Science.gov

Sample records for 488-d ash basin

  1. 488-D Ash Basin Vegetative Cover Treatibility Study

    SciTech Connect

    Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

    2003-01-01

    The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

  2. Illinois basin coal fly ashes. 1. Chemical characterization and solubility

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.; Dickerson, D.R.; Schuller, R.M.; Martin, S.M.C.

    1984-01-01

    Twelve precipitator-collected fly ash samples (nine derived from high-sulfur Illinois Basin coals and three from Western U.S. coals) were found to contain a variety of paraffins, aryl esters, phenols, and polynuclear aromatic hydrocarbons including phenanthrene, pyrene, and chrysene but all at very low concentrations. Less than 1% of the organic carbon in the samples was extractable into benzene. Solubility studies with a short-term (24-h) extraction procedure and a long-term (20-week) procedure indicate that the inorganic chemical composition of some types of fly ash effluent is time dependent and may be most toxic to aquatic ecosystems when initially mixed with water and pumped to disposal ponds. Some acidic, high-Cd fly ashes would be classified as hazardous wastes if coal ash was included in this waste category by future RCRA revisions. ?? 1984 American Chemical Society.

  3. Illinois basin coal fly ashes. 2. Equilibria relationships and qualitative modeling of ash-water reactions

    USGS Publications Warehouse

    Roy, W.R.; Griffin, R.A.

    1984-01-01

    Alkaline and acidic Illinois Basin coal fly ash samples were each mixed with deionized water and equilibrated for about 140 days to simulate ash ponding environments. Common to both equilibrated solutions, anhydrite solubility dominated Ca2+ activities, and Al3+ activities were in equilibrium with both matrix mullite and insoluble aluminum hydroxide phases. Aqueous silica activities were controlled by both mullite and matrix silicates. The pH of the extract of the acidic fly ash was 4.1 after 24 h but increased to a pH value of 6.4 as the H2SO4, assumed to be adsorbed to the particle surfaces, was exhausted by the dissolution of matrix iron oxides and aluminosilicates. The activities of aqueous Al3+ and iron, initially at high levels during the early stages of equilibration, decreased to below analytical detection limits as the result of the formation of insoluble Fe and Al hydroxide phases. The pH of the extract of the alkaline fly ash remained above a pH value of 10 during the entire equilibration interval as a result of the hydrolysis of matrix oxides. As with the acidic system, Al3+ activities were controlled by amorphous aluminum hydroxide phases that began to form after about 7 days of equilibration. The proposed mechanisms and their interrelations are discussed in addition to the solubility diagrams used to deduce these relationships. ?? 1984 American Chemical Society.

  4. Preliminary report on coal pile, coal pile runoff basins, and ash basins at the Savannah River Site: effects on groundwater

    SciTech Connect

    Palmer, E.

    1997-04-28

    Coal storage piles, their associated coal pile runoff basins and ash basins could potentially have adverse environmental impacts, especially on groundwater. This report presents and summarizes SRS groundwater and soil data that have been compiled. Also, a result of research conducted on the subject topics, discussions from noted experts in the field are cited. Recommendations are made for additional monitor wells to be installed and site assessments to be conducted.

  5. Trace elements in lake sediment, macrozoobenthos, and fish near a coal ash disposal basin

    USGS Publications Warehouse

    Hatcher, Charles O.; Ogawa, Roann E.; Poe, Thomas P.; French, John R. P.

    1992-01-01

    Of the 29 trace elements examined, arsenic and cobalt were significantly (p <0.05) more concentrated in sediment nearest the coal ash basin except in spring, when little or no difference was detected. Arsenic and bromine were significantly higher in oligochaetes, and selenium was significantly higher in both oligochaetes and chironomids taken from proximal stations than in those taken from reference stations. Selenium, bromine, cobalt, nickel, and chromium were higher in young-of-the-year brown bullheads taken nearer the disposal basin in fall 1983. Selenium was higher in adult spottail shiners taken at the proximal station in spring 1984, and bromine was higher in yearling white bass from the proximal station in fall 1983 and 1984. None of the trace elements was higher in adult yellow perch or adult brown bullheads at any time. Fewer spottail shiners and yearling white bass were caught close to the disposal basin than far away, which may indicate avoidance by these fish of increased concentrations of trace elements contained within the ash effluent.

  6. Magnetic tracing of coal slag and ash in a river basin

    NASA Astrophysics Data System (ADS)

    Appel, Erwin; Frančišković-Bilinski, Stanislav; Zhang, Qi; Rösler, Wolfgang; Zhang, Qian

    2016-04-01

    Atmospheric distribution of pollutants by magnetic means has been extensively studied, but only little is known about pollution-related magnetic signatures for aquatic transport. The case of a textile factory in Croatia that released heavy-metal polluted and highly magnetic ash and slag material from coal burning into Mrežnica River for 110 years (1884-1994) represents an ideal target for studying principles of magnetic tracing through a river system. Samples from the riverside close to the factory show high concentrations of magnetite (mass-specific susceptibility χ ˜1-4 x10-5 m3kg-1) with low frequency dependence (χfd% <3%). However, quantitative detection of slag and ash transport in the downstream direction through the riverbed is hindered by extremely variable magnetic properties of the river sediments, presumably due to hydrodynamic sorting. Surface mapping of χ on riverbanks ˜3 km downstream of the factory reveals clear evidence for substantial distribution of slag and ash materials in the river basin due to flooding; the affected area reaches to >100 m from the riverside. The spatial pattern of shallow vertical sections of χ (surface to ˜0.5 m depth) shows different layers of coal burning residues which may even allow discriminating different flooding events (historical flooding). In order to assess the possible influence of fly ash from the factory, we studied vertical soil profiles at locations which cannot be reached by floods. These (red) soils, formed on limestones, are strongly magnetic (χ >10-6 m3kg-1). Despite this strong natural magnetic signals, the depth dependence of χfd% and characteristic chemical properties (sulfur content, Ni/Cu ratio) as well as the dependence of the vertical χ distribution with distance to the point source indicate a contribution of fly ash to soil contamination near the factory (within about one kilometer). The presently available results indicate that with a strong magnetic point source as in the case of the

  7. Volcanic ash dispersed in the Wyodak-Anderson coal bed, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Triplehorn, D.M.; Stanton, R.W.; Ruppert, L.F.; Crowley, S.S.

    1991-01-01

    Minerals derived from air-fall volcanic ash were found in two zones in the upper Paleocene Wyodak-Anderson coal bed of the Fort Union Formation in the Powder River Basin of Wyoming, and are the first reported evidence of such volcanic material in this thick (> 20 m) coal bed. The volcanic minerals occur in zones that are not visually obvious because they contain little or no clay. These zones were located by geophysical logs of the boreholes and X-ray radiography of the cores. The zones correspond to two of a series of incremental core samples of the coal bed that have anomalous concentrations of Zr, Ba, Nb, Sr, and P2O5. Two suites of minerals were found in both of the high-density zones. A primary suite (not authigenic) consists of silt-sized quartz grains, biotite, and minor zircon. A minor suite consists of authigenic minerals, including calcite, pyrite, kaolinite, quartz, anatase, barite, and an alumino-phosphate (crandallite?). The original volcanic ash is inferred to have consisted of silica glass containing phenocrysts of quartz, biotite, zircon, and possibly, associated feldspars, pyroxenes, and amphiboles. The glass, as well as the less stable minerals, probably dissolved relatively quickly and contributed to the minor authigenic mineral suite or was removed from the peat as a result of the prevailing hydrologic conditions present in a raised peat formation. This type of volcanic ash suggests that suggests that volcanic material could have rained on the peat; this fallout may have also had a fertilizing effect on the peat by providing nutrients essential for plant growth thus contributing to the thick accumulations of the Wyodak-Anderson bed. Notwithstanding, the presence of these minerals provides evidence for the contribution by volcanic sources to the mineral content of coal, but not as tonsteins. ?? 1991.

  8. Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama

    USGS Publications Warehouse

    Zielinski, R.A.; Foster, A.L.; Meeker, G.P.; Brownfield, I.K.

    2007-01-01

    An arsenic-rich (As = 55 ppm) bituminous feed coal from the Black Warrior Basin, Alabama and its derivative fly ash (As = 230 ppm) were selected for detailed investigation of arsenic residence and chemical forms. Analytical techniques included microbeam analysis, selective extraction, and As K-edge X-ray absorption fine-structure (XAFS) spectroscopy. Most As in the coal is contained in a generation of As-bearing pyrite (FeS2) that formed in response to epigenetic introduction of hydrothermal fluids. XAFS results indicate that approximately 50% of the As in the coal sample occurs as the oxidized As(V) species, possibly the result of incipient oxidation of coal and pyrite prior to our analysis. Combustion of pyrite and host coal produced fly ash in which 95% of As is present as As(V). Selective extraction of the fly ash with a carbonate buffer solution (pH = 10) removed 49% of the As. A different extraction with an HCl-NH2OH mixture, which targets amorphous and poorly crystalline iron oxides, dissolved 79% of the As. XAFS spectroscopy of this highly acidic (pH = 3.0) fly ash indicated that As is associated with some combination of iron oxide, oxyhydroxide, or sulfate. In contrast, a highly alkaline (pH = 12.7) fly ash from Turkey shows most As associated with a phase similar to calcium orthoarsenate (Ca3(AsO4)2). The combined XAFS results indicate that fly ash acidity, which is determined by coal composition and combustion conditions, may serve to predict arsenic speciation in fly ash.

  9. Understanding volcanism at the PETM: Abundant volcanic ash layers in the Central Tertiary Basin of Spitsbergen, Svalbard

    NASA Astrophysics Data System (ADS)

    Jones, Morgan; Eliassen, Gauti; Svensen, Henrik; Jochmann, Malte; Friis, Bjarki; Jerram, Dougal; Planke, Sverre

    2014-05-01

    During the early Tertiary, Svalbard developed a fold-thrust belt on its western margin with an associated foreland basin in the central-south of what is now Spitsbergen. This Central Tertiary Basin (CTB) is a syn-orogenic sedimentary basin in a strike-slip regime. The CTB contains the ~1900 m thick Van Mijenfjorden group, a dominantly sandstone-shale succession that was deposited in a North-South extending basin. Sediments in this group display evidence of major transgressive-regressive cycles related to local tectonics and eustatic sea level change. This basin is ideal for study as it has been extensively cored for coal prospecting, allowing a suite of sedimentary logs across the basin to be considered. Prominent marker beds in this sedimentary sequence are 1-30 cm thick bentonites, formed from the chemical weathering of volcanic tuff deposits. In this study, we focus on 8 sedimentary logs across the CTB, spanning the Palaeocene to lower Eocene in age. Bentonites are common in the Palaeocene cores (Basilika and Grumantbyen formations), while rarer but still occasionally present in the Eocene Frysjaodden formation. The cores had between 3-12 observable bentonite layers that showed large variations in preservation and subsequent reworking. Roots and other finer organic material were common, especially when the bentonites were found next to coal seams. Geochemical affinities between ash layers were investigated to identify basin-wide depositional events, with the aim of elucidating the provenance of these ashes. This sedimentary sequence is of broader interest as it covers the Palaeocene-Eocene thermal maximum (PETM), an extreme global warming event driven by large releases to the atmosphere of CO2 and/or CH4, evidenced by a negative carbon isotope excursion in both the ocean and atmosphere. Potential sources include volcanism and associated gas release from intruded sediments, CH4 hydrate dissociation, and/or the oxidation of organic matter. These formations are

  10. Multiple ash layers in late Quaternary sediments from the Central Indian Basin

    NASA Astrophysics Data System (ADS)

    Mascarenhas-Pereira, M. B. L.; Nagender Nath, B.; Iyer, S. D.; Borole, D. V.; Parthiban, G.; Jijin, R.; Khedekar, V.

    2016-04-01

    We have investigated three sediment cores collected from water depths > 5000 m along the transect 76°30‧E in close proximity to a fracture zone in the Central Indian Basin (CIB). The cores yielded five volcanic horizons of which four have visual and dispersed shards. Rhyolitic glass shards of bubble wall, platy, angular and blocky types were retrieved from various stratigraphic horizons in the cores. The abundance of glass shards, composition of bulk sediments, and 230Thexcess ages of the host sediments were used to distinguish the volcanic horizons. Of the four volcanic horizons, three are now newly reported and correspond to ages of ~ 85, 107-109 and 142-146 ka while the fourth horizon is of 70-75 ka. By using trace element ratios and Cr and Nb-based normative calculations, cryptotephra has been identified for the first time from the CIB sediment. The cryptotephra forms the fifth ash horizon and is of ~ 34 ka. A comparison with the published data on volcanic tephra in and around the Indian Ocean indicate the shard rich horizon (SRH) of 70-75 ka to resemble the Younger Toba Tuffs (YTT), while the other volcanic horizons that were deposited during different time periods do not correlate with any known marine or terrestrial records. These tephra layers have produced a tephrostratigraphic framework across the tectonically and volcanically complex regions of the CIB. Due to the lack of terrestrial equivalents of these tephra, it is hypothesized that the newly found volcanic horizons may have been derived from submarine volcanic eruptions. Multiple layers of submarine volcaniclastic deposits found at water depths as great as 5300 m reaffirm the growing belief that submarine phreatomagmatic eruptions are much more common in the intraplate region of the Indian Ocean than previously reported.

  11. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS)

    SciTech Connect

    Tran, Phuoc

    2015-10-01

    We reported our preliminary results on the use of laser-induced breakdown spectroscopy to analyze the rare earth elements contained in ash samples from Powder River Basin sub-bituminous coal (PRB-coal). We have identified many elements in the lanthanide series (cerium, europium, holmium, lanthanum, lutetium, praseodymium, promethium, samarium, terbium, ytterbium) and some elements in the actinide series (actinium, thorium, uranium, plutonium, berkelium, californium) in the ash samples. In addition, various metals were also seen to present in the ash samples

  12. Geochemical evidence for sundering of the West Mariana arc in miocene ash from the Parece Vela Basin

    NASA Astrophysics Data System (ADS)

    Warner, Russell J.; Flower, Martin F. J.; Rodolfo, Kelvin S.

    1987-10-01

    Glass and mineral fragments from discrete volcanic ash layers were sampled from DSDP/IPOD Site 450 in the Parece Vela Basin, Philippine Sea and analyzed by electron microprobe. The ashes are interpreted as eruptive products of the adjacent West Mariana arc system between 25 and 14 Ma B.P., and have compositions between basaltic andesite and rhyolite, and rarely, boninite. 'Continuous' chemical trends appear to reflect mixing of mafic and silicic magmas. 'Discontinuous' trends between these end-members are relatively few, and are consistent with 'liquid lines' produced by fractional crystallization. Andesitic tephra become progressively richer in MgO and CaO through the middle Miocene, while boninite appears towards the end of the sequence, between 14 and 15 Ma B.P. Coeval rhyolitic glasses become richer in K 2O and Na 2O, with maximum concentrations at about 15 Ma B.P. Chronologic changes in fractionation type and composition of parent magmas are interpreted to reflect the subaerial volcanic evolution of the West Mariana arc. The appearance of boninite is believed to signal early stages of arc sundering, and corresponds temporally with regional uplift of the sea floor above the carbonate compensation depth, precursor to a new pulse of back-arc spreading.

  13. Coal ash basin effects (particulates, metals, acidic pH) upon aquatic biota: an eight-year evaluation. [Gambusia affinis; Plathemis lydia; Libellula spp

    SciTech Connect

    Cerry, D.S.; Guthrie, R.K.; Davis, E.M.; Harvey, R.S.

    1984-08-01

    Coal ash effluent effects including particulates, acidic pH excursions, elemental concentrations and bioconcentration in selected organisms have been studied as changes in water quality and densities of benthic macroinvertebrate and mosquitofish (Gambusia affinis) populations in a swanmp drainage system over an eight-year period. Initial density of the aquatic biota was altered severely by heavy ash siltation, followed by acidic pH excursions, and perhaps overall by elemental concentrations and bioaccumulation. Heavy ash siltation, followed by acidic pH excursions after the addition of fly ash to the original settling basin system, had the most profound effect on biota. Dipterans (chironomids) and some odonates (Plathemis lydia and Libellula spp.) were resistant to heavy ash siltation, while mosquitofish, which showed no discernible responses to ash siltation, were absent at acidic pH along with the few previously surviving invertebrate populations. Elemental concentrations of arsenic, cadmium, chromium, copper, selenium, and zinc did not appear to limit aquatic flora and fauna on a short-term, acute basis. Long-chronic elemental exposures may have been instrumental in retarding the recovery of all forms of aquatic life in the receiving system. Elemental concentrations (except for arsenic and selenium) in the receiving system were generally one to two orders of magnitude higher than the Water Quality Criteria set by the US Environmental Protection Agency (1980) for protection of aquatic life for the minimum and 24-hour mean values. By 1978, when the new settling basin systems were operating effectively, invertebrate populations were largely recovered, and mosquito-fish populations recovered within one year afterward.

  14. Crustal fluid and ash alteration impacts on the biosphere of Shikoku Basin sediments, Nankai Trough, Japan.

    PubMed

    Torres, M E; Cox, T; Hong, W-L; McManus, J; Sample, J C; Destrigneville, C; Gan, H M; Gan, H Y; Moreau, J W

    2015-11-01

    We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca(2+) and Cl(1-) are largely supplied via diffusion from a high-salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm(-3) day(-1) at ~400 mbsf. We also note the disappearance of δ-Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g(-1)) and manganese (up to 20 μmol g(-1)). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate-reducing pathways. The detection of the manganese- and iron-reducer γ-Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.

  15. Geochemistry and petrology of Oligocene and Miocene ash-flow tuffs of the southeastern Great Basin, Nevada

    USGS Publications Warehouse

    du Bray, Edward A.

    1995-01-01

    The White River Narrows area of Southeast Nevada contains 18 regionally distributed middle Tertiary dacite to rhyolite ash-flow tuffs. Geochemical data provide an excellent opportunity to study stratigraphic and petrologic relations of these tuffs. Chemical data for each of the tuffs are distinctive and provide a significant addition to other data used to identify and correlate these units. Relatively minor compositional variation within the tuffs is noteworthy.

  16. Fly ash chemical classification based on lime

    SciTech Connect

    Fox, J.

    2007-07-01

    Typically, total lime content (CaO) of fly ash is shown in fly ash reports, but its significance is not addressed in US specifications. For certain applications a low lime ash is preferred. When a class C fly ash must be cementitious, lime content above 20% is required. A ternary S-A-C phase diagram pilot is given showing the location of fly ash compositions by coal rank and source in North America. Fly ashes from subbituminous coal from the Powder River Basin usually contain sufficient lime to be cementitious but blending with other coals may result in calcium being present in phases other than tricalcium aluminate. 9 refs., 1 fig.

  17. BASINS

    EPA Pesticide Factsheets

    Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) is a multipurpose environmental analysis system designed to help regional, state, and local agencies perform watershed- and water quality-based studies.

  18. Development of critical life stage assays: Teratogenic effects of ash basin effluent components on freshwater fish, gambusia affinis and daphnia: Progress report, 21 May 1988--1 June 1989

    SciTech Connect

    Guram, M.S.; Boatwright, B.

    1989-04-17

    This project will establish a method for describing and evaluating the reproductive level of the Gambusia in the natural state, i.e., non-laboratory establishment of pregnancy. An additional aspect of the overall problem of establishing the natural level of the fertility of free ranging fish has been initiated with the inclusion of another Savannah River Plant (SRP) pond, (Par Pond), and three non-SRP ponds (Edgar Brown Pond, Lebby's Pond, Duncan's Pond) to the previously studied ponds (Ash Basin and Risner Pond). It is necessary to have a wider range of environments than that provided by a single comparison, e.g., Ash Basin versus Risher Pond, to be able to evaluate any one ponds' effect on the life phase of the Gambusia. To begin one of the major objectives of the research project proposal, the investigators have ordered embryonated eggs of the Medaka fish from a commercial source. Even though the Gambusia is a live bearer and the Medaka is an egg bearer, these latter fish eggs will allow the investigators to begin to learn the approximate magnitude of concentrations of inorganic (and possibly organic organic) substances to add to the developing embryonic system in order to study their effects on either the egg-enclosed embryo or the female fish-enclosed embryo. Obviously, the two systems are significantly different but it is anticipated that interesting information will be obtained from a comparison of results in the two systems. 9 figs., 1 tab.

  19. Immobile and mobile elements during the transition of volcanic ash to bentonite - An example from the early Palaeozoic sedimentary section of the Baltic Basin

    NASA Astrophysics Data System (ADS)

    Kiipli, Tarmo; Hints, Rutt; Kallaste, Toivo; Verš, Evelin; Voolma, Margus

    2017-01-01

    In order to check the immobility and mobility of elements during conversion of acidic volcanic glass to bentonites in normal marine environments, we studied the composition of three altered volcanic ash layers from the Palaeozoic of the Baltoscandian Region, correlated through different facies. Regular changes in element concentrations in accordance with loss and gain of material during the transformation of volcanic ash indicate that Al, Nb, Ti, Zr, Sn, Pt, Ta, Hf and Th were generally immobile and can be used for the interpretation of source magma and correlation of ash layers. Cd behaves similarly with immobile elements and this can be explained with preservation only of the immobile portion of Cd that is fixed in phenocrysts. In bentonites in shales during the formation of kaolinite, the data indicate small-scale mobility of Al and Cd. In lime muds where K-feldspar forms from volcanic ash, Ta, Hf and Th reveal some small scale mobility. These slightly mobile elements must be used with caution for interpretation of thin ash layers with thicknesses of < 1 cm. Sc, V, Ga, Y and Rare Earth Elements widely used for the interpretation of bentonites have noticeable mobility and can thus be used only semi-quantitatively or qualitatively in the bulk bentonite.

  20. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect

    S. W. Clark and H. M. Sulloway

    2007-09-26

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  1. Cleanup Verification Package for the 126-F-1, 184-F Powerhouse Ash Pit

    SciTech Connect

    S. W. Clark and H. M Sulloway

    2007-10-31

    This cleanup verification package documents completion of remedial action for the 126-F-1, 184-F Powerhouse Ash Pit. This waste site received coal ash from the 100-F Area coal-fired steam plant. Leakage of process effluent from the 116-F-14 , 107-F Retention Basins flowed south into the ash pit, contaminating the northern portion.

  2. Clay Improvement with Burned Olive Waste Ash

    PubMed Central

    Mutman, Utkan

    2013-01-01

    Olive oil is concentrated in the Mediterranean basin countries. Since the olive oil industries are incriminated for a high quantity of pollution, it has become imperative to solve this problem by developing optimized systems for the treatment of olive oil wastes. This study proposes a solution to the problem. Burned olive waste ash is evaluated for using it as clay stabilizer. In a laboratory, bentonite clay is used to improve olive waste ash. Before the laboratory, the olive waste is burned at 550°C in the high temperature oven. The burned olive waste ash was added to bentonite clay with increasing 1% by weight from 1% to 10%. The study consisted of the following tests on samples treated with burned olive waste ash: Atterberg Limits, Standard Proctor Density, and Unconfined Compressive Strength Tests. The test results show promise for this material to be used as stabilizer and to solve many of the problems associated with its accumulation. PMID:23766671

  3. Fly ash system technology improves opacity

    SciTech Connect

    2007-06-15

    Unit 3 of the Dave Johnston Power Plant east of Glenrock, WY, USA had problems staying at or below the opacity limits set by the state. The unit makes use of a Lodge Cottrell precipitator. When the plant changed to burning Power River Basin coal, ash buildup became a significant issue as the fly ash control system was unable to properly evacuate hoppers on the unit. To overcome the problem, the PLC on the unit was replaced with a software optimization package called SmartAsh for the precipitator fly ash control system, at a cost of $500,000. After the upgrade, there have been no plugged hoppers and the opacity has been reduced from around 20% to 3-5%. 2 figs.

  4. Physical and Radiative Properties of Aerosol Particles across the Caribbean Basin: A Comparison between Clean and Perturbed African Dust and Volcanic Ash Air Masses

    NASA Astrophysics Data System (ADS)

    Rivera, H.; Ogren, J. A.; Sheridan, P. J.; Mayol-Bracero, O.

    2009-12-01

    Aerosol’s optical and physical properties were measured during year 2007 at Cape San Juan, a ground-based station located at the northeastern tip of Puerto Rico. The three cases investigated were classified according to the origin of the air masses: clean (C), African dust (AD), and volcanic ash (VA). The instrumentation used included a sunphotometer to determine volume size distributions and aerosol optical thickness (AOT), a 3-wavelength nephelometer to determine the scattering coefficient (σsp), and a 3-wavelength particle/soot absorption photometer (PSAP) to measure the absorption coefficient (σap). The average volume size distributions were trimodal for the C (peaks at 0.14, 0.99 and 4.25 µm radius) and AD (peaks at 0.11, 1.30 and 2.00 µm radius) cases and bimodal for the VA (peaks at 0.19 and 2.75 µm radius) case. Fine and coarse modes maxima for AD occurred at radii smaller than for VA, confirming the different origins of those particles. The average values for the total σsp were higher for AD (82.9 Mm-1) and VA (33.7 Mm-1) compared to C (16.6 Mm-1). The same happened for the AOT maximum values at 500 nm with 0.92, 0.30, and 0.06 for AD, VA, and C, respectively. The observed increase in the values of the Angstrom exponent (å) is indicative of a decrease in the size of the particles associated to VA (å= 0.27) and AD (å =0.89) when compared to C (å =0.24). The volume size distributions and thus the mass were dominated by the coarse mode (> 1.0 µm) especially for the AD case. Results have shown that AD as well as VA has a significant impact on the physical and radiative properties across Puerto Rico and the Caribbean. Additional results on the AOT wavelength dependence and on the annual variability of the properties under study will be presented.

  5. Ash in fire affected ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Jordan, Antonio; Cerda, Artemi; Martin, Deborah

    2015-04-01

    -263. Dlapa, P., Bodí, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H., Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests. Catena. doi:10.1016/j.catena.2014.06.018 Dorta Almenar, I., Navarro Rivero, F.J., Arbelo, C.D., Rodríguez, A., Notario del Pino, J., The temporal distribution of water-soluble nutrients from high mountain soils following a wildfire within legume scrubland of Tenerife, Canary Islands, Spain. Catena. Escuday, M., Arancibia-Miranda, N., Pizarro, C., Antilén, M., Effect of ash from forest fires on leaching in volcanic soils. Catena. doi:10.1016/j.catena.2014.08.006 León, J., Echeverría, M.T., Marti, C., Badía, D., Can ash control infiltration rate after burning? An example in burned calcareous and gypseous soils in the Ebro Basin (NE Spain). Catena. doi:10.1016/j.catena.2014.05.024 Lombao, A., Barreiro, A., Carballas, T., Fontúrbel, M.T., Martín, C., Vega, J.A., Fernández, C., Díaz-Raviña, M., 2014. Changes in soil properties after a wildfire in Fragas do Eume Natural Park (Galicia, NW Spain). Catena. doi:10.1016/j.catena.2014.08.007 Pereira, P., Jordan, A., Cerda, A., Martin, D. (2014) Editorial: The role of ash in fire-affected ecosystems, Catena (In press) doi:10.1016/j.catena.2014.11.016 Pereira, P., Úbeda, X., Martin, D., Mataix-Solera, J., Cerdà, A., Burguet, M. (2014a) Wildfire effects on extractable elements in ash from a Pinus pinaster forest in Portugal, Hydrological Processes, 28, 3681-3690. Pereira, P., Ubeda, X., Mataix-Solera, J., Oliva, M., Novara, A. (2014) Short-term spatio-temporal spring grassland fire effects on soil colour,organic matter and water repellency in Lithuania, Solid Earth, 5, 209-225. Silva, V., Pereira, J.S., Campos, I., Keizer, J.J., Gonçalves, F., Abrantes, N., Toxicity assessment of aqueous extracts of ash from forest fires. Catena doi:10.1016/j.catena.2014.06.021

  6. Asymmetric Ashes

    NASA Astrophysics Data System (ADS)

    2006-11-01

    , it is. "This has some impact on the use of Type Ia supernovae as standard candles," says Ferdinando Patat. "This kind of supernovae is used to measure the rate of acceleration of the expansion of the Universe, assuming these objects behave in a uniform way. But asymmetries can introduce dispersions in the quantities observed." "Our discovery puts strong constraints on any successful models of thermonuclear supernova explosions," adds Wang. Models have suggested that the clumpiness is caused by a slow-burn process, called 'deflagration', and leaves an irregular trail of ashes. The smoothness of the inner regions of the exploding star implies that at a given stage, the deflagration gives way to a more violent process, a 'detonation', which travels at supersonic speeds - so fast that it erases all the asymmetries in the ashes left behind by the slower burning of the first stage, resulting in a smoother, more homogeneous residue.

  7. Alpha ash transport and ash control

    SciTech Connect

    Miley, G.H.; Hu, S.C.; Varadarajan, V.

    1990-01-01

    This paper discusses: thermal {alpha}-particle transport is a crucial issue in ash buildup. The transport will determine if buildup prevents ignition and if external control is necessary. Due to uncertainties in the transport coefficients, 1-1/2-D sensitivity study of the influence on the fusion power density is done using the BALDUR code. The Baldur simulations with varying diffusion coefficients for ash plasma are performed. The results of ash transport in the presence of sawteeth and varying edge conditions are discussed. Also, the nature of the fishbone oscillation in the presence of two hot species consisting of hot alphas and beam injected ions is discussed. The sawteeth and fishbones can be potential mechanisms for enhanced ash transport; the latter will indirectly influence the ash transport.

  8. Activation of fly ash

    DOEpatents

    Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

    1986-08-19

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  9. Activation of fly ash

    DOEpatents

    Corbin, David R.; Velenyi, Louis J.; Pepera, Marc A.; Dolhyj, Serge R.

    1986-01-01

    Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

  10. Utilization of SRS pond ash in controlled low strength material. Technical report

    SciTech Connect

    Langton, C.A.; Rajendran, N.

    1995-12-01

    Design mixes for Controlled Low Strength Material (CLSM) were developed which incorporate pond ashes (fly ashes) from the A-Area Ash Pile, the old F-Area Ash Basin and the D-Area Ash Basin. CLSM is a pumpable, flowable, excavatable backfill used in a variety of construction applications at SRS. Results indicate that CLSM which meets all of the SRS design specifications for backfill, can be made with the A-, D-, and F-Area pond ashes. Formulations for the design mixes are provided in this report. Use of the pond ashes may result in a cost savings for CLSM used at SRS and will utilize a by-product waste material, thereby decreasing the amount of material requiring disposal.

  11. Fly ash carbon passivation

    DOEpatents

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    2013-05-14

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most of the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.

  12. Trends in the Rare Earth Element Content of U.S.-Based Coal Combustion Fly Ashes.

    PubMed

    Taggart, Ross K; Hower, James C; Dwyer, Gary S; Hsu-Kim, Heileen

    2016-06-07

    Rare earth elements (REEs) are critical and strategic materials in the defense, energy, electronics, and automotive industries. The reclamation of REEs from coal combustion fly ash has been proposed as a way to supplement REE mining. However, the typical REE contents in coal fly ash, particularly in the United States, have not been comprehensively documented or compared among the major types of coal feedstocks that determine fly ash composition. The objective of this study was to characterize a broad selection of U.S. fly ashes of varied geological origin in order to rank their potential for REE recovery. The total and nitric acid-extractable REE content for more than 100 ash samples were correlated with characteristics such as the major element content and coal basin to elucidate trends in REE enrichment. Average total REE content (defined as the sum of the lanthanides, yttrium, and scandium) for ashes derived from Appalachian sources was 591 mg kg(-1) and significantly greater than in ashes from Illinois and Powder River basin coals (403 and 337 mg kg(-1), respectively). The fraction of critical REEs (Nd, Eu, Tb, Dy, Y, and Er) in the fly ashes was 34-38% of the total and considerably higher than in conventional ores (typically less than 15%). Powder River Basin ashes had the highest extractable REE content, with 70% of the total REE recovered by heated nitric acid digestion. This is likely due to the higher calcium content of Powder River Basin ashes, which enhances their solubility in nitric acid. Sc, Nd, and Dy were the major contributors to the total REE value in fly ash, based on their contents and recent market prices. Overall, this study shows that coal fly ash production could provide a substantial domestic supply of REEs, but the feasibility of recovery depends on the development of extraction technologies that could be tailored to the major mineral content and origins of the feed coal for the ash.

  13. Comparative study on elemental composition and DNA damage in leaves of a weedy plant species, Cassia occidentalis, growing wild on weathered fly ash and soil.

    PubMed

    Love, Amit; Tandon, Rajesh; Banerjee, B D; Babu, C R

    2009-10-01

    Open dumping of fly ash in fly ash basins has significant adverse environmental impacts due to its elevated trace element content. In situ biomonitoring of genotoxicity is of practical value in realistic hazard identification of fly ash. Genotoxicity of openly disposed fly ash to natural plant populations inhabiting fly ash basins has not been investigated. DNA damage, and concentrations of As, Co, Cr, Cu and Ni in the leaves of natural populations of Cassia occidentalis growing at two contrasting sites-one having weathered fly ash (fly ash basin) and the other having soil (reference site) as plant growth substrates-were assessed. The foliar concentrations of As, Ni and Cr were two to eight fold higher in plants growing on fly ash as compared to the plants growing on soil, whereas foliar concentrations of Cu and Co were similar. We report, for the first time, based upon comet assay results, higher levels of DNA damage in leaf tissues of Cassia occidentalis growing wild on fly ash basin compared to C. occidentalis growing on soil. Correlation analysis between foliar DNA damage and foliar concentrations of trace elements suggests that DNA damage may perhaps be associated with foliar concentrations of As and Ni. Our observations suggest that (1) fly ash triggers genotoxic responses in plants growing naturally on fly ash basins; and (2) plant comet assay is useful for in situ biomonitoring of genotoxicity of fly ash.

  14. Iron Fertilization by Volcanic Ash in the Cenomanian/Turonian Western Interior Seaway

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Tice, M. M.; Xu, G.; Hatcheria, J.; Sulak, C.; Rucker, B.; Gao, Z.; Maulana, I.; Figueroa, C.; Nimmo, L.; Gutkowski, B.; Dougherty, B.; Mattson, A.; Gillespie, D.; Wood, E.; Wehner, M.; Conte, R.

    2014-12-01

    Volcanic ash contains 1-10% FeO by weight and can be a significant contributor of Fe to the surface ocean. It is possible that Fe fertilization by volcanic ash has contributed to marine productivity in the past. The Late Cretaceous Eagle Ford Group (Cenomanian/Turonian) contains abundant volcanic ash beds interbedded with black argillaceous limestones and calcareous mudstones, providing opportunities for observation of the influence of ash on productivity and basin chemistry in the Western Interior Seaway. In particular, we hypothesize that volcanic ash from nearby arc volcanoes stimulated productivity by providing reactive iron to the surface ocean that was otherwise nutrient-limited by poor ventilation in a stratified water column. Enhanced productivity likewise reinforced basinal anoxia. To test our hypothesis, we examined the Swenson #1 core (151 feet) from McMullen County, south Texas, which contains 51 visualized ash beds with varying thickness. High resolution x-ray fluorescence spectroscopy (5 mm), x-ray fluorescence microscopy (100 μm) and scanning electron microscopy were performed to examine burial of Fe, trace elements delivered to the sediment by sinking organic matter (Cu and Ba), and paleoredox proxies (Mo and Cr) below, in, and above ash beds. Ash beds and beds containing admixed ash contain much more Fe than interbedded black shales, with nearly all Fe present in pyrite intergrown with or partially replacing altered ash grains, suggesting that ash transported reactive Fe to otherwise Fe-poor settings. Concentrations of Cu, Ba, Mo, and Cr were significantly greater in beds with admixed ash than in underlying beds. This suggests that input of ash increased marine productivity (Cu and Ba), which in turn enhanced oxygen demand and promoted euxinia (Mo and Cr). We conclude that Fe-bearing volcanic ash fertilized the southern Cenomanian/Turonian Western Interior Seaway, episodically forcing or enhancing euxinia both before and after OAE2.

  15. Ash cloud aviation advisories

    SciTech Connect

    Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.; Nasstrom, J.S.

    1992-06-25

    During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet and every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.

  16. Size distribution of rare earth elements in coal ash

    USGS Publications Warehouse

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  17. Comparison of Ash from PF and CFB Boilers and Behaviour of Ash in Ash Fields

    NASA Astrophysics Data System (ADS)

    Arro, H.; Pihu, T.; Prikk, A.; Rootamm, R.; Konist, A.

    Over 90% of electricity produced in Estonia is made by power plants firing local oil shale and 25% of the boilers are of the circulating fluidised bed (CFB) variety. In 2007 approximately 6.5 million tons of ash was acquired as a byproduct of using oil shale for energy production. Approximately 1.5 million tons of that was ash from CFB boilers. Such ash is deposited in ash fields by means ofhydro ash removal.

  18. Refinement of procedures for analysis and construction of hydraulicked ash-slag dumps to improve their in-service safety

    SciTech Connect

    Frolov, A. N.

    2013-03-15

    Solutions are proposed for enhancement of the in-service safety of hydraulicked ash-slag dumps with consideration of their hydrothermal regime. An assessment is given for the minimum dimensions of the settling basins and top surface of ash-slag dumps.

  19. Behavior study of trace elements in pulverized lignite, bottom ash, and fly ash of Amyntaio power station, Greece.

    PubMed

    Megalovasilis, Pavlos; Papastergios, Georgios; Filippidis, Anestis

    2013-07-01

    The Kozani-Ptolemais-Amyntaio basin constitutes the principal coal field of Greece. Approximately 50% of the total power production of Greece is generated by five power stations operating in the area. Lignite samples, together with the corresponding fly ash and bottom ash were collected, over a period of 3 months, from the power plant of Amyntaio and analyzed for their content in 16 trace elements. The results indicate that Y, Nb, U, Rb, Zr, Ni, Pb, Ba, Zn, Sr, Cu, and Th demonstrate an organic affinity during the combustion of lignite, while V has an inorganic affinity. Three elements (Co, Cr, and Sc) show an intermediate affinity.

  20. Lunar ash flows - Isothermal approximation.

    NASA Technical Reports Server (NTRS)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    Suggestion of the ash flow mechanism as one of the major processes required to account for some features of lunar soil. First the observational background and the gardening hypothesis are reviewed, and the shortcomings of the gardening hypothesis are shown. Then a general description of the lunar ash flow is given, and a simple mathematical model of the isothermal lunar ash flow is worked out with numerical examples to show the differences between the lunar and the terrestrial ash flow. The important parameters of the ash flow process are isolated and analyzed. It appears that the lunar surface layer in the maria is not a residual mantle rock (regolith) but a series of ash flows due, at least in part, to great meteorite impacts. The possibility of a volcanic contribution is not excluded. Some further analytic research on lunar ash flows is recommended.

  1. EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS

    SciTech Connect

    Unknown

    2000-10-01

    Tests were performed in simulated flue gas streams using two fly ash samples from the electrostatic precipitators of two full-scale utility boilers. One fly ash was derived from a Powder River Basin (PRB) coal, while the other was derived from Blacksville coal (Pittsburgh No. 8 seam). The tests were performed at temperatures of 120 and 180 C under different gas compositions using whole fly ash samples as well as magnetic and nonmagnetic concentrates from sized fly ash. Only the Blacksville ash contained magnetic phases. The whole and fractionated fly ash samples were analyzed for morphology, chemical composition, mineralogical composition, total organic carbon, porosity, and surface area. Mineralogically, the Blacksville ash was composed predominantly of magnetite, hematite, quartz, and mullite, while the PRB ash contained mostly quartz with lesser amounts of lime, periclase, and calcium aluminum oxide. The iron oxides in the Blacksville ash were concentrated almost entirely in the largest size fraction. As anticipated, there was not a clean separation of magnetic (Fe-rich) and nonmagnetic (aluminosilicate-rich) phases for the Blacksville ash. The Blacksville ash had a significantly higher surface area and a much higher unburned carbon content than the PRB ash. Elemental mercury (Hg) streams were injected into the simulated flue gas and passed over filters (housed in a convection oven) loaded with fly ash. Concentrations of total, oxidized, and elemental Hg downstream from the ash samples were determined by the Ontario Hydro Method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables. Based on the statistical analyses, the presence of HCl, NO, NO{sub 2}, and SO{sub 2} and all two-way gas interactions were significant. In addition, it appears that even four-factor interactions between those gases are significant. The HCl, NO{sub 2}, and SO{sub 2} were critical gases resulting in Hg oxidation, while

  2. Coal ash utilization in India

    SciTech Connect

    Michalski, S.R.; Brendel, G.F.; Gray, R.E.

    1998-12-31

    This paper describes methods of coal combustion product (CCP) management successfully employed in the US and considers their potential application in India. India produces about 66 million tons per year (mty) of coal ash from the combustion of 220 mty of domestically produced coal, the average ash content being about 30--40 percent as opposed to an average ash content of less than 10 percent in the US In other words, India produces coal ash at about triple the rate of the US. Currently, 95 percent of this ash is sluiced into slurry ponds, many located near urban centers and consuming vast areas of premium land. Indian coal-fired generating capacity is expected to triple in the next ten years, which will dramatically increase ash production. Advanced coal cleaning technology may help reduce this amount, but not significantly. Currently India utilizes two percent of the CCP`s produced with the remainder being disposed of primarily in large impoundments. The US utilizes about 25 percent of its coal ash with the remainder primarily being disposed of in nearly equal amounts between dry landfills and impoundments. There is an urgent need for India to improve its ash management practice and to develop efficient and environmentally sound disposal procedures as well as high volume ash uses in ash haulback to the coalfields. In addition, utilization should include: reclamation, structural fill, flowable backfill and road base.

  3. ASH EMISSIVITY CHARACTERIZATION AND PREDICTION

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Charlene R. Crocker

    1999-12-01

    The increased use of western subbituminous coals has generated concerns regarding highly reflective ash disrupting heat transfer in the radiant zone of pulverized-fuel boilers. Ash emissivity and reflectivity is primarily a function of ash particle size, with reflective deposits expected to consist of very small refractory ash materials such as CaO, MgO, or sulfate materials such as Na{sub 2}SO{sub 4}. For biomass fuels and biomass-coal blends, similar reflectivity issues may arise as a result of the presence of abundant organically associated calcium and potassium, which can transform during combustion to fine calcium, and potassium oxides and sulfates, which may act as reflective ash. The relationship of reflectivity to ash chemistry is a second-order effect, with the ash particle size distribution and melting point being determined by the size and chemistry of the minerals present in the starting fuel. Measurement of the emission properties of ash and deposits have been performed by several research groups (1-6) using both laboratory methods and measurements in pilot- and full-scale combustion systems. A review of the properties and thermal properties of ash stresses the important effect of ash deposits on heat transfer in the radiant boiler zone (1).

  4. Volcanic ash melting under conditions relevant to ash turbine interactions

    PubMed Central

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-01-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200–2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines. PMID:26931824

  5. Volcanic ash melting under conditions relevant to ash turbine interactions

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Lavallée, Yan; Hess, Kai-Uwe; Kueppers, Ulrich; Cimarelli, Corrado; Dingwell, Donald B.

    2016-03-01

    The ingestion of volcanic ash by jet engines is widely recognized as a potentially fatal hazard for aircraft operation. The high temperatures (1,200-2,000 °C) typical of jet engines exacerbate the impact of ash by provoking its melting and sticking to turbine parts. Estimation of this potential hazard is complicated by the fact that chemical composition, which affects the temperature at which volcanic ash becomes liquid, can vary widely amongst volcanoes. Here, based on experiments, we parameterize ash behaviour and develop a model to predict melting and sticking conditions for its global compositional range. The results of our experiments confirm that the common use of sand or dust proxy is wholly inadequate for the prediction of the behaviour of volcanic ash, leading to overestimates of sticking temperature and thus severe underestimates of the thermal hazard. Our model can be used to assess the deposition probability of volcanic ash in jet engines.

