui; Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Feng, Guang

    2010-01-01

    Electrodes featuring sub-nanometer pores can significantly enhance the capacitance and energy density of supercapacitors. However, ions must pay an energy penalty to enter sub-nanometer pores as they have to shed part of their solvation shell. The magnitude of such energy penalty plays a key role in determining the accessibility and charging/discharging of these sub-nanometer pores. Here we report on the atomistic simulation of Na+ and Cl ions entering a polarizable slit pore with a width of 0.82 nm. We show that the free energy penalty for these ions to enter the pore is less than 14 kJ/mol for both Na+ and Cl ions. The surprisingly small energy penalty is caused by the van der Waals attractions between ion and pore walls, the image charge effects, the moderate (19-26%) de-hydration of the ions inside the pore, and the strengthened interactions between ions and their hydration water molecules in the sub-nanometer pore. The results provide strong impetus for further developing nanoporous electrodes featuring sub- nanometer pores.

  18. Research of the Additional Losses Occurring in Optical Fiber at its Multiple Bends in the Range Waves 1310nm, 1550nm and 1625nm Long

    NASA Astrophysics Data System (ADS)

    Yurchenko, A. V.; Gorlov, N. I.; Alkina, A. D.; Mekhtiev, A. D.; Kovtun, A. A.

    2016-01-01

    Article is devoted to research of the additional losses occurring in the optical fiber at its multiple bends in the range waves of 1310 nanometers, 1550 nanometers and 1625 nanometers long. Article is directed on creation of the external factors methods which allow to estimate and eliminate negative influence. The automated way of calculation of losses at a bend is developed. Results of scientific researches are used by engineers of “Kazaktelekom” AS for practical definition of losses service conditions. For modeling the Wolfram|Alpha environment — the knowledge base and a set of computing algorithms was chosen. The greatest losses are noted on wavelength 1310nm and 1625nm. All dependences are nonlinear. Losses with each following excess are multiplicative.

  19. Absolute Measurements of Radiation Damage in Nanometer Thick Films

    PubMed Central

    Alizadeh, Elahe; Sanche, Léon

    2013-01-01

    We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

  20. Sub-Optical Lithography With Nanometer Definition Masks

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Malek, Chantal Khan; Neogi, Jayant

    2000-01-01

    Nanometer feature size lithography represents a major paradigm shift for the electronics and micro-electro-mechanical industries. In this paper, we discuss the capacity of dynamic focused reactive ion beam (FIB) etching systems to undertake direct and highly anisotropic erosion of thick evaporated gold coatings on boron-doped silicon X-ray mask membranes. FIB offers a new level of flexibility in micro fabrication, allowing for fast fabrication of X-ray masks, where pattern definition and surface alteration are combined in the same step which eliminates the whole lithographic process, in particular resist, resist development, electro-deposition and resist removal. Focused ion beam diameters as small as 7 nm can be obtained enabling fabrication well into the sub-20 nm regime. In preliminary demonstrations of this X-ray mask fabrication technique 22 nm width lines were milled directly through 0.9 microns of gold and a miniature mass spectrometer pattern was milled through over 0.5 microns of gold. Also presented are the results of the shadow printing, using the large depth of field of synchrotron high energy parallel X-ray beam, of these and other sub-optical defined patterns in photoresist conformally coated over surfaces of extreme topographical variation. Assuming that electronic circuits and/or micro devices scale proportionally, the surface area of devices processed with X-ray lithography and 20 nm critical dimension X-ray masks would be 0.5% that of contemporary devices (350 nm CD). The 20 CD mask fabrication represents an initial effort - a further factor of three reduction is anticipated which represents a further order-of-magnitude reduction in die area.

  1. Neurons sense nanoscale roughness with nanometer sensitivity.

    PubMed

    Brunetti, V; Maiorano, G; Rizzello, L; Sorce, B; Sabella, S; Cingolani, R; Pompa, P P

    2010-04-01

    The interaction between cells and nanostructured materials is attracting increasing interest, because of the possibility to open up novel concepts for the design of smart nanobiomaterials with active biological functionalities. In this frame we investigated the response of human neuroblastoma cell line (SH-SY5Y) to gold surfaces with different levels of nanoroughness. To achieve a precise control of the nanoroughness with nanometer resolution, we exploited a wet chemistry approach based on spontaneous galvanic displacement reaction. We demonstrated that neurons sense and actively respond to the surface nanotopography, with a surprising sensitivity to variations of few nanometers. We showed that focal adhesion complexes, which allow cellular sensing, are strongly affected by nanostructured surfaces, leading to a marked decrease in cell adhesion. Moreover, cells adherent on nanorough surfaces exhibit loss of neuron polarity, Golgi apparatus fragmentation, nuclear condensation, and actin cytoskeleton that is not functionally organized. Apoptosis/necrosis assays established that nanoscale features induce cell death by necrosis, with a trend directly related to roughness values. Finally, by seeding SH-SY5Y cells onto micropatterned flat and nanorough gold surfaces, we demonstrated the possibility to realize substrates with cytophilic or cytophobic behavior, simply by fine-tuning their surface topography at nanometer scale. Specific and functional adhesion of cells occurred only onto flat gold stripes, with a clear self-alignment of neurons, delivering a simple and elegant approach for the design and development of biomaterials with precise nanostructure-triggered biological responses.

  2. Nanometer-scale fabrication of hydrogen silsesquioxane (HSQ) films with post exposure baking.

    PubMed

    Kim, Dong-Hyun; Kang, Se-Koo; Yeom, Geun-Young; Jang, Jae-Hyung

    2013-03-01

    A nanometer-scale grating structure with a 60-nm-wide gap and 200-nm-wide ridge has been successfully demonstrated on a silicon-on-insulator substrate by using a 220-nm-thick hydrogen silsesquioxane (HSQ) negative tone electron beam resist. A post exposure baking (PEB) process and hot development process with low concentration (3.5 wt%) of tetramethylammonium hydroxide (TMAH) solution were introduced to realize the grating pattern. To study the effects of post exposure baking on the HSQ resist, Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) analyses were carried out. From the FT-IR and XPS analyses, it was verified that a thin SiO2 with high cross-linked network structure was formed on the HSQ surface during the PEB step. This SiO2 layer prevents the formation of unwanted bonds on the HSQ surface, which results in clearly defined grating structures with a 60-nm-gap and 200-nm-wide-ridge on the 220-nm-thick HSQ resist. The nanometer-scale grating pattern was successfully transfered to the 280-nm-thick silicon layer of a silicon-on-insulator (SOI) substrate by using inductively-coupled-plasma-reactive-ion-etching (ICP-RIE).

  3. Design and calibration of an elastically guided CMM axis with nanometer repeatability

    NASA Astrophysics Data System (ADS)

    van Seggelen, J. K.; Rosielle, P. C.; Schellekens, P. H.; Spaan, H. A.; Bergmans, R. H.; Kotte, G. J.

    2005-08-01

    This paper focuses on the on the design and calibration of an elastically guided vertical axis that will be applied in a small high precision 3D Coordinate Measuring Machine aiming a volumetric uncertainty of 25 nm. The design part of this paper discusses the principles of this system, the compensation of the stiffness of the vertical axis in the direction of motion, the weight compensation method and the design and performance of the axis precision drive system, a Lorentz actuator. In the metrology part of this paper the calibration methods to determine the linearity as well as motion straightness and axis rotation errors are discussed. Finally first calibration results of this axis show nanometer repeatability of the probing point over the 4 mm stroke of this axis. The causes of the short-term variations with a bandwidth of about +/- 10 nm are under investigation. Error compensation may reduce the residual error of the probing point to the nanometer level.

  4. Biosafety of the application of biogenic nanometal powders in husbandry

    NASA Astrophysics Data System (ADS)

    Anatolievna Nazarova, Anna; Dmitrievna Polischuk, Svetlana; Anatolievna Stepanova, Irina; Ivanovich Churilov, Gennady; Chau Nguyen, Hoai; Buu Ngo, Quoc

    2014-03-01

    Effects of iron and copper nanopowders (particle size of 20-40 nm) were investigated on rabbits of 1 month age and heifers of 6 months. For introduction of nanometals into the animal's ration, the mixed fodder was treated with the nanometal powder suspension in such a way: 0.08 mg of nanoiron per kg of animal's body weight and 0.04 mg kg-1 for nanocopper. The weight gain of the heifers who received nanoiron and nanocopper after 8 months was 22.4 and 10.7% higher than that of the control, respectively. For the rabbits who received nano Fe and Cu after 3 months, the weight gain was 11.7 and 7.3% compared to the control, respectively. Under the action of metal nanopowders morphological indices of blood were changed in comparison with the control: after 8 months the quantity of erythrocytes increased by 19.6%, hemoglobin by 17.1% and leukocytes by 7.6%. There was a realignment in leukocytic formula: the quantity of lymphocytes increased by 9% compared to the control. Biogenic metals in superdispersive state were able to stimulate immune, enzymatic and humoral systems of the animal's organism, promoting metabolism. Adding Co and Cu metal nanopowders to the bull-calves’ fodder rations increased content of Ca by 31.8 and 0%, Fe by 38.8 and 37.5%, K by 19.2 and 15.3%, Mg by 17.6 and 23.5%, Mn by 9.8 and 45% and Na by 20.5 and 8.8%, respectively, compared to control. Metal nanopowders improved the quality indices and meat productivity of black-white bull-calves, expressed in intensive growth of muscle, tissue and more nutritious meat. The conducted veterinary-sanitary expertise showed that the supplements based on iron, cobalt and copper nanopowders can be used as safe bioactive supplements in animal husbandry.

  5. Fundamental science of nanometer-size clusters

    SciTech Connect

    Wilcoxon, J.P.; Newcomer, P.P.; Samara, G.A.; Venturini, E.L.; Williamson, R.L.

    1995-10-01

    This research has produced a variety of monodisperse, nanometer-size clusters (nanoclusters for short), characterized their size and crystal structure and developed a scientific understanding of the size dependence of their physical properties. Of specific interest were the influence of quantum electronic confinement on the optical properties, magnetic properties, and dielectric properties. These properties were chosen both for their potential practical impact on various applications identified in the National Critical Technologies list (e.g., catalysis, information storage, sensors, environmental remediation, ...) as well as for their importance to the fundamental science of clusters. An Executive Summary provides a description of the major highlights.

  6. Nanometer distance measurements between multicolor quantum dots.

    PubMed

    Antelman, Josh; Wilking-Chang, Connie; Weiss, Shimon; Michalet, Xavier

    2009-05-01

    Quantum dot dimers made of short double-stranded DNA molecules labeled with different color quantum dots at each end were imaged using multicolor stage-scanning confocal microscopy. This approach eliminates chromatic aberration and color registration issues usually encountered in other multicolor imaging techniques. We demonstrate nanometer accuracy in individual distance measurement by suppression of quantum dot blinking and thoroughly characterize the contribution of different effects to the variability observed between measurements. Our analysis opens the way to accurate structural studies of biomolecules and biomolecular complexes using multicolor quantum labeling.

  7. Application of maximum-likelihood estimation in optical coherence tomography for nanometer-class thickness estimation

    NASA Astrophysics Data System (ADS)

    Huang, Jinxin; Yuan, Qun; Tankam, Patrice; Clarkson, Eric; Kupinski, Matthew; Hindman, Holly B.; Aquavella, James V.; Rolland, Jannick P.

    2015-03-01

    In biophotonics imaging, one important and quantitative task is layer-thickness estimation. In this study, we investigate the approach of combining optical coherence tomography and a maximum-likelihood (ML) estimator for layer thickness estimation in the context of tear film imaging. The motivation of this study is to extend our understanding of tear film dynamics, which is the prerequisite to advance the management of Dry Eye Disease, through the simultaneous estimation of the thickness of the tear film lipid and aqueous layers. The estimator takes into account the different statistical processes associated with the imaging chain. We theoretically investigated the impact of key system parameters, such as the axial point spread functions (PSF) and various sources of noise on measurement uncertainty. Simulations show that an OCT system with a 1 μm axial PSF (FWHM) allows unbiased estimates down to nanometers with nanometer precision. In implementation, we built a customized Fourier domain OCT system that operates in the 600 to 1000 nm spectral window and achieves 0.93 micron axial PSF in corneal epithelium. We then validated the theoretical framework with physical phantoms made of custom optical coatings, with layer thicknesses from tens of nanometers to microns. Results demonstrate unbiased nanometer-class thickness estimates in three different physical phantoms.

  8. Sub-nanometer flattening of 45 cm long, 45 actuator x-ray deformable mirror.

    PubMed

    Poyneer, Lisa A; McCarville, Thomas; Pardini, Tommaso; Palmer, David; Brooks, Audrey; Pivovaroff, Michael J; Macintosh, Bruce

    2014-06-01

    We have built a 45 cm long x-ray deformable mirror (XDM) of super-polished single-crystal silicon that has 45 actuators along the tangential axis. After assembly, the surface height error was 19 nm rms. With use of high-precision visible-light metrology and precise control algorithms, we have actuated the XDM and flattened its entire surface to 0.7 nm rms controllable figure error. This is, to our knowledge, the first sub-nanometer active flattening of a substrate longer than 15 cm.

  9. Electrochemistry at nanometer-sized electrodes.

    PubMed

    Chen, Shengli; Liu, Yuwen

    2014-01-14

    Electrodes of nanometer sizes provide a model approach to study the nanoscale electrochemical properties and processes, which are of fundamental and applied significance in a variety of areas including energy and environmental science, scanning probe microscopies, nanofabrication as well as electrochemistry itself. This Perspective reviews recent developments in conceptual understanding, theoretical modelling and simulation, and experimental observation of nanosize-induced properties and phenomena at interfaces between nanometer-sized electrodes and electrolytes. The aim is to provide a view on how the dimension comparability of nanoelectrodes with the electric double layer and the effective electron-tunnelling distance may raise distinct features in interfacial structure and reactivity. The strong coupling between the electrostatic field, the concentration field and the dielectric field of solvent at nanoelectrode/electrolyte interfaces is highlighted. The effects of this coupling on the voltammetric responses of nanoelectrodes are evaluated. Electron transfer kinetics at the nanoelectrode/electrolyte interface is discussed by emphasizing the inappropriateness of the Butler-Volmer (BV) and classic Marcus-Hush (MH) theories at potentials largely departing from the formal potential of the redox moieties and the importance of the long-distance electron tunnelling. The conditions for using the mathematically more straightforward BV and classic MH formalisms as an alternative to the physically more realistic but mathematically unfriendly Marcus-Hush-Chidsey model are analysed. PMID:24276332

  10. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    DOE PAGES

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; Zastrau, Ulf; Wünsche, Martin; Hilbert, Vinzenz; Glaser, Leif; Viefhaus, Jens; Frumker, Eugene; Corkum, Paul; et al

    2016-02-10

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less

  11. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    PubMed Central

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; Zastrau, Ulf; Wünsche, Martin; Hilbert, Vinzenz; Glaser, Leif; Viefhaus, Jens; Frumker, Eugene; Corkum, Paul; Förster, Eckhart; Paulus, Gerhard G.

    2016-01-01

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengths corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window. PMID:26860894

  12. Solar spectrum from 170 to 3200 nanometers

    NASA Technical Reports Server (NTRS)

    Thuiller, G.

    1981-01-01

    The spectral irradiance of the Sun between 170 and 3200 nanometers was measured to determine accurately the solar constant, its possible variation with the solar cycle, and the wavelength range responsible for the observed variations. It is pointed out that measurements over very long time periods (10 years) involving flights of the same instrument on future Spacelab missions will be required. Few spectral solar irradiation measurements ranging from the near ultraviolet to the near infrared have been performed yet. The most extensive solar irradiation measurements were obtained by a spectrometer onboard an aircraft or from high altitude observatories. The full disk irradiation flux was measured, corrections for atmospheric absorption are applied in all of the measurements.

  13. Optically controlled thermal management on the nanometer length scale

    NASA Astrophysics Data System (ADS)

    Garwe, F.; Bauerschäfer, U.; Csaki, A.; Steinbrück, A.; Ritter, K.; Bochmann, A.; Bergmann, J.; Weise, A.; Akimov, D.; Maubach, G.; König, K.; Hüttmann, G.; Paa, W.; Popp, J.; Fritzsche, W.

    2008-02-01

    The manipulation of polymers and biological molecules or the control of chemical reactions on a nanometer scale by means of laser pulses shows great promise for applications in modern nanotechnology, biotechnology, molecular medicine or chemistry. A controllable, parallel, highly efficient and very local heat conversion of the incident laser light into metal nanoparticles without ablation or fragmentation provides the means for a tool like a 'nanoreactor', a 'nanowelder', a 'nanocrystallizer' or a 'nanodesorber'. In this paper we explain theoretically and show experimentally the interaction of laser radiation with gold nanoparticles on a polymethylmethacrylate (PMMA) layer (one-photon excitation) by means of different laser pulse lengths, wavelengths and pulse repetition rates. To the best of our knowledge this is the first report showing the possibility of highly local (in a 40 nm range) regulated heat insertion into the nanoparticle and its surroundings without ablation of the gold nanoparticles. In an earlier paper we showed that near-infrared femtosecond irradiation can cut labeled DNA sequences in metaphase chromosomes below the diffraction-limited spot size. Now, we use gold as well as silver-enhanced gold nanoparticles on DNA (also within chromosomes) as energy coupling objects for femtosecond laser irradiation with single-and two-photon excitation. We show the results of highly localized destruction effects on DNA that occur only nearby the nanoparticles.

  14. Sub-nanometer glass surface dynamics induced by illumination

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-06-01

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 104 s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ˜1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses.

  15. Electroforming for replicating nanometer-level smooth surface.

    PubMed

    Mimura, Hidekazu; Ishikura, Hiroyuki; Matsuyama, Satoshi; Sano, Yasuhisa; Yamauchi, Kazuto

    2011-04-01

    We proposed and developed a new electroforming process for the replication of surfaces having nanometer-level smoothness. In the electroforming process, the separation method plays an important role in preventing the degradation of the surface morphology. The key point in this process is the fabrication of a metal film as an electrode on the master surface. Cr atoms are deposited by an arc plasma deposition method and act as a binding material. Subsequently, a nickel film is fabricated by electron beam deposition to form an electrode. Electrodeposition is then carried out in a nickel sulfamate bath. By controlling the density of Cr atoms on the master surface, the binding strength between the nickel film and master surface can be adjusted, which makes it possible to separate the metal film from the master surface smoothly. As a result, a surface roughness of 0.22 nm (root mean square) has been achieved in a 64 microm x 48 microm area of a replicated surface. PMID:21776648

  16. Nanometer thickness laser ablation for spatial control of cell attachment

    NASA Astrophysics Data System (ADS)

    Thissen, H.; Hayes, J. P.; Kingshott, P.; Johnson, G.; Harvey, E. C.; Griesser, H. J.

    2002-10-01

    We demonstrate here a new method to control the location of cells on surfaces in two dimensions, which can be applied to a number of biomedical applications including diagnostic tests and tissue engineered medical devices. Two-dimensional control over cell attachment is achieved by generation of a spatially controlled surface chemistry that allows control over protein adsorption, a process which mediates cell attachment. Here, we describe the deposition of thin allylamine plasma polymer coatings on silicon wafer and perfluorinated poly(ethylene-co-propylene) substrates, followed by grafting of a protein resistant layer of poly(ethylene oxide). Spatially controlled patterning of the surface chemistry was achieved in a fast, one-step procedure by nanometer thickness controlled laser ablation using a 248 nm excimer laser. X-ray photoelectron spectroscopy and atomic force microscopy were used to confirm the production of surface chemistry patterns with a resolution of approximately 1 µm, which is significantly below the dimensions of a single mammalian cell. Subsequent adsorption of the extracellular matrix proteins collagen I and fibronectin followed by cell culture experiments using bovine corneal epithelial cells confirmed that cell attachment is controlled by the surface chemistry pattern. The method is an effective tool for use in a number of in vitro and in vivo applications.

  17. Structural peculiarities of single crystal diamond needles of nanometer thickness

    NASA Astrophysics Data System (ADS)

    Orekhov, Andrey S.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Loginov, Artem B.; Chuvilin, Andrey L.; Obraztsov, Alexander N.

    2016-11-01

    Diamond is attractive for various applications due to its unique mechanical and optical properties. In particular, single crystal diamond needles with high aspect ratios and sharp apexes of nanometer size are demanded for different types of optical sensors including optically sensing tip probes for scanning microscopy. This paper reports on electron microscopy and Raman spectroscopy characterization of the diamond needles having geometrically perfect pyramidal shapes with rectangular atomically flat bases with (001) crystallography orientation, 2–200 nm sharp apexes, and with lengths from about 10–160 μm. The needles were produced by selective oxidation of (001) textured polycrystalline diamond films grown by chemical vapor deposition. Here we study the types and distribution of defects inside and on the surface of the single crystal diamond needles. We show that sp3 type point defects are incorporated into the volume of the diamond crystal during growth, while the surface of the lateral facets is enriched by multiple extended defects. Nitrogen addition to the reaction mixture results in increase of the growth rate on {001} facets correlated with the rise in the concentration of sp3 type defects.

  18. Flow and evaporation in single micrometer and nanometer scale pipes

    SciTech Connect

    Velasco, A. E.; Yang, C.; Siwy, Z. S.; Taborek, P.; Toimil-Molares, M. E.

    2014-07-21

    We report measurements of pressure driven flow of fluids entering vacuum through a single pipe of micrometer or nanometer scale diameter. Nanopores were fabricated by etching a single ion track in polymer or mica foils. A calibrated mass spectrometer was used to measure the flow rates of nitrogen and helium through pipes with diameter ranging from 10 μm to 31 nm. The flow of gaseous and liquid nitrogen was studied near 77 K, while the flow of helium was studied from the lambda point (2.18 K) to above the critical point (5.2 K). Flow rates were controlled by changing the pressure drop across the pipe in the range 0–31 atm. When the pressure in the pipe reached the saturated vapor pressure, an abrupt flow transition was observed. A simple viscous flow model is used to determine the position of the liquid/vapor interface in the pipe. The observed mass flow rates are consistent with no slip boundary conditions.

  19. Nanometer-Size Effect on Hydrogen Sites in Palladium Lattice.

    PubMed

    Akiba, Hiroshi; Kofu, Maiko; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Ikeda, Kazutaka; Otomo, Toshiya; Yamamuro, Osamu

    2016-08-17

    Nanometer-sized materials attract much attention because their physical and chemical properties are substantially different from those of bulk materials owing to their size and surface effects. In this work, neutron powder diffraction experiments on the nanoparticles of palladium hydride, which is the most popular metal hydride, have been performed at 300, 150, and 44 K to investigate the positions of the hydrogen atoms in the face-centered cubic (fcc) lattice of palladium. We used high-quality PdD0.363 nanocrystals with a diameter of 8.0 ± 0.9 nm. The Rietveld analysis revealed that 30% of D atoms are located at the tetrahedral (T) sites and 70% at the octahedral (O) sites. In contrast, only the O sites are occupied in bulk palladium hydride and in most fcc metal hydrides. The temperature dependence of the T-site occupancy suggested that the T-sites are occupied only in a limited part, probably in the subsurface region, of the nanoparticles. This is the first study to determine the hydrogen sites in metal nanoparticles. PMID:27462875

  20. New 223-nm excimer laser surgical system for photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Bagaev, Sergei N.; Razhev, Alexander M.; Zhupikov, Andrey A.

    1999-02-01

    The using of KrCl (223 nm) excimer laser in ophthalmic devices for Photorefractive Keratectomy (PRK) and phototherapeutic Keratectomy (PTK) is offered. The structure and functions of a new surgical UV ophthalmic laser systems Medilex using ArF (193 nm) or KrCl (223 nm) excimer laser for corneal surgery are presented. The systems Medilex with the new optical delivery system is used for photoablative reprofiling of the cornea to correct refraction errors (myopia, hyperopia and astigmatism) and to treat a corneal pathologies. The use of the 223 nanometer laser is proposed to have advantages over the 193 nanometer laser. The results of application of the ophthalmic excimer laser systems Medilex for treatment of myopia are presented.

  1. The use of nanometer tetrabasic lead sulfate as positive active material additive for valve regulated lead-acid battery

    NASA Astrophysics Data System (ADS)

    Lang, Xiaoshi; Wang, Dianlong; Hu, Chiyu; Tang, Shenzhi; Zhu, Junsheng; Guo, Chenfeng

    2014-12-01

    Conventional tetrabasic lead sulfate used as positive active material additive shows the results of the low effective lead dioxide conversion rate due to the large grain size and crossed the crystal structure. In this paper, we study on a type of nanometer tetrabasic lead sulfate. Through the XRD and SEM test and Material Studio software calculation, the purity of tetrabasic lead sulfate is very high, the grain size of the nanometer 4BS is almost unanimous, and can be controlled below 200 nm. When charged and discharged in 1.75 V-2.42 V with the current density of 40 mA g-1, 80 mA g-1 and 160 mA g-1, the effective lead dioxide conversion rate of nanometer 4BS after formation can achieve to 83.48%, 71.42%, and 66.96%. Subsequently, the nanometer 4BS as additive is added to positive paste of lead-acid battery. When the batteries are tested galvanostatically between 1.75 V and 2.42 V at 0.25 C charge and 0.5 C discharge rates at room temperature. The ratio of adding nanometer 4BS is 0%, 1% and 4% and the initial discharge specific capacities are 60 mAh g-1, 65 mAh g-1 and 68 mAh g-1. After 80 cycles, the initial discharge capacity of positive active material with 1% nanometer 4BS decreased less than 10%, while adding 4% nanometer 4BS, the initial discharge capacity doesn't decrease obviously.

  2. Thermoelectric device with multiple, nanometer scale, elements

    NASA Technical Reports Server (NTRS)

    Fleurial, Jean-Pierre (Inventor); Ryan, Margaret A. (Inventor); Borshchevsky, Alexander (Inventor); Herman, Jennifer (Inventor)

    2006-01-01

    A thermoelectric device formed of nanowires on the nm scale. The nanowires are preferably of a size that causes quantum confinement effects within the wires. The wires are connected together into a bundle to increase the power density.

  3. Optical spectroscopy of sputtered nanometer-thick yttrium iron garnet films

    SciTech Connect

    Jakubisova-Liskova, Eva Visnovsky, Stefan; Chang, Houchen; Wu, Mingzhong

    2015-05-07

    Nanometer (nm)-thick yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films present interest for spintronics. This work employs spectral ellipsometry and magneto-optic Kerr effect (MOKE) spectra to characterize nm-thick YIG films grown on single-crystal Gd{sub 3}Ga{sub 5}O{sub 12} substrates by magnetron sputtering. The thickness (t) of the films ranges between 10 nm and 40 nm. Independent on t, the polar MOKE hysteresis loops saturate in the field of about 1.8 kOe, consistent with the saturation magnetization in bulk YIG (4πM{sub s} ≈ 1.75 kG). The MOKE spectrum measured at photon energies between 1.3 eV and 4.5 eV on the 38-nm-thick film agrees with that measured on single-crystal YIG bulk materials. The MOKE spectrum of the 12-nm-thick film still preserves the structure of the bulk YIG but its amplitude at lower photon energies is modified due to the fact that the radiation penetration depth exceeds 20 nm. The t dependence of the MOKE amplitude is consistent with MOKE calculations. The results indicate that the films are stoichiometric, strain free, without Fe{sup 2+}, and preserve bulk YIG properties down to t ≈ 10 nm.

  4. A current-driven nanometer water pump.

    PubMed

    Su, Jiaye; Yang, Keda

    2016-03-01

    The design of a water pump, which has huge potential for applications in nanotechnology and daily life, is the dream of many scientists. In this paper, we successfully design a nanometer water pump by using molecular dynamics simulations. Ions of either sodium or chlorine in a narrow channel will generate electric current under electric fields, which then drives the water through a wider channel, similar to recent experimental setups. Considerable water flux is achieved within small field strengths that are accessible by experimentation. Of particular interest, is that for sodium the water flux increases almost linearly with field strengths; while for chlorine there exists a critical field strength, the water flux exhibits a plateau before the critical value and increases linearly after it. This result follows the behavior of ion velocity, which is related to friction behavior. We also estimate the power and energy consumption for such a pump, and compare it to the macroscopic mechanical pumps. A further comparison suggests that different ions will have different pumping abilities. This study not only provides new, significant results with possible connection to existing research, but has tremendous potential application in the design of nanofluidic devices. PMID:26822782

  5. A current-driven nanometer water pump

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Yang, Keda

    2016-03-01

    The design of a water pump, which has huge potential for applications in nanotechnology and daily life, is the dream of many scientists. In this paper, we successfully design a nanometer water pump by using molecular dynamics simulations. Ions of either sodium or chlorine in a narrow channel will generate electric current under electric fields, which then drives the water through a wider channel, similar to recent experimental setups. Considerable water flux is achieved within small field strengths that are accessible by experimentation. Of particular interest, is that for sodium the water flux increases almost linearly with field strengths; while for chlorine there exists a critical field strength, the water flux exhibits a plateau before the critical value and increases linearly after it. This result follows the behavior of ion velocity, which is related to friction behavior. We also estimate the power and energy consumption for such a pump, and compare it to the macroscopic mechanical pumps. A further comparison suggests that different ions will have different pumping abilities. This study not only provides new, significant results with possible connection to existing research, but has tremendous potential application in the design of nanofluidic devices.

  6. Topography Simulation for Nanometer Semiconductor Process

    NASA Astrophysics Data System (ADS)

    Lee, Jun‑Gu; Yoon, Sukin; Won, Taeyoung

    2006-04-01

    In this paper, we propose a novel scheme for simulating the topography of nanometer semiconductor processes. Since the proposed scheme considers only the surface cells moving forward and backward during etching or deposition, the simulator does not suffer from an increased memory requirement due to the complexity of the high aspect-ratio structure built on the wafer. This method consists of steps for calculating the front surface moving forward and backward and converting the cell structure into a tetrahedral mesh structure for subsequent numerical simulation. This method mitigates the excessive memory requirement through a dynamic allocating scheme wherein only topographical data at the surface cell are taken into account. A spillover algorithm is also implemented in the simulator so that any excessive etching or deposition which is more than the rate acceptable at the exposed cell during a single time step is reconsidered in the adjacent cells. Our proposed scheme was verified for structures with complex geometry, such as a thin film transistor-liquid crystal display (TFT-LCD) structure, a read only memory (ROM) or a dynamic random access memory (DRAM) cell.

  7. Study of nanometer-thick graphite film for high-power EUVL pellicle

    NASA Astrophysics Data System (ADS)

    Kim, Mun Ja; Jeon, Hwan Chul; Chalykh, Roman; Kim, Eokbong; Na, Jihoon; Kim, Byung-Gook; Kim, Heebom; Jeon, Chanuk; Kim, Seul-Gi; Shin, Dong-Wook; Kim, Taesung; Kim, Sooyoung; Lee, Jung Hun; Yoo, Ji-Beom

    2016-03-01

    Extreme ultraviolet (EUV) lithography has received much attention in the semiconductor industry as a promising candidate to extend dimensional scaling beyond 10nm. Recently EUV pellicle introduction is required to improve particle level inside scanner for EUV mass production. We demonstrate that a new pellicle material, nanometer-thick graphite film (NGF), is one of the best candidates of EUV pellicle membrane. A NGF pellicle with excellent thermal (ɛ≥0.4 @R.T, <100nm), mechanical (415MPa @~100nm), chemical and optical (24hrs durability under exposure of EUV/H2 at 4W/cm2 with pH2~5Pa) properties can be a promising and superb candidate for EUV pellicle membrane compared to Si pellicles with capping layers.

  8. Large area Germanium Tin nanometer optical film coatings on highly flexible aluminum substrates

    PubMed Central

    Jin, Lichuan; Zhang, Dainan; Zhang, Huaiwu; Fang, Jue; Liao, Yulong; Zhou, Tingchuan; Liu, Cheng; Zhong, Zhiyong; Harris, Vincent G.

    2016-01-01

    Germanium Tin (GeSn) films have drawn great interest for their visible and near-infrared optoelectronics properties. Here, we demonstrate large area Germanium Tin nanometer thin films grown on highly flexible aluminum foil substrates using low-temperature molecular beam epitaxy (MBE). Ultra-thin (10–180 nm) GeSn film-coated aluminum foils display a wide color spectra with an absorption wavelength ranging from 400–1800 nm due to its strong optical interference effect. The light absorption ratio for nanometer GeSn/Al foil heterostructures can be enhanced up to 85%. Moreover, the structure exhibits excellent mechanical flexibility and can be cut or bent into many shapes, which facilitates a wide range of flexible photonics. Micro-Raman studies reveal a large tensile strain change with GeSn thickness, which arises from lattice deformations. In particular, nano-sized Sn-enriched GeSn dots appeared in the GeSn coatings that had a thickness greater than 50 nm, which induced an additional light absorption depression around 13.89 μm wavelength. These findings are promising for practical flexible photovoltaic and photodetector applications ranging from the visible to near-infrared wavelengths. PMID:27667259

  9. Large area Germanium Tin nanometer optical film coatings on highly flexible aluminum substrates

    NASA Astrophysics Data System (ADS)

    Jin, Lichuan; Zhang, Dainan; Zhang, Huaiwu; Fang, Jue; Liao, Yulong; Zhou, Tingchuan; Liu, Cheng; Zhong, Zhiyong; Harris, Vincent G.

    2016-09-01

    Germanium Tin (GeSn) films have drawn great interest for their visible and near-infrared optoelectronics properties. Here, we demonstrate large area Germanium Tin nanometer thin films grown on highly flexible aluminum foil substrates using low-temperature molecular beam epitaxy (MBE). Ultra-thin (10–180 nm) GeSn film-coated aluminum foils display a wide color spectra with an absorption wavelength ranging from 400–1800 nm due to its strong optical interference effect. The light absorption ratio for nanometer GeSn/Al foil heterostructures can be enhanced up to 85%. Moreover, the structure exhibits excellent mechanical flexibility and can be cut or bent into many shapes, which facilitates a wide range of flexible photonics. Micro-Raman studies reveal a large tensile strain change with GeSn thickness, which arises from lattice deformations. In particular, nano-sized Sn-enriched GeSn dots appeared in the GeSn coatings that had a thickness greater than 50 nm, which induced an additional light absorption depression around 13.89 μm wavelength. These findings are promising for practical flexible photovoltaic and photodetector applications ranging from the visible to near-infrared wavelengths.

  10. Shape Reconstruction Based on a New Blurring Model at the Micro/Nanometer Scale.

    PubMed

    Wei, Yangjie; Wu, Chengdong; Wang, Wenxue

    2016-01-01

    Real-time observation of three-dimensional (3D) information has great significance in nanotechnology. However, normal nanometer scale observation techniques, including transmission electron microscopy (TEM), and scanning probe microscopy (SPM), have some problems to obtain 3D information because they lack non-destructive, intuitive, and fast imaging ability under normal conditions, and optical methods have not widely used in micro/nanometer shape reconstruction due to the practical requirements and the imaging limitations in micro/nano manipulation. In this paper, a high resolution shape reconstruction method based on a new optical blurring model is proposed. Firstly, the heat diffusion physics equation is analyzed and the optical diffraction model is modified to directly explain the basic principles of image blurring resulting from depth variation. Secondly, a blurring imaging model is proposed based on curve fitting of a 4th order polynomial curve. The heat diffusion equations combined with the blurring imaging are introduced, and their solution is transformed into a dynamic optimization problem. Finally, the experiments with a standard nanogrid, an atomic force microscopy (AFM) cantilever and a microlens have been conducted. The experiments prove that the proposed method can reconstruct 3D shapes at the micro/nanometer scale, and the minimal reconstruction error is 3 nm. PMID:26927129

  11. Towards nanometer period gratings for hard x-ray phase-contrast imaging

    SciTech Connect

    Wen Han; Wolfe, Doug E.; Liu Chian; Xiao Xianghui; Lynch, Susanna K.; Gomella, Andrew A.; Bennett, Eric E.; Morgan, Nicole Y.

    2012-07-31

    Transmission grating-based x-ray interferometers have been developed into wide-field imaging devices that are sensitive to x-ray refraction and diffraction in the sample. While current grating designs rely on UV and x-ray lithography processes to produce periodic vertical structures, it becomes prohibitively difficult to make the grating periods below 1 - 2 microns due to the high aspect ratios of the structures. Since the phase-contrast sensitivity is inversely related to the grating period, we describe a new grating design for sub-micron to nanometer grating periods. In this design, multiple bi-layers of two alternating materials are deposited on a stair like substrate, and mostly on the floor surfaces of the steps only. The incident x-ray beam is parallel to the planes of the layers (side illumination). Thus, the multilayer structure on each step serves as a micro grating whose grating period is the thickness of a bi-layer. The array of micro gratings over the whole length of the stair can act as a single continuous grating, when certain continuity conditions between neighboring steps are met. Since the layer thickness can be as small as tens of nanometers, as has been demonstrated in multilayer x-ray zone plates, this design allows nanometer grating periods over large grating areas. Here we describe a prototype intensity grating of 440 nm period. We show x-ray projection images of the grating which were obtained by contact lithography.

  12. A Comprehensive Study of Nanometer Resolution of the IPBPM at ATF2

    SciTech Connect

    Kim, Y.I.; Park, H.; Boogert, S.T.; Frisch, J.; McCormick, D.; Nelson, J.; Smith, T.; White, G.R.; Woodley, M.; Honda, Y.; Sugahara, R.; Terunuma, N.; Tauchi, T.; Urakawa, J.; /aff KEK, Tsukuba

    2011-12-13

    High-resolution beam position monitors (IPBPMs) have been developed in order to measure the electron beam position at the focus point of ATF2 to a few nanometers in the vertical plane. To date, the IPBPM system has operated in test mode with a highest demonstrated resolution of 8.7 nm in the ATF extraction line during 2008. After expected noise source calculations there still remains 7.9 nm of noise of unexplained origin. We summarize the experimental work on the IPBPM system since this measurement and outline the possible origins of these sources. We then present a study plan to be performed at the ATF2 facility designed to identify and to improve the resolution performance and comment on the expected ultimate resolution of this system. The Accelerator Test Facility 2 (ATF2) is a test beamline for ILC final focus system in the framework of the ATF international collaboration which was constructed to extend the extraction line at ATF, located at KEK, Japan. There are two goals of the ATF2: firstly to demonstrate focusing to 37 nm vertical beam size, secondly to achieve a few nanometer level beam orbit stability at the focus point in the vertical plane. High-resolution beam position monitors (IPBPMs) for the interaction point (IP) have been developed in order to measure the electron beam position at the focus point of the ATF2 to a few nanometers in the vertical plane. The previous measured position resolution of IPBPMs was 8.7 nm for a 0.68 x 10{sup 10} e/bunch beam with a dynamic range of 5 {mu}m. The intrinsic noise of the system was estimated to be 2.6 nm at 10{sup 10} e/bunch. It is scaled to 3.8 nm at 0.68 x 10{sup 10} e/bunch which means that 7.9 nm of unknown noise remains. The origin of the unknown noise must be studied in order to improve the resolution. This paper describes the ongoing work to improve the resolution of IPBPMs.

  13. Resistive switching in a few nanometers thick tantalum oxide film formed by a metal oxidation

    SciTech Connect

    Ohno, Takeo; Samukawa, Seiji

    2015-04-27

    Resistive switching in a Cu/Ta{sub 2}O{sub 5}/Pt structure that consisted of a few nanometer-thick Ta{sub 2}O{sub 5} film was demonstrated. The Ta{sub 2}O{sub 5} film with thicknesses of 2–5 nm was formed with a combination of Ta metal film deposition and neutral oxygen particle irradiation at room temperature. The device exhibited a bipolar resistive switching with a threshold voltage of 0.2 V and multilevel switching operation.

  14. Formation of nanometer-size wires using infiltration into latent nuclear tracks

    DOEpatents

    Musket, Ronald G.; Felter, Thomas E.

    2002-01-01

    Nanometer-size wires having a cross-sectional dimension of less than 8 nm with controllable lengths and diameters are produced by infiltrating latent nuclear or ion tracks formed in trackable materials with atomic species. The trackable materials and atomic species are essentially insoluble in each other, thus the wires are formed by thermally driven, self-assembly of the atomic species during annealing, or re-crystallization, of the damage in the latent tracks. Unlike conventional ion track lithography, the inventive method does not require etching of the latent tracks.

  15. Towards nanometer-spaced silicon contacts to proteins

    NASA Astrophysics Data System (ADS)

    Schukfeh, Muhammed I.; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  16. Cell biology of the future: Nanometer-scale cellular cartography

    PubMed Central

    2015-01-01

    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps—comprehensive nanometer-scale cellular cartographies—will reveal how the molecular organization of cells influences their diverse and changeable activities. PMID:26483557

  17. Cell biology of the future: Nanometer-scale cellular cartography.

    PubMed

    Taraska, Justin W

    2015-10-26

    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities.

  18. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity.

    PubMed

    Miyazaki, Hideki T; Kurokawa, Yoichi

    2006-03-10

    We demonstrate controlled squeezing of visible light waves into nanometer-sized optical cavities. The light is perpendicularly confined in a few-nanometer-thick SiO2 film sandwiched between Au claddings in the form of surface plasmon polaritons and exhibits Fabry-Perot resonances in a longitudinal direction. As the thickness of the dielectric core is reduced, the plasmon wavelength becomes shorter; then a smaller cavity is realized. A dispersion relation down to a surface plasmon wavelength of 51 nm for a red light, which is less than 8% of the free-space wavelength, was experimentally observed. Any obvious breakdowns of the macroscopic electromagnetics based on continuous dielectric media were not disclosed for 3-nm-thick cores.

  19. Optical properties of (nanometer MCM-41)-(malachite green) composite materials

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Zhai, Qing-Zhou; Zou, Ming-Qiang

    2010-11-01

    Nanosized materials loaded with organic dyes are of interest with respect to novel optical applications. The optical properties of malachite green (MG) in MCM-41 are considerably influenced by the limited nanoporous channels of nanometer MCM-41. Nanometer MCM-41 was synthesized by tetraethyl orthosilicate (TEOS) as the source of silica and cetyltrimethylammonium bromide (CTMAB) as the template. The liquid-phase grafting method has been employed for incorporation of the malachite green molecules into the channels of nanometer MCM-41. A comparative study has been carried out on the adsorption of the malachite green into modified MCM-41 and unmodified MCM-41. The modified MCM-41 was synthesized using a silylation reagent, trimethychlorosilane (TMSCl), which functionalized the surface of nanometer MCM-41 for proper host-guest interaction. The prepared (nanometer MCM-41)-MG samples have been studied by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, low-temperature nitrogen adsorption-desorption technique at 77 K, Raman spectra and luminescence studies. In the prepared (nanometer MCM-41)-MG composite materials, the frameworks of the host molecular sieve were kept intact and the MG located inside the pores of MCM-41. Compared with the MG, it is found that the prepared composite materials perform a considerable luminescence. The excitation and emission spectra of MG in both modified MCM-41 and unmodified MCM-41 were examined to explore the structural effects on the optical properties of MG. The results of luminescence spectra indicated that the MG molecules existed in monomer form within MCM-41. However, the luminescent intensity of MG incorporated in the modified MCM-41 are higher than that of MG encapsulated in unmodified MCM-41, which may be due to the anchored methyl groups on the channels of the nanometer MCM-41 and the strong host-guest interactions. The steric effect from the pore size of the host materials is significant. Raman

  20. Shape and Effective Spring Constant of Liquid Interfaces Probed at the Nanometer Scale: Finite Size Effects.

    PubMed

    Dupré de Baubigny, Julien; Benzaquen, Michael; Fabié, Laure; Delmas, Mathieu; Aimé, Jean-Pierre; Legros, Marc; Ondarçuhu, Thierry

    2015-09-15

    We investigate the shape and mechanical properties of liquid interfaces down to nanometer scale by atomic force microscopy (AFM) and scanning electron microscopy (SEM) combined with in situ micromanipulation techniques. In both cases, the interface is probed with a cylindrical nanofiber with radius R of the order of 25-100 nm. The effective spring constant of the nanomeniscus oscillated around its equilibrium position is determined by static and frequency-modulation (FM) AFM modes. In the case of an unbounded meniscus, we find that the effective spring constant k is proportional to the surface tension γ of the liquid through k = (0.51 ± 0.06)γ, regardless of the excitation frequency from quasi-static up to 450 kHz. A model based on the equilibrium shape of the meniscus reproduces well the experimental data. Electron microscopy allowed to visualize the meniscus profile around the fiber with a lateral resolution of the order of 10 nm and confirmed its catenary shape. The influence of a lateral confinement of the interface is also investigated. We showed that the lateral extension L of the meniscus influences the effective spring constant following a logarithmic evolution k ∼ 2πγ/ln(L/R) deduced from the model. This comprehensive study of liquid interface properties over more than 4 orders of magnitude in meniscus size shows that advanced FM-AFM and SEM techniques are promising tools for the investigation of mechanical properties of liquids down to nanometer scale. PMID:26295187

  1. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    NASA Astrophysics Data System (ADS)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  2. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas.

    PubMed

    Kollmann, Heiko; Piao, Xianji; Esmann, Martin; Becker, Simon F; Hou, Dongchao; Huynh, Chuong; Kautschor, Lars-Oliver; Bösker, Guido; Vieker, Henning; Beyer, André; Gölzhäuser, Armin; Park, Namkyoo; Vogelgesang, Ralf; Silies, Martin; Lienau, Christoph

    2014-08-13

    Plasmonic nanoantennas are versatile tools for coherently controlling and directing light on the nanoscale. For these antennas, current fabrication techniques such as electron beam lithography (EBL) or focused ion beam (FIB) milling with Ga(+)-ions routinely achieve feature sizes in the 10 nm range. However, they suffer increasingly from inherent limitations when a precision of single nanometers down to atomic length scales is required, where exciting quantum mechanical effects are expected to affect the nanoantenna optics. Here, we demonstrate that a combined approach of Ga(+)-FIB and milling-based He(+)-ion lithography (HIL) for the fabrication of nanoantennas offers to readily overcome some of these limitations. Gold bowtie antennas with 6 nm gap size were fabricated with single-nanometer accuracy and high reproducibility. Using third harmonic (TH) spectroscopy, we find a substantial enhancement of the nonlinear emission intensity of single HIL-antennas compared to those produced by state-of-the-art gallium-based milling. Moreover, HIL-antennas show a vastly improved polarization contrast. This superior nonlinear performance of HIL-derived plasmonic structures is an excellent testimonial to the application of He(+)-ion beam milling for ultrahigh precision nanofabrication, which in turn can be viewed as a stepping stone to mastering quantum optical investigations in the near-field.

  3. NaCl crystallization in apolar nanometer-sized confinement studied by atomistic simulations.

    PubMed

    Kalcher, Immanuel; Dzubiella, Joachim

    2013-12-01

    The structure and growth of molecular NaCl crystals in bulk and in a narrow, nanometer-sized apolar confinement are examined by explicit-water molecular dynamics computer simulations. It is demonstrated that fast crystallization and subsequent diffusion-controlled cluster growth in bulk is triggered by supersaturations that exceed a certain threshold value. In confinement, simulated in a pseudo grand canonical setup, salt is shown to be expelled from the narrow apolar slab region, and the effective ion concentration inside the nanoconfinement is always considerably lower than the reservoir salt concentration so that no fast crystallization takes place. For very small slab widths (d<1.5 nm) salt is almost entirely expelled while water remains in the slab, indicating a capillary evaporation phenomenon for the polar ions. If forced into the apolar confinement by simulating in a strictly canonical setup, we find stable crystals only if at least three crystalline planes fit into the slab, which happens above a 2-nm slab width. In this case the (100) plane of the bulk crystal is oriented parallel to the apolar surface delimited by a subnanometer thin hydration layer. This work presents molecular-level insight of salt crystallization in apolar confinements of a nanometer scale with possible implications in double-layer supercapacitor physics and geological salt weathering. PMID:24483449

  4. Shape and Effective Spring Constant of Liquid Interfaces Probed at the Nanometer Scale: Finite Size Effects.

    PubMed

    Dupré de Baubigny, Julien; Benzaquen, Michael; Fabié, Laure; Delmas, Mathieu; Aimé, Jean-Pierre; Legros, Marc; Ondarçuhu, Thierry

    2015-09-15

    We investigate the shape and mechanical properties of liquid interfaces down to nanometer scale by atomic force microscopy (AFM) and scanning electron microscopy (SEM) combined with in situ micromanipulation techniques. In both cases, the interface is probed with a cylindrical nanofiber with radius R of the order of 25-100 nm. The effective spring constant of the nanomeniscus oscillated around its equilibrium position is determined by static and frequency-modulation (FM) AFM modes. In the case of an unbounded meniscus, we find that the effective spring constant k is proportional to the surface tension γ of the liquid through k = (0.51 ± 0.06)γ, regardless of the excitation frequency from quasi-static up to 450 kHz. A model based on the equilibrium shape of the meniscus reproduces well the experimental data. Electron microscopy allowed to visualize the meniscus profile around the fiber with a lateral resolution of the order of 10 nm and confirmed its catenary shape. The influence of a lateral confinement of the interface is also investigated. We showed that the lateral extension L of the meniscus influences the effective spring constant following a logarithmic evolution k ∼ 2πγ/ln(L/R) deduced from the model. This comprehensive study of liquid interface properties over more than 4 orders of magnitude in meniscus size shows that advanced FM-AFM and SEM techniques are promising tools for the investigation of mechanical properties of liquids down to nanometer scale.

  5. Recombination gamma-luminescence at the nanometal Li - dielectric LiF interfaces

    NASA Astrophysics Data System (ADS)

    Ibragimova, E. M.; Mussaeva, M. A.; Buzrikov, Sh. N.

    2015-06-01

    Recombination 60Co-gamma-luminescence (GL) was studied experimentally in LiF:K,Cu crystals at the dose rate 406 R/s in the temperature range 273-473 K, when localized charge carriers are released from the hole/electron color center traps and Li vacancies are highly mobile. The crystals were preliminary irradiated in the 60Co gamma-source at 300-320 K to doses 107, 108, 109 R to generate F-aggregate centers and nano-colloids of Li. The intensity of GL bands at 570 nm (F4 centers) and 670 nm (F2+ centers) was shown to increase after 106 R above 370 K due to dominant contribution from radiative recombination of the released carries at the interface of nanometal-Li-dielectric-LiF. These bands can be used for gamma-dose measurements at 107-108 R.

  6. Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor

    SciTech Connect

    Loretz, M.; Degen, C. L.; Pezzagna, S.; Meijer, J.

    2014-01-20

    We present nanoscale nuclear magnetic resonance (NMR) measurements performed with nitrogen-vacancy (NV) centers located down to about 2 nm from the diamond surface. NV centers were created by shallow ion implantation followed by a slow, nanometer-by-nanometer removal of diamond material using oxidative etching in air. The close proximity of NV centers to the surface yielded large {sup 1}H NMR signals of up to 3.4 μT-rms, corresponding to ∼330 statistically polarized or ∼10 fully polarized proton spins in a (1.8 nm){sup 3} detection volume.

  7. On the validity of the Poisson assumption in sampling nanometer-sized aerosols

    SciTech Connect

    Damit, Brian E; Wu, Dr. Chang-Yu; Cheng, Mengdawn

    2014-01-01

    A Poisson process is traditionally believed to apply to the sampling of aerosols. For a constant aerosol concentration, it is assumed that a Poisson process describes the fluctuation in the measured concentration because aerosols are stochastically distributed in space. Recent studies, however, have shown that sampling of micrometer-sized aerosols has non-Poissonian behavior with positive correlations. The validity of the Poisson assumption for nanometer-sized aerosols has not been examined and thus was tested in this study. Its validity was tested for four particle sizes - 10 nm, 25 nm, 50 nm and 100 nm - by sampling from indoor air with a DMA- CPC setup to obtain a time series of particle counts. Five metrics were calculated from the data: pair-correlation function (PCF), time-averaged PCF, coefficient of variation, probability of measuring a concentration at least 25% greater than average, and posterior distributions from Bayesian inference. To identify departures from Poissonian behavior, these metrics were also calculated for 1,000 computer-generated Poisson time series with the same mean as the experimental data. For nearly all comparisons, the experimental data fell within the range of 80% of the Poisson-simulation values. Essentially, the metrics for the experimental data were indistinguishable from a simulated Poisson process. The greater influence of Brownian motion for nanometer-sized aerosols may explain the Poissonian behavior observed for smaller aerosols. Although the Poisson assumption was found to be valid in this study, it must be carefully applied as the results here do not definitively prove applicability in all sampling situations.

  8. Miniature, sub-nanometer resolution Talbot spectrometer.

    PubMed

    Ye, Erika; Atabaki, Amir H; Han, Ningren; Ram, Rajeev J

    2016-06-01

    Miniaturization of optical spectrometers has a significant practical value as it can enable compact, affordable spectroscopic systems for chemical and biological sensing applications. For many applications, the spectrometer must gather light from sources that span a wide range of emission angles and wavelengths. Here, we report a lens-free spectrometer that is simultaneously compact (<0.6  cm3), of high resolution (<1  nm), and has a clear aperture (of 10×10  mm). The wavelength-scale pattern in the dispersive element strongly diffracts the input light to produce non-paraxial mid-field diffraction patterns that are then recorded using an optimally matched image sensor and processed to reconstruct the spectrum.

  9. Capillary adhesion at the nanometer scale.

    PubMed

    Cheng, Shengfeng; Robbins, Mark O

    2014-06-01

    Molecular dynamics simulations are used to study the capillary adhesion from a nonvolatile liquid meniscus between a spherical tip and a flat substrate. The atomic structure of the tip, the tip radius, the contact angles of the liquid on the two surfaces, and the volume of the liquid bridge are varied. The capillary force between the tip and substrate is calculated as a function of their separation h. The force agrees with continuum predictions based on macroscopic theory for h down to ∼5 to 10 nm. At smaller h, the force tends to be less attractive than predicted and has strong oscillations. This oscillatory component of the capillary force is completely missed in the macroscopic theory, which only includes contributions from the surface tension around the circumference of the meniscus and the pressure difference over the cross section of the meniscus. The oscillation is found to be due to molecular layering of the liquid confined in the narrow gap between the tip and substrate. This effect is most pronounced for large tip radii and/or smooth surfaces. The other two components considered by the macroscopic theory are also identified. The surface tension term, as well as the meniscus shape, is accurately described by the macroscopic theory for h down to ∼1 nm, but the capillary pressure term is always more positive than the corresponding continuum result. This shift in the capillary pressure reduces the average adhesion by a factor as large as 2 from its continuum value and is found to be due to an anisotropy in the pressure tensor. The component in the plane of the substrate is consistent with the capillary pressure predicted by the macroscopic theory (i.e., the Young-Laplace equation), but the normal pressure that determines the capillary force is always more positive than the continuum counterpart.

  10. Deformation studies of tungsten-gold contacts at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Smallwood, Steven A.

    2001-07-01

    The deformation behavior of atomically clean, nanometer sized tungsten/gold contacts was studied at room temperature in ultra-high vacuum. An instrument that combines atomic force microscopy (AFM), scanning tunneling microscopy (STM), and field ion microscopy (FIM) into a single experimental apparatus was designed, constructed, and calibrated. A cross-hair force sensor having a spring constant of ˜442 N/m was developed and its motion was monitored during indentation experiments with a differential interferometer. Tungsten tips of controlled size (12.8 nm < tip radius < 21.6 nm) were first shaped and characterized using FIM and then indented into a Au (110) single crystal to depths ranging from 1.5 nm to 18 nm using the force sensor. Continuum mechanics models were found to be valid in predicting elastic deformation during initial contact and plastic zone depths despite our small size regime. Multiple discrete yielding events lasting <1.5 ms were observed during the plastic deformation regime; at the yield points a maximum value for the principal shear stress was measured to be 5 +/- 1 GPa. During tip withdrawal, "pop-out" events relating to material relaxation within the contact were observed. Adhesion between the tip and sample led to experimental signatures that suggest neck formation prior to the break of contact. STM images of indentation holes revealed various shapes that can be attributed to the {111}<110> crystallographic slip system in gold. FIM images of the tip after indentation showed no evidence of tip damage.

  11. Sub-10 nm nanopantography

    NASA Astrophysics Data System (ADS)

    Tian, Siyuan; Donnelly, Vincent M.; Ruchhoeft, Paul; Economou, Demetre J.

    2015-11-01

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  12. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  13. Properties of antibacterial polypropylene/nanometal composite fibers.

    PubMed

    Gawish, S M; Avci, H; Ramadan, A M; Mosleh, S; Monticello, R; Breidt, F; Kotek, R

    2012-01-01

    Melt spinning of polypropylene fibers containing silver and zinc nanoparticles was investigated. The nanometals were generally uniformly dispersed in polypropylene, but aggregation of these materials was observed on fiber surface and in fiber cross-sections. The mechanical properties of the resulted composite fibers with low concentration of nanometal were comparable to those for the control PP yarns. Extruded composite fibers that contained 0.72% silver and 0.60% zinc nanoparticles had outstanding antibacterial efficacy as documented by the percentage count reduction growth of Escherichia coli and Staphylococcus aureus. Fibers containing silver particles had improved antistatic properties. PMID:21156104

  14. Effect of Substrates on Film Hardness Measurements of Nanometer Thick Amorphous Carbon Films

    NASA Astrophysics Data System (ADS)

    Akasaka, Hiroki; Ito, Hiroki; Nakano, Masayuki; Ohshio, Shigeo; Saitoh, Hidetoshi

    Amorphous carbon film (a-C:H) applications, such as hard disks, require films with nanometer thicknesses. In an indentation test, the obtained hardness values of these films are affected by substrates. On the indentation tests, we studied the effect of substrate hardness on films less than 200 nm in thickness. a-C:H and Si doped a-C:H (a-C:Si:H) films were deposited by electron cyclotron resonance plasma chemical vapor deposition onto aluminum (Al) and silicon (Si) substrates. The film thicknesses were approximately 140 nm. The hardnesses of the a-C:H film and substrates were obtained using a high-resolution indentation tester (pico-dentor) with a Vickers tip whose depth resolution was 0.04 nm. Maximum indentation loads were varied from 0.01 to 0.5 mN. The Martens hardnesses of films on the Al and Si substrates were 600 and 7000 N/mm2, respectively. On the a-C:Si:H film deposited on the Al substrate, the hardnesses increased from 1600 to 3900 N/mm2 with decreasing indentation load. The hardnesses of the films deposited on the Si substrate decreased from 5300 to 3500 N/mm2 when the maximum indentation loads were reduced. The effect of the substrates increased with the maximum load increasing. From these findings, the actual hardness value was determined to be 3600 N/mm2. These results indicate that the high-resolution indentation test achieved hardness estimations for nanometer-thick films with certain hardnesses.