  6. Early Eocene volcanic ashes on Greifswalder Oie and their depositional environment, with an overview of coeval ash-bearing deposits in northern Germany and Denmark

    NASA Astrophysics Data System (ADS)

    Obst, Karsten; Ansorge, Jörg; Matting, Sabine; Hüneke, Heiko

    2015-11-01

    Unconsolidated bentonites and carbonate-cemented volcanic ashes occur in northern Germany within the clay sequence of the Lamstedt and Schlieven Formations documented by several wells. Ash-bearing carbonate concretions (so-called cementstones) are also known from glacially transported rafts and erratic boulders on the Baltic Sea island Greifswalder Oie, representing the easternmost exposures of early Eocene sediments in the North Sea Basin. The ashes can be correlated with water-lain ashes of the Danish Fur and Ølst Formations (mo-clay) generated during the opening of the North Atlantic Ocean about 55 Ma ago. Two types of cementstones can be distinguished on the basis of the mineralogical composition, sedimentary features and fossil content. Greifswalder Oie type I contains a black, up to 12-cm-thick ash deposit that follows above two distinct thin grey ash layers. The major ash unit has a rather homogeneous lower part; only a very weak normal grading and faint lamination are discernible. In the upper part, however, intercalations with light mudstone, in part intensively bioturbated, together with parallel and cross-lamination suggest reworking of the ash in a shallow marine environment. Major and trace element compositions are used to correlate type I ashes with those of the Danish-positive series which represent rather uniform ferrobasalts of the Danish stage 4, probably related to the emergence of proto-Iceland. In contrast, type II ash comprises a single, normally graded, about 5-cm-thick layer of water-lain air-fall tuff, which is embedded in fine-grained sandstone to muddy siltstone. Type II ash is characterised by very high TiO2 but low MgO contents. Exceptional REE patterns with a pronounced positive Eu anomaly suggest intense leaching of the glass that hampers exact correlation with pyroclastic deposits within the North Atlantic Igneous Province.

  7. Chronic exposure to coal fly ash causes minimal changes in corticosterone and testosterone concentrations in male southern toads Bufo terrestris

    SciTech Connect

    Ward, C.K.; Mendonca, M.T.

    2006-08-15

    More than 50% of the electricity in the United States is produced by coal-burning power plants. The byproduct of coal-burning plants is coal fly ash, which contains increased concentrations of trace metals and is disposed of in collection basins. Southern toads (Bufo terrestris) frequently use these basins for reproduction. Male toads were collected in spring 2001 and 2002 from an ash basin and a reference site and divided into four groups: toads collected at the control site and maintained on (1) control substrate and food or (2) ash and contaminated food and toads collected at the ash site and maintained in (3) control or (4) ash conditions. Blood was collected periodically during 5 months to determine testosterone and corticosterone concentrations. Reference to ash toads exhibited a significant, transient increase in corticosterone at 4 weeks, but neither corticosterone nor testosterone continued to increase beyond this time. In contrast, toads caught and maintained on ash did not exhibit increased corticosterone. Testosterone in these toads appeared to be unrelated to ash exposure. This unexpected lack of a corticosterone response and no effect on testosterone suggests that toads chronically exposed to trace metals can acclimate to a polluted environment, but they may still experience subtle long-term consequences.

  8. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  9. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2016-07-12

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  10. Effects of volcanic ash on the benthic environment of a mountain stream, northern Idaho

    USGS Publications Warehouse

    Frenzel, S.A.

    1982-01-01

    The May 18, 1980, eruption of Mount St. Helens deposited about 15 millimeters of volcanic ash on the Big Creek basin in northern Idaho. Much of the uncompacted ash remained on hillsides a year after the eruption. Physical and chemical analyses of water samples from Big Creek collected from December 1980 to December 1981 showed no anomalies attributable to ash. Qualitative collections showed benthic invertebrates to be abundant and diverse in Big Creek. Experiments conducted in an unimpacted mountain stream revealed a small quantity of volcanic ash may be beneficial not detrimental to invertebrate communities. Benthic invertebrates were most abundant on ash-covered artificial substrates, with detritovores dominating the communities on all substrates. (USGS)

  11. Melting Behavior of Volcanic Ash relevant to Aviation Ash Hazard

    NASA Astrophysics Data System (ADS)

    Song, W.; Hess, K.; Lavallee, Y.; Cimarelli, C.; Dingwell, D. B.

    2013-12-01

    Volcanic ash is one of the major hazards caused by volcanic eruptions. In particular, the threat to aviation from airborne volcanic ash has been widely recognized and documented. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in-flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The primary cause of engine thrust loss is that the glass in volcanic ash particles is generated at temperatures far lower than the temperatures in the combustion chamber of a jet engine ( i.e. > 1600 oC) and when the molten volcanic ash particles leave this hottest section of the engine, the resolidified molten volcanic ash particles will be accumulated on the turbine nozzle guide vanes, which reduced the effective flow of air through the engine ultimately causing failure. Thus, it is essential to investigate the melting process and subsequent deposition behavior of volcanic ash under gas turbine conditions. Although few research studies that investigated the deposition behavior of volcanic ash at the high temperature are to be found in public domain, to the best our knowledge, no work addresses the formation of molten volcanic ash. In this work, volcanic ash produced by Santiaguito volcano in Guatemala in November 8, 2012 was selected for study because of their recent activity and potential hazard to aircraft safety. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the sintering and fusion phenomena as well as determine the volcanic ash melting behavior by using characteristic temperatures by means of hot stage microscope (HSM), different thermal analysis (DTA) and Thermal Gravimetric Analysis (TGA) to

  12. Using Kettle Lake Records to Date and Interpret Holocene Ash Deposition in Upper Cook Inlet, Anchorage, AK

    NASA Astrophysics Data System (ADS)

    Werner, A.; Kathan, K. M.; Kaufman, D. S.; Hancock, J. R.; Waythomas, C. F.; Wallace, K. L.

    2004-12-01

    Fourteen sediment cores recovered from three kettle lakes (Goose, Little Campbell and Lorraine) near Anchorage, AK were used to document and date Holocene volcanic ash deposition in the upper Cook Inlet area. Small lakes (<0.5 km2) with small (<1.5 km2), low relief (<50 m), and well-vegetated drainage areas were selected in order to minimize ash remobilization by mass wasting and fluvial processes. The resulting stratigraphic records are interpreted as primary terpha-fall stratigraphies. Relative to the surrounding lacustrine sediments, the ash layers exhibit low organic-matter content (as determined by loss-on-ignition, LOI), high magnetic susceptibility (MS), increased density (X-radiographs), and bubble-wall glass shards. Some ash layers are up to 1 cm thick (macrotephra) consisting of pure glass, some occur as light bands, while others (microtephra) can only be located using non-visual techniques (MS, LOI and X-radiography). The thinnest microtephras observed occur either as discrete (1 mm) layers or diffuse laminations composed of tephra mixed with ambient lake sediment. Forty-five AMS C-14 dates on terrestrial macro fossils were used to constrain sedimentation-rate models for the cores, and to assign absolute ages to ash units. Comparison of inferred tephra ages corroborates our intra and inter basin stratigraphic correlations (+/- 200 yrs) based on physical and MS stratigraphy. Ten out of 12 macrotephras can be confidently correlated among all three lakes, whereas, two of the prominent tephras occur in one basin but not in the others. This suggests subtle differences in ash plume extents or differences in tephra preservation between lakes. A total of 24 Holocene ash units (12 macro and 12 micro) have been recognized and dated in the Anchorage area, suggesting an ash-fall frequency of about 2.4/1000 yrs. By comparison, historical records suggest more frequent ash-fall events (120/1000 yrs). Our data indicate that, either the ash layers are not consistently

  13. Ash in the Soil System

    NASA Astrophysics Data System (ADS)

    Pereira, P.

    2012-04-01

    Ash is the organic and inorganic residue produced by combustion, under laboratory and field conditions. This definition is far away to be accepted. Some researchers consider ash only as the inorganic part, others include also the material not completely combusted as charcoal or biochar. There is a need to have a convergence about this question and define clear "what means ash". After the fire and after spread ash onto soil surface, soil properties can be substantially changed depending on ash properties, that can be different according to the burned residue (e.g wood, coal, solid waste, peppermill, animal residues), material treatment before burning, time of exposition and storage conditions. Ash produced in boilers is different from the produced in fires because of the material diferent propertie and burning conditions. In addition, the ash produced in boilers is frequently treated (e.g pelletization, granulation, self curing) previously to application, to reduce the negative effects on soil (e.g rapid increase of pH, mycorrhiza, fine roots of trees and microfauna). These treatments normally reduce the rate of nutrients dissolution. In fires this does not happen. Thus the implications on soil properties are logically different. Depending on the combustion temperature and/or severity, ash could have different physical (e.g texture, wettability) and chemical properties (e.g amount and type of total and leached nutrients) and this will have implications on soil. Ash can increase and decrease soil aggregation, wettablity and water retention, bulk density, runoff and water infiltration. Normally, ash increases soil pH, Electrical Conductivity, and the amount of some basic nutrients as calcium, magnesium, sodium and potassium. However it is also a potential source of heavy metals, especially if ash pH is low. However the effect of ash on soil in space and time depends especially of the ash amount and characteristics, fire temperature, severity, topography, aspect

  14. An atlas of volcanic ash

    NASA Technical Reports Server (NTRS)

    Heiken, G.

    1974-01-01

    Volcanic ash samples collected from a variety of recent eruptions were studied, using petrography, chemical analyses, and scanning electron microscopy to characterize each ash type and to relate ash morphology to magma composition and eruption type. The ashes are best placed into two broad genetic categories: magnetic and hydrovolcanic (phreatomagmatic). Ashes from magmatic eruptions are formed when expanding gases in the magma form a froth that loses its coherence as it approaches the ground surface. During hydrovolcanic eruptions, the magma is chilled on contact with ground or surface waters, resulting in violent steam eruptions. Within these two genetic categories, ashes from different magma types can be characterized. The pigeon hole classification used here is for convenience; there are eruptions which are driven by both phreatic and magmatic gases.

  15. EFFECTS OF FLY ASH ON MERCURY OXIDATION DURING POST COMBUSTION CONDITIONS

    SciTech Connect

    Glenn A. Norton; Hongqun Yang; Robert C. Brown; Dennis L. Laudal; Grant E. Dunham; John Erjavec; Joseph M. Okoh

    2002-01-31

    Tests were performed in simulated flue gas streams using fly ash from the electrostatic precipitators of two full-scale utility boilers. One fly ash was from a Powder River Basin (PRB) coal, while the other was from Blacksville coal. Elemental Hg was injected upstream from samples of fly ash loaded onto filters housed in an oven at 120 or 180 C. Concentrations of oxidized and elemental Hg downstream from the filters were determined using the Ontario Hydro method. The gas stream composition and whether or not ash was present in the gas stream were the two most important variables affecting Hg oxidation. The presence of HCl, NO, NO{sub 2}, and SO{sub 2} were all important with respect to Hg oxidation, with NO{sub 2} and HCl being the most important. The presence of NO suppressed Hg oxidation in these tests. Although the two fly ashes were chemically and mineralogically diverse, there were generally no large differences in catalytic potential (for oxidizing Hg) between them. Similarly, no ash fraction appeared to be highly catalytic relative to other ash fractions. This includes fractions enriched in unburned carbon and fractions enriched in iron oxides. Although some differences of lesser magnitude were observed in the amount of oxidized Hg formed, levels of oxidized Hg generally tracked well with the surface areas of the different ashes and ash fractions. Therefore, although the Blacksville fly ash tended to show slightly more catalytic activity than the PRB fly ash, this could be due to the relatively high surface area of that ash. Similarly, for Blacksville fly ash, using nonmagnetic ash resulted in more Hg oxidation than using magnetic ash, but this again tracked well with the relative surface areas of the two ash fractions. Test results suggest that the gas matrix may be more important in Hg oxidation chemistry than the fly ash composition. Combustion tests were performed in which Blacksville and PRB fly ashes were injected into filtered (via a baghouse with

  16. Rocky Mountain Tertiary coal-basin models and their applicability to some world basins

    USGS Publications Warehouse

    Flores, R.M.

    1989-01-01

    Tertiary intermontane basins in the Rocky Mountain region of the United States contain large amounts of coal resources. The first major type of Tertiary coal basin is closed and lake-dominated, either mud-rich (e.g., North Park Basin, Colorado) or mud plus carbonate (e.g., Medicine Lodge Basin, Montana), which are both infilled by deltas. The second major type of Tertiary coal basin is open and characterized by a preponderance of sediments that were deposited by flow-through fluvial systems (e.g., Raton Basin, Colorado and New Mexico, and Powder River Basin, Wyoming and Montana). The setting for the formation of these coals varies with the type of basin sedimentation, paleotectonism, and paleoclimate. The mud-rich lake-dominated closed basin (transpressional paleotectonism and warm, humid paleoclimate), where infilled by sandy "Gilbert-type" deltas, contains thick coals (low ash and low sulfur) formed in swamps of the prograding fluvial systems. The mud- and carbonate-rich lake-dominated closed basin is infilled by carbonate precipitates plus coarse-grained fan deltas and fine-grained deltas. Here, thin coals (high ash and high sulfur) formed in swamps of the fine-grained deltas. The coarse-clastic, open basins (compressional paleotectonism and warm, paratropical paleoclimate) associated with flow-through fluvial systems contain moderately to anomalously thick coals (high to low ash and low sulfur) formed in swamps developed in intermittently abandoned portions of the fluvial systems. These coal development patterns from the Tertiary Rocky Mountain basins, although occurring in completely different paleotectonic settings, are similar to that found in the Tertiary, Cretaceous, and Permian intermontane coal basins in China, New Zealand, and India. ?? 1989.

  17. Volcanic ash infrared signature: realistic ash particle shapes compared to spherical ash particles

    NASA Astrophysics Data System (ADS)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2013-10-01

    The reverse absorption technique is often used to detect volcanic clouds from thermal infrared satellite measurements. From these measurements particle size and mass loading may also be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculate thermal infrared optical properties of highly irregular and porous ash particles and compare these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry are calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres are found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates will underestimate the mass loading by several tens of percent compared to morphologically complex inhomogeneous ash particles.

  18. Fly ash quality and utilization

    SciTech Connect

    Barta, L.E.; Lachner, L.; Wenzel, G.B.; Beer, M.J.

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  19. The Ash Warriors

    DTIC Science & Technology

    2000-01-01

    eruption of Mount Vesuvius . † Hot/fiery fragments is the meaning of pyroclastic, from the Greek. “I had no doubt that if the volcano contin- ued to develop...final act in a drama that began with the initial rumblings in April of that year of the Mount Pinatubo volcano, located about nine miles to the east of... Mount Pinatubo’s eruptions, and the packing out of the base during the subsequent months. This is the story of the “Ash Warriors,” those Air Force

  20. Ash after forest fires. Effects on soil hydrology and erosion

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.

    2013-04-01

    from certain Eucaliptus and Pinus), or if clog soil pores (depending also on the soil type). If ash is wettable, it can store even 80% of its volume and then it will delay and reduce overland flow proportionally to the thickness of the ash layer. Once ash gets saturated, the flow tends to adjust to an infiltration rate similar to the soil itself, or sometimes higher due to the protection of ash that can reduce soil water repellency and soil sealing (Bodí et al. 2011, 2012). Still, many other aspects on ash remain unknown and ash present us more questions like, what it is its role on the carbon cycle? what is the extent of the ahs effects at basin scale? what is the fate of ash and how long it remains in the ecosystem? are there specific effects of ash depending on the ecosystem and so the type of ash? Acknowledgements This work was supported financially by a research fellowship (AP2007-04602) from the Spanish Ministry of Science and Innovation (M.B. Bodí) and the projects PT2009-0073 and CGL2010-21670-C02-01. References Bodí, M.B., Mataix-Solera, J., Doerr, S.H., Cerdà, A., 2011, The wettability of ash from burned vegetation and its relationship to Mediterranean plant species type, burn severity and total organic carbon content. Geoderma 160, 599-607. Bodí, M.B., Doerr, S.H., Cerdà, A., Mataix-Solera, J., 2012, Hydrological effects of a layer of vegetation ash on underlying wettable and water repellent soil. Geoderma 191, 14-23 Cerdà, A., 1998, Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes 12, 1031-1042. Cerdà, A., Doerr, S.H., 2008, The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena 74, 256-263. Woods, S.W., Balfour, V., 2008, The effect of ash on runoff and erosion after a forest wildfire, Montana, U.S.A. International Journal of Wildland Fire 17, 535-548.

  1. Volcanic ash - Terrestrial versus extraterrestrial

    NASA Technical Reports Server (NTRS)

    Okeefe, J. A.

    1976-01-01

    A principal difference between terrestrial and extraterrestrial lavas may consist in the greater ability of terrestrial lavas to form thin films (like those of soap bubbles) and hence foams. It would follow that, in place of the pumice and spiny shards found in terrestrial volcanic ash, an extraterrestrial ash should contain minute spherules. This hypothesis may help to explain lunar microspherules.

  2. Incineration and incinerator ash processing

    SciTech Connect

    Blum, T.W.

    1991-01-01

    Parallel small-scale studies on the dissolution and anion exchange recovery of plutonium from Rocky Flats Plant incinerator ash were conducted at the Los Alamos National Laboratory and at the Rocky Flats Plant. Results from these two studies are discussed in context with incinerator design considerations that might help to mitigate ash processing related problems. 11 refs., 1 fig., 1 tab.

  3. Bottom ash boosts poor soil

    SciTech Connect

    Stanley, D.

    1993-04-01

    This article describes agricultural uses of fluidized bed bottom ash residue from burning limestone and coal in electric power generating plants: as a limestone substitute, to increase calcium levels in both soil and plants, and as a gypsom-containing soil amendment. Apples and tomatoes are the crops used. The industrial perspective and other uses of bottom ash are also briefly described.

  4. Ash-Based Ceramic Materials.

    DTIC Science & Technology

    This patent discloses a ceramic material made from raw coal fly ash or raw municipal solid waste fly ash and (1) sodium tetraborate or (2) a mixture of sodium tetraborate and a calcium containing material that is triple superphosphate, lime, dolomite lime, or mixtures thereof.

  5. Reclamation and revegetation of fly ash disposal sites - Challenges and research needs.

    PubMed

    Haynes, R J

    2009-01-01

    Coal-fired power generation is a principal energy source throughout the world. Approximately, 70-75% of coal combustion residues are fly ash and its utilization worldwide is only slightly above 30%. The remainder is disposed of in landfills and fly ash basins. It is desirable to revegetate these sites for aesthetic purposes, to stabilize the surface ash against wind and water erosion and to reduce the quantity of water leaching through the deposit. Limitations to plant establishment and growth in fly ash can include a high pH (and consequent deficiencies of Fe, Mn, Cu, Zn and P), high soluble salts, toxic levels of elements such as B, pozzalanic properties of ash resulting in cemented/compacted layers and lack of microbial activity. An integrated organic/biotechnological approach to revegetation seems appropriate and should be investigated further. This would include incorporation of organic matter into the surface layer of ash, mycorrhizal inoculation of establishing vegetation and use of inoculated legumes to add N. Leaching losses from ash disposal sites are likely to be site-specific but a sparse number of studies have revealed enriched concentrations of elements such as Ca, Fe, Cd, Pb, and Sb in surrounding groundwater. This aspect deserves further study particularly in the longer-term. In addition, during weathering of the ash and deposition of organic matter during plant growth, a soil will form with properties vastly different to that of the parent ash. In turn, this will influence the effect that the disposal site has on the surrounding environment. Nevertheless, the effects of ash weathering and organic matter accumulation over time on the chemical, physical and biological properties of the developing ash-derived soil are not well understood and require further study.

  6. Speciation of Selenium, Arsenic, and Zinc in Class C Fly Ash

    SciTech Connect

    Luo, Yun; Giammar, Daniel E.; Huhmann, Brittany L.; Catalano, Jeffrey G.

    2011-11-17

    A major environmental concern associated with coal fly ash is the mobilization of trace elements that may contaminate water. To better evaluate proper use of fly ash, determine appropriate disposal methods, and monitor postdisposal conditions, it is important to understand the speciation of trace elements in fly ash and their possible environmental impact. The speciation of selenium, arsenic, and zinc was determined in five representative Class C fly ash samples from combustion of sub-bituminous Powder River Basin coal using synchrotron-based X-ray absorption spectroscopy to provide an improved understanding of the mechanisms of trace element association with the fly ash. Selenium in all fly ash samples occurs predominantly as Se(IV), with the exception of one sample, in which there was a minor amount of Se(0). Se(0) is likely associated with the high content of unburned coal in the sample. Arsenic exists in the fly ash as a single phase most consistent with calcium pyroarsenate. In contrast, zinc occurs as two distinct species in the silicate glass matrix of the fly ash. This work demonstrates that residual carbon in fly ash may reduce potential Se mobility in the environment by retaining it as less soluble elemental Se instead of Se(IV). Further, this work suggests that As and Zn in Class C fly ash will display substantially different release and mobilization behaviors in aquatic environments. While As release will primarily depend upon the dissolution and hydrolysis of calcium pyroarsenate, Zn release will be controlled by the dissolution of alkaline aluminosilicate glass in the ash.

  7. Using fly ash for construction

    SciTech Connect

    Valenti, M.

    1995-05-01

    Each year electrical utilities generate 80 million tons of fly ash, primarily from coal combustion. Typically, utilities dispose of fly ash by hauling it to landfills, but that is changing because of the increasing cost of landfilling, as well as environmental regulations. Now, the Electric Power Research Institute (EPRI), in Palo Alto, Calif., its member utilities, and manufacturers of building materials are finding ways of turning this energy byproduct into the building blocks of roads and structures by converting fly ash into construction materials. Some of these materials include concrete and autoclaved cellular concrete (ACC, also known as aerated concrete), flowable fill, and light-weight aggregate. EPRI is also exploring uses for fly ash other than in construction materials. One of the more high-end uses for the material is in metal matrix composites. In this application, fly ash is mixed with softer metals, such as aluminum and magnesium, to strengthen them, while retaining their lighter weight.

  8. Trace elements in coal ash

    USGS Publications Warehouse

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    In this fact sheet, the form, distribution, and behavior of trace elements of environmental interest in samples of coal fly ash were investigated in response to concerns about element mobility in the event of an ash spill. The study includes laboratory-based leaching experiments to examine the behavior of trace elements, such as arsenic (As) and chromium (Cr), in response to key environmental factors including redox conditions (degree of oxygenation), which are known to vary with depth within coal ash impoundments and in natural ecosystems. The experiments show that As dissolves from samples of coal fly ash into simulated freshwater under both oxic (highly oxygenated) and anoxic (poorly oxygenated) conditions, whereas dissolved Cr concentrations are very redox dependent. This U.S. Geological Survey research helps define the distribution of elements such as As in coal ash and shows that element mobility can vary considerably under different conditions expected in the environment.

  9. Ash Aggregates in Proximal Settings

    NASA Astrophysics Data System (ADS)

    Porritt, L. A.; Russell, K.

    2012-12-01

    Ash aggregates are thought to have formed within and been deposited by the eruption column and plume and dilute density currents and their associated ash clouds. Moist, turbulent ash clouds are considered critical to ash aggregate formation by facilitating both collision and adhesion of particles. Consequently, they are most commonly found in distal deposits. Proximal deposits containing ash aggregates are less commonly observed but do occur. Here we describe two occurrences of vent proximal ash aggregate-rich deposits; the first within a kimberlite pipe where coated ash pellets and accretionary lapilli are found within the intra-vent sequence; and the second in a glaciovolcanic setting where cored pellets (armoured lapilli) occur within <1 km of the vent. The deposits within the A418 pipe, Diavik Diamond Mine, Canada, are the residual deposits within the conduit and vent of the volcano and are characterised by an abundance of ash aggregates. Coated ash pellets are dominant but are followed in abundance by ash pellets, accretionary lapilli and rare cored pellets. The coated ash pellets typically range from 1 - 5 mm in diameter and have core to rim ratios of approximately 10:1. The formation and preservation of these aggregates elucidates the style and nature of the explosive phase of kimberlite eruption at A418 (and other pipes?). First, these pyroclasts dictate the intensity of the kimberlite eruption; it must be energetic enough to cause intense fragmentation of the kimberlite to produce a substantial volume of very fine ash (<62 μm). Secondly, the ash aggregates indicate the involvement of moisture coupled with the presence of dilute expanded eruption clouds. The structure and distribution of these deposits throughout the kimberlite conduit demand that aggregation and deposition operate entirely within the confines of the vent; this indicates that aggregation is a rapid process. Ash aggregates within glaciovolcanic sequences are also rarely documented. The

  10. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  11. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  12. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  13. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  14. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  15. Phosphate-Bonded Fly Ash.

    DTIC Science & Technology

    1994-12-09

    FCODE OC ______________ ARLINGTON VA 22217-5660 - dis~bu~i.19~ 3 B Navy Case No. 75,787 PATENTS PHOSPHATE -BONDED FLY ASH IN’NA G. TALMY DEBORAH A. HAUGHT...2 3 , CaO. MgO, etc. with which the H.PO4 reacts to form the polymer-like phosphate bonds which hold the fly ash particles together. In the second...conventional means. The moisture (water) content of the aqueous HP0 4 /fly ash mixture is preferably from about 3 to about 5 weight percent for semidry

  16. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  17. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  18. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  19. 46 CFR 148.225 - Calcined pyrites (pyritic ash, fly ash).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Calcined pyrites (pyritic ash, fly ash). 148.225 Section... § 148.225 Calcined pyrites (pyritic ash, fly ash). (a) This part does not apply to the shipment of calcined pyrites that are the residual ash of oil or coal fired power stations. (b) This section applies...

  20. Long duration ash probe

    DOEpatents

    Hurley, J.P.; McCollor, D.P.; Selle, S.J.

    1994-07-26

    A long duration ash probe includes a pressure shell connected to a port in a combustor with a sample coupon mounted on a retractable carriage so as to retract the sample coupon within the pressure shell during soot blowing operation of the combustor. A valve mounted at the forward end of the pressure shell is selectively closeable to seal the sample coupon within the shell, and a heating element in the shell is operable to maintain the desired temperature of the sample coupon while retracted within the shell. The carriage is operably mounted on a pair of rails within the shell for longitudinal movement within the shell. A hollow carrier tube connects the hollow cylindrical sample coupon to the carriage, and extends through the carriage and out the rearward end thereof. Air lines are connected to the rearward end of the carrier tube and are operable to permit coolant to pass through the air lines and thence through the carrier tube to the sample coupon so as to cool the sample coupon. 8 figs.

  1. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  2. Characterization and modes of occurrence of elements in feed coal and fly ash; an integrated approach

    USGS Publications Warehouse

    Brownfield, M.E.

    2002-01-01

    Despite certain environmental concerns, coal is likely to remain an important component of the United States energy supply, partly because it is the most abundant domestically available fossil fuel. One of the concerns about coal combustion for electricity production is the potential release of elements from coal and coal combustion products (CCPs) - fly ash - to the environment. This concern prompted the need for accurate, reliable, and comprehensive information on the contents and modes of occurrence of selected elements in power-plant feed coal and fly ash. The U.S. Geological Survey (USGS) is collaborating with several electric utilities to determine the chemical and mineralogical properties of feed coal and fly ash. Our first study analyzed coal and fly ash from a Kentucky power plant, which uses many different bituminous coals from the Appalachian and Illinois Basins. Sulfur content of these feed coals rangedfrom 2.5 to 3.5 percent. The second study analyzed coal and fly ash from an Indiana power plant, which uses subbituminous coal from the Powder River Basin (fig. 1). Sulfur content of this feed coal ranged from 0.23 to 0.47 percent. A summary of important aspects of our approach and results are presented in this report. 

  3. Mineral resource of the month: soda ash

    USGS Publications Warehouse

    Kostic, Dennis S.

    2006-01-01

    Soda ash, also known as sodium carbonate, is an alkali chemical that can be refined from the mineral trona and from sodium carbonate-bearing brines. Several chemical processes exist for manufacturing synthetic soda ash.

  4. Rising from the ashes: Coal ash in recycling and construction

    SciTech Connect

    Naquin, D.

    1998-02-01

    Beneficial Ash Management (BAM, Clearfield, Pa.) has won an environmental award for its use of ash and other waste to fight acid mine drainage. The company`s workers take various waste materials, mainly fly ash from coal-burning plants, to make a cement-like material or grouting, says Ernest Roselli, BAM president. The grouting covers the soil, which helps prevent water from contacting materials. This, in turn, helps control chemical reactions, reducing or eliminating formation of acid mine drainage. The company is restoring the 1,400-acre Bark Camp coal mine site near Penfield in Clearfield County, Pa. Under a no-cost contract with the state of Pennsylvania, BAM is using boiler slag, causticizing byproducts (lime) and nonreclaimable clarifier sludge from International Paper Co. (Erie, Pa.). The mine reclamation techniques developed and monitored at the site include using man-made wetlands to treat acid mine drainage and testing anhydrous ammonia as a similar treatment agent. BAM researches and tests fly ash mixed with lime-based activators as fill material for land reclamation, and develops and uses artificial soil material from paper mill and tannery biosolids.

  5. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  6. Hydrochemical Leaching of Wildfire Ash

    NASA Astrophysics Data System (ADS)

    Hamann, H.

    2008-12-01

    A century of fire suppression, combined with recent droughts has provoked some of the worst wildfire seasons in the western US. Although wild and prescribed fires are known to supply nutrients to grassland, shrubland and forest ecosystems, when ash and combustion byproducts are leached into surface waters the nutrients and other materials can affect aquatic ecosystems and pose a considerable risk to water quality. This ash may be persistent for periods as short as a storm or snowmelt event or up to several years, as suggested by periodic increases in dissolved nutrients and suspended solids. Here I present results from field sampling and bench scale experiments that examine the rate of change and chemical quality of leachate from ash samples collected from two wildfires that burned in Colorado in 2003 and 2006. Bench scale- experiments suggest that the conductivity of ash leachate increases in a continuous and modelable manner. Stream grab samples collected in burned and unburned areas within two weeks of the 2006 Mato Vega fire suggest an initial increase in pH, and conductivity, as well as an increase in solutes including dissolved organic carbon and manganese; however the results were spatially variable.

  7. Petrographic characterization of economizer fly ash

    SciTech Connect

    Valentim, B.; Hower, J.C.; Soares, S.; Guedes, A.; Garcia, C.; Flores, D.; Oliveira, A.

    2009-11-15

    Policies for reducing NOx emissions have led power plants to restrict O{sub 2}, resulting in high-carbon fly ash production. Therefore, some potentially useful fly ash, such as the economizer fly ash, is discarded without a thorough knowledge of its composition. In order to characterize this type of fly ash, samples were collected from the economizer Portuguese power plant burning two low-sulfur bituminous coals. Characterization was also performed on economizer fly ash subsamples after wet sieving, density and magnetic separation. Analysis included atomic absorption spectroscopy, loss-on-ignition, scanning electron microscopy/energy-dispersive X-ray spectroscopy, optical microscopy, and micro-Raman spectroscopy.

  8. Adsorptive properties of fly ash carbon

    SciTech Connect

    Graham, U.M.; Robl, T.L.; Rathbone, R.F.

    1996-12-31

    The driving force behind the development of this research project has been the increasing concerns about the detrimental effects of high carbon carryover into combustion ash. Without the carbon, combustion ash can be utilized in cement industry avoiding environmental implications in landfill operations. Because the carbon surfaces have been structurally altered while passing through the combustor, including the formation of a macro-porous surface, fly ash carbons, after separation from the ash, may constitute a unique precursor for the production of adsorbents. This paper discusses a novel approach for using fly ash carbons in the cleanup of organic pollutants.

  9. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption

    USGS Publications Warehouse

    Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.

    2007-01-01

    Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB

  10. Forecasting exposure to volcanic ash based on ash dispersion modeling

    NASA Astrophysics Data System (ADS)

    Peterson, Rorik A.; Dean, Ken G.

    2008-03-01

    A technique has been developed that uses Puff, a volcanic ash transport and dispersion (VATD) model, to forecast the relative exposure of aircraft and ground facilities to ash from a volcanic eruption. VATD models couple numerical weather prediction (NWP) data with physical descriptions of the initial eruptive plume, atmospheric dispersion, and settling of ash particles. Three distinct examples of variations on the technique are given using ERA-40 archived reanalysis NWP data. The Feb. 2000 NASA DC-8 event involving an eruption of Hekla volcano, Iceland is first used for analyzing a single flight. Results corroborate previous analyses that conclude the aircraft did encounter a diffuse cloud of volcanic origin, and indicate exposure within a factor of 10 compared to measurements made on the flight. The sensitivity of the technique to dispersion physics is demonstrated. The Feb. 2001 eruption of Mt. Cleveland, Alaska is used as a second example to demonstrate how this technique can be utilized to quickly assess the potential exposure of a multitude of aircraft during and soon after an event. Using flight tracking data from over 40,000 routes over three days, several flights that may have encountered low concentrations of ash were identified, and the exposure calculated. Relative changes in the quantity of exposure when the eruption duration is varied are discussed, and no clear trend is evident as the exposure increased for some flights and decreased for others. A third application of this technique is demonstrated by forecasting the near-surface airborne concentrations of ash that the cities of Yakima Washington, Boise Idaho, and Kelowna British Columbia might have experienced from an eruption of Mt. St. Helens anytime during the year 2000. Results indicate that proximity to the source does not accurately determine the potential hazard. Although an eruption did not occur during this time, the results serve as a demonstration of how existing cities or potential

  11. Identifying glass compositions in fly ash

    NASA Astrophysics Data System (ADS)

    Aughenbaugh, Katherine; Stutzman, Paul; Juenger, Maria

    2016-01-01

    In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS), calcium aluminosilicate glasses (CAS), a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  12. Utilization of coal fly ash. Master's thesis

    SciTech Connect

    Openshaw, S.C.

    1992-01-01

    Coal-fired power plants produce approximately 80 million tons of fly ash each year. Efforts to use fly ash have reached only a twenty to thirty percent reutilization rate. A literature review was performed to provide a consensus of the available information regarding fly ash. Fly ash is highly variable depending on the coal source, plant operations, and several other parameters. The various fly ash characteristics are discussed including classifications, physical characteristics, chemical properties and chemical compositions. Although extensive research has been performed on the use of fly ash, very little of this research has monitored any environmental impacts. The environmental concerns addressed include mobilization of toxic elements, biota impact, microbial impact, handling dangers, and pertinent regulations. Finally, the various disposal and reutilization options for fly ash are examined. A recommendation is provided for further research to cover deficiencies found in the literature.

  13. ACAA fly ash basics: quick reference card

    SciTech Connect

    2006-07-01

    Fly ash is a fine powdery material created when coal is burned to generate electricity. Before escaping into the environment via the utility stacks, the ash is collected and may be stored for beneficial uses or disposed of, if necessary. The use of fly ash provides environmental benefits, such as the conservation of natural resources, the reduction of greenhouse gas emissions and eliminating the needed for ash disposal in landfills. It is also a valuable mineral resource that is used in construction and manufacturing. Fly ash is used in the production of Portland cement, concrete, mortars and stuccos, manufactured aggregates along with various agricultural applications. As mineral filler, fly ash can be used for paints, shingles, carpet backing, plastics, metal castings and other purposes. This quick reference card is intended to provide the reader basic source, identification and composition, information specifically related to fly ash.

  14. Fly Ash as a Time Marker for Anthropocene Alluvial Sedimentation

    NASA Astrophysics Data System (ADS)

    Bettis, E. A., III; Grimley, D. A.; Anders, A. M.; Bates, B.; Hannan, E.

    2014-12-01

    Human land use has transformed the landscapes, ecosystems and hydrology of the North American Midcontinent. One widespread impact of this transformation is increased runoff and accelerated soil erosion, which, along with direct human channel modifications and artificial drainage, have dramatically altered hydrologic and ecological conditions in streams and rivers with far-reaching results. A legacy of this change in streams and rivers is preserved on floodplains throughout the region in sediment known as post-settlement alluvium (PSA). Documenting the spatial and temporal pattern of historic floodplain sedimentation in the drainage network is part of a larger effort to understand decadal and century-scale sediment routing through the drainage system and the role of floodplain sedimentation in carbon sequestration. Fly ash, a product of high-temperature coal combustion, began to accumulate on the landscape in the early historic period (c.a.1840-1850 in Iowa and Illinois) as coal-burning technology such as steam engines came into use after 1850; prior to which no source of fly ash was present. Release of fly ash from coal burning in power plants and steam locomotives likely peaked in the early-mid 20th century. Fly ash particles (~ 1 to 10 % magnetic) are identified by their spheroidal shape and range in size from coarse clay to silt (~1-63µ). By identifying the percentage of fly ash spheroids in the magnetic separate (10 - 60µ size range) of a soil or sediment profile, the pre-fly ash Historic surface could be discerned. Application of this technique in selected localities in eastern Iowa (Clear Creek drainage) and central Illinois (Sangamon River drainage) resulted in successful demarcation of the PSA contact in areas where the boundary was physically evident. Bolstered by this success we were able to confidently demark the PSA contact in other settings where the boundary was not as physically evident. This relatively easy to implement, inexpensive tool will

  15. Characterization of hot-gas filter ash under PFBC operating conditions

    SciTech Connect

    Henderson, A.K.; Swanson, M.L.; Hurley, J.P.; Watne, E.M.

    1997-12-31

    The objective of this program was to perform bench-scale dynamic tests of ash formation and long-term ash cake formation in pressurized fluidized-bed combustion (PFBC) systems to help in the development of methods to predict possible filter bridging problems and suggest possible strategies for mitigating these problems. During the program, four ash formation tests using a washed coal from the Consol Enlow Fork mine, with two size distributions of Plum Run dolomite at two different temperatures, were completed under conditions simulating the operation of the American Electric Power (AEP) Tidd PFBC. In addition, the same test matrix, plus two tests using no sorbent, was completed with the Belle Ayr Powder River Basin subbituminous coal, which will be used at the Southern Company Services (SCS) Wilsonville, Alabama, power systems development facility (PSDF).

  16. Characterization of hot-gas filter ash under PFBC operating conditions

    SciTech Connect

    Henderson, A.K.; Swanson, M.L.; Hurley, J.P.; Watne, T.M.

    1998-01-01

    The objective of this program was to perform bench scale dynamic tests of ash formation and long-term ash cake formation in pressurized fluidized bed combustion (PFBC) systems to help in the development of methods to predict possible filter bridging problems and suggest possible strategies for mitigating these problems. During the program, four ash formation tests using a washed coal from the Consol Enlow Fork mine, with two size distributions of Plum Run dolomite at two different temperatures, were completed under conditions simulating the operation of the American Electric Power (AEP) Tidd PFBC. In addition, the same test matrix, plus two tests using no sorbent, was completed with the Belle Ayr Powder River Basin sub-bituminous coal, which will be used at the Southern Company Services (SCS) Wilsonville, Alabama, power systems development facility (PSDF).

  17. Active mineral additives of sapropel ashes

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Danilina, E. V.; Krivonos, O. I.; Plaksin, G. V.

    2015-01-01

    The goal of the presented research is to establish a scientific rational for the possibility of sapropel ashes usage as an active mineral additive. The research included the study of producing active mineral additives from sapropels by their thermal treatment at 850900 °C and afterpowdering, the investigation of the properties of paste matrix with an ash additive, and the study of the ash influence on the cement bonding agent. Thermogravimetric analysis and X-ray investigations allowed us to establish that while burning, organic substances are removed, clay minerals are dehydrated and their structure is broken. Sapropel ashes chemical composition was determined. An amorphous ash constituent is mainly formed from silica of the mineral sapropel part and alumosilicagels resulted from clay minerals decomposition. Properties of PC 400 and PC 500A0 sparopel ash additives were studied. Adding ashes containing Glenium plasticizer to the cement increases paste matrix strength and considerably reduces its water absorption. X-ray phase analysis data shows changes in the phase composition of the paste matrix with an ash additive. Ash additives produce a pozzolanic effect on the cement bonding agent. Besides, an ash additive due to the alumosilicagels content causes transformation from unstable calcium aluminate forms to the stable ones.

  18. Volcanic Ash on Slopes of Karymsky

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A volcanic eruption can produce gases, lava, bombs of rock, volcanic ash, or any combination of these elements. Of the volcanic products that linger on the land, most of us think of hardened lava flows, but volcanic ash can also persist on the landscape. One example of that persistence appeared on Siberia's Kamchatka Peninsula in spring 2007. On March 25, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of the area around the Karymsky Volcano. In this image, volcanic ash from earlier eruptions has settled onto the snowy landscape, leaving dark gray swaths. The ash stains are confined to the south of the volcano's summit, one large stain fanning out toward the southwest, and another toward the east. At first glance, the ash stain toward the east appears to form a semicircle north of the volcano and sweep back east. Only part of this dark shape, however, is actually volcanic ash. Near the coast, the darker color may result from thicker vegetation. Similar darker coloring appears to the south. Volcanic ash is not really ash at all, but tiny, jagged bits of rock and glass. These jagged particles pose serious health risks to humans and animals who might inhale them. Likewise, the ash poses hazards to animals eating plants that have been coated with ash. Because wind can carry volcanic ash thousands of kilometers, it poses a more far-reaching hazard than other volcanic ejecta. Substantial amounts of ash can even affect climate by blocking sunlight. Karymsky is a stratovolcano composed of alternating layers of solidified ash, hardened lava, and volcanic rocks. It is one of many active volcanoes on Russia's Kamchatka Peninsula, which is part of the 'Ring of Fire' around the Pacific Rim. NASA image created by Jesse Allen, using data provided courtesy of the NASA/GSFC/MITI/ERSDAC/JAROS, and U.S./Japan ASTER Science Team.

  19. Plasma vitrification of fly ash

    SciTech Connect

    Beudin, V.; Guihard, B.; Pineau, D.; Labrot, M.; Soler, G.; Favier, J.M.; Boudeau, A.

    1995-12-31

    This paper presents the plasma vitrification of fly-ash produced by a Municipal Waste Incinerator, as programmed by Europlasma Company in France. It describes the main assumptions, technical and economical data and regulations taken into account to build and operate the first industrial pilot plant from 1995, near Bordeaux (France), using a non transferred plasma torch of 500 kW operated with air.

  20. Vitrification of municipal solid waste incineration fly ash using biomass ash as additives.

    PubMed

    Alhadj-Mallah, Moussa-Mallaye; Huang, Qunxing; Cai, Xu; Chi, Yong; Yan, JianHua

    2015-01-01

    Thermal melting is an energy-costing solution for stabilizing toxic fly ash discharged from the air pollution control system in the municipal solid waste incineration (MSWI) plant. In this paper, two different types of biomass ashes are used as additives to co-melt with the MSWI fly ash for reducing the melting temperature and energy cost. The effects of biomass ashes on the MSWI fly ash melting characteristics are investigated. A new mathematical model has been proposed to estimate the melting heat reduction based on the mass ratios of major ash components and measured melting temperature. Experimental and calculation results show that the melting temperatures for samples mixed with biomass ash are lower than those of the original MSWI fly ash and when the mass ratio of wood ash reaches 50%, the deformation temperature (DT), the softening, hemisphere temperature (HT) and fluid temperature (FT) are, respectively, reduced by 189°C, 207°C, 229°C, and 247°C. The melting heat of mixed ash samples ranges between 1650 and 2650 kJ/kg. When 50% wood ash is mixed, the melting heat is reduced by more than 700 kJ/kg for the samples studied in this paper. Therefore, for the vitrification treatment of the fly ash from MSW or other waste incineration plants, wood ash is a potential fluxing assistant.

  1. Arsenic, chromium and mercury removal using mussel shell ash or a sludge/ashes waste mixture.

    PubMed

    Seco-Reigosa, Natalia; Peña-Rodríguez, Susana; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Sanjurjo, María J; Alvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino

    2013-04-01

    Different batches of valued mussel shell and waste mussel shell ash are characterised. Shell ash has pH > 12 and high electrical conductivities (between 16.01 and 27.27 dS m(-1)), while calcined shell shows pH values up to 10.7 and electrical conductivities between 1.19 and 3.55 dS m(-1). X-ray fluorescence, nitric acid digestion and water extractions show higher concentrations in shell ash for most parameters. Calcite is the dominant crystalline compound in this ash (95.6%), followed by aragonite. Adsorption/desorption trials were performed for mussel shell ash and for a waste mixture including shell ash, sewage sludge and wood ash, showing the following percentage adsorptions: Hg(II) >94%, As(V) >96% and Cr(VI) between 11 and 30% for shell ash; Hg(II) >98%, As(V) >88% and Cr(VI) between 30 and 88% for the waste mixture. Hg and As desorption was <5% for both shell ash and the waste mixture, while Cr desorption was between 92 and 45% for shell ash, and between 19 and 0% for the mixture. In view of that, mussel shell ash and the mixture including shell ash, sewage sludge and wood ash could be useful for Hg(II) and As(V) removal.

  2. Can vegetative ash be water repellent?

    NASA Astrophysics Data System (ADS)

    Bodí, M. B.; Cerdà, A.; Mataix-Solera, J.; Doerr, S. H.

    2012-04-01

    In most of the literature, ash is referred to as a highly wettable material (e.g. Cerdà and Doerr, 2008; Etiegni and Campbell, 1991; Woods and Balfour 2010). However, the contrary was suggested in few articles, albeit with no further quantification (Gabet and Sternberg, 2008; Khanna et al., 1996; Stark, 1977). To clarify this question, water repellency measurements on ash using the Water Drop Penetration Times (WDPT) method were performed on ash from Mediterranean ecosystems and it was found to be water repellent (Bodí et al. 2011). Water repellency on ash from different wildfires ranged from 40 to 10 % occurrence with samples being extreme repellent (lasting more than 3600 s to penetrate). Part of the ash produced in the laboratory was also water repellent. After that, other ash samples had been found water repellent in wildfires in Colorado (unpublished results), Portugal (Gonzalez-Pelayo, 2009), or in prescribed fires in Australia (Bodí et al. 2011b; Petter Nyman, personnal communication). All the samples exhibiting water repellent properties had in common that were combusted at low temperatures, yielding in general ash with dark colour and contents of organic carbon of more than 18 % (Bodí et al. 2011a), although these properties were not exactly proportional to its water repellency occurrence or persistence. In addition, the species studied in Bodí et al. (2011) had been found to produce different levels of WR repellency, being ash from Pinus halepensis more repellent than that from Quercus coccifera and Rosmarins officinalis. Ash from Eucaliptus radiata had been found also very water repellent, as Pinus halepensis (unpublished data). The reasons of the existance of water repellent ash are that the charred residue produced by fire (an also contained in the ash) can contain aromatic compounds that have a lower free energy than water and therefore behave as hydrophobic materials with reduced solubility (Almendros et al., 1992 and Knicker, 2007

  3. Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles

    NASA Astrophysics Data System (ADS)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2014-04-01

    The reverse absorption technique is often used to detect volcanic ash clouds from thermal infrared satellite measurements. From these measurements effective particle radius and mass loading may be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculated thermal infrared optical properties of highly irregular and porous ash particles and compared these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry were calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres were found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates was found to underestimate mass loading compared to morphologically complex inhomogeneous ash particles. The underestimate increases with the mass loading. For an ash cloud recorded during the Eyjafjallajökull 2010 eruption, the mass-equivalent spheres underestimate the total mass of the ash cloud by approximately 30% compared to the morphologically complex inhomogeneous particles.

  4. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  5. Mount St. Helens' volcanic ash: hemolytic activity.

    PubMed

    Vallyathan, V; Mentnech, M S; Stettler, L E; Dollberg, D D; Green, F H

    1983-04-01

    Volcanic ash samples from four Mount St. Helens' volcanic eruptions were subjected to mineralogical, analytical, and hemolytic studies in order to evaluate their potential for cytotoxicity and fibrogenicity. Plagioclase minerals constituted the major component of the ash with free crystalline silica concentrations ranging from 1.5 to 7.2%. The in vitro hemolytic activity of the volcanic ash was compared to similar concentrations of cytotoxic and inert minerals. The ash was markedly hemolytic, exhibiting an activity similar to chrysotile asbestos, a known fibrogenic agent. The hemolysis of the different ash samples varied with particle size but not with crystalline silica concentration. The results of these studies taken in conjunction with the results of our animal studies indicate a fibrogenic potential of volcanic ash in heavily exposed humans.

  6. Late Pleistocene Hansel Valley basaltic ash, northern Lake Bonneville, Utah, USA

    USGS Publications Warehouse

    Miller, D.M.; Oviatt, Charles G.; Nash, B.P.

    2008-01-01

    The Hansel Valley ash bed lies within 5 cm of the base of deposits of Lake Bonneville (???28 ka) in the vicinity of Great Salt Lake and provides a useful stratigraphic marker for this area of the lake basin. However, it has not been matched to an eruptive edifice, presumably because such an edifice was eroded by waves of Lake Bonneville. We present data for the chemical composition of the tephra and for possible matching lavas and tephras of the region, as well as grain size data for the tephra in an attempt to identify the location of the eruption. Matches with other tephras are negative, but lavas near the coarsest ash deposits match well with the distinctive high values of TiO2 and P2O5 of the ash. Neither chemistry nor grain size data points uniquely to a source area, but an area near the northwest shore of Great Salt Lake and within Curlew Valley is most likely. The Hansel Valley ash is an example of an ash that has no direct numerical date from proximal deposits, despite considerable study, yet nonetheless is useful for stratigraphic studies by virtue of its known stratigraphic position and approximate age. Basaltic tephras commonly are not as widespread as their rhyolitic counterparts, and in some cases apparently are produced by eruptive sources that are short lived and whose edifices are not persistent. ?? 2007 Elsevier Ltd and INQUA.

  7. Fly ash beneficiation by carbon burnout

    SciTech Connect

    Cochran, J.W.; Boyd, T.J.

    1995-03-01

    The CBO process for fly ash beneficiation shows excellent potential. Values derived from avoided disposal costs, revenue from fly ash sales, environmental attributes and the ability to process 100% of the ash indicate the potential market for this process. Work has begun on the next phase of process development and commercialization and includes site specific application studies (technical and economic investigations for specific sites). Demonstration plant designs at approximately 100,000 TPY are being considered by several participating utilities.

  8. Characterization and valorization of biomass ashes.

    PubMed

    Trivedi, Nikhilesh S; Mandavgane, Sachin A; Mehetre, Sayaji; Kulkarni, Bhaskar D

    2016-10-01

    In India, farming is the primary source of income for many families. Following each harvest, a huge amount of biomass is generated. These are generally discarded as "agrowaste," but recent reports have indicated several beneficial uses for these biomasses and their ashes. However, before the utilization of biomass ashes (BMAs), their chemical and physical properties need to be investigated (characterized) so as to utilize their potential benefit to the fullest. In this paper, eight different biomass ashes (soybean plant ash, mustard plant ash, maize ash, groundnut plant ash, cotton plant ash, wheat plant ash, pigeon peas ash, and groundnut shell ash) were characterized, and their chemical properties are discussed. Surface chemical composition analysis, proximate analysis, and ultimate analysis were performed on all BMA samples, and properties such as porosity, particle density, bulk density, point of zero charge, BET surface area, water-absorption capacity, and bulk parameters such as surface pH and surface charges were determined. BMAs were characterized by SEM and FTIR. The surface areas of biomass ashes vary from 1.9 to 46 m(2)/g, and point of zero charge for all BMAs exceed 9.8, which confirmed the alkaline nature of these samples. Based on the chemical composition, BMAs are categorized into four types (S, C, K, and CK), and their utilization is proposed based on the type. BMAs find applications in agriculture and construction industries; glass, rubber, and zeolite manufacturing; and in adsorption (as a source of silica/zeolites). The paper also discusses the research challenges and opportunities in utilization of BMAs.

  9. Ash recycling - the coming of age!

    SciTech Connect

    Barnes, J.M.; Roffman, H.K.; Roethel, F.J.

    1997-12-01

    A major concern of the Waste-To-Energy (WTE) industry is ash disposal and the uncertainty of controlled long term ash management. Ash management costs have risen steadily over the last ten years making it the fastest rising cost segment of the WTE industry. The challenge of how to curb the rising cost while maintaining the protection of human health and the environment has been accomplished by responsibly recycling the ash on a commercial basis. American Ash Recycling Corp. (AAR), utilizing the Duos Engineering (USA), Inc. patent pending ash recycling technology, has promoted ash recycling on a commercial basis in the United States. An important product of the processing and recycling of non-hazardous municipal waste combustor (MWC) ash is Treated Ash Aggregate (TAA). Additionally, ferrous and non-ferrous metals are recovered and unburned materials removed and returned to the WTE facility for re-combustion. The TAA is sized and then treated by the WES-PHix{reg_sign} immobilization process in order to reduce the potential solubility and environmental availability of the metal constituents of the MWC ash. The TAA is available for commercial use in such applications as an aggregate substitute in roadway materials, asphalt and concrete applications, as structural fill, and as landfill cover. Commercial and technical considerations that must be addressed before ash can be beneficially recycled are: permitting requirements, physical and chemical characteristics, potential end uses, environmental concerns (product safety), product market development, and economic viability. True recycling only occurs if all of these considerations can be addressed. This paper presents the details of AAR`s most recent experience in the development of an ash recycling facility in the State of Maine and the associated beneficial use of the TAA product. Each of the considerations listed above are discussed with a special focus on the permitting process.

  10. Hazards Associated With Recent Popocatepetl Ash Emissions

    NASA Astrophysics Data System (ADS)

    Nieto, A.; Martin, A.; Espinasa-Pereña, R.; Ferres, D.

    2013-05-01

    Popocatepetl has been producing ash from small eruptions since 1994. Until 2012 about 650 small ash emissions have been recorded at the monitoring system of Popocatépetl Volcano. Ash consists mainly of glassy lithic clasts from the recent crater domes, plagioclase and pyroxene crystals, and in major eruptions, olivine and/or hornblende. Dome forming eruptions produced a fine white ash which covers the coarser ash. This fine ash consists of plagioclase, glass and cristobalite particles mostly under15 microns. During the recent crisis at Popocatépetl, April and May2012 ash fell on villages to the east and west of the volcano, reaching Mexico City (more than 20 million people) and Puebla (2 million people). In 14 cases the plumes had heights over 2 km, the largest on May 2 and 11 (3 and 4 km in height, respectively). Heavier ash fall occurred on April 13, 14, 20, and 23 and May 2, 3, 5, 11, 14, 23, 24 and 25. A database for ash fall was constructed from April 13 with field observations, reports emitted by the Centro Nacional de Comunicaciones (CENACOM), ash fall advisories received at CENAPRED and alerts from the Servicios a la Navegación en el Espacio Aéreo Mexicano (SENEAM). This aim of this database is to calculate areas affected by the ash and estimate the ash fall volume emitted by Popocatépetl in each of these events. Heavy ash fall from the May 8 to May 11 combined with reduced visibility due to fog forced to closure of the Puebla airport during various periods of time, for up to 13 hours. Domestic and international flights were cancelled. Ash eruptions have caused respiratory conditions in the state of Puebla, to the east of the volcano, since 1994 (Rojas et al, 2001), but because of the changing wind conditions in the summer mainly, some of these ash plumes go westward to towns in the State of Mexico and even Mexico City. Preliminary analyses of these eruptions indicate that some ash emissions produced increased respiratory noninfectious problems

  11. Volcanic ash at Santiaguito dome complex, Guatemala

    NASA Astrophysics Data System (ADS)

    Hornby, Adrian; Kendrick, Jackie; Lavallée, Yan; Cimarelli, Corrado; von Aulock, Felix; Rhodes, Emma; Kennedy, Ben; Wadsworth, Fabian

    2015-04-01

    Dome-building volcanoes often suffer episodic explosions. Examination of eruptive activity at Santiaguito dome complex (Guatemala) reveals that gas-and-ash explosions are concordant with rapid inflation/ deflation cycles of the active dome. During these explosions strain is accommodated along marginal faults, where tensional fracture mechanisms and friction dominate, complicating the model of ash generation by bubble rupture in magma. Here, we describe textural features, morphology and petrology of ash collected before, during and after a dome collapse event at Santiaguito dome complex on the 28th November 2012. We use QEM-scan (on more than 35000 grains), laser diffraction granulometry and optical and scanning microscopy to characterise the samples. The ash samples show a bimodal size distribution and a range of textures, crystal content and morphologies. The ash particles are angular to sub-angular and are relatively dense, so do not appear to comprise of pore walls. Instead the ash is generally blocky (>70%), similar to the products of shear magma failure. The ash samples show minor variation before, during and after dome collapse, specifically having a smaller grain size and a higher fraction of phenocrysts fragments before collapse. Textural analysis shows vestiges of chemically heterogeneous glass (melt) filaments originating from the crystals and crosscut by fragmentation during volcanic ash formation. High-velocity friction can induce melting of dome lavas, producing similar disequilibrium melting textures. This work shows the importance of deformation mechanisms in ash generation at lava domes and during Vulcanian activity.

  12. An innovative vibration fluidized bed ash cooler

    SciTech Connect

    Duan, Y.; Zhang, M.; Liu, A.; Yao, Z.; Tang, H.; Liu, Q.

    1999-07-01

    With the ever-increasing versatility, scaling up and commercialization of coal-fired fluidized bed boiler technologies, it has become more and more important to improve the technique of draining bed ash from bubbling or circulating fluidized bed boilers. Choosing an ash cooler is a good way but highly stable and reliable system is hard to find for a massive ash flow rate having a broad particle size distributions. An innovative technique known as Vibration Fluidized Bed Ash Cooler (VFBAC) is proposed in this paper. It can drain bottom ash at a high temperature from FB or CFB boilers continuously and controllably. In this device, air used for cooling can be used as combustion-aided air or coal spreading air. The hot ash is cooled by the air to a temperature which it can be transported easily and safely by conventional technology. Meanwhile, an industrial apparatus utilizing the new technology was manufactured and used in a 35 t/h bubbling FB boiler. For the purpose of detecting residence time distribution of wide-sieved bed materials in this ash cooler systematically, advantage was taken of a new approach for physical quality discrimination. Investigations into the hydrodynamic characteristics of the gas-solid two-phase flows and theoretical analyses on hot operational performance were carried out. The results show that heat recovery efficiency of the ash cooler reaches 85% greater when operating at a ratio of air to ash of 1.5{approximately}2.5 Nm{sup 3}/kg.

  13. Attracting structures in volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Peng, Jifeng

    2009-11-01

    Volcanic eruptions and ash clouds are a natural hazard that poses direct threats to aviation safety. They may also affect human and ecosystem health. Many transport and dispersion models have been developed to forecast trajectories of volcanic ash clouds, as well as to plan safety measures. Predictions based on these models are heavily dependent on initial parameters of ash clouds, e.g., location, height, particle size and density distribution, water vs. ash content, etc. However, these initial parameters are usually difficult to determine, leading to possible inaccurate predictions of ash clouds trajectories. In this study, a dynamical systems approach is combined with volcanic ash transport models to help improve prediction. A type of attracting structures in volcanic ash transport is identified. These structures act as attractors in volcanic ash transport, and they are independent of initial parameters of specific volcanic eruptions. The attracting structures are associated with hazard zones with high concentrations of volcanic ash. And the prediction in hazard maps can be used to plan flight route diversions and ground evacuations.

  14. Attracting structures in volcanic ash transport

    NASA Astrophysics Data System (ADS)

    Peng, J.; Peterson, R.

    2009-12-01

    Volcanic eruptions and ash clouds are a natural hazard that poses direct threats to aviation safety. They may also affect human and ecosystem health. Many transport and dispersion models have been developed to forecast trajectories of volcanic ash clouds, as well as to plan safety measures. Predictions based on these models are heavily dependent on initial parameters of ash clouds, e.g., location, height, particle size and density distribution, water vs. ash content, etc. However, these initial parameters are usually difficult to determine, leading to possible inaccurate predictions of ash clouds trajectories. In this study, a dynamical systems approach is combined with volcanic ash transport models to help improve prediction. A type of attracting structures in volcanic ash transport is identified. These structures act as attractors in volcanic ash transport, and are largely independent of initial parameters of specific volcanic eruptions. The attracting structures are associated with hazard zones with high concentrations of volcanic ash. The prediction in hazard maps can be used to plan flight route diversions and ground evacuations.

  15. Ash wettability conditions splash erosion in the postfire

    NASA Astrophysics Data System (ADS)

    Gordillo-Rivero, Ángel J.; de Celis, Reyes; García-Moreno, Jorge; Jiménez-Compán, Elizabeth; Alanís, Nancy; Cerdà, Artemi; Pereira, Paulo; Zavala, Lorena M.; Jordán, Antonio

    2015-04-01

    -prone ecosystems of the Mediterranean Basin: a phylogenetic approach. Oikos 109, 196-202. Pereira P, Úbeda X, Outeiro L, Martin D. 2009. Factor analysis applied to fire temperature effects on water quality. In: Gómez E, Álvarez K (Eds.), Forest Fires: Detection, Suppression and Prevention. Series Natural Disaster Research, Prediction and Mitigation, Nova Science Publishers, New York, NY. Pp.: 273-285 Pereira P, Cerdà A, Úbeda X, Mataix-Solera J, Martin D, Jordán A, Burguet M. 2013. Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania. Solid Earth 4, 153-165. Sevink J, Imeson AC, Verstraten JM. 1989. Humus form development and hillslope runoff, and the effects of fire and management, under Mediterranean forest in N.E. Spain. Catena 16, 461-475. Stark NM, 1977. Fire and nutrient cycling in a Douglas-fir/larch forest. Ecology, 58, 16-30. Trabaud L. 2000. Post-fire regeneration of Pinus halepensis forest in the west Mediterranean. In: Ne'eman G, Trabaud L (Eds.), Ecology, biogeography and management of Pinus halepensis and P. brutia forest ecosystems in the Mediterranean basin. Backhuys Publishers. Leiden. Pp.: 257-268. Woods SW, Balfour VN. 2008. Vegetative ash: an important factor in the short term response to rainfall in the post-fire environment. Geophysical Research Abstracts 10, EGU2008-A-00556. Woods SW, Balfour VN. 2010. The effects of soil texture and ash thickness on the post-fire hydrological response from ash-covered soils. Journal of Hydrology 393, 274-286. Zavala LM, Jordán A, Gil J, Bellinfante N, Pain C. 2009. Intact ash and charred litter reduces susceptibility to rain splash erosion post-wildfire Earth Surface Processes and Landforms, 34, 1522-1532. Zavala LM, De Celis R, Jordán A. 2014. How wildfires affect soil properties. A brief review Cuadernos de Investigación Geográfica 40, 311-331. AKNOWLEDGEMENTS This research is part of the POSTFIRE Project (ref. CGL2013-47862-C2-1-R

  16. Characterization of ash cenospheres in fly ash from Australian power stations

    SciTech Connect

    Ling-ngee Ngu; Hongwei Wu; Dong-ke Zhang

    2007-12-15

    Ash cenospheres in fly ashes from five Australian power stations have been characterized. The experimental data show that ash cenosphere yield varies across the power stations. Ash partitioning occurred in the process of ash cenosphere formation during combustion. Contradictory to conclusions from the literature, iron does not seem to be essential to ash cenosphere formation in the cases examined in the present work. Further investigation was also undertaken on a series of size-fractioned ash cenosphere samples from Tarong power station. It is found that about 70 wt% of ash cenospheres in the bulk sample have sizes between 45 and 150 {mu}m. There are two different ash cenosphere structures, that is, single-ring structure and network structure. The percentage of ash cenospheres of a network structure increases with increasing ash cenosphere size. Small ash cenospheres (in the size fractions {lt}150 {mu}m) have a high SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and the majority of the ash cenospheres are spherical and of a single-ring structure. Large ash cenosphere particles (in the size fractions of 150-250 {mu}m and {gt}250 {mu}m) have a low SiO{sub 2}/Al{sub 2}O{sub 3} ratio, and a high proportion of the ash cenospheres are nonspherical and of a network structure. A novel quantitative technique has been developed to measure the diameter and wall thickness of ash cenospheres on a particle-to-particle basis. A monolayer of size-fractioned ash cenospheres was dispersed on a pellet, which was then polished carefully before being examined using a scanning electron microscope and image analysis. The ash cenosphere wall thickness broadly increases with increasing ash cenosphere size. The ratios between wall thickness and diameter of ash cenospheres are limited between an upper bound of about 10.5% and a lower bound of about 2.5%, irrespective of the ash cenosphere size. 52 refs., 9 figs., 4 tabs.

  17. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett [Park City, UT

    2012-05-15

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with a quantity of spray dryer ash (SDA) and water to initiate a geopolymerization reaction and form a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 40%, and in some cases less than 20%, of the foam index of the untreated fly ash. An optional alkaline activator may be mixed with the fly ash and SDA to facilitate the geopolymerization reaction. The alkaline activator may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  18. 10 Risk to Ash from Emerald Ash Borer: Can Biological Control Prevent the Loss of Ash Stands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ash trees were once relatively free of serious, major diseases and insect pests in North America until the arrival of EAB, which was first detected in North America in Michigan in 2002. As of February 2014, EAB had been detected in 22 U.S. states and two Canadian provinces, killing millions of ash ...

  19. BASINS Publications

    EPA Pesticide Factsheets

    Although BASINS has been in use for the past 10 years, there has been limited modeling guidance on its applications for complex environmental problems, such as modeling impacts of hydro modification on water quantity and quality.

  20. Changes of the ash structure

    NASA Astrophysics Data System (ADS)

    Peer, Václav; Friedel, Pavel; Janša, Jan

    2016-06-01

    The aim of the article is to appraisal of the changes in the structure of the ash due to the addition of compounds capable of the eutectics composition change. For the transformation were used limestone and dolomite dosed in amounts of 2, 5 and 10 wt.% with pellets of spruce wood, willow wood and refused derived fuel. Combustion temperatures of the mixtures were adjusted according to the temperatures reached during the using of fuels in power plants, i.e. 900, 1000, 1100 and 1200 °C.

  1. Scientists Outline Volcanic Ash Risks to Aviation

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-01-01

    The ash clouds that belched out of Iceland's Eyjafjallajökull volcano last spring and dispersed over much of Europe, temporarily paralyzing aviation, were vast smoke signal warnings about the hazard that volcanic ash poses for air traffic around the world. At a 15 December news briefing at the AGU Fall Meeting in San Francisco, two experts with the U.S. Geological Survey (USGS) presented an overview of the damage airplanes can sustain from rock fragment- and mineral fragment-laden ash, an update on efforts to mitigate the hazard of ash, and an outline of further measures that are needed to address the problem. Between 1953 and 2009, there were 129 reported encounters of aircraft with volcanic ash clouds, according to a newly released USGS document cited at the briefing. The report, “Encounters of aircraft with volcanic ash clouds: A compilation of known incidents, 1953-2009,” by Marianne Guffanti, Thomas Casadevall, and Karin Budding, indicates that 26 encounters involved significant damage to the airplanes; nine of those incidents resulted in engine shutdown during flight. The report, which does not focus on the effects on airplanes of cumulative exposure to dilute ash and does not include data since 2009, indicates that “ash clouds continue to pose substantial risks to safe and efficient air travel globally.”

  2. Physicochemical characterization of Spanish fly ashes

    SciTech Connect

    Querol, X.; Umana, J.C.; Alastuey, A.; Bertrana, C.; Lopez-Soler, A.; Plana, F.

    1999-12-01

    This article summarizes the results obtained from the physical, chemical, and mineralogical characterization of 14 fly ash samples. Major features that influence the utilization of each fly ash for zeolite synthesis are evidenced, and several fly ash types were selected as potential high-quality starting material for zeolite synthesis and ceramic applications. The main parameters influencing this selection were relatively small grain size; high Al and Si contents; high glass content; low CaO, S, and Fe contents; and relatively low heavy metal concentration. The Compostilla and Cou He fly ashes have high potential applications because of the low content of major impurities (such as Ca, Fe, and S) and the low content of soluble hazardous elements. The Espiel, Escucha, Los Barrios, As Pontes, Soto de Ribera, Meirama, Narcea, and Teruel fly ashes have important application potential, but this potential is slightly limited by the intermediate content of nonreactive impurities, such as Fe and Ca. The La Robla fly ash is of moderate interest, since the relatively high Ca and Fe oxide contents may reduce its potential applications. Finally, the Puertollano fly ash also has limited application because of the very high concentration of some heavy metals such as As, Cd, Ge, Hg, Pb, and Zn. From a mineralogical point of view, the Compostilla, Espiel, and Soto de Ribera fly ashes show the highest aluminum-silicate glass content and, consequently, the highest industrial application potential.

  3. Energy efficient continuous flow ash lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor); Suitor, Jerry W. (Inventor); Dubis, David (Inventor)

    1989-01-01

    The invention relates to an energy efficient continuous flow ash lockhopper, or other lockhopper for reactor product or byproduct. The invention includes an ash hopper at the outlet of a high temperature, high pressure reactor vessel containing heated high pressure gas, a fluidics control chamber having an input port connected to the ash hopper's output port and an output port connected to the input port of a pressure letdown means, and a control fluid supply for regulating the pressure in the control chamber to be equal to or greater than the internal gas pressure of the reactor vessel, whereby the reactor gas is contained while ash is permitted to continuously flow from the ash hopper's output port, impelled by gravity. The main novelty resides in the use of a control chamber to so control pressure under the lockhopper that gases will not exit from the reactor vessel, and to also regulate the ash flow rate. There is also novelty in the design of the ash lockhopper shown in two figures. The novelty there is the use of annular passages of progressively greater diameter, and rotating the center parts on a shaft, with the center part of each slightly offset from adjacent ones to better assure ash flow through the opening.

  4. Fly ash disposal in a limestone quarry

    SciTech Connect

    Peffer, J.R.

    1982-05-01

    Approximately 740 000 tons of eastern bituminous coal fly ash were deposited at the abandoned Zullinger limestone quarry from 1973-1980. The quarry extended below the water table and was not lined to isolate the ash from the aquifer. Long-term groundwater pollution has apparently not resulted.

  5. Environmental assessment and utilization CFB ash

    SciTech Connect

    Conn, R.

    1997-12-31

    Landfill disposal has generally been accepted as the most common option for ash management in CFB power plants. However, the cost of ash disposal continues to increase due to a reduction in landfill capacity and more stringent environmental regulations. As a result, beneficial uses of CFB ashes (versus landfilling) are being investigated in order to provide a more cost effective ash management program. The chemical and physical characteristics of CFB by-products will influence both their environmental impact and potential utilization options. Compared to conventional pulverized coal boiler ashes, CFB ashes generally have different chemical properties which may limit their utilization for production of Portland cement. Other diverse utilization options have been identified for CFB residues which include: agricultural applications, structural fill, and waste stabilization. Most of these applications have to meet specifications by following certain test methods. The exact utilization options for CFB by-products will depend primarily on the type of fuel being fired, and to a lesser extent, the type of sorbent utilized for sulfur capture. Based on laboratory investigation of ash characteristics, utilization options were concluded for different Foster Wheeler commercial boilers throughout the US and abroad. Based on the results of this study, it was demonstrated that most CFB ashes could be utilized for one or more of the purposes noted above.

  6. Properties and Leachability of Self-Compacting Concrete Incorporated with Fly Ash and Bottom Ash

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Jamaluddin, Norwati; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    The process of combustion in coal-fired power plant generates ashes, namely fly ash and bottom ash. Besides, coal ash produced from coal combustion contains heavy metals within their compositions. These metals are toxic to the environment as well as to human health. Fortunately, treatment methods are available for these ashes, and the use of fly ash and bottom ash in the concrete mix is one of the few. Therefore, an experimental program was carried out to study the properties and determine the leachability of selfcompacting concrete incorporated with fly ash and bottom ash. For experimental study, self-compacting concrete was produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a replacement for sand with the ratios of 10%, 20%, and 30% respectively. The fresh properties tests conducted were slump flow, t500, sieve segregation and J-ring. Meanwhile for the hardened properties, density, compressive strength and water absorption test were performed. The samples were then crushed to be extracted using Toxicity Characteristic Leaching Procedure and heavy metals content within the samples were identified accordingly using Atomic Absorption Spectrometry. The results demonstrated that both fresh and hardened properties were qualified to categorize as self-compacting concrete. Improvements in compressive strength were observed, and densities for all the samples were identified as a normal weight concrete with ranges between 2000 kg/m3 to 2600 kg/m3. Other than that, it was found that incorporation up to 30% of the ashes was safe as the leached heavy metals concentration did not exceed the regulatory levels, except for arsenic. In conclusion, this study will serve as a reference which suggests that fly ash and bottom ash are widely applicable in concrete technology, and its incorporation in self-compacting concrete constitutes a potential means of adding value to appropriate mix and design.

  7. Investigation on Leaching Behaviour of Fly Ash and Bottom Ash Replacement in Self-Compacting Concrete

    NASA Astrophysics Data System (ADS)

    Kadir, Aeslina Abdul; Ikhmal Haqeem Hassan, Mohd; Bakri Abdullah, Mohd Mustafa Al

    2016-06-01

    Fly ash and bottom ash are some of the waste generated by coal-fired power plants, which contains large quantities of toxic and heavy metals. In recent years, many researchers have been interested in studying on the properties of self-compacting concrete incorporated with fly ash and bottom ash but there was very limited research from the combination of fly ash and bottom ash towards the environmental needs. Therefore, this research was focused on investigating the leachability of heavy metals of SCC incorporated with fly ash and bottom ash by using Toxicity Characteristic Leaching Procedure, Synthetic Precipitation Leaching Procedure and Static Leaching Test. The samples obtained from the coal-fired power plant located at Peninsula, Malaysia. In this study, the potential heavy metals leached out from SCC that is produced with fly ash as a replacement for Ordinary Portland Cement and bottom ash as a substitute for sand with the ratios from 10% to 30% respectively were designated and cast. There are eight heavy metals of concern such as As, Cr, Pb, Zn, Cu, Ni, Mn and Fe. The results indicated that most of the heavy metals leached below the permissible limits from the United States Environmental Protection Agency and World Health Organization limit for drinking water. As a conclusion, the minimum leaching of the heavy metals from the incorporation of fly ash and bottom ash in self-compacting concrete was found in 20% of fly ash and 20% of bottom ash replacement. The results also indicate that this incorporation could minimize the potential of environmental problems.

  8. Parana basin

    SciTech Connect

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  9. The Pearlette family ash beds in the Great Plains: Finding their identities and their roots in the Yellowstone country

    USGS Publications Warehouse

    Wilcox, R.E.; Naeser, C.W.

    1992-01-01

    For many years the numerous deposits of so-called 'Pearlette volcanic ash' in the Great Plains region of the United States were considered to be the remnants of the same volcanic event, and were used as a time-stratigraphic marker of probable Middle Pleistocene age. Although a few early workers had suggested that more than one air-fall event might be represented among the Pearlette occurrences, it was not until the latter half of the present century, after identification of volcanic ash beds by detailed chemical and mineralogical methods had been developed, that it could be established that the 'Pearlette family' of volcanic ashes included three ash beds of subtly differing characteristics. Development of isotopic methods of age determination has established that the ages of the three are significantly different (2.09, 1.29, and 0.60 Ma). The area of distribution of the Pearlette family ash beds was found to include not only the Great Plains, but also to extend across the Rocky Mountain and the Basin and Range provinces to the Pacific Ocean. The search for the sources of these three similar appearing ash beds, facilitated greatly by information gained from concurrent mapping projects underway in areas of major Late Cenozoic volcanic activity in western United States, ultimately led to the sites of the caldera-forming eruptions in the Yellowstone National Park region. ?? 1992.

  10. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett [Park City, UT; Akash, Akash [Salt lake City, UT; Zhao, Qiang [Natick, MA

    2012-05-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  11. Treatment of fly ash for use in concrete

    DOEpatents

    Boxley, Chett; Akash, Akash; Zhao, Qiang

    2013-01-08

    A process for treating fly ash to render it highly usable as a concrete additive. A quantity of fly ash is obtained that contains carbon and which is considered unusable fly ash for concrete based upon foam index testing. The fly ash is mixed with an activator solution sufficient to initiate a geopolymerization reaction and for a geopolymerized fly ash. The geopolymerized fly ash is granulated. The geopolymerized fly ash is considered usable fly ash for concrete according to foam index testing. The geopolymerized fly ash may have a foam index less than 35% of the foam index of the untreated fly ash, and in some cases less than 10% of the foam index of the untreated fly ash. The activator solution may contain an alkali metal hydroxide, carbonate, silicate, aluminate, or mixtures thereof.

  12. Laboratory Studies of Ice Nucleation on Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Tolbert, M. A.; Schill, G. P.; Genareau, K. D.

    2014-12-01

    Ice nucleation on volcanic ash controls both ash aggregation and cloud glaciation, which affect human respiratory health, atmospheric transport, and global climate. We have performed laboratory studies of the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman Microscopy coupled to an environmental cell. Ash from the Fuego (Basaltic Ash, Guatemala), Soufriere Hills (Andesetic Ash, Montserrat), and Taupo (Rhyolitic Ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. We find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice at ice saturation ratios of 1.05 ± 0.1. For immersion freezing, however, only the Taupo ash exhibited efficient heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  13. Leaching characteristics of lead from melting furnace fly ash generated by melting of incineration fly ash.

    PubMed

    Okada, Takashi; Tomikawa, Hiroki

    2012-11-15

    This study investigated the effect of the chemical composition of incineration fly ash on the leaching characteristics of Pb from melting furnace fly ash generated by melting incineration fly ash. Melting furnace fly ash from both a real-scale melting process and lab-scale melting experiments was analyzed. In addition, the theoretical behavior of Cl that affects the leaching characteristics of Pb was simulated by a thermodynamic equilibrium calculation. Proportions of water-soluble Pb in the melting furnace fly ash were correlated with equivalent ratios of total Pb in the ash and Cl transferred to gas. The amount of Cl in the gas increased with an increase in the molar ratio of Cl to Na and K in the incineration fly ash. The thermodynamic calculation predicted that HCl generation is promoted by the increase in the molar ratio, and X-ray photoelectron spectroscopy indicated a possible presence of PbCl(2) in the melting furnace fly ash. These results implied that the formation of water-soluble PbCl(2) with HCl was affected by the relationships among the amounts of Na, K, and Cl in the incineration fly ash. This is highly significant in determining the leaching characteristics of Pb from the melting furnace fly ash.

  14. Erodibility of fly ash-treated minesoils

    SciTech Connect

    Gorman, J.M.; Sencindiver, J.C.; Singh, R.N.

    1997-12-31

    Fly ash, a by-product of coal-fired power plants, has been used successfully in reclaiming adverse mine sites such as abandoned mine lands by improving minesoil chemical and physical properties. But, the fine sand-silt particle size of fly ash may make it more susceptible to detachment and transport by erosive processes. Furthermore, the high content of silt-size particles in fly ash may make it more susceptable to surface crust formation resulting in reduced infiltration and increased surface runoff and erosion. In the summer of 1989, fly ash/wood waste mixtures were surface applied on two separate mine sites, one with 10% slope and the other 20% slope, in central Preston County, West Virginia. Erosion rates were measured directly using the Linear Erosion/Elevation Measuring Instrument (LEMI). Erosion measurements were taken during the first two growing seasons on both sites. Erosion values were up to five times greater on the fly ash-treated minesoil than on the minesoil without fly ash cover. Mulching with wood chips reduced fly ash erosion to about one-half the loss of the unmulched plots. Erosion was related to both the amount and type of ground cover. Increased vegetative ground cover resulted in reduced erosion. Mosses and fungi appeared to provide better erosion protection than grass-legume cover.

  15. Ash iron mobilization in volcanic eruption plumes

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.

    2014-12-01

    It has been shown that volcanic ash fertilizes the Fe-limited areas of the surface ocean through releasing soluble iron. As ash iron is mostly insoluble upon the eruption, it is hypothesized that heterogeneous in-plume and in-cloud processing of the ash promote the iron solubilization. Direct evidences concerning such processes are, however, lacking. In this study, a 1-D numerical model is developed to simulate the physicochemical interactions of gas-ash-aerosol in volcanic eruption plumes focusing on the iron mobilization processes at temperatures between 600 and 0 °C. Results show that sulfuric acid and water vapor condense at ~150 and ~50 °C on the ash surface, respectively. This liquid phase then efficiently scavenges the surrounding gases (>95% of HCl, 3-20% of SO2 and 12-62% of HF) forming an extremely acidic coating at the ash surface. The low pH conditions of the aqueous film promote acid-mediated dissolution of the Fe-bearing phases present in the ash material. We estimate that 0.1 to 33% of the total iron available at the ash surface is dissolved in the aqueous phase before the freezing point is reached. The efficiency of dissolution is controlled by the halogen content of the erupted gas as well as the mineralogy of the iron at ash surface: elevated halogen concentrations and presence of Fe2+-carrying phases lead to the highest dissolution efficiency. Findings of this study are in agreement with the data obtained through leaching experiments.

  16. Marine mesocosm bacterial colonisation of volcanic ash

    NASA Astrophysics Data System (ADS)

    Witt, Verena; Cimarelli, Corrado; Ayris, Paul; Kueppers, Ulrich; Erpenbeck, Dirk; Dingwell, Donald; Woerheide, Gert

    2015-04-01

    Volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, wind-delivered volcanic ash may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, which bacteria are involved in pioneer colonisation remain unknown. We hypothesize that physico-chemical properties (i.e., morphology, mineralogy) of the ash may dictate bacterial colonisation. The effect of substrate properties on bacterial colonisation was tested by exposing five substrates: i) quartz sand ii) crystalline ash (Sakurajima, Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size, in controlled marine coral reef aquaria under low light conditions for six months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis of Similarity supported significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community with the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community composition during colonisation of volcanic ash in a coral reef-like environment is controlled by the

  17. Quality and petrographic characteristics of Paleocene coals from the Hanna basin, Wyoming

    USGS Publications Warehouse

    Pierce, B.S.

    1996-01-01

    Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.

  18. Process for removing ash from coal

    SciTech Connect

    Harada, K.; Nakanishi, T.; Ogino, E.; Yoshida, N.

    1983-06-21

    A process for removing ash from coal comprising the steps of pulverizing the coal to fine particles, admixing water with the finely divided coal to prepare an ash-containing slurry of finely divided coal, mixing with the slurry an oil and seeds in the form of oleophilic solid grains and serving as granulating nuclei to granulate the finely divided coal, separating the resulting granules from the mixture and washing the granules with water to remove the ash, and disintegrating the washed granules to obtain a deashed coal and recover the seeds for reuse.

  19. Volcanic Ash Transport and Dispersion Forecasting

    NASA Astrophysics Data System (ADS)

    Servranckx, R.; Stunder, B.

    2006-12-01

    Volcanic ash transport and dispersion models (VATDM) have been used operationally since the mid 1990's by the International Civil Aviation Organization (ICAO) designated Volcanic Ash Advisory Centers (VAAC) to provide ash forecast guidance. Over the years, significant improvements in the detection and prediction of airborne volcanic ash have been realized thanks to improved models, increases in computing power, 24-hr real time monitoring by VAACs / Meteorological Watch Offices and close coordination with Volcano Observatories around the world. Yet, predicting accurately the spatial and temporal structures of airborne volcanic ash and the deposition at the earth's surface remains a difficult and challenging problem. The forecasting problem is influenced by 3 main components. The first one (ERUPTION SOURCE PARAMETERS) comprises all non-meteorological parameters that characterize a specific eruption or volcanic ash cloud. For example, the volume / mass of ash released in the atmosphere, the duration of the eruption, the altitude and distribution of the ash cloud, the particle size distribution, etc. The second component (METEOROLOGY) includes all meteorological parameters (wind, moisture, stability, etc.) that are calculated by Numerical Weather Prediction models and that serve as input to the VATDM. The third component (TRANSPORT AND DISPERSION) combines input from the other 2 components through the use of VATDM to transport and disperse airborne volcanic ash in the atmosphere as well as depositing it at the surface though various removal mechanisms. Any weakness in one of the components may adversely affect the accuracy of the forecast. In a real-time, operational response context such as exists at the VAACs, the rapid delivery of the modeling results puts some constraints on model resolution and computing time. Efforts are ongoing to evaluate the reliability of VATDM forecasts though the use of various methods, including ensemble techniques. Remote sensing data

  20. Fusibility and sintering characteristics of ash

    SciTech Connect

    Ots, A. A.

    2012-03-15

    The temperature characteristics of ash fusibility are studied for a wide range of bituminous and brown coals, lignites, and shales with ratios R{sub B/A} of their alkaline and acid components between 0.03 and 4. Acritical value of R{sub B/A} is found at which the fusion temperatures are minimal. The sintering properties of the ashes are determined by measuring the force required to fracture a cylindrical sample. It is found that the strength of the samples increases sharply at certain temperatures. The alkali metal content of the ashes has a strong effect on their sintering characteristics.

  1. Fly Ash Disposal in Ash Ponds: A Threat to Ground Water Contamination

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Gupta, N. C.; Guha, B. K.

    2016-09-01

    Ground water contamination due to deposition of fly ash in ash ponds was assessed by simulating the disposal site conditions using batch leaching test with fly ash samples from three thermal power plants. The periodic analysis of leachates was performed for selected elements, Fe, Cu, Ni, Cr, Pb and Cd in three different extraction solutions to determine the maximum amount that can be leached from fly ash. It was observed that at low pH value, maximum metals are released from the surface of the ash into leachate. The average concentration of these elements found in ground water samples from the nearby area of ash ponds shows that almost all the metals except `Cr' are crossing the prescribed limits of drinking water. The concentration of these elements at this level can endanger public health and environment.

  2. Development of new ash cooling method for atmospheric fluidized beds

    SciTech Connect

    Li Xuantian; Luo Zhongyang; Ni Mingjiang; Cheng Leming; Gao Xiang; Fang Mengxiang; Cen Kefa

    1995-12-31

    The pollution caused by hot ash drained from the bed is another challenge to atmospheric fluidized bed combustion technology when low-rank, high ash fuels are used. A new technique is developed for ash cooling and utilization of the waste heat of ash. Results from the demonstration of an 1.5 T/H patented device have shown the potential to use this type of ash cooler for drying and secondary air preheating. Bottom ash sized in the range 0--13 mm can be cooled from 1,650 F (900 C) to tolerable temperatures for conveying machinery, and the cooled ash can be re-utilized for cement production.

  3. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.

    PubMed

    Okada, Takashi; Suzuki, Masaru

    2013-11-30

    In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery.

  4. Fluidized bed gasification ash reduction and removal system

    SciTech Connect

    Schenone, C.E.; Rosinski, J.

    1984-02-28

    In a fluidized bed gasification system, an ash removal system is disclosed to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  5. Fluidized bed gasification ash reduction and removal process

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-12-04

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  6. Fluidized bed gasification ash reduction and removal system

    DOEpatents

    Schenone, Carl E.; Rosinski, Joseph

    1984-02-28

    In a fluidized bed gasification system an ash removal system to reduce the particulate ash to a maximum size or smaller, allow the ash to cool to a temperature lower than the gasifier and remove the ash from the gasifier system. The system consists of a crusher, a container containing level probes and a means for controlling the rotational speed of the crusher based on the level of ash within the container.

  7. Fine Ash Aggregation Processes Observed In Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Rinkleff, P. G.

    2012-12-01

    Fine airborne volcanic ash was collected during the eruptions of Augustine in 2006, Pavlof in 2007, and Redoubt in 2009 using Davis Rotating Unit for Measurement (DRUM) inertial cascade impactors to observe atmospheric volcanic ash aggregation. Aerosol ash collection by DRUM sampler preserved particle morphologies and compositions that are altered or destroyed by deposition. DRUM samples were analyzed by Scanning Electron Microscopy with Energy Dispersive Spectroscopy to determine particle size, shape, and composition. Ash particles were observed as single grains, ash aggregates, and hybrid ash/marine aerosol aggregates. Single grain ash occurred as single angular silicate shards and likely formed under ash and marine aerosol limited conditions. Ash aggregates occurred as loosely consolidated silicate ash clumps in pyroclastic flow elutriation plumes and were found in a discrete aerodynamic size range between 2.5-1.15 μm. Ash aggregates likely formed in fine ash-rich conditions which resulted from clast milling in flows that also generated abundant electrostatic particle charge. Hybrid ash/marine aerosol aggregates were composed of silicate ash and sea salt with non-sea salt sulfates. The mass concentration of sulfate did not vary systematically with ash which indicated that the sulfate source was not necessarily volcanic. Hybrid ash was common in all samples and likely formed when downward mixing ash mingled with upward mixing sea salt and non-sea salt sulfate aerosol.EM image of ash aggregates with individual ash grains. EM image with EDS element maps of hybrid ash/marine aerosol aggregates. Si is present with marine Cl and S.