  15. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells

    PubMed Central

    Shibata, Mikihiro; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2015-01-01

    Visualization of morphological dynamics of live cells with nanometer resolution under physiological conditions is highly desired, but challenging. It has been demonstrated that high-speed atomic force microscopy is a powerful technique for visualizing dynamics of biomolecules under physiological conditions. However, application of high-speed atomic force microscopy for imaging larger objects such as live mammalian cells has been complicated because of the collision between the cantilever and samples. Here, we demonstrate that attaching an extremely long (~3 μm) and thin (~5 nm) tip by amorphous carbon to the cantilever allows us to image the surface structure of live cells with the spatiotemporal resolution of nanometers and seconds. We demonstrate that long-tip high-speed atomic force microscopy is capable of imaging morphogenesis of filopodia, membrane ruffles, pit formation, and endocytosis in COS-7, HeLa cells and hippocampal neurons. PMID:25735540

  16. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells

    NASA Astrophysics Data System (ADS)

    Shibata, Mikihiro; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2015-03-01

    Visualization of morphological dynamics of live cells with nanometer resolution under physiological conditions is highly desired, but challenging. It has been demonstrated that high-speed atomic force microscopy is a powerful technique for visualizing dynamics of biomolecules under physiological conditions. However, application of high-speed atomic force microscopy for imaging larger objects such as live mammalian cells has been complicated because of the collision between the cantilever and samples. Here, we demonstrate that attaching an extremely long (~3 μm) and thin (~5 nm) tip by amorphous carbon to the cantilever allows us to image the surface structure of live cells with the spatiotemporal resolution of nanometers and seconds. We demonstrate that long-tip high-speed atomic force microscopy is capable of imaging morphogenesis of filopodia, membrane ruffles, pit formation, and endocytosis in COS-7, HeLa cells and hippocampal neurons.

  17. Two-dimensional low-coherence interferometry for the characterization of nanometer wafer topographies

    NASA Astrophysics Data System (ADS)

    Taudt, Ch.; Baselt, T.; Nelsen, B.; Aßmann, H.; Greiner, A.; Koch, E.; Hartmann, P.

    2016-05-01

    Within this work a scan-free, low-coherence interferometry approach for surface profilometry with nm-precision is presented. The basic setup consist of a Michelson-type interferometer which is powered by a super-continuum light-source (Δλ= 400-1700 nm). The introduction of an element with known dispersion delivers a controlled phase variation which can be detected in the spectral domain and used to reconstruct height differences on a sample. In order to enable scan-free measurements, the interference signal is spectrally decomposed with a grating and imaged onto a two-dimensional detector. One dimension of this detector records spectral, and therefore height information, while the other dimension stores the spatial position of the corresponding height values. In experiments on a height standard, it could be shown that the setup is capable of recording multiple height steps of 101 nm over a range of 500 m with an accuracy of about 11.5 nm. Further experiments on conductive paths of a micro-electro-mechanical systems (MEMS) pressure sensor demonstrated that the approach is also suitable to precisely characterize nanometer-sized structures on production-relevant components. The main advantage of the proposed measurement approach is the possibility to collect precise height information over a line on a surface without the need for scanning. This feature makes it interesting for a production-accompanying metrology.

  18. Interface effects in nanometer-thick yttrium iron garnet films studied by magneto-optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Jakubisova, Eva Liskova; Visnovsky, Stefan; Chang, Houchen; Wu, Mingzhong

    2016-02-01

    The properties of nanometer-thick yttrium iron garnet (YIG) films are strongly influenced by interfaces. This work employs spectral ellipsometry (SE) and magneto-optic polar Kerr rotation (PKR) to characterize YIG films with thickness, t, from 6 nm to 30 nm grown on Gd3Ga5O12 (GGG) substrates oriented parallel to (111) plane. The films display a surface roughness of 0.35 nm or lower. The analysis of the SE data at the photon energies of 1 eV < E < 6.5 eV provided the t and permittivity values. The PKR at 1.3 eV < E < 4.5 eV is reasonably explained with the optical model for the YIG film/GGG substrate system. Even better agreement is achieved by assuming a 1.07-nm-thick layer sandwiched between YIG and GGG that has Fe3+ sublattice magnetization opposite to that in the YIG volume. This suggests the existence of antiferromagnetic coupling between the Gd3+ and tetrahedral Fe3+.

  19. Quantum transport and dielectric response of nanometer scale transistors using empirical pseudopotentials

    NASA Astrophysics Data System (ADS)

    Fang, Jingtian

    As transistors, the most basic component of central processing units (CPU) in all electronic products, are scaling down to the nanometer scale, quantum mechanical effects must be studied to investigate their performance. A formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials is presented in this dissertation. We develop the transport equations and show the expressions to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor (FET) with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ˜66 mV/decade and a drain-induced barrier-lowering of ~2.5 mV/V. This formalism is also applied to assess the ballistic performance of FETs with armchair-edge graphene nanoribbon (aGNRs) and silicon nanowire (SiNWs) channels and with gate lengths ranging from 5 nm to 15 nm. The device characteristics of the transistors with a 5 nm gate length are compared. Source-to-drain tunneling effects are investigated for SiNWFETs and GNRFETs by comparing the I-V characteristics of each respective transistor with different channel lengths. While a uniform dielectric constant is assumed in solving Poisson equation for the devices simulated above, the knowledge of the atomistic (i.e., local) dielectric permittivity that considers the atomistic electron distribution and quantum-confinement effect is necessary to treat the electrostatic properties accurately. The local permittivity can also provide information about the dielectric property at the interfaces. We use the random-phase approximation, first-order perturbation theory, and empirical pseudopotentials to calculate the static polarizability, susceptibility, and dielectric response function in graphene and GNRs. While the

  20. Small angle neutron scattering from nanometer grain sized materials

    SciTech Connect

    Epperson, J.E.; Siegel, R.W.

    1991-11-01

    Small angie neutron scattering has been utilized, along with a number of complementary characterization methods suitable to the nanometer size scale, to investigate the structures of cluster-assembled nanophase materials. Results of these investigations are described and problems and opportunities in using small angle scattering for elucidating nanostructures are discussed.

  1. Accurate Extraction of Nanometer Distances in Multimers by Pulse EPR

    PubMed Central

    Valera, Silvia; Ackermann, Katrin; Pliotas, Christos; Huang, Hexian; Naismith, James H.

    2016-01-01

    Abstract Pulse electron paramagnetic resonance (EPR) is gaining increasing importance in structural biology. The PELDOR (pulsed electron–electron double resonance) method allows extracting distance information on the nanometer scale. Here, we demonstrate the efficient extraction of distances from multimeric systems such as membrane‐embedded ion channels where data analysis is commonly hindered by multi‐spin effects. PMID:26865468

  2. Substrate comprising a nanometer-scale projection array

    DOEpatents

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Connor, Stephen T; Yu, Zongfu; Fan, Shanhui; Burkhard, George

    2012-11-27

    A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.

  3. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    NASA Astrophysics Data System (ADS)

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-08-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

  4. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan , Pellin, Michael J.; Elam, Jeffrey W.; Marshall, Christopher L.; Winans, Randall A.; Meiwes-Broer, Karl-Heinz

    2012-04-03

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  5. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan; Pellin, Michael J.; Elam, Jeffrey W.; Marshall, Christopher L.; Winans, Randall A.; Meiwes-Broer, Karl-Heinz

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  6. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    PubMed Central

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; Di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-01-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization. PMID:27502178

  7. A MEMS XY-stage integrating compliant mechanism for nanopositioning at sub-nanometer resolution

    NASA Astrophysics Data System (ADS)

    Xi, Xiang; Clancy, Tyler; Wu, Xuezhong; Sun, Yu; Liu, Xinyu

    2016-02-01

    This paper reports a microelectromechanical systems (MEMS) based XY-stage integrating compliant motion amplification mechanism for nanopositioning at sub nanometer resolution. The MEMS stage is driven by bidirectional Z-beam electrothermal actuators that generate large output forces to actuate the motion amplification mechanism. The motion amplification mechanisms are used in their inverse (motion reduction) mode to convert micrometer input displacements (from the Z-beam actuators) into nanometer output displacements at a constant motion reduction ratio with good linearity. This unique design significantly enhances the positioning resolution of the XY-stage. An analytical model is developed to predict output displacements of the XY-stage as a function of the input voltages applied to the Z-beam actuators, and the predicted results agree with the experimental results. Capacitive displacement sensors are arranged along both X- and Y-axes for measuring the input displacements of the amplification mechanisms, enabling closed-loop nanopositioning control of the XY-stage. The device calibration results show that, within an actuation voltage of  ±15 V, the MEMS stage offers a motion range close to  ±1 μm and a displacement resolution better than 0.3 nm \\sqrt{\\text{Hz}} -1.

  8. Mechanical properties of organic matter in shales mapped at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Eliyahu, M.; Emmanuel, S.; Day-Stirrat, R. J.; Macaulay, C.

    2014-12-01

    The mechanical properties of organic matter strongly influence the way in which shales deform and fracture. However, the response of organic matter to mechanical stresses is not well understood, representing a critical obstacle to assessing oil and gas production in shale formations. Little is known about the mechanical properties of organic matter in fine grained rocks primarily because it often occupies tiny nanometer-scale voids between the mineral grains which cannot be accessed using standard mechanical testing techniques. Here, we report on the use of a new atomic force microscopy technique (PeakForce QNM) to map the mechanical properties of organic and inorganic components at the nanometer scale. We find that the method can identify different phases such as pyrite, quartz, clays, and organic matter. Furthermore, within the organic component Young's modulus values ranged from 0 - 25 GPa; in 3 different samples - all of which come from thermally mature Type II/III source rocks in the dry gas window - a modal value of 15-16 GPa was measured, with additional peaks measured at ≤ 10 GPa. In addition, the maps suggest that some porous organic macerals possess a soft core surrounded by a harder outer shell 50 - 100 nm thick. Our results demonstrate that the method represents a powerful new petrographic tool with which to characterize the mechanical properties of organic-rich sedimentary rocks.

  9. NXT:1980Di immersion scanner for 7nm and 5nm production nodes

    NASA Astrophysics Data System (ADS)

    de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; McLaren, Matthew; Koek, Bert; de Boeij, Wim

    2016-03-01

    Immersion scanners remain the critical lithography workhorses in semiconductor device manufacturing. When progressing towards the 7nm device node for logic and D18 device node for DRAM production, pattern-placement and layer-to-layer overlay requirements keep progressively scaling down and consequently require system improvements in immersion scanners. The on-product-overlay requirements are approaching levels of only a few nanometers, imposing stringent requirements on the scanner tool design in terms of reproducibility, accuracy and stability. In this paper we report on the performance of the NXT:1980Di immersion scanner. The NXT:1980Di builds upon the NXT:1970Ci, that is widely used for 16nm, 14nm and 10nm high-volume manufacturing. We will discuss the NXT:1980Di system- and sub-system/module enhancements that drive the scanner overlay, focus and productivity performance. Overlay, imaging, focus, productivity and defectivity data will be presented for multiple tools. To further reduce the on-product overlay system performance, alignment sensor contrast improvements as well as active reticle temperature conditioning are implemented on the NXT:1980Di. Reticle temperature conditioning will reduce reticle heating overlay and the higher contrast alignment sensor will improve alignment robustness for processed alignment targets. Due to an increased usage of multiple patterning techniques, an increased number of immersion exposures is required. NXT:1980Di scanner design modifications raised productivity levels from 250wph to 275wph. This productivity enhancement provides lower cost of ownership (CoO) for customers using immersion technology.

  10. Green laser interferometric metrology system with sub-nanometer periodic nonlinearity.

    PubMed

    Zhao, Shijie; Wei, Haoyun; Zhu, Minhao; Li, Yan

    2016-04-10

    This paper describes the design and realization of a heterodyne laser interferometer system that is applicable to metrology comparison. In this research, an iodine-stabilized Nd:YAG laser at 532 nm served as the light source. Two spatially separated beams with different offset frequencies are generated by two acousto-optic modulators to prevent any source mixing and polarization leakage. The interferometry components are integrated to a monolithic prism to reduce the difficulty of the light path adjustment and to guarantee the measuring accuracy. The experimental results show there is a sub-nanometer periodic nonlinearity, which mainly results from the ghost reflection. Placed in a vacuum chamber, the interferometer is applicable for measuring comparison using a piezo nanopositioner and a precision translation stage. Finally, a commercial interferometer is calibrated with the interferometer system. PMID:27139867

  11. Marine environmental protection: An application of the nanometer photo catalyst method on decomposition of benzene.

    PubMed

    Lin, Mu-Chien; Kao, Jui-Chung

    2016-04-15

    Bioremediation is currently extensively employed in the elimination of coastal oil pollution, but it is not very effective as the process takes several months to degrade oil. Among the components of oil, benzene degradation is difficult due to its stable characteristics. This paper describes an experimental study on the decomposition of benzene by titanium dioxide (TiO2) nanometer photocatalysis. The photocatalyst is illuminated with 360-nm ultraviolet light for generation of peroxide ions. This results in complete decomposition of benzene, thus yielding CO2 and H2O. In this study, a nonwoven fabric is coated with the photocatalyst and benzene. Using the Double-Shot Py-GC system on the residual component, complete decomposition of the benzene was verified by 4h of exposure to ultraviolet light. The method proposed in this study can be directly applied to elimination of marine oil pollution. Further studies will be conducted on coastal oil pollution in situ.

  12. Quantitative Chemically Specific Coherent Diffractive Imaging of Reactions at Buried Interfaces with Few Nanometer Precision.

    PubMed

    Shanblatt, Elisabeth R; Porter, Christina L; Gardner, Dennis F; Mancini, Giulia F; Karl, Robert M; Tanksalvala, Michael D; Bevis, Charles S; Vartanian, Victor H; Kapteyn, Henry C; Adams, Daniel E; Murnane, Margaret M

    2016-09-14

    We demonstrate quantitative, chemically specific imaging of buried nanostructures, including oxidation and diffusion reactions at buried interfaces, using nondestructive tabletop extreme ultraviolet (EUV) coherent diffractive imaging (CDI). Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither visible microscopy nor atomic force microscopy can image the buried interface. Short wavelength high harmonic beams can penetrate the aluminum layer, yielding high-contrast images of the buried structures. Quantitative analysis shows that the reflected EUV light is extremely sensitive to the formation of multiple oxide layers, as well as interdiffusion of materials occurring at the metal-metal and metal-insulator boundaries deep within the nanostructure with few nanometers precision. PMID:27447192

  13. Particle Dynamics in Polymer-Metal Nanocomposite Thin Films on Nanometer-Length Scales

    SciTech Connect

    Narayanan, Suresh; Lee, Dong Ryeol; Li Xuefa; Wang Jin; Hagman, Aleta

    2007-05-04

    X-ray photon correlation spectroscopy was used in conjunction with resonance-enhanced grazing-incidence small-angle x-ray scattering to probe slow particle dynamics and kinetics in gold/polystyrene nanocomposite thin films. Such enhanced coherent scattering enables, for the first time, measurement of the particle dynamics at wave vectors up to {approx}1 nm{sup -1} (or a few nanometers spatially) in a disordered system, well in the regime where entanglement, confinement, and particle interaction dominate the dynamics and kinetics. Measurements of the intermediate structure factor f(q,t) indicate that the particle dynamics differ from Stokes-Einstein Brownian motion and are explained in terms of viscoelastic effects and interparticle interactions.

  14. Digital image processing of nanometer-size metal particles on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  15. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Ozdol, V. B.; Gammer, C.; Jin, X. G.; Ercius, P.; Ophus, C.; Ciston, J.; Minor, A. M.

    2015-06-01

    We report on the development of a nanometer scale strain mapping technique by means of scanning nano-beam electron diffraction. Only recently possible due to fast acquisition with a direct electron detector, this technique allows for strain mapping with a high precision of 0.1% at a lateral resolution of 1 nm for a large field of view reaching up to 1 μm. We demonstrate its application to a technologically relevant strain-engineered GaAs/GaAsP hetero-structure and show that the method can even be applied to highly defected regions with substantial changes in local crystal orientation. Strain maps derived from atomically resolved scanning transmission electron microscopy images were used to validate the accuracy, precision and resolution of this versatile technique.

  16. Strain mapping at nanometer resolution using advanced nano-beam electron diffraction

    SciTech Connect

    Ozdol, V. B.; Ercius, P.; Ophus, C.; Ciston, J.; Gammer, C. E-mail: aminor@lbl.gov; Jin, X. G.; Minor, A. M. E-mail: aminor@lbl.gov

    2015-06-22

    We report on the development of a nanometer scale strain mapping technique by means of scanning nano-beam electron diffraction. Only recently possible due to fast acquisition with a direct electron detector, this technique allows for strain mapping with a high precision of 0.1% at a lateral resolution of 1 nm for a large field of view reaching up to 1 μm. We demonstrate its application to a technologically relevant strain-engineered GaAs/GaAsP hetero-structure and show that the method can even be applied to highly defected regions with substantial changes in local crystal orientation. Strain maps derived from atomically resolved scanning transmission electron microscopy images were used to validate the accuracy, precision and resolution of this versatile technique.

  17. Superhydrophilic TiO2 thin film by nanometer scale surface roughness and dangling bonds

    NASA Astrophysics Data System (ADS)

    Bharti, Bandna; Kumar, Santosh; Kumar, Rajesh

    2016-02-01

    A remarkable enhancement in the hydrophilic nature of titanium dioxide (TiO2) films is obtained by surface modification in DC-glow discharge plasma. Thin transparent TiO2 films were coated on glass substrate by sol-gel dip coating method, and exposed in DC-glow discharge plasma. The plasma exposed TiO2 film exhibited a significant change in its wetting property contact angle, which is a representative of wetting property, has reduced to considerable limits 3.02° and 1.85° from its initial value 54.40° and 48.82° for deionized water and ethylene glycol, respectively. It is elucidated that the hydrophilic property of plasma exposed TiO2 films dependent mainly upon nanometer scale surface roughness. Variation, from 4.6 nm to 19.8 nm, in the film surface roughness with exposure time was observed by atomic force microscopy (AFM). Analysis of variation in the values of contact angle and surface roughness with increasing plasma exposure time reveal that the surface roughness is the main factor which makes the modified TiO2 film superhydrophilic. However, a contribution of change in the surface states, to the hydrophilic property, is also observed for small values of the plasma exposure time. Based upon nanometer scale surface roughness and dangling bonds, a variation in the surface energy of TiO2 film from 49.38 to 88.92 mJ/m2 is also observed. X-ray photoelectron spectroscopy (XPS) results show change in the surface states of titanium and oxygen. The observed antifogging properties are the direct results of the development of the superhydrophilic wetting characteristics to TiO2 films.

  18. Artificial submicron or nanometer speckle fabricating technique and electron microscope speckle photography

    SciTech Connect

    Liu Zhanwei; Xie Huimin; Fang Daining; Dai Fulong; Wang Weining; Fang Yan

    2007-03-15

    In this article, a novel artificial submicro- or nanometer speckle fabricating technique is proposed by taking advantage of submicro or nanometer particles. In the technique, submicron or nanometer particles were adhered to an object surface by using ultrasonic dispersing technique. The particles on the object surface can be regarded as submicro or nanometer speckle by using a scanning electronic microscope at a special magnification. In addition, an electron microscope speckle photography (EMSP) method is developed to measure in-plane submicron or nanometer deformation of the object coated with the artificial submicro or nanometer speckles. The principle of artificial submicro or nanometer speckle fabricating technique and the EMSP method are discussed in detail in this article. Some typical applications of this method are offered. The experimental results verified that the artificial submicro or nanometer speckle fabricating technique and EMSP method is feasible.

  19. Triple Modulator-Chicane Scheme for Seeding Sub-Nanometer X-Ray Free Electron Lasers

    SciTech Connect

    Xiang, Dao; Stupakov, Gennady; /SLAC

    2011-07-06

    We propose a novel triple modulator-chicane (TMC) scheme to convert external input seed to shorter wavelengths. In the scheme high power seed lasers are used in the first and third modulator while only very low power seed is used in the second modulator. By properly choosing the parameters of the lasers and chicanes, we show that ultrahigh harmonics can be generated in the TMC scheme while simultaneously keeping the energy spread growth much smaller than beam's initial slice energy spread. As an example we show the feasibility of generating significant bunching at 1 nm and below from a low power ({approx} 100 kW) high harmonic generation seed at 20 nm assisted by two high power ({approx} 100 MW) UV lasers at 200 nm while keeping the energy spread growth within 40%. The supreme up-frequency conversion efficiency of the proposed TMC scheme together with its unique advantage in maintaining beam energy spread opens new opportunities for generating fully coherent x-rays at sub-nanometer wavelength from external seeds.

  20. Albuquerque, NM, USA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Albuquerque, NM (35.0N, 106.5W) is situated on the edge of the Rio Grande River and flood plain which cuts across the image. The reddish brown surface of the Albuquerque Basin is a fault depression filled with ancient alluvial fan and lake bed sediments. On the slopes of the Manzano Mountains to the east of Albuquerque, juniper and other timber of the Cibola National Forest can be seen as contrasting dark tones of vegetation.

  1. Pseudopotential-based electron quantum transport: Theoretical formulation and application to nanometer-scale silicon nanowire transistors

    NASA Astrophysics Data System (ADS)

    Fang, Jingtian; Vandenberghe, William G.; Fu, Bo; Fischetti, Massimo V.

    2016-01-01

    We present a formalism to treat quantum electronic transport at the nanometer scale based on empirical pseudopotentials. This formalism offers explicit atomistic wavefunctions and an accurate band structure, enabling a detailed study of the characteristics of devices with a nanometer-scale channel and body. Assuming externally applied potentials that change slowly along the electron-transport direction, we invoke the envelope-wavefunction approximation to apply the open boundary conditions and to develop the transport equations. We construct the full-band open boundary conditions (self-energies of device contacts) from the complex band structure of the contacts. We solve the transport equations and present the expressions required to calculate the device characteristics, such as device current and charge density. We apply this formalism to study ballistic transport in a gate-all-around (GAA) silicon nanowire field-effect transistor with a body-size of 0.39 nm, a gate length of 6.52 nm, and an effective oxide thickness of 0.43 nm. Simulation results show that this device exhibits a subthreshold slope (SS) of ˜66 mV/decade and a drain-induced barrier-lowering of ˜2.5 mV/V. Our theoretical calculations predict that low-dimensionality channels in a 3D GAA architecture are able to meet the performance requirements of future devices in terms of SS swing and electrostatic control.

  2. Programmable nanometer-scale electrolytic metal deposition and depletion

    DOEpatents

    Lee, James Weifu [Oak Ridge, TN; Greenbaum, Elias [Oak Ridge, TN

    2002-09-10

    A method of nanometer-scale deposition of a metal onto a nanostructure includes the steps of: providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart; and depositing metal on at least one of the nanostructures by electric field-directed, programmable, pulsed electrolytic metal deposition. Moreover, a method of nanometer-scale depletion of a metal from a nanostructure includes the steps of providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart, at least one of the nanostructures having a metal disposed thereon; and depleting at least a portion of the metal from the nanostructure by electric field-directed, programmable, pulsed electrolytic metal depletion. A bypass circuit enables ultra-finely controlled deposition.

  3. Nanometer-scale complexity, growth, and diagenesis in desert varnish

    NASA Astrophysics Data System (ADS)

    Garvie, Laurence A. J.; Burt, Donald M.; Buseck, Peter R.

    2008-03-01

    Nanometer-scale element mapping and spectroscopy of desert varnishfrom the northern Sonoran Desert in southwestern Arizona reveala dynamic disequilibrium system characterized by postdepositionalmineralogical, chemical, and structural changes activated byliquid water. Lack of equilibrium is suggested by the largevariety of coexisting Mn phases. Sparse secondary Ba and Srsulfates also occur, as do carbonaceous particles. IndividualMn-oxide particles contain variable concentrations of Ba andCe, reflecting their role as repositories of trace elements,presumably derived from atmospheric aerosols. Desert varnishis analogous to more familiar sediments in displaying authigenicand diagenetic structures, but with total sediment thicknesses<1 mm and structures at the nanometer scale. As such, itis neither a weathering rind nor patina, but a unique subaerialsediment that is in dynamic disequilibrium. Our results suggestcontinuing adjustment of varnish to changing environmental conditions.

  4. Low-Cost Sensors Deliver Nanometer-Accurate Measurements

    NASA Technical Reports Server (NTRS)

    2015-01-01

    As part of a unique partnership program, Kennedy Space Center collaborated with a nearby business school to allow MBA students to examine and analyze the market potential for a selection of NASA-patented technologies. Following the semester, a group of students decided to form Winter Park, Florida-based Juntura Group Inc. to license and sell a technology they had worked with: a sensor capable of detecting position changes as small as 10 nanometers-approximately the thickness of a cell wall.

  5. SEMICONDUCTOR TECHNOLOGY: Reduction of proximity effect in fabricating nanometer-spaced nanopillars by two-step exposure

    NASA Astrophysics Data System (ADS)

    Yang, Zhang; Renping, Zhang; Weihua, Han; Jian, Liu; Xiang, Yang; Ying, Wang; Chian Chiu, Li; Fuhua, Yang

    2009-11-01

    A two-step exposure method to effectively reduce the proximity effect in fabricating nanometer-spaced nanopillars is presented. In this method, nanopillar patterns on poly-methylmethacrylate (PMMA) were partly cross-linked in the first-step exposure. After development, PMMA between nanopillar patterns was removed, and hence the proximity effect would not take place there in the subsequent exposure. In the second-step exposure, PMMA masks were completely cross-linked to achieve good resistance in inductively coupled plasma etching. Accurate pattern transfer of rows of nanopillars with spacing down to 40 nm was realized on a silicon-on-insulator substrate.

  6. Nanometer precision robot for active photonics alignment using INCHWORM motors

    NASA Astrophysics Data System (ADS)

    Henderson, David A.; Ragona, Sid P.

    2001-05-01

    To keep pace with the increasing demand for higher throughput, lower cost per unit and tighter specifications, manufacturers of fiber optic devices are now looking towards a new generation of automated alignment tools. The ideal alignment tool has six degrees-of-freedom (DOF), (X,Y,Z, Yaw, Pitch, Roll) repeatability better than 50 nanometers, travel greater than 10 millimeters and is fully automated. In this paper we describe the use of INCHWORM motor technology to produce a new nano-robotic system that demonstrates a major advancement toward the ideal photonics alignment tool. The INCHWORM actuator is uniquely suited to provide nanometer resolution movements over tens of millimeters of range with very high stiffness and stability. The clamp-extend-clamp-retract stepping sequence produces direct linear motion with no backlash. INCHWORM motors are integrated in cross roller bearing stages to achieve 20 nanometer and 0.1 arc second closed-loop resolution. The high stiffness and stability of the solid-state piezoelectric actuators hold position to a single count on a glass scale encoder while generating zero heat. Mounting fixtures hold optical elements so that their geometric centers coincide with the virtual point of rotation. Active alignment processes for selected photonics components, as well as intensity maps of components are presented.

  7. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  8. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    NASA Astrophysics Data System (ADS)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  9. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  10. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap.

    PubMed

    Seok, Tae Joon; Jamshidi, Arash; Eggleston, Michael; Wu, Ming C

    2013-07-15

    Optical antennas have been widely used for sensitive photodetection, efficient light emission, high resolution imaging, and biochemical sensing because of their ability to capture and focus light energy beyond the diffraction limit. However, widespread application of optical antennas has been limited due to lack of appropriate methods for uniform and large area fabrication of antennas as well as difficulty in achieving an efficient design with small mode volume (gap spacing < 10nm). Here, we present a novel optical antenna design, arch-dipole antenna, with optimal radiation efficiency and small mode volume, 5 nm gap spacing, fabricated by CMOS-compatible deep-UV spacer lithography. We demonstrate strong surface-enhanced Raman spectroscopy (SERS) signal with an enhancement factor exceeding 108 from the arch-dipole antenna array, which is two orders of magnitude stronger than that from the standard dipole antenna array fabricated by e-beam lithography. Since the antenna gap spacing, the critical dimension of the antenna, can be defined by deep-UV lithography, efficient optical antenna arrays with nanometer-scale gap can be mass-produced using current CMOS technology.

  11. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic

    PubMed Central

    Poinern, GJE; Brundavanam, R; Le, X Thi; Djordjevic, S; Prokic, M; Fawcett, D

    2011-01-01

    Hydroxyapatite (HAP) is a widely used biocompatible ceramic in many biomedical applications and devices. Currently nanometer-scale forms of HAP are being intensely investigated due to their close similarity to the inorganic mineral component of the natural bone matrix. In this study nano-HAP was prepared via a wet precipitation method using Ca(NO3)2 and KH2PO4 as the main reactants and NH4OH as the precipitator under ultrasonic irradiation. The Ca/P ratio was set at 1.67 and the pH was maintained at 9 during the synthesis process. The influence of the thermal treatment was investigated by using two thermal treatment processes to produce ultrafine nano-HAP powders. In the first heat treatment, a conventional radiant tube furnace was used to produce nano-particles with an average size of approximately 30 nm in diameter, while the second thermal treatment used a microwave-based technique to produce particles with an average diameter of 36 nm. The crystalline structure and morphology of all nanoparticle powders produced were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FT-IR). Both thermal techniques effectively produced ultrafine powders with similar crystalline structure, morphology and particle sizes. PMID:22114473

  12. Picosecond Dynamics of Shock Compressed and Flash-Heated Nanometer Thick Films of HMX

    NASA Astrophysics Data System (ADS)

    Berg, Christopher; Dlott, Dana

    2013-06-01

    New results are described for probing molecular dynamics of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) subjected to shock compression to a few GPa and/or temperature excursions exceeding thermal decomposition values (T > 500 K). 5-10 nm thick films of δ-HMX were grown on metallic substrates coated with monolayers of 4-nitrothiophenol. Due to shock velocities of a few nm/ps, nanometer thick films allowed picosecond time resolution of shock loading. A plastic polymer layer a few microns in thickness was spin-coated on top of HMX for shock confinement purposes. Both the monolayer and explosive layer were probed utilizing an ultrafast nonlinear coherent vibrational spectroscopy, vibrational sum-frequency generation. Shock compression pressures were estimated via comparison of the monolayer nitro transition frequency shift with static high pressure measurements in a diamond anvil cell. Temperature determinations were based on thermoreflectance measurements of the metallic substrate. Supported by the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center under grant number DOE CIW 4-3253-13 and the US Air Force Office of Scientific Research under award number FAA9550-09-1-0163.

  13. Mass-producible and efficient optical antennas with CMOS-fabricated nanometer-scale gap.

    PubMed

    Seok, Tae Joon; Jamshidi, Arash; Eggleston, Michael; Wu, Ming C

    2013-07-15

    Optical antennas have been widely used for sensitive photodetection, efficient light emission, high resolution imaging, and biochemical sensing because of their ability to capture and focus light energy beyond the diffraction limit. However, widespread application of optical antennas has been limited due to lack of appropriate methods for uniform and large area fabrication of antennas as well as difficulty in achieving an efficient design with small mode volume (gap spacing < 10nm). Here, we present a novel optical antenna design, arch-dipole antenna, with optimal radiation efficiency and small mode volume, 5 nm gap spacing, fabricated by CMOS-compatible deep-UV spacer lithography. We demonstrate strong surface-enhanced Raman spectroscopy (SERS) signal with an enhancement factor exceeding 108 from the arch-dipole antenna array, which is two orders of magnitude stronger than that from the standard dipole antenna array fabricated by e-beam lithography. Since the antenna gap spacing, the critical dimension of the antenna, can be defined by deep-UV lithography, efficient optical antenna arrays with nanometer-scale gap can be mass-produced using current CMOS technology. PMID:23938507

  14. Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC.

    PubMed

    Chen, Jianing; Nesterov, Maxim L; Nikitin, Alexey Yu; Thongrattanasiri, Sukosin; Alonso-González, Pablo; Slipchenko, Tetiana M; Speck, Florian; Ostler, Markus; Seyller, Thomas; Crassee, Iris; Koppens, Frank H L; Martin-Moreno, Luis; García de Abajo, F Javier; Kuzmenko, Alexey B; Hillenbrand, Rainer

    2013-01-01

    We employ tip-enhanced infrared near-field microscopy to study the plasmonic properties of epitaxial quasi-free-standing monolayer graphene on silicon carbide. The near-field images reveal propagating graphene plasmons, as well as a strong plasmon reflection at gaps in the graphene layer, which appear at the steps between the SiC terraces. When the step height is around 1.5 nm, which is two orders of magnitude smaller than the plasmon wavelength, the reflection signal reaches 20% of its value at graphene edges, and it approaches 50% for step heights as small as 5 nm. This intriguing observation is corroborated by numerical simulations and explained by the accumulation of a line charge at the graphene termination. The associated electromagnetic fields at the graphene termination decay within a few nanometers, thus preventing efficient plasmon transmission across nanoscale gaps. Our work suggests that plasmon propagation in graphene-based circuits can be tailored using extremely compact nanostructures, such as ultranarrow gaps. It also demonstrates that tip-enhanced near-field microscopy is a powerful contactless tool to examine nanoscale defects in graphene.

  15. Three-dimensional integrated circuits for lab-on-chip dielectrophoresis of nanometer scale particles

    NASA Astrophysics Data System (ADS)

    Dickerson, Samuel J.; Noyola, Arnaldo J.; Levitan, Steven P.; Chiarulli, Donald M.

    2007-01-01

    In this paper, we present a mixed-technology micro-system for electronically manipulating and optically detecting virusscale particles in fluids that is designed using 3D integrated circuit technology. During the 3D fabrication process, the top-most chip tier is assembled upside down and the substrate material is removed. This places the polysilicon layer, which is used to create geometries with the process' minimum feature size, in close proximity to a fluid channel etched into the top of the stack. By taking advantage of these processing features inherent to "3D chip-stacking" technology, we create electrode arrays that have a gap spacing of 270 nm. Using 3D CMOS technology also provides the ability to densely integrate analog and digital control circuitry for the electrodes by using the additional levels of the chip stack. We show simulations of the system with a physical model of a Kaposi's sarcoma-associated herpes virus, which has a radius of approximately 125 nm, being dielectrophoretically arranged into striped patterns. We also discuss how these striped patterns of trapped nanometer scale particles create an effective diffraction grating which can then be sensed with macro-scale optical techniques.

  16. Dewetting of evaporating thin films over nanometer-scale topographies

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, A. M.; Moosavi, A.; Moghimi Kheirabadi, A.

    2014-07-01

    A lubrication model is used to study dewetting of an evaporating thin film layer over a solid substrate with a nanometer-scale topography. The effects of the geometry of the topography, the contact angle, the film thickness, and the slippage on the dewetting have been studied. Our results reveal that the evaporation enhances the dewetting process and reduces the depinning time over the topography. Also it is shown that the depinning time is inversely proportional to the slippage and increasing the contact angle may considerably reduce the depinning time, while the film thickness increases the depinning time.

  17. Nanometer-size hard magnetic ferrite exhibiting high optical-transparency and nonlinear optical-magnetoelectric effect

    PubMed Central

    Ohkoshi, Shin-ichi; Namai, Asuka; Imoto, Kenta; Yoshikiyo, Marie; Tarora, Waka; Nakagawa, Kosuke; Komine, Masaya; Miyamoto, Yasuto; Nasu, Tomomichi; Oka, Syunsuke; Tokoro, Hiroko

    2015-01-01

    Development of nanometer-sized magnetic particles exhibiting a large coercive field (Hc) is in high demand for densification of magnetic recording. Herein, we report a single-nanosize (i.e., less than ten nanometers across) hard magnetic ferrite. This magnetic ferrite is composed of ε-Fe2O3, with a sufficiently high Hc value for magnetic recording systems and a remarkably high magnetic anisotropy constant of 7.7 × 106 erg cm−3. For example, 8.2-nm nanoparticles have an Hc value of 5.2 kOe at room temperature. A colloidal solution of these nanoparticles possesses a light orange color due to a wide band gap of 2.9 eV (430 nm), indicating a possibility of transparent magnetic pigments. Additionally, we have observed magnetization-induced second harmonic generation (MSHG). The nonlinear optical-magnetoelectric effect of the present polar magnetic nanocrystal was quite strong. These findings have been demonstrated in a simple iron oxide, which is highly significant from the viewpoints of economic cost and mass production. PMID:26439914

  18. Interaction of soft x-ray laser pulse radiation with aluminum surface: Nano-meter size surface modification

    SciTech Connect

    Ishino, Masahiko; Faenov, Anatoly; Tanaka, Momoko; Hasegawa, Noboru; Nishikino, Masaharu; Tamotsu, Satoshi; Pikuz, Tatiana; Inogamov, Nail; Zhakhovsky, Vasily; Skobelev, Igor; Fortov, Vladimir; Khohlov, Viktor; Shepelev, Vadim; Ohba, Toshiyuki; Kaihori, Takeshi; Ochi, Yoshihiro; Imazono, Takashi; Kawachi, Tetsuya

    2012-07-11

    Interaction of soft x-ray laser radiation with material and caused modification of the exposed surface has both physical and practical interests. We irradiated the focusing soft x-ray laser (SXRL) pulses having a wavelength of 13.9 nm and the duration of 7 ps to aluminum (Al) surface. After the SXRL irradiation process, the irradiated Al surface was observed with a scanning electron microscope. The surface modifications caused by SXRL single pulse exposure were clearly seen. In addition, it was found that the conical structures having around 100 nm in diameters were formed in the shallow features. The nano-meter size modified structures at Al surface induced by SXRL pulse is interesting as the newly surface structure. Hence, the SXRL beam would be a candidate for a tool of micromachining. We also provide a thermomechanical modeling of SXRL interaction with Al briefly to explain the surface modification.

  19. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.

    PubMed

    Gong, Bing; Shao, Zhifeng

    2013-12-17

    The transport of molecules and ions across nanometer-scaled pores, created by natural or artificial molecules, is a phenomenon of both fundamental and practical significance. Biological channels are the most remarkable examples of mass transport across membranes and demonstrate nearly exclusive selectivity and high efficiency with a diverse collection of molecules. These channels are critical for many basic biological functions, such as membrane potential, signal transduction, and osmotic homeostasis. If such highly specific and efficient mass transport or separation could be achieved with artificial nanostructures under controlled conditions, they could create revolutionary technologies in a variety of areas. For this reason, investigators from diverse disciplines have vigorously studied small nondeformable nanopores. The most exciting studies have focused on carbon nanotubes (CNTs), which have exhibited fast mass transport and high ion selectivity despite their very simple structure. However, the limitations of CNTs and the dearth of other small (≤2 nm) nanopores have severely hampered the systematic investigation of nanopore-mediated mass transport, which will be essential for designing artificial nanopores with desired functions en masse. Researchers can overcome the difficulties associated with CNT and other artificial pores by stacking macrocyclic building blocks with persistent shapes to construct tunable, self-assembling organic pores. This effort started when we discovered a highly efficient, one-pot macrocyclization process to efficiently prepare several classes of macrocycles with rigid backbones containing nondeformable cavities. Such macrocycles, if stacked atop one another, should lead to nanotubular assemblies with defined inner pores determined by their constituent macrocycles. One class of macrocycles with aromatic oligoamide backbones had a very high propensity for directional assembly, forming nanotubular structures containing nanometer and sub-nanometer

  20. Understanding batteries on the micro- and nanometer scale

    SciTech Connect

    2013-07-22

    In order to understand performance limitations and failure mechanisms of batteries, one has to investigate processes on the micro- and nanometer scale. A typical failure mechanism in lithium metal batteries is dendritic growth. During discharge, lithium is stripped of the anode surface and migrates to the cathode. During charge, lithium is deposited back on the anode. Repeated cycling can result in stripping and re-deposition that roughens the surface. The roughening of the surface changes the electric field and draws more metal to spikes that are beginning to grow. These can grow with tremendous mechanical force, puncture the separator, and directly connect the anode with the cathode which can create an internal short circuit. This can lead to an uncontrolled discharge reaction, which heats the cell and causes additional exothermic reactions leading to what is called thermal runaway. ORNL has developed a new technology called liquid electron microscopy. In a specially designed sample holder micro-chamber with electron-transparent windows, researchers can hold a liquid and take images of structures and particles at nanometer size. It's the first microscope holder of its kind used to investigate the inside of a battery while cycled.

  1. Observing Optical Plasmons on a Single Nanometer Scale

    PubMed Central

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2014-01-01

    The exceptional capability of plasmonic structures to confine light into deep subwavelength volumes has fashioned rapid expansion of interest from both fundamental and applicative perspectives. Surface plasmon nanophotonics enables to investigate light - matter interaction in deep nanoscale and harness electromagnetic and quantum properties of materials, thus opening pathways for tremendous potential applications. However, imaging optical plasmonic waves on a single nanometer scale is yet a substantial challenge mainly due to size and energy considerations. Here, for the first time, we use Kelvin Probe Force Microscopy (KPFM) under optical illumination to image and characterize plasmonic modes. We experimentally demonstrate unprecedented spatial resolution and measurement sensitivity both on the order of a single nanometer. By comparing experimentally obtained images with theoretical calculation results, we show that KPFM maps may provide valuable information on the phase of the optical near field. Additionally, we propose a theoretical model for the relation between surface plasmons and the material workfunction measured by KPFM. Our findings provide the path for using KPFM for high resolution measurements of optical plasmons, prompting the scientific frontier towards quantum plasmonic imaging on submolecular scales. PMID:24556874

  2. Understanding batteries on the micro- and nanometer scale

    ScienceCinema

    None

    2016-07-12

    In order to understand performance limitations and failure mechanisms of batteries, one has to investigate processes on the micro- and nanometer scale. A typical failure mechanism in lithium metal batteries is dendritic growth. During discharge, lithium is stripped of the anode surface and migrates to the cathode. During charge, lithium is deposited back on the anode. Repeated cycling can result in stripping and re-deposition that roughens the surface. The roughening of the surface changes the electric field and draws more metal to spikes that are beginning to grow. These can grow with tremendous mechanical force, puncture the separator, and directly connect the anode with the cathode which can create an internal short circuit. This can lead to an uncontrolled discharge reaction, which heats the cell and causes additional exothermic reactions leading to what is called thermal runaway. ORNL has developed a new technology called liquid electron microscopy. In a specially designed sample holder micro-chamber with electron-transparent windows, researchers can hold a liquid and take images of structures and particles at nanometer size. It's the first microscope holder of its kind used to investigate the inside of a battery while cycled.

  3. CD reference features with sub-five nanometer uncertainty

    NASA Astrophysics Data System (ADS)

    Cresswell, M. W.; Dixson, R. G.; Guthrie, W. F.; Allen, R. A.; Murabito, C. E.; Park, B.; Martinez de Pinillos, J. V.; Hunt, A.

    2005-05-01

    The implementation of a new test structure for HRTEM (High-Resolution Transmission Electron Microscopy) imaging, and the use of CD AFM (CD Atomic Force Microscopy) to serve as the transfer metrology, have resulted in reductions in the uncertainties attributed to critical dimension (CD) reference-material features, having calibrated CDs less than 100 nm. The previous generation of reference materials, which was field-tested in 2001, used electrical CD as the transfer metrology. Calibrated CD values were in the range 80 nm to 150 nm and expanded uncertainties were approximately +/- 14 nm. The second-generation units, which have now been distributed to selected industry users for evaluation, have uncertainties as low as +/-1.5 nm and calibrated CDs as low as 43 nm.

  4. iPAINT: a general approach tailored to image the topology of interfaces with nanometer resolution

    NASA Astrophysics Data System (ADS)

    Aloi, A.; Vilanova, N.; Albertazzi, L.; Voets, I. K.

    2016-04-01

    Understanding interfacial phenomena in soft materials such as wetting, colloidal stability, coalescence, and friction warrants non-invasive imaging with nanometer resolution. Super-resolution microscopy has emerged as an attractive method to visualize nanostructures labeled covalently with fluorescent tags, but this is not amenable to all interfaces. Inspired by PAINT we developed a simple and general strategy to overcome this limitation, which we coin `iPAINT: interface Point Accumulation for Imaging in Nanoscale Topography'. It enables three-dimensional, sub-diffraction imaging of interfaces irrespective of their nature via reversible adsorption of polymer chains end-functionalized with photo-activatable moieties. We visualized model dispersions, emulsions, and foams with ~20 nm and ~3° accuracy demonstrating the general applicability of iPAINT to study solid/liquid, liquid/liquid and liquid/air interfaces. iPAINT thus broadens the scope of super-resolution microscopy paving the way for non-invasive, high-resolution imaging of complex soft materials.Understanding interfacial phenomena in soft materials such as wetting, colloidal stability, coalescence, and friction warrants non-invasive imaging with nanometer resolution. Super-resolution microscopy has emerged as an attractive method to visualize nanostructures labeled covalently with fluorescent tags, but this is not amenable to all interfaces. Inspired by PAINT we developed a simple and general strategy to overcome this limitation, which we coin `iPAINT: interface Point Accumulation for Imaging in Nanoscale Topography'. It enables three-dimensional, sub-diffraction imaging of interfaces irrespective of their nature via reversible adsorption of polymer chains end-functionalized with photo-activatable moieties. We visualized model dispersions, emulsions, and foams with ~20 nm and ~3° accuracy demonstrating the general applicability of iPAINT to study solid/liquid, liquid/liquid and liquid/air interfaces. i

  5. Generation Of 369.4-Nanometers Second Harmonic From A Diode Laser

    NASA Technical Reports Server (NTRS)

    Williams, Angelyn P.; Maleki, Lutfollah

    1995-01-01

    Experimental laser system features polarization feedback scheme maintaining frequency lock. Generates light at wavelength of 369.4 nanometers by second-harmonic generation from 738.8-nanometers laser diode. System prototype of source of 369.4-nanometers radiation used to optically pump 2S1/2 ' 2P1/2 transition in 171Yb+ ions in lightweight, low-power trapped-ion frequency-standard apparatus.

  6. Removal of 10-nm contaminant particles from Si wafers using CO2 bullet particles

    PubMed Central

    2012-01-01

    Removal of nanometer-sized contaminant particles (CPs) from substrates is essential in successful fabrication of nanoscale devices. The particle beam technique that uses nanometer-sized bullet particles (BPs) moving at supersonic velocity was improved by operating it at room temperature to achieve higher velocity and size uniformity of BPs and was successfully used to remove CPs as small as 10 nm. CO2 BPs were generated by gas-phase nucleation and growth in a supersonic nozzle; appropriate size and velocity of the BPs were obtained by optimizing the nozzle contours and CO2/He mixture fraction. Cleaning efficiency greater than 95% was attained. BP velocity was the most important parameter affecting removal of CPs in the 10-nm size range. Compared to cryogenic Ar or N2 particles, CO2 BPs were more uniform in size and had higher velocity and, therefore, cleaned CPs more effectively. PMID:22494621

  7. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  8. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, John E.; Kelly, Thomas F.

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  9. Tunable nanometer electrode gaps by MeV ion irradiation

    PubMed Central

    Cheang-Wong, J.-C.; Narumi, K.; Schürmann, G. M.; Aziz, M. J.; Golovchenko, J. A.

    2012-01-01

    We report the use of MeV ion-irradiation-induced plastic deformation of amorphous materials to fabricate electrodes with nanometer-sized gaps. Plastic deformation of the amorphous metal Pd80Si20 is induced by 4.64 MeV O2+ ion irradiation, allowing the complete closing of a sub-micrometer gap. We measure the evolving gap size in situ by monitoring the field emission current-voltage (I-V) characteristics between electrodes. The I-V behavior is consistent with Fowler-Nordheim tunneling. We show that using feedback control on this signal permits gap size fabrication with atomic-scale precision. We expect this approach to nanogap fabrication will enable the practical realization of single molecule controlled devices and sensors. PMID:22550357

  10. Nanometer-sized dynamic entities in an aqueous system

    DOE PAGES

    Mamontov, Eugene; Zolnierczuk, Piotr A.; Ohl, Michael E.

    2015-01-05

    Using neutron spin-echo and backscattering spectroscopy, we have found that at low temperatures water molecules in an aqueous solution engage in center-of-mass dynamics that are different from both the main structural relaxations and the well-known localized motions in the transient cages of the nearest neighbor molecules. While the latter localized motions are known to take place on the picosecond time scale and Angstrom length scale, the slower motions that we have observed are found on the nanosecond time scale and nanometer length scale. They are associated with the slow secondary relaxations, or excess wing dynamics, in glass-forming liquids. Our approach,more » therefore, can be applied to probe the characteristic length scale of the dynamic entities associated with slow dynamics in glass-forming liquids, which presently cannot be studied by other experimental techniques.« less

  11. Nanometer-sized dynamic entities in an aqueous system

    SciTech Connect

    Mamontov, Eugene; Zolnierczuk, Piotr A.; Ohl, Michael E.

    2015-01-05

    Using neutron spin-echo and backscattering spectroscopy, we have found that at low temperatures water molecules in an aqueous solution engage in center-of-mass dynamics that are different from both the main structural relaxations and the well-known localized motions in the transient cages of the nearest neighbor molecules. While the latter localized motions are known to take place on the picosecond time scale and Angstrom length scale, the slower motions that we have observed are found on the nanosecond time scale and nanometer length scale. They are associated with the slow secondary relaxations, or excess wing dynamics, in glass-forming liquids. Our approach, therefore, can be applied to probe the characteristic length scale of the dynamic entities associated with slow dynamics in glass-forming liquids, which presently cannot be studied by other experimental techniques.

  12. Water transportation across narrow channel of nanometer dimension

    NASA Astrophysics Data System (ADS)

    Wan, Rongzheng; Fang, Haiping

    2010-06-01

    Since the discovery of the carbon nanotube and aquaporin, the study of the transportation of water across nanochannels has become one of the hot subjects. When the radius of a nanochannel is only about one nanometer or a little larger, water confined in those nanoscale channels usually exhibits dynamics different from those in bulk system, such as the wet-dry transition due to the confinement, concerted hydrogen-bond orientations and flipping, concerted motion of water molecules, and strong interactions with external charges. Those dynamics correlate with the unique behavior of the water transportation across the channels, such as the extra-high permeability, excellent on-off gating behavior with response to the external mechanical and electrical signals and noises, enhancement by structure outside the channel, directional transportation driven by charges close to a channel or electric field. In this article, we review some of the recent progress on the study of the water molecules inside those narrow nanochannels.

  13. Mechanical Properties of Materials with Nanometer Scale Microstructures

    SciTech Connect

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  14. Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids.

    PubMed

    Liu, Xiaoming; Deng, Xuegong; Sciortino, Paul; Buonanno, Mike; Walters, Frank; Varghese, Ron; Bacon, Joel; Chen, Lei; O'Brien, Nada; Wang, Jian Jim

    2006-12-01

    We wrapped 150 nm period aluminum wire grid polarizer (WGP) with AlSiOx by using atomic layer deposition at 250 degrees C. The nanometer precision coating defined the spacer to double the spatial frequency of the 100 mm diameter grating fabricated by using a legacy immersion holography setup at 351 nm wavelength. Half-pitch grating of approximately 38 nm was demonstrated with good pattern uniformity, excellent repeatability, and a wide processing window. We believe 10 nm half-pitch grating over even larger areas are viable, overcoming one major hurdle to commercialize nanoimprint.

  15. Mass Spectrometry of Atmospheric Aerosol: 1 nanometer to 1 micron

    NASA Astrophysics Data System (ADS)

    Worsnop, D. R.; Ehn, M.; Junninen, H.; Kulmala, M. T.

    2010-12-01

    The role of aerosol particles remains the largest uncertainty in quantitatively assessing past, current and future climate change. The principal reason for that uncertainty arises from the need to characterize and model composition and size dependent aerosol processes, ranging from nanometer to micron scales. Aerosol mass spectrometry results have shown that about half the sub-micron aerosol composition is composed of highly oxygenated organics that are not well understood in terms of photochemical reaction mechanisms (Jimenez et al, 2009). This work has included application of high resolution time-of-flight mass spectrometry (ToFMS) in order to determine elemental and functional group composition of complex organic components. Recently, we have applied similar ToFMS to determine the composition of ambient ions, molecules and clusters, potentially involved in formation and growth of nano-particles (Junninen et al, 2010). Observed organic anions (molecular weight range 200-500 Th) have similar chemical composition as the least volatile secondary organics observed in fine particles; while organic cations are dominated by amines and pyridines. During nucleation events, anions are dominated by sulphuric acid cluster ions (Ehn et al, 2010). In both nanometer and micrometer size ranges, the goal to elucidate the roles of inorganic and organic species, particularly how particle evolution and physical properties depend on mixed compositions. Recent results will be discussed, including ambient and experimental chamber observations. Ehn et al, Atmos. Chem. Phys. Discuss., 10, 14897-14946, 2010 Jimenez et al, Science, 326, 1525-1529, 2009 Junninen et al, Atmos. Meas. Tech., 3, 1039-1053, 2010

  16. Whole-cell imaging at nanometer resolutions using fast and slow focused helium ions.

    PubMed

    Chen, Xiao; Udalagama, Chammika N B; Chen, Ce-Belle; Bettiol, Andrew A; Pickard, Daniel S; Venkatesan, T; Watt, Frank

    2011-10-01

    Observations of the interior structure of cells and subcellular organelles are important steps in unraveling organelle functions. Microscopy using helium ions can play a major role in both surface and subcellular imaging because it can provide subnanometer resolutions at the cell surface for slow helium ions, and fast helium ions can penetrate cells without a significant loss of resolution. Slow (e.g., 10-50 keV) helium ion beams can now be focused to subnanometer dimensions (∼0.25 nm), and keV helium ion microscopy can be used to image the surfaces of cells at high resolutions. Because of the ease of neutralizing the sample charge using a flood electron beam, surface charging effects are minimal and therefore cell surfaces can be imaged without the need for a conducting metallic coating. Fast (MeV) helium ions maintain a straight path as they pass through a cell. Along the ion trajectory, the helium ion undergoes multiple electron collisions, and for each collision a small amount of energy is lost to the scattered electron. By measuring the total energy loss of each MeV helium ion as it passes through the cell, we can construct an energy-loss image that is representative of the mass distribution of the cell. This work paves the way to use ions for whole-cell investigations at nanometer resolutions through structural, elemental (via nuclear elastic backscattering), and fluorescence (via ion induced fluorescence) imaging.

  17. Sub-nanometer in-die overlay metrology: measurement and simulation at the edge of finiteness

    NASA Astrophysics Data System (ADS)

    Smilde, Henk-Jan H.; Jak, Martin; den Boef, Arie; van Schijndel, Mark; Bozkurt, Murat; Fuchs, Andreas; van der Schaar, Maurits; Meyer, Steffen; Morgan, Stephen; Bhattacharyya, Kaustuve; Huang, Guo-Tsai; Ke, Chih-Ming; Chen, Kai-Hsiung

    2013-04-01

    The target size reduction for overlay metrology is driven by the optimization of the device area. Furthermore, for the future semiconductor nodes accurate metrology on the order of 0.2 nm is necessary locally in the device area, requiring small in-die targets that fit within the product structures on the wafer. In this, the diffraction-based overlay metrology using optical scatterometry is challenged to extreme limits. The small grating cannot be considered as an infinitely repeating line-space structure with a sharply peaked spectrum, however a continuous spectrum is observed. Also, metrology proximity effects due to the environment near the metrology target need to be taken into account. On the one hand, this sets strict design and assembly rules of the metrology sensor. On the other hand, the optical ray-based analysis is extended to wave-based analysis to capture the full extent of the overlay application and sensor. In this publication, the challenges of sub-nanometer in-die overlay metrology are addressed, including measurements and simulations.

  18. Experimental determination of ampicillin adsorption to nanometer-size Al2O3 in water.

    PubMed

    Peterson, Jonathan W; Burkhart, Rachel S; Shaw, Drew C; Schuiling, Amanda B; Haserodt, Megan J; Seymour, Michael D

    2010-09-01

    Transport of antibiotics in soil-water systems is controlled in part by adsorption to nanometer-size (10(-9)m) particles. Batch adsorption experiments were performed with ampicillin, a common amphoteric antibiotic, and 50 nm-Al(2)O(3) (alpha-alumina) at different pH conditions. Sorption to Al(2)O(3) can be described by linear isotherms for 2.9 microM-2.9 mM ampicillin concentrations. Distribution coefficients (K(d)) are 11.1 (+/-0.32)L kg(-1) at pH 2, 0.55 (+/-.04) L kg(-1) at pH 4, 21.9 (+/-0.9) L kg(-1) at pH 6, and 39.5 (+/-2.2) L kg(-1) at pH 8. At pH 2, approximately 47% of the initially adsorbed drug was removable by rinsing, at pH 4-56% was removed. Only 7% of the drug could be removed by rinsing at pH 6, and 3% at pH 8. Weak electrostatic forces dominate at pH<4, and stronger attachment mechanisms at higher pH. Low yields in rinsing (desorption) experiments at pH6 indicate strong attachment mechanisms, either electrostatic or possibly surface complexation. PMID:20638098

  19. Nanometer-scale imaging and pore-scale fluid flow modeling inchalk

    SciTech Connect

    Tomutsa, Liviu; Silin, Dmitriy; Radmilovich, Velimir

    2005-08-23

    For many rocks of high economic interest such as chalk,diatomite, tight gas sands or coal, nanometer scale resolution is neededto resolve the 3D-pore structure, which controls the flow and trapping offluids in the rocks. Such resolutions cannot be achieved with existingtomographic technologies. A new 3D imaging method, based on serialsectioning and using the Focused Ion Beam (FIB) technology has beendeveloped. FIB allows for the milling of layers as thin as 10 nanometersby using accelerated Ga+ ions to sputter atoms from the sample surface.After each milling step, as a new surface is exposed, a 2D image of thissurface is generated. Next, the 2D images are stacked to reconstruct the3D pore or grain structure. Resolutions as high as 10 nm are achievableusing this technique. A new image processing method uses directmorphological analysis of the pore space to characterize thepetrophysical properties of diverse formations. In addition to estimationof the petrophysical properties (porosity, permeability, relativepermeability and capillary pressures), the method is used for simulationof fluid displacement processes, such as those encountered in variousimproved oil recovery (IOR) approaches. Computed with the new methodcapillary pressure curves are in good agreement with laboratory data. Themethod has also been applied for visualization of the fluid distributionat various saturations from the new FIB data.