  8. Potential products from North Dakota lignite fly ash. Final report

    SciTech Connect

    Anderson, G R

    1980-06-01

    Four major areas where fly ash can be used are explored. Concrete building blocks with fly ash replacing 50% of the portland cement have proven to be successful using current ASTM standards. Results in the ceramics area show that a ceramic-like product using fly ash and crushed glass with a small amount of clay as a green binder. Some preliminary results using sulfur ash in building materials are reported and with results of making wallboard from ash. (MHR)

  9. Wildland fire ash: future research directions

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Martins, Deborah A.; Cerdà, Artemi; Balfour, Victoria N.; Santin, Cristina; Doerr, Stefan H.; Pereira, Paulo; Mataix-Solera, Jorge

    2014-05-01

    Ash is a key component of the forest fires affected land (Cerdà, 1998; Bodí et al., 2011; Pereira et al., 2013a). Ash controls the hydrological processes and determines the water repellency (Dlapa et al., 2012) and the infiltration rates (Cerdà and Doerr, 2008;). Moreover, ash is the key factor on runoff initiation and then on the soil erosion. Little is known about the impact of ash in different ecosystems, but during the last decade a substantial increase in the papers that show the role of ash in the Earth and Soil System were published (Bodí et al., 2012; Pereira et al., 2013b).. Ash is being found as the key component of the post-fire pedological, geomorphological and hydrological response after forest fires (Fernández et al., 2012; Martín et al., 2012; Bodí et al., 2013; Guénon et al., 2013; Pereira et al., 2013c). A recent State-of-the-Art review about wildland fire ash (Bodí et al., 2014) compiles the knowledge regarding the production, composition and eco-hydro-geomorphic effects of wildland fire ash. In the present paper we indicate the knowledge gaps detected and suggest topics that need more research effort concerning: i) data collection and analysis techniques: a) To develop standardized sampling techniques that allow cross comparison among sites and avoid inclusion of the underlying soil unless the burned surface soil forms part of the ash layer, b) To develop standardized methods to define and characterize ash, including its color, physical properties such as particle size distribution or density, proportion of pyrogenic C, chemical and biological reactivity and persistence in the environment, c) To validate, calibrate and test measurements collected through remote sensing with on-the-ground measurements. ii) ash production, deposition redistribution and fate: d) To untangle the significance of the effects of maximum temperature reached during combustion versus the duration of heating, e) To understand the production of ash by measuring its

  10. The chemical characterization of dispersed ash and ash layers at DSDP Site 52, Izu-Bonin

    NASA Astrophysics Data System (ADS)

    McKinley, C. C.; Scudder, R. P.; Murray, R. W.; Kutterolf, S.; Schindlbeck, J. C.

    2012-12-01

    As part of an on-going regional project, the focus of this study is the characterization of compositions and fluxes of dispersed ash and discrete ash layers in the northwest Pacific Ocean in the context of variability in time and space. Deep Sea Drilling Project Site 52 is located eastward of the Izu-Bonin-Marianas subduction zone (27.77N, 147.12E, water depth 5744 m). Site 52 was rotary drilled in 1969 during DSDP Leg 6, and its major sediments were initially described as "clay-rich volcanic ash and brown clay with abundant volcanic glass". We therefore selected this site as potential "ash-rich" end member in our regional assessment. We analyzed 60 bulk sediment and 8 discrete ash layer samples (the latter represents all layers that were recovered) by ICP-ES and ICP-MS, from the upper 60 mbsf. Ash layers are only present in the top 13 mbsf, perhaps due to drilling disturbance at deeper depths. No samples were collected between 60 and 69 mbsf because the sediment there was reported as flow-in. At 69 mbsf lithified ash and chert was encountered so drilling was discontinued. In addition to quantifying the abundance of dispersed ash in the bulk sediment, we compare the composition of the dispersed ash component to that of the discrete ash layers. In order to facilitate comparison between ash layers and the bulk sediment, all major element data are reported on an anhydrous basis. Indeed, the major element totals for the discrete ash population (approx. 92 wt. %) and bulk sediment (approx. 88 wt. %) are consistent with the bulk sediment incorporating more alteration products (i.e., authigenic clay). The discrete ash layers show at least two populations of compositions. "Ash 1" broadly is characterized by lower SiO2 (60-62 wt%) with higher TiO2 (0.8-0.9 wt. %), MgO (2.8-3.0 wt. %), Fe2O3 (7-10 wt. %), Sc (19-30 ppm), and V (125-160 ppm). This ash is generally similar to upper crustal materials such as loess and PAAS, but differs in several key diagnostic compositions

  11. Flue gas desulfurization gypsum and fly ash

    SciTech Connect

    Not Available

    1992-05-01

    The Cumberland Fossil Plant (CUF) is located in Stewart County, Tennessee, and began commercial operation in 1972. This is the Tennessee Valley Authority`s newest fossil (coal-burning) steam electric generating plant. Under current operating conditions, the plant burns approximately seven million tons of coal annually. By-products from the combustion of coal are fly ash, approximately 428,000 tons annually, and bottom ash, approximately 115,000 tons annually. Based on historical load and projected ash production rates, a study was initially undertaken to identify feasible alternatives for marketing, utilization and disposal of ash by-products. The preferred alternative to ensure that facilities are planned for all by-products which will potentially be generated at CUF is to plan facilities to handle wet FGD gypsum and dry fly ash. A number of different sites were evaluated for their suitability for development as FGD gypsum and ash storage facilities. LAW Engineering was contracted to conduct onsite explorations of sites to develop information on the general mature of subsurface soil, rock and groundwater conditions in the site areas. Surveys were also conducted on each site to assess the presence of endangered and threatened species, wetlands and floodplains, archaeological and cultural resources, prime farmland and other site characteristics which must be considered from an environmental perspective.

  12. A frictional law for volcanic ash gouge

    NASA Astrophysics Data System (ADS)

    Lavallée, Y.; Hirose, T.; Kendrick, J. E.; De Angelis, S.; Petrakova, L.; Hornby, A. J.; Dingwell, D. B.

    2014-08-01

    Volcanic provinces are structurally active regions - undergoing continual deformation along faults. Within such fault structures, volcanic ash gouge, containing both crystalline and glassy material, may act as a potential fault plane lubricant. Here, we investigate the frictional properties of volcanic ash gouges with varying glass fractions using a rotary shear apparatus at a range of slip rates (1.3-1300 mm/s) and axial stresses (0.5-2.5 MPa). We show that the frictional behaviour of volcanic ash is in agreement with Byerlee's friction law at low slip velocities, irrespective of glass content. The results reveal a common non-linear reduction of the friction coefficient with slip velocity and yield a frictional law for fault zones containing volcanic ash gouge. Textural analysis reveals that strain localisation and the development of shear bands are more prominent at higher slip velocities (>10 mm/s). The textures observed here are similar to those recorded in ash gouge at the surface of extrusive spines at Mount St. Helens (USA). We use the rate-weakening component of the frictional law to estimate shear-stress-resistance reductions associated with episodic seismogenic slip events that accompany magma ascent pulses. We conclude that the internal structure of volcanic ash gouge may act as a kinematic marker of exogenic dome growth.

  13. Hydrothermal reactions of fly ash. Final report

    SciTech Connect

    Brown, P.W.

    1995-12-31

    The emphasis of the work done has been to determine the reactivities of two ashes believed to be representative of those generated. A bituminous ash and a lignitic ash have been investigated. The reactions of these ashes undergo when subjected to mild hydrothermal conditions were explored. The nature of the reactions which the ashes undergo when alkaline activators, calcium hydroxide and calcium sulfate are present was also investigated. It was determined that calcium silicate hydrate, calcium aluminate hydrate, and the calcium sulfoaluminate hydrate ettringite form under these conditions. It appears 3CaO{center_dot}Al{sub 2}O{sub 3}{center_dot}3CaSO{sub 4}{center_dot}32H{sub 2}O (ettringite) formation needs to be considered in ashes which contain significant amounts of sulfate. Therefore the stability region for ettringite was established. It was also determined that calcium silicate hydrate, exhibiting a high internal surface area, will readily form with hydrothermal treatment between 50{degrees} and 100{degrees}C. This phase is likely to have a significant capacity to take up heavy metals and oxyanions and this ability is being explored.

  14. A ~9.4 Ma Ash Record from the Andaman Accretionary Wedge: Petrochemical Implications for Arc Evolution

    NASA Astrophysics Data System (ADS)

    Cawthern, T. R.; Johnson, J. E.; Bryce, J. G.; Blichert-Toft, J.; Flores, J. A.

    2010-12-01

    , whereas the younger, more felsic ashes have ɛHf <-0.7. Our findings of distinct ɛHf values are consistent with either an increase in the amount of subducted old Himalayan-derived sediments from the Bengal Fan (ɛHf ~ -43 [2]), or a decrease in the fluid flux to the overlying mantle wedge, which would drive a change in the depth interval over which hydrous mantle wedge melting occurs in the Sunda subduction zone and possibly decrease the mantle influence on isotopic signatures. We interpret the timing of the ash compositional changes at Site 17 and the opening of the Andaman backarc basin as support for a more significant role of decreasing fluid flux to the overlying mantle wedge, resulting from a documented increase in the dip of the India plate [1]. Additional ɛNd and Pb isotope data from these ashes will help constrain the origin of this major change in ash composition and benefit future models of the evolution of the north Sunda subduction zone. [1]Khan and Chakraborty, 2005, EPSL, 229, 259-271 [2] Chauvel et al., 2008, Nature Geosci., 1, 64-67

  15. Scale-Up and Demonstration of Fly Ash Ozonation Technology

    SciTech Connect

    Rui Afonso; R. Hurt; I. Kulaots

    2006-03-01

    The disposal of fly ash from the combustion of coal has become increasingly important. When the fly ash does not meet the required specification for the product or market intended, it is necessary to beneficiate it to achieve the desired quality. This project, conducted at PPL's Montour SES, is the first near full-scale ({approx}10 ton/day), demonstration of ash ozonation technology. Bituminous and sub bituminous ashes, including two ash samples that contained activated carbon, were treated during the project. Results from the tests were very promising. The ashes were successfully treated with ozone, yielding concrete-suitable ash quality. Preliminary process cost estimates indicate that capital and operating costs to treat unburned carbon are competitive with other commercial ash beneficiation technologies at a fraction of the cost of lost sales and/or ash disposal costs. This is the final technical report under DOE Cooperative Agreement No.: DE-FC26-03NT41730.

  16. Effect of emerald ash borer on structure and material properties of ash trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerald ash borer (EAB) currently occurs in fifteen states in the United States, as well as Ontario and Quebec in Canada. A decline in ash tree strength following EAB infestation is potentially hazardous to public safety, particularly when trees are left standing for several years after dying. Dead ...

  17. Validation of Volcanic Ash Forecasting Performed by the Washington Volcanic Ash Advisory Center

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Hanna, J.

    2009-12-01

    In support of NOAA’s mission to protect life and property, the Satellite Analysis Branch (SAB) uses satellite imagery to monitor volcanic eruptions and track volcanic ash. The Washington Volcanic Ash Advisory Center (VAAC) was established in late 1997 through an agreement with the International Civil Aviation Organization (ICAO). A volcanic ash advisory (VAA) is issued every 6 hours while an eruption is occurring. Information about the current location and height of the volcanic ash as well as any pertinent meteorological information is contained within the VAA. In addition, when ash is detected in satellite imagery, 6-, 12- and 18-hour forecasts of ash height and location are provided. This information is garnered from many sources including Meteorological Watch Offices (MWOs), pilot reports (PIREPs), model forecast winds, radiosondes and volcano observatories. The Washington VAAC has performed a validation of their 6, 12 and 18 hour airborne volcanic ash forecasts issued since October, 2007. The volcanic ash forecasts are viewed dichotomously (yes/no) with the frequency of yes and no events placed into a contingency table. A large variety of categorical statistics useful in describing forecast performance are then computed from the resulting contingency table.

  18. High fire resistance in blocks containing coal combustion fly ashes and bottom ash.

    PubMed

    García Arenas, Celia; Marrero, Madelyn; Leiva, Carlos; Solís-Guzmán, Jaime; Vilches Arenas, Luis F

    2011-08-01

    Fire resistance recycled blocks, containing fly ash and bottom ash from coal combustion power plants with a high fire resistance, are studied in this paper by testing different compositions using Portland cement type II, sand, coarse aggregate and fly ash (up to 50% of total weight) and bottom ash (up to 30% of total weight). The fire resistance, physical-chemical (density, pH, humidity, and water absorption capacity), mechanical (compressive and flexural strength), and leaching properties are measured on blocks made with different proportions of fly ash and bottom ash. The standard fire resistance test is reproduced on 28cm-high, 18cm-wide and 3cm-thick units, and is measured as the time needed to reach a temperature of 180°C on the non-exposed surface of the blocks for the different compositions. The results show that the replacement of fine aggregate with fly ash and of coarse aggregate with bottom ash have a remarkable influence on fire resistance and cause no detriment to the mechanical properties of the product. Additionally, according to the leaching tests, no environmental problems have been detected in the product. These results lead to an analysis of the recycling possibilities of these by-products in useful construction applications for the passive protection against fire.

  19. Comparative study on the characteristics of fly ash and bottom ash geopolymers.

    PubMed

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk

    2009-02-01

    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na(2)SiO(3)) solutions were used as activators. A mass ratio of 1.5 Na(2)SiO(3)/NaOH and three concentrations of NaOH (5, 10, and 15M) were used; the geopolymers were cured at 65 degrees C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  20. Comparative study on the characteristics of fly ash and bottom ash geopolymers

    SciTech Connect

    Chindaprasirt, Prinya; Jaturapitakkul, Chai; Chalee, Wichian; Rattanasak, Ubolluk

    2009-02-15

    This research was conducted to compare geopolymers made from fly ash and ground bottom ash. Sodium hydroxide (NaOH) and sodium silicate (Na{sub 2}SiO{sub 3}) solutions were used as activators. A mass ratio of 1.5 Na{sub 2}SiO{sub 3}/NaOH and three concentrations of NaOH (5, 10, and 15 M) were used; the geopolymers were cured at 65 deg. C for 48 h. A Fourier transform infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM) were used on the geopolymer pastes. Geopolymer mortars were also prepared in order to investigate compressive strength. The results show that both fly ash and bottom ash can be utilized as source materials for the production of geopolymers. The properties of the geopolymers are dependent on source materials and the NaOH concentration. Fly ash is more reactive and produces a higher degree of geopolymerization in comparison with bottom ash. The moderate NaOH concentration of 10 M is found to be suitable and gives fly ash and bottom ash geopolymer mortars with compressive strengths of 35 and 18 MPa.

  1. Evaluation/Selection of Innovative Technologies for Testing with Basin F Materials.

    DTIC Science & Technology

    1987-02-28

    12,000 403,000* *Excludes adjoining soils which may have been contaminated by Basin F activities . Estimate is subject to refinement upon completion of...34. forming the matrix might be pozzolanic materials such as cement and’or ° ash as well as proprietary formulations incorporating polymeric...various clays, sandy-soils, etc. of Basin F. The glass forming chemicals to be added would probably be sodium alkalies . Because the clay may be expected

  2. Insight of the fusion behavior of volcanic ash: Implications for Volcanic ash Hazards to Aircraft Safety

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Küppers, Ulrich; Scheu, Bettina; Cimarelli, Corrado; Lavallée, Yan; Sohyun, Park; Gattermann, Ulf; Müller, Dirk; Dingwell, Donald Bruce

    2014-05-01

    The interaction of volcanic ash with jet turbines during via ingestion of ash into engines operating at supra-volcanic temperatures is widely recognized as a potentially fatal hazard for jet aircraft. In the past 12 years, more than 60 modern jet airplanes, mostly jumbo jets, have been damaged by drifting clouds of volcanic ash that have contaminated air routes and airport facilities. Seven of these encounters are known to have caused in flight loss of engine power to jumbo jets carrying a total of more than 2000 passengers. The fusibility of volcanic ash is believed to impact strongly its deposition in the hotter parts of jet engines. Despite this, explicit investigation of ash sintering using standardized techniques is in its infancy. Volcanic ash may vary widely in its physical state and chemical composition between and even within explosive volcanic eruptions. Thus a comparative study of the fusibility of ash which involves a standard recognized techniques would be highly desirable. In this work, nine samples of fine ash, deposited from co-pyroclastic offrom nine different volcanoes which cover a broad range of chemical composition, were investigated. Eight of them were collected from 2001-2009 eruptions. Because of the currently elevated level of eruptive activity and its potential hazards to aircraft safety and the remaining one sample was collected from a 12,121 ± 114 yr B.P. eruption. We used the method of accessing the behavior of deposit-forming impurities in high temperature boiler plants on the basis of observations of the change in shape and size of a cylindrical coal ash to study the fusion phenomena as well as determine the volcanic ash melting behavior by defining four characteristic temperatures (shrinkage temperature, deformation temperature, hemispherical temperature, and flow temperature) by means of heating microscope instrument and different thermal analysis methods. Here, we find that there are similar sticking ability and flow behavior of

  3. Salt-thermal zeolitization of fly ash.

    PubMed

    Choi, C L; Park, M; Lee, D H; Kim, I E; Park, B Y; Choi, J

    2001-07-01

    The molten-salt method has been recently proposed as a new approach to zeolitization of fly ash. Unlike the hydrothermal method, this method employs salt mixtures as the reaction medium without any addition of water. In this study, systematic investigation has been conducted on zeolitization of fly ash in a NaOH-NaNO3 system in order to elucidate the mechanism of zeolite formation and to achieve its optimization. Zeolitization of fly ash was conducted by thermally treating a powder mixture of fly ash, NaOH, and NaNO3. Zeolitization of fly ash took place above 200 degrees C, a temperature lower than the melting points of salt and base in the NaOH-NaNO3 system. However, it was uncertain whether the reactions took place in a local molten state or in a solid state. Therefore, the proposed method is renamed the "salt-thermal" method rather than the "molten-salt" method. Mainly because of difficulty in mobility of components in salt mixtures, zeolitization seems to occur within a local reaction system. In situ rearrangement of activated components seems to lead to zeolite formation. Particle growth, rather than crystal growth through agglomeration, resulted in no distinct morphologies of zeolite phases. Following are the optimal zeolitization conditions of the salt-thermal method: temperature, 250-350 degrees C; time, 3-12 h; weight ratio of NaOH/NaNO3, 0.3-0.5; weight ratio of NaNO3/fly ash, 0.7-1.4. Therefore, it is clear from this work that the salt-thermal method could be applied to massive zeolitization of fly ash as a new alternative method for recycling this waste.

  4. Isotopic paleoclimate from hydrated volcanic ash

    SciTech Connect

    Friedman, I.; Izett, G.A.; Gleason, J.D.

    1985-01-01

    The deuterium composition (deltaD) of secondary water in glass shards of volcanic ash can be used to calculate the deltaD--and hence the climatic association--of water that was in contact with the ash during the first 10,000 years after eruption of the ash; this being the approximate (+/-5000 years) time necessary for water to diffuse completely through the thin walls of the pumice and glass shards. The fractionation between environmental water and water diffusing into the glassy ash must be known in order to calculate the deltaD of the ancient ground water. With help from A.J. Gude and R.A. Sheppard, the authors have recently determined this fractionation, and have used it to derive a value for deltaD of water from 25 samples of glass from the Huckleberry Ridge (2.1 m.y.), Bishop Tuff (0.74 m.y.), and Lava Creek B (0.61 m.y.) ashes collected from sites throughout the Western US. All of these deltaD values correlate very well with latitude and with the present distribution of deltaD in surface water. For example, the deltaD of water in Huckleberry Ridge ash varies from -85 per thousand SMOW for samples collected in Texas, to -148 per thousand for samples from south-central Montana. Thus, water of hydration in rhyolitic ash represents samples of ancient environmental water and can be used to study changes in the deltaD of the precipitation through time.

  5. International Database of Volcanic Ash Impacts

    NASA Astrophysics Data System (ADS)

    Wallace, K.; Cameron, C.; Wilson, T. M.; Jenkins, S.; Brown, S.; Leonard, G.; Deligne, N.; Stewart, C.

    2015-12-01

    Volcanic ash creates extensive impacts to people and property, yet we lack a global ash impacts catalog to organize, distribute, and archive this important information. Critical impact information is often stored in ephemeral news articles or other isolated resources, which cannot be queried or located easily. A global ash impacts database would improve 1) warning messages, 2) public and lifeline emergency preparation, and 3) eruption response and recovery. Ashfall can have varying consequences, such as disabling critical lifeline infrastructure (e.g. electrical generation and transmission, water supplies, telecommunications, aircraft and airports) or merely creating limited and expensive inconvenience to local communities. Impacts to the aviation sector can be a far-reaching global issue. The international volcanic ash impacts community formed a committee to develop a database to catalog the impacts of volcanic ash. We identify three user populations for this database: 1) research teams, who would use the database to assist in systematic collection, recording, and storage of ash impact data, and to prioritize impact assessment trips and lab experiments 2) volcanic risk assessment scientists who rely on impact data for assessments (especially vulnerability/fragility assessments); a complete dataset would have utility for global, regional, national and local scale risk assessments, and 3) citizen science volcanic hazard reporting. Publication of an international ash impacts database will encourage standardization and development of best practices for collecting and reporting impact information. Data entered will be highly categorized, searchable, and open source. Systematic cataloging of impact data will allow users to query the data and extract valuable information to aid in the development of improved emergency preparedness, response and recovery measures.

  6. Tectonic evolution of Honey Lake basin, northeastern California

    SciTech Connect

    Wagner, D.L. ); Saucedo, G.J. ); Grose, T.L.T. . Dept. of Geology and Geological Engineering)

    1993-04-01

    New geologic mapping in northeastern California provides additional data on the age and tectonic evolution of the Honey Lake Basin. Rhylitic ash flow tuffs of latest Oligocene to early Miocene age (30 to 22 Ma) occur in the Fort Sage Mountains and in the Sierra Nevada but are not apparent in wells drilled in the Honey Lake basin. Though other interpretations can be made, the authors take this as evidence that the basin did not exist at that time. Volcanic rocks as old as 12 Ma do occur in the basin indicating initiation in mid-Miocene time probably as a graben due to block faulting. Syntectonic andesitic and basaltic volcanism occurred along faults bounding the Sierra Nevada block at 9 to 10 Ma. Lava issuing from these fractures flowed westward along Tertiary drainages indicating that the Sierran block had been uplifted and tilted westward. Andesites erupted during this time north and east of the basin are lithologically distinct from Sierran andesites. Strike-slip faulting began to dominate the tectonic setting of the region during late Pliocene and Quaternary time with the development of the Honey Lake Fault Zone. Holocene strike-slip displacement is indicated by offsets of the 12,000 year old Lake Lahontan shoreline and deposits containing a 7,000 year old ash.

  7. Lipid peroxidation and oxidative status compared in workers at a bottom ash recovery plant and fly ash treatment plants.

    PubMed

    Liu, Hung-Hsin; Shih, Tung-Sheng; Chen, I-Ju; Chen, Hsiu-Ling

    2008-01-01

    Fly ash and ambient emissions of municipal solid waste incinerators contain polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polycyclic aromatic hydrocarbons (PAHs), other organic compounds, metals, and gases. Hazardous substances such as PCDD/Fs, mercury vapors and other silicates, and the components of bottom ash and fly ash elevate the oxidative damage. We compared oxidative damage in workers exposed to hazardous substances at a bottom ash recovery plant and 3 fly ash treatment plants in Taiwan by measuring their levels of plasma malondialdehyde (MDA) and urine 8-hydroxydeoxyguanosine (8-OH-dG). Significantly higher MDA levels were found in fly ash treatment plant workers (3.20 microM) than in bottom ash plant workers (0.58 microM). There was a significant association between MDA levels in workers and their working environment, especially in the fly ash treatment plants. Levels of 8-OH-dG varied more widely in bottom ash workers than in fly ash workers. The association between occupational exposure and 8-OH-dG levels may be affected by the life style of the workers. Because more dioxins and metals may leach from fly ash than from bottom ash, fly ash treatment plant workers should, as much as possible, avoid exposing themselves to fly ash.

  8. Marine Mesocosm Bacterial Colonisation of Volcanic Ash

    NASA Astrophysics Data System (ADS)

    Witt, V.; Cimarelli, C.; Ayris, P. M.; Kueppers, U.; Erpenbeck, D.; Dingwell, D. B.; Woerheide, G.

    2014-12-01

    Explosive volcanic eruptions regularly eject large quantities of ash particles into the atmosphere, which can be deposited via fallout into oceanic environments. Such fallout has the potential to alter pH, light and nutrient availability at local or regional scales. Shallow-water coral reef ecosystems - "rainforests of the sea" - are highly sensitive to disturbances, such as ocean acidification, sedimentation and eutrophication. Therefore, ash deposition may lead to burial and mortality of such reefs. Coral reef ecosystem resilience may depend on pioneer bacterial colonisation of the ash layer, supporting subsequent establishment of the micro- and ultimately the macro-community. However, it is currently unknown which bacteria are involved in pioneer colonisation. We hypothesize that physico-chemical properties (i.e., morphology, chemistry, mineralogy) of the ash may dictate bacterial colonisation. We have tested the effect of substrate properties on bacterial diversity and abundance colonising five substrates: i) quartz sand ii) crystalline ash from the Sakurajima volcano (Japan) iii) volcanic glass iv) carbonate reef sand and v) calcite sand of similar grain size - by incubation in a controlled marine mesocosm (coral reef aquarium) under low light conditions for three months. Bacterial communities were screened every month by Automated Ribosomal Intergenic Spacer Analysis of the 16S-23S rRNA Internal Transcribed Spacer region. Multivariate statistics revealed discrete groupings of bacterial communities on substrates of volcanic origin (ash and glass) and reef origin (three sands). Analysis Of Similarity supports significantly different communities associated with all substrates (p=0.0001), only quartz did not differ from both carbonate and calcite sands. The ash substrate exhibited the most diverse bacterial community and carried the most substrate-specific bacterial operational taxonomic units. Our findings suggest that bacterial diversity and community

  9. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  10. Interspecific Proteomic Comparisons Reveal Ash Phloem Genes Potentially Involved in Constitutive Resistance to the Emerald Ash Borer

    PubMed Central

    Whitehill, Justin G. A.; Popova-Butler, Alexandra; Green-Church, Kari B.; Koch, Jennifer L.; Herms, Daniel A.; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion. PMID:21949771

  11. Interspecific proteomic comparisons reveal ash phloem genes potentially involved in constitutive resistance to the emerald ash borer.

    PubMed

    Whitehill, Justin G A; Popova-Butler, Alexandra; Green-Church, Kari B; Koch, Jennifer L; Herms, Daniel A; Bonello, Pierluigi

    2011-01-01

    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion.

  12. Proceedings: Tenth international ash use symposium

    SciTech Connect

    Not Available

    1993-01-01

    The objective of the 1993 International Coal Ash Use Symposium, the tenth in a series since 1967, is to publicize innovations in coal ash technology. These symposia support the mission of the American Coal Ash Association (ACAA) to promote coal ash use in a variety of markets through technology transfer and commercialization. The two-volume publication contains 82 papers arranged in fourteen sections which include: waste solidification and stabilization; aggregate; agriculture; structural fill; mine reclamation; aquatic uses; environmental considerations; concrete and flowable fill; base stabilization; clean coal by-products; international and regional perspectives; research and development; fillers in plastic and aluminum; and manufactured products--marketable gypsum, masonry blocks, cast in-situ and precast houses, bricks, mineral wool fibers and ready-mixed concrete. The 82 papers were submitted to ACAA by authors from sixteen countries including. The symposium, with 45 percent of the papers from locations outside the USA, represents a truly international interest in the development of uses for coal ash. Individual reports are processed separately for the data bases.

  13. Coal ash behavior in reducing environments

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Brekke, D.W.; Folkedahl, B.C.; Tibbetts, J.E.; Nowok, J.W.

    1994-10-01

    This project is a four-year program designed to investigate the transformations and properties of coal ash in reducing environment systems. This project is currently midway through its third year. The work to date has emphasized four areas of research: (1) the development of quantitative techniques to analyze reduced species, (2) the production of gasification-type samples under closely controlled conditions, (3) the systematic gasification of specific coals to produce information about their partitioning during gasification, and (4) the study of the physical properties of ashes and slags under reducing atmospheres. The project is organized into three tasks which provide a strong foundation for the project. Task 1, Analytical Methods Development, has concentrated on the special needs of analyzing samples produced under a reducing atmosphere as opposed to the more often studied combustion systems. Task 2, Inorganic Partitioning and Ash Deposition, has focused on the production of gasification-type samples under closely controlled conditions for the study of inorganic partitioning that may lead to deposition. Task 3, Ash and Slag Physical Properties, has made large gains in the areas of sintering and strength development of coal ashes under reducing atmospheres for the evaluation of deposition problems. Results are presented for all three tasks.

  14. National volcanic ash operations plan for aviation

    USGS Publications Warehouse

    ,; ,

    2007-01-01

    The National Aviation Weather Program Strategic Plan (1997) and the National Aviation Weather Initiatives (1999) both identified volcanic ash as a high-priority informational need to aviation services. The risk to aviation from airborne volcanic ash is known and includes degraded engine performance (including flameout), loss of visibility, failure of critical navigational and operational instruments, and, in the worse case, loss of life. The immediate costs for aircraft encountering a dense plume are potentially major—damages up to $80 million have occurred to a single aircraft. Aircraft encountering less dense volcanic ash clouds can incur longer-term costs due to increased maintenance of engines and external surfaces. The overall goal, as stated in the Initiatives, is to eliminate encounters with ash that could degrade the in-flight safety of aircrews and passengers and cause damage to the aircraft. This goal can be accomplished by improving the ability to detect, track, and forecast hazardous ash clouds and to provide adequate warnings to the aviation community on the present and future location of the cloud. To reach this goal, the National Aviation Weather Program established three objectives: (1) prevention of accidental encounters with hazardous clouds; (2) reduction of air traffic delays, diversions, or evasive actions when hazardous clouds are present; and (3) the development of a single, worldwide standard for exchange of information on airborne hazardous materials. To that end, over the last several years, based on numerous documents (including an OFCMsponsored comprehensive study on aviation training and an update of Aviation Weather Programs/Projects), user forums, and two International Conferences on Volcanic Ash and Aviation Safety (1992 and 2004), the Working Group for Volcanic Ash (WG/VA), under the OFCM-sponsored Committee for Aviation Services and Research, developed the National Volcanic Ash Operations Plan for Aviation and Support of the

  15. Hydrothermal reaction of fly ash. Final report

    SciTech Connect

    Brown, P.W.

    1994-12-31

    The reactions which occur when fly ash is treated under hydrothermal conditions were investigated. This was done for the following primary reasons. The first of these is to determine the nature of the phases that form to assess the stabilities of these phases in the ambient environment and, finally, to assess whether these phases are capable of sequestering hazardous species. The second reason for undertaking this study was whether, depending on the composition of the ash and the presence of selected additives, it would be possible under hydrothermal conditions to form compounds which have cementitious properties. Formation of four classes of compounds, which bracket likely fly ash compositional ranges, were selected for study. The classes are calcium silicate hydrates, calcium selenates, and calcium aluminosulfates, and silicate-based glasses. Specific compounds synthesized were determined and their stability regions assessed. As part of stability assessment, the extent to which selected hazardous species are sequestered was determined. Finally, the cementing properties of these compounds were established. The results obtained in this program have demonstrated that mild hydrothermal conditions can be employed to improve the reactivity of fly ash. Such improvements in reactivity can result in the formation of monolithic forms which may exhibit suitable mechanical properties for selected applications as building materials. If the ashes involved are considered hazardous, the mechanical properties exhibited indicated the forms could be handled in a manner which facilitates their disposal.

  16. The climatic impact of supervolcanic ash blankets

    NASA Astrophysics Data System (ADS)

    Jones, M. T.; Sparks, S. J.; Valdes, P. J.

    2006-12-01

    Supervolcanoes are capable of ejecting 1000's of cubic kilometres of magmatic material in a single eruption, far surpassing anything recorded in human history. It has been postulated that these eruptions have acted as catalysts for long-term climate change and are responsible for bottlenecks in human and animal populations. Tephra deposits from a super-eruption are capable of covering an area the size of USA (~10,000,000 sq. km) with ash, destroying vegetation and considerably raising the surface albedo. Ecological responses to smaller eruptions show that recovery of flora takes over 15 years, while previous studies of ash blankets demonstrate sustained surface residence times. This suggests that a supervolcanic ash blanket would instigate a decadal climate response that would dominate in the aftermath of the effects of aerosols in the stratosphere. We use a coupled atmosphere-ocean General Circulation Model (GCM) to simulate the effect of an ash blanket from Yellowstone volcano, USA, and show that it causes major disruptions to the climate, particularly to oscillatory systems such as the El Niño Southern Oscillation (ENSO). The regional disturbance instigates a global response, with significant variations in surface temperatures, pressures and precipitation patterns. The ocean remains largely unaffected, though a marked increase in sea ice is seen in the North Atlantic. While the response to a supervolcanic ash blanket is predicted to be severe, the isolated effects of the disturbance are not significant enough to instigate long-term climate change at present day boundary conditions.

  17. Correlation between the critical viscosity and ash fusion temperatures of coal gasifier ashes

    SciTech Connect

    Hsieh, Peter Y.; Kwong, Kyei-Sing; Bennett, James

    2015-09-27

    Coal gasification yields synthesis gas, an important intermediate in chemical manufacturing. It is also vital to the production of liquid fuels through the Fischer-Tropsch process and electricity in Integrated Gasification Combined Cycle power generation. Minerals naturally present in coal become molten in entrained-flow slagging gasifiers. Molten coal ash slag penetrates and dissolves refractory bricks, leading to costly plant shutdowns. The extent of coal ash slag penetration and refractory brick dissolution depends on the slag viscosity, the gasification temperature, and the composition of slag and bricks. Here, we measured the viscosity of several synthetic coal ash slags with a high-temperature rotary viscometer and their ash fusion temperatures through optical image analysis. We made all measurements in a carbon monoxide-carbon dioxide reducing atmosphere that approximates coal gasification conditions. Empirical correlation models based on ash fusion temperatures were used to calculate critical viscosity temperatures based on the coal ash compositions. These values were then compared with those obtained from thermodynamic phase-transition models. Finally, an understanding of slag viscosity as a function of ash composition is important to reducing refractory wear in slagging coal gasifiers, which would help to reduce the cost and environmental impact of coal for chemical and electricity production.

  18. Extraction of trace metals from fly ash

    DOEpatents

    Blander, M.; Wai, C.M.; Nagy, Z.

    1983-08-15

    A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  19. Extraction of trace metals from fly ash

    DOEpatents

    Blander, Milton; Wai, Chien M.; Nagy, Zoltan

    1984-01-01

    A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

  20. Market assessment and technical feasibility study of PFBC ash use

    SciTech Connect

    Smith, V.E.; Bland, A.E.; Brown, T.H.; Georgiou, D.N.; Wheeldon, J.

    1994-10-01

    The overall objectives of this study are to determine the market potential and the technical feasibility of using PFBC ash in high volume ash use applications. The information will be of direct use to the utility industry in assessing the economics of PFBC power generation in light of ash disposal avoidance through ash marketing. In addition, the research is expected to result in the generation of generic data on the use of PFBC ash that could lead to novel processing options and procedures. The specific objectives of the proposed research and demonstration effort are: Define resent and future market potential of PFBC ash for a range of applications (Phase I); assess the technical feasibility of PFBC ash use in construction, civil engineering and agricultural applications (Phase II); and demonstrate the most promising of the market and ash use options in full-scale field demonstrations (Phase III).

  1. Fusion characteristics of volcanic ash relevant to aviation hazards

    NASA Astrophysics Data System (ADS)

    Song, Wenjia; Hess, Kai-Uwe; Damby, David E.; Wadsworth, Fabian B.; Lavallée, Yan; Cimarelli, Corrado; Dingwell, Donald B.

    2014-04-01

    The fusion dynamics of volcanic ash strongly impacts deposition in hot parts of jet engines. In this study, we investigate the sintering behavior of volcanic ash using natural ash of intermediate composition, erupted in 2012 at Santiaguito Volcano, Guatemala. A material science procedure was followed in which we monitored the geometrical evolution of cylindrical-shaped volcanic ash compact upon heating from 50 to 1400°C in a heating microscope. Combined morphological, mineralogical, and rheological analyses helped define the evolution of volcanic ash during fusion and sintering and constrain their sticking potential as well as their ability to flow at characteristic temperatures. For the ash investigated, 1240°C marks the onset of adhesion and flowability. The much higher fusibility of ash compared to that of typical test sands demonstrates for the need of a more extensive fusion characterization of volcanic ash in order to mitigate the risk posed on jet engine operation.

  2. Eco-friendly fly ash utilization: potential for land application

    SciTech Connect

    Malik, A.; Thapliyal, A.

    2009-07-01

    The increase in demand for power in domestic, agricultural, and industrial sectors has increased the pressure on coal combustion and aggravated the problem of fly ash generation/disposal. Consequently the research targeting effective utilization of fly ash has also gained momentum. Fly ash has proved to be an economical substitute for expensive adsorbents as well as a suitable raw material for brick manufacturing, zeolite synthesis, etc. Fly ash is a reservoir of essential minerals but is deficient in nitrogen and phosphorus. By amending fly ash with soil and/or various organic materials (sewage sludge, bioprocess materials) as well as microbial inoculants like mycorrhizae, enhanced plant growth can be realized. Based on the sound results of large scale studies, fly ash utilization has grown into prominent discipline supported by various internationally renowned organizations. This paper reviews attempts directed toward various utilization of fly ash, with an emphasis on land application of organic/microbial inoculants amended fly ash.

  3. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer.

    PubMed

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-01

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na(2)SiO(3)) and 10M sodium hydroxide (NaOH) solutions at mass ratio of Na(2)SiO(3)/NaOH of 1.5 and curing temperature of 65 degrees C for 48h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  4. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer

    SciTech Connect

    Chindaprasirt, Prinya; Rattanasak, Ubolluk

    2010-04-15

    In this paper, synthesis of geopolymer from fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash was studied in order to effectively utilize both ashes. FBC-fly ash and bottom ash were inter-ground to three different finenesses. The ashes were mixed with as-received PCC-fly ash in various proportions and used as source material for synthesis of geopolymer. Sodium silicate (Na{sub 2}SiO{sub 3}) and 10 M sodium hydroxide (NaOH) solutions at mass ratio of Na{sub 2}SiO{sub 3}/NaOH of 1.5 and curing temperature of 65 deg. C for 48 h were used for making geopolymer. X-ray diffraction (XRD), scanning electron microscopy (SEM), degree of reaction, and thermal gravimetric analysis (TGA) were performed on the geopolymer pastes. Compressive strength was also tested on geopolymer mortars. The results show that high strength geopolymer mortars of 35.0-44.0 MPa can be produced using mixture of ground FBC ash and as-received PCC-fly ash. Fine FBC ash is more reactive and results in higher degree of reaction and higher strength geopolymer as compared to the use of coarser FBC ash. Grinding increases reactivity of ash by means of increasing surface area and the amount of reactive phase of the ash. In addition, the packing effect due to fine particles also contributed to increase in strength of geopolymers.

  5. Growth of Larval Agrilus planipennis (Coleoptera: Buprestidae) and Fitness of Tetrastichus planipennisi (Hymenoptera: Eulophidae) in Blue Ash (Fraxinus quadrangulata) and Green Ash (F. pennsylvanica).

    PubMed

    Peterson, Donnie L; Duan, Jian J; Yaninek, J S; Ginzel, Matthew D; Sadof, Clifford S

    2015-12-01

    Emerald ash borer (Agrilus planipennis Fairmaire) is an invasive primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is less susceptible to emerald ash borer infestations in the forest than other species of North American ash. Whereas other studies have examined adult host preferences, we compared the capacity of emerald ash borer larvae reared from emerald ash borer eggs in the field and in the laboratory to survive and grow in blue ash and the more susceptible green ash (F. pennsylvanica). Emerald ash borer larval survivorship was the same on both ash species. Mortality due to wound periderm formation was only observed in living field grown trees, but was low (<4%) in both green and blue ash. No difference in larval mortality in the absence of natural enemies suggests that both green and blue ash can support the development of emerald ash borer. Larvae reared from eggs on blue ash were smaller than on green ash growing in the field and also in bolts that were infested under laboratory conditions. In a laboratory study, parasitism rates of confined Tetrastichus planipennisi were similar on emerald ash borer larvae reared in blue and green ash bolts, as were fitness measures of the parasitoid including brood size, sex ratio, and adult female size. Thus, we postulate that emerald ash borer larvae infesting blue ash could support populations of T. planipennisi and serve as a potential reservoir for this introduced natural enemy after most of the other native ash trees have been killed.

  6. Fly Ash Characteristics and Carbon Sequestration Potential

    SciTech Connect

    Palumbo, Anthony V.; Amonette, James E.; Tarver, Jana R.; Fagan, Lisa A.; McNeilly, Meghan S.; Daniels, William L.

    2007-07-20

    Concerns for the effects of global warming have lead to an interest in the potential for inexpensive methods to sequester carbon dioxide (CO2). One of the proposed methods is the sequestration of carbon in soil though the growth of crops or forests.4,6 If there is an economic value placed on sequestration of carbon dioxide in soil there may be an an opportunity and funding to utilize fly ash in the reclamation of mine soils and other degraded lands. However, concerns associated with the use of fly ash must be addressed before this practice can be widely adopted. There is a vast extent of degraded lands across the world that has some degree of potential for use in carbon sequestration. Degraded lands comprise nearly 2 X 109 ha of land throughout the world.7 Although the potential is obviously smaller in the United States, there are still approximately 4 X 106 ha of degraded lands that previously resulted from mining operations14 and an additional 1.4 X 108 ha of poorly managed lands. Thus, according to Lal and others the potential is to sequester approximately 11 Pg of carbon over the next 50 years.1,10 The realization of this potential will likely be dependent on economic incentives and the use of soil amendments such as fly ash. There are many potential benefits documented for the use of fly ash as a soil amendment. For example, fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, HCO3-, Cl- and basic cations, although some effects are notably decreased in high-clay soils.8,13,9 The potential is that these effects will promote increased growth of plants (either trees or grasses) and result in greater carbon accumulation in the soil than in untreated degraded soils. This paper addresses the potential for carbon sequestration in soils amended with fly ash and examines some of the issues that should be considered in planning this option. We describe retrospective studies of soil carbon accumulation on

  7. Using fly ash to mitigate explosions

    SciTech Connect

    Taulbee, D.

    2008-07-01

    In 2005 the University of Kentucky's Center for Applied Energy Research was given funding to evaluate the use of coal combustion by-products (CCBs) to reduce the explosive potential of ammonium nitrate (AN) fertilizers. Fly ash C (FAC), fly ash F (FAF) and flue gas desulfurization by-product (FGD) were evaluated. It was found that applying a CCB coating to the AN particles at concentrations of 5 wt% or greater prevented the AN explosion from propagating. The article reports on results so far and outlines further work to be done. 6 figs.

  8. Changeing of fly ash leachability after grinding

    NASA Astrophysics Data System (ADS)

    Lakatos, J.; Szabo, R.; Racz, A.; Banhidi, O.; Mucsi, G.

    2016-04-01

    Effect of grinding on the reactivity of fly ash used for geopolymer production was tested. Extraction technique using different alkaline and acidic solutions were used for detect the change of the solubility of elements due to the physical and mechano-chemical transformation of minerals in function of grinding time. Both the extraction with alkaline and acidic solution have detected improvement in solubility in function of grinding time. The enhancement in alkaline solution was approx. 100% in case of Si and Al. The acidic medium able to dissolve the fly ash higher manner than the alkaline, therefore the effect of grinding was found less pronounced.

  9. NRL Satellite Volcanic Ash Plume Monitoring

    NASA Astrophysics Data System (ADS)

    Hawkins, J.; Kuciauskas, A. P.; Richardson, K.; Solbrig, J.; Miller, S. D.; Pavolonis, M. J.; Bankert, R.; Lee, T.; Kent, J.; Tsui, T.

    2009-12-01

    The Naval Research Laboratory’s (NRL) Marine Meteorology Division (NRL-MRY) is assembling a unique suite of near real-time digital satellite products geared towards monitoring volcanic ash plumes which can create hazardous aviation conditions. Ash plume detection, areal extent, plume top height and mass loading will be extracted via automated algorithms from a combination of geostationary (GEO) and low earth orbiting (LEO) data sets that take advantage of their complimentary strengths since no one sensor has the required spectral, spatial and temporal attributes needed. This product suite would then be available to the Volcanic Ash Advisory Centers (VAAC) and other interested users via web distribution. Initially, GOES-West and the Japanese MTSAT data will be incorporated to view volcanic plumes within the north Pacific region. Although GEO sensor spectral channels are not optimized for ash detection, temporal changes over limited timeframes can assist in plume extraction, but not for those at the highest latitudes. Examples with multi-channel techniques will be highlighted via animations. LEO sensors provide a suite of spectral channels unmatched on GEO platforms and permit enhanced ash plume monitoring. NRL has exploited the Moderate Resolution Imaging Spectroradiometer (MODIS) and SeaWiFS via a “dust enhancement technique” that has demonstrated positive plume monitoring results. Multi-channel methods using the Advanced Very High Resolution Radiometer (AVHRR) will be highlighted to take advantage of the numerous NOAA LEO satellites carrying this wide swath sensor with frequent volcano overpasses at the higher latitudes. The DMSP Operational Linescan System (OLS) provides daytime visible/infrared, as well as night time visible data which has shown value in spotting ash plumes when sufficient lunar illumination is present. The following suite of products is potentially available for over twenty (20) volcano sites world-wide via our NexSat web site: http

  10. Utilization options for fly ash, bottom ash, and slag in Eastern Europe

    SciTech Connect

    Manz, O.E.

    1995-12-01

    Since 1967, at least six ash utilization symposiums have been held in the United States, with papers presented by several European authors on the utilization of coal by-products in Eastern Europe. There is currently over 80,000 megawatts of installed coal-fired capacity available in that region. Unfortunately, of the 117,778,000 tonnes of fly ash, bottom ash, and slag produced in Eastern Europe in 1989, only 13% was utilized. This paper outlines the research and levels and kinds of coal by-product utilization taking place in Eastern Europe since the late 1960s.

  11. A DDDAS Framework for Volcanic Ash Propagation and Hazard Analysis

    DTIC Science & Technology

    2012-01-01

    estimates of volcanic ash transport and dispersal. Our primary modeling tools will be a combination of a plume eruption model BENT and the ash transport... eruptions ,” J. of Volcanology and Geothermal Research, vol. 186, pp. 10–21, 2009, special issue on Volcanic Ash Clouds; L. Mastin and P.W. Webley (eds...J. Dehn, J. Bailey, and R. Peterson, “ Volcanic ash dispersion modeling of the 2006 eruption of Augustine Volcano ,” USGS Professional Paper: Augustine

  12. The adsorption of HCl on volcanic ash

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Xochilt; Schiavi, Federica; Keppler, Hans

    2016-03-01

    Understanding the interaction between volcanic gases and ash is important to derive gas compositions from ash leachates and to constrain the environmental impact of eruptions. Volcanic HCl could potentially damage the ozone layer, but it is unclear what fraction of HCl actually reaches the stratosphere. The adsorption of HCl on volcanic ash was therefore studied from -76 to +150 °C to simulate the behavior of HCl in the dilute parts of a volcanic plume. Finely ground synthetic glasses of andesitic, dacitic, and rhyolitic composition as well as a natural obsidian from Vulcano (Italy) served as proxies for fresh natural ash. HCl adsorption is an irreversible process and appears to increase with the total alkali content of the glass. Adsorption kinetics follow a first order law with rate constants of 2.13 ṡ10-6 s-1 to 1.80 ṡ10-4 s-1 in the temperature range investigated. For dacitic composition, the temperature and pressure dependence of adsorption can be described by the equation ln ⁡ c = 1.26 + 0.27 ln ⁡ p - 715.3 / T, where c is the surface concentration of adsorbed HCl in mg/m2, T is temperature in Kelvin, and p is the partial pressure of HCl in mbar. A comparison of this model with a large data set for the composition of volcanic ash suggests that adsorption of HCl from the gas phase at relatively low temperatures can quantitatively account for the majority of the observed Cl concentrations. The model implies that adsorption of HCl on ash increases with temperature, probably because of the increasing number of accessible adsorption sites. This temperature dependence is opposite to that observed for SO2, so that HCl and SO2 are fractionated by the adsorption process and the fractionation factor changes by four orders of magnitude over a temperature range of 250 K. The assumption of equal adsorption of different species is therefore not appropriate for deriving volcanic gas compositions from analyses of adsorbates on ash. However, with the experimental

  13. Study on the scale of wet-ash transportation system

    SciTech Connect

    Chen Yafei; Gao Xiang; Fang Mengxiang; Luo Zhongyang; Shi Zhenglun; Chen Guanyi; Ye Chunzhen; Ni Mingjiang; Cen Kefa

    1997-12-31

    In this paper, the scale phenomenon of a wet-ash transportation system against SFDS-coal ash rich in CaO is studied. The mechanism of scale, the static state dissolution attribute of Ca{sup 2+} and scale dynamic state simulation are investigated. In the research of scale dynamic state simulation experiment, the following factors are analyzed separately: ash type, tube material, flow rate of ash-water, recovery rate of transportation water, retention period of ash-water in ash tanker, operating period in tube and scale along the tube with distance. Results show that the content of basic oxide, especially the content of soluble basic oxide in ash has a decisive effect on scale. Compared with metal tubes, a rubberish tube can reduce scale deposition efficiently. Improving flow rate of ash-water, recovery rate of transportation water and retention period of ash water in ash tanker can reduce scale, too. During ash-water flows in the ash transportation tube, initial scaling rate is lower at first, but it will improve as time goes on until it reaches a constant. Scale along the tube is different in time, scale rate is very high at the entrance but exponential decays along the tube.

  14. 77 FR 55895 - Permanent Closure of Cincinnati Blue Ash Airport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... Federal Aviation Administration Permanent Closure of Cincinnati Blue Ash Airport AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of permanent closure of Cincinnati Blue Ash Airport (ISZ). SUMMARY: The... Cincinnati advising that on August 29, 2012, it was permanently closing Cincinnati Blue Ash Airport...

  15. Utilization of CFB fly ash for construction applications

    SciTech Connect

    Conn, R.E.; Sellakumar, K.; Bland, A.E.

    1999-07-01

    Disposal in landfills has been the most common means of handling ash in circulating fluidized bed (CFB) boiler power plants. Recently, larger CFB boilers with generating capacities up to 300 MWe are currently being planned, resulting in increased volumes and disposal cost of ash by-product. Studies have shown that CFB ashes do not pose environmental concerns that should significantly limit their potential utilization. Many uses of CFB ash are being investigated by Foster Wheeler, which can provide more cost-effective ash management. Construction applications have been identified as one of the major uses for CFB ashes. Typically, CFB ash cannot be used as a cement replacement in concrete due to its unacceptably high sulfur content. However, CFB ashes can be used for other construction applications that require less stringent specifications including soil stabilization, road base, structural fill, and synthetic aggregate. In this study, potential construction applications were identified for fly ashes from several CFB boilers firing diverse fuels such as petroleum coke, refuse derived fuel (RDF) and coal. The compressive strength of hydrated fly ashes was measured in order to screen their potential for use in various construction applications. Based on the results of this work, the effects of both ash chemistry and carbon content on utilization potential were ascertained. Actual beneficial uses of ashes evaluated in this study are also discussed.

  16. ULTRAFINE ASH AEROSOLS FROM COAL COMBUSTION: CHARACTERIZATION AND HEALTH EFFECTS

    EPA Science Inventory

    Ultrafine coal fly ash particles, defined here as those with diameters less than 0.5 micrometer, typically comprise less than 1% of the total fly ash mass. These particles are formed almost exclusively through ash vaporization, nucleation, and coagulation/condensation mechanisms,...

  17. Economic analysis of emerald ash borer (Coleoptera: Buprestidae) management options.

    PubMed

    Vannatta, A R; Hauer, R H; Schuettpelz, N M

    2012-02-01

    Emerald ash borer, Agrilus planipennis (Fairmaire) (Coleoptera: Buprestidae), plays a significant role in the health and extent of management of native North American ash species in urban forests. An economic analysis of management options was performed to aid decision makers in preparing for likely future infestations. Separate ash tree population valuations were derived from the i-Tree Streets program and the Council of Tree and Landscape Appraisers (CTLA) methodology. A relative economic analysis was used to compare a control option (do-nothing approach, only removing ash trees as they die) to three distinct management options: 1) preemptive removal of all ash trees over a 5 yr period, 2) preemptive removal of all ash trees and replacement with comparable nonash trees, or 3) treating the entire population of ash trees with insecticides to minimize mortality. For each valuation and management option, an annual analysis was performed for both the remaining ash tree population and those lost to emerald ash borer. Retention of ash trees using insecticide treatments typically retained greater urban forest value, followed by doing nothing (control), which was better than preemptive removal and replacement. Preemptive removal without tree replacement, which was the least expensive management option, also provided the lowest net urban forest value over the 20-yr simulation. A "no emerald ash borer" scenario was modeled to further serve as a benchmark for each management option and provide a level of economic justification for regulatory programs aimed at slowing the movement of emerald ash borer.

  18. The Rheology of Vegetative Ash-laden Debris Flows

    NASA Astrophysics Data System (ADS)

    Burns, K. A.; Gabet, E.

    2006-12-01

    There is mounting observational evidence that vegetative ash created in a forest fire may play a major role in reducing infiltration and leads to the generation of debris flows on these burned hillslopes. A viscometer was used to measure the viscosity of ash slurries of varying concentrations, as well as slurries containing both fine- grained clastic sediment (sand and silt sized) and vegetative ash at varying concentrations. Initial results from these experiments indicate that increasing the concentration of ash increases effective viscosity of the slurry. Increasing the ash concentration by 5% increases the effective viscosity of the slurry by 10-50% over a range of shear rates. Also, ash-only slurries appear to shear thin with increasing shear rate at all concentrations. For example, with a 60% ash concentration, increasing the shear rate from 5/s to 40/s reduces the effective viscosity by 90%. For the mixed ash and fine-grained sediment slurries, increasing the percentage of ash relative to the percentage of clastic sediment dramatically increases the viscosity of the slurry even though the ash and finest-grained sediment are approximately the same size. A 50% concentration slurry containing only silt-sized clastic particles has a 40-70% lower effective viscosity than a slurry of the same concentration containing only ash particles. Therefore, the ash particles behave differently than clastic sediment particles.

  19. Observation of Eyjafjallajökull volcano ash over Poland

    NASA Astrophysics Data System (ADS)

    Zielinski, T.; Petelski, T.; Makuch, P.; Kowalczyk, J.; Rozwadowska, A.; Drozdowska, V.; Markowicz, K.; Malinowski, S.; Kardas, A.; Posyniak, M.; Jagodnicka, A. K.; Stacewicz, T.; Piskozub, J.

    2010-05-01

    The plume of Eyjafjallajökull volcano ash has been identified over Poland using three instruments (two lidars and a ceilometer) stationed in two locations: Sopot in northern Poland and Warsaw in central-eastern Poland. The observations made it possible to establish the base of the ash layer. However ash concentration could not be determined.

  20. Interpolation and Sampling Errors of the Ash and Sulphur Contents in Selected Polish Bituminous Coal Deposit (Upper Silesian Coal Basin - USCB) / Błędy Interpolacji I Opróbowania Zawartości Popiołu I Siarki W Wytypowanych Polskich Złożach Węgla Kamiennego (Górnośląskie Zagłębie Węglowe)

    NASA Astrophysics Data System (ADS)

    Mucha, Jacek; Wasilewska-Błaszczyk, Monika

    2015-09-01

    The basic sources of information on the parameters characterizing the quality of coal (i.e. its ash and sulphur contents) in the deposits of The Upper Silesian Coal Basin (Poland) are drill core sampling (the first stage of exploration) and channel sampling in mine workings (the second stage of exploration). Boreholes are irregularly spaced but provide relatively uniform coverage over an entire deposit area. Channel samples are taken regularly in mine workings, but only in the developed parts of the deposit. The present study considers selected seams of two mines. The methodology used is based on detailed geostatistical analysis, point kriging procedure and P. Gy's theory of sampling. Its purpose is: • defining and comparing geostatistical models for variability of the ash and sulphur contents for data originating from boreholes and mine workings, • predicting by means of point kriging the values of the parameters and errors of interpolation using data from boreholes at grid points where underground mine workings were later channel-sampled, • assessing the accuracy of interpolation by comparison of predicted values of parameters with real values (found by channel sampling), • evaluating the variances of total secondary sampling error (error of preparation of assay samples) and analytical error introduced by assaying of sulphur and ash, • assessing the contribution of sampling and analytical errors (global estimation error) to the interpolation errors. The authors found that the interpolation errors for ash or sulphur content are very large, with mean relative values of 35%-60%, mainly caused by the considerable natural variability, a significant role of random component of variability, and heterogeneity of spatial distribution of these characteristics. The sampling and analytical errors play a negligible role. Their values are smaller than 11% of interpolation error values. Presenting estimates of the spatial distribution of ash and sulphur contents in

  1. Pyroclasts Key to Age and Use of Meter-Size Granite Basins, Sierra Nevada, CA (Invited)

    NASA Astrophysics Data System (ADS)

    Moore, J. G.; Gorden, M. A.; Sisson, T. W.

    2010-12-01

    More than 1000 meter-size granite basins at more than 220 sites occur in a 240-km-long belt from Lake Isabella north to the San Joaquin River on the west slope of the southern Sierra Nevada. The circular basins are carved in granitic outcrops at an average elevation of 1950 m. They range in volume from 40 to 1400 liters, median 130 liters. The basins display features compatible with a man-made origin, but required enormous, sustained labor to excavate. Until now their apparent purpose was believed to be some aspect of food preparation (Moore, Gorden, Robinson, Moring, 2008). About 120 km north of this belt a separate cluster of more than 350 similar granite basins occurs near a rare salt spring. They were clearly made by Indians to contain saline water to produce salt by evaporation (Moore and Diggles, 2009). An early study identified rhyolitic volcanic ash in the bottom of many basins in Sequoia National Park at both Giant Forest and at Redwood Meadow 13 km ESE (Stewart, 1929). That ash is unavailable, having been removed in recent time. Subsequent study of meadowland soils identified two ash layers in the region from explosive eruptions in the Mono Lake area: Tephra 1 and Tephra 2 (Wood, 1977). Later work indicates that Tephra 1 was erupted from the Glass Creek vent of the Inyo Craters (Miller, 1985) and that its refined age by tree-ring techniques is AD 1350 (Millar, King, Westfall, Alden, Delany, 2006). A fossil forest killed by Tephra 1 differs from modern forests in that it grew in the warmer climate of the Medieval Warm Period (MWP)--a period when drought conditions prevailed at lower elevations (Stine, 1994; Millar et al, 2006). In July 2010 ash was discovered near the bottom of a pristine granite basin (TUL-496) in a remote area of Giant Sequoia National Monument 14.5 km NW of Giant Forest. High-beam-current electron microprobe analyses of pumice glasses give Zr 145-420 ppm, homogeneous within lapilli, and correlated with MgO and CaO concentrations. The

  2. Enrichment and oral bioaccessibility of selected trace elements in fly ash-derived magnetic components.

    PubMed

    Bourliva, Anna; Papadopoulou, Lambrini; Aidona, Elina; Simeonidis, Konstantinos; Vourlias, George; Devlin, Eamonn; Sanakis, Yiannis

    2016-11-04

    The mineralogy, morphology, and chemical composition of magnetic fractions separated from fly ashes (FAs) originating from Greek lignite-burning power plants was investigated. The oral bioaccessibility of potentially harmful elements (PHEs) from the fly ash magnetic fractions (FAMFs) was also assessed using in vitro gastrointestinal extraction (BARGE Unified Bioaccessibility Method, UBM). The FAMFs isolated were in the range 4.6-18.4%, and their mass specific magnetic susceptibility ranged from 1138 × 10(-8) to 1682 × 10(-8) m(3)/kg. XRD analysis and Mossbauer spectroscopy indicated that the dominant iron species were Fe-rich aluminosilicate glass along with magnetite, hematite, and maghemite (in decreasing order). The raw FAs exhibited differences in their chemical composition, indicating the particularity of every lignite basin. The elemental contents of FAMFs presented trends with fly ash type; thus, the FAMFs of high-Ca FAs were enriched in siderophile (Cr, Co, Ni) and lithophile (Cs, Li, Rb) elements and those separated from low-Ca FAs were presented depleted in chalcophile elements. Based on UBM extraction tests, the PHEs were more bioaccessible from the non-magnetic components of the FAs compared to the magnetic ones; however, the bioaccessible fractions estimated for the FAMFs were exceeding 40 % in many cases. Arsenic was found to be significantly bioaccessible (median ~ 80 %) from FAMFs despite the lower As contents in the magnetic fraction.

  3. Processing of Sugarcane Bagasse ash and Reactivity of Ash-blended Cement Mortar

    NASA Astrophysics Data System (ADS)

    Ajay, Goyal; Hattori, Kunio; Ogata, Hidehiko; Ashraf, Muhammad

    Sugarcane bagasse ash (SCBA), a sugar-mill waste, has the potential of a partial cement replacement material if processed and obtained under controlled conditions. This paper discusses the reactivity of SCBA obtained by control burning of sugarcane bagasse procured from Punjab province of India. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were employed to ascertain the amorphousness and morphology of the minerals ash particles. Destructive and non-destructive tests were conducted on SCBA-blended mortar specimens. Ash-blended cement paste specimens were analyzed by XRD, thermal analysis, and SEM methods to evaluate the hydration reaction of SCBA with cement. Results showed that the SCBA processed at 600°C for 5 hours was reactive as ash-blended mortar specimens with up to 15% substitution of cement gave better strength than control specimens.

  4. Mössbauer characterization of feed coal, ash and fly ash from a thermal power plant

    NASA Astrophysics Data System (ADS)

    Reyes Caballero, F.; Martínez Ovalle, S. A.; Moreno Gutiérrez, M.

    2015-06-01

    The aim of this work was apply 57Fe Transmission Mössbauer Spectroscopy at room temperature in order to study the occurrence of iron-containing mineral phases in: 1) feed coal; 2) coal ash, obtained in different stages of the ASTM D3174 standard method; and 3) fly ash, produced when coal is burned in the TERMOPAIPA IV thermal power plant localized in Boyacá, Colombia. According to obtained results, we can conclude the occurrence of pyrite and jarosite in the feed coal; Fe2+ and Fe3+ crystalline paramagnetic phases, superparamagnetic hematite and hematite in coal ash; Fe2+ and Fe3+ noncrystalline and crystalline phases, magnetite and hematite in fly ash. Precisely, for a basic understanding, this work discusses some the possible transformations that take place during coal combustion.

  5. Mutagenicity of fly ash particles in Paramecium

    SciTech Connect

    Smith-Sonneborn, J.; Palizzi, R.A.; Herr, C.; Fisher, G.L.

    1981-01-09

    Paramecium, a protozoan that ingests nonnutritive particulate matter, was used to determine the mutagenicity of fly ash. Heat treatment inactivated mutagens that require metabolic conversion to their active form but did not destroy all mutagenicity. Extraction of particles with hydrochloric acid, but not dimethyl sulfoxide, removed detectable mutagenic activity.

  6. Climate change and the ash dieback crisis

    PubMed Central

    Goberville, Eric; Hautekèete, Nina-Coralie; Kirby, Richard R.; Piquot, Yves; Luczak, Christophe; Beaugrand, Grégory

    2016-01-01

    Beyond the direct influence of climate change on species distribution and phenology, indirect effects may also arise from perturbations in species interactions. Infectious diseases are strong biotic forces that can precipitate population declines and lead to biodiversity loss. It has been shown in forest ecosystems worldwide that at least 10% of trees are vulnerable to extinction and pathogens are increasingly implicated. In Europe, the emerging ash dieback disease caused by the fungus Hymenoscyphus fraxineus, commonly called Chalara fraxinea, is causing a severe mortality of common ash trees (Fraxinus excelsior); this is raising concerns for the persistence of this widespread tree, which is both a key component of forest ecosystems and economically important for timber production. Here, we show how the pathogen and climate change may interact to affect the future spatial distribution of the common ash. Using two presence-only models, seven General Circulation Models and four emission scenarios, we show that climate change, by affecting the host and the pathogen separately, may uncouple their spatial distribution to create a mismatch in species interaction and so a lowering of disease transmission. Consequently, as climate change expands the ranges of both species polewards it may alleviate the ash dieback crisis in southern and occidental regions at the same time. PMID:27739483

  7. Climate change and the ash dieback crisis.

    PubMed

    Goberville, Eric; Hautekèete, Nina-Coralie; Kirby, Richard R; Piquot, Yves; Luczak, Christophe; Beaugrand, Grégory

    2016-10-14

    Beyond the direct influence of climate change on species distribution and phenology, indirect effects may also arise from perturbations in species interactions. Infectious diseases are strong biotic forces that can precipitate population declines and lead to biodiversity loss. It has been shown in forest ecosystems worldwide that at least 10% of trees are vulnerable to extinction and pathogens are increasingly implicated. In Europe, the emerging ash dieback disease caused by the fungus Hymenoscyphus fraxineus, commonly called Chalara fraxinea, is causing a severe mortality of common ash trees (Fraxinus excelsior); this is raising concerns for the persistence of this widespread tree, which is both a key component of forest ecosystems and economically important for timber production. Here, we show how the pathogen and climate change may interact to affect the future spatial distribution of the common ash. Using two presence-only models, seven General Circulation Models and four emission scenarios, we show that climate change, by affecting the host and the pathogen separately, may uncouple their spatial distribution to create a mismatch in species interaction and so a lowering of disease transmission. Consequently, as climate change expands the ranges of both species polewards it may alleviate the ash dieback crisis in southern and occidental regions at the same time.

  8. Arthur Ashe Jr. Sports Scholars Awards 2011

    ERIC Educational Resources Information Center

    Elfman, Lois; Walker, Marlon A.

    2011-01-01

    "Diverse: Issues In Higher Education" established the Sports Scholars Awards to honor undergraduate students of color who have made achieving both academically and athletically a winning combination. Inspired by tennis legend Arthur Ashe Jr.'s commitment to education as well as his love for the game of tennis, "Diverse" invites every college and…

  9. Arthur Ashe Jr. Sports Scholars Awards 2010

    ERIC Educational Resources Information Center

    Elfman, Lois; Ford, William J.

    2010-01-01

    "Diverse: Issues In Higher Education" established the Sports Scholars Awards to honor undergraduate students of color who have made achieving both academically and athletically a winning combination. Inspired by tennis legend Arthur Ashe Jr.'s commitment to education as well as his love for the game of tennis, they invite every college and…

  10. FLY ASH RECYCLE IN DRY SCRUBBING

    EPA Science Inventory

    The paper describes the effects of fly ash recycle in dry scrubbing. (Previous workers have shown that the recycle of product solids improves the utilization of slaked lime--Ca(OH)2--for sulfur dioxide (SO2) removal by spray dryers with bag filters.) In laboratory-scale experimen...

  11. Chemical constraints on fly ash glass compositions

    SciTech Connect

    John H. Brindle; Michael J. McCarthy

    2006-12-15

    The major oxide content and mineralogy of 75 European fly ashes were examined, and the major element composition of the glass phase was obtained for each. Correlation of compositional trends with the glass content of the ash was explored. Alkali content was deduced to have a major influence on glass formation, and this in turn could be related to the probable chemistry of clay minerals in the source coals. Maximal glass content corresponded to high aluminum content in the glass, and this is in accordance with the theoretical mechanism of formation of aluminosilicate glasses, in which network-modifying oxides are required to promote tetrahedral coordination of aluminum in glass chain structures. Iron oxide was found to substitute for alkali oxides where the latter were deficient, and some indications of preferred eutectic compositions were found. The work suggests that the proportion of the glass phase in the ash can be predicted from the coal mineralogy and that the utility of a given ash for processing into geopolymers or zeolites is determined by its source. 23 refs., 7 figs., 1 tab.

  12. 1997 Arthur Ashe Jr. Sport Scholars Awards.

    ERIC Educational Resources Information Center

    Roach, Ronald

    1997-01-01

    Winners of the "Black Issues in Higher Education" Arthur Ashe Jr. 1997 athletes of the year, one male and one female, are profiled and Sport Scholars are listed for baseball, softball, basketball, fencing, archery, football, handball, soccer, field hockey, crew, swimming, gymnastics, tennis, squash, golf, volleyball, lacrosse, wrestling, water…

  13. CHES and ASHE build bridges in construction.

    PubMed

    Burrill, Gordon D

    2007-08-01

    The Canadian Healthcare Engineering Society (CHES) and the American Society for Healthcare Engineering (ASHE) are partnering with a significant education initiative. They are providing construction and contract personnel with the insights necessary to recognise the inherent risks of progressing healthcare facility projects in patient-occupied buildings, writes Gordon D. Burrill, P. Eng.

  14. A Profile of Ashe County, North Carolina.

    ERIC Educational Resources Information Center

    Rash, James O., Jr.; And Others

    From 1950 to 1970, the shift from agriculture to industry dominated Ashe County, North Carolina, isolated on the Blue Ridge by rugged terrain and severe weather. Rural farm population declined by 2/3 but rural non-farm population tripled. Many new industries helped shift the bulk of the work force to industry. In 1950, 45% of the work force farmed…

  15. Characterizing uncertainty in the motion, future location and ash concentrations of volcanic plumes and ash clouds

    NASA Astrophysics Data System (ADS)

    Webley, P.; Patra, A. K.; Bursik, M. I.; Pitman, E. B.; Dehn, J.; Singh, T.; Singla, P.; Stefanescu, E. R.; Madankan, R.; Pouget, S.; Jones, M.; Morton, D.; Pavolonis, M. J.

    2013-12-01

    Forecasting the location and airborne concentrations of volcanic ash plumes and their dispersing clouds is complex and knowledge of the uncertainty in these forecasts is critical to assess and mitigate the hazards that could exist. We show the results from an interdisciplinary project that brings together scientists drawn from the atmospheric sciences, computer science, engineering, mathematics, and geology. The project provides a novel integration of computational and statistical modeling with a widely-used volcanic particle dispersion code, to provide quantitative measures of confidence in predictions of the motion of ash clouds caused by volcanic eruptions. We combine high performance computing and stochastic analysis, resulting in real time predictions of ash cloud motion that account for varying wind conditions and a range of model variables. We show how coupling a real-time model for ash dispersal, PUFF, with a volcanic eruption model, BENT, allows for the definition of the variability in the dispersal model inputs and hence classify the uncertainty that can then propagate for the ash cloud location and downwind concentrations. We additionally analyze the uncertainty in the numerical weather prediction forecast data used by the dispersal model by using ensemble forecasts and assess how this affects the downwind concentrations. These are all coupled together and by combining polynomical chaos quadrature with stochastic integration techniques, we provide a quantitative measure of the reliability (i.e. error) of those predictions. We show comparisons of the downwind height calculations and mass loadings with observations of ash clouds available from satellite remote sensing data. The aim is to provide a probabilistic forecast of location and ash concentration that can be generated in real-time and used by those end users in the operational ash cloud hazard assessment environment.

  16. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility.

    PubMed

    Cao, Yan; Wang, Quan-Hai; Li, Jun; Cheng, Jen-Chieh; Chan, Chia-Chun; Cohron, Marten; Pan, Wei-Ping

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactorwas about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155 degrees C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155 degrees C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, attesting conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBr addition alone).

  17. Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility

    SciTech Connect

    Yan Cao; Quan-Hai Wang; Jun Li; Jen-Chieh Cheng; Chia-Chun Chan; Marten Cohron; Wei-Ping Pan

    2009-04-15

    Low halogen content in tested Powder River Basin (PRB) coals and low loss of ignition content (LOI) in PRB-derived fly ash were likely responsible for higher elemental mercury content (averaging about 75%) in the flue gas and also lower mercury capture efficiency by electrostatic precipitator (ESP) and wet-FGD. To develop a cost-effective approach to mercury capture in a full-scale coal-fired utility boiler burning PRB coal, experiments were conducted adding hydrogen bromide (HBr) or simultaneously adding HBr and selected fly ashes in a slipstream reactor (0.152 x 0.152 m) under real flue gas conditions. The residence time of the flue gas inside the reactor was about 1.4 s. The average temperature of the slipstream reactor was controlled at about 155{sup o}C. Tests were organized into two phases. In Phase 1, only HBr was added to the slipstream reactor, and in Phase 2, HBr and selected fly ash were added simultaneously. HBr injection was effective (>90%) for mercury oxidation at a low temperature (155{sup o}C) with an HBr addition concentration of about 4 ppm in the flue gas. Additionally, injected HBr enhanced mercury capture by PRB fly ash in the low-temperature range. The mercury capture efficiency, at testing conditions of the slipstream reactor, reached about 50% at an HBr injection concentration of 4 ppm in the flue gas. Compared to only the addition of HBr, simultaneously adding bituminous-derived fly ash in a minimum amount (30 lb/MMacf), together with HBr injection at 4 ppm, could increase mercury capture efficiency by 30%. Injection of lignite-derived fly ash at 30 lb/MMacf could achieve even higher mercury removal efficiency (an additional 35% mercury capture efficiency compared to HBR addition alone). 25 refs., 5 figs., 1 tab.

  18. Origin of Meter-Size Granite Basins in the Southern Sierra Nevada, California

    USGS Publications Warehouse

    Moore, James G.; Gorden, Mary A.; Robinson, Joel E.; Moring, Barry C.

    2008-01-01

    Meter-size granite basins are found in a 180-km belt extending south from the South Fork of the Kings River to Lake Isabella on the west slope of the southern Sierra Nevada, California. Their origin has long been debated. A total of 1,033 basins have been inventoried at 221 sites. The basins occur on bedrock granitic outcrops at a median elevation of 1,950 m. Median basin diameter among 30 of the basin sites varies from 89 to 170 cm, median depth is 12 to 63 cm. Eighty percent of the basin sites also contain smaller bedrock mortars (~1-2 liters in capacity) of the type used by Native Americans (American Indians) to grind acorns. Features that suggest a manmade origin for the basins are: restricted size, shape, and elevation range; common association with Indian middens and grinding mortars; a south- and west-facing aspect; presence of differing shapes in distinct localities; and location in a food-rich belt with pleasant summer weather. Volcanic ash (erupted A.D. 1240+-60) in the bottom of several of the basins indicates that they were used shortly before ~760 years ago but not thereafter. Experiments suggest that campfires built on the granite will weaken the bedrock and expedite excavation of the basins. The primary use of the basins was apparently in preparing food, including acorns and pine nuts. The basins are among the largest and most permanent artifacts remaining from the California Indian civilization.

  19. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition

    USGS Publications Warehouse

    Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.

    2012-01-01

    We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.

  20. Hot-Gas Filter Ash Characterization Project

    SciTech Connect

    Dockter, B.A.; Hurley, J.P.; Watne, T.A.; Katrinak, K.A.; O`Keefe, C.A.

    1996-12-31

    Large-scale hot-gas testing over the past several years has revealed numerous cases of cake buildup on filter elements that have been difficult, if not impossible to remove. At times, the cake can bridge between candle filters, leading to high filter failure rates. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature contribute to difficulty in removing the cake. It is speculated that chemical as well as physical effects are playing a role in leading the ash to bond to the filter or to itself. The Energy and Environmental research Center (EERC) at the University of North Dakota is working with Electric Power Research Institute (EPRI) and a consortium of companies in partnership with the US Department of Energy (DOE) to perform the research necessary to determine the factors that cause hot-gas cleanup filters to be blinded by ash or to develop deposits that can bridge the filters and cause them to fail. The objectives of this overall project are threefold: first, to determine the mechanisms by which difficult-to-clean ash is formed; second, to develop a method to determine the rate of blinding/bridging based on fuel and sorbent properties and operating conditions; finally, to provide suggestions fro ways to prevent filter blinding by the troublesome ash. The projects consists of four tasks: field sampling and archive sample analyses, laboratory-scale testing, bench-scale testing, and model and database development testing. This paper present preliminary data from Task 2 on determining the tensile strengths of coal ash particles at elevated temperatures and simulated combustor gas conditions.

  1. Synthetic aggregates from combustion ashes using an innovative rotary kiln.

    PubMed

    Wainwright, P J; Cresswell, D J

    2001-01-01

    This paper describes the use of a number of different combustion ashes to manufacture synthetic aggregates using an innovative rotary 'Trefoil' kiln. Three types of combustion ash were used, namely: incinerated sewage sludge ash (ISSA); municipal solid waste incinerator bottom ash (MSWIBA-- referred to here as BA); and pulverised fuel ash (Pfa). The fine waste ash fractions listed above were combined with a binder to create a plastic mix that was capable of being formed into 'green pellets'. These pellets were then fired in a Trefoil kiln to sinter the ashes into hard fused aggregates that were then tested for use as a replacement for the natural coarse aggregate in concrete. Results up to 28 days showed that these synthetic aggregates were capable of producing concretes with compressive strengths ranging from 33 to 51 MPa, equivalent to between 73 and 112% of that of the control concrete made with natural aggregates.

  2. The catalytic and photocatalytic activity of coal fly ashes

    NASA Astrophysics Data System (ADS)

    Dlugi, Ralph; Güsten, Hans

    Great differences in the catalytic and photocatalytic activity of two samples of fly ash from two different coal-fired power plants have been demonstrated to exist for two reactions of environmental significance, namely, the heterogeneous SO 2 oxidation in a smog chamber and the photochemical degradation of two polynuclear aromatic hydrocarbons adsorbed onto the fly ashes. At a relative humidity (r.h.) of 80%, the reaction rate for the heterogeneous SO 2 oxidation on an acidic fly ash (pH 5.65) is ten times higher than for the oxidation on a fly ash of pH 9.3. Compared to silica gel, the 'acidic' fly ash gives rise to a faster photocatalytic degradation of anthracene and phenanthrene, while the same aromatic hydrocarbons are highly resistant to photodegradation when adsorbed on the fly ash of pH 9.3. Possible explanations and environmental consequences of the differing catalytic activity of fly ashes are discussed.

  3. Chemical composition in relation with biomass ash structure

    NASA Astrophysics Data System (ADS)

    Holubcik, Michal; Jandacka, Jozef

    2014-08-01

    Biomass combustion can be more complicated like combustion of fossil fuels because it is necessary to solve problems with lower ash melting temperature. It can cause a lot of problems during combustion process. Chemical composition of biomass ash has great impact on sinters and slags creation in ash because it affects structure of heated ash. In this paper was solved relation between chemical composition and structure of heated ash from three types of biomass (spruce wood, miscanthus giganteus and wheat straw). Amount of SiO2, CaO, MgO, Al2O3 and K2O was determined. Structure of heated ash was optically determined after heating to 1000 °C or 1200 °C. Results demonstrated that chemical composition has strong effect on structure and color of heated ash.

  4. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents.

  5. Volcanic Ash fall Impact on Vegetation, Colima 2005

    NASA Astrophysics Data System (ADS)

    Garcia, M. G.; Martin, A.; Fonseca, R.; Nieto, A.; Radillo, R.; Armienta, M.

    2007-05-01

    An ash sampling network was established arround Colima Volcano in 2005. Ash fall was sampled on the North, Northeast, East, Southeast, South, Southwest and West of the volcano. Samples were analyzed for ash components, geochemistry and leachates. Ash fall ocurred on April (12), May (10, 23), June (2, 6, 9, 10, 12, 14), July (27), September (27), October (23) and November (24). Most of the ash is made of andesitic dome-lithics but shows diferences in crystal, juvenile material and lithic content. In May, some samples contained grey and dark pumice (scoria). Texture varies from phi >4 to phi 0. Leachate concentration were low: SO4 (7.33-54.19) Cl- (2.29-4.97) and F- (0.16-0.37). During 2005, Colima Volcano's ash fall rotted some of the guava and peach fruits and had a drying effect on spearment and epazote plants. Even these small ash amounts could have hindered sugar cane and agave growth.

  6. The enormous Chillos Valley Lahar: An ash-flow-generated debris flow from Cotopaxi Volcano, Ecuador

    USGS Publications Warehouse

    Mothes, P.A.; Hall, M.L.; Janda, R.J.

    1998-01-01

    The Chillos Valley Lahar (CVL), the largest Holocene debris flow in area and volume as yet recognized in the northern Andes, formed on Cotopaxi volcano's north and northeast slopes and descended river systems that took it 326 km north-northwest to the Pacific Ocean and 130+ km east into the Amazon basin. In the Chillos Valley, 40 km downstream from the volcano, depths of 80-160 m and valley cross sections up to 337000m2 are observed, implying peak flow discharges of 2.6-6.0 million m3/s. The overall volume of the CVL is estimated to be ???3.8 km3. The CVL was generated approximately 4500 years BP by a rhyolitic ash flow that followed a small sector collapse on the north and northeast sides of Cotopaxi, which melted part of the volcano's icecap and transformed rapidly into the debris flow. The ash flow and resulting CVL have identical components, except for foreign fragments picked up along the flow path. Juvenile materials, including vitric ash, crystals, and pumice, comprise 80-90% of the lahar's deposit, whereas rhyolitic, dacitic, and andesitic lithics make up the remainder. The sand-size fraction and the 2- to 10-mm fraction together dominate the deposit, constituting ???63 and ???15 wt.% of the matrix, respectively, whereas the silt-size fraction averages less than ???10 wt.% and the clay-size fraction less than 0.5 wt.%. Along the 326-km runout, these particle-size fractions vary little, as does the sorting coefficient (average = 2.6). There is no tendency toward grading or improved sorting. Limited bulking is recognized. The CVL was an enormous non-cohesive debris flow, notable for its ash-flow origin and immense volume and peak discharge which gave it characteristics and a behavior akin to large cohesive mudflows. Significantly, then, ash-flow-generated debris flows can also achieve large volumes and cover great areas; thus, they can conceivably affect large populated regions far from their source. Especially dangerous, therefore, are snowclad volcanoes

  7. [Characteristics and Resources of Fly Ash Particles in the Snowpack of Jinfo Mountain, Chongqing].

    PubMed

    Yu, Zheng-liang; Yang, Ping-heng; Jing, Wei-li; Yuan, Dao-xian; Ren, Kun; Li, Lin-li

    2015-12-01

    Snow can preserve the atmospheric information, which makes it become a good media in studying regional environment. Jinfo Mountain with an elevation of 2251.1 m, located at the transition zone between Sichuan basin and Yunnan-Guizhou Plateau, is deeply affected by human activities, and snowfall is the main form of precipitation during the winter. While the literature focus on single spherical particles in this area is uncommon. Five snow samples were collected, and determined morphology and chemical composition of 132 single spherical particles by the scanning electron microscope couples with energy dispersive X-ray spectrometer (SEM-EDS). Results show that snowfall in Jinfo Mountain includes the massive fly ash particles with 1.64 µm in average diameter and 1.09 in average roundness which contains smooth particles, rough particles and soot particles, accounting for 80. 31% , 14. 39% and 5.30% of statistical particles respectively. Furthermore, on the basis of chemical information obtained from EDS, the fly ash particles counted in this research can be classified into 5 types, namely, Si-dominant particles, C-dominant particles, Fe-dominant particles, Al-dominant particles and Ti-dominant particles, which make up 34.09%, 49.24%, 12.88%, 2.27% and 1.52% respectively. In conclusion, it can be inferred, based on the analysis of meteorological information, the properties of fly ash particles, and backward air mass trajectory and dispersion analysis, that C-dominant fly ash mainly comes from daily life and industry activities, Si-dominant fly ash particles may originate from the plant industry located in west Chingqing, north of Guizhou province, central of Hunan province, Zhejiang province, Jiangxi province and the west of Guangdong province, while the activities of foundry and iron or steel plants in the west of Chongqing, the north of Guizhou province and the central of Hunan province may be the main sources of Fe-dominant fly ash particles in our samples.

  8. Water resources in basin-fill deposits in the Tularosa Basin, New Mexico

    USGS Publications Warehouse

    Orr, B.R.; Myers, R.G.

    1986-01-01

    The Tularosa Basin, a faulted intermontane depression in south-central New Mexico, contains a thick sequence of alluvial and lacustrine deposits of Tertiary and Quaternary age. Most of these sediments are saturated with very saline water. Freshwater supplies (dissolved solids concentration < 1000 mg/L) principally are found in alluvial fans located around the basin margin. On the eastern side of the Tularosa Basin, fresh groundwater supplies are limited to alluvial fan deposits from Grapevine Canyon to about 3 mi south of Alamogordo. Data from surface geophysical surveys indicate that about 1.4 to 2.1 million acre-ft of freshwater may be in storage in this area, not all of which is recoverable. An additional 3.6 to 5.4 million acre-ft of slightly saline water (dissolved solids concentration 1000 to 3000 mg/L) may be in storage in the same area, again not all of which is recoverable. On the western side of the Tularosa Basin, alluvial fans in the vicinity of Rhodes Canyon may contain freshwater. Geophysical data indicate the freshwater zone may be as thick as 1500 ft in places; however, the limited number of wells in this area precludes a precise definition of the volume of freshwater in storage. To the south, freshwater is present in alluvial fans associated with the Ash Canyon drainage system. Geophysical data indicate that perhaps as much as 450,000 acre-ft of freshwater, not all recoverable, may be in storage in this area. Fan deposits between Ash Canyon and Rhodes canyon may contain additional freshwater supplies. Possibly 10.7 million acre-ft of freshwater, not all of which is recoverable, may be in storage on the western side of the Tularosa Basin. Possibly 180 million acre-ft of brine (concentrations of dissolved solids exceeding 35,000 mg/L), not all of which is recoverable, may be in storage in the Tularosa Basin. Information is sparse concerning the capability of saline aquifers in the Tularosa Basin to store and transmit fluid. (Author 's abstract)

  9. Evidence of Carboniferous volcanic ash in Pictou Group (West-phalian D), Sydney Coalfield, Nova Scotia, Canada

    SciTech Connect

    Lyons, P.C.; Outerbridge, W.F. ); Hacquebard, P.A. )

    1991-08-01

    Until now, Carboniferous-altered volcanic ash in North America was known only from the Middle Pennsylvanian (upper Westphalian A to lower Westphalian D) of the Appalachian basin. Now, however, mineralogical analysis of thin claystones (8-24 mm thick) in mineable bituminous coal (Hub and Harbour seams) form the P-boreholes in the Donkin submarine areas of the Sydney coalfield, Nova Scotia, indicates the presence of trace amounts of minerals probably derived from a volcanic ash fall of late Westphalian D age. Water-clear to cloudy quartz splinters and euhedral zircon with sharp crystal faces and edges, and length-to-width ratios up to 6:1 - which are typical of Appalachian altered acidic volcanic ash deposits (tonsteins) - were with a dominantly detrital (fluvial ) mineral suite. Fifty to 90% water-laid silt- to sand-size detrital grains of quartz, tourmaline( ), zircon, white mica, and other minerals are found in the HF residum after the removal of the dominant components: clay minerals, pyrite, and coal particles (spores, secretinite, etc.). The fine size of the volcanic minerals and their low concentration indicate a very distant volcanic ash source, perhaps western Europe, where volcanic activity extended into the Stephanian.

  10. Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece

    SciTech Connect

    Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R.

    2008-08-07

    West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides {sup 40}K, {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 228}Ra and {sup 232}Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for {sup 232}Th, {sup 228}Ra and {sup 40}K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

  11. Magmatic and fragmentation controls on ash surface chemistry

    NASA Astrophysics Data System (ADS)

    Cimarelli, C.; Ayris, P. M.; Diplas, S.; Damby, D. E.; Hornby, A. J.; Delmelle, P.; Scheu, B.; Dingwell, D. B.