  20. Structure and electrochemical properties of nanometer Cu substituted α-nickel hydroxide

    SciTech Connect

    Bao, Jie; Zhu, Yanjuan; Zhang, Zhongju; Xu, Qingsheng; Zhao, Weiren; Chen, Jian; Zhang, Wei; Han, Quanyong

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Cu substituted α-nickel hydroxide was prepared by ultrasonic assisted precipitation. ► The XRD peaks are anisotropic broadening. ► The electrode for 0.9 wt.% Cu has the highest capacity of 310 mAh/g at 0.2 C. -- Abstract: Nanometer Cu-substituted α-nickel hydroxide was synthesized by means of ultrasonic-assisted precipitation. Particle size distribution (PSD) measurement, X-ray diffraction (XRD), and high-resolution transmission electron microscope (HR-TEM) were used to characterize the physical properties of the synthesized samples. The results indicate that the average particle size of the samples is about 96–110 nm and the XRD diffraction peaks are anisotropic broadening. The crystal grains are mainly polycrystal structure with columnar or needle-like morphology, containing many defects. With increase of Cu content, the shape of primary particles transform from columnar to needle-like. The influences of doping amounts of Cu on the electrochemical performance were investigated through constant current charge/discharge and cyclic voltammetric measurements. The specific capacity increases initially and then decreases with increasing Cu-doping ratio, the electrode C containing 0.9 wt.% Cu shows the maximum discharge capacity of 310 mAh/g at 0.2 C, and it has the lowest charging voltage, higher discharge voltage plateau, better cycle performance and larger proton diffusion coefficient than the other electrodes.

  1. Preparation and properties of nanometer silk fibroin peptide/polyvinyl alcohol blend films for cell growth.

    PubMed

    Luo, Qin; Chen, Zhongmin; Hao, Xuefei; Zhu, Qiangsong; Zhou, Yucheng

    2013-10-01

    Nanometer silk fibroin peptide (Nano-SFP) was prepared from silkworm cocoons through the process of dissolution, dialysis and enzymolysis. For comparison, silk fibroin was decomposed with α-chymotrypsin, trypsin and neutrase, respectively. From the SEM and particle size analysis results, the Nano-SFP prepared by neutrase was found to be the most desirable at about 50-200 nm. Nano-SFP/polyvinyl alcohol films (Nano-SFP/PVA) were prepared by blending Nano-SFP and PVA in water with different weight ratios of 10/90, 20/80, 30/70, and 40/60. The films were characterized by IR, SEM, TG, DSC and tensile strength test for investigating their structure, surface morphology, thermostability, and mechanical property. The results showed that Nano-SFP inserted in the PVA films with small linear particles, and Nano-SFP/PVA films exhibited smooth surface, good thermostability and tensile strength. The growth of Chinese hamster ovary (CHO) cells on films with and without Nano-SFP was investigated with MTT colorimetric assay to assess the films' ability to promote cell growth. It was observed that the Nano-SFP improved cell adhesion on the film surface, and the ability of promoting cell growth increased with the increasing content of Nano-SFP in the blend films. Nano-SFP/PVA film with the ratio of 30/70 was concluded to have the best properties.

  2. Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust.

    PubMed

    Shen, Lazhen; Qiao, Yongsheng; Guo, Yong; Tan, Junru

    2010-05-15

    Blast furnace (BF) flue dust is one of pollutants emitted by iron and steel plants. The recycling of BF flue dust can not only reduce pollution but also bring social and environmental benefits. In this study, leaching technique was employed to the treatment of BF flue dust at first. A mixed solution of ferrous and ferric sulfate was obtained and used as raw material to prepare nanometer-sized black iron oxide pigment (Fe(3)O(4), magnetite) with NaOH as precipitant. The optimal technological conditions including total iron ion concentration, Fe(3+)/Fe(2+) mole ratio, precipitant concentration and reaction temperature were studied and discussed carefully. The spectral reflectance and oil absorption were used as major parameters to evaluate performance of pigment. Furthermore, Fe(3)O(4) particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Under optimized conditions obtained pigment has low average spectral reflectance (<4%), good oil absorption ( approximately 23%), high black intensity, and narrow size distribution 60-70 nm. PMID:20064689

  3. Virtual rough samples to test 3D nanometer-scale scanning electron microscopy stereo photogrammetry

    NASA Astrophysics Data System (ADS)

    Villarrubia, J. S.; Tondare, V. N.; Vladár, A. E.

    2016-03-01

    The combination of scanning electron microscopy for high spatial resolution, images from multiple angles to provide 3D information, and commercially available stereo photogrammetry software for 3D reconstruction offers promise for nanometer-scale dimensional metrology in 3D. A method is described to test 3D photogrammetry software by the use of virtual samples—mathematical samples from which simulated images are made for use as inputs to the software under test. The virtual sample is constructed by wrapping a rough skin with any desired power spectral density around a smooth near-trapezoidal line with rounded top corners. Reconstruction is performed with images simulated from different angular viewpoints. The software's reconstructed 3D model is then compared to the known geometry of the virtual sample. Three commercial photogrammetry software packages were tested. Two of them produced results for line height and width that were within close to 1 nm of the correct values. All of the packages exhibited some difficulty in reconstructing details of the surface roughness.

  4. Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust.

    PubMed

    Shen, Lazhen; Qiao, Yongsheng; Guo, Yong; Tan, Junru

    2010-05-15

    Blast furnace (BF) flue dust is one of pollutants emitted by iron and steel plants. The recycling of BF flue dust can not only reduce pollution but also bring social and environmental benefits. In this study, leaching technique was employed to the treatment of BF flue dust at first. A mixed solution of ferrous and ferric sulfate was obtained and used as raw material to prepare nanometer-sized black iron oxide pigment (Fe(3)O(4), magnetite) with NaOH as precipitant. The optimal technological conditions including total iron ion concentration, Fe(3+)/Fe(2+) mole ratio, precipitant concentration and reaction temperature were studied and discussed carefully. The spectral reflectance and oil absorption were used as major parameters to evaluate performance of pigment. Furthermore, Fe(3)O(4) particles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Under optimized conditions obtained pigment has low average spectral reflectance (<4%), good oil absorption ( approximately 23%), high black intensity, and narrow size distribution 60-70 nm.

  5. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-Concentration Size Distributions

    NASA Technical Reports Server (NTRS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2001-01-01

    We have developed a fast-response Nanometer Aerosol Size Analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 seconds. The analyzer includes a bipolar charger (P0210), an extended-length Nanometer Differential Mobility Analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 second per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the Tandem Differential Mobility Analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented.

  6. Quantitative analysis of nanometer anatase-rutile mixtures via experimentation and theoretical calculation.

    PubMed

    Guo, Li; Zhou, Zhiqiang; Jia, Peiyun; Ye, Feng

    2012-12-01

    In this paper, we developed a method based on X-ray diffractometry for determining the weight ratio of nanometer anatase to rutile or their relative amounts in TiO2 polymorphs, and corresponding formulas for such determination were put forward. The very key constant K in these formulas has been specially evaluated by experimentalizing nanometer polymorphs of titanium dioxide. Furthermore, a theoretical value of K was obtained through detailed theoretical calculation based on X-ray powder diffraction theory. The K value concluded from experimentation coincides well with that yielded from theoretical calculation, thus the validity and reliability of the experimental K value has been further confirmed. This coincidence may also suggest the applicability of X-ray powder diffraction theory to nanometer crystals. With this method, the relative amounts of nanometer anatase and rutile in their mixtures or the weight ratio of nanometer anatase to rutile in any a mixture can be easily determined only upon a XRD test.

  7. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    PubMed

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix.

  8. Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot.

    PubMed

    Pfeiffer, Markus; Lindfors, Klas; Zhang, Hongyi; Fenk, Bernhard; Phillipp, Fritz; Atkinson, Paola; Rastelli, Armando; Schmidt, Oliver G; Giessen, Harald; Lippitz, Markus

    2014-01-01

    Plasmonics offers the opportunity of tailoring the interaction of light with single quantum emitters. However, the strong field localization of plasmons requires spatial fabrication accuracy far beyond what is required for other nanophotonic technologies. Furthermore, this accuracy has to be achieved across different fabrication processes to combine quantum emitters and plasmonics. We demonstrate a solution to this critical problem by controlled positioning of plasmonic nanoantennas with an accuracy of 11 nm next to single self-assembled GaAs semiconductor quantum dots, whose position can be determined with nanometer precision. These dots do not suffer from blinking or bleaching or from random orientation of the transition dipole moment as colloidal nanocrystals do. Our method introduces flexible fabrication of arbitrary nanostructures coupled to single-photon sources in a controllable and scalable fashion.

  9. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    PubMed

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix. PMID:22214656

  10. Nanometer to Millimeter Scale Peptide-Porphyrin Materials

    SciTech Connect

    D Zaytsev; F Xie; M Mukherjee; A Bludin; B Demeler; R Breece; D Tierney; M Ogawa

    2011-12-31

    AQ-Pal14 is a 30-residue polypeptide that was designed to form an {alpha}-helical coiled coil that contains a metal-binding 4-pyridylalanine residue on its solvent-exposed surface. However, characterization of this peptide shows that it exists as a three-stranded coiled coil, not a two-stranded one as predicted from its design. Reaction with cobalt(III) protoporphyrin IX (Co-PPIX) produces a six-coordinate Co-PPIX(AQ-Pal14){sub 2} species that creates two coiled-coil oligomerization domains coordinated to opposite faces of the porphyrin ring. It is found that this species undergoes a buffer-dependent self-assembly process: nanometer-scale globular materials were formed when these components were reacted in unbuffered H{sub 2}O, while millimeter-scale, rod-like materials were prepared when the reaction was performed in phosphate buffer (20 mM, pH 7). It is suggested that assembly of the globular material is dictated by the conformational properties of the coiled-coil forming AQ-Pal14 peptide, whereas that of the rod-like material involves interactions between Co-PPIX and phosphate ion.

  11. Characterization of a superlubricity nanometer interface by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shi, Yunsheng; Yang, Xing; Liu, Bingqi; Dong, Hualai; Zheng, Quanshui

    2016-08-01

    Despite being known for almost two decades, the use of micro-/nano-electromechanical systems in commercial applications remains a challenge because of stiction, friction, and the wear of the interface. Superlubricity may be the solution to these challenges. In this paper, we study factors affecting the realization of superlubricity. Raman spectroscopy and other methods were used to characterize a graphite interface which can realize superlubricity and another graphite interface which cannot realize superlubricity. Raman spectra of the interfaces were obtained with the mapping mode and then processed to obtain the Raman images of the characteristic peaks. The Raman spectra provided the distribution of the surface defects and probed defects. Combined with atomic force microscopy and x-ray photoelectron spectroscopy, the Raman spectra show that the sp3 carbons and carbon–oxygen bond stuck at the edge of the graphite mesa are some of the determinants of large-area superlubricity realization. The characterization results can also be used to understand the friction and wear of large-area superlubricity, which are important for development and application of superlubricity. Furthermore, the methods used in this study are useful techniques and tools for the mechanism analysis of other nanometer interfaces.

  12. Depositing nanometer-sized particles of metals onto carbon allotropes

    NASA Technical Reports Server (NTRS)

    Watson, Kent A. (Inventor); Fallbach, Michael J. (Inventor); Ghose, Sayata (Inventor); Smith, Joseph G. (Inventor); Delozier, Donavon M. (Inventor); Connell, John W. (Inventor)

    2010-01-01

    A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.

  13. Surface forces of colloidal particles from micrometer to nanometer

    NASA Astrophysics Data System (ADS)

    Cho, Jeong-Min

    2003-10-01

    Surface forces of colloidal particles play critical roles in the macroscopic behavior of particulate systems such as dispersion and coagulation, adhesion and coating, and the rheological behavior of ceramic slurries. As particle size is decreased from micrometer to nanometer range, surface forces are increasingly important. Polyelectrolytes are the chemical additives commonly used to efficiently control the stabilization of the colloidal system. Their conformations on the solid surfaces as well as the interactions between the adsorbed polyelectrolytes are important issues in colloidal processing. Most experimental and theoretical approaches to the surface forces are based on particle sizes in the micrometer range. However, nanoparticles at close proximity or high solids loading are expected to show different behavior than what can be estimated from conventional theories such as continuum or mean field theories. My study examined the effect of pH, ionic strength, and molecular weight of the polyelectrolytes on the surface forces of colloidal particles by the interplay with the adsorption, turbidity, and direct surface force measurement in terms of the conformation on the solid surfaces. The colloid probe technique based on atomic force microscopy (AFM) is well established for micron size particles; and could be extended for nanosize particles by using carbon nanotubes as proximal probes. Nanotubes with their high aspect ratio avoid the contribution from cone shapes that happens with AFM tips. The difference in particle size significantly influences surface forces for sterically dispersed colloidal systems.

  14. 469nm Fiber Laser Source

    SciTech Connect

    Drobshoff, A; Dawson, J W; Pennington, D M; Payne, S A; Beach, R

    2005-01-20

    We have demonstrated 466mW of 469nm light from a frequency doubled continuous wave fiber laser. The system consisted of a 938nm single frequency laser diode master oscillator, which was amplified in two stages to 5 Watts using cladding pumped Nd{sup 3+} fiber amplifiers and then frequency doubled in a single pass through periodically poled KTP. The 3cm long PPKTP crystal was made by Raicol Crystals Ltd. with a period of 5.9 {micro}m and had a phase match temperature of 47 degrees Centigrade. The beam was focused to a 1/e{sup 2} diameter in the crystal of 29 {micro}m. Overall conversion efficiency was 11% and the results agreed well with standard models. Our 938nm fiber amplifier design minimizes amplified spontaneous emission at 1088nm by employing an optimized core to cladding size ratio. This design allows the 3-level transition to operate at high inversion, thus making it competitive with the 1088nm 4-level transition. We have also carefully chosen the fiber coil diameter to help suppress propagation of wavelengths longer than 938 nm. At 2 Watts, the 938nm laser had an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >10:1).

  15. Molecular Dynamics Simulations Of Nanometer-Scale Feature Etch

    SciTech Connect

    Vegh, J. J.; Graves, D. B.

    2008-09-23

    Molecular dynamics (MD) simulations have been carried out to examine fundamental etch limitations. Beams of Ar{sup +}, Ar{sup +}/F and CF{sub x}{sup +} (x = 2,3) with 2 nm diameter cylindrical confinement were utilized to mimic 'perfect' masks for small feature etching in silicon. The holes formed during etch exhibit sidewall damage and passivation as a result of ion-induced mixing. The MD results predict a minimum hole diameter of {approx}5 nm after post-etch cleaning of the sidewall.

  16. Fabrication and Characterization of Surface P - MOS Transistors with Channel Lengths to 200 Nanometers

    NASA Astrophysics Data System (ADS)

    Kugelmass, Sheldon Michael

    The scaling of MOS devices requires the development of new fabrication processes, device structures and characterization techniques. A process architecture for the fabrication of nanometer scale, surface p-channel MOS transistors was developed and used to study the impact of gate oxide thickness and gate length scaling as well as to investigate a novel source/drain structure. A new capacitance-based technique for the characterization of hot carrier induced degradation in p-channel MOS transistors was developed and applied to the fabricated devices. Several process modules were developed and integrated into the device fabrication sequence. Rapid Thermal Processing was used for growth of the gate oxide, reoxidation of the gate polysilicon and formation of shallow p^+ /n junctions. The deposition of in situ doped polysilicon films was characterized. P-channel MOS transistors were fabricated with gate oxides as thin as 5 nm as were devices with channel lengths below 200 nm. Polysilicon depletion, due to insufficient doping of the gate polysilicon, increased as the gate oxide decreased. The transconductance increased with decreasing effective length, reaching a value of 82.3 muS/mum for L_{rm eff} = 180 nm. Formation of shallow source/drain junctions using gallium was investigated. A high temperature anneal (1050 ^circC) was required to eliminate implant damage. SIMS analysis showed that after 15 seconds at 1050^circC, over 50% of the dopant was lost to the ambient. A Ga source/drain extension was integrated into the existing MOS device structure and had 15-25% less lateral encroachment of dopant into the channel than an equivalent boron doped structure. The difference in the gate to source/drain capacitance before and after hot carrier stress reflects the influence of a localized trapped charge distribution in the gate oxide. A simple model indicated that both the length and the threshold voltage shift of the degraded region increase with increasing stress time. The

  17. Study of program defects of 22nm nanoimprint template with an advanced e-beam inspection system

    NASA Astrophysics Data System (ADS)

    Hiraka, Takaaki; Mizuochi, Jun; Nakanishi, Yuko; Yusa, Satoshi; Sasaki, Shiho; Kurihara, Masaaki; Toyama, Nobuhito; Morikawa, Yasutaka; Mohri, Hiroshi; Hayashi, Naoya; Xiao, Hong; Kuan, Chiyan; Wang, Fei; Ma, Long; Zhao, Yan; Jau, Jack

    2009-10-01

    Nanoimprint lithography (NIL) is a candidate of alternative, low cost of ownership lithography solution for deep nano-meter device manufacturing12. For the NIL template pattern making, we have been developing the processes with 100keV SB EB writer and 50keV VSB EB writer to achieve the fine resolution of near 20nm1-7. However, inspection of nanoimprint template posed a big challenge to inspection system due to the small geometry, 1x comparing to 4x of Optical mask and EUV mask. Previous studies of nanoimprint template inspection were performed indirectly on a stamped wafer and/or on a round quartz wafer13. Electron beam inspection (EBI) systems have been widely used in semiconductor fabs in nanometer technology nodes. Most commonly EBI applications are electrical defects, or voltage contrast (VC) defects detection and monitoring8-11. In this study, we used a mask EBI system developed by Hermes Microvision, Inc. (HMI) to directly inspect a NIL template with line/space and hole patterns half pitched from 22nm to 90nm and with program defects sized from 4nm to 92nm. Capability of inspection with 10nm pixel size has been demonstrated and capability of capturing program defects sized 12nm and smaller has been shown. This study proved the feasibility of EBI as inspection solution of nanoimprint template for 22nmHP and beyond.

  18. Remote optical sensing on the nanometer scale with a bowtie aperture nano-antenna on a fiber tip of scanning near-field optical microscopy

    SciTech Connect

    Atie, Elie M.; Xie, Zhihua; El Eter, Ali; Salut, Roland; Baida, Fadi I.; Grosjean, Thierry; Nedeljkovic, Dusan; Tannous, Tony

    2015-04-13

    Plasmonic nano-antennas have proven the outstanding ability of sensing chemical and physical processes down to the nanometer scale. Sensing is usually achieved within the highly confined optical fields generated resonantly by the nano-antennas, i.e., in contact to the nanostructures. In this paper, we demonstrate the sensing capability of nano-antennas to their larger scale environment, well beyond their plasmonic confinement volume, leading to the concept of “remote” (non contact) sensing on the nanometer scale. On the basis of a bowtie-aperture nano-antenna (BNA) integrated at the apex of a SNOM (Scanning Near-field Optical Microscopy) fiber tip, we introduce an ultra-compact, moveable, and background-free optical nanosensor for the remote sensing of a silicon surface (up to distance of 300 nm). Sensitivity of the BNA to its large scale environment is high enough to expect the monitoring and control of the spacing between the nano-antenna and a silicon surface with sub-nanometer accuracy. This work paves the way towards an alternative class of nanopositioning techniques, based on the monitoring of diffraction-free plasmon resonance, that are alternative to nanomechanical and diffraction-limited optical interference-based devices.

  19. Nanometer-thick flat lens with adjustable focus

    SciTech Connect

    Son, T. V.; Haché, A.; Ba, C. O. F.; Vallée, R.

    2014-12-08

    We report laser beam focusing by a flat, homogeneous film with a thickness of less than 100 nm. The effect relies on refractive index changes occurring in vanadium dioxide as it undergoes a phase transition from insulator to metal. Phase front curvature is achieved by means of temperature gradients, and adjustable focal lengths from infinity to 30 cm are attained.

  20. Selective surface activation of a functional monolayer for the fabrication of nanometer scale thiol patterns and directed self-assembly of gold nanoparticles.

    PubMed

    Fresco, Zachary M; Fréchet, Jean M J

    2005-06-15

    Application of a voltage bias between the tip of an atomic force microscope (AFM) and a silicon substrate causes the localized modification of a specially designed self-assembled monolayer (SAM), transforming a surface-bound thiocarbonate into a surface-bound thiol. The resulting surface-bound thiols are used to direct the patternwise self-assembly of gold nanoparticles (AuNPs). This methodology is applied to deposit individual AuNPs onto a surface with nanometer precision and to produce 10 nm lines of closely spaced AuNPs that are a single nanoparticle in width.

  1. Atom probe microscopy of three-dimensional distribution of silicon isotopes in {sup 28}Si/{sup 30}Si isotope superlattices with sub-nanometer spatial resolution

    SciTech Connect

    Shimizu, Yasuo; Kawamura, Yoko; Uematsu, Masashi; Itoh, Kohei M.; Tomita, Mitsuhiro; Sasaki, Mikio; Uchida, Hiroshi; Takahashi, Mamoru

    2009-10-01

    Laser-assisted atom probe microscopy of 2 nm period {sup 28}Si/{sup 30}Si isotope superlattices (SLs) is reported. Three-dimensional distributions of {sup 28}Si and {sup 30}Si stable isotopes are obtained with sub-nanometer spatial resolution. The depth resolution of the present atom probe analysis is much higher than that of secondary ion mass spectrometry (SIMS) even when SIMS is performed with a great care to reduce the artifact due to atomic mixing. Outlook of Si isotope SLs as ideal depth scales for SIMS and three-dimensional position standards for atom probe microscopy is discussed.

  2. Combining dissimilar materials at nanometer scale for energy harvesting

    NASA Astrophysics Data System (ADS)

    Kobayashi, Nobuhiko P.

    2010-04-01

    The development of next-generation energy resources that are reliable and economically/environmentally acceptable is a key to harnessing and providing the resources essential for the life of mankind. Our research focuses on the development of novel semiconductor platforms that would significantly benefit energy harvesting, in particular, from light and heat. In these critical applications, traditional semiconductor solid-state devices, such as photovoltaic (PV) and thermoelectric (TE) devices based on a stack of single-crystal semiconductor thin films or single-crystal bulk semiconductor have several drawbacks, for instance; scalability-limits arise when ultra-large-scale implementation is envisioned for PV devices and performance-limits arise for TE devices in which the interplay of both electronic and phonon systems is important. In our research, various types of nanometer-scale semiconductor structures (e.g., nanowires and nanoparticles) coupled to or embedded within a micrometer-scale semiconductor structure (i.e., semiconductor nanomicrometer hybrid platforms) are explored to build a variety of non-conventional PV and TE devices. Two core projects are to develop semiconductor nano-micrometer hybrid platforms based on (1) an ensemble of single-crystal semiconductor nanowires connected to non-single-crystal semiconductor surfaces and (2) semimetallic nanoparticles embedded within a single-crystal semiconductor. The semiconductor nano-micrometer hybrid platforms are studied within the context of their basic electronic, optical, and thermal properties, which will be further assessed and validated by comparison with theoretical approaches to draw comprehensive pictures of physicochemical properties of these semiconductor platforms.

  3. Accurate in-line CD metrology for nanometer semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Perng, Baw-Ching; Shieh, Jyu-Horng; Jang, S.-M.; Liang, M.-S.; Huang, Renee; Chen, Li-Chien; Hwang, Ruey-Lian; Hsu, Joe; Fong, David

    2006-03-01

    The need for absolute accuracy is increasing as semiconductor-manufacturing technologies advance to sub-65nm nodes, since device sizes are reducing to sub-50nm but offsets ranging from 5nm to 20nm are often encountered. While TEM is well-recognized as the most accurate CD metrology, direct comparison between the TEM data and in-line CD data might be misleading sometimes due to different statistical sampling and interferences from sidewall roughness. In this work we explore the capability of CD-AFM as an accurate in-line CD reference metrology. Being a member of scanning profiling metrology, CD-AFM has the advantages of avoiding e-beam damage and minimum sample damage induced CD changes, in addition to the capability of more statistical sampling than typical cross section metrologies. While AFM has already gained its reputation on the accuracy of depth measurement, not much data was reported on the accuracy of CD-AFM for CD measurement. Our main focus here is to prove the accuracy of CD-AFM and show its measuring capability for semiconductor related materials and patterns. In addition to the typical precision check, we spent an intensive effort on examining the bias performance of this CD metrology, which is defined as the difference between CD-AFM data and the best-known CD value of the prepared samples. We first examine line edge roughness (LER) behavior for line patterns of various materials, including polysilicon, photoresist, and a porous low k material. Based on the LER characteristics of each patterning, a method is proposed to reduce its influence on CD measurement. Application of our method to a VLSI nanoCD standard is then performed, and agreement of less than 1nm bias is achieved between the CD-AFM data and the standard's value. With very careful sample preparations and TEM tool calibration, we also obtained excellent correlation between CD-AFM and TEM for poly-CDs ranging from 70nm to 400nm. CD measurements of poly ADI and low k trenches are also

  4. Microbes make average 2 nanometer diameter crystalline UO2 particles.

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F.

    2001-12-01

    It is well known that phylogenetically diverse groups of microorganisms are capable of catalyzing the reduction of highly soluble U(VI) to highly insoluble U(IV), which rapidly precipitates as uraninite (UO2). Because biological uraninite is highly insoluble, microbial uranyl reduction is being intensively studied as the basis for a cost-effective in-situ bioremediation strategy. Previous studies have described UO2 biomineralization products as amorphous or poorly crystalline. The objective of this study is to characterize the nanocrystalline uraninite in detail in order to determine the particle size, crystallinity, and size-related structural characteristics, and to examine the implications of these for reoxidation and transport. In this study, we obtained U-contaminated sediment and water from an inactive U mine and incubated them anaerobically with nutrients to stimulate reductive precipitation of UO2 by indigenous anaerobic bacteria, mainly Gram-positive spore-forming Desulfosporosinus and Clostridium spp. as revealed by RNA-based phylogenetic analysis. Desulfosporosinus sp. was isolated from the sediment and UO2 was precipitated by this isolate from a simple solution that contains only U and electron donors. We characterized UO2 formed in both of the experiments by high resolution-TEM (HRTEM) and X-ray absorption fine structure analysis (XAFS). The results from HRTEM showed that both the pure and the mixed cultures of microorganisms precipitated around 1.5 - 3 nm crystalline UO2 particles. Some particles as small as around 1 nm could be imaged. Rare particles around 10 nm in diameter were also present. Particles adhere to cells and form colloidal aggregates with low fractal dimension. In some cases, coarsening by oriented attachment on \\{111\\} is evident. Our preliminary results from XAFS for the incubated U-contaminated sample also indicated an average diameter of UO2 of 2 nm. In nanoparticles, the U-U distance obtained by XAFS was 0.373 nm, 0.012 nm

  5. Nanometer scale electrical characterization of thin dielectric films

    NASA Astrophysics Data System (ADS)

    Lee, David Timothy

    This work is directed towards the use of electrical properties to characterize thin dielectric films on nm length scales. In particular, two technologically important systems have been studied: interface defects at the Si/SiO 2 interface and the use of scanning capacitance microscopy to investigate lubricant films, primarily composed of fully bonded perfluoropolyethers, that are used to lubricate hard disk drive platters and show promise for use in micro-electromechanical systems (MEMS). The first system is the charge trapping defect found at the interface between Si and thin silicon dioxide films grown on the Si. The goal of this work is to make both ballistic electron emission microscopy (BEEM) and charge pumping measurements on the same device. This combination of techniques will allow us to make nm-scale measurements of interface state formation and hot-carrier transport within working metal oxide semiconductor field effect transistors (MOSFET). We have shown that BEEM measurements can be made on metal-oxide-semiconductor (MOS) capacitors that have been subjected to standard semiconductor fabrication processes. While BEEM compatible MOSFETs have not yet been produced, an ongoing effort in collaboration with IMEC in Leuven, Belgium is progressing towards working, BEEM compatible MOSFETs. The second system under study is the use of capacitance measurements to resolve sub-nm variations in the thickness of thin dielectric films with nm-scale lateral resolution. Towards this goal, we have: developed direct, low-frequency scanning capacitance microscopy (SCM) instrumentation capable of measuring 10-18F (aF) changes in the capacitance between an atomic force microscope (AFM) tip and a sample with a noise level of 0.4 aF/ Hz ; for the first time, quantified and developed means of accounting for changes in parasitic capacitance that occur while scanning an AFM tip; for the first time, quantified the effective area of the meniscus that forms between the AFM tip and the

  6. Assessing the concept of structure sensitivity or insensitivity for sub-nanometer catalyst materials

    NASA Astrophysics Data System (ADS)

    Crampton, Andrew S.; Rötzer, Marian D.; Ridge, Claron J.; Yoon, Bokwon; Schweinberger, Florian F.; Landman, Uzi; Heiz, Ueli

    2016-10-01

    The nature of the nano-catalyzed hydrogenation of ethylene, yielding benchmark information pertaining to the concept of structure sensitivity/insensitivity and its applicability at the bottom of the catalyst particle size-range, is explored with experiments on size-selected Ptn (n = 7-40) clusters soft-landed on MgO, in conjunction with first-principles simulations. As in the case of larger particles both the direct ethylene hydrogenation channel and the parallel hydrogenation-dehydrogenation ethylidyne-producing route must be considered, with the fundamental uncovering that at the < 1 nm size-scale the reaction exhibits characteristics consistent with structure sensitivity, in contrast to the structure insensitivity found for larger particles. In this size-regime, the chemical properties can be modulated and tuned by a single atom, reflected by the onset of low temperature hydrogenation at T > 150 K catalyzed by Ptn (n ≥ 10) clusters, with maximum room temperature reactivity observed for Pt13 using a pulsed molecular beam technique. Structure insensitive behavior, inherent for specific cluster sizes at ambient temperatures, can be induced in the more active sizes, e.g. Pt13, by a temperature increase, up to 400 K, which opens dehydrogenation channels leading to ethylidyne formation. This reaction channel was, however found to be attenuated on Pt20, as catalyst activity remained elevated after the 400 K step. Pt30 displayed behavior which can be understood from extrapolating bulk properties to this size range; in particular the calculated d-band center. In the non-scalable sub-nanometer size regime, however, precise control of particle size may be used for atom-by-atom tuning and manipulation of catalyzed hydrogenation activity and selectivity.

  7. Nanometer-scale characterization of exceptionally preserved bacterial fossils in Paleocene phosphorites from Ouled Abdoun (Morocco).

    PubMed

    Cosmidis, J; Benzerara, K; Gheerbrant, E; Estève, I; Bouya, B; Amaghzaz, M

    2013-03-01

    Micrometer-sized spherical and rod-shaped forms have been reported in many phosphorites and often interpreted as microbes fossilized by apatite, based on their morphologic resemblance with modern bacteria inferred by scanning electron microscopy (SEM) observations. This interpretation supports models involving bacteria in the formation of phosphorites. Here, we studied a phosphatic coprolite of Paleocene age originating from the Ouled Abdoun phosphate basin (Morocco) down to the nanometer-scale using focused ion beam milling, transmission electron microscopy (TEM), and scanning transmission x-ray microscopy (STXM) coupled with x-ray absorption near-edge structure spectroscopy (XANES). The coprolite, exclusively composed of francolite (a carbonate-fluroapatite), is formed by the accumulation of spherical objects, delimited by a thin envelope, and whose apparent diameters are between 0.5 and 3 μm. The envelope of the spheres is composed of a continuous crown dense to electrons, which measures 20-40 nm in thickness. It is surrounded by two thinner layers that are more porous and transparent to electrons and enriched in organic carbon. The observed spherical objects are very similar with bacteria encrusting in hydroxyapatite as observed in laboratory experiments. We suggest that they are Gram-negative bacteria fossilized by francolite, the precipitation of which started within the periplasm of the cells. We discuss the role of bacteria in the fossilization mechanism and propose that they could have played an active role in the formation of francolite. This study shows that ancient phosphorites can contain fossil biological subcellular structures as fine as a bacterial periplasm. Moreover, we demonstrate that while morphological information provided by SEM analyses is valuable, the use of additional nanoscale analyses is a powerful approach to help inferring the biogenicity of biomorphs found in phosphorites. A more systematic use of this approach could considerably

  8. Oxidation-induced structural changes in sub-nanometer platinum supported on alumina

    DOE PAGES

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; Narula, Chaitanya Kumar

    2015-06-26

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al2O3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. Furthermore, we find thatmore » sub-nanometer Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Lastly, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.« less

  9. Oxidation-induced structural changes in sub-nanometer platinum supported on alumina

    SciTech Connect

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; Narula, Chaitanya Kumar

    2015-06-26

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al2O3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. Furthermore, we find that sub-nanometer Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Lastly, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.

  10. Friction and Viscous Forces in Sub-Nanometer Water Films

    NASA Astrophysics Data System (ADS)

    Li, Tai-De; Riedo, Elisa

    2007-03-01

    Water under nano-confinement is ubiquitous, with examples including clay swelling, aquaporines, ion channels, and water menisci in micro-electrical-mechanical-systems. However, the structural and rheological characteristics of nano-confined pure and ionized water continue to be the subject of discussion and debate. Here, we report an experiment in which an atomic force microscope tip approaches a flat solid surface in purified water, while small lateral oscillations are applied to the tip. Direct measurements of the lateral forces encountered by a nano-size tip approaching a solid surface in purified water are reported for tip-surface distances, 0±0.03 nm < d < 2 nm. We find that, for hydrophilic surfaces, the dynamic viscosity is measured to grow up orders of magnitude in respect to bulk water, whereas no significant increase in the viscosity has been detected when the confining solid surface is hydrophobic. The origin of the observed different behavior is discussed.

  11. Synthesis of sub-nanometer gold particles on modified silica.

    PubMed

    Beloqui Redondo, A; Ranocchiari, M; van Bokhoven, J A

    2016-02-21

    The deposition of gold on silica tends to give large particles when using conventional techniques. We report the preparation of 0.8 ± 0.2 nm particles on a modified SBA-15 support. The method involves the functionalization of silica with amine groups and deposition of gold at basic pH. These catalysts are highly active and selective in the dehydrogenation of formic acid. PMID:26754911

  12. Nanometer-scale exchange interactions between spin centers in diamond

    NASA Astrophysics Data System (ADS)

    Kortan, V. R.; Şahin, C.; Flatté, M. E.

    2016-06-01

    Exchange interactions between isolated pairs of spin centers in diamond have been calculated, based on an accurate atomistic electronic structure for diamond and any impurity atoms, for spin-center separations of up to 2 nm. The exchange interactions exceed dipolar interactions for spin-center separations of less than 3 nm. NV- spin centers, which involve two lattice sites which differ from the host, interact very differently depending on the relative orientations of the symmetry axis of the spin center and the radius vector connecting the pair. Exchange interactions between transition-metal dopants behave similarly to those of NV- centers. The Mn-Mn exchange interaction decays with a much longer length scale than the Cr-Cr and Ni-Ni exchange interactions, exceeding dipolar interactions for Mn-Mn separations of less than 5 nm. Calculations of these highly anisotropic and spin-center-dependent interactions provide the potential for the design of spin-spin interactions for novel nanomagnetic structures.

  13. Measuring nanometer, three-dimensional motions with light microscopy

    NASA Astrophysics Data System (ADS)

    Davis, Charles Quentin

    Computational motion analysis of images from a light microscope is used to explore mechanics in the microscopic worlds of cells and man-made micromachines. Images of a moving target are taken using a strobe light and a CCD camera attached to a microscope. Temporal sequences of stop-action images are recorded at multiple planes of focus to characterize three-dimensional motions. We demonstrate that motion resolution is limited by the motion detection algorithm. The largest source of error in gradient-based and matching algorithms is statistical bias. We present a new algorithm with errors that are typically smaller than 0.02 pixels. With this algorithm and our video microscopy system, we can measure motions of submicrometer targets with nanometer accuracy. The system has been used to study both hearing structures and man-made micromachines. Analysis of electrically- induced motions of a microfabricated accelerometer and a microfabricated angular velocity sensor allow visualization and quantification of complex modes of motion that limit the performance of these sensors. Pilot studies demonstrate that the system can also measure sound-induced motions of the human stapes, where it can resolve complex modes of motion thought to be important for loud sounds and for certain middle-ear pathologies. The system has also been used to measure mechanical deformations in the mouse tectorial membrane, a gelatinous inner-ear structure that has previously been a difficult target of study. Our major application has been the study of sound-induced motions of sensory cells and accessory structures in the ear of a lizard. Our results, while still preliminary, are the first direct measurements of sound-induced motions of hair bundles and their overlying tectorial membrane. They indicate that the tectorial membrane does not move as a rigid body but has significant shear throughout its thickness. Therefore, the relative motion between the tectorial membrane and the reticular lamina is

  14. Experiment studies of iodinated oil nanometer ferrofluid retention in rabbit liver.

    PubMed

    Zhang, X; Lin, R; Lin, Y; Wu, R H

    2005-01-01

    To study possibility for iodinated oil nanometer ferrofluid retention in rabbit liver. 131I- iodinated oil nanometer ferrofluid were injected into liver right lobe through portal vein in 5 rabbits... - calibrate meter showed continuous.. counts in the region injected. Then the relative metabolic parameters were calculated. Left lobe livers, right lobe livers and lungs of the rabbits were examined in pathology, and the right lobe livers were examined by electron microscope. Five rabbits injected purely 131Iiodinated oil were designated as control group. Single metabolic mode was found in the rabbits in nanometer ferrofluid group. The biological half-life of 131I- iodinated oil nanometer ferrofluid was not different from control group's slow metabolic portion. But control group's rapid metabolic portion were eliminated in a higher speed, range from 8% to 44%. More damage was found in nanometer ferrofluid group's right lobe livers. 131I- iodinated oil nanometer ferrofluid possess the opportunity of local retention in human body and further study is worthwhile. PMID:17282574

  15. Laser-induced damage of TiO{sub 2}/SiO{sub 2} high reflector at 1064 nm

    SciTech Connect

    Yao Jianke; Ma Jianyong; Xiu Cheng; Fan Zhengxiu; Jin Yunxia; Zhao Yuanan; He Hongbo; Shao Jianda; Huang Huolin; Zhang Feng; Wu Zhengyun

    2008-04-15

    A high laser-induced damage threshold (LIDT) TiO{sub 2}/SiO{sub 2} high reflector (HR) at 1064 nm is deposited by e-beam evaporation. The HR is characterized by optical properties, surface, and cross section structure. LIDT is tested at 1064 nm with a 12 ns laser pulse in the one-on-one mode. Raman technique and scanning electron Microscope are used to analyze the laser-induced modification of HR. The possible damage mechanism is discussed. It is found that the LIDT of HR is influenced by the nanometer precursor in the surface, the intrinsic absorption of film material, the compactness of the cross section and surface structure, and the homogeneity of TiO{sub 2} layer. Three typical damage morphologies such as flat-bottom pit, delamination, and plasma scald determine well the nanometer defect initiation mechanism. The laser-induced crystallization consists well with the thermal damage nature of HR.

  16. Photoionization of Nitromethane at 355nm and 266nm

    NASA Astrophysics Data System (ADS)

    Martínez, Denhi; Betancourt, Francisco; Poveda, Juan Carlos; Guerrero, Alfonso; Cisneros, Carmen; Álvarez, Ignacio

    2014-05-01

    Nitromethane is one of the high-yield clean liquid fuels, i.e., thanks to the oxygen contained in nitromethane, much less atmospheric oxygen is burned compared to hydrocarbons such as gasoline, making the nitromethane an important prototypical energetic material, the understanding of its chemistry is relevant in other fields such as atmospheric chemistry or biochemistry. In this work we present the study of photoionization dynamics by multiphoton absorption with 355 nm and 266 nm wavelength photons, using time of flight spectrometry in reflectron mode (R-TOF). Some of the observed ion products appear for both wavelength and other only in one of them; both results were compared with preview observations and new ions were detected. This work is supported by CONACYT grant 165410 and DGAPA-UNAM grants IN-107-912 and IN-102-613.

  17. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  18. MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures and Optical Instrumentation for Glacier Ice Studies

    NASA Astrophysics Data System (ADS)

    Chan, Wing Shan

    MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures: We developed a new actuator microstructure to control the spacing between closely spaced surfaces. Creating and controlling nanometer gaps is of interest in areas such as plasmonics and quantum electronics. For example, energy states in quantum well heterostructures can be tuned by adjusting the physical coupling distance between wells. Unfortunately, such an application calls for active control of a nano-scale air gap between surfaces which are orders of magnitude larger, which is difficult due to stiction forces. A vertical electrostatic wedge actuator was designed to control the air gap between two closely spaced quantum wells in a collapsed cantilever structure. A six-mask fab- rication process was developed and carried out on an InGaAs/InP quantum well het- erostructure on an InP substrate. Upon actuation, the gap spacing between the surfaces was tuned over a maximum range of 55 nm from contact with an applied voltage of 60 V. Challenges in designing and fabricating the device are discussed. Optical Instrumentation for Glacier Ice Studies: We explored new optical instrumentation for glacier ice studies. Glacier ice, such as that of the Greenland and Antarctic ice sheets, is formed by the accumulation of snowfall over hundreds of thousands of years. Not all snowfalls are the same. Their isotopic compositions vary according to the planet's climate at the time, and may contain part of the past atmosphere. The physical properties and chemical content of the ice are therefore proxies of Earth's climate history. In this work, new optical methods and instrumentation based on light scattering and polarization were developed to more efficiently study glacier ice. Field deployments in Antarctica of said instrumentation and results acquired are presented.

  19. A Versatile Methodology Using Sol-Gel, Supercritical Extraction, and Etching to Fabricate a Nitramine Explosive: Nanometer HNIW

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Song, Xiaolan; Song, Dan; Jiang, Wei; Liu, Hongying; Li, Fengsheng

    2013-01-01

    A combinative method with three steps was developed to fabricate HNIW (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtziane) nanoexplosives with the gas anti-solvent (GAS) method improved by introducing a gel frame to limit the overgrowth of recrystallized particles and an acid-assistant to remove the used frame. Forming the mixed gel, by locking the explosive solution into a wet gel whose volume was divided by the networks, was the key for the fabrication. As demonstrated by scanning electron microscopy (SEM) analysis, a log-normal size distribution of nano-HNIW indicated that about 74.4% of the particles had sizes <120 nm and maximum particle size was ∼300 nm. Energy-dispersive X-ray spectroscopy (EDS) and infrared (IR) characterizations showed that the aerogel embedded with nanoexplosive particles was dissolved in hydrochloric acid solution, and the raw ɛ-HNIW was mostly transformed into the α phase (nano-HNIW) during recrystallization. Nano-HNIW exhibited impact and friction sensitivity almost equal to those of raw HNIW, within experimental error. Thermal analysis showed that the decomposition peak temperature decreased by more than 10°C and that the heat release increased by 42.5% when the particle size of HNIW was at the nanometer scale.

  20. Imaging Acoustic Phonon Dynamics on the Nanometer-Femtosecond Spatiotemporal Length-Scale with Ultrafast Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Plemmons, Dayne; Flannigan, David

    Coherent collective lattice oscillations known as phonons dictate a broad range of physical observables in condensed matter and act as primary energy carriers across a wide range of material systems. Despite this omnipresence, analysis of phonon dynamics on their ultrashort native spatiotemporal length scale - that is, the combined nanometer (nm), spatial and femtosecond (fs), temporal length-scales - has largely remained experimentally inaccessible. Here, we employ ultrafast electron microscopy (UEM) to directly image discrete acoustic phonons in real-space with combined nm-fs resolution. By directly probing electron scattering in the image plane (as opposed to the diffraction plane), we retain phase information critical for following the evolution, propagation, scattering, and decay of phonons in relation to morphological features of the specimen (i.e. interfaces, grain boundaries, voids, ripples, etc.). We extract a variety of morphologically-specific quantitative information from the UEM videos including phonon frequencies, phase velocities, and decays times. We expect these direct manifestations of local elastic properties in the vicinity of material defects and interfaces will aide in the understanding and application of phonon-mediated phenomena in nanostructures. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.

  1. Determination of surface area and porosity of small, nanometer-thick films by quartz crystal microbalance measurement of gas adsorption.

    PubMed

    Aoki, Yoshitaka; Hashizume, Mineo; Onoue, Shinya; Kunitake, Toyoki

    2008-11-20

    The Brunauer-Emmett-Teller (BET) surface area of 15 nm-thick films made of TiO2/polyelectrolyte bilayer was determined by quartz crystal microbalance (QCM) measurement of N2 and Ar adsorption isotherms at 77 K. The measurements were carried out using a home-built vacuum chamber that includes built-in 9 MHz QCM and cryostat units. As little as 1 ng of the adsorbed gas could be detected, and the BET surface area of a flat Au film (ca. 0.5 cm2) on an oscillator was determined within an experimental error of +/-5%. The titania/polymer composite film gives N2 and Ar adsorption isotherms consisting of a less-pronounced type-I curve and a break at around p/p0 = 0.7. This behavior is ascribed to the presence of irregular micropores and 6 nm phi-mesopores in the composite film. An analysis of the isotherms shows that the porosity of the composite film is about 12%, which is much smaller than that of bulk titania gel powder. The greater density appears to be related to the reported superior properties (robustness and resistance to electrical breakdown) of the organic/inorganic multilayer film. We conclude that the QCM-based, high-precision measurement of gas adsorption is a powerful tool for investigation of the detailed morphology of nanometer-thick films.

  2. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    PubMed

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  3. Size Fractionation of Two-Dimensional Sub-Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion.

    PubMed

    Chen, Sheng; Duan, Jingjing; Vasileff, Anthony; Qiao, Shi Zhang

    2016-03-01

    A universal technique has been proposed to sort two-dimensional (2D) sub-nanometer thin crystals (manganese dioxide MnO2 and molybdenum disulfide MoS2 ) according to their lateral dimensions. This technique is based on tuning the zeta potential of their aqueous dispersions which induces the selective sedimentation of large-sized 2D crystals and leaves the small-sized counterparts in suspension. The electrocatalytic properties of as-obtained 2D ultrathin crystals are strongly dependent on their lateral size. As a proof-of-concept study, the small-sized MnO2 nanocrystals were tested as the electrocatalysts for the urea-oxidation reaction (UOR), which showed outstanding performance in both half reaction and full electrolytic cell. A mechanism study reveals the enhanced performance is associated with the remarkable structural properties of MnO2 including ultrathin (ca. 0.95 nm), laterally small-sized (50-200 nm), and highly exposed active centers.

  4. Nanometer focusing of hard x rays by phase zone plates

    NASA Astrophysics Data System (ADS)

    Yun, W.; Lai, B.; Cai, Z.; Maser, J.; Legnini, D.; Gluskin, E.; Chen, Z.; Krasnoperova, A. A.; Vladimirsky, Y.; Cerrina, F.; Di Fabrizio, E.; Gentili, M.

    1999-05-01

    Focusing of 8 keV x rays to a spot size of 150 and 90 nm full width at half maximum have been demonstrated at the first- and third-order foci, respectively, of a phase zone plate (PZP). The PZP has a numerical aperture of 1.5 mrad and focusing efficiency of 13% for 8 keV x rays. A flux density gain of 121 000 was obtained at the first-order focus. In this article, the fabrication of the PZP and its experimental characterization are presented and some special applications are discussed.

  5. High power 938 nanometer fiber laser and amplifier

    DOEpatents

    Dawson, Jay W.; Liao, Zhi Ming; Beach, Raymond J.; Drobshoff, Alexander D.; Payne, Stephen A.; Pennington, Deanna M.; Hackenberg, Wolfgang; Calia, Domenico Bonaccini; Taylor, Luke

    2006-05-02

    An optical fiber amplifier includes a length of silica optical fiber having a core doped with neodymium, a first cladding and a second cladding each with succeeding lower refractive indices, where the first cladding diameter is less than 10 times the diameter of the core. The doping concentration of the neodymium is chosen so that the small signal absorption for 816 nm light traveling within the core is less than 15 dB/m above the other fiber losses. The amplifier is optically pumped with one laser into the fiber core and with another laser into the first cladding.

  6. Nanometer to Centimeter Scale Analysis and Modeling of Pore Structures

    NASA Astrophysics Data System (ADS)

    Wesolowski, D. J.; Anovitz, L.; Vlcek, L.; Rother, G.; Cole, D. R.

    2011-12-01

    The microstructure and evolution of pore space in rocks is a critically important factor controlling fluid flow. The size, distribution and connectivity of these confined geometries dictate how fluids including H2O and CO2, migrate into and through these micro- and nano-environments, wet and react with the solid. (Ultra)small-angle neutron scattering and autocorrelations derived from BSE imaging provide a method of quantifying pore structures in a statistically significant manner from the nanometer to the centimeter scale. Multifractal analysis provides additional constraints. These methods were used to characterize the pore features of a variety of potential CO2 geological storage formations and geothermal systems such as the shallow buried quartz arenites from the St. Peter Sandstone and the deeper Mt. Simon quartz arenite in Ohio as well as the Eau Claire shale and mudrocks from the Cranfield MS CO2 injection test and the normal temperature and high-temperature vapor-dominated parts of the Geysers geothermal system in California. For example, analyses of samples of St. Peter sandstone show total porosity correlates with changes in pores structure including pore size ratios, surface fractal dimensions, and lacunarity. These samples contain significant large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity, which may make up fifty percent or more of the total pore volume. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior, our data are both fractal and pseudo-fractal. The scattering curves are composed of steps, modeled as polydispersed assemblages of pores with log-normal distributions. In some samples a surface-fractal overprint is present. There are also significant changes in the mono and multifractal dimensions of the pore structure as the pore fraction decreases. There are strong positive correlations between D(0) and image and total

  7. SQUID magnetometry from nanometer to centimeter length scales

    NASA Astrophysics Data System (ADS)

    Hatridge, Michael Jonathan

    Information stored in magnetic fields plays an important role in everyday life. This information exists over a remarkably wide range of sizes, so that magnetometry at a variety of length scales can extract useful information. Examples at centimeter to millimeter length scales include measurement of spatial and temporal character of fields generated in the human brain and heart, and active manipulation of spins in the human body for non-invasive magnetic resonance imaging (MRI). At micron length scales, magnetometry can be used to measure magnetic objects such as flux qubits; at nanometer length scales it can be used to study individual magnetic domains, and even individual spins. The development of Superconducting QUantum Interference Device (SQUID) based magnetometer for two such applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nanoscale magnetometry, are the focus of this thesis. Conventional MRI has developed into a powerful clinical tool for imaging the human body. This technique is based on nuclear magnetic resonance of protons with the addition application of three-dimensional magnetic field gradients to encode spatial information. Most clinical MRI systems involve magnetic fields generated by superconducting magnets, and the current trend is to higher magnetic fields than the widely used 1.5-T systems. Nonetheless, there is ongoing interest in the development of less expensive imagers operating at lower fields. The prepolarized, SQUID detected ultra-low field MRI (ULF MRI) developed by the Clarke group allows imaging in very weak fields (typically 132 muT, corresponding to a resonant frequency of 5.6 kHz). At these low field strengths, there is enhanced contrast in the longitudinal relaxation time of various tissue types, enabling imaging of objects which are not visible to conventional MRI, for instance prostate cancer. We are currently investigating the contrast between normal and cancerous

  8. Monitoring crystal dissolution at nanometer resolution using laser reflectometry

    NASA Astrophysics Data System (ADS)

    Eggington, P. J.; Taylor, A. G.

    2000-01-01

    Laser reflectometry has been used for the first time as an in situ real-time monitor of the dissolution of the (0 0 1) face of KClO 3 crystals into aqueous solution. During the dissolution process the reflected light was subject to constructive and destructive interference caused by the movement of crystal boundaries. This produced Fabry-Perot oscillations similar to the widely exploited phenomenon used in the laser reflectometry-based metrology of semiconductor surfaces. The method is adapted and theoretical fits to the observed data are presented. The quality of the data allows dissolution rates of 100 nm s -1 to be measured accurately. Data gained by this method was used to verify the concentration dependence of the dissolution rate and confirm it as a diffusion-controlled mechanism. The hydrodynamic radius of the diffusing ions was found to be 0.224 nm, in agreement with literature values. The potential of laser reflectometry for use as an effective probe sensitive to changes in crystal surface morphology during dissolution has also been demonstrated.

  9. Characterization of nanometer-thick polycrystalline silicon with phonon-boundary scattering enhanced thermoelectric properties and its application in infrared sensors

    NASA Astrophysics Data System (ADS)

    Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo

    2014-12-01

    Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK-1 which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 108 and 1.83 × 108 cm Hz1/2 W-1 for sensors of 52 nm thick poly-Si, and 5.75 × 107 and 3.95 × 107 cm Hz1/2 W-1 for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm

  10. Characterization of nanometer-thick polycrystalline silicon with phonon-boundary scattering enhanced thermoelectric properties and its application in infrared sensors.

    PubMed

    Zhou, Huchuan; Kropelnicki, Piotr; Lee, Chengkuo

    2015-01-14

    Although significantly reducing the thermal conductivity of silicon nanowires has been reported, it remains a challenge to integrate silicon nanowires with structure materials and electrodes in the complementary metal-oxide-semiconductor (CMOS) process. In this paper, we investigated the thermal conductivity of nanometer-thick polycrystalline silicon (poly-Si) theoretically and experimentally. By leveraging the phonon-boundary scattering, the thermal conductivity of 52 nm thick poly-Si was measured as low as around 12 W mK(-1) which is only about 10% of the value of bulk single crystalline silicon. The ZT of n-doped and p-doped 52 nm thick poly-Si was measured as 0.067 and 0.024, respectively, while most previously reported data had values of about 0.02 and 0.01 for a poly-Si layer with a thickness of 0.5 μm and above. Thermopile infrared sensors comprising 128 pairs of thermocouples made of either n-doped or p-doped nanometer-thick poly-Si strips in a series connected by an aluminium (Al) metal interconnect layer are fabricated using microelectromechanical system (MEMS) technology. The measured vacuum specific detectivity (D*) of the n-doped and p-doped thermopile infrared (IR) sensors are 3.00 × 10(8) and 1.83 × 10(8) cm Hz(1/2) W(-1) for sensors of 52 nm thick poly-Si, and 5.75 × 10(7) and 3.95 × 10(7) cm Hz(1/2) W(-1) for sensors of 300 nm thick poly-Si, respectively. The outstanding thermoelectric properties indicate our approach is promising for diverse applications using ultrathin poly-Si technology.

  11. Nanometer-scale placement in electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Ferrera, Juan

    2000-12-01

    Electron-beam lithography is capable of high-resolution lithographic pattern generation (down to 10 nm or below). However, for conventional e-beam lithography, pattern- placement accuracy is inferior to resolution. Despite significant efforts to improve pattern placement, a limit is being approached. The placement capability of conventional e-beam tools is insufficient to fabricate narrow-band optical filters and lasers, which require sub-micrometer-pitch gratings with a high degree of spatial coherence. Moreover, it is widely recognized that placement accuracy will not be sufficient for future semiconductor device generations, with minimum feature sizes below 100 nm. In electron-beam lithography, an electromagnetic deflection system is used in conjunction with a laser-interferometer-controlled stage to generate high-resolution patterns over large areas. Placement errors arise because the laser interferometer monitors the stage position, but the e-beam can independently drift relative to the stage. Moreover, the laser interferometer can itself drift during exposure. To overcome this fundamental limitation, the method of spatial phase-locked electron-beam lithography has been proposed. The beam position is referenced to a high- fidelity grid, exposed by interference lithography, on the substrate surface. In this method, pattern-placement performance depends upon the accuracy of the reference grid and the precision with which patterns can be locked to the grid. The grid must be well characterized to serve as a reliable fiducial. This document describes work done to characterize grids generated by interference lithography. A theoretical model was developed to describe the spatial-phase progression of interferometric gratings and grids. The accuracy of the interference lithography apparatus was found to be limited by substrate mounting errors and uncertainty in setting the geometrical parameters that determine the angle of interference. Experimental measurements were

  12. Electron microscopy of whole cells in liquid with nanometer resolution

    PubMed Central

    de Jonge, N.; Peckys, D. B.; Kremers, G. J.; Piston, D. W.

    2009-01-01

    Single gold-tagged epidermal growth factor (EGF) molecules bound to cellular EGF receptors of fixed fibroblast cells were imaged in liquid with a scanning transmission electron microscope (STEM). The cells were placed in buffer solution in a microfluidic device with electron transparent windows inside the vacuum of the electron microscope. A spatial resolution of 4 nm and a pixel dwell time of 20 μs were obtained. The liquid layer was sufficiently thick to contain the cells with a thickness of 7 ± 1 μm. The experimental findings are consistent with a theoretical calculation. Liquid STEM is a unique approach for imaging single molecules in whole cells with significantly improved resolution and imaging speed over existing methods. PMID:19164524

  13. Helimagnetism in nanometer small bilayer iron islands (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Sander, Dirk

    2015-09-01

    We report a novel noncollinear magnetic order in individual nanostructures of a prototypical magnetic material, bilayer iron islands on Cu (111) [1]. Spin-polarized scanning tunnelling microscopy reveals a magnetic stripe phase with a period of 1.28 nm, which is identified as a one-dimensional helical spin order. Ab initio calculations reveal reduced-dimensionality-enhanced long-range antiferromagnetic interactions as the driving force of this spin order. Our findings point at the potential of nanostructured magnets to establish noncollinear magnetic order in a nanostructure, which is magnetically decoupled from the substrate. [1] S.H. Phark, J.A. Fischer, M. Corbetta, D. Sander, K. Nakamura, J. Kirschner, Nature Comm. 5, 5183 (2014).

  14. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    NASA Astrophysics Data System (ADS)

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; Sweat, Daniel P.; Wang, Xudong; Gopalan, Padma

    2016-06-01

    In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and

  15. Direct Patterning of CdSe Quantum Dots into Sub-100 nm Structures

    SciTech Connect

    Hampton, Meredith J.; Templeton, Joseph L.; DeSimone, Joseph M.

    2010-03-02

    Ordered, two-dimensional cadmium selenide (CdSe) arrays have been fabricated on indium-doped tin oxide (ITO) electrodes using the pattern replication in nonwetting templates (PRINT) process. CdSe quantum dots (QDs) with an average diameter of 2.7 nm and a pyridine surface ligand were used for patterning. The PRINT technique utilizes a perfluoropolyether (PFPE) elastomeric mold that is tolerant of most organic solvents, thus allowing solutions of CdSe QDs in 4-picoline to be used for patterning without significant deformation of the mold. Nanometer-scale diffraction gratings have been successfully replicated with CdSe QDs.

  16. Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry

    SciTech Connect

    Ovchinnikova, Olga S; Nikiforov, Maxim; Bradshaw, James A; Jesse, Stephen; Van Berkel, Gary J

    2011-01-01

    Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2 array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.

  17. Interplay between nanometer-scale strain variations and externally applied strain in graphene

    NASA Astrophysics Data System (ADS)

    Verbiest, G. J.; Stampfer, C.; Huber, S. E.; Andersen, M.; Reuter, K.