    2015-12-01

    The chemical effects of silicate ash particles ejected by explosive volcanic eruptions on biotic and abiotic systems are fundamentally mediated by ash particle surfaces. Ash surface properties can be presumed to be functions of magmatic state and fragmentation processes, as well as in-plume and atmospheric alteration by volcanic and/or environmental gases and liquid aerosols. Recently, attention has been focussed on the capacity of alteration processes to shape ash surfaces, with the chemistry and mineralogy of the pre-existing ash surface presumed to be equivalent to those of the bulk particle, or even of the ash deposit. Here we present findings which highlight the influence of magma composition and fragmentation mechanisms on ash surfaces. We conducted rapid decompression experiments at varying temperature and pressure conditions on porous andesitic rocks to produce fragmented ash materials, untouched by secondary alteration. These materials were compared to samples produced by crushing of clasts from the same experiments. The bulk chemistry and surface mineralogy of ash particles from a selected size fraction (63-90 μm) was determined via XRF, SEM-BSE, and EPMA, while the surface chemistry (<10 nm) was investigated by X-ray photoelectron spectroscopy (XPS). We identify similar disparities between whole-rock and surface chemistry as identified in previous ash studies, demonstrating ash surface chemistry to be a product of surface generation mechanisms, in addition to alteration. We observe dependences on both fragmentation pressure and temperature of ash surface chemistry. The mechanisms, pressure and temperature of magma fragmentation may thus influence ash surface chemistry and mineralogy, and subsequently, the post-eruptive alteration of ash particles and their reactivity within biotic and abiotic systems.

  12. Effect of addition of bottom ash on the rheological properties of fly ash slurry at varying temperature

    NASA Astrophysics Data System (ADS)

    Kumar, K.; Kumar, S.; Gupta, M.; Garg, H. C.

    2016-09-01

    Presently, fly ash is transporting through slurry pipeline in the thermal power plant. Aim of the present investigation is to examine the rheological behaviour of finer particle (fly ash) slurry suspension with and without addition of coarser particles (bottom ash). Mixture of fly and bottom ash is taken with proportion of 9:1, 8:2 and 7:3 (by weight). The temperature of slurry suspension is varying from 25 to 40°C at solid concentration 30 % (by weight). Rheological tests are conducted with the variation of shear rate from 100 to 300 sec-1 for all slurry samples. Addition of coarse particles of bottom ash in finer particles of fly ash slurry, leads to improve the rheological characteristics of slurry suspension. The addition of bottom ash can result substantial saving in energy consumption with reduction in relative viscosity.

  13. Fluvial and glacial implications of tephra localities in the western Wind River basin, Wyoming, U. S. A

    SciTech Connect

    Jaworowski, C. . Dept. of Geology)

    1993-04-01

    Examination of Quaternary fluvial and glacial deposits in the western Wind River Basin allows a new understanding of the Quaternary Wind River fluvial system. Interbedded fluvial sediments and volcanic ashes provide important temporal information for correlation of Quaternary deposits. In the western Wind River Basin, six mid-Pleistocene localities of tephra, the Muddy Creek, Red Creek, Lander, Kinnear, Morton and Yellow Calf ashes are known. Geochronologic studies confirm the Muddy Creek, Red Creek, Kinnear and Lander ashes as the 620--650ka Lava Creek tephra from the Yellowstone region in northwestern Wyoming. The stratigraphic position and index of refraction of volcanic glass from the Morton and Yellow Calf ashes are consistent with identification as Lava Creek tephra. Approximately 350 feet (106 meters) above the Wind River and 13 miles downstream from Bull Lake, interbedded Wind River fluvial gravels, volcanic glass and pumice at the Morton locality correlate to late (upper) Sacajawea Ridge gravels mapped by Richmond and Murphy. Associated with the oxygen isotope 16--15 boundary, the ash-bearing terrace deposits reveal the nature of the Wind River fluvial system during late glacial-early interglacial times. The Lander and Yellow Calf ashes, are found in terrace deposits along tributaries of the Wind River. Differences in timing and rates of incision between the Wind River and its tributary, the Little Wind River, results in complex terrace development near their junction.

  14. Generation of volcanic ash: a textural study of ash produced in various laboratory experiments

    NASA Astrophysics Data System (ADS)

    Lavallée, Yan; Kueppers, Ulrich; Dingwell, Donald B.

    2010-05-01

    In volcanology, ash is commonly understood as a fragment of a bubble wall that gets disrupted during explosive eruptions. Most volcanic ashes are indeed the product of explosive eruptions, but the true definition is however that of a particle size being inferior to 2 mm. The term does not hold any information about its genesis. During fragmentation, particles of all sizes in various amounts are generated. In nature, fragmentation is a brittle response of the material (whether a rock or magma) caused by changes in 1) strain rate and 2) temperature, and/or 3) chemical composition. Here we used different experimental techniques to produce ash and study their physical characteristics. The effects of strain rate were investigated by deforming volcanic rocks and magma (pure silicate melt and crystal-bearing magma) at different temperatures and stresses in a uniaxial compression apparatus. Failure of pure silicate melts is spontaneous and generates more ash particles than fragmentation of crystal-bearing melts. In the latter, the abundance of generated ash correlates positively with the strain rate. We complemented this investigation with a study of particles generated during rapid decompression of porous rocks, using a fragmentation apparatus. Products of decompression experiments at different initial applied pore pressure show that the amount of ash generated by bubble burst increase with the initial applied pressure and the open porosity. The effects of temperature were investigated by dropping pure silicate melts and crystal-bearing magma at 900 and 1100°C in water at room temperature. Quenching of the material is accompanied by rapid contraction and near instantaneous fragmentation. Pure silicate melts respond more violently to the interaction with water and completely fragmented into small particles, including a variety of ash morphologies and surface textures. Crystal-bearing magmas however fragmented only very partially when in contact with water and produced a

  15. Ash and burn control through fishbones

    SciTech Connect

    Varadarajan, V.; Miley, G.H.

    1989-01-01

    The thermal alphas will accumulate in the center of the ignited thermonuclear plasma in the long pulse experiments. This accumulation increases the Z{sub eff} leading to increased synchrotron losses and decreases the effective fuel density which reduces the power output. Also the ignited plasma is burn-unstable and its temperature is expected to increase above the design point until a stable equilibrium is reached at a higher temperature. This higher operating temperature is not expected to be beneficial. Thus we are faced with the dual problem of ash accumulation and thermonuclear burn instability in the steadily burning tokamak plasma. So some means of controlling them is desirable. Several control schemes for both problems have been proposed. But it is felt that we need alternatives with more desirable characteristics. In this paper, we explore the use of fishbones' as possible scheme that will achieve the dual purpose of ash and burn control. 3 refs.

  16. Application of solid ash based catalysts in heterogeneous catalysis.

    PubMed

    Wang, Shaobin

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe2O3 could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H2 production, deSO(x), deNO(x), hydrocarbon oxidation,and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis.

  17. Fundamental Study of Low NOx Combustion Fly Ash Utilization

    SciTech Connect

    E. M. Suubert; I. Kuloats; K. Smith; N. Sabanegh; R.H. Hurt; W. D. Lilly; Y. M. Gao

    1997-05-01

    This study is principally concerned with characterizing the organic part of coal combustion fly ashes. High carbon fly ashes are becoming more common as by-products of low-NOx combustion technology, and there is need to learn more about this fraction of the fly ash. The project team consists of two universities, Brown and Princeton, and an electrical utility, New England Power. A sample suite of over forty fly ashes has been gathered from utilities across the United States, and includes ashes from a coals ranging in rank from bituminous to lignite. The characterizations of these ashes include standard tests (LOI, Foam Index), as well as more detailed characterizations of their surface areas, porosity, extractability and adsorption behavior. The ultimate goal is, by better characterizing the material, to enable broadening the range of applications for coal fly ash re-use beyond the current main market as a pozzolanic agent for concretes. The potential for high carbon-content fly ashes to substitute for activated carbons is receiving particular attention. The work performed to date has already revealed how very different the surfaces of different ashes produced by the same utility can be, with respect to polarity of the residual carbon. This can help explain the large variations in acceptability of these ashes as concrete additives.

  18. Application of solid ash based catalysts in heterogeneous catalysis

    SciTech Connect

    Shaobin Wang

    2008-10-01

    Solid wastes, fly ash, and bottom ash are generated from coal and biomass combustion. Fly ash is mainly composed of various metal oxides and possesses higher thermal stability. Utilization of fly ash for other industrial applications provides a cost-effective and environmentally friendly way of recycling this solid waste, significantly reducing its environmental effects. On the one hand, due to the higher stability of its major component, aluminosilicates, fly ash could be employed as catalyst support by impregnation of other active components for various reactions. On the other hand, other chemical compounds in fly ash such as Fe{sub 2}O{sub 3} could also provide an active component making fly ash a catalyst for some reactions. In this paper, physicochemical properties of fly ash and its applications for heterogeneous catalysis as a catalyst support or catalyst in a variety of catalytic reactions were reviewed. Fly-ash-supported catalysts have shown good catalytic activities for H{sub 2} production, deSOx, deNOx, hydrocarbon oxidation, and hydrocracking, which are comparable to commercially used catalysts. As a catalyst itself, fly ash can also be effective for gas-phase oxidation of volatile organic compounds, aqueous-phase oxidation of organics, solid plastic pyrolysis, and solvent-free organic synthesis. 107 refs., 4 figs., 2 tabs.

  19. Environmentally friendly use of non-coal ashes in Sweden.

    PubMed

    Ribbing, C

    2007-01-01

    The Swedish Thermal Engineering Research Institute (Värmeforsk) initiated an applied research program "Environmentally friendly use of non-coal ashes", in 2002. The program aims at increasing knowledge on the by-products of energy production and their application. The goal of formulating technical and environmental guidelines and assessments is a major point of the program, which is supported by about forty authorities and private organisations. The programme has been divided into four areas: recycling of ashes to forests, geotechnical applications, use in landfilling, and environmental aspects and chemistry. Among all results obtained, the following progress is shown: *Evidence for the positive effects of spreading ashes on forest growth. *A proposal for environmental guidelines on the utilisation of ashes in construction. *A handbook for using non-coal fly ashes in unpaved roads. *Technical and environmental assessments of MSWI bottom ashes in road construction. *Development of the use of ashes with municipal wastewater sludge as a cover for landfills and mine tailings. *Use of ashes from bio-fuels in concrete and replacement of cement in stoop mining. *A method to classify those by-products from combustion that have mirror entries in the EWC as a hazardous or non-hazardous compound. The Ash Programme has also made it possible to increase knowledge on ashes as valuable materials, on quality assurance and on markets for recovered materials.

  20. A Quaternary volcanic ash deposit in western Missouri

    SciTech Connect

    Emerson, J.W. )

    1993-03-01

    Quaternary volcanic ash has been found in more than fifty localities in the midwest. The most widespread deposits originated from the Long Valley caldera, California; the Jemez calderas, New Mexico; or the Yellowstone caldera, Wyoming. Fission track dating has grouped the deposits into six separate ash falls ranging from 700,000--2,000,000 years old. A small volcanic ash deposit in western Missouri may be correlative with those found along the Kansas and Marais de Cygnes rivers in eastern Kansas. The ash deposit is in Northwest Bates County Missouri, exposed along a tributary to Miami Creek, four miles east of the Kansas state line. The ash layer is interbedded with alluvial terrace deposits and ranges from fifteen to thirty inches in thickness. It is inferred to have been deposited in a pond or oxbow lake. The color is white with a pale yellow tinge (Munsell 10YR 8/2). Shard examination shows that about 70% are flat bubble-wall types, about 20% have straight ridges, less than 10% are bubble-junction, and only a trace are vesicular. The closest known volcanic ash occurrence is an ash outcropping in a Kansas river terrace near DeSoto, KS, forty-five miles to the northwest. The DeSoto deposit has been identified as the .62 m.y. Lava Creek B ash from the Yellowstone caldera. A preliminary correlation of the Missouri ash with the DeSoto ash is based on similar shard morphology and color.

  1. The performance and application of fly ash modified by PDMDAAC.

    PubMed

    Cao, X Y; Yue, Q Y; Song, L Y; Li, M; Zhao, Y C

    2007-08-17

    Fly ash modification by polydimethydiallylammonium chloride (PDMDAAC) in laboratory scale was explored in this work and the adsorption performance of modified fly ash and its application in dyeing wastewater treatment were also studied. The key factors (concentration and temperature) for PDMDAAC to affect the adsorption properties of fly ash (FA) were revealed using the orthogonal test with four factors. The results indicated that the adsorption magnitude of fly ash to PDMDAAC increased due to its favorable specific surface causing the change of the surface charge nature. Hence, adsorption performance of modified fly ash on organic molecules and its ion exchange capacity are strengthened. The maximum color removal efficiency was obtained as 88.2% by modified fly ash with 2.0 g/100 mL dosage in dyeing wastewater, which is much higher than 12.5% color removal efficiency by raw fly ash with the same dosage. And, the used modified fly ash could be used for cement production as additive agent. The intensity of cement produced with 15% the modified fly ash in weight reached the Chinese Cement Standard (GB/T17671-1999), blazing a promising novel way in fly ash utilization.

  2. The leaching characteristics of selenium from coal fly ashes

    SciTech Connect

    Wang, T.; Wang, J.; Burken, J.G.; Ban, H.; Ladwig, K.

    2007-11-15

    The leaching characteristics of selenium from several bituminous and subbituminous coal fly ashes under different pH conditions were investigated using batch methods. Results indicated that pH had a significant effect on selenium leaching from bituminous coal ash. The minimum selenium leaching occurred in the pH range between 3 and 4, while the maximum selenium leaching occurred at pH 12. The release of selenium from subbituminous coal ashes was very low for the entire experimental pH range, possibly due to the high content of calcium which can form hydration or precipitation products as a sink for selenium. The adsorption results for different selenium species indicated that Se(VI) was hardly adsorbable on either bituminous coal ashes or subbitumminous coal ashes at any pH. However, Se(I) was highly adsorbed by bituminous coal ashes under acidic pH conditions and was mostly removed by subbitumminous coal ashes across the entire pH range. This result suggests that the majority of selenium released from the tested fly ashes was Se(IV). A speciation-based model was developed to simulate the adsorption of Se(IV) on bituminous coal fly ash, and the pH-independent adsorption constants of HSeO{sup 3-} and SeO{sub 3}{sup 2-} were determined. The modeling approach is useful for understanding and predicting the release process of selenium from fly ash.

  3. Helium transport and ash control studies

    SciTech Connect

    Miley, G.H.

    1992-01-01

    The Primary goal of this research is to develop a helium (ash) transport scaling law based on experimental data from devices such as TFTR and JET. To illustrate the importance of this, we have studied ash accumulation effects on ignition requirements using a O-D transport model. Ash accumulation is characterized in the model by the ratio of the helium particle confinement time to the energy confinement time t{sub {alpha}}/t{sub E}. Results show that the ignition window'' shrinks rapidly as t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E} increases, closing for high t{sub {alpha}}/t{sub E}. A best'' value for t{sub {alpha}}/t{sub E} will ultimately be determined from our scaling law studies. A helium transport scaling law is being sought that expresses the transport coefficients (D{sub {alpha}}, V{sub {alpha}}) as a function of the local plasma parameters. This is necessary for use in transport code calculations, e.g. for BALDUR. Based on experimental data from L-mode plasma operation in TFTR, a scaling law to a power law expression has been obtained using a least-square fit method. It is found that the transport coefficients are strongly affected by the local magnetic field and safety factor q. A preliminary conclusion from this work is that active control of ash buildup must be developed. To study control, we have developed a O-D plasma model which employs a simple pole-placement control model. Some preliminary calculations with this model are presented.

  4. Simualting the Phase Separated rp-ash

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Chuck; Berry, Donald

    2017-01-01

    The composition and phase separation of rp-ash on accreting neutron stars determine the thermal properties of the crust which must be understood to interpret observations of crust cooling in X-ray bursts. In this work, we report on recent large scale molecular dynamics simulations of the outer crust. Using the crust compositions calculated by Mckinven et al. 2016, we study the structure of the crystal that forms, as well as diffusion and thermal properties of the crust.

  5. Ash plume top height estimation using AATSR

    NASA Astrophysics Data System (ADS)

    Virtanen, T. H.; Kolmonen, P.; Rodríguez, E.; Sogacheva, L.; Sundström, A.-M.; de Leeuw, G.

    2014-08-01

    An algorithm is presented for the estimation of volcanic ash plume top height using the stereo view of the Advanced Along Track Scanning Radiometer (AATSR) aboard Envisat. The algorithm is based on matching top of the atmosphere (TOA) reflectances and brightness temperatures of the nadir and 55° forward views, and using the resulting parallax to obtain the height estimate. Various retrieval parameters are discussed in detail, several quality parameters are introduced, and post-processing methods for screening out unreliable data have been developed. The method is compared to other satellite observations and in situ data. The proposed algorithm is designed to be fully automatic and can be implemented in operational retrieval algorithms. Combined with automated ash detection using the brightness temperature difference between the 11 and 12 μm channels, the algorithm allows efficient simultaneous retrieval of the horizontal and vertical dispersion of volcanic ash. A case study on the eruption of the Icelandic volcano Eyjafjallajökull in 2010 is presented.

  6. Ash plume top height estimate using AATSR

    NASA Astrophysics Data System (ADS)

    Virtanen, T. H.; Kolmonen, P.; Rodríguez, E.; Sogacheva, L.; Sundström, A.-M.; de Leeuw, G.

    2014-04-01

    An algorithm is presented for estimation of volcanic ash plume top height using the stereo view of the Advanced Along Track Scanning Radiometer (AATSR) aboard ENVISAT. The algorithm is based on matching the top of atmosphere (TOA) reflectances and brightness temperatures of the nadir and 55° forward views, and using the resulting parallax to obtain the height estimate. Various retrieval parameters are discussed in detail, several quality parameters are introduced, and post-processing methods for screening out unreliable data have been developed. The method is compared against other satellite observations and in-situ data. The proposed algorithm is designed to be fully automatic, and can be implemented into operational retrieval algorithms. Combined with automated ash detection using the brightness temperature difference between the 11 μm and 12 μm channels, the algorithm allows simultaneous retrieval of horizontal and vertical dispersion of volcanic ash efficiently. A case study on the eruption of the Icelandic volcano Eyjafjallajökull in 2010 is presented. The height estimate method results are validated against available satellite and ground based data.

  7. Market assessment of PFBC ash use

    SciTech Connect

    Bland, A. E.; Brown, T. H., Western Research Institute

    1998-01-01

    Pressurized fluidized bed combustion (PFBC) of coal is undergoing demonstration in the United States, as well as throughout the world. American Electric Power`s (AEP`s) bubbling PFBC 70 MWe Tidd demonstration program in Ohio and pilot-scale development at Foster Wheeler Energia Oy 10 MWth circulating PFBC at Karhula, Finland, have demonstrated the advantages of PFBC technology. Further technology development in the US is planned with the deployment of the technology at the MacIntosh Clean Coal project in Lakeland, Florida. Development of uses for solid wastes from PFBC coal-fired power systems is being actively pursued as part of the demonstration of PFBC technologies. Ashes collected from Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, operating on (1) low sulfur subbituminous and (2) high sulfur bituminous coal; and ash from the AEP`s high-sulfur bituminous coal-fired bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing at Western Research Institute (WRI).

  8. BASINS Technical Notes

    EPA Pesticide Factsheets

    EPA has developed several technical notes that provide in depth information on a specific function in BASINS. Technical notes can be used to answer questions users may have, or to provide additional information on the application of features in BASINS.

  9. BASINS Tutorials and Training

    EPA Pesticide Factsheets

    A series of lectures and exercises on how to use BASINS for water quality modeling and watershed assessment. The lectures follow sequentially. Companion exercises are provided for users to practice different BASINS water quality modeling techniques.

  10. The in-situ production of ash in pyroclastic flows

    NASA Astrophysics Data System (ADS)

    Manga, M.; Dufek, J.; Standish, D.

    2007-12-01

    Abrasion and fragmentation of pumice clasts during the propagation of pyroclastic flows has long been recognized as a potential source for the enhanced production of volcanic ash, however its relative importance has eluded quantification (Walker, 1981). The amount of ash produced in-situ can potentially affect runout distance, deposit sorting, the volume of ash introduced in the upper atmosphere, and internal pore pressure. We conduct a series of laboratory experiments on the collisional production of ash that may occur during different regimes of pyroclastic flow transport. We further parameterize the experiments of Cagnoli and Manga (2004) to determine the rate of production of frictional ash. We find that the energy of these interactions is insufficient to create a fractal particle size distribution; rather a bimodal suite of large particles and 10-100 micron ash particles are typically produced Using these laboratory experiments we can develop a subgrid model for ash production that can be included in analytical and multiphase numerical procedures to estimate the total volume of ash produced during transport. We examine numerically a range of initial flow energies and bed slopes over which the flows propagate. To simplify the problem we consider flows starting with 1 cm pumice clasts that can be broken up into 100 micron ash. We find that for most flow conditions10-20% of the initial 1 cm clasts comminutes into ash with the percentage increasing as a function of initial flow energy. Most of the ash is produced in the high-energy regions near the flow inlet, although flow acceleration on steep slopes can produce ash far from the vent. Ash produced at the frictional base of the flow and in the collisional upper regions of the flow can be redistributed through the entirety of the flow, although frictionally produced ash accumulates preferentially near its source in the bed-load. As slope increases, the relative proportion of ash generated by friction increases

  11. In situ production of ash in pyroclastic flows

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Manga, M.

    2008-09-01

    Abrasion and comminution of pumice clasts during the propagation of pyroclastic flows have long been recognized as a potential source for the enhanced production of volcanic ash, however, their relative importance has eluded quantification. The amount of ash produced in situ can potentially affect runout distance, deposit sorting, the volume of ash introduced in the upper atmosphere, and internal pore pressure. We conduct a series of laboratory experiments on the collisional and frictional production of ash that may occur during different regimes of pyroclastic flow transport. Ash produced in these experiments is predominately 10-100 microns in size and has similar morphology to tephra fall ash from Plinian events. We find that collisional ash production rates are proportional to the square of impact velocity. Frictional ash production rates are a linear function of the velocity of the basal, particle-enriched bed load region of these flows. Using these laboratory experiments we develop a subgrid model for ash production that can be included in analytical and multiphase numerical procedures to estimate the total volume of ash produced during transport. We find that for most flow conditions, 10-20% of the initial clasts comminute into ash with the percentage increasing as a function of initial flow energy. Most of the ash is produced in the high-energy regions near the flow inlet, although flow acceleration on steep slopes can produce ash far from the vent. On level terrain, collisionally and frictionally produced ash generates gravity currents that detach from the main flow and can more than double the effective runout distance of these flows. Ash produced at the frictional base of the flow and in the collisional upper regions of the flow can be redistributed through the entirety of the flow, although frictionally produced ash accumulates preferentially near its source in the bed load. Flows that descend steep slopes produce the majority of their ash in the

  12. Occupational exposure and DNA strand breakage of workers in bottom ash recovery and fly ash treatment plants.

    PubMed

    Chen, Hsiu-Ling; Chen, I-Ju; Chia, Tai-Pao

    2010-02-15

    Various environmental hazards and metals are liberated either into bottom ash or carried away with gases and subsequently trapped in fly ash. Many studies have reported an increase of DNA damage is related to hazardous exposure of municipal waste incinerators. By detecting DNA damage, we compared the DNA migration imposed in workers potentially exposed to hazardous substances, including PCDD/Fs, metals, and silica particles, at a bottom ash recovery plant and fly ash treatment plants in Taiwan. Higher tail moment (TMOM) was found in workers at fly ash treatment plants (7.55) than in the workers in bottom ash plants (2.64), as well as those in blue collar was higher than in white collar workers (5.72 vs. 3.95). Meanwhile, the significantly higher DNA damage was also shown in workers with high integrated exposure score than those with low. The air samplings for particle mass, Cr, and Al concentrations also showed the higher levels in fly ash treatment plants than in the workers in bottom ash plants. Meanwhile, the air samplings inside the two plants suggested that the particle size might be important to affect the workers inhaling the metal into the human body and finally caused to their DNA damage. The data concluded that an elevated DNA damage may be expected in workers at fly ash treatment plants than those at bottom ash plants; however, the occupational hazards in both types of plants, especially at different particle size interval, need more thorough assessment in future studies.

  13. Crowdsourcing genomic analyses of ash and ash dieback – power to the people

    PubMed Central

    2013-01-01

    Ash dieback is a devastating fungal disease of ash trees that has swept across Europe and recently reached the UK. This emergent pathogen has received little study in the past and its effect threatens to overwhelm the ash population. In response to this we have produced some initial genomics datasets and taken the unusual step of releasing them to the scientific community for analysis without first performing our own. In this manner we hope to ‘crowdsource’ analyses and bring the expertise of the community to bear on this problem as quickly as possible. Our data has been released through our website at oadb.tsl.ac.uk and a public GitHub repository. PMID:23587306

  14. Proceedings: Eighth international ash utilization symposium: Volume 1

    SciTech Connect

    Not Available

    1987-10-01

    The two-volume publication contains 65 papers, including six abstracts, presented at ten sessions during the October 1987 event. Some topics covered basic research themes, such as: new studies of fly ash, fly ash concrete, and important properties and construction uses; updated ash sampling and testing procedures; advances in fluidized bed combustion (FBC), flue gas desulfurization (FGD), and other sulfur dioxide control products; and latest pozzolan programs of the Cement and Concrete Reference Laboratory (CCRL) of the National Bureau of Standards. Other topics focused on applied coal ash technology, including: airport, highway and dam construction; structural fills; flowable fill; roller compacted concrete;lightweight building products; recovery of metals from coal ash; fillers for paints and plastics; and new coal ash uses in agriculture and reclamation.

  15. Proceedings: Eighth international ash utilization symposium: Volume 2

    SciTech Connect

    Not Available

    1987-10-01

    The two-volume publication contains 65 papers, including six abstracts, presented at ten sessions during the October 1987 event. Some topics covered basic research themes, such as new studies of fly ash, fly ash concrete, and important properties and construction uses; updated ash sampling and testing procedures; advances in fluidized bed combustion (FBC), flue gas desulfurization (FGD), and other sulfur dioxide control products; and latest pozzolan programs of the Cement and Concrete Reference Laboratory (CCRL) of the National Bureau of Standards. Other topics focused on applied coal ash technology including: airport, highway and dam construction; structural fills; flowable fill; roller compacted concrete; lightweight building products; recovery of metals from coal ash; fillers for paints and plastics; and new coal ash uses in agriculture and reclamation.

  16. Control of ash accumulation by induced-fishbones

    SciTech Connect

    Varadarajan, V.; Miley, G.H.

    1989-01-01

    Thermal alphas will accumulate in the ignited long pulse tokamak. Ash accumulation results in fuel dilution, reduced power output, increase in Z{sub eff}, and increased synchrotron losses. Recent Baldur' simulations of the ITER show that the ash accumulation is a distinct possibility for high ash recycling case, inevitably leading to burn quench. So, some means of ash is highly desirable. To this end, several control schemes have been looked at. Given the uncertainty in transport information especially for the ash and other impurity transport, it is desirable to incorporate some explicit ash control features in the tokamak design. Continuing the search for more desirable schemes, in this paper we explore the effectiveness of fishbones' towards controlling the alpha accumulation.

  17. Feeding by emerald ash borer larvae induces systemic changes in black ash foliar chemistry.

    PubMed

    Chen, Yigen; Whitehill, Justin G A; Bonello, Pierluigi; Poland, Therese M

    2011-11-01

    The exotic wood-boring pest, emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), has been threatening North American ash (Fraxinus spp.) resources, this being recognized since its first detection in Michigan, USA and Ontario, Canada in 2002. Ash trees are killed by larval feeding in the cambial region, which results in disruption of photosynthate and nutrient translocation. In this study, changes in volatile and non-volatile foliar phytochemicals of potted 2-yr-old black ash, Fraxinus nigra Marshall, seedlings were observed in response to EAB larval feeding in the main stem. EAB larval feeding affected levels of six compounds [hexanal, (E)-2-hexenal, (Z)-3-hexenyl acetate, (E)-β-ocimene, methyl salicylate, and (Z,E)-α-farnesene] with patterns of interaction depending upon compounds of interest and time of observation. Increased methyl salicylate emission suggests similarity in responses induced by EAB larval feeding and other phloem-feeding herbivores. Overall, EAB larval feeding suppressed (Z)-3-hexenyl acetate emission, elevated (E)-β-ocimene emission in the first 30days, but emissions leveled off thereafter, and generally increased the emission of (Z,E)-α-farnesene. Levels of carbohydrates and phenolics increased overall, while levels of proteins and most amino acids decreased in response to larval feeding. Twenty-three amino acids were consistently detected in the foliage of black ash. The three most abundant amino acids were aspartic acid, glutamic acid, glutamine, while the four least abundant were α-aminobutyric acid, β-aminoisobutyric acid, methionine, and sarcosine. Most (16) foliar free amino acids and 6 of the 9 detected essential amino acids decreased with EAB larval feeding. The ecological consequences of these dynamic phytochemical changes on herbivores harbored by ash trees and potential natural enemies of these herbivores are discussed.

  18. Optical characterization of volcanic ash using diffuse reflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Bravo, D. Kelly; Falcón, Nelsón; Narea, Freddy J.; Muñoz, Rafael A.; Muñoz, Aaron A.

    2013-11-01

    The determination of the optical parameters are important for remote sensing and aircraft, in this case allow the difference between a cloud composed solely of water and water plus ash. Therefore, this research is intended to determine the optical properties of the ash four active volcanoes, by studying the spectral resolution reflectance interpreting the results in the approximation of Kubelka - Munk equation through the transfer equation radiative. The results allow classifying these ashes depending on their place of origin.

  19. Sorption and chemical transformation of PAHs on coal fly ash

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1991-01-01

    The objective of this research is to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. Studies to be carried out in this project include: (1) Fractionation of heterogeneous coal fly ash samples into different particle types varying in size and chemical composition (carbonaceous, mineral-magnetic, and mineral nonmagnetic); (2) Measurement of the rates of chemical transformation of PAHs and PAH derivatives (especially nitro-PAHs) and the manner in which the rates of such processes are influenced by the chemical and physical properties of coal fly ash particles; (3) Chromatographic and spectroscopic studies of the nature of the interactions of coal fly ash particles with PAHs and PAH derivatives; (4) Characterization of the fractal nature of fly ash particles (via surface area measurements) and the relationships of surface roughness'' of fly ash particles to the chemical behavior of PAHs sorbed on coal ash particles; (5) Identification of the major products of chemical transformation of PAHs on coal ash particles, and examination of any effects that may exist of the nature of the coal ash surface on the identities of PAH transformation products; and (6) Studies of the influence of other sorbed species on the chemical behavior of PAHs and PAH derivatives on fly ash surfaces. PAHs are deposited, under controlled laboratory conditions, onto coal ash surfaces from the vapor phase, in order to mimic the processes by which PAHs are deposited onto particulate matter in the atmosphere.

  20. Improved prediction and tracking of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Webley, Peter; Mastin, Larry

    2009-09-01

    During the past 30 years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality.

  1. Market opportunities for fly ash fillers in North America

    SciTech Connect

    Eckert, C.; Harris, T.; Gledhill, J. )

    1990-11-01

    Direct Acid Leaching (DAL) processed fly ash is derived from treating raw and beneficiated coal fly ash with hydrochloric acid. The DAL process allows for the production of fly ash with greater chemical purity and consistency than raw fly ash alone. In addition, DAL fly ash is similar to various minerals used in a wide range of applications that require filler minerals. This project investigates the feasibility of using three grades of DAL fly ash ranging from 10 microns to 30 microns in diameter as an alternative filler material to mineral fillers. Six major applications in North America, requiring large volumes of filler minerals were investigated by region including: (1) asphalt roofing shingles (2) carpet backing (3) joint compound and wallboard (4) industrial coatings (5) plastics (6) vinyl flooring. It is determined that calcium carbonate was the primary mineral filler DAL fly ash would be competing with in the applications investigated. Calcium carbonate is used in all applications investigated. The application which demonstrated the greatest potential for using DAL fly ash is asphalt shingles. Asphalt shingles were the largest calcium carbonate consuming application identified, consuming 4.8 million tons in 1988, and is the least sensitive to the dark color of the DAL fly ash. Although the DAL fly ash typically has a smaller particle size, in comparison to calcium carbonate, the asphalt shingle manufacturers felt it would be a good substitute. Other promising applications for DAL fly ash were industrial coatings and plastics where the calcium carbonate particle size requirements of 3 to 6 microns very closely matches the particle size of the DAL fly ash considered in this project. 17 figs., 36 tabs.

  2. Improved prediction and tracking of volcanic ash clouds

    USGS Publications Warehouse

    Webley, P.; Mastin, L.

    2009-01-01

    During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.

  3. Recovery of aluminum and other metal values from fly ash

    DOEpatents

    McDowell, William J.; Seeley, Forest G.

    1981-01-01

    The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  4. Recovery of aluminum and other metal values from fly ash

    DOEpatents

    McDowell, W.J.; Seeley, F.G.

    1979-11-01

    The invention relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

  5. Rising from the ashes: Changes in salmonid fish assemblages after 30 months of the Puyehue-Cordon Caulle volcanic eruption.

    PubMed

    Lallement, Mailén; Macchi, Patricio J; Vigliano, Pablo; Juarez, Santiago; Rechencq, Magalí; Baker, Matthew; Bouwes, Nicolaas; Crowl, Todd

    2016-01-15

    Events such as volcanic eruptions may act as disturbance agents modifying the landscape spatial diversity and increasing environmental instability. On June 4, 2011 the Puyehue-Cordon Caulle volcanic complex located on Chile (2236 m.a.s.l., 40° 02' 24" S- 70° 14' 26" W) experience a rift zone eruption ejecting during the first day 950 million metric tons into the atmosphere. Due to the westerly winds predominance, ash fell differentially upon 24 million ha of Patagonia Argentinean, been thicker deposits accumulated towards the West. In order to analyze changes on stream fish assemblages we studied seven streams 8, 19 and 30 months after the eruption along the ash deposition gradient, and compare those data to pre eruption ones. Habitat features and structure of the benthic macroinvertebrate food base of fish was studied. After the eruption, substantial environmental changes were observed in association with the large amount of ash fallout. In western sites, habitat loss due to ash accumulation, changes in the riparian zone and morphology of the main channels were observed. Turbidity was the water quality variable which reflected the most changes throughout time, with NTU values decreasing sharply from West to East sites. In west sites, increased Chironomid densities were recorded 8 months after the initial eruption as well as low EPT index values. These relationships were reversed in the less affected streams farther away from the volcano. Fish assemblages were greatly influenced both by habitat and macroinvertebrate changes. The eruption brought about an initial sharp decline in fish densities and the almost total loss of young of the year in the most western streams affecting recruitment. This effect diminished rapidly with distance from the emission center. Thirty months after the eruption, environmental changes are still occurring as a consequence of basin wide ash remobilization and transport.

  6. Kinetics of beneficiated fly ash by carbon burnout

    SciTech Connect

    Okoh, J.M.; Dodoo, J.N.D.; Diaz, A.; Ferguson, W.; Udinskey, J.R. Jr.; Christiana, G.A.

    1997-12-31

    The presence of carbon in fly ash requires an increase in the dosage of the air-entraining admixture for concrete mix, and may cause the admixture to lose efficiency. Specifying authorities for the concrete producers have set maximum allowable levels of residual carbon. These levels are the so called Loss On Ignition (LOI). The concrete producers` day-to-day purchasing decisions sets the LOI at 4%. The objective of the project is to investigate the kinetics of oxidation of residual carbon present in coal fly ash as a possible first step toward producing low-carbon fly ash from high-carbon, low quality fly ash.

  7. Sorption and chemical transformation of PAHs on coal fly ash

    SciTech Connect

    Mamantov, G.; Wehry, E.L.

    1992-01-01

    The objective of this research is to characterize the interactions of coal fly ash with polycyclic aromatic hydrocarbons (PAHs) and their derivatives, and to understand the influence of the surface properties of coal ash (and other atmospheric particles) on the chemical transformations of polycyclic aromatic compounds. During the past year the following specific aspects of this broad problem area have been investigated: (a) Fractionation of heterogeneous coal fly ash samples into different particle types varying in size and chemical composition (carbonaceous, mineral-magnetic, and mineral nonmagnetic); (b) The use of gas-solid chromatography to measure heats of sorption of PAHS, and PAH derivatives, on coal fly ashes and ash fractions. (c) Identification of the major photoproduct(s) of the photodecomposition of one PAH (benz[a]anthracene) sorbed on model adsorbents; (d) Estimation of fractal dimensions'' of coal fly ash particles by use of specific surface area measurements, with an ultimate objective of using these measurements to assess the importance of inner-filter effects'' on the photodecomposition of PAHs sorbed on fly ash particles. (e) The photochemical transformation of a representative nitro-PAH derivative (1-nitropyrene) sorbed on fly ash. (f) Development of techniques for studying the nonphotochemical reactions of hydroxyl radicals (and other atmospheric constituents) with PAHs sorbed on fly ash. Progress achieved, and problems encountered, in each of these major areas of emphasis is described below.

  8. Sulfate resistance of high calcium fly ash concrete

    NASA Astrophysics Data System (ADS)

    Dhole, Rajaram

    Sulfate attack is one of the mechanisms which can cause deterioration of concrete. In general, Class C fly ash mixtures are reported to provide poor sulfate resistance. Fly ashes, mainly those belonging to the Class C, were tested as per the ASTM C 1012 procedure to evaluate chemical sulfate resistance. Overall the Class C fly ashes showed poor resistance in the sulfate environment. Different strategies were used in this research work to improve the sulfate resistance of Class C fly ash mixes. The study revealed that some of the strategies such as use of low W/CM (water to cementing materials by mass ratio), silica fume or ultra fine fly ash, high volumes of fly ash and, ternary or quaternary mixes with suitable supplementary cementing materials, can successfully improve the sulfate resistance of the Class C fly ash mixes. Combined sulfate attack, involving physical and chemical action, was studied using sodium sulfate and calcium sulfate solutions. The specimens were subjected to wetting-drying cycles and temperature changes. These conditions were found to accelerate the rate of degradation of concrete placed in a sodium sulfate environment. W/CM was found to be the main governing factor in providing sulfate resistance to mixes. Calcium sulfate did not reveal damage as a result of mainly physical action. Characterization of the selected fly ashes was undertaken by using SEM, XRD and the Rietveld analysis techniques, to determine the relation between the composition of fly ashes and resistance to sulfate attack. The chemical composition of glass represented on the ternary diagram was the main factor which had a significant influence on the sulfate resistance of fly ash mixtures. Mixes prepared with fly ashes containing significant amounts of vulnerable crystalline phases offered poor sulfate resistance. Comparatively, fly ash mixes containing inert crystalline phases such as quartz, mullite and hematite offered good sulfate resistance. The analysis of hydrated lime

  9. Geotechnical properties of ash deposits near Hilo, Hawaii

    USGS Publications Warehouse

    Wieczorek, G.F.; Jibson, R.W.; Wilson, R.C.; Buchanan-Banks, J. M.

    1982-01-01

    Two holes were hand augered and sampled in ash deposits near Hilo, Hawaii. Color, water content and sensitivity of the ash were measured in the field. The ash alternated between reddish brown and dark reddish brown in color and had water contents as high as 392%. A downhole vane shear device measured sensitivities as high as 6.9. A series of laboratory tests including grain size distribution, Atterberg limits, X-ray diffraction analysis, total carbon determination, vane shear, direct shear and triaxial tests were performed to determine the composition and geotechnical properties of the ash. The ash is very fine grained, highly plastic and composed mostly of gibbsite and amorphous material presumably allophane. The ash has a high angle of internal friction ranging from 40-43? and is classified as medium to very sensitive. A series of different ash layers was distinguished on the basis of plasticity and other geotechnical properties. Sensitivity may be due to a metastable fabric, cementation, leaching, high organic content, and thixotropy. The sensitivity of the volcanic ash deposits near Hilo is consistent with documented slope instability during earthquakes in Hawaii. The high angles of internal friction and cementation permit very steep slopes under static conditions. However, because of high sensitivity of the ash, these slopes are particularly susceptible to seismically-induced landsliding.

  10. Vegetation establishment on soil-amended weathered fly ash

    SciTech Connect

    Semalulu, O.; Barnhisel, R.I.; Witt, S.

    1998-12-31

    A field study was conducted with the following objectives in mind: (1) to study the effect of soil addition to weathered fly ash on the establishment and survival of different grasses and legumes, (2) to identify suitable grasses and/or legume species for vegetation of fly ash, (3) to study the fertilizer N and P requirements for successful vegetation establishment on fly ash and ash-soil mixtures, (4) to examine the nutrient composition of the plant species tested, and (5) to study the plant availability of P from fly ash and ash-soil mixtures. Three rooting media were used: weathered fly ash, and 33% or 50% soil blended with the ash. Four experiments were established on each of these media to evaluate warm season grasses in pure stands, warm season grasses inter-seeded with legumes, cool season grasses, and cool season grasses inter-seeded with legumes. Soil used in this study was more acidic than the fly ash. Only the results from characterization of the rooting media, ground cover, and yield will be presented here.

  11. Ash content of bones in the pigtail monkey, Macaca nemestrina.

    NASA Technical Reports Server (NTRS)

    Vose, G. P.; Roach, T. L.

    1972-01-01

    Ash analyses of skeletons of four adult primates, Macaca nemestrina, revealed some similarities and some marked contrasts when compared with published data on human skeletal ash. The skull in both Macaca nemestrina and man has the highest ash content of all bones in the skeleton. While the bones of the arms of humans have an ash content nearly identical to that of the legs (0.3% difference), in Macaca nemestrina the humeri and radii contain 5.4% more ash than the femora and tibiae. Similarly in Macaca nemestrina the bones of the hands contain 3.5% more ash than the bones of the feet, while in humans the same bones agree within 0.3% implying that adaptive use function is a factor in bone ash concentration. The ribs of Macaca nemestrina showed an unexpectedly high ash content in comparison with those of humans. In contrast with the relatively constant ash content throughout the vertebrae in humans, a conspicuous decrease axially was noted in Macaca nemestrina.

  12. Heavy metal characterization of circulating fluidized bed derived biomass ash.

    PubMed

    Li, Lianming; Yu, Chunjiang; Bai, Jisong; Wang, Qinhui; Luo, Zhongyang

    2012-09-30

    Although the direct combustion of biomass for energy that applies circulating fluidized bed (CFB) technology is steadily expanding worldwide, only few studies have conducted an environmental assessment of biomass ash thus far. Therefore, this study aims to integrate information on the environmental effects of biomass ash. We investigated the concentration of heavy metal in biomass ash samples (bottom ash, cyclone ash, and filter ash) derived from a CFB boiler that combusted agricultural and forest residues at a biomass power plant (2×12 MW) in China. Ash samples were gathered for the digestion and leaching test. The heavy metal content in the solution and the leachate was studied via an inductively coupled plasma-mass spectrometer and a Malvern Mastersizer 2000 mercury analyzer. Measurements for the chemical composition, particle size distribution, and the surface morphology were carried out. Most of the metals in cyclone ash particles were enriched, whereas Ti and Hg were enriched in filter ash. Residence time contributed most to heavy metal enrichment. Under HJ/T 300 conditions, the heavy metals showed serious leaching characteristics. Under EN 12457-2 conditions, leaching behavior was hardly detected.

  13. Mechanical Properties of Composite Material Using Coal Ash and Clay

    NASA Astrophysics Data System (ADS)

    Fukumoto, Isao; Kanda, Yasuyuki

    Coal ash is industry waste exhausted lots of amount by electric power plant. The particle sizes of coal ash, especially coal fly ash are very fine, and the chemical component are extremely resemble with Okinawa-Kucha clay. From the point of view that clay is composed of particles of micro meter size in diameter, we should try the application for fabrication of composite material using coal fly ash and clay. The comparison of the mechanical properties of composite material using coal fly ash and clay were performed during electric furnace burning and spark plasma sintering. As a result, the bending strength of composite material containing the coal ash 10% and fired at 1423K using the electric furnace after press forming at 30 MPa showed the highest value of 47 MPa. This phenomenon suggests a reinforcement role of coal ash particles to clay base material. In spark plasma sintering process, the bending strength of the composite material containing the clay 5-10% to fly ash base material fired at 1473K and pressured at 20 MPa showed the highest value of 88 MPa. This result indicates a binder effect of clay according to the liquid phase sintering of melted clay surrounding around coal fly ash particles surface.

  14. Incinerator Ash Management: Knowledge and information gaps to 1987

    SciTech Connect

    Goldin, A.; Bigelow, C.; Veneman, P.L.M.

    1992-06-01

    The Incinerator Ash Management Project at the University of Massachusetts was established in 1986 to gather written and numerical test data from existing literature and from persons knowledgeable about incinerator ash management. Information was solicited on sampling and testing methods; incinerator ash properties, and incinerator and fuel characteristics that may affect ash properties; the different components of ash management systems; and regulatory concerns. The principal data were collected on total metals, EP toxicity test results, dioxins and furans, and the composition of refuse. Cadmium and lead are apparently the most important elements affecting the ash toxicity. The values for total metals and values from the EP toxicity test are both extremely variable. Unfortunately, information about incinerator conditions at the time of sampling is often missing, which severely limits statistical interpretation of the data. The selection of an appropriate ash-management option depends on factors such as ash composition; availability, location, and nature of landfills; and the availability of alternative use or disposal techniques. Many states and the federal government are currently considering how to regulate incinerator ash management and are at various stages in this process.

  15. Trace elements release from volcanic ash to seawater. Natural concentrations in Central Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Randazzo, L. A.; Censi, P.; Saiano, F.; Zuddas, P.; Aricò, P.; Mazzola, S.

    2009-04-01

    Distributions and concentrations of many minor and trace elements in epicontinental basins, as Mediterranean Sea, are mainly driven to atmospheric fallout from surroundings. This mechanism supplies an estimated yearly flux of about 1000 kg km-2 of terrigenous matter of different nature on the whole Mediterranean basin. Dissolution of these materials and processes occurring at solid-liquid interface along the water column drive the distributions of many trace elements as V, Cr, Mn, Co, Cu, and Pb with contents ranging from pmol l-1 (Co, Cd, Pb) to nmol l-1 scale in Mediterranean seawater, with some local differences in the basin. The unwinding of an oceanographic cruise in the coastal waters of Ionian Sea during the Etna's eruptive activity in summer 2001 led to the almost unique chance to test the effects of large delivery of volcanic ash to a coastal sea water system through the analyses of distribution of selected trace elements along several seawater columns. The collection of these waters and their analyses about V, Cr, Mn, Co, Cu, and Pb contents evidenced trace element concentrations were always higher (about 1 order of magnitude at least) than those measured concentrations in the recent past in Mediterranean seawater, apart from Pb. Progressive increase of concentrations of some elements with depth, sometimes changing in a "conservative" behaviour without any clear reason and the observed higher concentrations required an investigation about interaction processes occurring at solid-liquid interface between volcanic ash and seawater along water columns. This investigation involving kinetic evaluation of trace element leaching to seawater, was carried out during a 6 months time period under laboratory conditions. X-ray investigations, SEM-EDS observations and analyses on freshly-erupted volcanic ash evidenced formation of alteration clay minerals onto glass fraction surfaces. Chemical analyses carried out on coexisting liquid phase demonstrated that trace

  16. Behavioral and electrophysiological responses of Emerald Ash Borer, Agrilus planipennis (Coleoptera: Buprestidae), to female-produced macrocyclic lactone and to ash bark volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerald ash borer (EAB) Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is an invasive beetle species from Asia that has caused extensive mortality of ash trees (Fraxinus spp.) since arriving in the U.S. in 2002. Especially hard hit are green ash (F. pennsylvanica), black ash (F. nigra), a...

  17. Growth of larval agrilus planipennis (Coleoptera: Buprestidae) and fitness of tetrastichus planipennisi (Hymenoptera: Eulophidae) in blue ash (Fraxinus quadrangulata) and green ash (F. pennsylvanica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerald ash borer (EAB) (Agrilus planipennis) is a primary pest of North American ash (Fraxinus spp.) trees. Blue ash (F. quadrangulata) is more resistant than other North American ash and able to survive EAB infestation. This tree may affect EAB larvae and T. planipennisi. We compared the capacity ...

  18. Effects of water availability on emerald ash borer larval performance and phloem phenolics of Manchurian and black ash.

    PubMed

    Chakraborty, Sourav; Whitehill, Justin G A; Hill, Amy L; Opiyo, Stephen O; Cipollini, Don; Herms, Daniel A; Bonello, Pierluigi

    2014-04-01

    The invasive emerald ash borer (EAB) beetle is a significant threat to the survival of North American ash. In previous work, we identified putative biochemical and molecular markers of constitutive EAB resistance in Manchurian ash, an Asian species co-evolved with EAB. Here, we employed high-throughput high-performance liquid chromatography with photodiode array detection and mass spectrometry (HPLC-PDA-MS) to characterize the induced response of soluble phloem phenolics to EAB attack in resistant Manchurian and susceptible black ash under conditions of either normal or low water availability, and the effects of water availability on larval performance. Total larval mass per tree was lower in Manchurian than in black ash. Low water increased larval numbers and mean larval mass overall, but more so in Manchurian ash. Low water did not affect levels of phenolics in either host species, but six phenolics decreased in response to EAB. In both ashes, pinoresinol A was induced by EAB, especially in Manchurian ash. Pinoresinol A and pinoresinol B were negatively correlated with each other in both species. The higher accumulation of pinoresinol A in Manchurian ash after attack may help explain the resistance of this species to EAB, but none of the responses measured here could explain increased larval performance in trees subjected to low water availability.

  19. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2003-08-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a reasonably high alkali content, thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was well within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that the aggressive alkali-iron-trisulfate constituent was present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. This report provides the results of the evaluation of Test Section C, including the samples that remained in the Test Section for the full exposure period as well as those that were removed early. The analysis of Test Section C followed much the same protocol that was employed in the assessment of Test Section A. Again, the focus was on determining and documenting the relative corrosion rates of the candidate materials. The detailed results of the investigation are included in this report as a series of twelve appendices. Each appendix is devoted to the performance of one of the candidate alloys. The table below summarizes metal loss rate for the worst case sample of each of the candidate materials for both Test Sections A and C

  20. Late Tertiary and Quaternary geology of the Tecopa basin, southeastern California

    SciTech Connect

    Hillhouse, J.W.

    1987-12-31

    Stratigraphic units in the Tecopa basin, located in southeastern California, provide a framework for interpreting Quaternary climatic change and tectonism along the present Amargosa River. During the late Pliocene and early Pleistocene, a climate that was appreciably wetter than today`s sustained a moderately deep lake in the Tecopa basin. Deposits associated with Lake Tecopa consists of lacustrine mudstone, conglomerate, volcanic ash, and shoreline accumulations of tufa. Age control within the lake deposits is provided by air-fall tephra that are correlated with two ash falls from the Yellowstone caldera and one from the Long Valley caldera. Lake Tecopa occupied a closed basin during the latter part, if not all, of its 2.5-million-year history. Sometime after 0.5 m.y. ago, the lake developed an outlet across Tertiary fanglomerates of the China Ranch Beds leading to the development of a deep canyon at the south end of the basin and establishing a hydrologic link between the northern Amargosa basins and Death Valley. After a period of rapid erosion, the remaining lake beds were covered by alluvial fans that coalesced to form a pediment in the central part of the basin. Holocene deposits consist of unconsolidated sand and gravel in the Amargosa River bed and its deeply incised tributaries, a small playa near Tecopa, alluvial fans without pavements, and small sand dunes. The pavement-capped fan remnants and the Holocene deposits are not faulted or tilted significantly, although basins to the west, such as Death Valley, were tectonically active during the Quaternary. Subsidence of the western basins strongly influenced late Quaternary rates of deposition and erosion in the Tecopa basin.

  1. Optical Properties of Volcanic Ash: Improving Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Colarco, P. R.; Aquila, V.; Krotkov, N. A.; Bleacher, J. E.; Garry, W. B.; Young, K. E.; Lima, A. R.; Martins, J. V.; Carn, S. A.

    2015-12-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation. Recent research has identified a wide range in volcanic ash optical properties among samples collected from the ground after different eruptions. The database of samples investigated remains relatively small, and measurements of optical properties at the relevant particle sizes and spectral channels are far from complete. Generalizing optical properties remains elusive, as does establishing relationships between ash composition and optical properties, which are essential for satellite retrievals. We are building a library of volcanic ash optical and microphysical properties. In this presentation we show

  2. Extraction of vanadium from athabasca tar sands fly ash

    NASA Astrophysics Data System (ADS)

    Gomez-Bueno, C. O.; Spink, D. R.; Rempel, G. L.

    1981-06-01

    The production of refinery grade oil from the Alberta tar sands deposits as currently practiced by Suncor (formally Great Canadian Oil Sands Ltd.—GCOS) generates a substantial amount of petroleum coke fly ash which contains appreciable amounts of valuable metals such as vanadium, nickel and titanium. Although the recovery of vanadium from petroleum ash is a well established commercial practice, it is shown in the present work that such processes are not suitable for recovery of vanadium from the GCOS fly ash. The fact that the GCOS fly ash behaves so differently when compared to other petroleum fly ash is attributed to its high silicon and aluminum contents which tie up the metal values in a silica-alumina matrix. Results of experiments carried out in this investigation indicate that such matrices can be broken down by application of a sodium chloride/water roast of the carbon-free fly ash. Based on results from a series of preliminary studies, a detailed investigation was undertaken in order to define optimum conditions for a vanadium extraction process. The process developed involves a high temperature (875 to 950 °C) roasting of the fly ash in the presence of sodium chloride and water vapor carried out in a rotary screw kiln, followed by dilute sodium hydroxide atmosphereic leaching (98 °C) to solublize about 85 pet of the vanadium originally present in the fly ash. It was found that the salt roasting operation, besides enhancing vanadium recovery, also inhibits silicon dissolution during the subsequent leaching step. The salt roasting treatment is found to improve vanadium recovery significantly when the fly ash is fully oxidized. This is easily achieved by burning off the carbon present in the “as received” fly ash under excess air. The basic leaching used in the new process selectively dissolves vanadium from the roasted ash, leaving nickel and titanium untouched.

  3. Experimental aggregation of volcanic ash: the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Kueppers, U.; Jacob, M.; Ayris, P. M.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions may release vast quantities of ash. Because of its size, it has the greatest dispersal potential and can be distributed globally. Ash may pose severe risks for 1) air traffic, 2) human and animal health, 3) agriculture and 4) infrastructure. Such ash particles can however cluster and form ash aggregates that range in size from millimeters to centimeters. During their growth, weight and aerodynamic properties change. This leads to significantly changed transport and settling behavior. The physico-chemical processes involved in aggregation are quantitatively poorly constrained. We have performed laboratory ash aggregation experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. Solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (e.g., air flow rate, gas temperature, humidity, liquid composition). In this manner we simulate the variable gas-particle flow conditions expected in eruption plumes and pyroclastic density currents. We have used 1) soda-lime glass beads as an analogue material and 2) natural volcanic ash from Laacher See Volcano (Germany). In order to influence form, size, stability and the production rate of aggregates, a range of experimental conditions (e.g., particle concentration, degree of turbulence, temperature and moisture in the process chamber and the composition of the liquid phase) have been employed. We have successfully reproduced several features of natural ash aggregates, including round, internally structured ash pellets up to 3 mm in diameter. These experimental results help to constrain the boundary conditions required for the generation of spherical, internally-structured ash aggregates that survive deposition and are preserved in the volcanological record. These results should also serve as input parameters for models of ash transport and ash mass distribution.

  4. Retrieval of ash properties from IASI measurements

    NASA Astrophysics Data System (ADS)

    Ventress, Lucy J.; McGarragh, Gregory; Carboni, Elisa; Smith, Andrew J.; Grainger, Roy G.

    2016-11-01

    A new optimal estimation algorithm for the retrieval of volcanic ash properties has been developed for use with the Infrared Atmospheric Sounding Interferometer (IASI). The retrieval method uses the wave number range 680-1200 cm-1, which contains window channels, the CO2 ν2 band (used for the height retrieval), and the O3 ν3 band.Assuming a single infinitely (geometrically) thin ash plume and combining this with the output from the radiative transfer model RTTOV, the retrieval algorithm produces the most probable values for the ash optical depth (AOD), particle effective radius, plume top height, and effective radiating temperature. A comprehensive uncertainty budget is obtained for each pixel. Improvements to the algorithm through the use of different measurement error covariance matrices are explored, comparing the results from a sensitivity study of the retrieval process using covariance matrices trained on either clear-sky or cloudy scenes. The result showed that, due to the smaller variance contained within it, the clear-sky covariance matrix is preferable. However, if the retrieval fails to pass the quality control tests, the cloudy covariance matrix is implemented.The retrieval algorithm is applied to scenes from the Eyjafjallajökull eruption in 2010, and the retrieved parameters are compared to ancillary data sources. The ash optical depth gives a root mean square error (RMSE) difference of 0.46 when compared to retrievals from the MODerate-resolution Imaging Spectroradiometer (MODIS) instrument for all pixels and an improved RMSE of 0.2 for low optical depths (AOD < 0.1). Measurements from the Facility for Airborne Atmospheric Measurements (FAAM) and Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) flight campaigns are used to verify the retrieved particle effective radius, with the retrieved distribution of sizes for the scene showing excellent consistency. Further, the plume top altitudes are compared to derived cloud-top altitudes from the Cloud

  5. Lead exposure of waterfowl ingesting Coeur d?Alene River Basin sediments

    USGS Publications Warehouse

    Beyer, W.N.; Audet, D.J.; Morton, Alexandra; Campbell, J.K.; LeCaptain, L.

    1998-01-01

    Feces from tundra swans (Cygnus columbianus [Ord]), Canada geese (Branta canadensis [L.]) and mallards (Anas platyrhynchos [L.]) were collected from the Coeur d?Alene River Basin and two reference areas to estimate exposure to lead from mining activities and to relate that exposure to the ingestion of contaminated sediments. The average acid-insoluble ash content of the feces, a measure of sediment, was 18% for Canada geese and tundra swans, and 12% for ducks. The 18% value corresponded to an estimated 9% sediment ingestion rate (dry weight). The 90th percentile for acid-insoluble ash in feces of tundra swans corresponds to an estimated 22% sediment in the diet. The average lead concentration (dry weight) of tundra swan feces from all Coeur d?Alene River Basin wetlands sampled was 880 mg/kg, compared to 2.1 mg kg1 from reference wetlands. The 90th percentile of lead in tundra swan feces from the Coeur d?Alene River Basin sites was 2700 mg kg1. Fecal lead concentrations of tundra swans from Harrison Slough, the wetland studied in most detail, were correlated (Spearman?s rho = 0.74, p < 0.05) with the acid-insoluble ash content of the feces. The very low lead concentrations in feces having low acid-insoluble ash contents established that the sediment was the primary source of the lead ingested by waterfowl. Sediment lead concentrations at 11 wetland sites were closely correlated (r = 0.91, p < 0.05) with average fecal lead concentrations for all waterfowl, corrected for the average percent acid-insoluble ash in the feces. The regression equation describing this relation, along with estimates of sediment ingestion, provides a straight-forward means of estimating the current exposure of waterfowl to lead and of predicting the potential exposure of waterfowl to lead under plans to clean up the contaminated sites.

  6. Lead exposure of waterfowl ingesting Coeur d`Alene River Basin sediments

    SciTech Connect

    Beyer, W.N.; Morton, A.; Audet, D.J.; Campbell, J.K.; LeCaptain, L.

    1998-11-01

    Feces from tundra swans [Bygnus columbianus (Ord)], Canada geese [Branta canadensis (L.)], and mallards [Anas platrhynchos (L.)] were collected from the Coeur d`Alene River Basin and two reference areas in Idaho to estimate exposure to lead from mining activities and relate that exposure to the ingestion of contaminated sediments. The average acid-insoluble ash content of the feces, a measure of sediment ingestion, was 18% for Canada geese and tundra swans, and 12% for ducks. The 18% value corresponded to an estimated 9% sediment ingestion rate (dry weight). The 90th percentile for acid-insoluble ash in feces of tundra swans-corresponded to an estimated 22% sediment in the diet. The average lead concentration (dry weight) of tundra swan feces from all Coeur d`Alene River Basin wetlands sampled was 880 mg/kg, compared to 2.1 mg kg{sup {minus}1} from reference areas. the 90th percentile of lead in tundra swan feces from the Coeur d`Alene River Basin sites was 2700 mg kg{sup {minus}1}. Fecal lead concentrations of tundra swans were correlated with the acid-insoluble ash content of the feces. The very low lead concentrations in feces having low acid-insoluble ash contents established that the sediment was the primary source of the lead ingested by waterfowl. Sediment lead concentrations at 11 wetland sites were closely correlated with average fecal lead concentrations for all waterfowl, corrected for the average percent acid-insoluble ash in the feces.

  7. Failure to phytosanitize ash firewood infested with emerald ash borer in a small dry kiln using ISPM-15 standards.

    PubMed

    Goebel, P Charles; Bumgardner, Matthew S; Herms, Daniel A; Sabula, Andrew

    2010-06-01

    Although current USDA-APHIS standards suggest that a core temperature of 71.1 degrees C (160 degrees F) for 75 min is needed to adequately sanitize emerald ash borer, Agrilus planipennis Fairmaire-infested firewood, it is unclear whether more moderate (and economical) treatment regimes will adequately eradicate emerald ash borer larvae and prepupae from ash firewood. We constructed a small dry kiln in an effort to emulate the type of technology a small- to medium-sized firewood producer might use to examine whether treatments with lower temperature and time regimes successfully eliminate emerald ash borer from both spilt and roundwood firewood. Using white ash (Fraxinus americana L.) firewood collected from a stand with a heavy infestation of emerald ash borer in Delaware, OH, we treated the firewood using the following temperature and time regime: 46 degrees C (114.8 degrees F) for 30 min, 46 degrees C (114.8 degrees F) for 60 min, 56 degrees C (132.8 degrees F) for 30 min, and 56 degrees C (132.8 degrees F) for 60 min. Temperatures were recorded for the outer 2.54-cm (1-in.) of firewood. After treatment, all firewood was placed under mesh netting and emerald ash borer were allowed to develop and emerge under natural conditions. No treatments seemed to be successful at eliminating emerald ash borer larvae and perpupae as all treatments (including two nontreated controls) experienced some emerald ash borer emergence. However, the 56 degrees C (132.8 degrees F) treatments did result in considerably less emerald ash borer emergence than the 46 degrees C (114.8 degrees F) treatments. Further investigation is needed to determine whether longer exposure to the higher temperature (56 degrees C) will successfully sanitize emerald ash borer-infested firewood.

  8. Optimizing Use of Girdled Ash Trees for Management of Low-Density Emerald Ash Borer (Coleoptera: Buprestidae) Populations.

    PubMed

    Siegert, Nathan W; McCullough, Deborah G; Poland, Therese M; Heyd, Robert L

    2017-03-30

    Effective survey methods to detect and monitor recently established, low-density infestations of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), remain a high priority because they provide land managers and property owners with time to implement tactics to slow emerald ash borer population growth and the progression of ash mortality. We evaluated options for using girdled ash (Fraxinus spp.) trees for emerald ash borer detection and management in a low-density infestation in a forested area with abundant green ash (F. pennsylvanica). Across replicated 4-ha plots, we compared detection efficiency of 4 versus 16 evenly distributed girdled ash trees and between clusters of 3 versus 12 girdled trees. We also examined within-tree larval distribution in 208 girdled and nongirdled trees and assessed adult emerald ash borer emergence from detection trees felled 11 mo after girdling and left on site. Overall, current-year larvae were present in 85-97% of girdled trees and 57-72% of nongirdled trees, and larval density was 2-5 times greater on girdled than nongirdled trees. Low-density emerald ash borer infestations were readily detected with four girdled trees per 4-ha, and 3-tree clusters were as effective as 12-tree clusters. Larval densities were greatest 0.5 ± 0.4 m below the base of the canopy in girdled trees and 1.3 ± 0.7 m above the canopy base in nongirdled trees. Relatively few adult emerald ash borer emerged from trees felled 11 mo after girdling and left on site through the following summer, suggesting removal or destruction of girdled ash trees may be unnecessary. This could potentially reduce survey costs, particularly in forested areas with poor accessibility.

  9. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    SciTech Connect

    Okada, Takashi; Tomikawa, Hiroki

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of the ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.

  10. Process for the recovery of alumina from fly ash

    DOEpatents

    Murtha, M.J.

    1983-08-09

    An improvement in the lime-sinter process for recovering alumina from pulverized coal fly ash is disclosed. The addition of from 2 to 10 weight percent carbon and sulfur to the fly ash-calcium carbonate mixture increase alumina recovery at lower sintering temperatures.

  11. Reactivity of fly ashes in a spray dryer FGD process

    SciTech Connect

    Davis, W.T.; Reed, G.D.

    1983-05-01

    During the period 1981-1982, a study was performed to determine the ability of various fly ashes to retain sulfur dioxide in a pilot plant spray dryer/fabric filter flue gas desulfurization system. This knowledge would provide design engineers with the necessary data to determine whether the fly ash from a particular utility could be used as an effective supplement or substitute for slaked lime in a spray dryer system. The study commenced with the collection of 22 fly ashes from lignite, subbituminous, and bituminous eastern and western coals. The ashes were contacted with the flue gas entering the pilot plant by two different techniques. In the first, the ashes were slurried in water and injected into the spray dryer through a spinning disk atomizer. In the second, the ashes were injected as a dry additive into the flue gas upstream of the spray dryer. Analyses were conducted to determine the ability of each ash to retain sulfur dioxide in the system followed by statistical correlations of the sulfur retention with the physical/chemical properties of each ash. 17 references, 32 figures, 19 tables.

  12. Fly ash in landfill top covers - a review.

    PubMed

    Brännvall, E; Kumpiene, J

    2016-01-01

    Increase of energy recovery from municipal solid waste by incineration results in the increased amounts of incineration residues, such as fly ash, that have to be taken care of. Material properties should define whether fly ash is a waste or a viable resource to be used for various applications. Here, two areas of potential fly ash application are reviewed: the use of fly ash in a landfill top cover either as a liner material or as a soil amendment in vegetation layer. Fly ashes from incineration of three types of fuel are considered: refuse derived fuel (RDF), municipal solid waste incineration (MSWI) and biofuel. Based on the observations, RDF and MSWI fly ash is considered as suitable materials to be used in a landfill top cover liner. Whereas MSWI and biofuel fly ashes based on element availability for plant studies, could be considered suitable for the vegetation layer of the top cover. Responsible application of MSWI ashes is, however, warranted in order to avoid element accumulation in soil and elevation of background values over time.

  13. Multinuclear NMR approach to coal fly ash characterization

    SciTech Connect

    Netzel, D.A.

    1991-09-01

    This report describes the application of various nuclear magnetic resonance (NMR) techniques to study the hydration kinetics and mechanisms, the structural properties, and the adsorption characteristics of coal fly ash. Coal fly ash samples were obtained from the Dave Johnston and Laramie River electric power generating plants in Wyoming. Hydrogen NMR relaxation times were measured as a function of time to observe the kinetics of hydration for the two coal fly ashes at different temperatures and water-to-cement ration. The kinetic data for the hydrated coal fly ashes were compared to the hydration of portland cement. The mechanism used to describe the kinetic data for the hydration of portland cement was applied, with reservation, to describe the hydration of the coal fly ashes. The results showed that the coal fly ashes differ kinetically from that of portland cement and from each other. Consequently, both coal fly ashes were judged to be poorer cementitious materials than portland cement. Carbon-13 NMR CP/MAS spectra were obtained for the anhydrous coal fly ashes in an effort to determine the type of organic species that may be present, either adsorbed on the surface or entrained.

  14. Element levels in birch and spruce wood ashes: green energy?

    PubMed

    Reimann, Clemens; Ottesen, Rolf Tore; Andersson, Malin; Arnoldussen, Arnold; Koller, Friedrich; Englmaier, Peter

    2008-04-15

    Production of wood ash has increased strongly in the last ten years due to the increasing popularity of renewable and CO(2)-neutral heat and energy production via wood burning. Wood ashes are rich in many essential plant nutrients. In addition they are alkaline. The idea of using the waste ash as fertiliser in forests is appealing. However, wood is also known for its ability to strongly enrich certain heavy metals from the underlying soils, e.g. Cd, without any anthropogenic input. Concentrations of 26 chemical elements (Ag, As, Au, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sr, Ti, and Zn) in 40 samples each of birch and spruce wood ashes collected along a 120 km long transect in southern Norway are reported. The observed maximum concentrations are 1.3 wt.% Pb, 4.4 wt.% Zn and 203 mg/kg Cd in birch wood ashes. Wood ashes can thus contain very high heavy metal concentrations. Spreading wood ashes in a forest is a major anthropogenic interference with the natural biogeochemical cycles. As with the use of sewage sludge in agriculture the use of wood ashes in forests clearly needs regulation.

  15. Estimating the frequency of volcanic ash clouds over northern Europe

    NASA Astrophysics Data System (ADS)

    Watson, E. J.; Swindles, G. T.; Savov, I. P.; Lawson, I. T.; Connor, C. B.; Wilson, J. A.

    2017-02-01

    Fine ash produced during explosive volcanic eruptions can be dispersed over a vast area, where it poses a threat to aviation, human health and infrastructure. Here, we focus on northern Europe, which lies in the principal transport direction for volcanic ash from Iceland, one of the most active volcanic regions in the world. We interrogate existing and newly produced geological and written records of past ash fallout over northern Europe in the last 1000 years and estimate the mean return (repose) interval of a volcanic ash cloud over the region to be 44 ± 7 years. We compare tephra records from mainland northern Europe, Great Britain, Ireland and the Faroe Islands, with records of proximal Icelandic volcanism and suggest that an Icelandic eruption with a Volcanic Explosivity Index rating (VEI) ≥ 4 and a silicic magma composition presents the greatest risk of producing volcanic ash that can reach northern Europe. None of the ash clouds in the European record which have a known source eruption are linked to a source eruption with VEI < 4. Our results suggest that ash clouds are more common over northern Europe than previously proposed and indicate the continued threat of ash deposition across northern Europe from eruptions of both Icelandic and North American volcanoes.

  16. The recycling of the coal fly ash in glass production

    SciTech Connect

    Erol, M.M.; Kucukbayrak, S.; Ersoy-Mericboyu, A.

    2006-09-15

    The recycling of fly ash obtained from the combustion of coal in thermal power plant has been studied. Coal fly ash was vitrified by melting at 1773 K for 5 hours without any additives. The properties of glasses produced from coal fly ash were investigated by means of Differential Thermal Analysis (DTA), X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques. DTA study indicated that there was only one endothermic peak at 1003 K corresponding to the glass transition temperature. XRD analysis showed the amorphous state of the glass sample produced from coal fly ash. SEM investigations revealed that the coal fly ash based glass sample had smooth surface. The mechanical, physical and chemical properties of the glass sample were also determined. Recycling of coal fly ash by using vitrification technique resulted to a glass material that had good mechanical, physical and chemical properties. Toxicity characteristic leaching procedure (TCLP) results showed that the heavy metals of Pb, Cr, Zn and Mn were successfully immobilized into the glass. It can be said that glass sample obtained by the recycling of coal fly ash can be taken as a non-hazardous material. Overall, results indicated that the vitrification technique is an effective way for the stabilization and recycling of coal fly ash.

  17. 8. View of remains of ash bin at Armory Street ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of remains of ash bin at Armory Street Pump House. Ashes would be removed via a dump truck driven under the hopper above the garage door. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  18. Optimizing the use of fly ash in concrete

    SciTech Connect

    Thomas, M.

    2007-07-01

    The optimum amount of fly ash varies not only with the application, but also with composition and proportions of all the materials in the concrete mixture (especially the fly ash), the conditions during placing (especially temperature), construction practices (for example, finishing and curing) and the exposure conditions. This document discusses issues related to using low to very high levels of fly ash in concrete and provides guidance for the use of fly ash without compromising the construction process or the quality of the finished product. The nature of fly ashes including their physical, mineralogical and chemical properties is covered in detail, as well as fly ash variability due to coal composition and plant operating conditions. A discussion on the effects of fly ash characteristics on fresh and hardened concrete properties includes; workability, bleeding, air entrainment, setting time, heat of hydration, compressive strength development, creep, drying shrinkage, abrasion resistance, permeability, resistance to chlorides, alkali-silica reaction (ASR), sulfate resistance, carbonation, and resistance to freezing and thawing and deicer salt scaling. Case studies were selected as examples of some of the more demanding applications of fly ash concrete for ASR mitigation, chloride resistance, and green building.

  19. Fly ash: Perspective resource for geo-polymer materials production

    NASA Astrophysics Data System (ADS)

    Kargin, Aleksey; Baev, Vladimir; Mashkin, Nikolay; Uglyanica, Andrey

    2016-01-01

    The present paper presents the information about the chemical and mineralogical composition of the ash and slag and their amounts at the dumps of the thermoelectric plants located in the city of Kemerovo. It is known that about 85% of ash and slag from the thermoelectric plants in Russia are removed by means of the hydraulic sluicing systems and only about 15% - by the systems of pneumatic ash handling. Currently, however, the transition from the "wet" ash removal systems to the "dry" ones is outlined. This process is quite logical since the fly ash has the higher reactivity compared with the hydraulic sluicing ash and therefore it is of the great interest for recycling and use. On the other hand, the recent trend is the increased use of fly ash in the production of geo-polymers due to their availability, workability and the increased life of the final product. The analysis is carried out to check the possibility of using the fly ash from various Kemerovo thermoelectric plants as a raw material for the production of the alkali-activated binder.

  20. Biologic effects of oil fly ash.

    PubMed Central

    Ghio, Andrew J; Silbajoris, Robert; Carson, Johnny L; Samet, James M

    2002-01-01

    Epidemiologic studies have demonstrated increased human morbidity and mortality with elevations in the concentration of ambient air particulate matter (PM). Fugitive fly ash from the combustion of oil and residual fuel oil significantly contributes to the ambient air particle burden. Residual oil fly ash (ROFA) is remarkable in the capacity to provoke injury in experimental systems. The unique composition of this emission source particle makes it particularly useful as a surrogate for ambient air PM in studies of biologic effects testing the hypothesis that metals mediate the biologic effects of air pollution particles. A majority of the in vitro and animal model investigations support the postulate that transition metals present in ROFA (especially vanadium) participate in Fenton-like chemical reactions to produce reactive oxygen species. This is associated with tyrosine phosphorylation, nuclear factor kappa B and other transcription factor activation, induction of inflammatory mediator expression, and inflammatory lung injury. It is also evident that vanadium accounts for a significant portion of the biologic activity of ROFA. The extrapolation of this body of investigation on ROFA to the field of ambient air PM is difficult, as particles in numerous environments have such small amounts of vanadium. PMID:11834466

  1. Predicting slag viscosity from coal ash composition

    SciTech Connect

    Laumb, J.; Benson, S.A.; Katrinak, K.A.; Schwalbe, R.; McCollor, D.P.

    1999-07-01

    Management of slag flow from cyclone-fired utility boilers requires accurate prediction of viscosity. Cyclones tend to build up slag when the cyclone combustion temperature is less than the temperature required to melt and tap the ash from the coal being fired. Cyclone-fired boilers designed for lignite are equipped with predry systems, which remove 6-9% of the moisture from the coal. Cyclones tend to slag when the as-received heating value of the fuel is less than 6350 Btu/lb and T250 (temperature where viscosity equals 250 poise) is greater than 2350 F. The T250 value, as well as the rest of the viscosity-temperature relationship, can be predicted using models based on coal ash composition. The focus of this work is to evaluate several models in terms of their agreement with measured viscosities. Viscosity measurements were made for ten samples, including nine lignite coals and one lignite-derived slag. Model performance is related to the SiO{sub 2}, CaO, and Fe{sub 2}O{sub 3} contents of the slag. The Sage and McIlroy and Kalmanovitch models worked best for high SiO{sub 2} and low Fe{sub 2}O{sub 3} fuels. The Senior model worked best when Fe{sub 2}O{sub 3} content was moderate to high.

  2. Biologic effects of oil fly ash.

    PubMed

    Ghio, Andrew J; Silbajoris, Robert; Carson, Johnny L; Samet, James M

    2002-02-01

    Epidemiologic studies have demonstrated increased human morbidity and mortality with elevations in the concentration of ambient air particulate matter (PM). Fugitive fly ash from the combustion of oil and residual fuel oil significantly contributes to the ambient air particle burden. Residual oil fly ash (ROFA) is remarkable in the capacity to provoke injury in experimental systems. The unique composition of this emission source particle makes it particularly useful as a surrogate for ambient air PM in studies of biologic effects testing the hypothesis that metals mediate the biologic effects of air pollution particles. A majority of the in vitro and animal model investigations support the postulate that transition metals present in ROFA (especially vanadium) participate in Fenton-like chemical reactions to produce reactive oxygen species. This is associated with tyrosine phosphorylation, nuclear factor kappa B and other transcription factor activation, induction of inflammatory mediator expression, and inflammatory lung injury. It is also evident that vanadium accounts for a significant portion of the biologic activity of ROFA. The extrapolation of this body of investigation on ROFA to the field of ambient air PM is difficult, as particles in numerous environments have such small amounts of vanadium.

  3. Phosphate fertilizer from sewage sludge ash (SSA).

    PubMed

    Franz, M

    2008-01-01

    Ashes from sewage sludge incineration are rich in phosphorus content, ranging between 4% and 9%. Due to the current methods of disposal used for these ashes, phosphorus, which is a valuable plant nutrient, is removed from biological cycling. This article proposes the possible three-stage processing of SSA, whereby more than 90% of phosphorus can be extracted to make an adequate phosphate fertilizer. SSA from two Swiss sewage sludge incinerators was used for laboratory investigations. In an initial step, SSA was leached with sulfuric acid using a liquid-to-solid ratio of 2. The leaching time and pH required for high phosphorus dissolution were determined. Inevitably, dissolution of heavy metals takes place that would contaminate the fertilizer. Thus in a second step, leach solution has to be purified by having the heavy metals removed. Both ion exchange using chelating resins and sulfide precipitation turned out to be suitable for removing critical Cu, Ni and Cd. Thirdly, phosphates were precipitated as calcium phosphates with lime water. The resulting phosphate sludge was dewatered, dried and ground to get a powdery fertilizer whose efficacy was demonstrated by plant tests in a greenhouse. By measuring the weight of plants after 6 weeks of growth, fertilized in part with conventional phosphate fertilizer, fertilizer made from SSA was proven to be equal in its plant uptake efficiency.

  4. Radioactive wastes dispersed in stabilized ash cements

    SciTech Connect

    Rubin, J.B.; Taylor, C.M.V.; Sivils, L.D.; Carey, J.W.

    1997-12-31

    One of the most widely-used methods for the solidification/stabilization of low-level radwaste is by incorporation into Type-I/II ordinary portland cement (OPC). Treating of OPC with supercritical fluid carbon dioxide (SCCO{sub 2}) has been shown to significantly increase the density, while simultaneously decreasing porosity. In addition, the process significantly reduces the hydrogenous content, reducing the likelihood of radiolytic decomposition reactions. This, in turn, permits increased actinide loadings with a concomitant reduction in disposable waste volume. In this article, the authors discuss the combined use of fly-ash-modified OPC and its treatment with SCCO{sub 2} to further enhance immobilization properties. They begin with a brief summary of current cement immobilization technology in order to delineate the areas of concern. Next, supercritical fluids are described, as they relate to these areas of concern. In the subsequent section, they present an outline of results on the application of SCCO{sub 2} to OPC, and its effectiveness in addressing these problem areas. Lastly, in the final section, they proffer their thoughts on why they believe, based on the OPC results, that the incorporation of fly ash into OPC, followed by supercritical fluid treatment, can produce highly efficient wasteforms.

  5. Fire severity effects on ash extractable Total Phosphorous

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Phosphorous (P) is a crucial element to plant nutrition and limits vegetal production. The amounts of P in soil are lower and great part of this nutrient is absorbed or precipitated. It is well known that fire has important implications on P cycle, that can be lost throughout volatilization, evacuated with the smoke, but also more available to transport after organic matter mineralization imposed by the fire. The release of P depends on ash pH and their chemical and physical characteristics. Fire temperatures impose different severities, according to the specie affected and contact time. Fire severity is often evaluated by ash colour and this is a low-cost and excellent methodology to assess the fire effects on ecosystems. The aim of this work is study the ash properties physical and chemical properties on ash extractable Total Phosphorous (TP), collected in three wildfires, occured in Portugal, (named, (1) Quinta do Conde, (2) Quinta da Areia and (3) Casal do Sapo) composed mainly by Quercus suber and Pinus pinaster trees. The ash colour was assessed using the Munsell color chart. From all three plots we analyzed a total of 102 ash samples and we identified 5 different ash colours, ordered in an increasing order of severity, Very Dark Brown, Black, Dark Grey, Very Dark Grey and Light Grey. In order to observe significant differences between extractable TP and ash colours, we applied an ANOVA One Way test, and considered the differences significant at a p<0.05. The results showed that significant differences in the extractable TP among the different ash colours. Hence, to identify specific differences between each ash colour, we applied a post-hoc Fisher LSD test, significant at a p<0.05. The results obtained showed significant differences between the extractable TP from Very dark Brown and Black ash, produced at lower severities, in relation to Dark Grey, Very Dark Grey and Light Grey ash, generated at higher severities. The means of the first group were higher

  6. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction

    NASA Astrophysics Data System (ADS)

    Grasby, Stephen E.; Sanei, Hamed; Beauchamp, Benoit

    2011-02-01

    During the latest Permian extinction about 250Myr ago, more than 90% of marine species went extinct, and biogeochemical cycles were disrupted globally. The cause of the disruption is unclear, but a link between the eruption of the Siberian Trap flood basalts and the extinction has been suggested on the basis of the rough coincidence of the two events. The flood basalt volcanism released CO2. In addition, related thermal metamorphism of Siberian coal measures and organic-rich shales led to the emission of methane, which would have affected global climate and carbon cycling, according to model simulations. This scenario is supported by evidence for volcanic eruptions and gas release in the Siberian Tunguska Basin, but direct indicators of coal combustion have not been detected. Here we present analyses of terrestrial carbon in marine sediments that suggest a substantial amount of char was deposited in Permian aged rocks from the Canadian High Arctic immediately before the mass extinction. Based on the geochemistry and petrology of the char, we propose that the char was derived from the combustion of Siberian coal and organic-rich sediments by flood basalts, which was then dispersed globally. The char is remarkably similar to modern coal fly ash, which can create toxic aquatic conditions when released as slurries. We therefore speculate that the global distribution of ash could have created toxic marine conditions.

  7. State Waste Discharge Permit application: 200-E Powerhouse Ash Pit

    SciTech Connect

    Atencio, B.P.

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations, the US Department and Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-E Powerhouse Ash Pit. The 200-E Powerhouse Ash Waste Water discharges to the 200-E Powerhouse Ash Pit via dedicated pipelines. The 200-E Ash Waste Water is the only discharge to the 200-E Powerhouse Ash Pit. The 200-E Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  8. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

    2002-09-10

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  9. Energy-Efficient, Continuous-Flow Ash Lockhopper

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Suitor, Jerry W.; Dubis, David

    1989-01-01

    Pressure balance in control gas prevents loss of reactor gas. Energy efficiency of continuous-flow ash lockhopper increased by preventing hot gases from flowing out of reactor vessel through ash-hopper outlet and carrying away heat energy. Stopping loss of reactor gases also important for reasons other than energy efficiency; desired reaction product toxic or contained to prevent pollution. In improved continuous-flow ash lockhopper, pressure-driven loss of hot gas from reactor vessel through ash-hopper outlet prevented by using control gas in fluidic flow-control device to equalize pressure in reactor vessel. Also enables reactor to attain highest possible product yield with continuous processing while permitting controllable, continuous flow of ash.

  10. Optical properties of fly ash. Volume 1, Final report

    SciTech Connect

    Self, S.A.

    1994-12-01

    Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal. Volume 1 contains the dissertation of Ghosal which covers the characterization of fly ash and the measurements of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.

  11. Element associations in ash from waste combustion in fluidized bed

    SciTech Connect

    Karlfeldt Fedje, K.; Rauch, S.; Cho, P.; Steenari, B.-M.

    2010-07-15

    The incineration of MSW in fluidized beds is a commonly applied waste management practice. The composition of the ashes produced in a fluidized bed boiler has important environmental implications as potentially toxic trace elements may be associated with ash particles and it is therefore essential to determine the mechanisms controlling the association of trace elements to ash particles, including the role of major element composition. The research presented here uses micro-analytical techniques to study the distribution of major and trace elements and determine the importance of affinity-based binding mechanisms in separate cyclone ash particles from MSW combustion. Particle size and the occurrence of Ca and Fe were found to be important factors for the binding of trace elements to ash particles, but the binding largely depends on random associations based on the presence of a particle when trace elements condensate in the flue gas.

  12. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen

    2003-05-20

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. During this fourth project period we completed the characterization of ozone-treated carbon surfaces and wrote a comprehensive report on the mechanism through which ozone suppresses the adsorption of concrete surfactants.

  13. Hydration reactions of cement combinations containing vitrified incinerator fly ash

    SciTech Connect

    Dyer, Thomas D.; Dhir, Ravindra K

    2004-05-01

    One treatment option for municipal solid waste incinerator fly ash (IFA) is vitrification. The process yields a material containing reduced levels of trace metals relative to the original ash. The material is glassy and potentially suitable as a cement component in concrete. This paper examines the vitrification of an IFA and studies the hydration reactions of combinations of this vitrified material and Portland cement (PC). Isothermal conduction calorimetry, powder X-ray diffraction (XRD), thermogravimetry (TG) and scanning electron microscopy were employed to study the hydration reactions. As the levels of vitrified ash increase, the quantities of AFt phase produced decrease, whilst quantities of AFm phase increase, due to the reduced levels of sulfate in the vitrified ash. The levels of calcium silicate hydrate (CSH) gel (inferred from estimates of quantities of gel-bound water) remain constant at 28 days regardless of vitrified ash content, indicating that the material is contributing toward the formation of this product.

  14. Low temperature magnetic characterisation of fire ash residues

    NASA Astrophysics Data System (ADS)

    Peters, C.; Thompson, R.; Harrison, A.; Church, M. J.

    Fire ash is ideally suited to mineral magnetic studies. Both modern (generated by controlled burning experiments) and archaeological ash deposits have been studied, with the aim of identifying and quantifying fuel types used in prehistory. Low temperature magnetic measurements were carried out on the ash samples using an MPMS 2 SQUID magnetometer. The low temperature thermo-remanence cooling curves of the modern ash display differences between fuel sources. Wood and well-humified peat ash display an increase in remanence with cooling probably related to a high superparamagnetic component, consistent with room temperature frequency dependent susceptibilities of over 7%. In comparison fibrous-upper peat and peat turf display an unusual decrease in remanence, possibly due to an isotropic point of grains larger than superparamagnetic in size. The differences have been successfully utilised in unmixing calculations to quantify fuel components within four archaeological deposits from the Northern and Western Isles of Scotland.

  15. State Waste Discharge Permit application: 200-W Powerhouse Ash Pit

    SciTech Connect

    Atencio, B.P.

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations; the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173-216 (or 173-218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. This document constitutes the State Waste Discharge Permit application for the 200-W Powerhouse Ash Pit. The 200-W Powerhouse Ash Waste Water discharges to the 200-W Powerhouse Ash Pit via dedicated pipelines. The 200-W Powerhouse Ash Waste Water is the only discharge to the 200-W Powerhouse Ash Pit. The 200-W Powerhouse is a steam generation facility consisting of a coal-handling and preparation section and boilers.