    2016-05-01

    We present a molecular modeling study analyzing nanometer-scale strain variations in graphene as a function of externally applied tensile strain. We consider two different mechanisms that could underlie nanometer-scale strain variations: static perturbations from lattice imperfections of an underlying substrate and thermal fluctuations. For both cases we observe a decrease in the out-of-plane atomic displacements with increasing strain, which is accompanied by an increase in the in-plane displacements. Reflecting the nonlinear elastic properties of graphene, both trends together yield a nonmonotonic variation of the total displacements with increasing tensile strain. This variation allows us to test the role of nanometer-scale strain variations in limiting the carrier mobility of high-quality graphene samples.

  18. Theoretical study and simulation for a nanometer laser based on Gauss-Hermite source expansion

    NASA Astrophysics Data System (ADS)

    Gu, Xiaowei

    2013-07-01

    Recently there has been worldwide interest in constructing a new generation of continuously tunable nanometer lasers for a wide range of scientific applications, including femtosecond science, biological molecules, nanoscience research fields, etc. The high brightness electron beam required by a short wavelength self-amplified spontaneous emission FEL can be reached only with accurate control of the beam dynamics in the facility. Numerical simulation codes are basic tools for designing new nanometer laser devices. We have developed a MATLAB quasi-one-dimensional code based on a reduced model for the FEL. The model uses an envelope description of the transverse dynamics of the laser beam and full longitudinal particle motion. We have optimized the LCLS facility parameters, then given the characteristics of the nanometer laser.

  19. Nanometer-scale features in dolomite from Pennsylvanian rocks, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Gournay, Jonas P.; Kirkland, Brenda L.; Folk, Robert L.; Lynch, F. Leo

    1999-07-01

    Scanning electron microscopy reveals an association between early dolomite in the Pennsylvanian Desert Creek (Paradox Fm.) and small (approximately 0.1 μm) nanometer-scale textures, termed `nannobacteria'. Three diagenetically distinct dolomites are present: early dolomite, limpid dolomite, and baroque dolomite. In this study, only the early dolomite contained nanometer-scale features. These textures occur as discrete balls and rods, clumps of balls, and chains of balls. Precipitation experiments demonstrate that these textures may be the result of precipitation in an organic-rich micro-environment. The presence of these nanometer-scale textures in Pennsylvanian rocks suggests that these early dolomites precipitated in organic-rich, bacterial environments.

  20. Survey of plasmonic gaps tuned at sub-nanometer scale in self-assembled arrays

    NASA Astrophysics Data System (ADS)

    Qian, Li-Hua; Yi, Li-Zhi; Wang, Gui-Sheng; Zhang, Chao; Yuan, Song-Liu

    2016-04-01

    Creating nanoscale and sub-nanometer gaps between noble metal nanoparticles is critical for the applications of plasmonics and nanophotonics. To realize simultaneous attainments of both the optical spectrum and the gap size, the ability to tune these nanoscale gaps at the sub-nanometer scale is particularly desirable. Many nanofabrication methodologies, including electron beam lithography, self-assembly, and focused ion beams, have been tested for creating nanoscale gaps that can deliver significant field enhancement. Here, we survey recent progress in both the reliable creation of nanoscale gaps in nanoparticle arrays using self-assemblies and in the in-situ tuning techniques at the sub-nanometer scale. Precisely tunable gaps, as we expect, will be good candidates for future investigations of surface-enhanced Raman scattering, non-linear optics, and quantum plasmonics.

  1. Nanometer sized tantalum pentoxide fibers prepared by electrospinning

    SciTech Connect

    Dharmaraj, N.; Kim, H.Y.

    2006-03-09

    Novel, porous tantalum pentoxide (Ta{sub 2}O{sub 5}) nanofibers with 150-250 nm diameter were obtained by high temperature calcination of the as-electrospun tantalum pentoxide/poly(vinyl acetate) (PVAc) composite fibers prepared by sol-gel processing and electrospinning technique. Surface analysis, structure and elemental composition of these as-electrospun and as-calcinated Ta{sub 2}O{sub 5} nanofibers have been studied by scanning electron microscope (SEM) equipped with an energy dispersive X-ray analysis (EDX), high resolution field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction patterns (XRD) and FT-IR. High-resolution FE-SEM images showed the porous nature of Ta{sub 2}O{sub 5} nanofibers. EDX analysis revealed the perfect stoichiometry of the nanofibers as Ta{sub 2}O{sub 5}. A linear correlation was noted between the calcination temperature and orthorhombic crystalline phase evolution of Ta{sub 2}O{sub 5}.

  2. 32nm overlay improvement capabilities

    NASA Astrophysics Data System (ADS)

    Eichelberger, Brad; Huang, Kevin; O'Brien, Kelly; Tien, David; Tsai, Frank; Minvielle, Anna; Singh, Lovejeet; Schefske, Jeffrey

    2008-03-01

    The industry is facing a major challenge looking forward on the technology roadmap with respect to overlay control. Immersion lithography has established itself as the POR for 45nm and for the next few nodes. As the gap closes between scanner capability and device requirements new methodologies need to be taken into consideration. Double patterning lithography is an approach that's being considered for 32 and below, but it creates very strict demands for overlay performance. The fact that a single layer device will need to be patterned using two sequential single processes creates a strong coupling between the 1st and 2nd exposure. The coupling effect during the double patterning process results in extremely tight tolerances for overlay error and scanner capabilities. The purpose of this paper is to explore a new modeling method to improve lithography performance for the 32nm node. Not necessarily unique for double patterning, but as a general approach to improve overlay performance regardless of which patterning process is implemented. We will achieve this by performing an in depth source of variance analysis of current scanner performance and project the anticipated improvements from our new modeling approach. Since the new modeling approach will involve 2nd and 3rd order corrections we will also provide and analysis that outlines current metrology capabilities and sampling optimizations to further expand the opportunities of an efficient implementation of such approach.

  3. High Temperature Mechanical Behavior of Polycrystalline Alumina from Mixed Nanometer and Micrometer Powders

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2001-01-01

    Sintered aluminum oxide materials were formed using commercial methods from mechanically mixed powders of nano-and micrometer alumina. The powders were consolidated at 1500 and 1600 C with 3.2 and 7.2 ksi applied stress in argon. The conventional micrometer sized powders failed to consolidate. While 100 percent nanometer-sized alumina and its mixture with the micrometer powders achieved less than 99 percent density. Preliminary high temperature creep behavior indicates no super-plastic strains. However high strains (less than 0.65 percent) were generated in the nanometer powder, due to cracks and linked voids initiated by cavitation.

  4. Nanometer scale carbon structures for charge-transfer systems and photovoltaic applications.

    PubMed

    Guldi, Dirk M

    2007-03-28

    This article surveys and highlights the integration of nanometer scale carbon structures--in combination with chromophores that exhibit (i) significant absorption cross section throughout the visible part of the solar spectrum and (ii) good electron donating power--into novel electron donor-acceptor conjugates (i.e., covalent) and hybrids (i.e., non-covalent). The focus of this article is predominantly on performance features--charge-transfer and photovoltaic--of the most promising solar energy conversion systems. Besides documenting fundamental advantages as they emerge around nanometer scale carbon structures, critical evaluations of the most recent developments in the fields are provided.

  5. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    SciTech Connect

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  6. 3D nanometer images of biological fibers by directed motion of gold nanoparticles.

    PubMed

    Estrada, Laura C; Gratton, Enrico

    2011-11-01

    Using near-infrared femtosecond pulses, we move single gold nanoparticles (AuNPs) along biological fibers, such as collagen and actin filaments. While the AuNP is sliding on the fiber, its trajectory is measured in three dimensions (3D) with nanometer resolution providing a high-resolution image of the fiber. Here, we systematically moved a single AuNP along nanometer-size collagen fibers and actin filament inside chinese hamster ovary K1 living cells, mapping their 3D topography with high fidelity.

  7. Nanometer-film analysis by the laser-induced breakdown spectroscopy method: the effects of laser focus to sample distance.

    PubMed

    Sun, Yuxiang; Zhong, Shilei; Shan, Fukai; Lu, Yuan; Sun, Xin; Liu, Zhe; Sheng, Pengpeng

    2015-05-20

    In order to develop a method to analyze metal elements in thin-film samples rapidly, directly and without sample preparation, and to understand the mechanism of laser-film interaction and plasma formation and evolution, a laboratory laser-induced breakdown spectroscopy system was established recently for nanometer-film analysis. ZrO(2) films prepared on silicon chips by a sol-gel process were employed in the following experiment and their thickness was about 40 nm. By the initial investigation that we carried out, the stability of this system was verified and the relative standard deviation of the target peak was found to be lower than 1.6% with the help of a position system. The influences of different experimental parameters, such as laser energy, laser focus to sample distance (LFTSD) settings, and gate delay, were studied under conditions of room temperature and atmospheric pressure. The experimental results show that the LFTSD was one of the most important parameters for plasma formation and spectral collection in comparison with other parameters by means of plasma spectra and images. So the effects of the LFTSD on the spectra, plasma evolution, and craters are specially discussed in this paper. At last, we calculated the plasma temperature and electron density under optimal parameters for quantitative analysis. The result shows that the established system is available for qualitative and quantitative analysis of films under conditions of single pulse and low ablation energy. PMID:26192519

  8. First-principles study of nanometer-sharp domain walls in ferromagnetic Fe monolayers under in-plane strain.

    PubMed

    Shimada, T; Okuno, J; Ishii, Y; Kitamura, T

    2012-03-01

    We investigated a nanometer-sharp magnetic domain wall (DW) structure in a free-standing Fe(110) monolayer and studied the crucial role of in-plane strain using fully unconstrained noncollinear ab initio spin-density-functional theory calculations within the generalized gradient approximation. The DW width is calculated to be 0.86 nm. A precise vector-field description of the magnetization density revealed that a noncollinear character in the DW was spatially confined between atoms, whereas a collinear and high magnetization density was localized around each atom. In the rapid rotation of magnetic moments in the DW, we found an electron rearrangement from the d(zx) and d(x(2)-y(2)) states to the d(xy), d(yz) and d(z(2)) states due to a shift of band structures. Applied tensile and compressive in-plane strains both bring about narrower DWs in the monolayer except when the strain is small. The strain dependence of the DW width is discussed in terms of both exchange interaction and magnetocrystalline anisotropy. PMID:22322862

  9. Fabrication of a Carbon Nanotube-Embedded Silicon Nitride Membrane for Studies of Nanometer-Scale Mass Transport

    SciTech Connect

    Holt, J K; Noy, A; Huser, T; Eaglesham, D; Bakajin, O

    2004-08-25

    A membrane consisting of multiwall carbon nanotubes embedded in a silicon nitride matrix was fabricated for fluid mechanics studies on the nanometer scale. Characterization by tracer diffusion and scanning electron microscopy suggests that the membrane is free of large voids. An upper limit to the diffusive flux of D{sub 2}O of 2.4x10-{sup 8} mole/m{sup 2}-s was determined, indicating extremely slow transport. By contrast, hydrodynamic calculations of water flow across a nanotube membrane of similar specifications predict a much higher molar flux of 1.91 mole/m{sup 2}-s, suggesting that the nanotubes produced possess a 'bamboo' morphology. The carbon nanotube membranes were used to make nanoporous silicon nitride membranes, fabricated by sacrificial removal of the carbon. Nitrogen flow measurements on these structures give a membrane permeance of 4.7x10{sup -4} mole/m{sup 2}-s-Pa at a pore density of 4x10{sup 10} cm{sup -2}. Using a Knudsen diffusion model, the average pore size of this membrane is estimated to be 66 nm, which agrees well with TEM observations of the multiwall carbon nanotube outer diameter. These membranes are a robust platform for the study of confined molecular transport, with applications inseparations and chemical sensing.

  10. Photocatalytic degradation of p-nitrophenol on nanometer size titanium dioxide surface modified with 5-sulfosalicylic acid.

    PubMed

    Li, Shun-xing; Zheng, Feng-ying; Liu, Xian-li; Wu, Feng; Deng, Nan-sheng; Yang, Jian-hong

    2005-10-01

    The surface of nanometer size TiO(2) was simply and fast modified by chemical adsorption in saturated solution of 5-sulfosalicylic acid. After surface modification, a stable, yellow surface complex was formed quickly, the wavelength response range of TiO(2) was expanded, it has obvious absorption in the region from 320 to 450 nm; the adsorption efficiency of p-nitrophenol (PNP) by TiO(2) was enhanced from 42% to 84%. The photocatalytic activity was tested on the degradation of PNP. The influences of catalyst and its dosage, pH value, and PNP concentration on the degradation were investigated. On optimal photodegradation conditions, including initial pH 4.0, PNP 5 mg l(-1), catalyst 100 mg, irradiation time 120 min with 160 W high-pressure mercury lamp, the degradation efficiency of PNP was increased from 40% to 88% after surface modification. Surface modification led not only to an increase in the light utilization, but also improved the surface coverage of PNP in comparison with the pure TiO(2). Both of these factors are crucial for the photocatalytic activity of heterogeneous photocatalysis, especially for photodegradation of benzenoid pollutants. PMID:16202814

  11. Nanometer-film analysis by the laser-induced breakdown spectroscopy method: the effects of laser focus to sample distance.

    PubMed

    Sun, Yuxiang; Zhong, Shilei; Shan, Fukai; Lu, Yuan; Sun, Xin; Liu, Zhe; Sheng, Pengpeng

    2015-05-20

    In order to develop a method to analyze metal elements in thin-film samples rapidly, directly and without sample preparation, and to understand the mechanism of laser-film interaction and plasma formation and evolution, a laboratory laser-induced breakdown spectroscopy system was established recently for nanometer-film analysis. ZrO(2) films prepared on silicon chips by a sol-gel process were employed in the following experiment and their thickness was about 40 nm. By the initial investigation that we carried out, the stability of this system was verified and the relative standard deviation of the target peak was found to be lower than 1.6% with the help of a position system. The influences of different experimental parameters, such as laser energy, laser focus to sample distance (LFTSD) settings, and gate delay, were studied under conditions of room temperature and atmospheric pressure. The experimental results show that the LFTSD was one of the most important parameters for plasma formation and spectral collection in comparison with other parameters by means of plasma spectra and images. So the effects of the LFTSD on the spectra, plasma evolution, and craters are specially discussed in this paper. At last, we calculated the plasma temperature and electron density under optimal parameters for quantitative analysis. The result shows that the established system is available for qualitative and quantitative analysis of films under conditions of single pulse and low ablation energy.

  12. Ultra-sensitive plasmonic nanometal scattering immunosensor based on optical control in the evanescent field layer.

    PubMed

    Lee, Seungah; Park, Guenyoung; Chakkarapani, Suresh Kumar; Kang, Seong Ho

    2015-01-15

    Novel, fluorescence-free detection of biomolecules on nanobiochips was investigated based on plasmonic nanometal scattering in the evanescent field layer (EFL) using total internal reflection scattering (TIRS) microscopy. The plasmonic scattering of nanometals bonded to biomolecules was observed at different wavelengths by an electromagnetic field in the EFL. The changes in the scattering of nanometals on the gold-nanopatterned chip in response to the immunoreaction between silver nanoparticles and antibodies allowed fluorescence-free detection of biomolecules on the nanobiochips. Under optimized conditions, the TIRS immunoassay chip detected different amounts of immobilized antigen, i.e., human cardiac troponin I. The sandwich immuno-reaction was quantitatively analyzed in the dynamic range of 720 zM-167 fM. The limit of detection (S/N=4) was 600 zM, which was ~140 times lower than limits obtained by previous total internal reflection fluorescence and dark field methods. These results demonstrate the possibility for a fluorescence-free biochip nanoimmunoassay based on the scattering of nanometals in the EFL.

  13. Preparation of high-strength nanometer scale twinned coating and foil

    DOEpatents

    Zhang, Xinghang; Misra, Amit; Nastasi, Michael A.; Hoagland, Richard G.

    2006-07-18

    Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.

  14. Ultra-sensitive plasmonic nanometal scattering immunosensor based on optical control in the evanescent field layer.

    PubMed

    Lee, Seungah; Park, Guenyoung; Chakkarapani, Suresh Kumar; Kang, Seong Ho

    2015-01-15

    Novel, fluorescence-free detection of biomolecules on nanobiochips was investigated based on plasmonic nanometal scattering in the evanescent field layer (EFL) using total internal reflection scattering (TIRS) microscopy. The plasmonic scattering of nanometals bonded to biomolecules was observed at different wavelengths by an electromagnetic field in the EFL. The changes in the scattering of nanometals on the gold-nanopatterned chip in response to the immunoreaction between silver nanoparticles and antibodies allowed fluorescence-free detection of biomolecules on the nanobiochips. Under optimized conditions, the TIRS immunoassay chip detected different amounts of immobilized antigen, i.e., human cardiac troponin I. The sandwich immuno-reaction was quantitatively analyzed in the dynamic range of 720 zM-167 fM. The limit of detection (S/N=4) was 600 zM, which was ~140 times lower than limits obtained by previous total internal reflection fluorescence and dark field methods. These results demonstrate the possibility for a fluorescence-free biochip nanoimmunoassay based on the scattering of nanometals in the EFL. PMID:25128624

  15. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2
    1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  16. Green synthesis of noble nanometals (Au, Pt, Pd) using glycerol under microwave irradiation conditions

    EPA Science Inventory

    A newer application of glycerol in the field of nanomaterials synthesis has been developed from both the economic and environmental points of view. Glycerol can act as a reducing agent for the fabrication of noble nanometals, such as Au, Pt, and Pd, under microwave irradiation. T...

  17. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.

    PubMed

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F; Bartnik, Andrzej; Adjei, Daniel; Vondrová, Šárka; Turňová, Jana; Jančarek, Alexandr; Limpouch, Jiří; Vrbová, Miroslava; Fiedorowicz, Henryk

    2015-10-01

    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

  18. Two-Dimensional Measurement of n+-p Asymmetrical Junctions in Multicrystalline Silicon Solar Cells Using AFM-Based Electrical Techniques with Nanometer Resolution: Preprint

    SciTech Connect

    Jiang, C. S.; Moutinho, H. R.; Li, J. V.; Al-Jassim, M. M.; Heath, J. T.

    2011-07-01

    Lateral inhomogeneities of modern solar cells demand direct electrical imaging with nanometer resolution. We show that atomic force microscopy (AFM)-based electrical techniques provide unique junction characterizations, giving a two-dimensional determination of junction locations. Two AFM-based techniques, scanning capacitance microscopy/spectroscopy (SCM/SCS) and scanning Kelvin probe force microscopy (SKPFM), were significantly improved and applied to the junction characterizations of multicrystalline silicon (mc-Si) cells. The SCS spectra were taken pixel by pixel by precisely controlling the tip positions in the junction area. The spectra reveal distinctive features that depend closely on the position relative to the electrical junction, which allows us to indentify the electrical junction location. In addition, SKPFM directly probes the built-in potential over the junction area modified by the surface band bending, which allows us to deduce the metallurgical junction location by identifying a peak of the electric field. Our results demonstrate resolutions of 10-40 nm, depending on the techniques (SCS or SKPFM). These direct electrical measurements with nanometer resolution and intrinsic two-dimensional capability are well suited for investigating the junction distribution of solar cells with lateral inhomogeneities.

  19. Elastic Properties of 4-6 nm-thick Glassy Carbon Thin Films

    NASA Astrophysics Data System (ADS)

    Manoharan, M. P.; Lee, H.; Rajagopalan, R.; Foley, H. C.; Haque, M. A.

    2010-01-01

    Glassy carbon is a disordered, nanoporous form of carbon with superior thermal and chemical stability in extreme environments. Freestanding glassy carbon specimens with 4-6 nm thickness and 0.5 nm average pore size were synthesized and fabricated from polyfurfuryl alcohol precursors. Elastic properties of the specimens were measured in situ inside a scanning electron microscope using a custom-built micro-electro-mechanical system. The Young’s modulus, fracture stress and strain values were measured to be about 62 GPa, 870 MPa and 1.3%, respectively; showing strong size effects compared to a modulus value of 30 GPa at the bulk scale. This size effect is explained on the basis of the increased significance of surface elastic properties at the nanometer length-scale.

  20. Core level photoionization on free sub-10-nm nanoparticles using synchrotron radiation

    SciTech Connect

    Meinen, Jan; Leisner, Thomas; Khasminskaya, Svetlana; Eritt, Markus; Antonsson, Egill; Langer, Burkhard; Ruehl, Eckart

    2010-08-15

    A novel instrument is presented, which permits studies on singly charged free nanoparticles in the diameter range from 1 to 30 nm using synchrotron radiation in the soft x-ray regime. It consists of a high pressure nanoparticle source, a high efficiency nanoparticle beam inlet, and an electron time-of-flight spectrometer suitable for probing surface and bulk properties of free, levitated nanoparticles. We show results from x-ray photoelectron spectroscopy study near the Si L{sub 3,2}-edge on 8.2 nm SiO{sub 2} particles prepared in a nanoparticle beam. The possible use of this apparatus regarding chemical reactions on the surface of nanometer-sized particles is highlighted. This approach has the potential to be exploited for process studies on heterogeneous atmospheric chemistry.

  1. Photo-induced persistent inversion of germanium in a 200-nm-deep surface region.

    PubMed

    Prokscha, T; Chow, K H; Stilp, E; Suter, A; Luetkens, H; Morenzoni, E; Nieuwenhuys, G J; Salman, Z; Scheuermann, R

    2013-01-01

    The controlled manipulation of the charge carrier concentration in nanometer thin layers is the basis of current semiconductor technology and of fundamental importance for device applications. Here we show that it is possible to induce a persistent inversion from n- to p-type in a 200-nm-thick surface layer of a germanium wafer by illumination with white and blue light. We induce the inversion with a half-life of ~12 hours at a temperature of 220 K which disappears above 280 K. The photo-induced inversion is absent for a sample with a 20-nm-thick gold capping layer providing a Schottky barrier at the interface. This indicates that charge accumulation at the surface is essential to explain the observed inversion. The contactless change of carrier concentration is potentially interesting for device applications in opto-electronics where the gate electrode and gate oxide could be replaced by the semiconductor surface.

  2. Sub-10 nm nano-gap device for single-cluster transport measurements

    SciTech Connect

    Rousseau, J. Morel, R.; Vila, L.; Brenac, A.; Marty, A.; Notin, L.; Beigné, C.

    2014-02-17

    We present a versatile procedure for the fabrication of single electron transistor (SET) devices with nanometer-sized clusters and embedded back gate electrode. The process uses sputtering gas-aggregation for the growth of clusters and e-beam lithography with double angle shadow-edge deposition to obtain electrodes separated by nano-gaps with width below 10 nm. The nano-gap width is easily controlled only by geometrical factors such as deposited thin film thickness and evaporation angles. The usefulness of this technique is demonstrated by measuring the SET behavior of a device with a 4 nm cobalt cluster embedded in alumina, where the Coulomb blockade and incremental cluster charging can be readily identified without resorting to the differential conductivity.

  3. Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm.

    PubMed

    Krapf, Diego; Wu, Meng-Yue; Smeets, Ralph M M; Zandbergen, Henny W; Dekker, Cees; Lemay, Serge G

    2006-01-01

    We report on the fabrication and characterization of gold nanoelectrodes with carefully controlled nanometer dimensions in a matrix of insulating silicon nitride. A focused electron beam was employed to drill nanopores in a thin silicon nitride membrane. The size and shape of the nanopores were studied with high-resolution transmission electron microscopy and electron-energy-loss two-dimensional maps. The pores were subsequently filled with gold, yielding conically shaped nanoelectrodes. The nanoelectrodes were examined by atomic and electrostatic force microscopy. Their applicability in electrochemistry was demonstrated by steady-state cyclic voltammetry. Pores with a radii down to 0.4 nm and electrodes with radii down to 2 nm are demonstrated.

  4. Fabrication of free-standing lithium niobate nanowaveguides down to 50 nm in width

    NASA Astrophysics Data System (ADS)

    Geiss, Reinhard; Sergeyev, Anton; Hartung, Holger; Solntsev, Alexander S.; Sukhorukov, Andrey A.; Grange, Rachel; Schrempel, Frank; Kley, Ernst-Bernhard; Tünnermann, Andreas; Pertsch, Thomas

    2016-02-01

    Nonlinear optical nanoscale waveguides are a compact and powerful platform for efficient wavelength conversion. The free-standing waveguide geometry opens a range of applications in microscopy for local delivery of light, where in situ wavelength conversion helps to overcome various wavelength-dependent issues, such as biological tissue damage. In this paper, we present an original patterning method for high-precision fabrication of free-standing nanoscale waveguides based on lithium niobate, a material with a strong second-order nonlinearity and a broad transparency window covering the visible and mid-infrared wavelength ranges. The fabrication process combines electron-beam lithography with ion-beam enhanced etching and produces nanowaveguides with lengths from 5 to 50 μm, widths from 50 to 1000 nm and heights from 50 to 500 nm, each with a precision of few nanometers. The fabricated nanowaveguides are tested in an optical characterization experiment showing efficient second-harmonic generation.

  5. Effects of pico-to-nanometer-thin TiO2 coating on the biological properties of microroughened titanium.

    PubMed

    Sugita, Yoshihiko; Ishizaki, Ken; Iwasa, Fuminori; Ueno, Takeshi; Minamikawa, Hajime; Yamada, Masahiro; Suzuki, Takeo; Ogawa, Takahiro

    2011-11-01

    The independent, genuine role of surface chemistry in the biological properties of titanium is unknown. Although microtopography has been established as a standard surface feature in osseous titanium implants, unfavorable behavior and reactions of osteogenic cells are still observed on the surfaces. To further enhance the biological properties of microfeatured titanium surfaces, this study tested the hypotheses that (1) the surface chemistry of microroughened titanium surfaces can be controllably varied by coating with a very thin layer of TiO(2), without altering the existing topographical and roughness features; and (2) the change in the surface chemistry affects the biological properties of the titanium substrates. Using a slow-rate sputter deposition of molten TiO(2) nanoparticles, acid-etched microroughened titanium surfaces were coated with a TiO(2) layer of 300-pm to 6.3-nm thickness that increased the surface oxygen levels without altering the existing microtopography. The attachment, spreading behavior, and proliferation of osteoblasts, which are considered to be significantly impaired on microroughened surfaces compared with relatively smooth surfaces, were considerably increased on TiO(2)-coated microroughened surfaces. The rate of osteoblastic differentiation was represented by the increased levels of alkaline phosphatase activity and mineral deposition as well as by the upregulated expression of bone-related genes. These biological effects were exponentially correlated with the thickness of TiO(2) and surface oxygen percentage, implying that even a picometer-thin TiO(2) coating is effective in rapidly increasing the biological property of titanium followed by an additional mild increase or plateau induced by a nanometer-thick coating. These data suggest that a super-thin TiO(2) coating of pico-to-nanometer thickness enhances the biological properties of the proven microroughened titanium surfaces by controllably and exclusively modulating their surface

  6. Effects of nanophase materials (< or = 20 nm) on biological responses.

    PubMed

    Cheng, Meng-Dawn

    2004-01-01

    Nanophase materials have enhanced properties (thermal, mechanical, electrical, surface reactivity, etc.) not found in bulk materials. Intuitively, the enhancement of material properties could occur when the materials encounter biological specimens. Previous investigations of biological interactions with nanometer-scale materials have been very limited. With the ability to manipulate atoms and molecules, we now can create predefined nanostructures with unprecedented precision. In parallel with this development, improved understanding of the biological effects of the nanophase materials, whatever those may be, should also deserve attention. In this study, we have applied precision aerosol technology to investigate cellular response to nanoparticles. We used synthetic nanoparticles generated by an electrospray technique to produce nanoparticles in the size range of 8-13 nm with practically monodispersed aerosol particles and approximately the same number concentration. We report here on the potency of nano-metal particles with single or binary chemical components in eliciting interleukin-8 (IL-8) production from epithelial cell lines. For single-component nanoparticles, we found that nano-Cu particles were more potent in IL-8 production than nano-Ni and nano-V particles. However, the kinetics of IL-8 production by these three nanoparticles was different, the nano-Ni being the highest among the three. When sulfuric acid was introduced to form acidified nano-Ni particles, we found that the potency of such binary-component nanoparticles in eliciting IL-8 production was increased markedly, by about six times. However, the acidified binary nano-Na and -Mg nanoparticles did not exhibit the same effects as binary nano-Ni particles did. Since Ni, a transition metal, could induce free radicals on cell surfaces, while Na and Mg could not, the acidity might have enhanced the oxidative stress caused by radicals to the cells, leading to markedly higher IL-8 production. This result

  7. Interaction and Response of a Smectic-A liquid crystal to a 2 nm Nanometer Particle: Phase transition due to the Functionalization Compound

    NASA Astrophysics Data System (ADS)

    Martinez-Miranda, Luz J.; Kurihara, Lynn K.

    2009-03-01

    We have studied the in-plane (parallel to the magnetic field) alignment of 8CB mixed with FeCo nanoparticles covered with different funtionalization compounds. The functionalization compounds are Polyethelene glycol (PEG (3000)), hydroxyl succinimide (NHS), aminopropyl tri-ethoxy silane (APTS) and mercapto hexa-decanoic acid (MHDA). We have studied them using X-ray scattering. We have found that the inverse integrated intensity of the X-ray scans in the plane of the magnetic field is a good measure of how much energy the system (liquid crystal, nanoparticles, functionalization compound) will need to reorient the liquid crystal in the magnetic field. In addition, we have observed that the orientation the liquid crystal adopts with respect to the nanoparticles can result in a phase transition that takes the liquid crystal to a more disordered and symmetric phase that favors the rotation, as happens in the smectic-nematic transition, observed in the sample with APTS. We relate the disordering to the changes observed in the transition for the liquid crystal and this termination to recent heat capacity measurements by Cordoyiannis et al. [1]. References [1] Cordoyiannis, G., Kurihara, L.K., Martinez-Miranda, L. J, Glorieux, C., Thoen, J., submitted to PRE (2008).

  8. Development of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy

    PubMed Central

    Chiang, Mao-Hsiung

    2010-01-01

    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally. PMID:22319266

  9. Reference sample for the evaluation of SEM image resolution at a high magnification--nanometer-scale Au particles on an HOPG substrate.

    PubMed

    Okayama, Shigeo; Haraichi, Satoshi; Matsuhata, Hirofumi

    2005-08-01

    A new sample preparation technique is proposed for evaluating image resolution in a high magnification range of SEM. The proposed reference samples are uniformly distributed nanometer-scale Au particles on HOPG substrate. The samples are fabricated using the conventional ion sputter coater. The grain size and granularity are controlled by reducing the sputter-induced damage in the top layers of HOPG. The sample heating prior to SEM imaging is essential to suppress beam induced contamination. The heating time and temperature are selected to inhibit large increases in the grain sizes of Au particles. The sputter coated Au particles on the freshly cleaved HOPG substrate are superior in the deviations of particle sizes to the vacuum evaporated Au particles on the plasma etched substrates. The granularity and homogeneous distribution of Au particles on HOPG are demonstrated at a magnification range of x180k to x800k. The average grain size of 3.2 nm and the standard deviation of 1.3 nm are obtained under the condition of an annealing temperature of 180 degrees C for 7 min after sputter coating an average thickness of 0.7 nm.

  10. Focused ion beam etching of nanometer-size GaN/AlGaN device structures and their optical characterization by micro-photoluminescence/Raman mapping

    SciTech Connect

    Kuball, M.; Benyoucef, M.; Morrissey, F.H.; Foxon, C.T.

    2000-07-01

    The authors report on the nano-fabrication of GaN/AlGaN device structures using focused ion beam (FIB) etching, illustrated on a GaN/AlGaN heterostructure field effect transistor (HFET). Pillars as small as 20nm to 300nm in diameter were fabricated from the GaN/AlGaN HFET. Micro-photoluminescence and UV micro-Raman maps were recorded from the FIB-etched pattern to assess its material quality. Photoluminescence was detected from 300nm-size GaN/AlGaN HFET pillars, i.e., from the AlGaN as well as the GaN layers in the device structure, despite the induced etch damage. Properties of the GaN and the AlGaN layers in the FIB-etched areas were mapped using UV Micro-Raman spectroscopy. Damage introduced by FIB-etching was assessed. The fabricated nanometer-size GaN/AlGaN structures were found to be of good quality. The results demonstrate the potential of FIB-etching for the nano-fabrication of III-V nitride devices.

  11. Tracing temperature in a nanometer size region in a picosecond time period

    PubMed Central

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-01-01

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model. PMID:26293488

  12. Tracing temperature in a nanometer size region in a picosecond time period.

    PubMed

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  13. Optical-fiber frequency domain interferometer with nanometer resolution and centimeter measuring range.

    PubMed

    Weng, Jidong; Tao, Tianjiong; Liu, Shenggang; Ma, Heli; Wang, Xiang; Liu, Cangli; Tan, Hua

    2013-11-01

    A new optical-fiber frequency domain interferometer (OFDI) device for accurate measurement of the absolute distance between two stationary objects, with centimeter measuring range and nanometer resolution, has been developed. Its working principle and on-line data processing method were elaborated. The new OFDI instrument was constructed all with currently available commercial communication products. It adopted the wide-spectrum amplified spontaneous emission light as the light source and optical-fiber tip as the test probe. Since this device consists of only fibers or fiber coupled components, it is very compact, convenient to operate, and easy to carry. By measuring the single-step length of a translation stage and the thickness of standard gauge blocks, its ability in implementing nanometer resolution and centimeter measuring range on-line measurements was validated.

  14. Study on thermodynamics and oxidation mechanism of ethylene glycol in the preparation of nanometer nickel powders

    SciTech Connect

    Jin Shengming . E-mail: shmjin@mail.csu.edu.cn; Yuan Liangsheng; Zhou Ying; Qiu Guanzhou; Wan Cuifeng

    2006-11-09

    Nanometer nickel powders have been prepared using the polyol method with NaOH, Ni(NO{sub 3}){sub 2}.6H{sub 2}O, ethylene glycol (EG), and polyvinylpyrrolidone (PVP) as raw materials. The thermodynamics of the reaction system was studied, and the E-pH diagram of Ni-EG-H{sub 2}O was plotted. The oxidation products of EG were predicted from the E-pH diagram, and CO{sub 3} {sup 2-} in alkaline solutions was identified as the product through the IR spectrum and CaCO{sub 3} sediment. Field-emission scanning electron micrograph (FE-SEM) showed that spherical nanometer nickel powders were obtained.

  15. Tracing temperature in a nanometer size region in a picosecond time period

    NASA Astrophysics Data System (ADS)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-01

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  16. Quantitative displacement measurement of a nanotube cantilever with nanometer accuracy using epifluorescence microscopy

    SciTech Connect

    Park, Hyojun; Kwon, Soongeun; Kim, Soohyun

    2009-05-15

    A method to measure the deflection of a nanotube cantilever with nanometer accuracy in an air or liquid environment is presented. We attached fluorescent dyes at the end of a nanotube to detect its deflection. The nanotube cantilever was fabricated with a multiwalled carbon nanotube that is attached to the end of an electrochemically etched tungsten tip, and it was imaged in an epifluorescence microscope system. The fluorescence intensity distribution of the fluorescent particles at the end of the nanotube was approximated with a Gaussian and fitted by least-squares method. Finally, we were able to measure the displacement of the nanotube cantilever during electrostatic actuation with positional accuracy of a few nanometers. This technique can be applied to a manipulator or a force transducer on related a few piconewton forces.

  17. Tracing temperature in a nanometer size region in a picosecond time period.

    PubMed

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-01-01

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model. PMID:26293488

  18. Formation and properties of 3D metamaterial composites fabricated using nanometer scale laser lithography (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Prokes, Sharka M.; Perkins, Frank K.; Glembocki, Orest J.

    2015-08-01

    Metamaterials designed for the visible or near IR wavelengths require patterning on the nanometer scale. To achieve this, e-beam lithography is used, but it is extremely difficult and can only produce 2D structures. A new alternative technique to produce 2D and 3D structures involves laser fabrication using the Nanoscribe 3D laser lithography system. This is a direct laser writing technique which can form arbitrary 3D nanostructures on the nanometer scale and is based on multi-photon polymerization. We are creating 2D and 3D metamaterials via this technique, and subsequently conformally coating them using Atomic Layer Deposition of oxides and Ag. We will discuss the optical properties of these novel composite structures and their potential for dual resonant metamaterials.

  19. Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level

    SciTech Connect

    Jesse, Stephen; Kumar, Amit; Arruda, Thomas M; Kim, Yunseok; Kalinin, Sergei V; Ciucci, Francesco

    2012-01-01

    Atomistic and nanometer scale mechanisms of electrochemical reactions and ionic flows in solids in the nanometer-micron range persist as terra incognito in modern science. While structural and electronic phenomena are now accessible to electron and scanning probe microscopy (SPM) techniques, probing nanoscale electrochemistry requires the capability to probe local ionic currents. Here, we discuss principles and applications of electrochemical strain microscopy (ESM), a technique based on probing minute deformations induced by electric bias applied to an SPM tip. ESM imaging and spectroscopy are illustrated for several energy storage and conversion materials. We further argue that down-scaling of physical device structures based on oxides necessitates ionic and electrochemical effects to be taken into account. Future pathways for ESM development are discussed

  20. Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanometer-sized devices.

    PubMed

    Wouters, Daan; Schubert, Ulrich S

    2004-05-01

    The size regime for devices produced by photolithographic techniques is limited. Therefore, other patterning techniques have been intensively studied to create smaller structures. Scanning-probe-based patterning techniques, such as dip-pen lithography, local force-induced patterning, and local-probe oxidation-based techniques are highly promising because of their relative ease and widespread availability. The latter of these is especially interesting because of the possibility of producing nanopatterns for a broad range of chemical and physical modification and functionalization processes; both the production of nanometer-sized electronic devices and the formation of devices involving (bio)molecular recognition and sensor applications is possible. This Review highlights the development of various scanning probe systems and the possibilities of local oxidation methods, as well as giving an overview of state-of-the-art nanometer-sized devices, and a view of future development.

  1. Concentration and size distribution of particulate oxalate in marine and coastal atmospheres - Implication for the increased importance of oxalate in nanometer atmospheric particles

    NASA Astrophysics Data System (ADS)

    Guo, Tianfeng; Li, Kai; Zhu, Yujiao; Gao, Huiwang; Yao, Xiaohong

    2016-10-01

    In literature, particulate oxalate has been widely studied in the total suspended particles (TSP), particles <10 μm or 2.5 μm (PM10 and PM2.5) and size-segregated particles >100 nm. In this article, we measured oxalate's concentrations in size-segregated atmospheric particles down to 10 nm or 56 nm during eight campaigns performed at a semi-urban coastal site, over the marginal seas of China and from the marginal seas to the northwest Pacific Ocean (NWPO) in 2012-2015. When the sum of the oxalate's concentration in particles <10 μm was used for intercomparison, the lowest average values of 0.05-0.06 μg m-3 were observed during the two campaigns performed at NWPO. The highest average value of 0.38 μg m-3 was observed at the coastal site during a heavy pollution event. Mode analysis results of particulate oxalate and the correlation between oxalate and sulfate suggested that the elevated concentrations of oxalate in PM10 were mainly related to enhanced in-cloud formation of oxalate via anthropogenic precursors. Size distribution data in the total of 136 sets of samples also showed approximately 80% of particulate oxalate's mass existing in atmospheric particles >100 nm. Consistent with previous studies, particulate oxalate in particles >100 nm was a negligible ionic component when comparing to particulate SO42- in the same size range. However, the mole ratios of oxalate/sulfate in particles <100 nm were generally increased by 1-2 orders of magnitude. In approximately 30% of the samples, the mole ratios in atmospheric particles <56 nm were larger than 0.5. Moreover, during Campaign 5, the oxalate's concentrations in <56 nm particles were substantially increased on the days in presence of new particle formation events. These results strongly imply the importance of oxalate in nanometer atmospheric particles, but not in >100 nm atmospheric particles such as PM2.5, PM10, TSP, etc.

  2. Sub-nanometer control of the interlayer spacing in thin films of intercalated rodlike conjugated molecules.

    PubMed

    Vogel, Jörn-Oliver; Salzmann, Ingo; Opitz, Ricarda; Duhm, Steffen; Nickel, Bert; Rabe, Jürgen P; Koch, Norbert

    2007-12-27

    Organic molecular beam co-deposition of rodlike conjugated molecules with an alkylated analogue resulted in thin film structures with layers of alternating semiconducting (conjugated molecular parts) and insulating (alkyl parts) character. By varying the alkylated molecule ratio, we could adjust the distance between conjugated layers with sub-nanometer precision, exploiting the mechanical flexibility of the alkyl chains. Furthermore, due to mutual molecular intercalation, mixed layers containing two conjugated moieties with vastly different electronic properties could be fabricated.

  3. Profiling the Local Seebeck Coefficient with Nanometer Resolution Using Scanning Thermoelectric Microscopy (SThEM)

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Hsiang; Walrath, Jenna; Goldman, Rachel

    2013-03-01

    Thermoelectric (TE) devices offer a method of recovering waste heat through solid state conversion of heat to electricity. Nanostructured thermoelectric materials may provide the key to increased efficiencies, which are sensitive to the Seebeck coefficients (S) However, traditional bulk measurement techniques can only provide a spatially averaged measurement of S over the whole sample, which can hardly investigate the effects of nanostructures on S on the nanoscale. A novel technique known as scanning thermoelectric microscopy (SThEM) has recently been developed to measure induced thermal voltages with nanometer resolution In SThEM, an unheated scanning tunneling microscopy tip acts as a high-resolution voltmeter probe to measure the thermally-induced voltage, V, in a heated sample. Here we present a local S measurement using SThEM across an InGaAs P-N junction. The thermovoltage shows an abrupt change of sign within 10 nanometers, which reveals nanometer spatial resolution. We will discuss local S measurements of AlAs/GaAs superlattices (SLs) with various SL periods and compare the local S with scanning tunneling spectroscopy measurements, which will reveal how local electronic states influence thermoelectric properties. This material is based upon work primarily supported by DOE under grant No. DE-FG02-06 and ER46339 the Department of Energy under Award Number DE-PI0000012.

  4. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts.

    PubMed

    Price, Rachel L; Ellison, Karen; Haberstroh, Karen M; Webster, Thomas J

    2004-07-01

    Carbon nanofibers have exceptional theoretical mechanical properties (such as low weight-to-strength ratios) that, along with possessing nanoscale fiber dimensions similar to crystalline hydroxyapatite found in bone, suggest strong possibilities for use as an orthopedic/dental implant material. To determine, for the first time, cytocompatibility properties pertinent for bone prosthetic applications, osteoblast (bone-forming cells), fibroblast (cells contributing to callus formation and fibrous encapsulation events that result in implant loosening), chondrocyte (cartilage-forming cells), and smooth muscle cell (for comparison purposes) adhesion were determined on carbon nanofibers in the present in vitro study. Results provided evidence that, compared to conventional carbon fibers, nanometer dimension carbon fibers promoted select osteoblast adhesion. Moreover, adhesion of other cells was not influenced by carbon fiber dimensions. In fact, smooth muscle cell, fibroblast, and chondrocyte adhesion decreased with an increase in either carbon nanofiber surface energy or simultaneous change in carbon nanofiber chemistry. To determine properties that selectively enhanced osteoblast adhesion, similar cell adhesion assays were performed on polymer (specifically, poly-lactic-co-glycolic; PLGA) casts of carbon fiber compacts previously tested. Compared to PLGA casts of conventional carbon fibers, results provided the first evidence of enhanced select osteoblast adhesion on PLGA casts of nanophase carbon fibers. The summation of these results demonstrate that due to a high degree of nanometer surface roughness, carbon fibers with nanometer dimensions may be optimal materials to selectively increase osteoblast adhesion necessary for successful orthopedic/dental implant applications.

  5. Cellular Response to Non-contacting Nanoscale Sublayer: Cells Sense Several Nanometer Mechanical Property.

    PubMed

    Azuma, Tomoyuki; Teramura, Yuji; Takai, Madoka

    2016-05-01

    Cell adhesion is influenced not only from the surface property of materials but also from the mechanical properties of the nanometer sublayer just below the surface. In this study, we fabricated a well-defined diblock polymer brush composed of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-aminoethyl methacrylate (AEMA). The underlying layer of poly(MPC) is a highly viscous polymer, and the surface layer of poly(AEMA) is a cell-adhesive cationic polymer. The adhesion of L929 mouse fibroblasts was examined on the diblock polymer brush to see the effect of a non-contacting underlying polymer layer on the cell-adhesion behavior. Cells could sense the viscoelasticity of the underlying layers at the nanometer level, although the various fabricated diblock polymer brushes had the same surface property and the functional group. Thus, we found a new factor which could control cell spread at the nanometer level, and this insight would be important to design nanoscale biomaterials and interfaces. PMID:27064435

  6. Perspectives of using the 223-nm wavelength of the KrCl excimer laser for refractive surgery and for the treatment of some eye diseases

    NASA Astrophysics Data System (ADS)

    Bagayev, Sergei N.; Chernikh, Valery V.; Razhev, Alexander M.; Zhupikov, Andrey A.

    2000-06-01

    The new surgical UV ophthalmic laser system Medilex based on the KrCl (223 nm) excimer laser for refractive surgery was created. The comparative analysis of using the UV ophthalmic laser systems Medilex based on the ArF (193 nm) and the KrCl (223 nm) excimer lasers for the correction of refractive errors was performed. The system with the radiation wavelength of 223 nanometer of the KrCl excimer laser for refractive surgery was shown to have several medical and technical advantages over the system with the traditionally used radiation wavelength of 193 nanometer of the ArF excimer laser. In addition the use of the wavelength of 223 nanometer extends functional features of the system, allowing to make not only standard for this type systems surgical and therapeutic procedures but also to treat such ocular diseases as the glaucoma and herpetic keratities. For the UV ophthalmic laser systems Medilex three variations of the beam delivery system including special rotating masks and different beam homogenize systems were developed. All created beam delivery systems are able to make the correction of myopia, hyperopia, astigmatism and myopic or hyperopic astigmatism and may be used for therapeutic procedures. The results of the initial treatments of refractive error corrections using the UV ophthalmic laser systems Medilex for both photorefractive keratectomy (PRK) and LASIK procedures are presented.

  7. Ion Exclusion by Sub 2-nm Carbon Nanotube Pores

    SciTech Connect

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-04-09

    Carbon nanotubes offer an outstanding platform for studying molecular transport at nanoscale, and have become promising materials for nanofluidics and membrane technology due to their unique combination of physical, chemical, mechanical, and electronic properties. In particular, both simulations and experiments have proved that fluid flow through carbon nanotubes of nanometer size diameter is exceptionally fast compared to what continuum hydrodynamic theories would predict when applied on this length scale, and also, compared to conventional membranes with pores of similar size, such as zeolites. For a variety of applications such as separation technology, molecular sensing, drug delivery, and biomimetics, selectivity is required together with fast flow. In particular, for water desalination, coupling the enhancement of the water flux with selective ion transport could drastically reduce the cost of brackish and seawater desalting. In this work, we study the ion selectivity of membranes made of aligned double-walled carbon nanotubes with sub-2 nm diameter. Negatively charged groups are introduced at the opening of the carbon nanotubes by oxygen plasma treatment. Reverse osmosis experiments coupled with capillary electrophoresis analysis of permeate and feed show significant anion and cation rejection. Ion exclusion declines by increasing ionic strength (concentration) of the feed and by lowering solution pH; also, the highest rejection is observed for the A{sub m}{sup Z{sub A}} C{sub n}{sup Z{sub C}} salts (A=anion, C=cation, z= valence) with the greatest Z{sub A}/Z{sub C} ratio. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion

  8. Synthesis and spectroscopic evaluation of PbS quantum dots emitting at 1300 nm for optimized imaging in optical window II

    NASA Astrophysics Data System (ADS)

    Aydt, Alexander P.; Blair, Shane; Zhang, Hairong; Chernomordik, Boris D.; Beard, Matthew C.; Berezin, Mikhail Y.

    2016-03-01

    Contrast agents for optical imaging have traditionally been designed for the near-infrared (NIR) spectral range (700-900 nm, Optical Window I) where absorption and scattering of tissue are relatively low. Recently, another window beyond 1000 nm has been discovered known as Optical Window II or the extended Near Infrared (exNIR) with improved transparency. In this work, we present a method to synthesize quantum dots emitting at 1300 nanometers, the optimal wavelength. The quantum dots were synthesized in organic solvents, and a method of transforming them into water is discussed. Optical characterizations including absolute quantum yield and the fluorescence lifetime are presented.

  9. Anisotropic Shear Viscosity of Photoaligned Liquid Crystal Confined in Submicrometer-to-Nanometer-Scale Gap Widths Revealed with Simultaneously Measured Molecular Orientation.

    PubMed

    Itoh, Shintaro; Imura, Yuuichi; Fukuzawa, Kenji; Zhang, Hedong

    2015-10-20

    In the context of the use of liquid crystals (LCs) as lubricants and lubricant additives, this study investigates the anisotropic shear viscosity of LCs confined in nanometer-sized gap widths subject to both shearing and photoalignment. The photoalignment is achieved using anisotropically dimerized polyvinyl cinnamate (PVCi) films coated on substrates. We simultaneously measure the viscosity and order parameter of a liquid crystal (4-cyano-4'-pentylbiphenyl) confined and sheared in the gap range of 500 nm down to a few nm. We achieve this simultaneous measurement using an original method that combines a highly sensitive viscosity measurement and a sensitive birefringence measurement. When the LC is sheared in the same direction as the photoalignment (parallel shearing), the order parameter, which is around 0.3 in the bulk state, increases up to around 0.4 at a gap width of less than 50 nm and the viscosity is smaller than half the bulk viscosity. We consider that this increase in the order parameter is due to the highly ordered photoaligned LC layer near the PVCi film, and the viscosity decrease is due to shear thinning of this layer enhanced by both confinement and molecular ordering. In addition, we observe a gradual decrease in viscosity starting at a gap of less than around 300 nm in the parallel shearing. Based on the apparent slip model, we show that the LC layer near the PVCi film can also cause this gradual viscosity decrease. In contrast, when the LC is sheared in the direction perpendicular to the photoalignment direction (perpendicular shearing), the viscosity increases as the gap decreases. We speculate that this is due to the rotational motion of the LC molecules caused by the competing effect of shear alignment and photoalignment. We believe our findings can significantly contribute to a better understanding of the confined LCs utilized for lubrication.

  10. Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (epsilon-caprolactone) (PCL) surface with nanometer scale of surface disturbance.

    PubMed

    Chung, Tze-Wen; Yang, Min-Gia; Liu, Der-Zen; Chen, Wen-Pin; Pan, Chin-I; Wang, Shoei-Shen

    2005-02-01

    To explore the application of PCL for the engineering of soft tissues, the PCL surface was first embedded in an amphiphilic moiety and then grafted with RGD peptide to enhance the growth rate of human endothelial cells (HUVEC) on the surface. To graft cell-adhesive peptide RGD on the PCL surface, the PCL surface was first etched by the selected solvent with only nanometer-scale of surface disturbance, and simultaneously embedded with DSPE-PEG [di-stearoyl-phosphatidyl-ethanolamine-methoxy-poly (ethylene glycol)] moiety. Then the PCL-PEG surface was photochemically grafted by GRGD to form PCL-PEG-RGD surface. PCL and the modified surfaces were characterized by surface morphology, surface disturbance, contact angles, ATR-FTIR functional group analysis, and the growth rate of HUVEC. The surface disturbances of PCL and the modified surfaces were examined by atomic force microscope (AFM) and presented by the topography and a roughness parameter, Ra. The Ra values were 16.4 +/- 3.0, 34.8 +/- 1.6, and 12.8 +/- 0.3 nm (n = 3) for PCL, PCL-PEG, and PCL-PEG-RGD surfaces, respectively. The topographies of the surfaces and Ra values indicated that the PCL modified technique developed by this study resulted in only nanometer scale of surface disturbance. In addition to reducing surface disturbances, reducing contact angle from 73.7 degrees +/- 0.4 (n = 3) for the PCL surface to 56.9 degrees +/- 4.0 (n = 3) for the PCL-PEG surface, and the ATR-FTIR transmission spectra at 1660 cm(-1) for shoulder of amine I of PCL-PEG-RGD surface both confirmed the successful modification of PCL surfaces. HUVECs adhered well and grew on the PCL-PEG-RGD surface after 36 h incubation, whereas other surfaces did not support growth. Moreover, the viability for the relative growth rate of HUVECs on the PCL-PEG-RGD surface analyzed by MTT assay showed 8.5 times greater growth than that of the unmodified one. In conclusion, a PCL-PEG-RGD surface for enhancing the growth rate of HUVECs has been prepared

  11. Nanofiltration of Electrolyte Solutions by Sub-2nm Carbon Nanotube Membranes

    SciTech Connect

    Fornasiero, F; Park, H G; Holt, J K; Stadermann, M; Kim, S; In, J B; Grigoropoulos, C P; Noy, A; Bakajin, O

    2008-03-13

    Both MD simulations and experimental studies have shown that liquid and gas flow through carbon nanotubes with nanometer size diameter is exceptionally fast. For applications in separation technology, selectivity is required together with fast flow. In this work, we use pressure-driven filtration experiments to study ion exclusion in silicon nitride/sub-2-nm CNT composite membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion at low salt concentration. Our results support a rejection mechanism dominated by electrostatic interactions between fixed membrane charges and mobile ions, while steric and hydrodynamic effects appear to be less important. Comparison with commercial nanofiltration membranes for water softening reveals that our carbon nanotube membranes provides far superior water fluxes for similar ion rejection capabilities.

  12. Nanoimprinting sub-100 nm features in a photovoltaic nanocomposite using durable bulk metallic glass molds.

    PubMed

    Singer, Jonathan P; Gopinadhan, Manesh; Shao, Zhen; Taylor, André D; Schroers, Jan; Osuji, Chinedum O

    2015-02-18

    The use of bulk metallic glass (BMG) for the nanoimprint of high-aspect-ratio (>3) features into functional polymers is investigated. To accomplish this, the most critical aspect is the successful demolding of the imprinted polymer. By fluorosilane functionalization of the BMG surface and optimization of processing temperature, high aspect pore features down to 45 nm diameters are introduced into the surface of two organic photovoltaic systems: poly(3-hexylthiophene-2,5-diyl) (P3HT) and 1:1 mixtures of P3HT with Phenyl-C61-butyric acid methyl ester (PCBM). The crystallinity of P3HT demands higher forming temperatures and pressures that are difficult to obtain with conventional soft nanoimprint lithography molds. The ability to accommodate a wide range of processing conditions and the low cost of fabricating molds with nanometer-scale features point to the large potential of nanotextured BMGs as an economical and scalable imprint material for high-resolution applications.

  13. Nanometer-Size Iron Sulfides Biomineralized by a Deep-Sea Hydrothermal Vent Gastropod in Cooperation with Endosymbiotic Sulfate-Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kogure, T.; Takai, K.; Tsuchida, S.; Nealson, K. H.; Horikoshi, K.

    2003-12-01

    The _gscaly-foot_h gastropod has been discovered only from a deep-sea hydrothermal field in the Central Indian Ridge among the global Mid Ocean Ridges (MOR) and found to be peculiar, because it has scale-shaped sclerites composed of hard proteins and iron sulfides that covered the sides of the foot. As the product and mechanism of the iron sulfide biomineralization have not been elucidated in any details, yet, we conducted crystallographic and molecular phylogenetic characterizations of the sclerites._@It was revealed that nanometer-scale (1) mackinawite (FeS) + greigite (Fe3S4), (2) pyrite (FeS2) and (3) mackinawite formed in distinct strata from the outer to inner parts of the sclerites, respectively. This study demonstrated for the first time that pyrite occurred in nature as exceedingly small crystalline nanoparticles (around 3 nm in diameter) and to grow via the aggregation-based pathway._@Phylogenetic analyses based on 16S rRNA and dissimilatory sulfite reductase (DSR) genes detected predominant occurrence of bacteria that have the sequences of both genes closely related to sulfate-reducing Desulfobulbus spp. Fluorescence in-situ hybridization analysis using a probe specific to the retrieved 16S rRNA gene sequences of the Desulfobulbus-related bacteria revealed the localized occurrence of the bacteria in the most inner part of the sclerites, which represents a novel structural integration between bacteria and metazoans. The results strongly suggested the potential contribution of endosymbiotic SRB to formation of stratified nanometer-scale iron sulfides inside the gastropod_fs scaly. As mackinawite that is easily oxidized under slightly oxic conditions and persisted, pyrite seems to have formed via the strictly anoxic pathway. The results presented here may provide aid in deciphering important, but still partially understood formation mechanisms and biochemical and geochemical roles of iron sulfides.

  14. Characterization of strain in sub-100 nm silicon transistors by convergent-beam electron diffraction

    NASA Astrophysics Data System (ADS)

    Zhang, Peng

    As silicon devices shrink further beyond the 65 nm technology node, strain is increasingly important for the fabrication and operation of nano-devices. According to the latest International Technology Roadmap for Semiconductors, however, the detection and mapping of strain at the required nanometer spatial resolution has yet to be achieved. The project is to evaluate the convergent-beam electron diffraction (CBED) technique in a transmission electron microscope (TEM) as a nanoscale strain metrology. In this work, by using energy-filtered CBED under scanning TEM (STEM) mode, we have successfully measured strain in two types of sub-100 nm semiconductor structures: 90 nm node and 65 nm node shallow trench isolation (STI) structures, and a 65 nm node locally strained p-type metal-oxide semiconductor field-effect transistor (P-MOSFET, or PMOS) featuring SiGe source and drain (S/D). In the 90 nm STI structures, the strain is generally less than 0.1%. Nevertheless, CBED is sensitive enough to tell the strain difference in two 90 nm STI structures with different oxide trench filling conditions. In the 65 nm STI structure, the strain tensors at different positions around the oxide trench filling are measured. The experimental results are compared with finite element modeling based on isotropic elasticity theory. A large discrepancy is found between experiments and simulation, which suggests that a more sophisticated model is necessary for accurate modeling, and more importantly that CBED strain measurements can be used to check the applicability of models at nanometer scale. In the 65 nm node uniaxially strained PMOS, the lattice parameters of silicon at a distance of 25 nm to 55nm below the gate are measured. It is found that at 25 below the gate, the major stress component, 1.1 GPa, is compressive along the source-drain axis. It is also noticed that in the strained silicon area, all three diagonal components of the strain tensor are compressive. Thus the CBED strain

  15. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    PubMed

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  16. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness

    PubMed Central

    Samaroo, Harry D; Lu, Jing; Webster, Thomas J

    2008-01-01

    The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or anti-inflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural anti-thrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (<60 μm) compared with coarse grain NiTi compacts (<100 μm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features. PMID:18488418

  17. Direct Observations of the Composition of Sub-20 Nanometer Ambient Aerosol

    NASA Astrophysics Data System (ADS)

    Moore, K. F.; Smith, J. N.; Eisele, F. L.; McMurry, P. H.

    2002-12-01

    Understanding new particle formation in the atmosphere depends upon many factors including detailed knowledge of their chemical composition. The chemical composition of sub-20 nanometer ambient aerosol particles, however, is typically inferred from observations of the aerosol behavior when subjected to varying conditions during sampling. Direct observations of aerosol chemical composition are usually limited to or dominated by larger particles of higher mass. Recently a new instrument has been developed - the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) - which can directly measure the chemical composition of sub-20 nanometer aerosol particles. Briefly, the front end of the TDCIMS functions as an electrostatic precipitator using a strong electric field to collect charged aerosol particles onto a sample wire. After volatilization by heating, the component species of the collected particles are subjected to chemical ionization prior to introduction into the mass spectrometer for analysis. Detection limits on the order of picograms permit sample collection periods as small as five minutes for ambient aerosol concentrations providing near "real-time" resolution. For selected periods from April through June 2002, we used the TDCIMS to measure the chemical composition of ambient aerosol for the first time. We investigated both the positive and negative ion spectrums produced by sub-20 nanometer ambient aerosol particles at the National Center for Atmospheric Research in Boulder, Colorado. Principal species identified include ammonium, sulfate and nitrate although additional peaks consistent with particle-phase origin were readily observed. Diurnal concentration profiles appear to be present and the relative proportion of sulfate and nitrate to each other can vary appreciably over several hours and between days. Validation of the TDCIMS' performance and the interpretation of its results will also be discussed.

  18. Simultaneous triple 914 nm, 1084 nm, and 1086 nm operation of a diode-pumped Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Lü, Yanfei; Xia, Jing; Liu, Huilong; Pu, Xiaoyun

    2014-10-01

    We report a diode-pumped continuous-wave (cw) triple-wavelength Nd:YVO4 laser operating at 914, 1084, and 1086 nm. A theoretical analysis has been introduced to determine the threshold conditions for simultaneous triple-wavelength laser. Using a T-shaped cavity, we realized an efficient triple-wavelength operation at 4F3/2→4I9/2 and 4F3/2→4I11/2 transitions for Nd:YVO4 crystal, simultaneously. At an absorbed pump power of 16 W (or 25 W of incident pump power), the maximum output power was 2.3 W, which included 914 nm, 1084 nm, and 1086 nm three wavelengths, and the optical conversion efficiency with respect to the absorbed pump power was 14.4%.

  19. Nanometer-Scale Dissection of Chromosomes by Atomic Force Microscopy Combined with Heat-Denaturing Treatment

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Kazumi; Kuwazaki, Seigo; Yamamoto, Kimiko; Shichiri, Motoharu; Yoshino, Tomoyuki; Ohtani, Toshio; Sugiyama, Shigeru

    2006-03-01

    We have developed a method for dissecting chromosome fragments with a size of a few hundred nanometers by atomic force microscopy (AFM). By using this method, we demonstrated reproducible dissections of silkworm chromosomes in the pachytene phase. The dissected fragments were successfully recovered on the cantilever tips, as confirmed by fluorescent microscopy using fluorescent stained chromosomes. To recover dissected chromosome fragments from a larger chromosome, such as the human metaphase chromosome of a somatic cell, heat denaturation was found to be effective. Further improvements in this method may lead to a novel tool for isolating valuable genes and/or investigating local genome structures in the near future.

  20. Growth of single diamond crystallites around nanometer-scale silicon wires

    SciTech Connect

    Dennig, P.A.; Liu, H.I.; Stevenson, D.A.; Pease, R.F.W.

    1995-08-14

    Diamond crystallites were nucleated and grown from the vapor phase on silicon substrates previously processed into arrays of nanometer-scale silicon wires. We found that the nanowires did not aid nucleation, and that the nucleation density on the nanowire base was very low ({lt}10{sup 4} cm{sup {minus}2}). Most importantly, we discovered that single diamond crystallites grew around the nanowires, infiltrating the nanowire arrays, forming new composite structures. This discovery clearly shows how inclusions can be trapped in vapor grown diamond crystallites, and challenges the common assumption that growth precursors on the diamond surface are relatively immobile. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  1. Laser Acoustic Microstructure Analysis at the Micron and Nanometer Length Scale

    SciTech Connect

    Telschow, Kenneth Louis; Hurley, David Howard

    2002-05-01

    Laser acoustic approaches to investigating the interaction of elastic waves with microstructure in materials is presented that probe both the micron and nanometer length scales. At the micron length scale, a full-field imaging approach is described that provides quantitative measurement of amplitude and phase of the out-of-plane acoustical motion at GHz frequencies. Specific lateral acoustic modes can be identified in addition to the primary thickness mode with spatial resolution sufficient to image wavelengths as small as 4.5 microns.

  2. Elastic deformation of nanometer-sized metal crystals in graphitic shells

    NASA Astrophysics Data System (ADS)

    Sun, L.; Rodríguez-Manzo, J. A.; Banhart, F.

    2006-12-01

    The elastic deformation of nanometer-sized metal crystals is achieved by encapsulating them in carbon nanotubes or carbon onions. Electron irradiation of these core-shell particles leads to high pressure in their center due to a shrinkage of the graphitic shells. Pressures in the range of 10-30GPa are found by measuring the decrease in lattice spacings in the encapsulated metal crystals. Hence, it is quantitatively shown how closed graphitic shells can be applied as compression cells on the nanoscale.

  3. Ballistic-Electron-Emission Microscopy Techniques for Nanometer-scale Characterization of Interfaces

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Grunthaner, F. J.; Hecht, M. H.; Manion, S. J.; Milliken, A. M.; Kaiser, W. J.

    1993-01-01

    Semiconductor interface properties are among the most important phenomena in materials science and technology. The study of metal/semiconductor Schottky barrier interfaces has been the primary focus of a large research and development community for decades. Throughout the long history of interface investigation, the study of interface defect electronic properties have been seriously hindered by the fundamental experimental difficulty of probing subsurface structures. A new method, Ballistic-Electron-Emission Microscopy (BEEM), has been developed which not only enables spectroscopic probing of subsurface interface properties, but also, provides nanometer-resolution imaging capabilities. BEEM employs Scanning Tunneling Microscopy (STM) and a unique spatially localized ballistic electron spectroscopy method...

  4. Dynamic shear force microscopy of viscosity in nanometer-confined hexadecane layers

    NASA Astrophysics Data System (ADS)

    Krass, Marc-Dominik; Nand Gosvami, Nitya; Carpick, Robert W.; Müser, Martin H.; Bennewitz, Roland

    2016-04-01

    Hexadecane exhibits pronounced molecular layering upon confinement to gaps of a few nanometer width which is discussed for its role in boundary lubrication. We have probed the mechanical properties of the confined layers with the help of an atomic force microscope, by quasi-static normal force measurements and by analyzing the lateral tip motion of a magnetically actuated torsional cantilever oscillation. The molecular layering is modeled by a oscillatory force curve and the tip approach is simulated assuming thermal equilibrium correlations in the liquid. The shear response of the confined layers reveals gradually increasing stiffness and viscous dissipation for a decreasing number of confined layers.

  5. Dynamic shear force microscopy of viscosity in nanometer-confined hexadecane layers.

    PubMed

    Krass, Marc-Dominik; Gosvami, Nitya Nand; Carpick, Robert W; Müser, Martin H; Bennewitz, Roland

    2016-04-01

    Hexadecane exhibits pronounced molecular layering upon confinement to gaps of a few nanometer width which is discussed for its role in boundary lubrication. We have probed the mechanical properties of the confined layers with the help of an atomic force microscope, by quasi-static normal force measurements and by analyzing the lateral tip motion of a magnetically actuated torsional cantilever oscillation. The molecular layering is modeled by a oscillatory force curve and the tip approach is simulated assuming thermal equilibrium correlations in the liquid. The shear response of the confined layers reveals gradually increasing stiffness and viscous dissipation for a decreasing number of confined layers. PMID:26931743

  6. Computational study of nanometer-scale self-propulsion enabled by asymmetric chemical catalysis.

    PubMed

    Shi, Yunfeng; Huang, Liping; Brenner, Donald W

    2009-07-01

    We present a detailed analysis of the self-propulsion of a model nanometer-scale motor by reactive molecular dynamics simulations. The nanomotor is decorated with catalysts on only one side that promotes exothermic reactions of the surrounding fuel. Unidirectional drift of the nanomotor is observed that is superimposed on its Brownian motion. The motor response upon the application of external loads is also investigated and the thermodynamic efficiency is calculated. It is shown that the propulsion of our nanomotor can be understood by a momentum transfer model which is akin to rocket propulsion.

  7. Sub-10 nm nanopantography

    SciTech Connect

    Tian, Siyuan Donnelly, Vincent M. E-mail: economou@uh.edu; Economou, Demetre J. E-mail: economou@uh.edu; Ruchhoeft, Paul

    2015-11-09

    Nanopantography, a massively parallel nanopatterning method over large areas, was previously shown to be capable of printing 10 nm features in silicon, using an array of 1000 nm-diameter electrostatic lenses, fabricated on the substrate, to focus beamlets of a broad area ion beam on selected regions of the substrate. In the present study, using lens dimensional scaling optimized by computer simulation, and reduction in the ion beam image size and energy dispersion, the resolution of nanopantography was dramatically improved, allowing features as small as 3 nm to be etched into Si.

  8. Laser Damage Growth in Fused Silica with Simultaneous 351 nm and 1053 nm irradiation

    SciTech Connect

    Norton, M A; Carr, A V; Carr, C W; Donohue, E E; Feit, M D; Hollingsworth, W G; Liao, Z; Negres, R A; Rubenchik, A M; Wegner, P J

    2008-10-24

    Laser-induced growth of optical damage often determines the useful lifetime of an optic in a high power laser system. We have extended our previous work on growth of laser damage in fused silica with simultaneous 351 nm and 1053 nm laser irradiation by measuring the threshold for growth with various ratios of 351 nm and 1053 nm fluence. Previously we reported that when growth occurs, the growth rate is determined by the total fluence. We now find that the threshold for growth is dependent on both the magnitude of the 351 nm fluence as well as the ratio of the 351 nm fluence to the 1053 nm fluence. Furthermore, the data suggests that under certain conditions the 1053 nm fluence does not contribute to the growth.

  9. Surface charge and interactions of 20-nm nanocolloids in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Ryzhkova, A. V.; Škarabot, M.; Muševič, I.

    2015-04-01

    We studied real-time motion of individual 20-nm silica nanoparticles in a thin layer of a nematic liquid crystal using a dark-field optical videomicroscopy. By tracking the positions of individual nanoparticles we observed that particle pair interactions are not only mediated by strong thermal fluctuations of the nematic liquid crystal, but also with a repulsive force of electric origin. We determined the total electric charge of silanated silica particles in the nematic liquid crystal 5CB by observing the electric-force-driven drift. Surprisingly, the surface electric charge density depends on colloidal size and is ˜4.5 ×10-3C/m2 for 20-nm nanocolloids, and two orders of magnitude lower, i.e., ˜2.3 ×10-5C/m2 , for 1 -μ m colloids. We conclude that electrostatic repulsion between like-charged particles prevents the formation of permanent colloidal assemblies of nanometer size. We also observed strong attraction of 20-nm silica nanoparticles to confining polyimide surfaces and larger clusters, which gradually results in complete expulsion of nanoparticles from the nematic liquid crystal to the surfaces of the confining cell.

  10. Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy.

    PubMed

    Kennedy, Eamonn; Nelson, Edward M; Tanaka, Tetsuya; Damiano, John; Timp, Gregory

    2016-02-23

    It is now possible to visualize at nanometer resolution the infection of a living biological cell with virus without compromising cell viability using scanning transmission electron microscopy (STEM). To provide contrast while preserving viability, Escherichia coli and P1 bacteriophages were first positively stained with a very low concentration of uranyl acetate in minimal phosphate medium and then imaged with low-dose STEM in a microfluidic liquid flow cell. Under these conditions, it was established that the median lethal dose of electrons required to kill half the tested population was LD50 = 30 e(-)/nm(2), which coincides with the disruption of a wet biological membrane, according to prior reports. Consistent with the lateral resolution and high-contrast signal-to-noise ratio (SNR) inferred from Monte Carlo simulations, images of the E. coli membrane, flagella, and the bacteriophages were acquired with 5 nm resolution, but the cumulative dose exceeded LD50. On the other hand, with a cumulative dose below LD50 (and lower SNR), it was still possible to visualize the infection of E. coli by P1, showing the insertion of viral DNA within 3 s, with 5 nm resolution.

  11. Effects of amines on formation of sub-3 nm particles and their subsequent growth

    SciTech Connect

    Yu H.; McGraw R.; Lee S.-H.

    2012-01-28

    Field observations and quantum chemical calculations suggest that amines can be important for formation of nanometer size particles. Amines and ammonia often have common atmospheric emission sources and the similar chemical and physical properties. While the effects of ammonia on aerosol nucleation have been previously investigated, laboratory studies of homogeneous nucleation involving amines are lacking. We have made kinetics studies of multicomponent nucleation (MCN) with sulfuric acid, water, ammonia and amines under conditions relevant to the atmosphere. Low concentrations of aerosol precursors were measured with chemical ionization mass spectrometers (CIMS) to provide constrained precursor concentrations needed for nucleation. Particle sizes larger than {approx}2 nm were measured with a nano-differential mobility analyzer (nano-DMA), and number concentrations of particles larger than {approx}1 nm were measured with a particle size magnifier (PSM). Our observations provide the laboratory evidence that amines indeed can participate in aerosol nucleation and growth at the molecular cluster level. The enhancement of particle number concentrations due to several atmospherically relevant amine compounds and ammonia were related to the basicity of these compounds, indicating that acid-base reactions may contribute to the formation of sub-3 nm particles.

  12. Effects of amines on formation of sub-3 nm particles and their subsequent growth

    NASA Astrophysics Data System (ADS)

    Yu, Huan; McGraw, Robert; Lee, Shan-Hu

    2012-01-01

    Field observations and quantum chemical calculations suggest that amines can be important for formation of nanometer size particles. Amines and ammonia often have common atmospheric emission sources and the similar chemical and physical properties. While the effects of ammonia on aerosol nucleation have been previously investigated, laboratory studies of homogeneous nucleation involving amines are lacking. We have made kinetics studies of multicomponent nucleation (MCN) with sulfuric acid, water, ammonia and amines under conditions relevant to the atmosphere. Low concentrations of aerosol precursors were measured with chemical ionization mass spectrometers (CIMS) to provide constrained precursor concentrations needed for nucleation. Particle sizes larger than ˜2 nm were measured with a nano-differential mobility analyzer (nano-DMA), and number concentrations of particles larger than ˜1 nm were measured with a particle size magnifier (PSM). Our observations provide the laboratory evidence that amines indeed can participate in aerosol nucleation and growth at the molecular cluster level. The enhancement of particle number concentrations due to several atmospherically relevant amine compounds and ammonia were related to the basicity of these compounds, indicating that acid-base reactions may contribute to the formation of sub-3 nm particles.

  13. Live Bacterial Physiology Visualized with 5 nm Resolution Using Scanning Transmission Electron Microscopy.

    PubMed

    Kennedy, Eamonn; Nelson, Edward M; Tanaka, Tetsuya; Damiano, John; Timp, Gregory

    2016-02-23

    It is now possible to visualize at nanometer resolution the infection of a living biological cell with virus without compromising cell viability using scanning transmission electron microscopy (STEM). To provide contrast while preserving viability, Escherichia coli and P1 bacteriophages were first positively stained with a very low concentration of uranyl acetate in minimal phosphate medium and then imaged with low-dose STEM in a microfluidic liquid flow cell. Under these conditions, it was established that the median lethal dose of electrons required to kill half the tested population was LD50 = 30 e(-)/nm(2), which coincides with the disruption of a wet biological membrane, according to prior reports. Consistent with the lateral resolution and high-contrast signal-to-noise ratio (SNR) inferred from Monte Carlo simulations, images of the E. coli membrane, flagella, and the bacteriophages were acquired with 5 nm resolution, but the cumulative dose exceeded LD50. On the other hand, with a cumulative dose below LD50 (and lower SNR), it was still possible to visualize the infection of E. coli by P1, showing the insertion of viral DNA within 3 s, with 5 nm resolution. PMID:26811950

  14. Method to grow carbon thin films consisting entirely of diamond grains 3-5 nm in size and high-energy grain boundaries

    DOEpatents

    Carlisle, John A.; Auciello, Orlando; Birrell, James

    2006-10-31

    An ultrananocrystalline diamond (UNCD) having an average grain size between 3 and 5 nanometers (nm) with not more than about 8% by volume diamond having an average grain size larger than 10 nm. A method of manufacturing UNCD film is also disclosed in which a vapor of acetylene and hydrogen in an inert gas other than He wherein the volume ratio of acetylene to hydrogen is greater than 0.35 and less than 0.85, with the balance being an inert gas, is subjected to a suitable amount of energy to fragment at least some of the acetylene to form a UNCD film having an average grain size of 3 to 5 nm with not more than about 8% by volume diamond having an average grain size larger than 10 nm.

  15. Two-dimensional modeling and analysis of a nanometer transistor as a THz emitter

    NASA Astrophysics Data System (ADS)

    Rahmatallahpur, Sh.; Rostami, Ali

    2016-10-01

    In this paper, we report on the influences of quantum effects, electron exchange-correlation, Fermi velocity, gate to channel distance and viscosity on the plasma frequency and instability of the plasma waves in a nanometer transistor. By extending the analysis to two-dimensional case, allowing oblique wave propagation, including viscosity and departing from gradual channel approximation, we obtain a general analytical expression for dispersion relation, plasma frequency, and "increment." We found that, while the plasma frequency decreases with the electron exchange-correlation effect, it increases with quantum effects and Fermi velocity. It is shown that the spectrums of plasma waves are discrete both in longitudinal and lateral (transverse) direction. We also express the total radiated power in terms of transistor parameters especially the lateral dimension. Viscosity which is inherently presented in the structure and cannot be neglected, dramatically decrease the emitted power and set a lower limit on the length of transistor. We show that a nanometer transistor with a long width (a long lateral dimension) has advantages for the realization of practical terahertz emitters.

  16. Constitutive models for linear compressible viscoelastic flows of simple liquids at nanometer length scales

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debadi; Sader, John E.

    2015-05-01

    Simple bulk liquids such as water are commonly assumed to be Newtonian. While this assumption holds widely, the fluid-structure interaction of mechanical devices at nanometer scales can probe the intrinsic molecular relaxation processes in a surrounding liquid. This was recently demonstrated through measurement of the high frequency (20 GHz) linear mechanical vibrations of bipyramidal nanoparticles in simple liquids [Pelton et al., "Viscoelastic flows in simple liquids generated by vibrating nanostructures," Phys. Rev. Lett. 111, 244502 (2013)]. In this article, we review and critically assess the available constitutive equations for compressible viscoelastic flows in their linear limits—such models are required for analysis of the above-mentioned measurements. We show that previous models, with the exception of a very recent proposal, do not reproduce the required response at high frequency. We explain the physical origin of this recent model and show that it recovers all required features of a linear viscoelastic flow. This constitutive equation thus provides a rigorous foundation for the analysis of vibrating nanostructures in simple liquids. The utility of this model is demonstrated by solving the fluid-structure interaction of two common problems: (1) a sphere executing radial oscillations in liquid, which depends strongly on the liquid compressibility and (2) the extensional mode vibration of bipyramidal nanoparticles in liquid, where the effects of liquid compressibility are negligible. This highlights the importance of shear and compressional relaxation processes, as a function of flow geometry, and the impact of the shear and bulk viscosities on nanometer scale flows.

  17. Fabricating Nanometer-Thick Simultaneously Oleophobic/Hydrophilic Polymer Coatings via a Photochemical Approach.

    PubMed

    Wang, Yongjin; Dugan, Michael; Urbaniak, Brian; Li, Lei

    2016-07-01

    The simultaneously oleophobic/hydrophilic coatings are highly desirable in antifogging, oil-water separation, and detergent-free cleaning. However, such coatings require special chemical structure, i.e., perfluorinated backbone and polar end-groups, and are too expensive for real-life application. Here, we have developed an UV-based photochemical approach to make nanometer-thick perfluoropolyethers without polar end-groups, which are not intrinsically simultaneously oleophobic/hydrophilic but cost-effective, become simultaneously oleophobic/hydrophilic. The contact angle, ellipsometry, and X-ray photoelectron spectroscopy (XPS) results indicated that the UV irradiation results in the covalent bonding between the polymer and the substrate, which renders more ordered packing of polymer chains and thus the appropriately small interchain distance. As a result, the small water molecules penetrate the polymer network while large oil molecules do not. As a result, the oil contact angle is larger than the water contact angle and the coating shows the simultaneous oleophobicity/hydrophilicity. Moreover, we also demonstrated that this nanometer-thick simultaneously oleophobic/hydrophilic coating has improved long-term antifogging performance and detergent-free cleaning capability and is mechanically robust. The photochemical approach established here potentially can be applied on many other polymers and greatly accelerate the development and application of simultaneously oleophobic/hydrophilic coatings. PMID:27249169

  18. Sub-nanometer interferometry and precision turning for large optical fabrication

    SciTech Connect

    Klingmann, J L; Sommargren, G E

    1999-04-01

    At Lawrence Livermore National Laboratory (LLNL), we have the unique combination of precision turning and metrology capabilities critical to the fabrication of large optical elements. We have developed a self-referenced interferometer to measure errors in aspheric optics to sub- nanometer accuracy over 200-millimeter apertures, a dynamic range of 5{approximately}10. We have utilized diamond turning to figure optics for X-ray to IR wavelengths and, with fast-tool-servo technology, can move optical segments from off-axis to on-axis. With part capacities to 2.3-meters diameter and the metrology described above, segments of very large, ultra-lightweight mirrors can potentially be figured to final requirements. precision of diamond-turning will carryover although the surface finish may be degraded. Finally, the most critical component of a fabrication process is the metrology that enables an accurate part. Well characterized machines are very repeatable and part accuracy must come from proper metrology. A self- referencing interferometer has been developed that can measure accurately to sub-nanometer values. As with traditional interferometers, measurements are fast and post- processed data provides useful feedback to the user. The simplicity of the device allows it to be used on large optics and systems.

  19. A multidentate lubricant for use in hard disk drives at sub-nanometer thickness

    NASA Astrophysics Data System (ADS)

    Guo, X.-C.; Marchon, B.; Wang, R.-H.; Mate, C. M.; Dai, Q.; Waltman, R. J.; Deng, H.; Pocker, D.; Xiao, Q.-F.; Saito, Y.; Ohtani, T.

    2012-01-01

    We describe a second generation of multidentate lubricant structures for use on a magnetic media in a hard disk drive. Building on earlier work where a perfluoropolyether (PFPE) chain with hydroxyl bonding moieties were placed in the middle of the chain as well as on chain ends, creating a structure with two PFPE sub-units for enhanced tribological performance under very low head-disk spacing, this paper focuses on a PFPE chain composed of three, even shorter PFPE sub-units. Experimental data focusing on surface characterization of sub-nanometer thickness films, as well as tribological performance, are presented that confirm the high confinement level achieved with the lubricant structure. Molecular dynamics calculations are also discussed, that are consistent with a molecular film of high stiffness, leading to a denser, more compact structure. This approach could pave the way to achieving the sub-nanometer head-disk clearance level, presumed necessary for storage densities exceeding the terabit per square inch density landmark.

  20. Fabricating Nanometer-Thick Simultaneously Oleophobic/Hydrophilic Polymer Coatings via a Photochemical Approach.

    PubMed

    Wang, Yongjin; Dugan, Michael; Urbaniak, Brian; Li, Lei

    2016-07-01

    The simultaneously oleophobic/hydrophilic coatings are highly desirable in antifogging, oil-water separation, and detergent-free cleaning. However, such coatings require special chemical structure, i.e., perfluorinated backbone and polar end-groups, and are too expensive for real-life application. Here, we have developed an UV-based photochemical approach to make nanometer-thick perfluoropolyethers without polar end-groups, which are not intrinsically simultaneously oleophobic/hydrophilic but cost-effective, become simultaneously oleophobic/hydrophilic. The contact angle, ellipsometry, and X-ray photoelectron spectroscopy (XPS) results indicated that the UV irradiation results in the covalent bonding between the polymer and the substrate, which renders more ordered packing of polymer chains and thus the appropriately small interchain distance. As a result, the small water molecules penetrate the polymer network while large oil molecules do not. As a result, the oil contact angle is larger than the water contact angle and the coating shows the simultaneous oleophobicity/hydrophilicity. Moreover, we also demonstrated that this nanometer-thick simultaneously oleophobic/hydrophilic coating has improved long-term antifogging performance and detergent-free cleaning capability and is mechanically robust. The photochemical approach established here potentially can be applied on many other polymers and greatly accelerate the development and application of simultaneously oleophobic/hydrophilic coatings.

  1. Influence of nanometer scale particulate fillers on some properties of microfilled composite resin.

    PubMed

    Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2011-07-01

    The aim of this study was to evaluate the effect of different weight fractions of nanometer sized particulate filler on properties of microfilled composite resin. Composite resin was prepared by mixing 33 wt% of resin matrix to the 67 wt% of silane treated microfine silica particulate fillers with various fractions of nanometer sized fillers (0, 10, 15, 20, 30 wt%) using a high speed mixing machine. Test specimens made of the composites were tested with a three-point bending test with a speed of 1.0 mm/min until fracture. Surface microhardess (Vicker's microhardness) was also determined. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes principle. The degree of monomer conversion (DC%) of the experimental composites containing different nanofiller fractions was measured using FTIR spectroscopy. Surface roughness (Ra) was determined using a surface profilometer. Nanowear measurements were carried out using a nanoindentation device. The water uptake of specimens was also measured. Parameters were statistically analysed by ANOVA (P < 0.05). The group without nanofillers showed the highest flexural strength and modulus, DC% and Ra value. The group with 30% nanofillers had the highest water uptake and volumetric shrinkage. No significant difference was found in Vicker's microhardness and the nanowear of the composites. The plain microfilled composite demonstrated superior properties compared to the composites loaded with nanofillers with the exception of surface roughness. PMID:21611793

  2. The research progress of metrological 248nm deep ultraviolent microscope inspection device

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-xin; Li, Qi; Gao, Si-tian; Shi, Yu-shu; Li, Wei; Li, Shi

    2016-01-01

    In lithography process, the precision of wafer pattern to a large extent depends on the geometric dimensioning and tolerance of photomasks when accuracy of lithography aligner is certain. Since the minimum linewidth (Critical Dimension) of the aligner exposing shrinks to a few tens of nanometers in size, one-tenth of tolerance errors in fabrication may lead to microchip function failure, so it is very important to calibrate these errors of photomasks. Among different error measurement instruments, deep ultraviolent (DUV) microscope because of its high resolution, as well as its advantages compared to scanning probe microscope restrained by measuring range and scanning electron microscope restrained by vacuum environment, makes itself the most suitable apparatus. But currently there is very few DUV microscope adopting 248nm optical system, means it can attain 80nm resolution; furthermore, there is almost no DUV microscope possessing traceable calibration capability. For these reason, the National Institute of Metrology, China is developing a metrological 248nm DUV microscope mainly consists of DUV microscopic components, PZT and air supporting stages as well as interferometer calibration framework. In DUV microscopic component, the Köhler high aperture transmit condenser, DUV splitting optical elements and PMT pinhole scanning elements are built. In PZT and air supporting stages, a novel PZT actuating flexural hinge stage nested separate X, Y direction kinematics and a friction wheel driving long range air supporting stage are researched. In interferometer framework, a heterodyne multi-pass interferometer measures XY axis translation and Z axis rotation through Zerodur mirror mounted on stage. It is expected the apparatus has the capability to calibrate one dimensional linewidths and two dimensional pitches ranging from 200nm to 50μm with expanded uncertainty below 20nm.

  3. Electrical characteristics of field-effect transistors based on indium arsenide nanowire thinner than 10 nm

    SciTech Connect

    Fu, Mengqi; Yang, Yingjun; Shi, Tuanwei; Zhang, Zhiyong; Xu, H. Q.; Chen, Qing; Pan, Dong; Zhao, Jianhua

    2014-10-06

    To suppress short channel effects, lower off-state leakage current and enhance gate coupling efficiency, InAs nanowires (NWs) with diameter smaller than 10 nm could be needed in field-effect transistors (FETs) as the channel length scales down to tens of nanometers to improve the performance and increase the integration. Here, we fabricate and study FETs based on ultrathin wurtzite-structured InAs NWs, with the smallest NW diameter being 7.2 nm. The FETs based on ultrathin NWs exhibit high I{sub on}/I{sub off} ratios of up to 2 × 10{sup 8}, small subthreshold swings of down to 120 mV/decade, and operate in enhancement-mode. The performance of the devices changes as a function of the diameter of the InAs NWs. The advantages and challenges of the FETs based on ultrathin NWs are discussed.

  4. The antifungal efficacy of nano-metals supported TiO₂ and ozone on the resistant Aspergillus niger spore.

    PubMed

    Yu, Kuo-Pin; Huang, Yi-Ting; Yang, Shang-Chun

    2013-10-15

    Recently, antimicrobial efficacy of nano-metals has been extensively investigated. However, most of the related studies focused on the bactericidal effectiveness. Molds, especially their spores, are more resistant than bacteria, and can build a high concentration in houses due to dampness. Therefore, a comprehensive evaluation of the antifungal effectiveness of nano-metals is necessary. In this study, the nano-metals (Ag, Cu and Ni) supported catalysts were successfully prepared by the incipient wetness impregnation method, while the titanium dioxide (Degussa (Evonik) P25) nanoparticle was served as the support. The antifungal experiments of Aspergillus niger spores were conducted on two surfaces (quartz and putty) in the darkness with and without ozone exposure, respectively. The critical Ag concentration to inhibit the germination and growth of A. niger spores of 5 wt% nano Ag catalyst was 65 mg/mL, lower than several cases in previous studies. The inactivation rate constants (k) of A. niger spores on nano-metals supported catalysts in the presence of ozone (k=0.475-0.966 h(-1)) were much higher than those in the absence of ozone (k=0.001-0.268 h(-1)). However, on the surface of TiO₂ particles, no antifungal effect was observed until 6-h exposure to ozone. Consequently, ozone has a synergetic effect on nano-metals antifungal efficacy. PMID:23921178

  5. Synthesis of nanometer-size inorganic materials for the examination of particle size effects on heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Emerson, Sean Christian

    The effect of acoustic and hydrodynamic cavitation on the precipitation of inorganic catalytic materials, specifically titania supported gold, was investigated. The overall objective was to understand the fundamental factors involved in synthesizing nanometer-size catalytic materials in the 1--10 nm range in a cavitating field. Materials with grain sizes in this range have been associated with enhanced catalytic activity compared to larger grain size materials. A new chemical approach was used to produce titania supported gold by co-precipitation with higher gold yields compared to other synthesis methods. Using this approach, it was determined that acoustic cavitation was unable to influence the gold mean crystallite size compared to non-sonicated catalysts. However, gold concentration on the catalysts was found to be very important for CO oxidation activity. By decreasing the gold concentration from a weight loading of 0.50% down to approximately 0.05%, the rate of reaction per mole of gold was found to increase by a factor of 19. Hydrodynamic cavitation at low pressures (6.9--48 bar) was determined to have no effect on gold crystallite size at a fixed gold content for the same precipitation technique used in the acoustic cavitation studies. By changing the chemistry of the precipitation system, however, it was found that a synergy existed between the dilution of the gold precursor solution, the orifice diameter, and the reducing agent addition rate. Individually, these factors were found to have little effect and only their interaction allowed gold grain size control in the range of 8--80 nm. Further modification of the system chemistry and the use of hydrodynamic cavitation at pressures in excess of 690 bar allowed the systematic control of gold crystallite size in the range of 2--9 nm for catalysts containing 2.27 +/- 0.17% gold. In addition, it was shown that the enhanced mixing due to cavitation led to larger gold yields compared to classical syntheses. The

  6. Nanometer precise adjustment of the silver shell thickness during automated Au-Ag core-shell nanoparticle synthesis in micro fluid segment sequences

    NASA Astrophysics Data System (ADS)

    Knauer, Andrea; Eisenhardt, Anja; Krischok, Stefan; Koehler, J. Michael

    2014-04-01

    In this work, a wet-chemical synthesis method for gold-silver core-shell particles with nanometer precise adjustable silver shell thicknesses is presented. Typically wet-chemical syntheses lead to relatively large diameter size distributions and losses in the yield of the desired particle structure due to thermodynamical effects. With the here explained synthesis method in micro fluidic segment sequences, a combinatorial in situ parameter screening of the reactant concentration ratios by programmed flow rate shifts in conjunction with efficient segment internal mixing conditions is possible. The highly increased mixing rates ensure a homogeneous shell deposition on all presented gold core particles while the amount of available silver ions was adjusted by automated flow rate courses, from which the synthesis conditions for exactly tunable shell thicknesses between 1.1 and 6.1 nm could be derived. The findings according to the homogeneity of size and particle structure were confirmed by differential centrifugal sedimentation (DCS), scanning and transmission electron microscopy (SEM, TEM) and X-ray photoelectron spectroscopy (XPS) measurements. In UV-Vis measurements, a significant contribution of the core metal was found in the shape of the extinction spectra in the case of thin shells. These results were confirmed by theoretical calculations.In this work, a wet-chemical synthesis method for gold-silver core-shell particles with nanometer precise adjustable silver shell thicknesses is presented. Typically wet-chemical syntheses lead to relatively large diameter size distributions and losses in the yield of the desired particle structure due to thermodynamical effects. With the here explained synthesis method in micro fluidic segment sequences, a combinatorial in situ parameter screening of the reactant concentration ratios by programmed flow rate shifts in conjunction with efficient segment internal mixing conditions is possible. The highly increased mixing rates

  7. Radiation Failures in Intel 14nm Microprocessors

    NASA Technical Reports Server (NTRS)

    Bossev, Dobrin P.; Duncan, Adam R.; Gadlage, Matthew J.; Roach, Austin H.; Kay, Matthew J.; Szabo, Carl; Berger, Tammy J.; York, Darin A.; Williams, Aaron; LaBel, K.; Ingalls, James D.

    2016-01-01

    In this study the 14 nm Intel Broadwell 5th generation core series 5005U-i3 and 5200U-i5 was mounted on Dell Inspiron laptops, MSI Cubi and Gigabyte Brix barebones and tested with Windows 8 and CentOS7 at idle. Heavy-ion-induced hard- and catastrophic failures do not appear to be related to the Intel 14nm Tri-Gate FinFET process. They originate from a small (9 m 140 m) area on the 32nm planar PCH die (not the CPU) as initially speculated. The hard failures seem to be due to a SEE but the exact physical mechanism has yet to be identified. Some possibilities include latch-ups, charge ion trapping or implantation, ion channels, or a combination of those (in biased conditions). The mechanism of the catastrophic failures seems related to the presence of electric power (1.05V core voltage). The 1064 nm laser mimics ionization radiation and induces soft- and hard failures as a direct result of electron-hole pair production, not heat. The 14nm FinFET processes continue to look promising for space radiation environments.

  8. 810nm, 980nm, 1470nm and 1950nm diode laser comparison: a preliminary "ex vivo" study on oral soft tissues

    NASA Astrophysics Data System (ADS)

    Fornaini, Carlo; Merigo, Elisabetta; Sozzi, Michele; Selleri, Stefano; Vescovi, Paolo; Cucinotta, Annamaria

    2015-02-01

    The introduction of diode lasers in dentistry has several advantages, mainly consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibers. At the moment the two diode wavelengths normally utilized in the dental field are 810 and 980 nm for soft tissues treatments. The aim of this study was to compare the efficacy of four different diode wavelengths: 810, 980, 1470 and 1950 nm diode laser for the ablation of soft tissues. Several samples of veal tongue were exposed to the four different wavelengths, at different fluences. The internal temperature of the soft tissues, in the area close to the beam, was monitored with thermocouple during the experiment. The excision quality of the exposed samples have been characterized by means of an optical microscope. Tissue damages and the cut regularity have been evaluated on the base of established criteria. The lowest thermal increase was recorded for 1950 nm laser. Best quality and speed of incision were obtained by the same wavelength. By evaluating epithelial, stromal and vascular damages for all the used wavelengths, the best result, in terms of "tissue respect", have been obtained for 1470 and 1950 nm exposures. From the obtained results 1470 and 1950 nm diode laser showed to be the best performer wavelengths among these used in this "ex vivo" study, probably due to their greatest affinity to water.

  9. Breakdown of the Hume-Rothery rules in sub-nanometer-sized Ta-containing bimetallic small clusters.

    PubMed

    Miyajima, Ken; Fukushima, Naoya; Himeno, Hidenori; Yamada, Akira; Mafuné, Fumitaka

    2009-12-01

    The Hume-Rothery rules are empirical rules to predict the solid solubility of metals. We examined whether the rules hold for sub-nanometer-sized small particles. We prepared bimetallic cluster ions in the gas phase by a double laser ablation technique. Taking advantage of the magic compositions of the bimetallic cluster ions relating to the distinguished stabilities, the coalescence or the segregation of Ta and another element in the sub-nanometer-sized clusters was discussed. It was found that W, Nb, and Mo readily coalesce with Ta, while Ag, Al, Au, Co, Cu, Fe, Hf, Ni, Pt, Ti, and V are segregated from Ta. On the basis of these results, we concluded that the Hume-Rothery rules do not hold for sub-nanometer-sized particles. PMID:19894706

  10. Breakdown of the Hume-Rothery rules in sub-nanometer-sized Ta-containing bimetallic small clusters.

    PubMed

    Miyajima, Ken; Fukushima, Naoya; Himeno, Hidenori; Yamada, Akira; Mafuné, Fumitaka

    2009-12-01

    The Hume-Rothery rules are empirical rules to predict the solid solubility of metals. We examined whether the rules hold for sub-nanometer-sized small particles. We prepared bimetallic cluster ions in the gas phase by a double laser ablation technique. Taking advantage of the magic compositions of the bimetallic cluster ions relating to the distinguished stabilities, the coalescence or the segregation of Ta and another element in the sub-nanometer-sized clusters was discussed. It was found that W, Nb, and Mo readily coalesce with Ta, while Ag, Al, Au, Co, Cu, Fe, Hf, Ni, Pt, Ti, and V are segregated from Ta. On the basis of these results, we concluded that the Hume-Rothery rules do not hold for sub-nanometer-sized particles.

  11. Thermodynamics of water-cubic ice and other liquid-solid coexistence in nanometer-size particles

    NASA Astrophysics Data System (ADS)

    Johari, G. P.

    1998-07-01

    When contributions from the interfacial energy become significant and comparable to the bulk energy, liquid and crystalline phases can coexist at a temperature much lower than the usual melting point. A formalism for this coexistence is given, and thermodynamic conditions for the melting of nanometer-size cubic ice crystals are derived when both the ice and water are at an equilibrium vapor pressure. By using the approximate values of surface energy and the enthalpy and entropy of melting, it is shown that nanometer-size water droplets can coexist with cubic ice particles of about the same size at temperatures in the 150-180 K range. The unusually large decrease in the temperature of a liquid-solid phase equilibrium is expected to be a general phenomenon in the nanometer-size films, clusters, and particles of materials.

  12. Surface functionalization by fine ultraviolet-patterning of nanometer-thick liquid lubricant films

    NASA Astrophysics Data System (ADS)

    Lu, Renguo; Zhang, Hedong; Komada, Suguru; Mitsuya, Yasunaga; Fukuzawa, Kenji; Itoh, Shintaro

    2014-11-01

    For micro/nanoscale devices, surface functionalization is essential to achieve function and performance superior to those that originate from the inherent bulk material properties. As a method of surface functionalization, we dip-coated nanometer-thick liquid lubricant films onto solid surfaces and then patterned the lubricant films with ultraviolet (UV) irradiation through a photomask. Surface topography, adhesion, and friction measurements demonstrated that the patterned films feature a concave-convex thickness distribution with thicker lubricant in the irradiated regions and a functional distribution with lower adhesion and friction in the irradiated convex regions. The pattern linewidth ranged from 100 to as fine as 0.5 μm. The surface functionalization effect of UV-patterning was investigated by measuring the water contact angles, surface energies, friction forces, and depletion of the patterned, as-dipped, and full UV-irradiated lubricant films. The full UV-irradiated lubricant film was hydrophobic with a water contact angle of 102.1°, and had lower surface energy, friction, and depletion than the as-dipped film, which was hydrophilic with a water contact angle of 80.7°. This demonstrates that UV irradiation substantially improves the surface and tribological properties of the nanometer-thick liquid lubricant films. The UV-patterned lubricant films exhibited superior surface and tribological properties than the as-dipped film. The water contact angle increased and the surface energy, friction, and depletion decreased as the pattern linewidth decreased. In particular, the 0.5-μm patterned lubricant film even showed a larger water contact angle and lower friction and depletion than the full UV-irradiated film. These indicate that UV-patterning of nanometer-thick lubricant films with a minimized linewidth has a better surface functionalization effect than full UV irradiation. Enhancement of the surface functionalization effect may be attributed to a

  13. Self-assembly of nanoparticles in nanometer-thin polymer films

    NASA Astrophysics Data System (ADS)

    Liu, Zhen

    2005-12-01

    Using "soft" materials such as block copolymers to organize self-assembly of nanoparticles into specific, ordered geometries is a promising route to nanostructure fabrication. In the case of block copolymers, which are the materials used in this thesis, the usual attractiveness for creation of nanostructures stems from the nanometer scale structure of their ordered matrices composed of phase-separated microdomains. The characteristic length scale of ordered block copolymer matrices typically lies below the resolution of conventional lithography techniques. Another advantage of block copolymers as a templating tool is that the geometry and periodicity of their structure can be tuned by changing their molecular parameters such as overall length of the block copolymer chain or the relative size of the blocks. This thesis investigates the self-organization of thiol-passivated gold nanoparticles in polymer films with thickness comparable to the particle diameter. Various nanostructures were observed to form, and their fundamental origins were investigated. In most cases, the polymers comprising the films were attached by one end to an underlying surface, in a "polymer brush" motif. Chapter 1 gives an introduction of the work done by other groups on the self-assembly of nanometer components on substrates, especially on using block copolymers as manipulating tools for nanostructure fabrication. Chapter 2 describes experimental methods and sample characterization, such as nanoparticle synthesis, preparation of polymer/nanoparticle composite films and sample characterization with various techniques, including TEM, AFM, SEM, FTIR, and XPS. In Chapter 3, organization of nanoparticles deposited on top of a polymer brush is investigated experimentally. A physical understanding of how the constraint of end-attachment of the polymer chains affects the organization of the nanoparticles and determines the morphology of nanoparticle aggregation (elongated stripes, extensive circular

  14. Medium energy ion scattering for the high depth resolution characterisation of high-k dielectric layers of nanometer thickness

    NASA Astrophysics Data System (ADS)

    van den Berg, J. A.; Reading, M. A.; Bailey, P.; Noakes, T. Q. C.; Adelmann, C.; Popovici, M.; Tielens, H.; Conard, T.; de Gendt, S.; van Elshocht, S.

    2013-09-01

    Medium energy ion scattering (MEIS) using, typically, 100-200 keV H+ or He+ ions derives it ability to characterise nanolayers from the fact that the energy after backscattering depends (i) on the elastic energy loss suffered in a single collision with a target atom and (ii) on the inelastic energy losses on its incoming and outgoing trajectories. From the former the mass of the atom can be determined and from the latter its depth. Thus MEIS yields depth dependent compositional and structural information, with high depth resolution (sub-nm near the surface) and good sensitivity for all but the lighter masses. It is particularly well suited for the depth analysis of high-k multilayers of nanometer thickness. Accurate quantification of the depth distributions of atomic species can be obtained using suitable spectrum simulation. In the present paper, important aspects of MEIS including quantification, depth resolution and spectrum simulation are briefly discussed. The capabilities of the technique in terms of the high depth resolution layer compositional and structural information it yields, is illustrated with reference to the detailed characterisation of a range of high-k nanolayer and multilayer structures for current microelectronic devices or those still under development: (i) HfO2 and HfSiOx for gate dielectric applications, including a TiN/Al2O3/HfO2/SiO2/Si structure, (ii) TiN/SrTiO3/TiN and (iii) TiO2/Ru/TiN multilayer structures for metal-insulator-metal capacitors (MIMcaps) in DRAM applications. The unique information provided by the technique is highlighted by its clear capability to accurately quantify the composition profiles and thickness of nanolayers and complex multilayers as grown, and to identify the nature and extent of atom redistribution (e.g. intermixing, segregation) during layer deposition, annealing and plasma processing. The ability makes it a valuable tool in the development of the nanostructures that will become increasingly important as

  15. Diode laser (980nm) cartilage reshaping

    NASA Astrophysics Data System (ADS)

    El Kharbotly, A.; El Tayeb, T.; Mostafa, Y.; Hesham, I.

    2011-03-01

    Loss of facial or ear cartilage due to trauma or surgery is a major challenge to the otolaryngologists and plastic surgeons as the complicated geometric contours are difficult to be animated. Diode laser (980 nm) has been proven effective in reshaping and maintaining the new geometric shape achieved by laser. This study focused on determining the optimum laser parameters needed for cartilage reshaping with a controlled water cooling system. Harvested animal cartilages were angulated with different degrees and irradiated with different diode laser powers (980nm, 4x8mm spot size). The cartilage specimens were maintained in a deformation angle for two hours after irradiation then released for another two hours. They were serially measured and photographed. High-power Diode laser irradiation with water cooling is a cheep and effective method for reshaping the cartilage needed for reconstruction of difficult situations in otorhinolaryngologic surgery. Key words: cartilage,diode laser (980nm), reshaping.

  16. Resist materials for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Toriumi, Minoru; Ishikawa, Seiichi; Miyoshi, Seiro; Naito, Takuya; Yamazaki, Tamio; Watanabe, Manabu; Itani, Toshiro

    2001-08-01

    Fluoropolymers are key materials for single layer resists of 157nm lithography. We have been studying fluoropolymers to identify their potential for base resins of 157nm photoresist. Many fluoropolymers showed high optical transparencies, with absorption coefficients of 0.01micrometers -1 to 2micrometers -1 at 157nm, and dry- etching resistance comparable to an ArF resist, and non- swelling solubility in the standard developer. Positive- tone resists were formulated using fluoropolymers that fulfill practical resist requirements. They showed good sensitivities, from 1 mJ/cm(superscript 2 to 10 mJ/cm2, and contrast in the sensitivity curves. They were able to be patterned using a F2 laser microstepper.

  17. Comparative study of Nd:KGW lasers pumped at 808 nm and 877 nm

    NASA Astrophysics Data System (ADS)

    Huang, Ke; Ge, Wen-Qi; Zhao, Tian-Zhuo; He, Jian-Guo; Feng, Chen-Yong; Fan, Zhong-Wei

    2015-10-01

    The laser performance and thermal analysis of Nd:KGW laser continuously pumped by 808 nm and 877 nm are comparatively investigated. Output power of 670 mW and 1587 mW, with nearly TEM00 mode, are achieved respectively at 808 nm pump and 877 nm pump. Meanwhile, a high-power passively Q-switched Nd:KGW/Cr4+:YAG laser pumped at 877 nm is demonstrated. An average output power of 1495 mW is obtained at pump power of 5.22 W while the laser is operating at repetition of 53.17 kHz. We demonstrate that 877 nm diode laser is a more potential pump source for Nd:KGW lasers.

  18. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations.

  19. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer.

    PubMed

    Chmiola, J; Yushin, G; Gogotsi, Y; Portet, C; Simon, P; Taberna, P L

    2006-09-22

    Carbon supercapacitors, which are energy storage devices that use ion adsorption on the surface of highly porous materials to store charge, have numerous advantages over other power-source technologies, but could realize further gains if their electrodes were properly optimized. Studying the effect of the pore size on capacitance could potentially improve performance by maximizing the electrode surface area accessible to electrolyte ions, but until recently, no studies had addressed the lower size limit of accessible pores. Using carbide-derived carbon, we generated pores with average sizes from 0.6 to 2.25 nanometer and studied double-layer capacitance in an organic electrolyte. The results challenge the long-held axiom that pores smaller than the size of solvated electrolyte ions are incapable of contributing to charge storage.

  20. Figuring large optics at the sub-nanometer level: compensation for coating and gravity distortions.

    PubMed

    Gensemer, Stephen; Gross, Mark

    2015-11-30

    Large, precision optics can now be manufactured with surface figures specified at the sub-nanometer level. However, coatings and gravity deform large optics, and there are limits to what can be corrected by clever compensation. Instead, deformations caused by stress from optical mounts and deposited coatings must be incorporated into the optical design. We demonstrate compensation of coating stress on a 370mm substrate to λ/200 by a process of coating and annealing. We also model the same process and identify the leading effects that must be anticipated in fabrication of optics for future gravitational wave detectors and other applications of large, precisely figured optics, and identify the limitations inherent in using coatings to compensate for these deformations. PMID:26698746

  1. Microstructure-interface-property relationships in nanometer-period x-ray multilayers

    SciTech Connect

    Nguyen, Tai Dung

    1996-12-01

    The microstructure - interface - property relationships in nanometer-period x-ray multilayer mirrors (W/C, WC/C, Cr/C, CrC/C, Cu/C, Ru/C, and Ru/B{sub 4}C) were studied using cross-sectional high resolution TEM and x-ray scattering. Microstructural and morphological evolution of as-prepared multilayers, and their behavior under thermal activation were discussed in terms of the materials thermodynamic and kinetic properties. Effects of the microstructural and the morphological evolution in reactive- component (W-C, Cr-C, and Ru-B{sub 4}C) and conjugate-component (Ru-C and Cu-C) multilayers on the normal incidence reflectance and long term stability of the mirrors are presented.

  2. Nanometer-scale scanning magnetometry of spin structures and excitations using Nitrogen-vacancy centers

    NASA Astrophysics Data System (ADS)

    Dovzhenko, Yuliya

    The development of increasingly sensitive scanning techniques has led to new insights into the physics of interacting condensed matter systems. Recently, Nitrogen-Vacancy (NV) centers in diamond emerged as a promising scanning magnetic imaging platform capable of operating in a broad range of temperatures and magnetic fields, with sensitivity and resolution capable of imaging a single electron spin with sub-nanometer resolution under ambient conditions. In this talk we will review some of the recent developments in this new scanning platform. We will describe our recent progress in using a single NV center in a scanning diamond nano-pillar to study condensed matter magnetism at both room and low temperatures. In particular, we demonstrate the use of scanning NV magnetometry to image stray fields originating from static chiral spin structures, as well as to detect resonant and off-resonant low-energy spin excitations.

  3. Experimental verification of nanometer level optical pathlength control on a flexible structure

    NASA Technical Reports Server (NTRS)

    O'Neal, Michael; Eldred, Daniel; Liu, Dankai; Redding, David

    1991-01-01

    This paper describes an experimental facility being developed for demonstration and validation of control concepts arising out of NASA's Control Structure Interaction program. The facility is meant to be a ground testbed with relevance to a broad class of precision optical space systems. The objective of the experimental program is to investigate a multilayer control approach to the maintenance of nanometer-level optical pathlength stability in the presence of external disturbances and multiple structural resonances. The facility is designed to explore the effect of applying, separately and in combinations, structural vibration suppression, vibration isolation, and active optical articulation. This paper describes the testbed facility, the structure, optics, sensors, actuators, and real-time computer and program development environment. Initial optical articulation experimental results are presented.

  4. Nanometer-scale electrochemical intercalation and diffusion mapping of Li-ion battery materials

    SciTech Connect

    Balke, Nina; Jesse, Stephen; Morozovska, A. N.; Eliseev, E. A.; Chung, Ding-wen; Garcia, R. Edwin; Dudney, Nancy J; Kalinin, Sergei V

    2010-01-01

    The electrochemical energy storage systems based on Li-based insertion and reconstitution chemistries are a vital component of future energy technologies. Development of high energy and power density materials demands detailed understanding of the nanoscale mechanisms involved in Li-battery operation, including the interplay between the interfacial electrochemical reactions, electron and Li-ion diffusion, and structural defects. We demonstrate that strong coupling between Li-ion concentration and lattice parameters can be used as an efficient basis for real-space imaging of Li-ion currents and electrochemical reactivity on the nanometer length scales, providing what until now has been an elusive view of the electrochemical reactivity on a level of single structural element.

  5. ASICs in nanometer and 3D technologies for readout of hybrid pixel detectors

    NASA Astrophysics Data System (ADS)

    Maj, Piotr; Grybos, Pawel; Kmon, Piotr; Szczygiel, Robert

    2013-07-01

    Hybrid pixel detectors working in a single photon counting mode are very attractive solutions for material science and medical X-ray imaging applications. Readout electronics of these detectors has to match the geometry of pixel detectors with an area of readout channel of 100 μm × 100 μm (or even less) and very small power consumption (a few tens of μW). New solutions of readout ASICs are going into directions of better spatial resolutions, higher data throughput and more advanced functionality. We report on the design and measurement results of two pixel prototype ASICs in nanometer technology and 3D technology which offer fast signal processing, low noise performance and advanced functionality per single readout pixel cell.

  6. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution

    PubMed Central

    Joens, Matthew S.; Huynh, Chuong; Kasuboski, James M.; Ferranti, David; Sigal, Yury J.; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J.; Curran, Kevin P.; Chalasani, Sreekanth H.; Stern, Lewis A.; Goetze, Bernhard; Fitzpatrick, James A. J.

    2013-01-01

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure. PMID:24343236

  7. Reduced responses of macrophages on nanometer surface features of altered alumina crystalline phases.

    PubMed

    Khang, Dongwoo; Liu-Snyder, Peishan; Pareta, Rajesh; Lu, Jing; Webster, Thomas J

    2009-06-01

    Extensive prolonged interactions of inflammatory cells (such as macrophages) at the host-implant interface may lead to implant failure. While previous studies have shown increased in vitro and in vivo bone cell adhesion, proliferation and mineralization on nanophase compared to currently implanted ceramics, few studies have been conducted to elucidate inflammatory cell responses on such nanophase ceramics. Controlling surface feature size and corresponding surface roughness on implants may clearly alter immune cell responses, which would be an extremely important consideration for the use of nanostructured materials as improved biomaterials. In this study, reduced macrophage density was observed on alumina (Al(2)O(3)) compacts with greater nanometer surface roughness accompanied by changes in crystallinity for up to 24 h in culture. Since alumina is a commonly used ceramic in orthopedic applications, this in vitro study continues to support the use of nanophase ceramics as improved orthopedic implants by demonstrating reduced macrophage responses.

  8. Experimental verification of nanometer level optical pathlength control on a flexible structure

    NASA Astrophysics Data System (ADS)

    O'Neal, Michael; Eldred, Daniel; Liu, Dankai; Redding, David

    This paper describes an experimental facility being developed for demonstration and validation of control concepts arising out of NASA's Control Structure Interaction program. The facility is meant to be a ground testbed with relevance to a broad class of precision optical space systems. The objective of the experimental program is to investigate a multilayer control approach to the maintenance of nanometer-level optical pathlength stability in the presence of external disturbances and multiple structural resonances. The facility is designed to explore the effect of applying, separately and in combinations, structural vibration suppression, vibration isolation, and active optical articulation. This paper describes the testbed facility, the structure, optics, sensors, actuators, and real-time computer and program development environment. Initial optical articulation experimental results are presented.

  9. Size-selective yolk-shell nanoreactors with nanometer-thin porous polymer shells.

    PubMed

    Jia, Ying; Shmakov, Sergey N; Register, Paul; Pinkhassik, Eugene

    2015-09-01

    Yolk-shell nanoreactors with metal nanoparticle core and ultrathin porous polymer shells are effective catalysts for heterogeneous reactions. Polymer shells provide size-selectivity and improved reusability of catalyst. Nanocapsules with single-nanometer porous shells are prepared by vesicle-templated directed assembly. Metal nanoparticles are formed either by selective initiation in pre-fabricated nanocapsules or simultaneously with the creation of a crosslinked polymer shell. In this study, we investigated the oxidation of benzyl alcohol and benzaldehyde catalyzed by gold nanoparticles and hydrogenation of cyclohexene catalyzed by platinum nanoparticles. Comparison of newly created nanoreactors with commercially available nanoparticles revealed superior reusability and size selectivity in nanoreactors while showing no negative effect on reaction kinetics.

  10. Three-dimensional nanometer-scale optical cavities of indefinite medium.

    PubMed

    Yao, Jie; Yang, Xiaodong; Yin, Xiaobo; Bartal, Guy; Zhang, Xiang

    2011-07-12

    Miniaturization of optical cavities has numerous advantages for enhancing light-matter interaction in quantum optical devices, low-threshold lasers with minimal power consumption, and efficient integration of optoelectronic devices at large scale. However, the realization of a truly nanometer-scale optical cavity is hindered by the diffraction limit of the nature materials. In addition, the scaling of the photon life time with the cavity size significantly reduces the quality factor of small cavities. Here we theoretically present an approach to achieve ultrasmall optical cavities using indefinite medium with hyperbolic dispersion, which allows propagation of electromagnetic waves with wave vectors much larger than those in vacuum enabling extremely small 3D cavity down to (λ/20)(3). These cavities exhibit size-independent resonance frequencies and anomalous scaling of quality factors in contrast to the conventional cavities, resulting in nanocavities with both high Q/V(m) ratio and broad bandwidth.

  11. Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip.

    PubMed

    Felts, Jonathan R; Somnath, Suhas; Ewoldt, Randy H; King, William P

    2012-06-01

    We investigate the nanometer-scale flow of molten polyethylene from a heated atomic force microscope (AFM) cantilever tip during thermal dip-pen nanolithography (tDPN). Polymer nanostructures were written for cantilever tip temperatures and substrate temperatures controlled over the range 100-260 °C and while the tip was either moving with speed 0.5-2.0 µm s(-1) or stationary and heated for 0.1-100 s. We find that polymer flow depends on surface capillary forces and not on shear between tip and substrate. The polymer mass flow rate is sensitive to the temperature-dependent polymer viscosity. The polymer flow is governed by thermal Marangoni forces and non-equilibrium wetting dynamics caused by a solidification front within the feature. PMID:22551550

  12. Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip

    NASA Astrophysics Data System (ADS)

    Felts, Jonathan R.; Somnath, Suhas; Ewoldt, Randy H.; King, William P.

    2012-06-01

    We investigate the nanometer-scale flow of molten polyethylene from a heated atomic force microscope (AFM) cantilever tip during thermal dip-pen nanolithography (tDPN). Polymer nanostructures were written for cantilever tip temperatures and substrate temperatures controlled over the range 100-260 °C and while the tip was either moving with speed 0.5-2.0 µm s-1 or stationary and heated for 0.1-100 s. We find that polymer flow depends on surface capillary forces and not on shear between tip and substrate. The polymer mass flow rate is sensitive to the temperature-dependent polymer viscosity. The polymer flow is governed by thermal Marangoni forces and non-equilibrium wetting dynamics caused by a solidification front within the feature.

  13. Nanometer-scale free surface flow of molten polyethylene from a heated atomic force microscope tip

    NASA Astrophysics Data System (ADS)

    Ewoldt, Randy; Felts, Jonathan; Somnath, Suhas; King, William

    2012-11-01

    We experimentally investigate nanometer-scale free surface flow of molten polyethylene from a heated atomic force microscope (AFM) cantilever, a nanofabrication process known as thermal dip-pen nanolithography (tDPN). Fluid is deposited from the AFM tip onto non-porous substrates whether the tip is moving or fixed. We find that polymer flow depends on surface capillary forces and not on shear between tip and substrate. The polymer mass flow rate is sensitive to the temperature-dependent polymer viscosity. Additionally, the flow rate increases when a temperature gradient exists between the tip and substrate. We hypothesize that the polymer flow is governed by thermal Marangoni forces and non-equilibrium wetting dynamics caused by a solidification front within the feature.

  14. Formation processes of nanometer sized particles in low pressure Ar/CH{sub 4} rf plasmas

    SciTech Connect

    Beckers, J.; Vacaresse, G. D. G. J.; Stoffels, W. W.

    2008-09-07

    In this paper, formation and growth processes of nanometer and micrometer sized dust particles in low pressure Ar/CH{sub 4} rf (13.56 MHz) plasmas are investigated as function of temperature in the range 25-100 deg. C. During experiments the pressure was typically 0.8 mbar and the forward power to the plasma was {approx}70 Watt. Measuring the fundamental voltage, current and phase angle together with their harmonics (up to the fourth) gives a good method to monitor the creation and growth of these dust particles in time. Furthermore, laser light scattering measurements are performed to give information about the dust particle density. It has been shown that dust particle formation in these conditions depends greatly on temperature.

  15. Controllable surface-plasmon resonance in engineered nanometer epitaxial silicide particles embedded in silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; Ksendzov, A.; Iannelli, J. M.; George, T.

    1991-01-01

    Epitaxial CoSi2 particles in a single-crystal silicon matrix are grown by molecular-beam epitaxy using a technique that allows nanometer control over particle size in three dimensions. These composite layers exhibit resonant absorption predicted by effective-medium theory. Selection of the height and diameter of disklike particles through a choice of growth conditions allows tailoring of the depolarization factor and hence of the surface-plasmon resonance energy. Resonant absorption from 0.49 to 1.04 eV (2.5 to 1.2 micron) is demonstrated and shown to agree well with values predicted by the Garnett (1904, 1906) theory using the bulk dielectric constants for CoSi2 and Si.

  16. Development of Highly Reactive Nanometer Fe-Based Catalysts for Coal Liquefaction

    SciTech Connect

    Franz, James A.; Linehan, John C.; Matson, Dean W.; Smurthwaite, Tricia D.; Bekhazi, Jacky; Alnajjar, Mikhail S.

    2008-03-01

    This paper describes research involving the liquefaction of coal and the removal of oxygen from coal product constituents. Subbituminous Coal and early stage coal liquefaction products contain a substantial fraction of hydroxy-substituted aromatic hydrocarbons (phenols). An important reaction for upgrading of coal-derived organic materials is to remove oxygen groups. This paper describes the hydro-deoxygenation of naphthols and the liquefaction of subbituminous Wyodak coal using a catalyst prepared by in-situ sulfidation of nanometer scale 6-line iron ferrihydrite. The FeS catalyst enables the conversion of naphthol in substantial yields to tetralin and naphthalene at 400 degrees C in 9,10-dihydrophenanthrene. The kinetics and procedures to observe coal liquefaction and hydro-deoxygenation, and the effects of in-situ sulfidation on conversion kinetics are described.

  17. Strategies for Probing Nanometer-Scale Electrocatalysts: From Single Particles to Catalyst-Membrane Architectures

    SciTech Connect

    Korzeniewski, Carol

    2014-01-20

    The project primary objectives are to prepare and elucidate the promoting properties of materials that possess high activity for the conversion of hydrogen and related small molecules (water, oxygen, carbon monoxide and methanol) in polymer electrolyte fuel cells. One area of research has focused on the study of catalyst materials. Protocols were developed for probing the structure and benchmarking the activity of Pt and Pt bimetallic nanometer-scale catalyst against Pt single crystal electrode standards. A second area has targeted fuel cell membrane and the advancement of simple methods mainly based on vibrational spectroscopy that can be applied broadly in the study of membrane structure and transport properties. Infrared and Raman methods combined with least-squares data modeling were applied to investigate and assist the design of robust, proton conductive membranes, which resist reactant crossover.

  18. Synthesis of Nanometer-Sized (bi)metallic Clusters with a Nuclear Reactor

    NASA Astrophysics Data System (ADS)

    Doudna, C. M.; Hund, J. F.; Bertino, M. F.

    Mono- and heteronuclear clusters were synthesized by irradiating with gamma rays from a nuclear reactor aqueous solutions containing ionic precursors. Ag, Au/Ag and Ag/Pd clusters were produced and characterized by optical absorption and transmission electron microscopy measurements. Electron diffraction measurements show that the clusters have a crystalline fcc structure. Ag and Au/Ag clusters have a lattice parameter which coincides with the bulk. In the case of Ag/Pd clusters, a homogeneous alloy is formed whose lattice parameter closely follows Vegard's law. The cluster size distribution is in the nanometer range, although coalescence processes lead often to large aggregates. Optical absorption spectra are in agreement with previously reported results, when the presence of large aggregates is taken into account.

  19. Non-equilibrium Green function method: theory and application in simulation of nanometer electronic devices

    NASA Astrophysics Data System (ADS)

    Do, Van-Nam

    2014-09-01

    We review fundamental aspects of the non-equilibrium Green function method in the simulation of nanometer electronic devices. The method is implemented into our recently developed computer package OPEDEVS to investigate transport properties of electrons in nano-scale devices and low-dimensional materials. Concretely, we present the definition of the four real-time Green functions, the retarded, advanced, lesser and greater functions. Basic relations among these functions and their equations of motion are also presented in detail as the basis for the performance of analytical and numerical calculations. In particular, we review in detail two recursive algorithms, which are implemented in OPEDEVS to solve the Green functions defined in finite-size opened systems and in the surface layer of semi-infinite homogeneous ones. Operation of the package is then illustrated through the simulation of the transport characteristics of a typical semiconductor device structure, the resonant tunneling diodes.

  20. Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe

    PubMed Central

    Qin, Peter Z; Haworth, Ian S; Cai, Qi; Kusnetzow, Ana K; Grant, Gian Paola G; Price, Eric A; Sowa, Glenna Z; Popova, Anna; Herreros, Bruno; He, Honghang

    2008-01-01

    This protocol describes the procedures for measuring nanometer distances in nucleic acids using a nitroxide probe that can be attached to any nucleotide within a given sequence. Two nitroxides are attached to phosphorothioates that are chemically substituted at specific sites of DNA or RNA. Inter-nitroxide distances are measured using a four-pulse double electron–electron resonance technique, and the measured distances are correlated to the parent structures using a Web-accessible computer program. Four to five days are needed for sample labeling, purification and distance measurement. The procedures described herein provide a method for probing global structures and studying conformational changes of nucleic acids and protein/nucleic acid complexes. PMID:17947978

  1. Helium Ion Microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution.

    PubMed

    Joens, Matthew S; Huynh, Chuong; Kasuboski, James M; Ferranti, David; Sigal, Yury J; Zeitvogel, Fabian; Obst, Martin; Burkhardt, Claus J; Curran, Kevin P; Chalasani, Sreekanth H; Stern, Lewis A; Goetze, Bernhard; Fitzpatrick, James A J

    2013-12-17

    Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.

  2. Automated Tracking of Nanometer-Scale Feature Evolution Using an STM

    NASA Astrophysics Data System (ADS)

    Lake, Russell; Dean, Adam; Maheswaranathan, Niru; Sosolik, Chad

    2007-03-01

    Time-resolved measurements of vacancy pits and adatom islands on monatomic metallic surfaces (e.g. Ag(111) [1]) have provided valuable insight into the underlying atomic diffusion processes that drive dynamics at nanometer length scales. Utilizing our variable temperature scanning tunneling microscope or STM, we are extending this probing method to more complex systems, such as the AuCu and NiAl alloys. To increase the rate of successful data acquisition for these measurements, we have developed automated tracking routines that allow for the continuous monitoring of evolving surface features with minimal operator involvement. Post-acquisition image analysis is further enhanced utilizing feature detection algorithms. Current proof-of-concept results spanning several hours of acquisition time on single crystal metal surfaces are presented. [1] K. Morgenstern et al., Phys. Rev. B 63, 045412 (2001).

  3. Automated Tracking of Nanometer-Scale Feature Evolution Using an STM

    NASA Astrophysics Data System (ADS)

    Lake, Russell; Dean, Adam; Maheswaranathan, Niru; Sosolik, Chad

    2006-11-01

    Time-resolved measurements of vacancy pits and adatom islands on monatomic metallic surfaces (e.g. Ag(111) [1]) have provided valuable insight into the underlying atomic diffusion processes that drive dynamics at nanometer length scales. Utilizing our variable temperature scanning tunneling microscope or STM, we are extending this probing method to more complex systems, such as the AuCu and NiAl alloys. To increase the rate of successful data acquisition for these measurements, we have developed automated tracking routines that allow for the continuous monitoring of evolving surface features with minimal operator involvement. Post-acquisition image analysis is further enhanced utilizing feature detection algorithms. Current proof-of-concept results spanning several hours of acquisition time on single crystal metal surfaces are presented. [1] K. Morgenstern et al., Phys. Rev. B 63, 045412 (2001).

  4. Quantum decrease of capacitance in a nanometer-sized tunnel junction

    NASA Astrophysics Data System (ADS)

    Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.

    2013-03-01

    We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)

  5. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record

    NASA Astrophysics Data System (ADS)

    Sánchez-Román, Mónica; Vasconcelos, Crisógono; Schmid, Thomas; Dittrich, Maria; McKenzie, Judith A.; Zenobi, Renato; Rivadeneyra, Maria A.

    2008-11-01

    Microbial experiments are the only proven approach to produceexperimental dolomite under Earth's surface conditions. Althoughmicrobial metabolisms are known to induce dolomite precipitationby favoring dolomite growth kinetics, the involvement of microbesin the dolomite nucleation process is poorly understood. Inparticular, the nucleation of microbially mediated dolomiteremains a matter for investigation because the metabolic diversityinvolved in this process has not been fully explored. Hereinwe demonstrate that Halomonas meridiana and Virgibacillus marismortui,two moderately halophilic aerobic bacteria, mediate primaryprecipitation of dolomite at low temperatures (25, 35 °C).This report emphasizes the biomineralogical implications fordolomite formation at the nanometer scale. We describe nucleationof dolomite on nanoglobules in intimate association with thebacterial cell surface. A combination of both laboratory cultureexperiments and natural samples reveals that these nanoglobulestructures may be: (1) the initial step for dolomite nucleation,(2) preserved in the geologic record, and (3) used as microbialtracers through time and/or as a proxy for ancient microbialdolomite, as well as other carbonate minerals.

  6. Sub-10 nm carbon nanotube transistor.

    PubMed

    Franklin, Aaron D; Luisier, Mathieu; Han, Shu-Jen; Tulevski, George; Breslin, Chris M; Gignac, Lynne; Lundstrom, Mark S; Haensch, Wilfried

    2012-02-01

    Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/μm) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade-nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal-CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.

  7. Radiation Tolerance of 65nm CMOS Transistors

    DOE PAGES

    Krohn, M.; Bentele, B.; Christian, D. C.; Cumalat, J. P.; Deptuch, G.; Fahim, F.; Hoff, J.; Shenai, A.; Wagner, S. R.

    2015-12-11

    We report on the effects of ionizing radiation on 65 nm CMOS transistors held at approximately -20°C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we observe less damage than was observed at room temperature.

  8. White Sands, Carrizozo Lava Beds, NM

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A truly remarkable view of White Sands and the nearby Carrizozo Lava Beds in southeast NM (33.5N, 106.5W). White Sands, site of the WW II atomic bomb development and testing facility and later post war nuclear weapons testing that can still be seen in the cleared circular patterns on the ground.

  9. Negative-tone 193-nm resists

    NASA Astrophysics Data System (ADS)

    Cho, Sungseo; Vander Heyden, Anthony; Byers, Jeff D.; Willson, C. Grant

    2000-06-01

    A great deal of progress has been made in the design of single layer positive tone resists for 193 nm lithography. Commercial samples of such materials are now available from many vendors. The patterning of certain levels of devices profits from the use of negative tone resists. There have been several reports of work directed toward the design of negative tones resists for 193 nm exposure but, none have performed as well as the positive tone systems. Polymers with alicyclic structures in the backbone have emerged as excellent platforms from which to design positive tone resists for 193 nm exposure. We now report the adaptation of this class of polymers to the design of high performance negative tone 193 nm resists. New systems have been prepared that are based on a polarity switch mechanism for modulation of the dissolution rate. The systems are based on a polar, alicyclic polymer backbone that includes a monomer bearing a glycol pendant group that undergoes the acid catalyzed pinacol rearrangement upon exposure and bake to produce the corresponding less polar ketone. This monomer was copolymerized with maleic anhydride and a norbornene bearing a bis-trifluoromethylcarbinol. The rearrangement of the copolymer was monitored by FT-IR as a function of temperature. The synthesis of the norbornene monomers will be presented together with characterization of copolymers of these monomers with maleic anhydride. The lithographic performance of the new resist system will also be presented.

  10. MEPHISTO spectromicroscope reaches 20 nm lateral resolution

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Perfetti, Luca; Gilbert, B.; Fauchoux, O.; Capozi, M.; Perfetti, P.; Margaritondo, G.; Tonner, B. P.

    1999-03-01

    The recently described tests of the synchrotron imaging photoelectron spectromicroscope MEPHISTO (Microscope à Emission de PHotoélectrons par Illumination Synchrotronique de Type Onduleur) were complemented by further resolution improvements and tests, which brought the lateral resolution down to 20 nm. Images and line plot profiles demonstrate such performance.

  11. 1541nm GmAPD LADAR system

    NASA Astrophysics Data System (ADS)

    Kutteruf, Mary R.; Lebow, Paul

    2014-06-01

    The single photon sensitivity of Geiger-mode avalanche photo diodes (GmAPDs) has facilitated the development of LADAR systems that operate at longer stand-off distances, require lower laser pulse powers and are capable of imaging through a partial obscuration. In this paper, we describe a GmAPD LADAR system which operates at the eye-safe wavelength of 1541 nm. The longer wavelength should enhance system covertness and improve haze penetration compared to systems using 1064 nm lasers. The system is comprised of a COTS 1541 nm erbium fiber laser producing 4 ns pulses at 80 kHz to 450 kHz and a COTS camera with a focal plane of 32x32 InGaAs GmAPDs band-gap optimized for 1550 nm. Laboratory characterization methodology and results are discussed. We show that accurate modeling of the system response, allows us to achieve a depth resolution which is limited by the width of the camera's time bin (.25 ns or 1.5 inches) rather than by the duration of the laser pulse (4 ns or 2 ft.). In the presence of obscuration, the depth discrimination is degraded to 6 inches but is still significantly better than that dictated by the laser pulse duration. We conclude with a discussion of future work.

  12. Top-Down Nanofabrication and Characterization of 20 nm Silicon Nanowires for Biosensing Applications.

    PubMed

    M Nuzaihan, M N; Hashim, U; Md Arshad, M K; Rahim Ruslinda, A; Rahman, S F A; Fathil, M F M; Ismail, Mohd H

    2016-01-01

    A top-down nanofabrication approach is used to develop silicon nanowires from silicon-on-insulator (SOI) wafers and involves direct-write electron beam lithography (EBL), inductively coupled plasma-reactive ion etching (ICP-RIE) and a size reduction process. To achieve nanometer scale size, the crucial factors contributing to the EBL and size reduction processes are highlighted. The resulting silicon nanowires, which are 20 nm in width and 30 nm in height (with a triangular shape) and have a straight structure over the length of 400 μm, are fabricated precisely at the designed location on the device. The device is applied in biomolecule detection based on the changes in drain current (Ids), electrical resistance and conductance of the silicon nanowires upon hybridization to complementary target deoxyribonucleic acid (DNA). In this context, the scaled-down device exhibited superior performances in terms of good specificity and high sensitivity, with a limit of detection (LOD) of 10 fM, enables for efficient label-free, direct and higher-accuracy DNA molecules detection. Thus, this silicon nanowire can be used as an improved transducer and serves as novel biosensor for future biomedical diagnostic applications. PMID:27022732

  13. Top-Down Nanofabrication and Characterization of 20 nm Silicon Nanowires for Biosensing Applications

    PubMed Central

    M. N, M. Nuzaihan; Hashim, U.; Md Arshad, M. K.; Ruslinda, A. Rahim; Rahman, S. F. A.; Fathil, M. F. M.; Ismail, Mohd. H.

    2016-01-01

    A top-down nanofabrication approach is used to develop silicon nanowires from silicon-on-insulator (SOI) wafers and involves direct-write electron beam lithography (EBL), inductively coupled plasma-reactive ion etching (ICP-RIE) and a size reduction process. To achieve nanometer scale size, the crucial factors contributing to the EBL and size reduction processes are highlighted. The resulting silicon nanowires, which are 20 nm in width and 30 nm in height (with a triangular shape) and have a straight structure over the length of 400 μm, are fabricated precisely at the designed location on the device. The device is applied in biomolecule detection based on the changes in drain current (Ids), electrical resistance and conductance of the silicon nanowires upon hybridization to complementary target deoxyribonucleic acid (DNA). In this context, the scaled-down device exhibited superior performances in terms of good specificity and high sensitivity, with a limit of detection (LOD) of 10 fM, enables for efficient label-free, direct and higher-accuracy DNA molecules detection. Thus, this silicon nanowire can be used as an improved transducer and serves as novel biosensor for future biomedical diagnostic applications. PMID:27022732

  14. Top-Down Nanofabrication and Characterization of 20 nm Silicon Nanowires for Biosensing Applications.

    PubMed

    M Nuzaihan, M N; Hashim, U; Md Arshad, M K; Rahim Ruslinda, A; Rahman, S F A; Fathil, M F M; Ismail, Mohd H

    2016-01-01

    A top-down nanofabrication approach is used to develop silicon nanowires from silicon-on-insulator (SOI) wafers and involves direct-write electron beam lithography (EBL), inductively coupled plasma-reactive ion etching (ICP-RIE) and a size reduction process. To achieve nanometer scale size, the crucial factors contributing to the EBL and size reduction processes are highlighted. The resulting silicon nanowires, which are 20 nm in width and 30 nm in height (with a triangular shape) and have a straight structure over the length of 400 μm, are fabricated precisely at the designed location on the device. The device is applied in biomolecule detection based on the changes in drain current (Ids), electrical resistance and conductance of the silicon nanowires upon hybridization to complementary target deoxyribonucleic acid (DNA). In this context, the scaled-down device exhibited superior performances in terms of good specificity and high sensitivity, with a limit of detection (LOD) of 10 fM, enables for efficient label-free, direct and higher-accuracy DNA molecules detection. Thus, this silicon nanowire can be used as an improved transducer and serves as novel biosensor for future biomedical diagnostic applications.

  15. Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology in the Micro- and Nanometer Range

    NASA Astrophysics Data System (ADS)

    Huber, O.

    2009-04-01

    Focus Variation - A New Technology for High Resolution Optical 3D Surface Metrology in the Micro- and Nanometer Range S. Scherer1, E. Cristea1, O. Huber1, A. Krenn1 1 ALICONA GmbH Graz, Austria The need for increasing accuracy is a characteristic of all geo-applications, and hence of the instruments contributing to obtaining relevant data. Small and fine sensors are being developed, measuring different parameters of our geosystem and requiring continuous validation and calibration. These sensors have often very small components (fine sensors able to sense dust, atmospheric water vapour characteristics, pressure change, gravimeters, satellite micro-components), showing complex topographies including steep flanks and having varying reflective properties. In order to get valid and reliable results, quality assurance of these instruments and sensors is required. The optical technology Focus-Variation, developed by Alicona and added in the latest draft of the upcoming ISO standard 25178, provides high resolution 3D surface metrology even at those complex topographies. The technique of Focus-Variation combines the small depth of focus of an optical system with vertical scanning to provide topographical and color information from the variation of focus. It is used for high-resolution optical 3D surface measurements. The traceable and repeatable measurement results are further being used for e.g. calibration and validation purposes. Some of the characteristics of the technology are: - Measurement of instruments / samples with steep flanks up to 80° - Measurement of materials with strongly varying reflection properties - Measurement of surfaces presenting fine (from 10nm) or strong roughness Here, we present the operating principle and possible applications of the optical 3D measurement system "InfiniteFocus", which is based on the technology of Focus-Variation. With the vertical resolution of up to 10nm, InfiniteFocus yields meaningful form and roughness measurements. The

  16. VizieR Online Data Catalog: Thorium spectrum from 250nm to 5500nm (Redman+, 2014)

    NASA Astrophysics Data System (ADS)

    Redman, S. L.; Nave, G.; Sansonetti, C. J.

    2014-04-01

    We observed the spectrum of a commercial sealed Th/Ar HCL running at 25mA for almost 15hr starting on 2011 November 2. The region of observation was limited to between 8500/cm and 28000/cm (360nm and 1200nm) by the sensitivity of the silicon photodiode detector. (5 data files).

  17. Nanometer precise adjustment of the silver shell thickness during automated Au-Ag core-shell nanoparticle synthesis in micro fluid segment sequences.

    PubMed

    Knauer, Andrea; Eisenhardt, Anja; Krischok, Stefan; Koehler, J Michael

    2014-05-21

    In this work, a wet-chemical synthesis method for gold-silver core-shell particles with nanometer precise adjustable silver shell thicknesses is presented. Typically wet-chemical syntheses lead to relatively large diameter size distributions and losses in the yield of the desired particle structure due to thermodynamical effects. With the here explained synthesis method in micro fluidic segment sequences, a combinatorial in situ parameter screening of the reactant concentration ratios by programmed flow rate shifts in conjunction with efficient segment internal mixing conditions is possible. The highly increased mixing rates ensure a homogeneous shell deposition on all presented gold core particles while the amount of available silver ions was adjusted by automated flow rate courses, from which the synthesis conditions for exactly tunable shell thicknesses between 1.1 and 6.1 nm could be derived. The findings according to the homogeneity of size and particle structure were confirmed by differential centrifugal sedimentation (DCS), scanning and transmission electron microscopy (SEM, TEM) and X-ray photoelectron spectroscopy (XPS) measurements. In UV-Vis measurements, a significant contribution of the core metal was found in the shape of the extinction spectra in the case of thin shells. These results were confirmed by theoretical calculations.

  18. Role of Sub-Nanometer Dielectric Roughness on Microstructure and Charge Carrier Transport in α,ω-Dihexylsexithiophene Field-Effect Transistors.

    PubMed

    Li, Mengmeng; Marszalek, Tomasz; Müllen, Klaus; Pisula, Wojciech

    2016-06-29

    The effect of dielectric roughness on the microstructure evolution of thermally evaporated α,ω-dihexylsexithiophene (α,ω-DH6T) thin films from a single molecular layer to tens of monolayers (ML) is studied. Thereby, the surface roughness of dielectrics is controlled within a sub-nanometer range. It is found that the grain size of an α,ω-DH6T ML is affected by dielectric roughness, especially for 1.5 ML, whereby the transistor performance is barely influenced. This can be attributed to a domain interconnection in the second layer over a long-range formed on the rough surface. With deposition of more layers, both microstructure and charge carrier transport exhibit a roughness-independent behavior. The structural characterization of α,ω-DH6T 10 ML by grazing-incidence wide-angle X-ray scattering reveals that the interlayer distance is slightly decreased from 3.30 to 3.15 nm due to a higher roughness, while an unchanged π-stacking distance is in excellent agreement with the roughness-independent hole mobility. This study excludes the influence of molecular-solvent interaction and preaggregation taking place during solution deposition, and provides further evidence that the microstructure of the interfacial layer of organic semiconductors has only minor impact on the bulk charge carrier transport in thicker films.

  19. Massively-parallel electron dynamics calculations in real-time and real-space: Toward applications to nanostructures of more than ten-nanometers in size

    SciTech Connect

    Noda, Masashi; Ishimura, Kazuya; Nobusada, Katsuyuki; Yabana, Kazuhiro; Boku, Taisuke

    2014-05-15

    A highly efficient program of massively parallel calculations for electron dynamics has been developed in an effort to apply the method to optical response of nanostructures of more than ten-nanometers in size. The approach is based on time-dependent density functional theory calculations in real-time and real-space. The computational code is implemented by using simple algorithms with a finite-difference method in space derivative and Taylor expansion in time-propagation. Since the computational program is free from the algorithms of eigenvalue problems and fast-Fourier-transformation, which are usually implemented in conventional quantum chemistry or band structure calculations, it is highly suitable for massively parallel calculations. Benchmark calculations using the K computer at RIKEN demonstrate that the parallel efficiency of the program is very high on more than 60 000 CPU cores. The method is applied to optical response of arrays of C{sub 60} orderly nanostructures of more than 10 nm in size. The computed absorption spectrum is in good agreement with the experimental observation.

  20. Polymer Physics Prize Lecture: Self-assemblies of Giant Molecular Shape Amphiphiles as a New Platform for Engineering Structures with Sub-Nanometer Feature Sizes

    NASA Astrophysics Data System (ADS)

    Cheng, Stephen Z. D.

    2013-03-01

    Utilizing nano-building blocks rather than atoms to construct and engineer new structures is a fresh approach to design and develop functional materials for the purpose of transferring and amplifying microscopic functionality to macroscopic materials' property. As one of the important elements of these nano-building blocks, giant molecular shape amphiphiles (GMSAs) provide a latest platform for generating self-assembled ordered structures at nanometer scale, which are stabilized by collective physical bonds (such as collective hydrogen bonding). In this talk, two topics will be focused on. First, composed of functionalized hydrophilic molecular nanoparticles as the heads with rigid shape and fixed volume, and tethered polymer chains as the tails (such as giant molecular surfactants and lipids and other topologies), these GMSAs of various architectures can self-assemble into highly diversified, thermodynamically stable microstructures at sub-10 nm length scale in the bulk, thin film and solution states. Second, GMSAs could also be constructed solely from nanoparticles interconnected via different numbers of the rigid linkages in specific symmetry, simulating the overall shapes of small molecules but with sizes that are one-order of magnitude larger in length and three-order of magnitude larger in volume. Giant crystal structures can then be obtained from this class of ``giant molecules'' via supramolecular crystallization. These findings are not only scientifically intriguing in understanding the physical principles underlying their self-assembly, but also technologically relevant in industrial applications.

  1. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.

    PubMed

    Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei

    2013-02-01

    High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.

  2. 120 nm resolution and 55 nm structure size in STED-lithography.

    PubMed

    Wollhofen, Richard; Katzmann, Julia; Hrelescu, Calin; Jacak, Jaroslaw; Klar, Thomas A

    2013-05-01

    Two-photon direct laser writing (DLW) lithography is limited in the achievable structure size as well as in structure resolution. Adding stimulated emission depletion (STED) to DLW allowed overcoming both restrictions. We now push both to new limits. Using visible light for two-photon DLW (780 nm) and STED (532 nm), we obtain lateral structure sizes of 55 nm, a Sparrow limit of around 100 nm and we present two clearly separated lines spaced only 120 nm apart. The photo-resist used in these experiments is a mixture of tri- and tetra-acrylates and 7-Diethylamino-3-thenoylcoumarin as a photo-starter which can be readily quenched via STED.

  3. Photoresist outgassing at 157 nm exposure

    NASA Astrophysics Data System (ADS)

    Hien, Stefan; Angood, Steve; Ashworth, Dominic; Basset, Steve; Bloomstein, Theodore M.; Dean, Kim R.; Kunz, Roderick R.; Miller, Daniel A.; Patel, Shashikant; Rich, Georgia K.

    2001-08-01

    Contamination of optical elements during photoresist exposure is a serious issue in optical lithography. The outgassing of photoresist has been identified as a problem at 248nm and 193nm in production because the organic films that can be formed on an exposure lens can cause transmission loss and sever image distortion. At these exposure energies, the excitation of the photo acid generator, formation of acid, and cleavage of the protecting group are highly selective processes. At 157nm, the exposure energy is much higher (7.9 eV compared to 6.4 eV at 193nm) and it is known from laser ablation experiments that direct laser cleavage of sigma bonds occurs. The fragments formed during this irradiation can be considered as effective laser deposition precursors even in the mid ppb level. In this study, methods to quantify photoresist outgassing at 157 nm are discussed. Three criteria have been set up at International SEMATECH to protect lens contamination and to determine the severity of photoresist outgassing. First, we measured film thickness loss as a function of exposure dose for a variety of materials. In a second test we studied the molecular composition of the outgassing fragments with an exposure chamber coupled to a gas chromatograph and a mass spectrometer detector. Our third method was a deposition test of outgassing vapors on a CaF2 proof plate followed by analysis using VUV and X-ray photoelectron spectroscopies (XPS). With this technique we found deposits for many different resists. Our main focus is on F- and Si- containing resists. Both material classes form deposits especially if these atoms are bound to the polymer side chains. Whereas the F-containing films can be cleaned off under 157nm irradiation, cleaning of Si-containing films mainly produces SiO2. Our cleaning studies of plasma deposited F-containing organic films on SiO2 did not indicate damage of this surface by the possible formation of HF. Despite that we strongly recommend engineering

  4. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    PubMed

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future.

  5. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    SciTech Connect

    Ding, S. Y.

    2012-05-01

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  6. Radiation Status of Sub-65 nm Electronics

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.

    2011-01-01

    Ultra-scaled complementary metal oxide semiconductor (CMOS) includes commercial foundry capabilities at and below the 65 nm technology node Radiation evaluations take place using standard products and test characterization vehicles (memories, logic/latch chains, etc.) NEPP focus is two-fold: (1) Conduct early radiation evaluations to ascertain viability for future NASA missions (i.e. leverage commercial technology development). (2) Uncover gaps in current testing methodologies and mechanism comprehension -- early risk mitigation.

  7. Laser damage database at 1064 nm

    SciTech Connect

    Rainer, F.; Gonzales, R.P.; Morgan, A.J.

    1990-03-01

    In conjunction with our diversification of laser damage testing capabilities, we have expanded upon a database of threshold measurements and parameter variations at 1064 nm. This includes all tests at low pulse-repetition frequencies (PRF) ranging from single shots to 120 Hz. These tests were conducted on the Reptile laser facility since 1987 and the Variable Pulse Laser (VPL) facility since 1988. Pulse durations ranged from 1 to 16 ns. 10 refs., 14 figs.

  8. One-Dimensional Nanorod Arrays: Independent Control of Composition, Length, and Interparticle Spacing with Nanometer Precision

    SciTech Connect

    Osberg, Kyle D; Schmucker, Abrin L; Senesi, Andrew J; Mirkin, Chad

    2011-02-09

    We report the synthesis of solution dispersible, one-dimensional metal nanostructure arrays as small as 35 nm in diameter using on-wire lithography, wherein feature thickness and spacing in the arrays is tailorable down to approximately 6 and 1 nm, respectively. Using this unique level of control, we present solution-averaged extinction spectra of 35 nm diameter Au nanorod dimers with varying gap sizes to illustrate the effect of gap size on plasmon coupling between nanorods. Additionally, we demonstrate control over the composition of the arrays with Au, Ni, and Pt segments, representing important advances in controlling the ordering of sub-100 nm nanostructures that are not available with current synthesis or assembly methods.

  9. Solar spectral radiance and irradiance at 225.2-319.6 nanometers

    NASA Astrophysics Data System (ADS)

    Kohl, J. L.; Parkinson, W. H.; Zapata, C. A.

    1980-11-01

    Mean absolute intensities (spectral radiance) over 0.1 nm intervals between 225.2 nm and 319.6 nm at disk center and near the limb of the sun (mu = 0.23 + or - 0.04) are derived from the high spectral resolution measurements published by Kohl, Parkinson, and Kurucz. The corresponding limb-to-center ratios and spectral irradiance values are provided. A comparison with existing measurements of solar spectral radiance and spectral irradiance for the most part shows agreement within the estimated error limits, although some narrow band variations may be outside experimental errors. The contribution to the solar constant of the 230-305 nm band is derived to be 19.7 W/square m + or - 12%.

  10. Physical and chemical characterization of fly ashes from Swiss waste incineration plants and determination of the ash fraction in the nanometer range.

    PubMed

    Buha, Jelena; Mueller, Nicole; Nowack, Bernd; Ulrich, Andrea; Losert, Sabrina; Wang, Jing

    2014-05-01

    Waste incineration had been identified as an important source of ultrafine air pollutants resulting in elaborated treatment systems for exhaust air. Nowadays, these systems are able to remove almost all ultrafine particles. However, the fate of ultrafine particles caught in the filters has received little attention so far. Based on the use of engineered nano-objects (ENO) and their transfer into the waste stream, it can be expected that not only combustion generated nanoparticles are found in fly ashes but that many ENO finally end up in this matrix. A more detailed characterization of the nanoparticulate fraction of fly ashes is therefore needed. Physical and chemical characterizations were performed for fly ashes from five selected waste incineration plants (WIPs) with different input materials such as municipal waste, wood and sewage sludge. The intrinsic densities of the fly ashes were in the range of 2.7-3.2 g/cm(3). When the fly ash particle became airborne, the effective density depended on the particle size, increasing from 0.7-0.8 g/cm(3) for 100-150 nm to 2 g/cm(3) for 350-500 nm. The fly ash samples were fractionated at 2 μm, yielding fine fractions (<2 μm) and coarse fractions (>2 μm). The size distributions of the fine fractions in the airborne form were further characterized, which allowed calculation of the percentage of the fly ash particles below 100 nm. We found the highest mass-based percentage was about 0.07%; the number percentage in the fine fraction was in the range of 4.8% to 22%. Comparison with modeling results showed that ENO may constitute a considerable part of the fly ash particles below 100 nm. Chemical analyses showed that for the municipal waste samples Ca and Al were present in higher concentrations in the coarse fraction; for the mixed wood and sludge sample the P concentration was higher in the coarse fraction; for most other samples and elements they were enriched in the fine fraction. Electron microscopic images of fly ashes

  11. Corrective finishing of a micro-aspheric mold made of tungsten carbide to 50  nm accuracy.

    PubMed

    Guo, Jiang

    2015-06-20

    The increasing demand on the optical performance of micro-aspheric glass lenses used for consumer, medical, as well as industrial applications places a high requirement on the surface quality of the molds used for replicating these lenses. However, it is difficult, almost impossible to generate a supersmooth surface with extremely high form accuracy by using the current cutting or grinding techniques. Therefore, this paper presents a corrective polishing process to finish micro-aspheric molds made of tungsten carbide by applying the vibration-assisted polishing method, aiming to obtain tens-of-nanometer form accuracy and subnanometer surface roughness. A polishing system which provides precise position, angle, and force control in 5 degrees of freedom (DOF)is employed for the experiments, and a tilting angle control method is introduced for the ease of the precisely controlling polishing force so as to keep the material removal rate stable. Then a dwell time algorithm is proposed by considering the scanning path of the polishing tool and the tilting angle of the workpiece. The experimental results show that after corrective polishing, the form accuracy of a micro-aspheric mold with high numerical aperture (NA) is successfully improved from 230 nm peak-to-valley (PV) to under 50 nm PV, while the surface roughness is reduced from 7.2 nm root-mean-square (rms) to 0.5 nm rms. PMID:26193027

  12. Nanostructure fabrication using electron beam and its application to nanometer devices

    SciTech Connect

    Matsui, Shinji

    1997-04-01

    Nanofabrication developed by using electron beam (EB) are described. Ten-nm structures of organic positive and negative resist patterns have been achieved by using a commercially available EB lithography system with energy of 30--50 keV. The self-developing properties of an AlF{sub 3}-doped LiF inorganic resist have been studied for sub-10-nm lithography. By optimizing the inorganic resist film quality, 5-nm linewidth patterns with 60-nm periodicity were directly delineated under a 30-keV EB. Moreover, EB-induced deposition is described as an interesting method for nanofabrication. A novel approach for nanolithography using de Broglie wave has been developed. Line and dot patterns with 100-nm periodicity were exposed on a PMMA resist by EB holography with a thermal field-emitter gun and an electron biprism. This technique allows us to produce nanoscale periodic patterns simultaneously. Furthermore, the possibility of nanostructure fabrication by atomic-beam holography has been demonstrated by using a laser-trap technique and a computer-generated hologram made by EB lithography. As applications of EB nanolithography to nanodevices, a 40-nm-gate NMOS Si device and a high-temperature-operation single-electron transistor (SET) are described.

  13. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  14. Nanometer-scale study of microbial alteration textures in submarine basaltic glass

    NASA Astrophysics Data System (ADS)

    Banerjee, N. R.; Benzerara, K.; Menguy, N.; Brown, G. E.

    2006-12-01

    Microbial corrosion of natural basaltic glass has become an increasingly documented phenomenon in pillow lavas and volcaniclastic rocks from recent oceanic crust and well-preserved ophiolites. Glass shards collected from a 337.7 m thick sequence of volcaniclastic tuffs recovered during ODP Leg 192 on the Ontong Java Plateau contain textural, geochemical, isotopic, and biomolecular signatures that suggest they were partially altered by microbial activity. Petrographic analysis reveals a high density and variety of exceptionally well- preserved microbial alteration textures characterized by micron-scale, tubular to vermicular, channel-like features with both smooth and scalloped walls that commonly extend from fractures or shard boundaries into unaltered glass. Detailed Scanning Electron Microscopy (SEM) images reveal the presence of delicate filaments and desiccated thin films with morphologies suggestive of a biogenic origin. Microprobe X-ray element maps show elevated levels of carbon, nitrogen, phosphorous, and potassium associated with the alteration features. Disseminated carbonates in samples preserving fresh glass have bulk-rock carbon isotope ratios less than -9 per mil, suggesting biologic fractionation. The presence of nucleic acids within the alteration features has been confirmed though staining with ethidium bromide. We have further characterized these samples at the nanometer scale with Scanning Transmission X-ray Microscopy (STXM) and Transmission Electron Microscopy (TEM). We prepared ultra thin cross-sections across the channels by using Focused Ion Beam milling (FIB). STXM was used to perform high spatial and energy resolution near-edge X-ray absorption fine structure (NEXAFS) and high-resolution imaging. Carbon K- edge and iron L2,3-edges were used to characterize and map carbon speciation and iron redox state within the channels. The distribution and speciation variations of these elements are discussed in terms of geochemical significance and

  15. Continuous scanning of the mobility and size distribution of charged clusters and nanometer particles in atmospheric air and the Balanced Scanning Mobility Analyzer BSMA

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    2006-12-01

    Measuring of charged nanometer particles in atmospheric air is a routine task in research on atmospheric electricity, where these particles are called the atmospheric ions. An aspiration condenser is the most popular instrument for measuring atmospheric ions. Continuous scanning of a mobility distribution is possible when the aspiration condenser is connected as an arm of a balanced bridge. Transfer function of an aspiration condenser is calculated according to the measurements of geometric dimensions, air flow rate, driving voltage, and electric current. The most complicated phase of the calibration is the estimation of the inlet loss of ions due to the Brownian deposition. The available models of ion deposition on the protective inlet screen and the inlet control electrofilter have the uncertainty of about 20%. To keep the uncertainty of measurements low the adsorption should not exceed a few tens of percent. The online conversion of the mobility distribution to the size distribution and a correct reduction of inlet losses are possible when air temperature and pressure are measured simultaneously with the mobility distribution. Two instruments called the Balanced Scanning Mobility Analyzers (BSMA) were manufactured and tested in routine atmospheric measurements. The concentration of atmospheric ions of the size of about a few nanometers is very low and a high air flow rate is required to collect enough of ion current. The air flow of 52 l/s exceeds the air flow in usual aerosol instruments by 2-3 orders of magnitude. The high flow rate reduces the time of ion passage to 60 ms and the heating of air in an analyzer to 0.2 K, which suppresses a possible transformation of ions inside the instrument. The mobility range of the BSMA of 0.032-3.2 cm 2 V - 1 s - 1 is logarithmically uniformly divided into 16 fractions. The size distribution is presented by 12 fractions in the diameter range of 0.4-7.5 nm. The measurement noise of a fraction concentration is typically

  16. Towards Next Generation TATB-based Explosives by Understanding Voids and Microstructure from 10 nm to 1 cm

    SciTech Connect

    Willey, T M; Overturf, G

    2009-03-26

    TATB-based explosives have been investigated on length scales spanning several orders of magnitude, from just under 10 nm to larger than 1 cm. This has been accomplished using a combination of ultra-small angle x-ray scattering (USAXS), ultra-small angle neutron scattering (USANS), and x-ray computed tomography (XRCT). USAXS determines distributions the smallest structures including hot-spot voids from hundreds of nanometers to a few microns, USANS extends this range to about 10 microns, and two variants of XRCT cover sizes from microns to centimeters. Several examples are presented for LX-17, a triaminotrinitrobenzene based plastic bonded explosive using Kel-F 800. As an extension of previous USAXS results, in these proceedings, an alternate binder results in a more uniform microstructure for the PBX, useful towards design of next-generation TATB-based explosives. These data are an important step to understanding microstructural mechanisms that affect the mechanical properties of TATB-based explosives, and provide complete a comprehensive characterization of the structure of LX-17 from nanometers to centimeters that can be used as empirical input to computational models of detonation, and in determining the relationship between voids and microstructure to detonation properties.

  17. Patterning polymeric structures with 2 nm resolution at 3 nm half pitch in ambient conditions.

    PubMed

    Martínez, R V; Losilla, N S; Martinez, J; Huttel, Y; Garcia, R

    2007-07-01

    The miniaturization limits of electronic and mechanical devices depend on the minimum pattern periodicity that is stable in ambient conditions. Here we demonstrate an atomic force microscopy lithography that enables the patterning of 2 nm organic structures with 6 nm periodicities in air. We also demonstrate that the lithography can be up-scaled for parallel patterning. The method is based on the formation of a nanoscale octane meniscus between a sharp conductive protrusion and a silicon (100) surface. The application of a high electrical field ( approximately 10 V/nm) produces the polymerization and cross-linking of the octane molecules within the meniscus followed by their deposition. The resulting pattern periodicities are very close to the ultimate theoretical limits achievable in air ( approximately 3 nm). The chemical composition of the patterns has been characterized by photoemission spectroscopy.

  18. 981 nm Yb:KYW laser intracavity pumped at 912 nm and frequency-doubling for an emission at 490.5 nm

    NASA Astrophysics Data System (ADS)

    Lü, Y. F.; Zhang, X. H.; Xia, J.; Chen, R.; Jin, G. Y.; Wang, J. G.; Li, C. L.; Ma, Z. Y.

    2010-05-01

    We present an Yb:KY(WO4)2 (Yb:KYW) laser emitting at 981 nm intracavity pumped by a 912 nm diode-pumped Nd:GdVO4 laser. A 808 nm diode laser is used to pump the Nd:GdVO4 crystal emitting at 912 nm, and the Yb:KYW laser emitting at 981 nm intracavity pumped at 912 nm. This configuration enabled us to indirectly diode-pump this ytterbium doped crystal, and to obtain 1.12 W output power at 981 nm for 19.6 W of incident pump power at 808 nm. Furthermore, intracavity second harmonic generation has also been demonstrated with a power of 106 mW at 490.5 nm by using a LBO nonlinear crystal.

  19. Lightning spectra in the 850- to 1400-nm near-infrared region

    SciTech Connect

    Weidman, C. ); Boye, A. ); Crowell, L. )

    1989-09-30

    Lightning spectra in the 850- to 1400-nm near-infrared region have been recorded with 200- to 300-ms time resolution using a slitless spectrometer with a lead sulfide detector. Except for the wire portion of triggered discharge channels, rocket triggered and natural return stroke spectra are very similar. The following neutral atomic nitrogen (N I) and oxygen (O I) multiplet emissions have been identified (the wavelength, in nanometers, of the brightest line in each group is shown in parentheses): N I(2) (821.6), O I(4) (844.6), N I(1) (868.0), N I(15) (906.1), O I(8) (926.6), N I(7) (939.3), N I(19) (986.2), N I(18) (1011.3), N I(28) (1053.9), and N I(36) (1246.8). Continuum emissions with peak intensities at least an order of magnitude less than the strongest line emissions were detected. A laboratory arc simulation of return stroke discharge produced a near-IR spectrum containing all the features emitted by lightning. Addition N I radiation peaks at 1131.4 nm (N I(17)) and 1358.1 nm on the arc spectra overlapped water vapor absorption bands were not visible on lightning spectra recorded at 2.2-km range. A time-averaged lightning channel temperature of about 16,000{degree}K was calculated from the ratio of relative intensities of the N I(1) and N I(18) multiplets. {copyright} American Geophysical Union 1989

  20. Deformation Behavior in Medium Mn Steel of Nanometer-Sized α' + γ Lamellar Structure

    NASA Astrophysics Data System (ADS)

    Heo, Yoon-Uk; Kim, Dong Hwi; Heo, Nam Hoe; Hong, Chang Wan; Kim, Sung-Joon

    2016-09-01

    Yielding and work-hardening phenomena in an Fe-10.62Mn-2.84Al-0.17C-0.5Mo steel, which is composed of nanometer-sized lamellae of α' and γ, are described on the basis of the Hall-Petch relations. Unlike the general expectation, yielding in the steel, which consists of lamellae of α' and mechanically stable γ, occurs through the propagation of pileup dislocations from α' to γ. However, when γ is mechanically unstable, yielding occurs through the stress-assisted martensitic transformation (SAMT) within the unstable γ region, resulting in a low YS of about 500 MPa. The overall prominent work-hardening behavior of this steel after yielding is due to the active SAMT, which does not accompany the increase in mobile dislocation density and so causes the high elastic strain rate. The carbon partitioning treatment increases the SAMT starting strength to about 980 MPa, which is caused by the mechanical stabilization of γ. The overall low work-hardening behavior of this case is mainly attributed to the active propagation of pile-up dislocation from α' to γ which causes the high plastic strain rate through the abrupt increase of mobile dislocation density.

  1. Sub-nanometer resolution of an organic semiconductor crystal surface using friction force microscopy in water.

    PubMed

    Pimentel, Carlos; Varghese, Shinto; Yoon, Seong-Jun; Park, Soo Young; Gierschner, Johannes; Gnecco, Enrico; Pina, Carlos M

    2016-04-01

    Organic semiconductors (OSC) are attracting much interest for (opto)electronic applications, such as photovoltaics, LEDs, sensors or solid state lasers. In particular, crystals formed by small π-conjugated molecules have shown to be suitable for constructing OSC devices. However, the (opto)electronic properties are complex since they depend strongly on both the mutual orientation of molecules as well as the perfection of bulk crystal surfaces. Hence, there is an urgent need to control nano-topographic OSC features in real space. Here we show that friction force microscopy in water is a very suitable technique to image the free surface morphology of an OSC single crystal (TDDCS) with sub-nanometer resolution. We demonstrate the power of the method by direct correlation to the structural information extracted from combined single crystal (SC-) and specular (s-) XRD studies, which allows us to identify the pinning centers encountered in the stick-slip motion of the probing tip with the topmost methyl groups on the TDDCS surface.

  2. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Virtual mode

    NASA Astrophysics Data System (ADS)

    Lapshin, Rostislav V.

    2016-08-01

    A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image "measurement" of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).

  3. Probing dynamics and pinning of single vortices in superconductors at nanometer scales.

    PubMed

    Embon, L; Anahory, Y; Suhov, A; Halbertal, D; Cuppens, J; Yakovenko, A; Uri, A; Myasoedov, Y; Rappaport, M L; Huber, M E; Gurevich, A; Zeldov, E

    2015-01-01

    The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors. PMID:25564043

  4. Probing dynamics and pinning of single vortices in superconductors at nanometer scales

    PubMed Central

    Embon, L.; Anahory, Y.; Suhov, A.; Halbertal, D.; Cuppens, J.; Yakovenko, A.; Uri, A.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Gurevich, A.; Zeldov, E.

    2015-01-01

    The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors. PMID:25564043

  5. Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonas reinhardtii.

    PubMed

    Chen, Lanzhou; Zhou, Lina; Liu, Yongding; Deng, Songqiang; Wu, Hao; Wang, Gaohong

    2012-10-01

    The toxicological effects of nanometer titanium dioxide (nano-TiO2) on a unicellular green alga Chlamydomonas reinhardtii were assessed by investigating the changes of the physiology and cyto-ultrastructure of this species under treatment. We found that nano-TiO2 inhibited photosynthetic efficiency and cell growth, but the content of chlorophyll a content in algae did not change, while carotenoid and chlorophyll b contents increased. Malondialdehyde (MDA) content reached maximum values after 8h exposure and then decreased to a moderately low level at 72 h. Electron microscopy images indicated that as concentrations of nano-TiO2 increased, a large number of C. reinhardtii cells were noted to be damaged: the number of chloroplasts declined, various other organelles were degraded, plasmolysis occurred, and TiO2 nanoparticles were found to be located inside cell wall and membrane. It was also noted that cell surface was surrounded by TiO2 particles, which could present an obstacle to the exchange of substances between the cell and its surrounding environment. To sum up, the effect of nano-TiO2 on C. reinhardtii included cell surface aggregation, photosynthesis inhibition, lipid peroxidation and new protein synthesis, while the response of C. reinhardtii to nano-TiO2 was a rapid process which occurs during 24 h after exposing and may relate to physiological stress system to mitigate damage. PMID:22883605

  6. Drift-insensitive distributed calibration of probe microscope scanner in nanometer range: Approach description

    NASA Astrophysics Data System (ADS)

    Lapshin, Rostislav V.

    2015-12-01

    The method of distributed calibration of a probe microscope scanner consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be defined by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used to implement the distributed calibration, which permits to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. The sensitivity of LCCs to errors in determination of position coordinates of surface features forming the local calibration structure (LCS) is eliminated by performing multiple repeated measurements followed by building regression surfaces. There are no principle restrictions on the number of repeated LCS measurements. Possessing the calibration database enables correcting in one procedure all the spatial distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. The method may be used with any scanning probe instrument.

  7. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    PubMed

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale. PMID:27254797

  8. Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale

    SciTech Connect

    Balke, N.; Jesse, S.; Kim, Y.; Adamczyk, L.; Ivanov, I.; Dudney, N. J.; Kalinin, S. V.

    2010-12-28

    We have developed a scanning probe microscopy approach to explore voltage-controlled ion dynamics in ionically conductive solids and decouple transport and local electrochemical reactivity on the nanometer scale. Electrochemical strain microscopy allows detection of bias-induced ionic motion through the dynamic (0.1-1 MHz) local strain. Spectroscopic modes based on low-frequency (~1 Hz) voltage sweeps allow local ion dynamics to be probed locally. The bias dependence of the hysteretic strain response accessed through first-order reversal curve (FORC) measurements demonstrates that the process is activated at a certain critical voltage and is linear above this voltage everywhere on the surface. This suggests that FORC spectroscopic ESM data separates local electrochemical reaction and transport processes. The relevant parameters such as critical voltage and effective mobility can be extracted for each location and correlated with the microstructure. The evolution of these behaviors with the charging of the amorphous Si anode in a thin-film Li-ion battery is explored. A broad applicability of this method to other ionically conductive systems is predicted.

  9. Experimentally Resolving the Atomic Structure of Supported Nanometer-size Gold Clusters

    NASA Astrophysics Data System (ADS)

    Reifenberger, R.; Lovall, D.; Buss, M.; Andres, R. P.

    1998-03-01

    Techniques to soft-land nanometer size particles onto sharp tips have been used to study the structure and stability of Au clusters. These clusters have been deposited on W, Pt, and Pt/Ir tips. Field-ion microcope (FIM) techniques utilizing Ar as an imaging gas allow surface atoms on the clusters to be imaged. Time lapse studies of the FIM micrographs allow the positions of edge and corner atoms on the cluster to be mapped. Careful comparison of experimental images with simulated images allow the structure and orientation of these clusters to be identified. FIM micrographs of annealed, single crystal Au clusters show evidence of a truncated-octahedra (TO) structure with one of the Au(111) hexagonal faces of the cluster resting on the surface of the tip. Unannealed Au clusters show evidence of a multiply-twinned structure. Studies of both annealed and unannealed Au clusters also provide evidence of a high degree of stability, with no indication of structural fluctuations at room temperature.

  10. Nanometer sized electrodes fabricated by electromigration of Au and Pd nanowires

    NASA Astrophysics Data System (ADS)

    Vlad, Alexandru; Faniel, Sébastien; Hackens, Benoît; Bayot, Vincent; Melinte, Sorin

    2008-03-01

    Electromigration-driven metallic nanowire failure is presented. Here, Au and Pd nanowires patterned by electron-beam lithography were electrically stressed up to their breaking point. Feedback control and simple voltage sweep techniques have been successfully used to form nanometer-sized gaps. We observe a material- and geometry-dependent behavior. The Au nanowires showed a Joule-induced reversible resistance increase with the applied voltage up to the breaking point. In contrast, Pd nanowires presented an anomalous resistance decrease close to their failure point. This was associated to the melting and agglomeration of metallic grains within the electrically stressed nanowires. The SEM images acquired at intermediate stages of electromigration agree with the electrical data findings. The influence of the nanowire geometry upon the morphology of fabricated nanoelectrodes is considered. Beside the morphological characterization of our break junctions, we also measured their current-voltage characteristics. We observed single electron tunneling effects, probably due to the presence of metallic clusters formed close to the nanoelectrodes during the electromigration. Our results are consistent with recent findings on Coulomb blockade phenomena in electromigrated gold break junctions.

  11. Enhanced Signal and Quantitative Detection of Anti-Interferon-Gamma Antibody by Using a Nanometer Biolinker

    PubMed Central

    Tsai, Pei-I; Lee, Adam Shih-Yuan; Lee, Shu-Sheng; Chung, Ming-Han; Liu, Meng-Wei; Lee, Chih-Kung

    2016-01-01

    For rapid screening and quantification of an antisera antibody, a nanometer bithiophene-based conductive biolinker can enhanced signal performance and can be used to verify the interaction of an anti-IFN-γ antibody with an IFN-γ protein. The experimental measurements take a generic approach which takes advantage of the functionality of thiophene-based linkers for biosensors. Effects associated with using bithiophene as a biolinker for surface plasmon resonance (SPR) spectroscopy are examined in this paper. By using an atomic force microscope (AFM), it was observed that the morphology of the bithiophene modified gold sensor surface became smoother than the original gold surface. We compared the response and concentration of the anti-IFN-γ antibody on a bithiophene-coated and dextran-coated biochip as well as on different thickness-modified surfaces under SPR relevant conditions. The results indicate that a response to IFN-γ molecules immobilized on a sensor using a bithiophene biolinker improved more than 8-fold when compared to that of a sensor using a dextran biolinker. Furthermore, the regeneration ability of the sensor surface shows good repeatability as only less than a 1% decrease was found after repeating the experimental work over 6 cycles. The characteristics provided us with a good platform for rapid screening, real-time monitoring and quantitative concentration of the autoimmune antibody activities. PMID:27459633

  12. Probing Rubber Cross-Linking Generation of Industrial Polymer Networks at Nanometer Scale.

    PubMed

    Gabrielle, Brice; Gomez, Emmanuel; Korb, Jean-Pierre

    2016-06-23

    We present improved analyses of rheometric torque measurements as well as (1)H double-quantum (DQ) nuclear magnetic resonance (NMR) buildup data on polymer networks of industrial compounds. This latter DQ NMR analysis allows finding the distribution of an orientation order parameter (Dres) resulting from the noncomplete averaging of proton dipole-dipole couplings within the cross-linked polymer chains. We investigate the influence of the formulation (filler and vulcanization systems) as well as the process (curing temperature) ending to the final polymer network. We show that DQ NMR follows the generation of the polymer network during the vulcanization process from a heterogeneous network to a very homogeneous one. The time variations of microscopic Dres and macroscopic rheometric torques present power-law behaviors above a threshold time scale with characteristic exponents of the percolation theory. We observe also a very good linear correlation between the kinetics of Dres and rheometric data routinely performed in industry. All these observations confirm the description of the polymer network generation as a critical phenomenon. On the basis of all these results, we believe that DQ NMR could become a valuable tool for investigating in situ the cross-linking of industrial polymer networks at the nanometer scale.

  13. Probing dynamics and pinning of single vortices in superconductors at nanometer scales

    NASA Astrophysics Data System (ADS)

    Embon, L.; Anahory, Y.; Suhov, A.; Halbertal, D.; Cuppens, J.; Yakovenko, A.; Uri, A.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Gurevich, A.; Zeldov, E.

    2015-01-01

    The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.

  14. Interface characterization of nanometer scale CdS buffer layer in chalcopyrite solar cell

    NASA Astrophysics Data System (ADS)

    Lin, Shih-Hung; Cheng, Tzu-Huan

    2016-06-01

    The buffer layer of a chalcopyrite solar cell plays an important role in optical responses of open circuit voltage (V oc) and short circuit current (J sc). A CdS buffer layer is applicable on the nanometer scale owing to its high carrier concentration and n-type semiconductor behavior in chalcopyrite solar cells. The thin buffer layer also contributes to the passivation of the absorber surface to reduce defect recombination loss. Non-destructive metrological parameters such as photoluminescence (PL) intensity, external quantum efficiency (EQE), and depth-resolved photovoltage are used to characterize the interface quality of CdS/chalcopyrite. The defects and dangling bonds at the absorber surface will cause interface recombination and reduce the cell performance in build-in voltage distribution. Post annealing can improve Cd ion diffusion from the buffer layer to the absorber surface and reduce the density of defects and dangling bonds. After thermal annealing, the EQE, PL intensity, and minority carrier lifetime are improved.

  15. Positive feedback can lead to dynamic nanometer-scale clustering on cell membranes

    SciTech Connect

    Wehrens, Martijn; Rein ten Wolde, Pieter; Mugler, Andrew

    2014-11-28

    Clustering of molecules on biological membranes is a widely observed phenomenon. A key example is the clustering of the oncoprotein Ras, which is known to be important for signal transduction in mammalian cells. Yet, the mechanism by which Ras clusters form and are maintained remains unclear. Recently, it has been discovered that activated Ras promotes further Ras activation. Here we show using particle-based simulation that this positive feedback is sufficient to produce persistent clusters of active Ras molecules at the nanometer scale via a dynamic nucleation mechanism. Furthermore, we find that our cluster statistics are consistent with experimental observations of the Ras system. Interestingly, we show that our model does not support a Turing regime of macroscopic reaction-diffusion patterning, and therefore that the clustering we observe is a purely stochastic effect, arising from the coupling of positive feedback with the discrete nature of individual molecules. These results underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.

  16. Nanometer Scale Titanium Surface Texturing Are Detected by Signaling Pathways Involving Transient FAK and Src Activations

    PubMed Central

    Zambuzzi, Willian F.; Bonfante, Estevam A.; Jimbo, Ryo; Hayashi, Mariko; Andersson, Martin; Alves, Gutemberg; Takamori, Esther R.; Beltrão, Paulo J.; Coelho, Paulo G.; Granjeiro, José M.

    2014-01-01

    Background It is known that physico/chemical alterations on biomaterial surfaces have the capability to modulate cellular behavior, affecting early tissue repair. Such surface modifications are aimed to improve early healing response and, clinically, offer the possibility to shorten the time from implant placement to functional loading. Since FAK and Src are intracellular proteins able to predict the quality of osteoblast adhesion, this study evaluated the osteoblast behavior in response to nanometer scale titanium surface texturing by monitoring FAK and Src phosphorylations. Methodology Four engineered titanium surfaces were used for the study: machined (M), dual acid-etched (DAA), resorbable media microblasted and acid-etched (MBAA), and acid-etch microblasted (AAMB). Surfaces were characterized by scanning electron microscopy, interferometry, atomic force microscopy, x-ray photoelectron spectroscopy and energy dispersive X-ray spectroscopy. Thereafter, those 4 samples were used to evaluate their cytotoxicity and interference on FAK and Src phosphorylations. Both Src and FAK were investigated by using specific antibody against specific phosphorylation sites. Principal Findings The results showed that both FAK and Src activations were differently modulated as a function of titanium surfaces physico/chemical configuration and protein adsorption. Conclusions It can be suggested that signaling pathways involving both FAK and Src could provide biomarkers to predict osteoblast adhesion onto different surfaces. PMID:24999733

  17. Fracture of perfect and defective graphene at the nanometer scale: Is graphene the strongest material?

    NASA Astrophysics Data System (ADS)

    Hess, Peter

    2016-09-01

    The basic relationships between the linear elastic and nonlinear fracture properties given by a local bond-breaking model and Griffith's criterion are used to characterize the two-dimensional (2D) mechanical properties of an intrinsic and a defective graphene, respectively. The analytical 2D models describe the localized bond-breaking in perfect monolayers and the failure of defective graphene by the global energy balance concept. From the experimental data, density functional theory calculations, molecular dynamics simulations, and continuum 2D models, a consistent set of 2D mechanical properties consisting of Young's modulus, fracture strength, fracture toughness, line (edge) energy, and critical strain energy release rate can be obtained. The critical fracture stress shows a linear dependence on the square root of the effective defect length from the subnanometer to the micrometer scale. The lower limit of fracture toughness and strain energy release rate is essentially independent of the defect size for vacancies, slits, and pre-cracks in the nanometer range. In the subnanometer range, the direct bond breaking and Griffith models deliver a consistent description of mode I fracture by a uniaxial tension. The promising results suggest an extension of the continuum models to other fracture modes such as the failure by shear load.

  18. Colorimetric monitoring of nanometer distance changes in DNA-templated plasmon rulers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lermusiaux, Laurent; Bidault, Sebastien

    2016-03-01

    The nanometer-scale sensitivity of plasmon coupling allows the translation of minute morphological changes in nanostructures into macroscopic optical signals. In particular, single nanostructure scattering spectroscopy provides a direct estimation of interparticle distances in gold nanoparticle (AuNP) dimers linked by a short DNA double-strand [M. P. Busson et al, Nano Lett. 11, 5060 (2011)]. We demonstrate here that this spectroscopic information can be inferred from simple widefield measurements on a calibrated color camera [L. Lermusiaux et al, ACS Nano 9, 978 (2015)]. This allows us to analyze the influence of electrostatic and steric interparticle interactions on the morphology of DNA-templated AuNP groupings. Furthermore, polarization-resolved measurements on a color CCD provide a parallel imaging of AuNP dimer orientations. We apply this spectroscopic characterization to identify dimers featuring two different conformations of the same DNA template. In practice, the biomolecular scaffold contains a hairpin-loop that opens after hybridization to a specific DNA sequence and increases the interparticle distance [L. Lermusiaux et al, ACS Nano 6, 10992 (2012)]. These results open exciting perspectives for the parallel sensing of single specific DNA strands using plasmon rulers. We discuss the limits of this approach in terms of the physicochemical stability and reactivity of these nanostructures and demonstrate the importance of engineering the AuNP surface chemistry, in particular using amphiphilic ligands [L. Lermusiaux and S. Bidault, Small (2015), in press].

  19. The Apparent Thermal Conductivity of Liquids Containing Solid Particles of Nanometer Dimensions: A Critique

    NASA Astrophysics Data System (ADS)

    Tertsinidou, Georgia; Assael, Marc J.; Wakeham, William A.

    2015-07-01

    There have been conflicting statements in the literature of the last twenty years about the behavior of the apparent thermal conductivity of two- or three-phase systems comprising solid particles with nanometer dimensions suspended in fluids. It has been a feature of much of the work that these multiphase systems have been treated as if a single-phase fluid and that the thermodynamic characteristics of the system have varied even though the systems have been given the same name. These so-called nanofluids have been the subject of a large number of investigations by a variety of different experimental techniques. In the current paper, we critically evaluate the studies of seven of the simplest particulate/fluid systems: Cu, CuO, , and suspended in water and ethylene glycol. Our conclusion is that when results for exactly the same thermodynamic system are obtained with proven experimental techniques, the apparent thermal conductivity of the nanofluid exhibits no behavior that is unexpected and inconsistent with a simple model of conduction in stationary, multiphase systems. The wider variety of behavior that has been reported in the literature for these systems is therefore attributed to ill-characterization of the thermodynamic system and/or the application of experimental techniques of unproven validity.

  20. Sub-nanometer resolution of an organic semiconductor crystal surface using friction force microscopy in water.

    PubMed

    Pimentel, Carlos; Varghese, Shinto; Yoon, Seong-Jun; Park, Soo Young; Gierschner, Johannes; Gnecco, Enrico; Pina, Carlos M

    2016-04-01

    Organic semiconductors (OSC) are attracting much interest for (opto)electronic applications, such as photovoltaics, LEDs, sensors or solid state lasers. In particular, crystals formed by small π-conjugated molecules have shown to be suitable for constructing OSC devices. However, the (opto)electronic properties are complex since they depend strongly on both the mutual orientation of molecules as well as the perfection of bulk crystal surfaces. Hence, there is an urgent need to control nano-topographic OSC features in real space. Here we show that friction force microscopy in water is a very suitable technique to image the free surface morphology of an OSC single crystal (TDDCS) with sub-nanometer resolution. We demonstrate the power of the method by direct correlation to the structural information extracted from combined single crystal (SC-) and specular (s-) XRD studies, which allows us to identify the pinning centers encountered in the stick-slip motion of the probing tip with the topmost methyl groups on the TDDCS surface. PMID:26931487

  1. Energy-Filtering Transmission Electron Microscopy on the Nanometer Length Scale

    SciTech Connect

    Grogger, Werner; Varela del Arco, Maria; Ristau, Roger; Schaffer, Bernhard; Hofer, Ferdinand; Krishnan, Kannan M.

    2004-01-01

    Energy-filtering transmission electron microscopy (EFTEM), developed about ten years ago, is now a routine analysis tool in the characterization of materials. Based on the physical principles of electron energy-loss spectrometry (EELS), but with the addition of in-column or post-column energy-filters, it forms images of microstructures using a narrow energy band of inelastically scattered electrons. Post-column energy-filters, developed commercially by Gatan (Gatan Imaging Filter, GIF) in the early 1990s, could be attached to nearly any TEM. Almost at the same time, the introduction of the EM-912 microscope with an integrated {Omega}-filter by Zeiss, made it possible to use in-column filters as well. These two developments made EFTEM possible on an almost routine basis. The operation of these filters is rather straightforward and it is now possible to acquire element specific images within a few minutes. However, the optimal setup for data acquisition, the judicious choice of experimental parameters to solve specific materials science problems and the interpretation of the results can be rather difficult. For best results, a fundamental knowledge of the underlying physics of EELS and a systematic development of the technical details is necessary. In this work, we discuss the current status of EFTEM in terms of spatial resolution and illustrate it with a few technologically relevant applications at the nanometer length scale.

  2. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  3. Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm

    PubMed Central

    Kodach, V. M.; Kalkman, J.; Faber, D. J.; van Leeuwen, T. G.

    2010-01-01

    One of the present challenges in optical coherence tomography (OCT) is the visualization of deeper structural morphology in biological tissues. Owing to a reduced scattering, a larger imaging depth can be achieved by using longer wavelengths. In this work, we analyze the OCT imaging depth at wavelengths around 1300 nm and 1600 nm by comparing the scattering coefficient and OCT imaging depth for a range of Intralipid concentrations at constant water content. We observe an enhanced OCT imaging depth for 1600 nm compared to 1300 nm for Intralipid concentrations larger than 4 vol.%. For higher Intralipid concentrations, the imaging depth enhancement reaches 30%. The ratio of scattering coefficients at the two wavelengths is constant over a large range of scattering coefficients and corresponds to a scattering power of 2.8 ± 0.1. Based on our results we expect for biological tissues an increase of the OCT imaging depth at 1600 nm compared to 1300 nm for samples with high scattering power and low water content. PMID:21258456

  4. Photolysis of formic acid at 355 nm

    NASA Astrophysics Data System (ADS)

    Martinez, Denhi; Bautista, Teonanacatl; Guerrero, Alfonso; Alvarez, Ignacio; Cisneros, Carmen

    2015-05-01

    Formic acid is well known as a food additive and recently an application on fuel cell technology has emerged. In this work we have studied the dissociative ionization process by multiphoton absorption of formic acid molecules at 355nm wavelength photons, using TOF spectrometry in reflectron mode (R-TOF). Some of the most abundant ionic fragments produced are studied at different settings of the laser harmonic generator. The dependence of the products on these conditions is reported. This work was supported by CONACYT Project 165410 and PAPIIT IN102613 and IN101215.

  5. 248nm silicon photoablation: Microstructuring basics

    SciTech Connect

    Poopalan, P.; Najamudin, S. H.; Wahab, Y.; Mazalan, M.

    2015-05-15

    248nm pulses from a KrF excimer laser was used to ablate a Si wafer in order to ascertain the laser pulse and energy effects for use as a microstructuring tool for MEMS fabrication. The laser pulses were varied between two different energy levels of 8mJ and 4mJ while the number of pulses for ablation was varied. The corresponding ablated depths were found to range between 11 µm and 49 µm, depending on the demagnified beam fluence.

  6. Sub-100 nanometer transverse gratings written by femtosecond laser pulses on a titanium surface

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey A.; Kudryashov, Sergey I.; Makarov, Sergey V.; Seleznev, Leonid V.; Sinitsyn, Dmitry V.; Ligachev, Alexander E.; Golosov, Evgene V.; Kolobov, Yury R.

    2013-05-01

    One-dimensional transverse (perpendicular to the laser polarization) gratings with periods Λ ≈ 50-60 nm were observed on a titanium surface within 150 nm wide, micrometer-long regular surface modification longitudinal stripes fabricated by multiple 744 nm Ti:sapphire femtosecond laser shots, occurring at a repetition rate of 10 Hz. In the center of the surface laser spot these stripes are oriented strictly perpendicular to the laser polarization, in accordance with the plasmon-polaritonic model, and appear as ablative longitudinal trenches centered along the main stripe axes, which are precursors of longitudinal common ripples with a 500 nm period. At the low-fluence periphery of the laser spot, the stripes appear not as ablative longitudinal trenches, but as linear arrays of sub-ablative transverse nanoripples with periods down to 50 nm. The appearance of such superfine transverse nanoripples is related to incomplete spallation of the laser-molten surface layer, periodically modulated at the nanoscale through coherent sub-surface cavitation.

  7. Low-intensity LED (625 and 405 nm) and laser (805 nm) killing of Propionibacterium acnes and Staphylococcus epidermidis

    NASA Astrophysics Data System (ADS)

    Tuchina, Elena S.; Tuchin, Valery V.

    2009-02-01

    In the present work we have investigated in vitro sensitivity of microorganisms P. acnes and S. epidermidis to action of red (625 nm and 405 nm) and infrared (805 nm) radiations in combination with photosensitizes Methylene Blue and Indocyanine Green.

  8. Electrically-pumped 850-nm micromirror VECSELs.

    SciTech Connect

    Geib, Kent Martin; Peake, Gregory Merwin; Serkland, Darwin Keith; Keeler, Gordon Arthur; Mar, Alan

    2005-02-01

    Vertical-external-cavity surface-emitting lasers (VECSELs) combine high optical power and good beam quality in a device with surface-normal output. In this paper, we describe the design and operating characteristics of an electrically-pumped VECSEL that employs a wafer-scale fabrication process and operates at 850 nm. A curved micromirror output coupler is heterogeneously integrated with AlGaAs-based semiconductor material to form a compact and robust device. The structure relies on flip-chip bonding the processed epitaxial material to an aluminum nitride mount; this heatsink both dissipates thermal energy and permits high frequency modulation using coplanar traces that lead to the VECSEL mesa. Backside emission is employed, and laser operation at 850 nm is made possible by removing the entire GaAs substrate through selective wet etching. While substrate removal eliminates absorptive losses, it simultaneously compromises laser performance by increasing series resistance and degrading the spatial uniformity of current injection. Several aspects of the VECSEL design help to mitigate these issues, including the use of a novel current-spreading n type distributed Bragg reflector (DBR). Additionally, VECSEL performance is improved through the use of a p-type DBR that is modified for low thermal resistance.

  9. DNA charge transport over 34 nm

    NASA Astrophysics Data System (ADS)

    Slinker, Jason D.; Muren, Natalie B.; Renfrew, Sara E.; Barton, Jacqueline K.

    2011-03-01

    Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.

  10. Photodissociation of Methyl Iodide at 193 NM

    NASA Astrophysics Data System (ADS)

    Xu, Hong; Pratt, Stephen

    2014-05-01

    A new measurement of the photodissociation of CH3I at 193 nm is reported in which we use a combination of vacuum ultraviolet photoionization and velocity map ion imaging. The iodine photofragments are probed by single-photon ionization at photon energies above and below the photoionization threshold of I(2P3/2) . The relative I(2P3/2) and I*(2P1/2) photoionization cross sections are determined at these wavelengths by using the known branching fractions for the photodissociation at 266 nm. Velocity map ion images indicate that the branching fraction for I(2P3/2) atoms is non-zero, and yield a value of 0.07 +/- 0.01. Interestingly, the translational energy distribution extracted from the image shows that the translational energy of the I(2P3/2) fragments is significantly smaller than that of the I*(2P1/2) atoms. This observation indicates the internal rotational/vibrational energy of the CH3 co-fragment is very high in the I(2P3/2) channel. The results can be interpreted in a manner consistent with the previous measurements, and provide a more complete picture of the dissociation dynamics of this prototypical molecule. This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under contract No. DE-AC02-06CH11357.

  11. Transmission Microscopy with Nanometer Resolution Using a Deterministic Single Ion Source

    NASA Astrophysics Data System (ADS)

    Jacob, Georg; Groot-Berning, Karin; Wolf, Sebastian; Ulm, Stefan; Couturier, Luc; Dawkins, Samuel T.; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2016-07-01

    We realize a single particle microscope by using deterministically extracted laser-cooled 40Ca+ ions from a Paul trap as probe particles for transmission imaging. We demonstrate focusing of the ions to a spot size of 5.8 ±1.0 nm and a minimum two-sample deviation of the beam position of 1.5 nm in the focal plane. The deterministic source, even when used in combination with an imperfect detector, gives rise to a fivefold increase in the signal-to-noise ratio as compared with conventional Poissonian sources. Gating of the detector signal by the extraction event suppresses dark counts by 6 orders of magnitude. We implement a Bayes experimental design approach to microscopy in order to maximize the gain in spatial information. We demonstrate this method by determining the position of a 1 μ m circular hole structure to a precision of 2.7 nm using only 579 probe particles.

  12. Nano patterning with a single high-transmission nano-metal aperture system

    NASA Astrophysics Data System (ADS)

    Kim, Yongwoo; Park, Sinjeung; Lee, Eungman; Hahn, Jae W.

    2008-03-01

    We design a C-shaped aperture which overcomes the diffraction limit of light to produce a high-brightness nano-size light spot. For optical nano lithography, we construct a nano patterning system using an optical probe which adopts a solid immersion lens (SIL), the 120 nm thickness aluminum film on the bottom surface of the SIL and the C-shaped aperture engraved in the metal film. Light source is a diode laser of 405nm wavelength to expose h-line photoresist(PR). A linear stage holding the optical probe makes the nano aperture contact with the PR coated on silicon wafer. Using this patterning system, we obtain sub 100nm array patterns and measure the system performance in various exposure conditions to verify the feasibility of plasmonic lithography.

  13. Detection of magnetic circular dichroism on the two-nanometer scale

    NASA Astrophysics Data System (ADS)

    Schattschneider, Peter; Stöger-Pollach, Michael; Rubino, Stefano; Sperl, Matthias; Hurm, Christian; Zweck, Josef; Rusz, Ján

    2008-09-01

    Magnetic circular dichroism (MCD) is a standard technique for the study of magnetic properties of materials in synchrotron beamlines. We present here a scattering geometry in the transmission electron microscope through which MCD can be observed with unprecedented spatial resolution. A convergent electron beam is used to scan a cross sectional preparation of a Fe/Au multilayer sample. Differences in the energy-loss spectra induced by the magnetic moments of the Fe atoms can be resolved with a resolution of better than 2 nm. This is a breakthrough achievement when compared both to the previous energy-loss MCD resolution (200 nm) or the best x-ray MCD experiments (approximately 20 nm).

  14. Distance-dependent photo-induced electron transport in nanometer-sized junctions

    NASA Astrophysics Data System (ADS)

    Albee, Brian; Liu, Xuejun; Tork Ladani, Faezeh; Dutta, Rajen K.; Potma, Eric O.

    2016-05-01

    We describe photo-induced current experiments observed in nm-sized electro-migrated nano gaps, using surface plasmon polaritons (SPPs) as the source of the optical driving field. For gaps smaller than 5 nm, we observe a stable photo-induced current that is linear with the intensity of the SPP mode, whereas the photo-current in wider gaps shows a highly nonlinear dependence that is reminiscent of field emission. The results are explained by a modified Wentzel-Kramers-Brillouin tunneling model, which reproduces the observed transition from optical rectification to optically driven field emission in the nano junction.

  15. The minimum-energy structure of nanometer-scale gold clusters

    NASA Astrophysics Data System (ADS)

    Patil, A. N.; Paithankar, D. Y.; Otsuka, N.; Andres, R. P.

    1993-03-01

    We report results of experiments in which gold clusters with controlled diameters ranging from 1nm to 20nm are grown in a gas aggregation reactor and are subsequently melted and slowly cooled in the gas phase. These clusters are soft landed on thin carbon films and their structure determined by means of HRTEM. All of the clusters down to the smallest whose lattice fringes could be resolved (N≈405) are single fcc crystals. MD calculations using an EAM potential for gold predict that the fcc motif seen in these experiments may indeed be the minimum-energy structure for gold clusters containing more than a few hundred atoms.

  16. Nanometer-scale ablation using focused, coherent extreme ultraviolet/soft x-ray light

    DOEpatents

    Menoni, Carmen S.; Rocca, Jorge J.; Vaschenko, Georgiy; Bloom, Scott; Anderson, Erik H.; Chao, Weilun; Hemberg, Oscar

    2011-04-26

    Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.

  17. Wafer scale fabrication of highly dense and uniform array of sub-5 nm nanogaps for surface enhanced Raman scatting substrates.

    PubMed

    Cai, Hongbing; Wu, YuKun; Dai, Yanmeng; Pan, Nan; Tian, Yangchao; Luo, Yi; Wang, Xiaoping

    2016-09-01

    Metallic nanogap is very important for a verity of applications in plasmonics. Although several fabrication techniques have been proposed in the last decades, it is still a challenge to produce uniform nanogaps with a few nanometers gap distance and high throughput. Here we present a simple, yet robust method based on the atomic layer deposition (ALD) and lift-off technique for patterning ultranarrow nanogaps array. The ability to accurately control the thickness of the ALD spacer layer enables us to precisely define the gap size, down to sub-5 nm scale. Moreover, this new method allows to fabricate uniform nanogaps array along different directions densely arranged on the wafer-scale substrate. It is demonstrated that the fabricated array can be used as an excellent substrate for surface enhanced Raman scatting (SERS) measurements of molecules, even on flexible substrates. This uniform nanogaps array would also find its applications for the trace detection and biosensors. PMID:27607684

  18. Wavefield characterization of nearly diffraction-limited focused hard x-ray beam with size less than 10 nm

    SciTech Connect

    Kimura, Takashi; Mimura, Hidekazu; Handa, Soichiro; Yokoyama, Hikaru; Imai, Shota; Matsuyama, Satoshi; Sano, Yasuhisa; Yumoto, Hirokatsu; Yabashi, Makina; Ishikawa, Tetsuya

    2010-12-15

    In situ wavefront compensation is a promising method to realize a focus size of only a few nanometers for x-ray beams. However, precise compensation requires evaluation of the wavefront with an accuracy much shorter than the wavelength. Here, we characterized a one-dimensionally focused beam with a width of 7 nm at 20 keV using a multilayer mirror. We demonstrate that the wavefront can be determined precisely from multiple intensity profiles measured around the beamwaist. We compare the phase profiles recovered from intensity profiles measured under the same mirror condition but with three different aperture sizes and find that the accuracy of phase retrieval is as small as {lambda}/12.

  19. Comparison of 980-nm and 1070-nm in endovenous laser treatment (EVLT)

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Tabakoglu, Ozgur; Ergenoglu, Mehmet U.; Gülsoy, Murat

    2009-07-01

    The use of endovenous laser treatment for varicose veins has been increasing in recent years. It is a safer technique than surgical vein stripping. Its complications (e.g. bruising, pain) are less than the complications of surgical vein stripping. But best parameters such as optimum wavelength, power, and application duration are still under investigation to clarify uncertainties about this technique. To prevent its complications and improve its clinical outcomes, the exact mechanism of it has to be known. The aim of this study is to investigate the effect of different laser wavelengths on endovenous laser therapy. In this study 980-nm diode laser and 1070-nm fiber laser were used. Human veins were irradiated with 980-nm and 1070-nm lasers at 8 W and 10 W to find the optimal power and wavelength. After laser application, remarkable shrinkage was observed. Inner and outer diameters of the veins also narrowed for both of the laser types. 10 W of 980-nm laser application led to better shrinkage results.

  20. Dual illumination OCT at 1050nm and 840nm for whole eye segment imaging

    NASA Astrophysics Data System (ADS)

    Fan, Shanhui; Qin, Lin; Dai, Cuixia; Zhou, Chuanqing

    2014-11-01

    We presented an improved dual channel dual focus spectral domain optical coherence tomography (SD-OCT) with two illuminations at 840 nm and 1050 nm for whole eye segment imaging and biometry in vivo. The two light beams were coupled and optically optimized to scan the anterior and posterior segment of the eye simultaneously. This configuration with dichroic mirrors integrated in the sample arm enables us to acquire images from the anterior segment and retina effectively with minimum loss of sample signal. In addition, the full resolved complex (FRC) method was applied to double the imaging depth for the whole anterior segment imaging by eliminating the mirror image. The axial resolution for 1050 nm and 840 nm OCT was 14 μm and 8 μm in air, respectively. Finally, the system was successfully tested in imaging the unaccommodated and accommodated eyes. The preliminary results demonstrated the significant improvements comparing with our previous dual channel SD-OCT configuration in which the two probing beams had the same central wavelength of 840 nm.

  1. TCSPC FLIM in the wavelength range from 800 nm to 1700 nm (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Becker, Wolfgang; Shcheslavsky, Vladislav

    2016-03-01

    Excitation and detection in the wavelength range above 800nm is a convenient and relatively inexpensive way to increase the penetration depth in optical microscopy. Moreover, detection at long wavelength avoids the problem that tissue autofluorescence contaminates the signals from endogenous fluorescence probes. FLIM at NIR wavelength may therefore be complementary to multiphoton microscopy, especially if the lifetimes of NIR fluorophores report biological parameters of the tissue structures they are bound to. Unfortunately, neither the excitation sources nor the detectors of standard confocal and multiphoton laser scanning systems are directly suitable for excitation and detection of NIR fluorescence. Most of these problems can be solved, however, by using ps diode lasers or Ti:Sapphire lasers at their fundamental wavelength, and NIR-sensitive detectors. With NIR-sensitive PMTs the detection wavelength range can be extended up to 900 nm, with InGaAs SPAD detectors up to 1700 nm. Here, we demonstrate the use of a combination of laser scanning, multi-dimensional TCSPC, and advanced excitation sources and detectors for FLIM at up to 1700 nm. The performance was tested at tissue samples incubated with NIR dyes. The fluorescence lifetimes generally get shorter with increasing absorption and emission wavelengths of the dyes. For the cyanine dye IR1061, absorbing around 1060 nm, the lifetime was found to be as short as 70 ps. Nevertheless the fluorescence decay could still be clearly detected. Almost all dyes showed clear lifetime changes depending on the binding to different tissue constituents.

  2. Measuring the electric charge and zeta potential of nanometer-sized objects using pyramidal-shaped nanopores.

    PubMed

    Arjmandi, Nima; Van Roy, Willem; Lagae, Liesbet; Borghs, Gustaaf

    2012-10-16

    Nanometer-scale pores are capable of detecting the size and concentration of nanometer-sized analytes at low concentrations upon analyzing their translocation through the pore, in small volumes and over a short time without labeling. Here, we present a simple, widely applicable, robust, and precise method to measure the zeta-potential of different nano-objects using nanopores. Zeta-potential i.e., a quantity that represents electrical charge in nanocolloids, is an important property in manufacturing of pharmaceuticals, inks, foams, cosmetics, and food. Its use is also imperative in understanding basic properties of complex dispersions including blood, living organisms, and their interaction with the environment. The characterization methods for zeta-potential are limited. Using the nanopore technique, the zeta-potential and the charge of nanoparticles can be measured independently of other parameters, such as particle size. This simple method is based on measuring the duration of the translocation of analytes through a nanopore as a function of applied voltage. A simple analytical model has been developed to extract the zeta-potential. This method is able to detect and differentiate nanometer-sized objects of similar size; it also enables the direct and precise quantitative measurement of their zeta-potential. We have applied this method to a wide range of different nanometer-sized particles and compared the results with values measured by commercially available tools. Furthermore, potential capability of this method in detection and characterization of virions is shown by measuring the low zeta-potential of HIV and EBV viruses.

  3. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    PubMed

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions.

  4. Nanometer-scale displacement measurement with high resolution using dual cavity Fabry-Pérot interferometer for biomimetic robots.

    PubMed

    Lee, Jin-Hyuk; Kim, Dae-Hyun

    2014-10-01

    A sensor of a biomimetic robot has to measure very small environmental changes such as, nanometer scale strains or displacements. Fiber optic sensor can be also one of candidates for the biomimetic sensor because the sensor is like thread and the shape of the sensor is similar to muscle fiber. A fiber optic interferometer, which is an optical-based sensor, can measure displacement precisely, so such device has been widely studied for the measurement of displacement on a nanometer-scale. Especially, a Quadrature Phase-Shifted Fiber Fabry-Pérot interferometer (QPS-FFPI) uses phase-information for this measurement, allowing it to provide a precision result with high resolution. In theory, the QPS-FFPI generates two sinusoidal signals of which the phase difference should be 90 degrees for the exact measurement of the displacement. In order to guarantee the condition of the phase difference, the relative adjustment of the cavities of the optical fibers is required. However, with such precise adjustment it is very hard to fix the proper difference of the two cavities for quadrature-phase-shifting. In this paper, a dual-cavity FFPI is newly proposed to measure the displacement on a nanometer-scale with a specific type of signal processing. In the signal processing, a novel phase-compensation algorithm is applied to force the phase difference to be exactly 90 degrees without any physical adjustment. As a result, the paper shows that the phase-compensated dual-cavity FFPI can effectively measure nanometer-scale displacement with high resolution under dynamic conditions. PMID:25942819

  5. Nanometal particle reagents for sensitive, MEMS based fiber-optic, multi-analyte, immuno-biosensing

    NASA Astrophysics Data System (ADS)

    Hong, Bin

    Integration of nanotechnology to medical diagnostics has brought a new era to public health practice. An excellent example is the utilization of unique optoelectronic properties of nanoparticles to develop highly sensitive biosensing devices for point-of-care (POC) disease diagnosis/prognosis. Fluorophore mediated, immuno-biosensors are important disease detection tools. The property of intra-molecular fluorescence quenching of most fluorophores, however, limits the sensitivity of this type of sensors. A plasmon-rich nanometal particle (NMP) can transfer the lone pair electrons of a fluorophore, which normally participate in the fluorescence self-quenching, to its surface plasmon field, resulting in artificial fluorescence enhancement. The enhancement was found to depend on the metal type, the particle size, the distance between a particle and a fluorophore, and the quantum yield of a fluorophore. Some biocompatible solvents were also found to increase the fluorescence emission efficiency via effective dipole coupling between the fluorophore and the solvent molecule. The application of solvents in inmuno-sensing could additionally improve the fluorescence light retrieval by the conformational change of the protein complexes in solvent. The mixture of the NMP and the solvent, which we defined as nanometal particle reagent (NMPR), provided even higher enhancements. Cardiovascular diseases (CVDs) kill 1 person in every 6 seconds. Among the CVDs, acute myocardial infarction (AMI; commonly known as heart attack) is the most dangerous and time-sensitive killer. A rapid and accurate AMI diagnosis is crucial for saving many lives. For this purpose, a fluorophore mediated, immuno-reaction based, multi-cardiac-marker sensing device was developed, to quantify four myocardium-specific proteins simultaneously, accurately, rapidly, and user-friendly. The four cardiac markers of our choice were myoglobin (MG), C-reactive protein (CRP), cardiac troponin I (cTnI), and B

  6. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  7. 1064-nm Nd:YAG laser nucleotomy

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Pergadia, Vani R.; Shi, Wei-Qiang; Snyder, Wendy J.; Fishbein, Michael C.; Grundfest, Warren S.

    1993-07-01

    The high incidence of patients with clinical and neurological symptoms of lumbar disc herniation has spurred the development of less invasive and more cost efficient methods to treat patients. In this study we evaluated pulsed and continuous wave (cw) 1064 nm Nd:YAG laser ablation and induced thermal damage in sheep intervertebral disc. We used the Heraeus LaserSonics Hercules 5040 (Nd:YAG) laser system and 400 micrometers bare and 600 micrometers ball-tipped fibers in cw and pulsed mode. For the laser parameters and fibers used in this study, ablation of the intervertebral disc was successful and thermal damage did not exceed 0.5 mm. Varying beam diameters and focusing abilities (i.e., bare and ball) did not produce any difference in the coagulation thermal effect.

  8. Micromachining with femtosecond 250-nm laser pulses

    NASA Astrophysics Data System (ADS)

    Li, C.; Argument, Michael A.; Tsui, Ying Y.; Fedosejevs, Robert

    2000-12-01

    Laser micromachining is a flexible technique for precision patterning of surfaces in microelectronics, microelectromechanical devices and integrated optical devices. Typical applications include drilling of holes, cutting of conducting lines or shaping of micro component surfaces. The resolution, edge finish and residual damage to the surrounding and underlying structures depend on a variety of parameters including laser energy, intensity, pulse width and wavelength. Femtosecond pulses are of particular interest because the limited time of interaction limits the lateral expansion of the plasma and the inward propagation of the heat front. Thus, very small spot size can be achieved and minimal heating and damage of underlying layers can be obtained. An additional advantage of femtosecond pulses is that multiphoton absorption leads to efficient coupling of energy to many materials independent of the linear reflectivity of the surface. Thus metals and transmitting dielectrics, which are difficult to micromachine, may be machined with such pulses. The coupling is improved further by employing ultraviolet wavelength laser pulses where the linear absorption typically is much higher than for visible and infrared laser pulses. To explore these advantages, we have initiated a study of the interaction of 250nm femtosecond laser pulses with metals. The laser pulses are obtained by generating the third harmonic from a femtosecond Ti:sapphire laser operating at 750nm. The pulses are focused to various intensities in the range of 1010Wcm2 to 1015 Wcm2 using reflective and refractive microscope objectives and ablation thresholds and ablation rates have been determined for a few metals. In addition the ability to control feature size and produce submicron holes and lines have been investigated. The results are presented and compared to results obtained using infrared and visible femtosecond laser pulses.

  9. Implementation of soft x-ray microscopy with several tens nanometers spatial resolution at NSRL

    NASA Astrophysics Data System (ADS)

    Jiang, Shiping; Chen, Liang

    2009-09-01

    A transmission soft x-ray microscope (TXM), which is similar to the full-field x-ray microscopes installed on other synchrotron radiation sources in the world, was developed at National Synchrotron Radiation Laboratory (NSRL) in Hefei. An x-ray image taken with the microscope was acquired and its spatial resolution was estimated to be better than 70nm.

  10. Resist Materials for Extreme Ultraviolet Lithography: Toward Low-Cost Single-Digit-Nanometer Patterning.

    PubMed

    Ashby, Paul D; Olynick, Deirdre L; Ogletree, D Frank; Naulleau, Patrick P

    2015-10-14

    Extreme ultraviolet lithography (EUVL) is the leading technology for enabling miniaturization of computational components over the next decade. Next-generation resists will need to meet demanding performance criteria of 10 nm critical dimension, 1.2 nm line-edge roughness, and 20 mJ cm(-2) exposure dose. Here, the current state of the development of EUV resist materials is reviewed. First, pattern formation in resist materials is described and the Hansen solubility sphere (HSS) is used as a framework for understanding the pattern-development process. Then, recent progress in EUVL resist chemistry and characterization is discussed. Incremental advances are obtained by transferring chemically amplified resist materials developed for 193 nm lithography to EUV wavelengths. Significant advances will result from synthesizing high-absorbance resist materials using heavier atoms. In the framework of the HSS model, these materials have significant room for improvement and thus offer great promise as high-performance EUV resists for patterning of sub-10 nm features. PMID:26079187

  11. New Computing Devices and the Drive toward Nanometer-scale Manufacturing

    NASA Astrophysics Data System (ADS)

    Theis, Thomas

    2013-03-01

    In recent decades, we have become used to the idea of exponentially compounding improvements in manufacturing precision. These improvements are driven in large part by the economic imperative to continuously shrink the devices of information technology, particularly the Complementary Metal Oxide Semiconductor (CMOS) field-effect transistor. However, CMOS technology is clearly approaching some important physical limits. Since roughly 2003, the inability to reduce supply voltages according to constant-field scaling rules, combined with economic constraints on areal power density and total power, has forced designers to limit clock frequencies even as devices have continued to shrink. New channel materials, new device structures, and novel circuits cannot fundamentally alter this new status quo. The device physics must change in a more fundamental way if we are to realize fast digital logic with very low power dissipation. The continued vitality of the information technology revolution and the continued push of manufacturing precision toward nanometer dimensions, will depend on it. Fortunately, there is no shortage of new digital switch concepts based on physical principles which avoid the fundamental voltage-scaling limit of the field-effect transistor. The Nanoelectronics Research Initiative (NRI) is a consortium of leading semiconductor companies established in 2005 to guide and fund fundamental research at U.S. universities with the goal of finding the ``next switch'' to replace the CMOS transistor for storing and manipulating digital information. The National Institute of Standards and Technology (NIST) and the National Science Foundation (NSF) have partnered with NRI to fund this research. To date, NRI has funded the exploration of many novel device concepts, and has guided research comparing the capabilities of these devices. Although no single device has yet emerged as a clear winner with the potential to eclipse the field-effect transistor, results are

  12. Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications.

    PubMed

    Uchida, Noriyuki; Sivaraman, Srikanth; Amoroso, Nicholas J; Wagner, William R; Nishiguchi, Akihiro; Matsusaki, Michiya; Akashi, Mitsuru; Nagatomi, Jiro

    2016-01-01

    Surface modification can play a crucial role in enhancing cell adhesion to synthetic polymer-based scaffolds in tissue engineering applications. Here, we report a novel approach for layer-by-layer (LbL) fabrication of nanometer-size fibronectin and gelatin (FN-G) layers on electrospun fibrous poly(carbonate urethane)urea (PCUU) scaffolds. Alternate immersions into the solutions of fibronectin and gelatin provided thickness-controlled FN-G nano-layers (PCUU(FN-G) ) which maintained the scaffold's 3D structure and width of fibrous bundle of PCUU as evidenced by scanning electron miscroscopy. The PCUU(FN-G) scaffold improved cell adhesion and proliferation of bladder smooth muscles (BSMCs) when compared to uncoated PCUU. The high affinity of PCUU(FN-G) for cells was further demonstrated by migration of adherent BSMCs from culture plates to the scaffold. Moreover, the culture of UROtsa cells, human urothelium-derived cell line, on PCUU(FN-G) resulted in an 11-15 μm thick multilayered cell structure with cell-to-cell contacts although many UROtsa cells died without forming cell connections on PCUU. Together these results indicate that this approach will aid in advancing the technology for engineering bladder tissues in vitro. Because FN-G nano-layers formation is based on nonspecific physical adsorption of fibronectin onto polymer and its subsequent interactions with gelatin, this technique may be applicable to other polymer-based scaffold systems for various tissue engineering/regenerative medicine applications. PMID:26194176

  13. Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders.

    PubMed

    Zhai, Xu; Chen, Zhonglin; Zhao, Shuqing; Wang, He; Yang, Lei

    2010-01-01

    Nanometer zinc oxide (ZnO) powders were used as a catalyst to enhance the ozonation for the degradation of dichloroacetic acid (DCAA) in aqueous solution. The batch experiments were carried out to investigate the effects of key factors such as catalyst dosage, ozone dosage, solution pH and tert-butyl alcohol (t-BuOH) on the degradation efficiency of DCAA. Density functional theory (DFT) was adopted to explore the mechanism of generating hydroxyl radical (*OH) on the ZnO surface. The results showed that adsorption and ozonation processes were not effective for DCAA removal, and the addition of ZnO catalyst improved the degradation efficiency of DCAA during ozonation, which caused an increase of 22.8% for DCAA decomposition compared to the case of ozonation alone after 25 min. Under the same experimental conditions, the DCAA decomposition was enhanced by increasing catalyst dosage from 100 to 500 mg/L and ozone dosage from 0.83 to 3.2 mg/L. The catalytic ozonation process is more pronounced than the ozonation process alone at pH 3.93, 6.88, and 10. With increasing the concentration of t-BuOH from 10 to 200 mg/L, the degradation of DCAA was significantly inhibited in the process of catalytic ozonation, indicating that ZnO catalytic ozonation followed *OH reaction mechanism. Based on the experimental results and DFT analysis, it is deduced that the generation of *OH on the ZnO surface is ascribed to the adsorption of molecule ozone followed by the interaction of adsorbed ozone with active sites of the catalyst surface. It is also concluded that ZnO may be an effective catalyst for DCAA removal, which could promote the formation of *OH derived from the catalytic decomposition of ozone. PMID:21235181

  14. Core-shell-like Au sub-nanometer clusters in Er-implanted silica

    NASA Astrophysics Data System (ADS)

    Maurizio, Chiara; Cesca, Tiziana; Perotto, Giovanni; Kalinic, Boris; Michieli, Niccolò; Scian, Carlo; Joly, Yves; Battaglin, Giancarlo; Mazzoldi, Paolo; Mattei, Giovanni

    2015-05-01

    The very early steps of Au metal cluster formation in Er-doped silica have been investigated by high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS). A combined analysis of the near-edge and extended part of the experimental spectra shows that Au cluster nucleation starts from a few Au and O atoms covalently interconnected, likely in the presence of embryonic Au-Au correlation. The first Au clusters, characterized by a well defined Au-Au coordination distance, form upon 400 °C inert annealing. The estimated upper limit of the Gibbs free energy for the associated heterogeneous nucleation is 0.06 eV per atom, suggesting that the Au nucleation is assisted by matrix defects, most likely non-bridging oxygen atoms. The experimental results indicate that the formed subnanometer Au clusters can be applied as effective core-shell systems in which the Au atoms of the `core' develop a metallic character, whereas the Au atoms in the `shell' can retain a partially covalent bond with O atoms of the silica matrix. High structural disorder at the Au site is found upon neutral annealing at a moderate temperature (600 °C), likely driven by the configurational disorder of the defective silica matrix. A suitable choice of the Au concentration and annealing temperature allows tailoring of the Au cluster size in the sub-nanometer range. The interaction of the Au cluster surface with the surrounding silica matrix is likely responsible for the infrared luminescence previously reported on the same systems.

  15. Passive micromechanical tags. An investigation into writing information at nanometer resolution on micrometer size objects

    SciTech Connect

    Schmieder, R.W.; Bastasz, R.J.

    1995-01-01

    The authors have completed a 3-year study of the technology related to the development of micron-sized passive micromechanical tags. The project was motivated by the discovery in 1990 by the present authors that low energy, high charge state ions (e.g., Xe{sup +44}) can produce nanometer-size damage sites on solid surfaces, and the realization that a pattern of these sites represents information. It was envisioned that extremely small, chemically inert, mechanical tags carrying a large label could be fabricated for a variety of applications, including tracking of controlled substances, document verification, process control, research, and engineering. Potential applications exist in the data storage, chemical, food, security, and other industries. The goals of this project were fully accomplished, and they are fully documented here. The work was both experimental and developmental. Most of the experimental effort was a search for appropriate tag materials. Several good materials were found, and the upper limits of information density were determined (ca. 10{sup 12} bit/cm{sup 2}). Most of the developmental work involved inventing systems and strategies for using these tags, and compiling available technologies for implementing them. The technology provided herein is application-specific: first, the application must be specified, then the tag can be developed for it. The project was not intended to develop a single tag for a single application or for all possible applications. Rather, it was meant to provide the enabling technology for fabricating tags for a range of applications. The results of this project provide sufficient information to proceed directly with such development.

  16. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices.

    PubMed

    Grosse, Kyle L; Pop, Eric; King, William P

    2014-09-01

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K(-1). This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale. PMID:25273761

  17. Nanometer-scale temperature imaging for independent observation of Joule and Peltier effects in phase change memory devices

    SciTech Connect

    Grosse, Kyle L.; Pop, Eric; King, William P.

    2014-09-15

    This paper reports a technique for independent observation of nanometer-scale Joule heating and thermoelectric effects, using atomic force microscopy (AFM) based measurements of nanometer-scale temperature fields. When electrical current flows through nanoscale devices and contacts the temperature distribution is governed by both Joule and thermoelectric effects. When the device is driven by an electrical current that is both periodic and bipolar, the temperature rise due to the Joule effect is at a different harmonic than the temperature rise due to the Peltier effect. An AFM tip scanning over the device can simultaneously measure all of the relevant harmonic responses, such that the Joule effect and the Peltier effect can be independently measured. Here we demonstrate the efficacy of the technique by measuring Joule and Peltier effects in phase change memory devices. By comparing the observed temperature responses of these working devices, we measure the device thermopower, which is in the range of 30 ± 3 to 250 ± 10 μV K{sup −1}. This technique could facilitate improved measurements of thermoelectric phenomena and properties at the nanometer-scale.

  18. 1.86 W cw single-frequency 1319 nm ring laser pumped at 885 nm.

    PubMed

    Li, M L; Zhao, W F; Zhang, S B; Guo, L; Hou, W; Li, J M; Lin, X C

    2012-03-20

    A 1.86 W cw single-frequency 1319 nm laser was produced by using an 885 nm-pumped Nd:YAG crystal with a compact four-mirror ring cavity, for the first time to our knowledge. The Nd:YAG produced a slope efficiency of 21% and an optical-to-optical efficiency of 18% with respect to the absorbed diode pump power. A near-diffraction-limited beam with M(2)=1.2 was achieved under the maximum output power. PMID:22441467

  19. Measurement of 100 nm and 60 nm Particle Standards by Differential Mobility Analysis

    PubMed Central

    Mulholland, George W.; Donnelly, Michelle K.; Hagwood, Charles R.; Kukuck, Scott R.; Hackley, Vincent A.; Pui, David Y. H.

    2006-01-01

    The peak particle size and expanded uncertainties (95 % confidence interval) for two new particle calibration standards are measured as 101.8 nm ± 1.1 nm and 60.39 nm ± 0.63 nm. The particle samples are polystyrene spheres suspended in filtered, deionized water at a mass fraction of about 0.5 %. The size distribution measurements of aerosolized particles are made using a differential mobility analyzer (DMA) system calibrated using SRM® 1963 (100.7 nm polystyrene spheres). An electrospray aerosol generator was used for generating the 60 nm aerosol to almost eliminate the generation of multiply charged dimers and trimers and to minimize the effect of non-volatile contaminants increasing the particle size. The testing for the homogeneity of the samples and for the presence of multimers using dynamic light scattering is described. The use of the transfer function integral in the calibration of the DMA is shown to reduce the uncertainty in the measurement of the peak particle size compared to the approach based on the peak in the concentration vs. voltage distribution. A modified aerosol/sheath inlet, recirculating sheath flow, a high ratio of sheath flow to the aerosol flow, and accurate pressure, temperature, and voltage measurements have increased the resolution and accuracy of the measurements. A significant consideration in the uncertainty analysis was the correlation between the slip correction of the calibration particle and the measured particle. Including the correlation reduced the expanded uncertainty from approximately 1.8 % of the particle size to about 1.0 %. The effect of non-volatile contaminants in the polystyrene suspensions on the peak particle size and the uncertainty in the size is determined. The full size distributions for both the 60 nm and 100 nm spheres are tabulated and selected mean sizes including the number mean diameter and the dynamic light scattering mean diameter are computed. The use of these particles for calibrating DMAs and for

  20. The Doubling of 846 nm Light to Produce 423 nm Light for use in Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Archibald, James; Birrell, Jeremey; Tang, Rebecca; Erickson, Chris; Goggins, Landon; Durfee, Dallin

    2009-10-01

    We present progress on a 423 nm fluorescence probe/cooling laser for use in our neutral calcium atom interferometer. The finished system will include an 846 nm diode laser that is coupled to a tapered amplifier. This light will be sent to a buildup cavity where we will achieve second-harmonic generation (SHG) using either a BBO non-linear crystal or a periodically-poled KTP crystal. We will discuss the theoretical considerations relating to the doubling of light in a crystal and the construction of our buildup cavity. We will also discuss its proposed application for use in atom interferometry.

  1. Absorption Measurements of Periodically Poled Potassium Titanyl Phosphate (PPKTP) at 775 nm and 1550 nm

    PubMed Central

    Steinlechner, Jessica; Ast, Stefan; Krüger, Christoph; Singh, Amrit Pal; Eberle, Tobias; Händchen, Vitus; Schnabel, Roman

    2013-01-01

    The efficient generation of second-harmonic light and squeezed light requires non-linear crystals that have low absorption at the fundamental and harmonic wavelengths. In this work the photo-thermal self-phase modulation technique is exploited to measure the absorption coefficient of periodically poled potassium titanyl phosphate (PPKTP) at 1,550 nm and 775 nm. The measurement results are (84±40) ppm/cm and (127±24) ppm/cm, respectively. We conclude that the performance of state-of-the-art frequency doubling and squeezed light generation in PPKTP is not limited by absorption. PMID:23291574

  2. 1064 nm Nd:YVO4 laser intracavity pumped at 912 nm and sum-frequency mixing for an emission at 491 nm.

    PubMed

    Herault, Emilie; Balembois, François; Georges, Patrick; Georges, Thierry

    2008-07-15

    We present for the first time a Nd:YVO(4) laser emitting at 1064 nm intracavity pumped at 912 nm by a Nd:GdVO(4) laser. We carried out a model to design the system properly, and laser performance was experimentally investigated. Intracavity sum-frequency mixing at 912 and 1064 nm was then realized in a BiBO crystal to reach the blue range. We obtained a cw output power of 155 mW at 491 nm with a pump laser diode emitting 20 W at 808 nm. PMID:18628821

  3. Development and characterization of a neutral beam source for sub-10 nm etching

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; El Otell, Ziad; St. Braithwaite, Nicholas; Bowden, Mark

    2013-09-01

    Neutral beam etching is a promising technology for damage-free sub-10 nm device fabrication. In this work a neutral beam is generated by surface neutralization of ions extracted from a pulsed ICP discharge in Ar/SF6. Negative ions are extracted during the afterglow phase when an ion-ion plasma is formed. The evolution of the density of various charged species is measured with different techniques (Langmuir, hairpin and ion flux probes). High density plasma, with electron number density in the range 1017 - 1018 m-3, is typically produced in the pulsed ICP. The electron heating in the active-glow phase is characterized using trace rare gas optical emission spectroscopy with Ar, Kr and Xe admixtures. The energy spectra and fluxes of the extracted ions are measured using a retarding field analyzer. The potential of pulse tailoring of the discharge for optimization of negative ion formation is investigated, while varying the extraction pulse waveform provides another degree of freedom to obtain desirable neutral beam characteristics. Finally, the etching performance of the neutral beam source is demonstrated on patterned and non-patterned silicon wafers. This work is part of the EU-FP7 project Single Nanometer Manufacturing.

  4. Lithographic imaging-driven pattern edge placement errors at 10nm node

    NASA Astrophysics Data System (ADS)

    Tyminski, Jacek K.; Renwick, Stephen P.; Palmer, Shane R.; Sakamoto, Julia A.; Slonaker, Steven D.

    2016-03-01

    Demand for ever increasing level of microelectronics integration continues unabated, driving the reduction of the integrated circuit critical dimensions, and escalating requirements for image overlay and pattern dimension control. The challenges to meet these demands are compounded by requirement that pattern edge placement errors be at single nanometer levels. Layout design together with the patterning tools performance play key roles in determining location of the pattern edges at different device layers. However, complexities of the layout design often lead to stringent tradeoffs for viable optical proximity correction and imaging strategy solutions. As a result, in addition to scanner overlay performance, pattern imaging plays a key role in the pattern edge placement. The imaging contributes to edge displacement by impacting the image dimensions and by shifting the images relative to their target locations. In this report we discuss various aspects of advanced image control at 10 nm integrated circuit design rules. We analyze the impact of pattern design and scanner performance on pattern edges. We present an example of complex, three step litho-etch patterning involving immersion scanners. We draw conclusion on edge placement control when complex images interact with wafer topography.

  5. Lithographic imaging-driven pattern edge placement errors at the 10-nm node

    NASA Astrophysics Data System (ADS)

    Tyminski, Jacek K.; Sakamoto, Julia A.; Palmer, Shane R.; Renwick, Stephen P.

    2016-04-01

    As new microelectronic designs are being developed, the demands on image overlay and pattern dimension control are compounded by requirements that pattern edge placement errors (EPEs) be at a single-nanometer levels. Scanner performance plays a key role in determining location of the pattern edges at different device layers, not only through overlay but also through imaging performance. The imaging contributes to edge displacement through the variations of the image dimensions and by shifting the images from their target locations. We discuss various aspects of advanced image control relevant to a 10-nm node integrated circuit design. We review a range of issues of pattern edge placement directly linked to pattern imaging. We analyze the impact of different pattern design and scanner-related edge displacement drivers. We present two examples of imaging strategies to pattern logic device metal layer cuts. We analyze EPEs of the cut images resulting from optimized layout design and scanner setup, and we draw conclusions on edge placement control versus imaging performance requirements.

  6. Photodissociation of the Propargyl (C3D3) Radicals at 248 nm and 193 nm

    SciTech Connect

    Neumark., D.M.; Crider, P.E.; Castiglioni, L.; Kautzman, K.K.

    2009-01-21

    The photodissociation of perdeuterated propargyl (D{sub 2}CCCD) and propynyl (D{sub 3}CCC) radicals was investigated using fast beam photofragment translational spectroscopy. Radicals were produced from their respective anions by photodetachment at 540 nm and 450 nm (below and above the electron affinity of propynyl). The radicals were then photodissociated by 248 nm or 193 nm light. The recoiling photofragments were detected in coincidence with a time- and position-sensitive detector. Three channels were observed: D{sub 2} loss, CD + C{sub 2}D{sub 2}, and CD{sub 3} + C{sub 2}. Obervation of the D loss channel was incompatible with this experiment and was not attempted. Our translational energy distributions for D{sub 2} loss peaked at nonzero translational energy, consistent with ground state dissociation over small (< 1 eV) exit barriers with respect to separated products. Translational energy distributions for the two heavy channels peaked near zero kinetic energy, indicating dissociation on the ground state in the absence of exit barriers.

  7. Evaluation of the Diode laser (810nm,980nm) on dentin tubule diameter following internal bleaching

    PubMed Central

    Kiomarsi, Nazanin; Salim, Soheil; Sarraf, Pegah; Javad-Kharazifard, Mohammad

    2016-01-01

    Background The aim of this study was to evaluate the effect of diode laser irradiation and bleaching materials on the dentinal tubule diameter after laser bleaching. Material and Methods The dentin discs of 40 extracted third molar were used in this experiment. Each disc surface was divided into two halves by grooving. Half of samples were laser bleached at different wavelengths with two different concentrations of hydrogen peroxide. Other half of each disc with no laser bleaching remained as a negative control. Dentin discs were assigned randomly into four groups (n=10) with following hydrogen peroxide and diode laser wavelength specifications; Group 1 (30% - 810 nm), group 2 (30% - 980 nm), group 3 (46% - 810 nm) and group 4 (46% - 980 nm). All specimens were sent for scanning electron microscopic (SEM) analysis in order to measure tubular diameter in laser treated and control halves. Data were analyzed by ANOVA and Tukey test (p<0.05). Results A significant reduction in dentin tubule diameter was observed in groups 1, 2 and 4. There was no significant difference between groups 1 and 2 and between groups 3 and 4 after bleaching. Conclusions The SEM results showed that diode laser was able to reduce dentin tubule diameter and its effect on dentin was dependent on chemical action of bleaching material. Key words:Laser, diode, dentin, tubule, diameter. PMID:27398172

  8. THE SPECTRUM OF THORIUM FROM 250 nm TO 5500 nm: RITZ WAVELENGTHS AND OPTIMIZED ENERGY LEVELS

    SciTech Connect

    Redman, Stephen L.; Nave, Gillian; Sansonetti, Craig J.

    2014-03-01

    We have made precise observations of a thorium-argon hollow cathode lamp emission spectrum in the region between 350 nm and 1175 nm using a high-resolution Fourier transform spectrometer. Our measurements are combined with results from seven previously published thorium line lists to re-optimize the energy levels of neutral, singly, and doubly ionized thorium (Th I, Th II, and Th III). Using the optimized level values, we calculate accurate Ritz wavelengths for 19, 874 thorium lines between 250 nm and 5500 nm (40, 000 cm{sup –1} to 1800 cm{sup –1}). We have also found 102 new thorium energy levels. A systematic analysis of previous measurements in light of our new results allows us to identify and propose corrections for systematic errors in Palmer and Engleman and typographical errors and incorrect classifications in Kerber et al. We also found a large scatter with respect to the thorium line list of Lovis and Pepe. We anticipate that our Ritz wavelengths will lead to improved measurement accuracy for current and future spectrographs that make use of thorium-argon or thorium-neon lamps as calibration standards.

  9. Role of W and Mn for reliable 1X nanometer-node ultra-large-scale integration Cu interconnects proved by atom probe tomography

    SciTech Connect

    Shima, K.; Shimizu, H.; Momose, T.; Shimogaki, Y.; Tu, Y.; Takamizawa, H.; Shimizu, Y.; Inoue, K.; Nagai, Y.

    2014-09-29

    We used atom probe tomography (APT) to study the use of a Cu(Mn) as a seed layer of Cu, and a Co(W) single-layer as reliable Cu diffusion barriers for future interconnects in ultra-large-scale integration. The use of Co(W) layer enhances adhesion of Cu to prevent electromigration and stress-induced voiding failures. The use of Cu(Mn) as seed layer may enhance the diffusion barrier performance of Co(W) by stuffing the Cu diffusion pass with Mn. APT was used to visualize the distribution of W and Mn in three dimensions with sub-nanometer resolution. W was found to segregate at the grain boundaries of Co, which prevents diffusion of Cu via the grain boundaries. Mn was found to diffuse from the Cu(Mn) layer to Co(W) layer and selectively segregate at the Co(W) grain boundaries with W, reinforcing the barrier properties of Co(W) layer. Hence, a Co(W) barrier coupled with a Cu(Mn) seed layer can form a sufficient diffusion barrier with film that is less than 2.0-nm-thick. The diffusion barrier behavior was preserved following a 1-h annealing at 400 °C. The underlayer of the Cu interconnects requires a large adhesion strength with the Cu, as well as low electrical resistivity. The use of Co(W) has previously been shown to satisfy these requirements, and addition of Mn is not expected to deteriorate these properties.

  10. Measuring carbon and N2 fixation in field populations of colonial and free-living unicellular cyanobacteria using nanometer-scale secondary ion mass spectrometry(1).

    PubMed

    Foster, Rachel A; Sztejrenszus, Saar; Kuypers, Marcel M M

    2013-06-01

    Unicellular cyanobacteria are now recognized as important to the marine N and C cycles in open ocean gyres, yet there are few direct in situ measurements of their activities. Using a high-resolution nanometer scale secondary ion mass spectrometer (nanoSIMS), single cell N2 and C fixation rates were estimated for unicellular cyanobacteria resembling N2 fixer Crocosphaera watsonii. Crocosphaera watsonii-like cells were observed in the subtropical North Pacific gyre (22°45' N, 158°0' W) as 2 different phenotypes: colonial and free-living. Colonies containing 3-242 cells per colony were observed and cell density in colonies increased with incubation time. Estimated C fixation rates were similarly high in both phenotypes and unexpectedly for unicellular cyanobacteria 85% of the colonial cells incubated during midday were also enriched in (15) N above natural abundance. Highest (15) N enrichment and N2 fixation rates were found in cells incubated overnight where up to 64% of the total daily fixed N in the upper surface waters was attributed to both phenotypes. The colonial cells retained newly fixed C in a sulfur-rich matrix surrounding the cells and often cells of both phenotypes possessed areas (<1 nm) of enriched (15) N and (13) C resembling storage granules. The nanoSIMS imaging of the colonial cells also showed evidence for a division of N2 and C fixation activity across the colony where few individual cells (<34%) in a given colony were enriched in both (15) N and (13) C above the colony average. Our results provide new insights into the ecophysiology of unicellular cyanobacteria. PMID:27007039

  11. Role of W and Mn for reliable 1X nanometer-node ultra-large-scale integration Cu interconnects proved by atom probe tomography

    NASA Astrophysics Data System (ADS)

    Shima, K.; Tu, Y.; Takamizawa, H.; Shimizu, H.; Shimizu, Y.; Momose, T.; Inoue, K.; Nagai, Y.; Shimogaki, Y.

    2014-09-01

    We used atom probe tomography (APT) to study the use of a Cu(Mn) as a seed layer of Cu, and a Co(W) single-layer as reliable Cu diffusion barriers for future interconnects in ultra-large-scale integration. The use of Co(W) layer enhances adhesion of Cu to prevent electromigration and stress-induced voiding failures. The use of Cu(Mn) as seed layer may enhance the diffusion barrier performance of Co(W) by stuffing the Cu diffusion pass with Mn. APT was used to visualize the distribution of W and Mn in three dimensions with sub-nanometer resolution. W was found to segregate at the grain boundaries of Co, which prevents diffusion of Cu via the grain boundaries. Mn was found to diffuse from the Cu(Mn) layer to Co(W) layer and selectively segregate at the Co(W) grain boundaries with W, reinforcing the barrier properties of Co(W) layer. Hence, a Co(W) barrier coupled with a Cu(Mn) seed layer can form a sufficient diffusion barrier with film that is less than 2.0-nm-thick. The diffusion barrier behavior was preserved following a 1-h annealing at 400 °C. The underlayer of the Cu interconnects requires a large adhesion strength with the Cu, as well as low electrical resistivity. The use of Co(W) has previously been shown to satisfy these requirements, and addition of Mn is not expected to deteriorate these properties.

  12. Faster qualification of 193-nm resists for 100-nm development using photo cell monitoring

    NASA Astrophysics Data System (ADS)

    Jones, Chris M.; Kallingal, Chidam; Zawadzki, Mary T.; Jeewakhan, Nazneen N.; Kaviani, Nazila N.; Krishnan, Prakash; Klaum, Arthur D.; Van Ess, Joel

    2003-05-01

    The development of 100-nm design rule technologies is currently taking place in many R&D facilities across the world. For some critical alyers, the transition to 193-nm resist technology has been required to meet this leading edge design rule. As with previous technology node transitions, the materials and processes available are undergoing changes and improvements as vendors encounter and solve problems. The initial implementation of the 193-nm resits process did not meet the photolithography requirements of some IC manufacturers due to very high Post Exposure Bake temperature sensitivity and consequently high wafer to wafer CD variation. The photoresist vendors have been working to improve the performance of the 193-nm resists to meet their customer's requirements. Characterization of these new resists needs to be carried out prior to implementation in the R&D line. Initial results on the second-generation resists evaluated at Cypress Semicondcutor showed better CD control compared to the aelrier resist with comparable Depth of Focus (DOF), Exposure Latitute, Etch Resistance, etc. In addition to the standard lithography parameters, resist characterization needs to include defect density studies. It was found that the new resists process with the best CD control, resulted in the introduction of orders of magnitude higher yield limiting defects at Gate, Contact adn Local Interconnect. The defect data were shared with the resists vendor and within days of the discovery the resist vendor was able to pinpoint the source of the problem. The fix was confirmed and the new resists were successfully released to production. By including defect monitoring into the resist qualification process, Cypress Semiconductor was able to 1) drive correction actions earlier resulting in faster ramp and 2) eliminate potential yield loss. We will discuss in this paper how to apply the Micro Photo Cell Monitoring methodology for defect monitoring in the photolithogprhay module and the

  13. Strong Plasmon Reflection at Nanometer-Size Gaps in Monolayer Graphene on SiC

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Alexey B.; Chen, Jiaining; Nesterov, Maxim L.; Nikitin, Alexey Yu.; Thongrattanasiri, Sukosin; Alonso-Gonzalez, Pablo; Slipchenko, Tetiana M.; Speck, Florian; Ostler, Markus; Seyller, Thomas; Crassee, Iris; Koppens, Frank H. L.; Martin-Moreno, Luis; Garcia de Abajo, F. Javier; Hillenbrand, Rainer

    2014-03-01

    Tip-enhanced infrared near-field microscopy is used to study propagating plasmons in epitaxial quasi-free-standing monolayer graphene on silicon carbide. We observe that plasmons are strongly reflected at graphene gaps at the steps between the substrate terraces. For the step height of only 1.5 nm, which is two orders of magnitude smaller than the plasmon wavelength, the reflection signal reaches 20 percent of its value at graphene edges, and it approaches 0.5 for steps of 5 nm. We support this observation with extensive numerical simulations and give physical rationale for this intriguing phenomenon. Our work suggests that plasmon propagation in graphene-based circuits can be controlled using ultracompact nanostructures. J. Chen et al., Nano Lett., DOI: 10.1021/nl403622t (2013).

  14. 34 nm Charge Transport through DNA

    NASA Astrophysics Data System (ADS)

    Slinker, Jason; Muren, Natalie; Renfrew, Sara; Barton, Jacqueline

    2011-03-01

    Long-range charge transport through DNA has broad-reaching implications due to its inherent biological recognition capabilities and unmatched capacity to be patterned into precise, nanoscale shapes. We have observed charge transport through 34 nm DNA monolayers (100 base pairs) using DNA-mediated electrochemistry. Cyclic voltammetry of multiplexed gold electrodes modified with 100mer DNAs reveal sizable peaks from distally-bound Nile Blue redox probes for well matched duplexes but highly attenuated redox peaks from 100mer monolayers containing a single base pair mismatch, demonstrating that the charge transfer is DNA-mediated. The 100mers on the gold surface are efficiently cleaved by the restriction enzyme RsaI. The 100mers in the DNA film thus adopt conformations that are readily accessible to protein binding and restriction. The ability to assemble well-characterized DNA films with these 100mers permits the demonstration of charge transport over distances surpassing most reports of molecular wires. Supported by funding from the NIH/NIBIB.

  15. Illumination optimization for 65nm technology node

    NASA Astrophysics Data System (ADS)

    Wang, Ching-Heng; Liu, Qingwei; Zhang, Liguo; Hung, Chi-Yuan

    2006-10-01

    The most important task of the microlithography process is to make the manufacturable process latitude/window, including dose latitude and Depth of Focus, as wide as possible. Thus, to perform a thorough source optimization during process development is becoming more critical as moving to high NA technology nodes. Furthermore, Optical proximity correction (OPC) are always used to provide a common process window for structures that would, otherwise, have no overlapping windows. But as the critical dimension of the IC design shrinks dramatically, the flexibility for applying OPC also decreases. So a robust microlithography process should also be OPC-friendly. This paper demonstrates our work on the illumination optimization during the process development. The Calibre ILO (Illumination Optimization) tool was used to perform the illumination optimization and provided plots of DOF vs. various parametric illumination settings. This was used to screen the various illumination settings for the one with optimum process margins. The resulting illumination conditions were then implemented and analyzed at a real wafer level on our 90/65nm critical layers, such as Active, Poly, Contact and Metal. In conclusion, based on these results, a summary is provided highlighting how OPC can get benefit from proper illumination optimization.

  16. Analysis of nanometer-scale precipitation in a rapidly solidified stainless steel

    SciTech Connect

    Wisutmethangoon, S.; Kelly, T.F.; Camus, P.P.; Flinn, J.E.; Larson, D.J.; Miller, M.K.

    1997-03-21

    The authors have rapid-solidification-processed many stainless steels by gas atomization and achieved strength improvements of over 50% relative to conventionally-processed stainless steels with concomitant improvement in corrosion and oxidation behavior. These strength improvements are most pronounced after aging treatments when elevated concentrations of oxygen and vanadium are present in the stainless steel. An austenitic (FCC) stainless steel was prepared by gas atomization and consolidated by hot extrusion at 900 C. These specimens were heat treated for 1 hour at 1,000 C and aged at 600 C for 500 hours. The microstructure of each alloy composition was observed in TEM with bright field imaging. After aging, most alloys showed the same precipitate morphology as before aging. An obvious change, however, was found only in the alloy with highest oxygen content. A high number density of 15 to 20 nm diameter precipitates was measured in this alloy. Moreover, with weak-beam dark field imaging, a very high number density of coherent, 6 to 10 nm diameter precipitates is observed throughout the matrix by Moire fringe contrast. An atom probe field ion microscopy (APFIM) investigation showed that FIM provides high contrast imaging the precipitates. In order to get a more global view of the structure, energy-filtered composition imaging on a LEO EM 912 was used to map the oxygen and nitrogen in carbon extraction replicas of the aged specimens. These images confirm that the 18 nm precipitates are oxides, however, it appears that the 8 nm precipitates are not extracted.

  17. Formamide: an efficient solvent to synthesize water-soluble and sub-ten-nanometer nanocrystals

    NASA Astrophysics Data System (ADS)

    Xu, Biao; Zhang, Zhicheng; Wang, Xun

    2013-05-01

    Nanocrystals have drawn lots of attention in many fields. The main-stream synthetic routes usually produced hydrophobic nanocrystals (NCs). Organometallic precursors and long-alkyl-chain ligands are adopted and for further use surface modification to render them water-soluble is needed. A direct protocol to synthesize water-soluble NCs in an environmental-friendly and convenient way is still quite deficient, especially for sub-10 nm NCs. We report here a formamide solvent-system to prepare high-quality metal, metal alloy, metal sulfide, metal selenide and ternary sulfide NCs in the sub-10 nm region, with simple inorganic metal salts as precursors. The as-obtained NCs exhibit monodisperse size and can be dispersed in aqueous solution for further applications.Nanocrystals have drawn lots of attention in many fields. The main-stream synthetic routes usually produced hydrophobic nanocrystals (NCs). Organometallic precursors and long-alkyl-chain ligands are adopted and for further use surface modification to render them water-soluble is needed. A direct protocol to synthesize water-soluble NCs in an environmental-friendly and convenient way is still quite deficient, especially for sub-10 nm NCs. We report here a formamide solvent-system to prepare high-quality metal, metal alloy, metal sulfide, metal selenide and ternary sulfide NCs in the sub-10 nm region, with simple inorganic metal salts as precursors. The as-obtained NCs exhibit monodisperse size and can be dispersed in aqueous solution for further applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00643c

  18. The optical frequency method of distance measurement with sub-nanometer resolution

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Petru, Frantisek; Lazar, Josef

    2005-02-01

    We present design and experimental setup for direct transformation of the relative change of distances in measuring arm of the Michelson interferometer to relative changes of the resonant optical-frequency of Fabry-Perot (F.-P.) resonator. The method consists of a mechanical coupled moving system of the corner cube mirror of the interferometer measuring arm with one of the mirrors of F.-P. resonator. A piezoelectric transducer (PZT) with elongation 10 microns approximately drives that moving system. An external tunable laser source at 633 nm wavelength provides identification of one of the resonant optical frequency of F.-P. resonator by the frequency locking mechanism with synchronous detection technique in the servo loop feedback. Because the definition of the meter unit is based on iodine stabilized He-Ne laser, then the optical frequency of the locked tunable laser is frequency compared with He-Ne-I2 laser by the heterodyne optical mixing. A fast high-resolution counter counts the resultant radio-frequency signal as a product of the optical mixing. Measured frequency values and values of interference phase acquired by the interferometer are simultaneously sampled step by step for each elongation position of PZT element. We used that experimental setup for the testing process where a verification of scale-linearity of Michelson interferometer with total resolution 0,3 nm is investigated. The experimental data achieved by F.-P. resonator during such a way shows the absolute uncertainty better than 0,08 nm for the relative distance change 1.5 microns. We verified the scale-linearity of Michelson interferometer to +/-1,0 nm limit.

  19. Overlay improvement roadmap: strategies for scanner control and product disposition for 5-nm overlay

    NASA Astrophysics Data System (ADS)

    Felix, Nelson M.; Gabor, Allen H.; Menon, Vinayan C.; Longo, Peter P.; Halle, Scott D.; Koay, Chiew-seng; Colburn, Matthew E.

    2011-03-01

    To keep pace with the overall dimensional shrink in the industry, overlay capability must also shrink proportionally. Unsurprisingly, overlay capability < 10 nm is already required for currently nodes in development, and the need for multi-patterned levels has accelerated the overlay roadmap requirements to the order of 5 nm. To achieve this, many improvements need to be implemented in all aspects of overlay measurement, control, and disposition. Given this difficult task, even improvements involving fractions of a nanometer need to be considered. These contributors can be divided into 5 categories: scanner, process, reticle, metrology, and APC. In terms of overlay metrology, the purpose is two-fold: To measure what the actual overlay error is on wafer, and to provide appropriate APC feedback to reduce overlay error for future incoming hardware. We show that with optimized field selection plan, as well as appropriate within-field sampling, both objectives can be met. For metrology field selection, an optimization algorithm has been employed to proportionately sample fields of different scan direction, as well as proportional spatial placement. In addition, intrafield sampling has been chosen to accurately represent overlay inside each field, rather than just at field corners. Regardless, the industry-wide use of multi-exposure patterning schemes has pushed scanner overlay capabilities to their limits. However, it is now clear that scanner contributions may no longer be the majority component in total overlay performance. The ability to control correctable overlay components is paramount to achieving desired performance. In addition, process (non-scanner) contributions to on-product overlay error need to be aggressively tackled, though we show that there also opportunities available in active scanner alignment schemes, where appropriate scanner alignment metrology and correction can reduce residuals on product. In tandem, all these elements need to be in place to

  20. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap.

    PubMed

    Jin, Seokmin; Lim, Mikyung; Lee, Seung S; Lee, Bong Jae

    2016-03-21

    Artificially designed hyperbolic metamaterial (HMM) possesses extraordinary electromagnetic features different from those of naturally existing materials. In particular, the dispersion relation of waves existing inside the HMM is hyperbolic rather than elliptical; thus, waves that are evanescent in isotropic media become propagating in the HMM. This characteristic of HMMs opens a novel way to spectrally control the near-field thermal radiation in which evanescent waves in the vacuum gap play a critical role. In this paper, we theoretically investigate the performance of a near-field thermophotovoltaic (TPV) energy conversion system in which a W/SiO2-multilayer-based HMM serves as the emitter at 1000 K and InAs works as the TPV cell at 300 K. By carefully designing the thickness of constituent materials of the HMM emitter, the electric power of the near-field TPV devices can be increased by about 6 times at 100-nm vacuum gap as compared to the case of the plain W emitter. Alternatively, in regards to the electric power generation, HMM emitter at experimentally achievable 100-nm vacuum gap performs equivalently to the plain W emitter at 18-nm vacuum gap. We show that the enhancement mechanism of the HMM emitter is due to the coupled surface plasmon modes at multiple metal-dielectric interfaces inside the HMM emitter. With the minority carrier transport model, the optimal p-n junction depth of the TPV cell has also been determined at various vacuum gaps. PMID:27136882

  1. Measurement of replication structures at the nanometer scale using super-resolution light microscopy

    PubMed Central

    Baddeley, D.; Chagin, V. O.; Schermelleh, L.; Martin, S.; Pombo, A.; Carlton, P. M.; Gahl, A.; Domaing, P.; Birk, U.; Leonhardt, H.; Cremer, C.; Cardoso, M. C.

    2010-01-01

    DNA replication, similar to other cellular processes, occurs within dynamic macromolecular structures. Any comprehensive understanding ultimately requires quantitative data to establish and test models of genome duplication. We used two different super-resolution light microscopy techniques to directly measure and compare the size and numbers of replication foci in mammalian cells. This analysis showed that replication foci vary in size from 210 nm down to 40 nm. Remarkably, spatially modulated illumination (SMI) and 3D-structured illumination microscopy (3D-SIM) both showed an average size of 125 nm that was conserved throughout S-phase and independent of the labeling method, suggesting a basic unit of genome duplication. Interestingly, the improved optical 3D resolution identified 3- to 5-fold more distinct replication foci than previously reported. These results show that optical nanoscopy techniques enable accurate measurements of cellular structures at a level previously achieved only by electron microscopy and highlight the possibility of high-throughput, multispectral 3D analyses. PMID:19864256

  2. Nanometer scale fabrication and optical response of InGaN/GaN quantum disks

    NASA Astrophysics Data System (ADS)

    Lai, Yi-Chun; Higo, Akio; Kiba, Takayuki; Thomas, Cedric; Chen, Shula; Lee, Chang Yong; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Shojiki, Kanako; Takayama, Junichi; Yamashita, Ichiro; Murayama, Akihiro; Chi, Gou-Chung; Yu, Peichen; Samukawa, Seiji

    2016-10-01

    In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 1011 cm-2, embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

  3. Transmission Microscopy with Nanometer Resolution Using a Deterministic Single Ion Source.

    PubMed

    Jacob, Georg; Groot-Berning, Karin; Wolf, Sebastian; Ulm, Stefan; Couturier, Luc; Dawkins, Samuel T; Poschinger, Ulrich G; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2016-07-22

    We realize a single particle microscope by using deterministically extracted laser-cooled ^{40}Ca^{+} ions from a Paul trap as probe particles for transmission imaging. We demonstrate focusing of the ions to a spot size of 5.8±1.0  nm and a minimum two-sample deviation of the beam position of 1.5 nm in the focal plane. The deterministic source, even when used in combination with an imperfect detector, gives rise to a fivefold increase in the signal-to-noise ratio as compared with conventional Poissonian sources. Gating of the detector signal by the extraction event suppresses dark counts by 6 orders of magnitude. We implement a Bayes experimental design approach to microscopy in order to maximize the gain in spatial information. We demonstrate this method by determining the position of a 1  μm circular hole structure to a precision of 2.7 nm using only 579 probe particles. PMID:27494469

  4. Experiences with Opto-Mechanical Systems that Affect Optical Surfaces at the Sub-Nanometer Level

    SciTech Connect

    Hale, L C; Taylor, J S

    2008-04-03

    Projection optical systems built for Extreme Ultraviolet Lithography (EUVL) demonstrated the ability to produce, support and position reflective optical surfaces for achieving transmitted wavefront errors of 1 nm or less. Principal challenges included optical interferometry, optical manufacturing processes, multi-layer coating technology and opto mechanics. Our group was responsible for designing, building and aligning two different projection optical systems: a full-field, 0.1 NA, four-mirror system for 70 nm features and a small-field, 0.3 NA, two-mirror system for 30 nm features. Other than physical size and configuration, the two systems were very similar in the way they were designed, built and aligned. A key difference exists in the optic mounts, driven primarily by constraints from the metrology equipment used by different optics manufacturers. As mechanical stability and deterministic position control of optics will continue to play an essential role in future systems, we focus our discussion on opto-mechanics and primarily the optic mounts.

  5. Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap.

    PubMed

    Jin, Seokmin; Lim, Mikyung; Lee, Seung S; Lee, Bong Jae

    2016-03-21

    Artificially designed hyperbolic metamaterial (HMM) possesses extraordinary electromagnetic features different from those of naturally existing materials. In particular, the dispersion relation of waves existing inside the HMM is hyperbolic rather than elliptical; thus, waves that are evanescent in isotropic media become propagating in the HMM. This characteristic of HMMs opens a novel way to spectrally control the near-field thermal radiation in which evanescent waves in the vacuum gap play a critical role. In this paper, we theoretically investigate the performance of a near-field thermophotovoltaic (TPV) energy conversion system in which a W/SiO2-multilayer-based HMM serves as the emitter at 1000 K and InAs works as the TPV cell at 300 K. By carefully designing the thickness of constituent materials of the HMM emitter, the electric power of the near-field TPV devices can be increased by about 6 times at 100-nm vacuum gap as compared to the case of the plain W emitter. Alternatively, in regards to the electric power generation, HMM emitter at experimentally achievable 100-nm vacuum gap performs equivalently to the plain W emitter at 18-nm vacuum gap. We show that the enhancement mechanism of the HMM emitter is due to the coupled surface plasmon modes at multiple metal-dielectric interfaces inside the HMM emitter. With the minority carrier transport model, the optimal p-n junction depth of the TPV cell has also been determined at various vacuum gaps.

  6. Nanometer scale fabrication and optical response of InGaN/GaN quantum disks.

    PubMed

    Lai, Yi-Chun; Higo, Akio; Kiba, Takayuki; Thomas, Cedric; Chen, Shula; Lee, Chang Yong; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Shojiki, Kanako; Takayama, Junichi; Yamashita, Ichiro; Murayama, Akihiro; Chi, Gou-Chung; Yu, Peichen; Samukawa, Seiji

    2016-10-21

    In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 10(11) cm(-2), embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices. PMID:27632684

  7. Nano-meter bridge with epitaxially deposited NbN on MgO film

    SciTech Connect

    Yamashita, T.; Hamasaki, K.; Kodaira, Y.; Komata, T.

    1985-03-01

    Nano-meter(nm)-bridges with high-T /SUB c/ materials hold great technological interest because of their smaller capacitance and expected higher I /SUB o/ R /SUB n/ -product. They are promising especially for applications such as high speed logic and high frequency radiation detectors. Also they can operate over a wide temperature range and are stable against thermal cycles as are incorporating the refractory high-T /SUB c/ superconductors. One of the essential ingredient for high quality bridges is to have NbN films. Ultra-thin NbN films have been prepared by rf reactive-sputtering. NbN films deposited epitaxially on rf sputtered MgO films have high superconducting transition temperature T /SUB c/ . T /SUB c/ value of the film with thickness of about 5nm was about 14K, and is much higher than those deposited on Al/sub 2/O/sub 3/ films and Si substrates. Two types of nm-bridges were reproducibly fabricated with NbN films deposited epitaxially on MgO films. The obtained I /SUB o/ R /SUB n/ -products were in a range of 0.5 to 3.6mV. The microwaveinduced voltage steps were observed up to the voltage comparable to I /SUB o/ R /SUB n/ - product. The dc and ac quantum effects of the dc SQUIDS were observed in quite wide range of temperature, 4.2 to 11.4K.

  8. Nanometer scale fabrication and optical response of InGaN/GaN quantum disks.

    PubMed

    Lai, Yi-Chun; Higo, Akio; Kiba, Takayuki; Thomas, Cedric; Chen, Shula; Lee, Chang Yong; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Katayama, Ryuji; Shojiki, Kanako; Takayama, Junichi; Yamashita, Ichiro; Murayama, Akihiro; Chi, Gou-Chung; Yu, Peichen; Samukawa, Seiji

    2016-10-21

    In this work, we demonstrate homogeneously distributed In0.3Ga0.7N/GaN quantum disks (QDs), with an average diameter below 10 nm and a high density of 2.1 × 10(11) cm(-2), embedded in 20 nm tall nanopillars. The scalable top-down fabrication process involves the use of self-assembled ferritin bio-templates as the etch mask, spin coated on top of a strained In0.3Ga0.7N/GaN single quantum well (SQW) structure, followed by a neutral beam etch (NBE) method. The small dimensions of the iron cores inside ferritin and nearly damage-free process enabled by the NBE jointly contribute to the observation of photoluminescence (PL) from strain-relaxed In0.3Ga0.7N/GaN QDs at 6 K. The large blueshift of the peak wavelength by over 70 nm manifests a strong reduction of the quantum-confined Stark effect (QCSE) within the QD structure, which also agrees well with the theoretical prediction using a 3D Schrödinger equation solver. The current results hence pave the way towards the realization of large-scale III-N quantum structures using the combination of bio-templates and NBE, which is vital for the development of next-generation lighting and communication devices.

  9. Multi-scale study of soil structure from different genetic horizons: from meter to nanometer

    NASA Astrophysics Data System (ADS)

    Karsanina, Marina; Skvortsova, Elena; Abrosimov, Konstantin; Sizonenko, Timofey; Romanenko, Konstantin; Belokhin, Vasily; Yudina, Anna; Gilyazetdinova, Dina; Korost, Dmitry; Gerke, Kirill

    2016-04-01

    Soil structure is extremely diverse, has numerous relevant scales, e.g., important pore hierarchical levels, such as intra and inter aggregate porosity, cracks and others. None of the existing imaging techniques is capable of catching all scales within one single image due to sample size/resolution limitations. The only way to experimentally obtain soil structural information from all important scales is to utilize multi-scale scanning using different imaging approaches. In this study we use macro X-ray tomography (with resolution of 100 um), micro X-ray tomography (with resolution range of 3-16 um) and SEM with nanoscale resolutions to obtain a vast multi-scale structural data from meter to nanometer. Two one meter long undisturbed soil columns extracted from soddy-podzolic and grey forest soils were used as objects of our multi-scale study. At first macrotomography was used to make the coarsest 3D image of the whole column. Afterwards, the column was carefully sliced to obtain smaller undisturbed samples for microtomography scanning. Some undisturbed soil pieces were also imaged using SEM to obtain sub-micron images of the soil structure. All resulting 2/3D images were segmented using up-to-date image processing and segmentation techniques to obtain solid material and pore space binary phases. Directional correlation functions were utilized to characterize multi-scale soil structures and compare/differentiate them from each other. We extensively show how such powerful structural descriptors as correlation functions can results in better soil structure characterization and classification. Combined with multi-scale image fusion and/or pore-scale modelling techniques 3D multi-scale images can used to assess scale dependant flow and transport properties. This work was partially supported by RFBR grant 15-34-20989 (field studies, X-ray tomography and SEM imaging) and RSF grant 14-17-00658 (directional correlation functions). References: 1. Karsanina, M.V., Gerke, K

  10. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.

    PubMed

    Colliex, Christian; Kociak, Mathieu; Stéphan, Odile

    2016-03-01

    Since their first realization, electron microscopes have demonstrated their unique ability to map with highest spatial resolution (sub-atomic in most recent instruments) the position of atoms as a consequence of the strong scattering of the incident high energy electrons by the nuclei of the material under investigation. When interacting with the electron clouds either on atomic orbitals or delocalized over the specimen, the associated energy transfer, measured and analyzed as an energy loss (Electron Energy Loss Spectroscopy) gives access to analytical properties (atom identification, electron states symmetry and localization). In the moderate energy-loss domain (corresponding to an optical spectral domain from the infrared (IR) to the rather far ultra violet (UV), EELS spectra exhibit characteristic collective excitations of the rather-free electron gas, known as plasmons. Boundary conditions, such as surfaces and/or interfaces between metallic and dielectric media, generate localized surface charge oscillations, surface plasmons (SP), which are associated with confined electric fields. This domain of research has been extraordinarily revived over the past few years as a consequence of the burst of interest for structures and devices guiding, enhancing and controlling light at the sub-wavelength scale. The present review focuses on the study of these surface plasmons with an electron microscopy-based approach which associates spectroscopy and mapping at the level of a single and well-defined nano-object, typically at the nanometer scale i.e. much improved with respect to standard, and even near-field, optical techniques. After calling to mind some early studies, we will briefly mention a few basic aspects of the required instrumentation and associated theoretical tools to interpret the very rich data sets recorded with the latest generation of (Scanning)TEM microscopes. The following paragraphs will review in more detail the results obtained on simple planar and

  11. OPC structures for maskshops qualification for the CMOS65nm and CMOS45nm nodes

    NASA Astrophysics Data System (ADS)

    Sundermann, Frank; Trouiller, Yorick; Urbani, Jean-Christophe; Couderc, Christophe; Belledent, Jérôme; Borjon, Amandine; Foussadier, Franck; Gardin, Christian; LeCam, Laurent; Rody, Yves; Saied, Mazen; Yesilada, Emek; Martinelli, Catherine; Wilkinson, Bill; Vautrin, Florent; Morgana, Nicolo; Robert, Frederic; Montgomery, Patrick; Kerrien, Gurwan; Planchot, Jonathan; Farys, Vincent; Di Maria, Jean-Luc

    2007-02-01

    Several qualification stages are required for new maskshop tools, first step is done by the maskshop internally. Taking a new writer for example, the maskshop will review the basic factory and site acceptance tests, including CD uniformity, CD linearity, local CD errors and registration errors. The second step is to have dedicated OPC (Optical Proximity Correction) structures from the wafer fab. These dedicated OPC structures will be measured by the maskshop to get a reticle CD metrology trend line. With this trend line, we can: - ensure the stability at reticle level of the maskshop processes - put in place a matching procedure to guarantee the same OPC signature at reticle level in case of any internal maskshop process change or new maskshop evaluation. Changes that require qualification could be process changes for capacity reasons, like introducing a new writer or a new manufacturing line, or for capability reasons, like a new process (new developer tool for example) introduction. Most advanced levels will have dedicated OPC structures. Also dedicated maskshop processes will be monitored with these specific OPC structures. In this paper, we will follow in detail the different reticle CD measurements of dedicated OPC structures for the three advanced logic levels of the 65nm node: poly level, contact level and metal level. The related maskshop's processes are - for poly: eaPSM 193nm with a nega CAR (Chemically Amplified Resist) process for Clear Field L/S (Lines & Space) reticles - for contact: eaPSM 193nm with a posi CAR process for Dark Field Holes reticles - for metal1: eaPSM 193nm with a posi CAR process for Dark Field L/S reticles. For all these structures, CD linearity, CD through pitch, length effects, and pattern density effects will be monitored. To average the metrology errors, the structures are placed twice on the reticle. The first part of this paper will describe the different OPC structures. These OPC structures are close to the DRM (Design Rule

  12. Multi-watt 589nm fiber laser source

    SciTech Connect

    DAWSON, J W; DROBSHOFF, A D; BEACH, R J; MESSERLY, M J; PAYNE, S A; BROWN, A; PENNINGTON, D M; BAMFORD, D J; SHARPE, S J; COOK, D J

    2006-01-19

    We have demonstrated 3.5W of 589nm light from a fiber laser using periodically poled stoichiometric Lithium Tantalate (PPSLT) as the frequency conversion crystal. The system employs 938nm and 1583nm fiber lasers, which were sum-frequency mixed in PPSLT to generate 589nm light. The 938nm fiber laser consists of a single frequency diode laser master oscillator (200mW), which was amplified in two stages to >15W using cladding pumped Nd{sup 3+} fiber amplifiers. The fiber amplifiers operate at 938nm and minimize amplified spontaneous emission at 1088nm by employing a specialty fiber design, which maximizes the core size relative to the cladding diameter. This design allows the 3-level laser system to operate at high inversion, thus making it competitive with the competing 1088nm 4-level laser transition. At 15W, the 938nm laser has an M{sup 2} of 1.1 and good polarization (correctable with a quarter and half wave plate to >15:1). The 1583nm fiber laser consists of a Koheras 1583nm fiber DFB laser that is pre-amplified to 100mW, phase modulated and then amplified to 14W in a commercial IPG fiber amplifier. As a part of our research efforts we are also investigating pulsed laser formats and power scaling of the 589nm system. We will discuss the fiber laser design and operation as well as our results in power scaling at 589nm.

  13. Polarization properties of lidar scattering from clouds at 347 nm and 694 nm.

    PubMed

    Pal, S R; Carswell, A I

    1978-08-01

    The polarization characteristics of lidar scattering from cumulus and low-lying shower clouds have been measured with a system operating at 694 nm (red) and 347 nm (blue). The backscatter profiles of the polarization components as well as of the total intensity of the return are presented and discussed for the two wavelengths. The linear depolarization ratio delta, which can be used as a measure of the unpolarized multiple scattering, has been obtained at both wavelengths. This quantity has a very low value at cloud base for both wavelengths and increases with pulse penetration. The blue registers generally higher values of a within the cloud. The measured total intensity backscatter functions for both wavelengths are presented and discussed in relation to theoretical calculations of cloud models.

  14. Analysis of multi-mode to single-mode conversion at 635 nm and 1550 nm

    NASA Astrophysics Data System (ADS)

    Zamora, Vanessa; Bogatzki, Angelina; Arndt-Staufenbiel, Norbert; Hofmann, Jens; Schröder, Henning

    2016-03-01

    We propose two low-cost and robust optical fiber systems based on the photonic lantern (PL) technology for operating at 635 nm and 1550 nm. The PL is an emerging technology that couples light from a multi-mode (MM) fiber to several single-mode (SM) fibers via a low-loss adiabatic transition. This bundle of SM fibers is observed as a MM fiber system whose spatial modes are the degenerate supermodes of the bundle. The adiabatic transition allows that those supermodes evolve into the modes of the MM fiber. Simulations of the MM fiber end structure and its taper transition have been performed via functional mode solver tools in order to understand the modal evolution in PLs. The modelled design consists of 7 SM fibers inserted into a low-index capillary. The material and geometry of the PLs are chosen such that the supermodes match to the spatial modes of the desired step-index MM fiber in a moderate loss transmission. The dispersion of materials is also considered. These parameters are studied in two PL systems in order to reach a spectral transmission from 450 nm to 1600 nm. Additionally, an analysis of the geometry and losses due to the mismatching of modes is presented. PLs are typically used in the fields of astrophotonics and space photonics. Recently, they are demonstrated as mode converters in telecommunications, especially focusing on spatial division multiplexing. In this study, we show the use of PLs as a promising interconnecting tool for the development of miniaturized spectrometers operating in a broad wavelength range.

  15. TUNABLE DIODE LASER MEASUREMENTS OF NO2 NEAR 670 NM AND 395 NM. (R823933)

    EPA Science Inventory

    Two single-mode diode lasers were used to record high-resolution absorption spectra of NO2 (dilute in Ar) near 670.2 and 394.5 nm over a range of temperatures (296 to 774 K) and total pressures (2.4 x 10(-2) to 1 atm). A commercial InGaAsP laser was tuned 1.3 cm(-1) at a repetiti...

  16. Performance comparison of bismuth/erbium co-doped optical fibre by 830 nm and 980 nm pumping

    NASA Astrophysics Data System (ADS)

    Yan, Binbin; Luo, Yanhua; Zareanborji, Amirhassan; Xiao, Gui; Peng, Gang-Ding; Wen, Jianxiang

    2016-10-01

    The performance of bismuth/erbium co-doped fibre (BEDF) by 830 nm and 980 nm pumping has been studied in detail, including the small signal absorption, pump absorption, emission, gain and excited state absorption (ESA). Based on the study, energy transition diagrams of BEDF under 830 nm or 980 nm pumping are proposed to clarify the spectroscopic properties. The results demonstrate the advantages of 830 nm pumping for BEDF over 980 nm pumping when considering the absorption, pumping efficiency, excited state absorption and optical amplification.

  17. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    DOE PAGES

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; et al

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environmentsmore » for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.« less

  18. Electron-induced single event upsets in 28 nm and 45 nm bulk SRAMs

    SciTech Connect

    Trippe, J. M.; Reed, R. A.; Austin, R. A.; Sierawski, B. D.; Weller, R. A.; Funkhouser, E. D.; King, M. P.; Narasimham, B.; Bartz, B.; Baumann, R.; Schrimpf, R. D.; Labello, R.; Nichols, J.; Weeden-Wright, S. L.

    2015-12-01

    In this study, we present experimental evidence of single electron-induced upsets in commercial 28 nm and 45 nm CMOS SRAMs from a monoenergetic electron beam. Upsets were observed in both technology nodes when the SRAM was operated in a low power state. The experimental cross section depends strongly on both bias and technology node feature size, consistent with previous work in which SRAMs were irradiated with low energy muons and protons. Accompanying simulations demonstrate that δ-rays produced by the primary electrons are responsible for the observed upsets. Additional simulations predict the on-orbit event rates for various Earth and Jovian environments for a set of sensitive volumes representative of current technology nodes. The electron contribution to the total upset rate for Earth environments is significant for critical charges as high as 0.2 fC. This value is comparable to that of sub-22 nm bulk SRAMs. Similarly, for the Jovian environment, the electron-induced upset rate is larger than the proton-induced upset rate for critical charges as high as 0.3 fC.

  19. Self-assembly based nanometer-scale patterning for nanowire growth

    NASA Astrophysics Data System (ADS)

    Chandramohan, Abhishek; Sibirev, Nikolai; Dubrovskii, Vladimir G.; Mendis, Budhika; Petty, Mike C.; Gallant, Andrew J.; Zeze, Dagou A.

    2015-08-01

    Periodic nanostructure arrays have been ubiquitously exploited lately due to their properties and prospective applications in production of templates for self-induced and gold (Au)-catalysed nanowires (NWs), because this approach is relatively cheap, time-efficient and do not require electron beam lithography. The technique consists creating nanoholes in SiO2 to expose the silicon Si (111) beneath where self-induced NWs can nucleate, while nanodots deposited onto the Si (111) surface serve as catalyst seeds. For Au-catalysed NWs, a monolayer of self-assembled polystyrene nanospheres (PNS 300nm) was created on a 2 inch Si wafer by spin coating and later etched for a short time before a very thin Au-catalyst layer was deposited. In turn, for self-induced, PNS monolayer was created onto a SiO2-Si substrate. A longer etch was required to reduce PNS diameter significantly to leave relatively larger spacing where chromium is blanket deposited. PNS were lifted off by sonicating the samples in toluene produce the periodic arrays of nanodots and nanoholes, respectively. The underlying SiO2 was etched further through the nanoholes to uncover the Si below. 200 nm holes and 30-70 nm dots were demonstrated through the bespoke methods. The patterned substrates served as master templates, subsequently copied using polydimethylsiloxane (PDMS) to produce a flexible stamp for nanoimprint lithography. A bilayer resist lift off process was developed to print the replicated nanodots or nanoholes on large-area substrates onto which III-V NWs can be grown.

  20. Sub-nanometer expansions of redox responsive polymer films monitored by imaging ellipsometry.

    PubMed

    Cumurcu, Aysegul; Feng, Xueling; Ramos, Lionel Dos; Hempenius, Mark A; Schön, Peter; Vancso, G Julius

    2014-10-21

    We describe a novel approach to quantitatively visualize sub nm height changes occurring in thin films of redox active polymers upon reversible electrochemical oxidation/reduction in situ and in real-time with electrochemical imaging ellipsometry (EC-IE). Our approach is based on the utilization of a micro-patterned substrate containing circular patterns of passive (non-redox active) 11-mercapto-1-undecanol (MCU) within a redox-responsive oligoethylene sulfide end-functionalized poly(ferrocenyldimethylsilane) (ES-PFS) film on a gold substrate. The non-redox responsive MCU layer was used as a molecular reference layer for the direct visualization of the minute thickness variations of the ES-PFS film. The ellipsometric microscopy images were recorded in aqueous electrolyte solutions at potentials of -0.1 V and 0.6 V vs. Ag/AgCl corresponding to the reduced and oxidized redox states of ES-PFS, respectively. The ellipsometric contrast images showed a 37 (±2)% intensity increase in the ES-PFS layer upon oxidation. The thickness of the ES-PFS layer reversibly changed between 4.0 (±0.1) nm and 3.4 (±0.1) nm upon oxidation and reduction, respectively, as determined by IE. Additionally, electrochemical atomic force microscopy (EC-AFM) was used to verify the redox controlled thickness variations. The proposed method opens novel avenues to optically visualize minute and rapid height changes occurring e.g. in redox active (and other stimulus responsive) polymer films in a fast and non-invasive manner.

  1. Production of nanometer-size GaAs nanocristals by nanosecond laser ablation in liquid.

    PubMed

    Abderrafi, Kamal; Jiménez, Ernesto; Ben, Teresa; Molina, Sergio I; Ibáñez, Rafael; Chirvony, Vladimir; Martínez-Pastor, Juan P

    2012-08-01

    This paper reports the formation and characterization of spherical GaAs quantum dots obtained by nanosecond pulsed laser ablation in a liquid (ethanol or methanol). The produced bare GaAs nanoparticles demonstrate rather narrow size distribution which depends on the applied laser power density (from 4.25 to 13.9 J/cm2 in our experiments) and is as low as 2.5 nm for the highest power used. The absolute value of the average diameter also decreases significantly, from 13.7 to 8.7 nm, as the laser power increases in this interval. Due to the narrow nanoparticle size dispersion achieved at the highest laser powers two absorption band edges are clearly distinguishable at about 1.72 and 3.15 eV which are ascribed to E0 and E1 effective optical transitions, respectively. A comparison of the energies with those known for bulk GaAs allows one to conclude that an average diameter of the investigated GaAs nanoparticles is close to 10 nm, i.e., they are quantum dots. High resolution transmission electron microscopy (HRTEM) images show that the bare GaAs nanoparticles are nanocrystalline, but many of them exhibit single/multiple twin boundary defects or even polycrystallinity. The formation of the GaAs crystalline core capped with a SiO2 shell was demonstrated by HRTEM and energy dispersive X-ray (EDX) spectroscopy. Effective band edges can be better distinguished in SiO2 capped nanoparticles than in bare ones, In both cases the band edges are correlated with size quantum confinement effect.

  2. Interferometric Testbed for Nanometer Level Stabilization of Environmental Motion Over Long Timescales

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2008-01-01

    We developed an interferometric testbed to stabilize environmental motions over timescales of several hours and a lengthscale of 1m. Typically, thermal and seismic motions on the ground are larger than 1 micron over these scales, affecting the precision of more sensitive measurements. To suppress such motions, we built an active stabilization system composed of interferometric sensors, a hexapod actuator, and a frequency stabilized laser. With this stabilized testbed, environmental motions were suppressed down to nm level. This system will allow us to perform sensitive measurements, such as ground testing of LISA (Laser Interferometer Space Antenna), in the presence of environmental noise.

  3. The intermediate scattering function for lipid bilayer membranes: From nanometers to microns

    NASA Astrophysics Data System (ADS)

    Watson, Max C.; Peng, Yonggang; Zheng, Yujun; Brown, Frank L. H.

    2011-11-01

    A numerical scheme based upon established hydrodynamic and elastic considerations is introduced and used to predict the intermediate scattering function for lipid bilayer membranes. The predictions span multiple wavelength regimes, including those studied by dynamic light scattering (DLS; microns) and neutron spin-echo (NSE) spectroscopy (10-100 nm). The results validate a recent theory specific to the NSE regime and expose slight inaccuracies associated with the theoretical results available in the DLS regime. The assumptions that underlie both our numerical methods and the related theoretical predictions are reviewed in detail to explain when certain results can be applied to experiment and where caution must be exercised.

  4. Absolute oscillator strengths for 108 lines of Si I between 163 and 410 nanometers

    NASA Technical Reports Server (NTRS)

    Smith, Peter L.; Griesinger, Harriet E.; Cardon, Bartley L.; Huber, Martin C. E.; Tozzi, G. P.

    1987-01-01

    Measurements of neutral silicon oscillator strengths (f-values) obtained by absorption and emission techniques have been combined using the numerical procedure of Cardon et al. (1979) to produce 108 f-values for the Si I lines between 163 and 410 nm. Beam-foil-lifetime measurements were employed to determine the absolute scale. The present measurements have uncertainties of about 0.07 dex (+ or - 16 percent) at the 1-sigma level of confidence. Good agreement is obtained between the results and previous data. The data also provide upper limits for the f-values of 22 other lines and information on the lifetimes for 36 levels in Si I.

  5. Swift heavy ion irradiation induced electrical degradation in deca-nanometer MOSFETs

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Yang, Zhimei; Gong, Min; Gao, Bo; Li, Yun; Lin, Wei; Li, Jinbo; Xia, Zhuohui

    2016-09-01

    In this work, degradation of the electrical characteristics of 65 nm nMOSFETs under swift heavy ion irradiation is investigated. It was found that a heavy ion can generate a localized region of physical damage (ion latent track) in the gate oxide. This is the likely cause for the increased gate leakage current and soft breakdown (SBD) then hard breakdown (HBD) of the gate oxide. Except in the case of HBD, the devices retain their functionality but with degraded transconductance. The degraded gate oxide exhibits early breakdown behavior compatible with the model of defect generation and percolation path formation in the percolation model.

  6. Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution

    SciTech Connect

    Balke, N.; Jesse, S.; Kim, Y.; Adamczyk, L.; Tselev, A.; Ivanov, I.; Dudney, N. J.; Kalinin, S. V.

    2010-09-08

    The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

  7. PHILOSOPHY FOR NSLS-II DESIGN WITH SUB-NANOMETER HORIZONTAL EMITTANCE.

    SciTech Connect

    OZAKI,S.; BENGTSSON, J.; KRAMER, S.L.; KRINSKY, S.; LITVINENKO, V.N.

    2007-06-25

    NSLS-II at Brookhaven National Laboratory is a new third-generation storage ring light source, whose construction is on the verge of being approved by DOE. When completed, NSLS-II with its ability to provide users with a wide range of spectrum, ranging from IR to ultra-high brightness hard x-ray beams will replace the existing two (20+ years old) NSLS light sources. While presenting an overview of the NSLS-II accelerator system, this paper focuses on the strategy and development of a novel <1 nm emittance light source.

  8. The intermediate scattering function for lipid bilayer membranes: From nanometers to microns

    SciTech Connect

    Watson, Max C.; Peng Yonggang; Zheng Yujun; Brown, Frank L. H.

    2011-11-21

    A numerical scheme based upon established hydrodynamic and elastic considerations is introduced and used to predict the intermediate scattering function for lipid bilayer membranes. The predictions span multiple wavelength regimes, including those studied by dynamic light scattering (DLS; microns) and neutron spin-echo (NSE) spectroscopy (10-100 nm). The results validate a recent theory specific to the NSE regime and expose slight inaccuracies associated with the theoretical results available in the DLS regime. The assumptions that underlie both our numerical methods and the related theoretical predictions are reviewed in detail to explain when certain results can be applied to experiment and where caution must be exercised.

  9. The so-called dry laser cleaning governed by humidity at the nanometer scale

    NASA Astrophysics Data System (ADS)

    Grojo, D.; Delaporte, Ph.; Sentis, M.; Pakarinen, O. H.; Foster, A. S.

    2008-01-01

    Illumination with single nanosecond pulses leads to the detachment of silica particles with 250nm radii from silicon surfaces. We identify two laser-energy dependent cleaning regimes by time-of-flight particle-scattering diagnostics. For the higher energies, the ejection of particles is produced by nanoscale ablation due to the laser field enhancement at the particle-surface interface. The damage-free regime at lower energy is shown to be governed by the residual water molecules, which are inevitably trapped on the materials. We discuss the great importance that the humidity plays on the cleaning force and on the adhesion in the experiments.

  10. Gold-polyaniline composites: Part II. Effects of nanometer sized particles

    SciTech Connect

    Smith, Jon A.; Josowicz, Mira A.; Engelhard, Mark H.; Baer, Donald R.; Janata, Jiri

    2005-09-01

    The amount of electronic charge transferred between gold particles and polyaniline depends not only on the electron affinity of the two materials but also on the size of the gold particles. As measured by X-ray photoelectron spectroscopy, for particles < 5 nm the binding energy of the electrons is size dependent. This nano-effect has its origin in the electrostatics of particles. It is demonstrated as a measurable shift of the binding energy of the Au4f7/2 photoelectrons emitted from Au particles embedded in a polyaniline matrix. Gold nanoparticle size was evaluated by high resolution transmission electron microscopy.

  11. Nanometals induce stress and alter thyroid hormone action in amphibia at or below North American water quality guidelines.

    PubMed

    Hinther, Ashley; Vawda, Saadia; Skirrow, Rachel C; Veldhoen, Nik; Collins, Patricia; Cullen, Jay T; van Aggelen, Graham; Helbing, Caren C

    2010-11-01

    Nanometals are manufactured to particle sizes with diameters in the nanometer range and are included in a variety of consumer and health products. There is a lack of information regarding potential effects of these materials on aquatic organisms. Amphibians are regarded as environmental sentinels and demonstrate an exquisite sensitivity to thyroid hormone action, a hormone that is essential for human health. This present study assessed the effect of exposure to nanometals on stress and thyroid hormone signaling in frog tissue using a cultured tail fin biopsy (C-fin) assay derived from Rana catesbeiana tadpoles. The C-fin assay maintains tissue complexity and biological replication while multiple chemical responses can be assessed from the same individual. We tested the ability of nanosilver (0.06 μg/L-5.5 mg/L), quantum dots (0.25 μg/L-22 mg/L), and nanozinc oxide (0.19-10 mg/L) to alter gene expression in the presence or absence of 3,3',5'-triiodothyronine (T(3)) using quantitative real-time polymerase chain reaction. Results were compared to exposure to micrometer-silver, silver nitrate, and micrometer-cadmium telluride. Nanosilver (≥2.75 mg/L) and quantum dots (≥0.22 mg/L) altered the expression of transcripts linked to T(3)- and stress-mediated pathways, while nanozinc oxide had no effect. Lower concentrations of nanosilver (0.6 to 550 μg/L) perturbed T(3)-mediated signaling while not inducing cell stress. The observed effects were orders of magnitude below acute toxicity levels and occurred at or below the current North American water quality guidelines for metals, underscoring the need for evaluating nanoparticles separately from their constituent chemicals. PMID:20929207

  12. Improved performance 1590 nm Er:YLF laser

    SciTech Connect

    Marchbanks, R.D.; Petrin, R.R.; Cockroft, N.J.

    1994-12-01

    We present an improvement in the performance of a 1590 nm ER:YLF laser through simultaneous laser operation at 2717 nm. A slope efficiency of 7.0% with an output of 13.2 mW has been achieved with 971 nm pumping.

  13. Mechanism of cyanoacetylene photochemistry at 185 and 254 nm

    NASA Technical Reports Server (NTRS)

    Clarke, D. W.; Ferris, J. P.

    1996-01-01

    The role of cyanoacetylene (HC3N) in the atmospheric photochemistry of Titan and its relevance to polymer formation are discussed. Investigation of the relative light absorption of HC3N, acetylene (C2H2), and diacetylene (C4H2) revealed that HC3N is an important absorber of UV light in the 205- to 225-nanometer wavelength region in Titan's polar regions. Laboratory studies established that photolysis of C2H2 initiates the polymerization of HC3N even though the HC3N is not absorbing the UV light. Quantum yield measurements establish that HC3N is 2-5 times as reactive as C2H2 for polymer formation. Photolysis of HC3N with 185-nanometer light in the presence of N2, H2, Ar, or CF4 results in a decrease in the yield of 1,3,5-tricyanobenzene (1,3,5-tcb), while photolysis in the presence of CH4, C2H6, or n-C4H10 results in an increase in 1,3,5-tcb. The rate of loss of HC3N is increased by all gases except H2, where it is unchanged. It was not possible to detect 1,3,5-tcb as a photoproduct when the partial pressure of HC3N was decreased to 1 torr. Photolysis of HC3N with 254-nanometer light in the presence of H2 or N2 results in the formation of 1,2,4-tcb, while photolysis in the presence of CH4, C2H6, or n-C4H10 results in the formation of increasing amounts of 1,3,5-tcb. Mechanisms for the formation of polymers are presented.

  14. Laser-induced shockwave chromatography: a separation and analysis method for nanometer-sized particles and molecules.

    PubMed

    Nagahara, Tetsuhiko; Ichinose, Nobuyuki; Nakamura, Shinpei

    2011-04-01

    A microscopic chromatography has been developed where nanometer-size molecules or particles are separated according to their size by the laser-induced shockwave in a water-filled capillary. As the shockwave passed through the mixture of molecules/particles in solution, they move to the direction of the propagation of the shockwave. The distance from the point of shockwave generation depends on the particle size or molecular weight. This technique has some advantages compared to conventional chromatography, in terms of quick analysis of molecular weight and applicability to sticky and adsorbing polymers. Experimental results obtained for proteins, their aggregates, and inorganic nanoparticles are presented.

  15. One-nanometer-precision control of Al(2)O(3) nanoshells through a solution-based synthesis route.

    PubMed

    Zhang, Wei; Chi, Zi-Xiang; Mao, Wen-Xin; Lv, Rong-Wen; Cao, An-Min; Wan, Li-Jun

    2014-11-17

    Forming uniform metal oxide nanocoatings is a well-known challenge in the construction of core-shell type nanomaterials. Herein, by using buffer solution as a specific reaction medium, we demonstrate the possibility to grow thin nanoshells of metal oxides, typically Al2 O3 , on different kinds of core materials, forming a uniform surface-coating layer with thicknesses achieving one nanometer precision. The application of this methodology for the surface modification of LiCoO2 shows that a thin nanoshell of Al2 O3 can be readily tuned on the surface for an optimized battery performance.

  16. Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in Nd:GdVO4

    NASA Astrophysics Data System (ADS)

    Lünstedt, K.; Pavel, N.; Petermann, K.; Huber, G.

    2007-01-01

    A continuous-wave, diode-pumped Nd:GdVO4 thin disk laser with simultaneous dual-wavelength emission at the 912 nm 4 F 3/2→4 I 9/2 quasi-three-level transition and the 1063 nm 4 F 3/2→4 I 11/2 four-level transition is demonstrated and analyzed. Output powers of 1.7 W at 912 nm and of 1.6 W at 1063 nm were achieved simultaneously from a 0.3-at.%, 300-μm thick Nd:GdVO4 crystal that was multi-pass excited with 26.8 W of available diode pump power. Second harmonic generation to 456 nm with LiB3O5 yielded 0.96 W in 912 nm single-wavelength operation and 0.73 W in 912 nm/1063 nm dual-wavelength operation.

  17. Label-Free Nanometer-Resolution Imaging of Biological Architectures through Surface Enhanced Raman Scattering

    PubMed Central

    Ayas, Sencer; Cinar, Goksu; Ozkan, Alper Devrim; Soran, Zeliha; Ekiz, Oner; Kocaay, Deniz; Tomak, Aysel; Toren, Pelin; Kaya, Yasin; Tunc, Ilknur; Zareie, Hadi; Tekinay, Turgay; Tekinay, Ayse Begum; Guler, Mustafa Ozgur; Dana, Aykutlu

    2013-01-01

    Label free imaging of the chemical environment of biological specimens would readily bridge the supramolecular and the cellular scales, if a chemical fingerprint technique such as Raman scattering can be coupled with super resolution imaging. We demonstrate the possibility of label-free super-resolution Raman imaging, by applying stochastic reconstruction to temporal fluctuations of the surface enhanced Raman scattering (SERS) signal which originate from biomolecular layers on large-area plasmonic surfaces with a high and uniform hot-spot density (>1011/cm2, 20 to 35 nm spacing). A resolution of 20 nm is demonstrated in reconstructed images of self-assembled peptide network and fibrilated lamellipodia of cardiomyocytes. Blink rate density is observed to be proportional to the excitation intensity and at high excitation densities (>10 kW/cm2) blinking is accompanied by molecular breakdown. However, at low powers, simultaneous Raman measurements show that SERS can provide sufficient blink rates required for image reconstruction without completely damaging the chemical structure. PMID:24022059

  18. Tailoring the Optoelectronic Properties of Nano-Metal Oxides Using Anthocyanins and Lanthanide.

    PubMed

    Al Rez, Mohammed Fayez; Choudhury, Trisha; Islam, J; Fouad, H; Umar, Ahmad; Khan, A A; Ansari, S G; Ansari, Z A

    2015-12-01

    Here we report a simple and effective method in tailoring the optoelectronic properties of semi-conducting metal oxide for suitable device application. Sol-gel synthesis was used to synthesize manganese doped TiO2 nanopowder and commercially available TiO2 nanopowder was used as reference material. Thick films of these powder were screen printed on FTO coated glass and annealed at 450 degrees C in ambient air. Separately, 60 μL of neodymium chloride prepared from neodymium oxide, 60 μL of ruthenium based commercial dye (N719) and 60 μL of extracts of calendula orange and dog flower were used as sensitizer to improve the photoconductance properties. Elemental analysis confirmed synthesis of composite material of Mn and TiO2. Morphological observation showed a uniform particles of 25 to 50 nm diameter. Optoelectronic properties were studied by using thick films of these powders as working electrode as a function of wavelength from 430 to 750 nm and the cyclic voltammogram were obtained by scanning potential from -1.5 V to +1.5 V at the illumination intensity of 1000 Wm(-2). Sensitization resulted in additional absorption and functional bands. Oxidation peak current was found decreasing with increasing wavelength. Sensitization with flower extract resulted in increased oxidation current at higher wavelength indicating the improved photoconduction in comparison with N719 and neodymium. PMID:26682377

  19. Quantitative Chemically Specific Coherent Diffractive Imaging of Reactions at Buried Interfaces with Few Nanometer Precision

    NASA Astrophysics Data System (ADS)

    Shanblatt, Elisabeth R.; Porter, Christina L.; Gardner, Dennis F.; Mancini, Giulia F.; Karl, Robert M., Jr.; Tanksalvala, Michael D.; Bevis, Charles S.; Vartanian, Victor H.; Kapteyn, Henry C.; Adams, Daniel E.; Murnane, Margaret M.

    2016-09-01

    Characterizing buried layers and interfaces is critical for a host of applications in nanoscience and nano-manufacturing. Here we demonstrate non-invasive, non-destructive imaging of buried interfaces using a tabletop, extreme ultraviolet (EUV), coherent diffractive imaging (CDI) nanoscope. Copper nanostructures inlaid in SiO2 are coated with 100 nm of aluminum, which is opaque to visible light and thick enough that neither optical microscopy nor atomic force microscopy can image the buried interfaces. Short wavelength (29 nm) high harmonic light can penetrate the aluminum layer, yielding high-contrast images of the buried structures. Moreover, differences in the absolute reflectivity of the interfaces before and after coating reveal the formation of interstitial diffusion and oxidation layers at the Al-Cu and Al-SiO2 boundaries. Finally, we show that EUV CDI provides a unique capability for quantitative, chemically-specific imaging of buried structures, and the material evolution that occurs at these buried interfaces, compared with all other approaches.

  20. Liver injury induced by thirty- and fifty-nanometer-diameter silica nanoparticles.

    PubMed

    Isoda, Katsuhiro; Tetsuka, Eriko; Shimizu, Yoshimi; Saitoh, Kanae; Ishida, Isao; Tezuka, Masakatsu

    2013-01-01

    Nano-size silica material is a promising reagent for disease diagnosis, cosmetics, and the food industry. For the successful application of nanoparticle materials in bioscience, evaluation of nano-size material toxicity is important. We previously found that nano-size silica particles caused acute liver failure in mice. However, the hepatotoxicity of nanosilica particles with the diameter of 70 nm or less is unknown. Here, we investigated the relationship between particle size and toxicity using nanosilica particles with diameters of 30, 50, and 70 nm (SP30, SP50, and SP70, respectively). We observed dose-dependent increases in hepatic injury following administration of SP50 and SP30, with SP30 causing greater acute liver injury than that seen with SP50. Smaller silica nanoparticles induced liver injury even at proportionally lower dose levels. Furthermore, we investigated the combinatorial toxicity of SP30 in the presence of chemically induced liver injury (including that caused by carbon tetrachloride, paraquat, cisplatin, and acetaminophen). We observed that particles of the smallest size tested (SP30) synergized with chemical substances in causing liver injury. These data suggest that the size (diameter) of the silica nanoparticles affects the severity of nanoparticle-induced liver injury, a finding that will be useful for future investigations in nanotechnology and nanotoxicology.