  16. Probabilistic detection of volcanic ash using a Bayesian approach

    PubMed Central

    Mackie, Shona; Watson, Matthew

    2014-01-01

    Airborne volcanic ash can pose a hazard to aviation, agriculture, and both human and animal health. It is therefore important that ash clouds are monitored both day and night, even when they travel far from their source. Infrared satellite data provide perhaps the only means of doing this, and since the hugely expensive ash crisis that followed the 2010 Eyjafjalljökull eruption, much research has been carried out into techniques for discriminating ash in such data and for deriving key properties. Such techniques are generally specific to data from particular sensors, and most approaches result in a binary classification of pixels into “ash” and “ash free” classes with no indication of the classification certainty for individual pixels. Furthermore, almost all operational methods rely on expert-set thresholds to determine what constitutes “ash” and can therefore be criticized for being subjective and dependent on expertise that may not remain with an institution. Very few existing methods exploit available contemporaneous atmospheric data to inform the detection, despite the sensitivity of most techniques to atmospheric parameters. The Bayesian method proposed here does exploit such data and gives a probabilistic, physically based classification. We provide an example of the method's implementation for a scene containing both land and sea observations, and a large area of desert dust (often misidentified as ash by other methods). The technique has already been successfully applied to other detection problems in remote sensing, and this work shows that it will be a useful and effective tool for ash detection. Key Points Presentation of a probabilistic volcanic ash detection scheme Method for calculation of probability density function for ash observations Demonstration of a remote sensing technique for monitoring volcanic ash hazards PMID:25844278

  17. COAL-FIRED UTILITY BOILERS: SOLVING ASH DEPOSITION PROBLEMS

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Steven A. Benson; Jay R. Gunderson

    2001-04-01

    The accumulation of slagging and fouling ash deposits in utility boilers has been a source of aggravation for coal-fired boiler operators for over a century. Many new developments in analytical, modeling, and combustion testing methods in the past 20 years have made it possible to identify root causes of ash deposition. A concise and comprehensive guidelines document has been assembled for solving ash deposition as related to coal-fired utility boilers. While this report accurately captures the current state of knowledge in ash deposition, note that substantial research and development is under way to more completely understand and mitigate slagging and fouling. Thus, while comprehensive, this document carries the title ''interim,'' with the idea that future work will provide additional insight. Primary target audiences include utility operators and engineers who face plant inefficiencies and significant operational and maintenance costs that are associated with ash deposition problems. Pulverized and cyclone-fired coal boilers are addressed specifically, although many of the diagnostics and solutions apply to other boiler types. Logic diagrams, ash deposit types, and boiler symptoms of ash deposition are used to aid the user in identifying an ash deposition problem, diagnosing and verifying root causes, determining remedial measures to alleviate or eliminate the problem, and then monitoring the situation to verify that the problem has been solved. In addition to a step-by-step method for identifying and remediating ash deposition problems, this guideline document (Appendix A) provides descriptions of analytical techniques for diagnostic testing and gives extensive fundamental and practical literature references and addresses of organizations that can provide help in alleviating ash deposition problems.

  18. Gas/aerosol-ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Lambert, Mathieu; Dufrêne, Yves; Gerin, Patrick; Óskarsson, Niels

    2007-07-01

    The reactions occurring between gases/aerosols and silicate ash particles in volcanic eruption plumes remain poorly understood, despite the fact that they are at the origin of a range of volcanic, environmental, atmospheric and health effects. In this study, we apply X-ray photoelectron spectroscopy (XPS), a surface-sensitive technique, to determine the chemical composition of the near-surface region (2-10 nm) of nine ash samples collected from eight volcanoes. In addition, atomic force microscopy (AFM) is used to image the nanometer-scale surface structure of individual ash particles isolated from three samples. We demonstrate that rapid acid dissolution of ash occurs within eruption plumes. This process is favoured by the presence of fluoride and is believed to supply the cations involved in the deposition of sulphate and halide salts onto ash. AFM imaging also has permitted the detection of extremely thin (< 10 nm) coatings on the surface of ash. This material is probably composed of soluble sulphate and halide salts mixed with sparingly soluble fluoride compounds. The surface approach developed here offers promising aspects for better appraising the role of gas/aerosol-ash interaction in dictating the ability of ash to act as sinks for various volcanic and atmospheric chemical species as well as sources for others.

  19. Fluidization characteristics of power-plant fly ashes and fly ash-charcoal mixtures. [MS Thesis; 40 references

    SciTech Connect

    Nguyen, C.T.

    1980-03-01

    As a part of the continuing research on aluminum recovery from fly ash by HiChlor process, a plexiglass fluidization column system was constructed for measurement of fluidization parameters for power-plant fly ashes and fly ash-charcoal mixtures. Several bituminous and subbituminous coal fly ashes were tested and large differences in fluidization characteristics were observed. Fly ashes which were mechanically collected fluidized uniformly at low gas flow rates. Most fly ashes which were electrostatically precipitated exhibited channeling tendency and did not fluidize uniformly. Fluidization characteristics of electrostatically collected ashes improve when the finely divided charcoal powder is added to the mixture. The fluidization of the mixture was aided initially by a mechanical stirrer. Once the fluidization had succeeded, the beds were ready to fluidize without the assistance of a mechanical action. Smooth fluidization and large bed expansion were usually observed. The effects of charcoal size and aspect ratio on fluidization characteristics of the mixtures were also investigated. Fluidization characteristics of a fly ash-coal mixture were tested. The mixture fluidized only after being oven-dried for a few days.

  20. Effects of the emerald ash borer invasion on the community composition of arthropods associated with ash tree boles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerald ash borer (EAB), Agrilus planipennis Fairmaire is an invasive non-native wood-boring beetle that has killed hundreds of millions of ash trees (Fraxinus spp.) in North America, and threatens to extirpate the ecological services provided by the genus. Identifying the arthropod community assoc...

  1. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect

    Ivan Diaz-Loya, E.; Allouche, Erez N.; Eklund, Sven; Joshi, Anupam R.; Kupwade-Patil, Kunal

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases

  2. Raccoons (Procyon lotor) as Sentinels of Trace Element Contamination and Physiological Effects of Exposure to Coal Fly Ash.

    PubMed

    Hernández, Felipe; Oldenkamp, Ricki E; Webster, Sarah; Beasley, James C; Farina, Lisa L; Wisely, Samantha M

    2017-02-01

    Anthropogenic pollutants disrupt global biodiversity, and terrestrial sentinels of pollution can provide a warning system for ecosystem-wide contamination. This study sought to assess whether raccoons (Procyon lotor) are sentinels of local exposure to trace element contaminants at a coal fly ash site and whether exposure resulted in health impairment or changes in the intestinal helminth communities. We compared trace element accumulation and the impact on health responses and intestinal helminth communities of raccoons inhabiting contaminated and reference sites of the U.S. Department of Energy's Savannah River Site (South Carolina, USA). Data on morphometry, hematology, histopathology, helminth community and abundance, and liver trace element burdens were collected from 15 raccoons captured adjacent to a coal fly ash basin and 11 raccoons from a comparable uncontaminated site nearby. Of eight trace elements analyzed, Cu, As, Se, and Pb were elevated in raccoons from the contaminated site. Raccoons from the contaminated site harbored higher helminth abundance than animals from the reference site and that abundance was positively associated with increased Cu concentrations. While we found changes in hematology associated with increased Se exposure, we did not find physiological or histological changes associated with higher levels of contaminants. Our results suggest that raccoons and their intestinal helminths act as sentinels of trace elements in the environment associated with coal fly ash contamination.

  3. Wildfire Ash: Chemical Composition, Ash-Soil Interactions and Environmental Impacts

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Hamzi, Seham; Wittenberg, Lea

    2015-04-01

    Of the five classical factors of soil formation, climate, parent material, topography, time, organisms, and recently recognized human activity, it is the latter factor which discretely includes fire and post-burn impact. However, it is considered that soil undergoing fire just experience a temporary removal of the top organic horizon, thus slightly modified and often labeled as 'temporarily disturbed' soil or soil 'under restoration/rehabilitation'. In fact the suggested seventh factor, post-burned produced ash, can act both dependently and independently of the other soil forming factors (Levin et al., 2013; Certini 2013). They are interdependent in cases where ash influences occur on time scales similar to 'natural' soil formation (Keesstra et ai., 2014) such as changes in vegetation. On the other hand, in post-fire areas a strong dependency is expected between soil-water retention mechanism, climate and topography. Wild-land fires exert many changes on the physical, chemical, mineralogical, biological, and morphological properties of soil that, in turn, affect the soil's hydrology and nutrient flux, modifying its ability to support vegetation and resist erosion. The ash produced by forest fires is a complex mixture composed of organic and inorganic particles characterized by vary physical-chemical and morphological properties. The importance of this study is straightforwardly related to the frequency and large-scales wildfires in Mediterranean region. In fact, wildfires are major environmental and land management concern in the world, where the number and severity of wildfires has increased during the past decades (Bodi, 2013). Certini (2013) assumed that cumulatively all of the vegetated land is burned in about 31 years annually affecting 330-430 Mha (over 3% of the Earth's surface) and wide range of land cover types worldwide including forests, peatlands, shrublands and grasslands. Whereas, the fire is identified as an important factor in soil formation, the

  4. Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor

    SciTech Connect

    Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W.

    2007-06-15

    The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

  5. The Ash that Closed Europe's Airspace in 2010

    NASA Astrophysics Data System (ADS)

    Gislason, S. R.; Alfredsson, H.; Olsson, J.; Eiriksdottir, E.; Oskarsson, N.; Hassenkam, T.; Nedel, S.; Bovet, N.; Hem, C.; Balogh, Z.; Dideriksen, K.; Stipp, S. L.

    2011-12-01

    On 14 April 2010, when meltwater from the Eyjafjallajökull glacier mixed with hot magma, an explosive phreato-magmatic eruption sent unusually fine-grained ash into the jet stream. It quickly dispersed over Europe. Previous airplane encounters with ash had caused sand blasted windows and particles melted inside jet engines, causing them to fail. Therefore, air traffic was grounded for several days. Concerns also arose about health risks from fallout, because ash can transport acids as well as toxic compounds. Studies on ash are usually made on material collected far from the source, where it could have mixed with other atmospheric particles, or after exposure to water as rain or fog, which would alter surface composition. In this study, a unique set of dry ash samples was collected during the explosive eruption and compared with fresh ash with the same bulk composition from a later more typical magmatic event, when meltwater did not have access to the magma.[1] Up to 70 mass % of the phreato-magmatic ash particles, collected 60 km from the source, was <60 μm in diameter, 22% was <10 μm and 11% was ≤ 4.4 μm. The finest grain size was found in the centre of the "collapsed" plume. The magmatic ash was coarser and its surface area was an order of magnitude smaller than for the explosive ash. The relative concentration of surface salts down to 10 nm depth was significantly lower on the explosive ash than the magmatic ash, because less volatile compounds were available to condense on the surfaces when water and steam were present. Instead, they dissolved in the meltwater and were transported as solutes in the ensuing floodwaters. The surface salts dissolved rapidly when exposed to experimental and natural waters, releasing pollutants and nutrients. Some of the salts further enhanced bulk dissolution of the ash. The particles of phreato-magmatic ash that reached Europe in the jet stream were especially sharp and hard, therefore abrasive, over their entire size range

  6. Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash

    SciTech Connect

    Wigent, W.L.; Luey, J.K.; Scheele, R.D.; Li, H.

    1999-04-08

    In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash. Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because part of

  7. Effect of particle volume fraction on the settling velocity of volcanic ash particles: implications for ash dispersion models

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.

    2015-12-01

    We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.

  8. Phanerozoic stratigraphy of Northwind Ridge, magnetic anomalies in the Canada Basin, and the geometry and timing of rifting in the Amerasia Basin, Arctic Ocean

    USGS Publications Warehouse

    Grantz, A.; Clark, D.L.; Phillips, R.L.; Srivastava, S.P.; Blome, C.D.; Gray, L.-B.; Haga, H.; Mamet, B.L.; McIntyre, D.J.; McNeil, D.H.; Mickey, M.B.; Mullen, M.W.; Murchey, B.I.; Ross, C.A.; Stevens, C.H.; Silberling, Norman J.; Wall, J.H.; Willard, D.A.

    1998-01-01

    Cores from Northwind Ridge, a high-standing continental fragment in the Chukchi borderland of the oceanic Amerasia basin, Arctic Ocean, contain representatives of every Phanerozoic system except the Silurian and Devonian systems. Cambrian and Ordovician shallow-water marine carbonates in Northwind Ridge are similar to basement rocks beneath the Sverdrup basin of the Canadian Arctic Archipelago. Upper Mississippian(?) to Permian shelf carbonate and spicularite and Triassic turbidite and shelf lutite resemble coeval strata in the Sverdrup basin and the western Arctic Alaska basin (Hanna trough). These resemblances indicate that Triassic and older strata in southern Northwind Ridge were attached to both Arctic Canada and Arctic Alaska prior to the rifting that created the Amerasia basin. Late Jurassic marine lutite in Northwind Ridge was structurally isolated from coeval strata in the Sverdrup and Arctic Alaska basins by rift shoulder and grabens, and is interpreted to be a riftogenic deposit. This lutite may be the oldest deposit in the Canada basin. A cape of late Cenomanian or Turonian rhyodacite air-fall ash that lacks terrigenous material shows that Northwind Ridge was structurally isolated from the adjacent continental margins by earliest Late Cretaceous time. Closing Amerasia basin by conjoining seafloor magnetic anomalies beneath the Canada basin or by uniting the pre-Jurassic strata of Northwind Ridge with kindred sections in the Sverdrup basin and Hanna trough yield simular tectonic reconstructions. Together with the orientation and age of rift-marine structures, these data suggest that: 1) prior to opening of the Amerasia basin, both northern Alaska and continental ridges of the Chukchi borderland were part of North America, 2) the extension that created the Amerasia basin formed rift-margin graben beginning in Early Jurassic time and new oceanic crust probably beginning in Late Jurassic or early Neocomian time. Reconstruction of the Amerasia basin on the

  9. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  10. Synthesis and characterization of geopolymer from bottom ash and rice husk ash

    NASA Astrophysics Data System (ADS)

    Anggarini, Ufafa; Sukmana, Ndaru C.

    2016-02-01

    All Geopolymer (GP) has been synthesized from bottom ash and rice husk ash. This research aims to determine the effect of Si/Al ratio on geopolymer synthesis. Geopolymer was synthesized with various Si/Al ratio of 2, 3 and 4. The characterization result using XRD and SEM indicated that by using a different ratio of Si/A, it will produce geopolymer with varied structure and morphology. Diffractogram result shows that polymerization has been done for all samples (GP2, GP3, Gp4) with the presence of hump peak at 2θ = 27-35°. In GP4, no peak at 2θ = 18° indicating sodalite phase forming. Besides that, the morphology of geopolymer with a varied ratio of Si/Al shows that higher ratio will produce geopolymer with higher particle size. The highest compressive strength of geopolymer was obtained at a ratio of Si/Al = 4, with a maximum load of 12866 kgf.

  11. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.

  12. Origin of cratonic basins

    NASA Astrophysics Data System (ADS)

    Dev. Klein, George; Hsui, Albert T.

    1987-12-01

    Tectonic subsidence curves show that the Illinois, Michigan, and Williston basins formed by initial fault-controlled mechanical subsidence during rifting and by subsequent thermal subsidence. Thermal subsidence began around 525 Ma in the Illinois Basin, 520 460 Ma in the Michigan Basin, and 530 500 Ma in the Williston Basin. In the Illinois Basin, a second subsidence episode (middle Mississippian through Early Permian) was caused by flexural foreland subsidence in response to the Alleghanian-Hercynian orogeny. Resurgent Permian rifting in the Illinois Basin is inferred because of intrusion of well-dated Permian alnoites; such intrusive rocks are normally associated with rifting processes. The process of formation of these cratonic basins remains controversial. Past workers have suggested mantle phase changes at the base of the crust, mechanical subsidence in response to isostatically uncompensated excess mass following igneous intrusions, intrusion of mantle plumes into the crust, or regional thermal metamorphic events as causes of basin initiation. Cratonic basins of North America, Europe, Africa, and South America share common ages of formation (around 550 to 500 Ma), histories of sediment accumulation, temporal volume changes of sediment fills, and common dates of interregional unconformities. Their common date of formation suggests initiation of cratonic basins in response to breakup of a late Precambrian super-continent. This supercontinent acted as a heat lens that caused partial melting of the lower crust and upper mantle followed by emplacement of anorogenic granites during extensional tectonics in response to supercontinent breakup. Intrusion of anorogenic granites and other partially melted intrusive rocks weakened continental lithosphere, thus providing a zone of localized regional stretching and permitting formation of cratonic basins almost simultaneously over sites of intrusion of these anorogenic granites and other partially melted intrusive rocks.

  13. Development of the technology of scandium extraction from the ash-slag waste of Kansk-Achinsk brown coal burning

    SciTech Connect

    Pashkov, G.L.; Mikhnev, A.D.; Kontzevoi, A.A.

    1996-12-31

    Kansk-Achinsk Brown Coal Basin is one of the largest of the world. The coals of separate fields of this Basin consists of an enhanced amount of rare-earth metals, scandium in particular. The results of the developments of efficient technologies for the extraction of this metal from the ash-slag waste of Kansk-Achinsk brown coal burning were discussed in the paper. A variety of the procedures was tested such as the sintering with the alkali followed by the treatment with water, the sintering with the sodium carbonate followed by the treatment with the HCl water solution, the extraction with HCl or sulphuric acids, etc. The extraction of other than scandium metals, such as Y, La, Nd, Yb, Gd, etc., were monitored as well. The scandium extraction with HCl solution was found to be the most appropriate procedure for the ash-slag studied. The kinetic parameters of the extraction with HCl were measured and the mechanism of the extraction process is discussed.

  14. Recovery curve analyses defining carbon-ash beneficiation for coal combustion ash

    SciTech Connect

    Jiang, X.K.; Ban, H.; Stencel, J.M.

    1998-12-31

    The authors describe and quantify recovery curve analysis methods that are applied to the dry beneficiation of coal combustion fly ash. Data from a batch-feed, analytical triboelectrostatic beneficiation system are coupled with data from a continuous-feed, laboratory-scale triboelectrostatic beneficiation system. In the analytical system, a recovery analysis of the beneficiated products is facilitated by obtaining samples from continuous product distributions. In the laboratory system, only three products can be obtained, including a low ({approximately}2%) LOI product, a high ({approximately}45%) LOI product, and an intermediate LOI product that is similar to the feed ash. By using these three products, only a three data point recovery curve would be generated. In contrast, the continuous distribution of products from the analytical system has enabled a recovery curve analysis containing a minimum of ten data points. To enhance the precision and applicability of the laboratory-scale data, two-stage processing was initiated from which a nine data point recovery curve has been generated. This two stage processing has also provided beneficiation information about the intermediate LOI products and, ultimately, has been meaningful for process scale-up. As in float-sink testing for washability, the potential of dry beneficiation processing can be quantitatively defined for the processing of combustion fly ash.

  15. Pulmonary toxicity of Mount St. Helens volcanic ash

    SciTech Connect

    Sanders, C.L.; Conklin, A.W.; Gelman, R.A.; Adee, R.R.; Rhoads, K.

    1982-02-01

    The effects of Mount St. Helens volcanic ash, a sandy loam soil, and quartz particles on the lung and mediastinal lymph nodes of Fischer rats were studied at time intervals of up to 109 days after in tratracheal instillation of 40 mg ash, soil, or quartz in a single dose or after multiple doses of ash instilled in seven consecutive weekly doses for a total deposition of 77 mg. Quartz caused early granuloma formation, later fibrosis was also seen in lymph nodes. Volcanic ash caused an ill-defined inflammatory reaction with a few rats showing granuloma formulation, a very limited linear fibrosis, and a moderate lipoproteinosis, and lymph nodes were enlarged with numerous microgranulomas but without reticulin and collagen formation. Pulmonary reactions to soil particles were less intense but similar to those in ash- exposed animals; lymph nodes were not enlarged. No significant clearance of ash was found at 3 months after instillation. Volcanic ash produced a simple pneumoconiosis similar to what has been described for animals and humans living for prolonged periods of time in dusty desert areas of the United States.

  16. Compost odor control using high carbon wood ash.

    PubMed

    Rosenfeld, P E; Grey, M A; Suffet, I H

    2004-01-01

    A pilot study on the feasibility of using high carbon wood ash to control composting odor emissions was conducted at a green material composting facility. The study's treatments consisted of adding 0%, 12.5%, and 25% high carbon wood ash by volume to green-material compost feedstock in three separate windrows. The wood ash has properties similar to activated carbon with an active surface area of 105 square metres per gram on a dry weight basis. The odorant emission data suggest that the higher percentage wood ash treatment results in the most effective control of most compost odors and that wood ash provides effective treatment of volatile fatty acids and some aldehydes and ketones. The 25% wood ash treatment resulted in more effective treatment of odors for a longer time period than the 12.5% treatment. Acetaldehyde had the highest concentration in the control (14,000 times its odor threshold concentration), was reduced by high carbon ash by over 97% but remained 386 times its reported odor threshold concentration after 14 days. Ethyl mecaptan and ammonia were produced in the process and were also over their reported human detection limits.

  17. Modeling transport and aggregation of volcanic ash particles

    NASA Astrophysics Data System (ADS)

    Costa, Antonio; Folch, Arnau; Macedonio, Giovanni; Durant, Adam

    2010-05-01

    A complete description of ash aggregation processes in volcanic clouds is an very arduous task and the full coupling of ash transport and ash aggregation models is still computationally prohibitive. A large fraction of fine ash injected in the atmosphere during explosive eruptions aggregate because of complex interactions of surface liquid layers, electrostatic forces, and differences in settling velocities. The formation of aggregates of size and density different from those of the primary particles dramatically changes the sedimentation dynamics and results in lower atmospheric residence times of ash particles and in the formation of secondary maxima of tephra deposit. Volcanic ash transport models should include a full aggregation model accounting for all particle class interaction. However this approach would require prohibitive computational times. Here we present a simplified model for wet aggregation that accounts for both atmospheric and volcanic water transport. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average efficiencies factors, and collision frequency functions accounting for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, such as the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. Moreover, understanding aggregation processes in volcanic clouds will contribute to mitigate the risks related with volcanic ash transport and sedimentation.

  18. Thermal behaviour of ESP ash from municipal solid waste incinerators.

    PubMed

    Yang, Y; Xiao, Y; Wilson, N; Voncken, J H L

    2009-07-15

    Stricter environmental regulations demand safer treatment and disposal of incinerator fly ashes. So far no sound technology or a process is available for a sustainable and ecological treatment of the waste incineration ashes, and only partial treatment is practised for temporary and short-term solutions. New processes and technology need to be developed for comprehensive utilization and detoxification of the municipal solid waste (MSW) incinerator residues. To explore the efficiency of thermal stabilisation and controlled vitrification, the thermal behaviour of electrostatic precipitator (ESP) ash was investigated under controlled conditions. The reaction stages are identified with the initial moisture removal, volatilization, melting and slag formation. At the temperature higher than 1100 degrees C, the ESP ashes have a quicker weight loss, and the total weight loss reaches up to 52%, higher than the boiler ash. At 1400 degrees C a salt layer and a homogeneous glassy slag were formed. The effect of thermal treatment on the leaching characteristics of various elements in the ESP ash was evaluated with the availability-leaching test. The leaching values of the vitrified slag are significantly lowered than that of the original ash.

  19. Metal roof corrosion related to volcanic ash deposition

    NASA Astrophysics Data System (ADS)

    Oze, C.; Cole, J. W.; Scott, A.; Wilson, T.; Wilson, G.; Gaw, S.; Hampton, S.; Doyle, C.; Li, Z.

    2013-12-01

    Volcanoes produce a wide range of hazards capable of leading to increased rates of corrosion to the built environment. Specifically, widely distributed volcanic ash derived from explosive volcanic eruptions creates both short- and long-term hazards to infrastructure including increased corrosion to exposed building materials such as metal roofing. Corrosion has been attributed to volcanic ash in several studies, but these studies are observational and are beset by limitations such as not accounting for pre-existing corrosion damage and/or other factors that may have also directly contributed to corrosion. Here, we evaluate the corrosive effects of volcanic ash, specifically focusing on the role of ash leachates, on a variety of metal roofing materials via weathering chamber experiments. Weathering chamber tests were carried out for up to 30 days using a synthetic ash dosed with an acidic solution to produce a leachate comparable to a real volcanic ash. Visual, chemical and surface analyses did not definitively identify significant corrosion in any of the test roofing metal samples. These experiments attempted to provide quantitative information with regards to the rates of corrosion of different types of metal roof materials. However, they demonstrate that no significant corrosion was macroscopically or microscopically present on any of the roofing surfaces despite the presence of corrosive salts after a duration of thirty days. These results suggest ash leachate-related corrosion is not a major or immediate concern in the short-term (< 1 month).

  20. Characterization and possible uses of ashes from wastewater treatment plants

    SciTech Connect

    Merino, Ignacio; Arevalo, Luis F. . E-mail: fromero@ehu.es

    2005-07-01

    This work, on the ashes from the wastewater treatment plant of Galindo (Vizcaya, Spain), has been outlined with the purpose of finding their physico-chemical properties and suggesting possible applications. Ashes contain important quantities of iron, calcium, silica, alumina and phosphates. X-Ray diffraction data make it possible to estimate the mineralogical compositions of the original ashes and also, after thermal treatment at 1200 and 1300 deg. C, the main reactions occurring in thermal treatment. Particle size analysis makes it possible to classify ashes as a very fine powdered material. The thermal treatment leads to a densification of the material and provokes losses of weight mainly due to the elimination of water, carbon dioxide and sulphur trioxide. Application tests show that ashes are not suitable for landfill and similar applications, because of their plastic properties. Testing for pozzolanic character, after the ashes had been heated at 1200 deg. C, did not lead to a strong material probably due to low contents in silica and alumina or to requiring a higher heating temperature. Thermal treatment leads to densification of the material with a considerable increase of compressive strength of the probes. The use of additives (clays and powdered glass) to improve ceramic properties of ashes will be the aim of a future work.

  1. Exploiting hyperspectral sounders for volcanic ash remote sensing

    NASA Astrophysics Data System (ADS)

    Western, Luke; Watson, Matthew; Francis, Peter

    2016-04-01

    Assumptions are made when retrieving properties of volcanic ash clouds using passive infrared satellite remote sensing. Assumptions in the retrieval method lead to larger uncertainties in the retrieved volcanic ash cloud properties. It is a general desire to reduce these uncertainties by removing some of the assumptions that must be made. Hyperspectral sounders provide the spectral capabilities to explore many of the physical parameters that describe volcanic ash clouds - the question is, which parameters is it possible to retrieve? We show that using the Infrared Atmospheric Sounding Interferometer (IASI) it is possible to retrieve the mass column loading and cloud top pressure of a volcanic ash cloud, together with the effective radius and spread of the ash particle size distribution, as well as the cloud top pressure of any underlying water cloud using an optimal estimation technique. We discuss the capabilities and shortcomings of the method. The consideration of an underlying water cloud is of importance for improving retrievals, and we place a particular focus on how well the particle size distribution can be described. More specifically, we investigate the viability of using either a lognormal or a gamma distribution to describe the distribution of ash particles, and we show that it is possible to retrieve information about the spread of a lognormal distribution of particles, whereas it is not for a gamma distribution. Some preliminary conclusions on the size distribution of volcanic ash are presented.

  2. Volcanic ash forecast transport and dispersion (VAFTAD) model

    SciTech Connect

    Heffter, J.L.; Stunder, B.J.B.

    1993-12-01

    The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has developed a Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model for emergency response use focusing on hazards to aircraft flight operations. The model is run on a workstation at ARL. Meteorological input for the model is automatically downloaded from the NOAA National Meteorological Center (NMC) twice-daily forecast model runs to ARL. Additional input for VAFTAD ragarding the volcanic eruption is supplied by the user guided by monitor prompts. The model calculates transport and dispersion of volcanic ash from an initial ash cloud that has reached its maximum height within 3 h of eruption time. The model assumes that spherical ash particles of diameters ranging from 0.3 to 30 micrometers are distributed throughout the initial cloud with a particle number distribution based on Mount St. Helens and Redoubt Volcano eruptions. Particles are advected horizontally and vertically by the winds and fall according to Stoke`s law with a slip correction. A bivariate-normal distribution is used for horizontally diffusing the cloud and determining ash concentrations. Model output gives maps with symbols representing relative concentrations in three flight layers, and throughout the entire ash cloud, for sequential 6- and 12-h time intervals. A verification program for VAFTAD has been started. Results subjectively comparing model ash cloud forecasts with satellite imagery for three separate 1992 eruptions of Mount Spurr in Alaska have been most encouraging.

  3. Estimation of Volcanic Ash Plume Top Height using AATSR

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo; Kolmonen, Pekka; Sogacheva, Larisa; Sundström, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit

    2015-04-01

    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's 55° forward and nadir views, and thus the corresponding height. Besides the stereo view, AATSR provides another advantage compared to other satellite based instruments. With AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 µm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. In addition, it is possible to study the effect of using different wavelengths in the height estimate, ranging from visible (555 nm) to thermal infrared (12 µm). The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015. Accurate information on the volcanic ash position is important for air traffic safety. The ACM algorithm can provide valuable data of both horizontal and vertical ash dispersion. These data may be useful for comparisons with existing volcanic ash dispersion models and retrieval methods. We present ACM plume top height estimate results for the Eyjafjallajökull eruption, and comparisons against available ground based and satellite observations.

  4. Characterization and possible uses of ashes from wastewater treatment plants.

    PubMed

    Merino, Ignacio; Arévalo, Luis F; Romero, Fernando

    2005-01-01

    This work, on the ashes from the wastewater treatment plant of Galindo (Vizcaya, Spain), has been outlined with the purpose of finding their physico-chemical properties and suggesting possible applications. Ashes contain important quantities of iron, calcium, silica, alumina and phosphates. X-Ray diffraction data make it possible to estimate the mineralogical compositions of the original ashes and also, after thermal treatment at 1200 and 1300 degrees C, the main reactions occurring in thermal treatment. Particle size analysis makes it possible to classify ashes as a very fine powdered material. The thermal treatment leads to a densification of the material and provokes losses of weight mainly due to the elimination of water, carbon dioxide and sulphur trioxide. Application tests show that ashes are not suitable for landfill and similar applications, because of their plastic properties. Testing for pozzolanic character, after the ashes had been heated at 1200 degrees C, did not lead to a strong material probably due to low contents in silica and alumina or to requiring a higher heating temperature. Thermal treatment leads to densification of the material with a considerable increase of compressive strength of the probes. The use of additives (clays and powdered glass) to improve ceramic properties of ashes will be the aim of a future work.

  5. Mutagenicity and genotoxicity of coal fly ash water leachate

    SciTech Connect

    Chakraborty, R.; Mukherjee, A.

    2009-03-15

    Fly ash is a by-product of coal-fired electricity generation plants. The prevalent practice of disposal is as slurry of ash and water to storage or ash ponds located near power stations. This has lain to waste thousands of hectares of land all over the world. Since leaching is often the cause of off-site contamination and pathway of introduction into the human environment, a study on the genotoxic effects of fly ash leachate is essential. Leachate prepared from the fly ash sample was analyzed for metal content, and tested for mutagenicity and genotoxicity. Analyses of metals show predominance of the metals - sodium, silicon, potassium, calcium, magnesium, iron, manganese, zinc, and sulphate. The Ames Salmonella mutagenicity assay, a short-term bacterial reverse mutation assay, was conducted on two-tester strains of Salmonella typhimurium strains TA97a and TA102. For genotoxicity, the alkaline version of comet assay on fly ash leachate was carried in vitro on human blood cells and in vivo on Nicotiana plants. The leachate was directly mutagenic and induced significantconcentration-dependent increases in DNA damage in whole blood cells, lymphocytes, and in Nicotiana plants. The comet parameters show increases in tail DNA percentage (%), tail length (mu m), and olive tail moment (arbitrary units). Our results indicate that leachate from fly ash dumpsites has the genotoxic potential and may lead to adverse effects on vegetation and on the health of exposed human populations.

  6. Phenolic acids as bioindicators of fly ash deposit revegetation

    SciTech Connect

    L. Djurdjevic; M. Mitrovic; P. Pavlovic; G. Gajic; O. Kostic

    2006-05-15

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the 'Nikola Tesla-A' thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges. Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  7. Detoxification of ashes from a fluidized bed waste incinerator.

    PubMed

    Yu, Jie; Qiao, Yu; Sun, Lushi; Jin, Limei; Wang, Wenxia; Ma, Chuan

    2015-09-01

    This paper was to test and control the toxicity of bottom and fly ashes from a circulated fluidized bed (CFB) incinerator. Bottom and fly ashes were firstly subject to TCLP test. Even though leachates of most particle size of bottom ash were below regulatory limit, the leachates of finer bottom ash may exceed the regulatory limit. Therefore, finer bottom ash should be separated and treated before landfilled directly or used as cement replacement. Due to high amounts of leached heavy metals, thermal treatment of fly ash was carried out to remove heavy metals. The influence of temperature, residence time, metal chloride and gas velocity were studied. In all conditions, Cd can be well removed. Pb can be almost completely removed with MgCl2 addition at 1000°C in 1h. The removal of Zn and Cu was accelerated significantly by MgCl2 and higher temperature separately. At optimum conditions, more than 90% of Cu and 95% of Zn could be removed, while a maximum 20% of Cr was removed due to the existence or formation of CaCr2O4, MgCr2O4 and K2Cr2O4 in raw or treated fly ashes.

  8. Ash and Steam, Soufriere Hills Volcano, Monserrat

    NASA Technical Reports Server (NTRS)

    2002-01-01

    International Space Station crew members are regularly alerted to dynamic events on the Earth's surface. On request from scientists on the ground, the ISS crew observed and recorded activity from the summit of Soufriere Hills on March 20, 2002. These two images provide a context view of the island (bottom) and a detailed view of the summit plume (top). When the images were taken, the eastern side of the summit region experienced continued lava growth, and reports posted on the Smithsonian Institution's Weekly Volcanic Activity Report indicate that 'large (50-70 m high), fast-growing, spines developed on the dome's summit. These spines periodically collapsed, producing pyroclastic flows down the volcano's east flank that sometimes reached the Tar River fan. Small ash clouds produced from these events reached roughly 1 km above the volcano and drifted westward over Plymouth and Richmond Hill. Ash predominately fell into the sea. Sulfur dioxide emission rates remained high. Theodolite measurements of the dome taken on March 20 yielded a dome height of 1,039 m.' Other photographs by astronauts of Montserrat have been posted on the Earth Observatory: digital photograph number ISS002-E-9309, taken on July 9, 2001; and a recolored and reprojected version of the same image. Digital photograph numbers ISS004-E-8972 and 8973 were taken 20 March, 2002 from Space Station Alpha and were provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  9. Ash formation, deposition, corrosion, and erosion in conventional boilers

    SciTech Connect

    Benson, S.A.; Jones, M.L.

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustion and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.

  10. Distribution of arsenic and mercury in lime spray dryer ash

    SciTech Connect

    Panuwat Taerakul; Ping Sun; Danold W. Golightly; Harold W. Walker; Linda K. Weavers

    2006-08-15

    The partitioning of As and Hg in various components of lime spray dryer (LSD) ash samples from a coal-fired boiler was characterized to better understand the form and fate of these elements in flue gas desulfurization byproducts. LSD ash samples, collected from the McCracken Power Plant on the Ohio State University campus, were separated by a 140-mesh (106 {mu}m) sieve into two fractions: a fly-ash-/unburned-carbon-enriched fraction (> 106 {mu}m) and a calcium-enriched fraction (< 106 {mu}m). Unburned carbon and fly ash in the material > 106 {mu}m were subsequently separated by density using a lithium heteropolytungstate solution. The concentrations of As and Hg were significant in all fractions. The level of As was consistently greater in the calcium-enriched fraction, while Hg was evenly distributed in all components of LSD ash. Specific surface area was an important factor controlling the distribution of Hg in the different components of LSD ash, but not for As. Comparing the LSD ash data to samples collected from the economizer suggests that As was effectively captured by fly ash at 600{sup o}C, while Hg was not. Leaching tests demonstrated that As and Hg were more stable in the calcium-enriched fraction than in the fly-ash- or carbon-enriched fractions, potentially because of the greater pH of the leachate and subsequently greater stability of small amounts of calcium solids containing trace elements in these fractions. 37 refs., 8 figs., 2 tabs.

  11. Particle analysis of volcanic ash with Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Lieke, K. I.; Kristensen, T. B.; Koch, C. B.; Korsholm, U. S.; Sørensen, J. H.; Bilde, M.

    2012-04-01

    Since the airspace closure over Europe due to the Eyjafjalla eruption in 2010, volcanic ash has come more in the focus of atmospheric science. The airspace closure accompanying the Grímsvötn eruption in 2011 clearly indicates that there is still a great need to increase the scientific understanding of the properties and impacts of volcanic ash particles. Determination of particle characteristics, preferably in near real time, serves as an important input to transport models in operational use for decision support and guidance of authorities. We collected particles before and after the Grímsvötn volcanic ash arrived at Copenhagen, Denmark, between 23 May and 31 May 2011, as well as at a number of other locations. The analysis of meteorological conditions shows that the particle collection performed before arrival of the volcanic ash may serve as a good reference sample. We have thus been able to identify significant differences in aerosol chemical composition during a volcanic ash event over Copenhagen. These results are compared to volcanic ash particles collected on Iceland. We provide unique data about single-particle structure, chemical composition, size and morphology of volcanic ash particles. Single-particle analysis by SEM, and mineralogical studies by XRD and TEM prove that the particles are composed of glass of a characteristic composition and small, nm sized minerals attached to the large (up to tens of µm) glass fragments. The derived information about volcanic ash particles can be used by transport models, resulting in improved information to the authorities in case of new volcanic ash events over Scandinavia or Europe.

  12. Effective use of fly ash slurry as fill material.

    PubMed

    Horiuchi, S; Kawaguchi, M; Yasuhara, K

    2000-09-15

    A lot of effort has been put into increasing coal ash utilization; however, 50% of total amount is disposed of on land and in the sea. Several attempts have been reported recently concerning slurried coal fly ash use for civil engineering materials, such as for structural fill and backfill. The authors have studied this issue for more than 15 years and reported its potential for (1) underwater fills, (2) light weight backfills, and (3) light weight structural fills, through both laboratory tests and construction works. This paper is an overview of the results obtained for slurry, focusing on the following. (1) Coal fly ash reclaimed by slurry placement shows lower compressibility, higher ground density, and higher strength than by the other methods. This higher strength increases stability against liquefaction during earthquake. (2) Higher stability of the fly ash ground formed by slurry placement is caused by higher density and its self-hardening property. (3) Stability of fly ash reclaimed ground can be increased by increasing density and also by strength enhancement by cement addition. (4) Technical data obtained through a man-made island construction project shows the advantages of fly ash slurry in terms of mechanical properties such as higher stability against sliding failure, sufficient ground strength, and also in terms of cost saving. (5) Concentration in leachates from the placed slurry is lower than the Japanese environmental law. (6) In order to enlarge the fly ash slurry application toward a lightweight fill, mixtures of air foam, cement and fly ash were examined. Test results shows sufficient durability of this material against creep failure. This material was then used as lightweight structural fill around a high-rise building, and showed sufficient quality. From the above data, it can be concluded that coal fly ash slurry can be effectively utilized in civil engineering projects.

  13. Ash dispersal dynamics: state of the art and perspectives

    NASA Astrophysics Data System (ADS)

    Sulpizio, R.

    2013-05-01

    Volcanic ash, during dispersal and deposition, is among the major hazards from explosive eruptions. Volcanic ash fallout can disrupt communities downwind, interrupt surface transportation networks and lead to closure of airports. Airborne ash seriously threatens modern jet aircraft in flight. In several documented cases, encounters between aircraft and volcanic clouds have resulted in engine flameout and near crashes, so there is a need to accurately predict the trajectory of volcanic ash clouds in order to improve aviation safety and reduce economic losses. The ash clouds affect aviation even in distal regions, as demonstrated by several eruptions with far-range dispersal. Recent examples include Crater Peak 1992, Tungurahua 1999-2001, Mount Cleveland 2001, Chaitén 2008, Eyjafjallajökull 2010, Grimsvötn 2011, and Cordón-Caulle 2011. Amongst these, the April-May 2010 eruption of Eyjafjallajökull in Iceland provoked the largest civil aviation breakdown. Accumulation of tephra can produce roof collapse, interruption of lifelines (roads, railways, etc.), disruption to airport operations, and damage to communications and electrical power lines. Deposition of ash decreases soil permeability, increases surface runoff, and promotes floods. Ash leaching can result in the pollution of water resources, damage to agriculture, pastures, and livestock, impinge on aquatic ecosystems, and alteration of the geochemical environment on the seafloor. Despite the potential big impact, the dispersal dynamics of volcanic ash is still an unsolved problem for volcanologists, which claims for fiture high level research. Here, a critical overview about models (field, experimental and numerical) for inversion of field data to gain insights on physics of dispersal of volcanic ash is proposed. A special focus is devoted to some physical parameters that are far from a satisfactory inversion (e.g. reconstruction of total grain size distribution), and clues for future research are suggested.

  14. Synthetic studies toward 7-epi-sesquithujene, bicyclic sesquiterpene antennally active to emerald ash borer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerald ash borer, Agrilus planipennis, is an invasive beetle that has been causing extensive mortality of ash trees since arriving in North America in 2002. 7-epi-Sesquithujene (1) is produced by stressed ash and elicits a strong EAD response on the emerald ash borer antennae. In the course of ma...

  15. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  16. Interagency Operating Plan for Pacific Northwest Volcanic Ash Events

    NASA Astrophysics Data System (ADS)

    Osiensky, J. M.; Birch, S.

    2010-12-01

    The National Weather Service (NWS), United States Geological Survey (USGS)and Federal Aviation Administration (FAA) have partnered on the development of an operating plan for volcanic ash events in the Pacific Northwest. This plan provides an overview of integrated, multi-agency operations in response to the threat of volcanic ash in the Pacific Northwest, and describes communication links and operational actions necessary to support the NWS/USGS/FAA Volcano Hazards Program. This regional plan follows guidelines in support of the Office of the Federal Coordinator for Meteorology (OFCM) National Volcanic Ash Operations Plan for Aviation and the International Civil Aviation Organization (ICAO) International Airways Volcano Watch (IAVW).

  17. Olivine + halides: a recipe for iron mobilization in volcanic ash?

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M. K.; Langmann, B.

    2013-12-01

    During the last decade, scientific evidences strongly suggest that volcanic ash iron has fertilization impact upon the surface ocean. Still, it is not well constrained how the insoluble iron in ash (i.e., as a component in minerals and also glass) could be mobilized during volcanic eruptions and atmospheric transport. Here we investigate the volcanic plume controls on ash iron solubility. We develope a conceptual box model to simulate the high, mid and low temperature chemical, physical and thermodynamic processes in eruption plumes to better constrain the iron mobilization in volcanic ash. We take into account the interaction of different species in a solid-liquid-gas system representing various volcanic settings (convergent plate, divergent plate and hot spot). Results show that the hot core of a volcanic plume (T>600°C) does not produce soluble iron directly but significantly controls the Fe mineralogy and oxidation state at the ash surface. The final iron mineralogy at the ash surface (i.e. the ash's oxidation front with 1-100 nm thickness) is likely to be independent of temperature and oxygen fugacity and is closely correlated to the ratio of H2 and H2S content of the magmatic gas to the amount of entrained oxygen. As the plume continues rising and cooling, sulfuric acid condenses at about 150°C followed by water condensation at about 50°C which also dissociates sulfuric acid and produces H+ ions in the liquid phase. The aqueous phase scavenges the surrounding gas species (e.g. SO2, HCl, HF) and concurrently dissolves the ash surface constituents. Since HCl is about 4 orders of magnitudes more soluble than SO2, its dissolution mainly controls the pH of the liquid. Hence, high HCl concentrations in the gas phase results in lower pH in the aqueous phase (pH<0.5) and consequently an increase in the ash dissolution rate. Moreover reduced iron carrying minerals (e.g. fayalite) show a much higher dissolution rate in comparison with oxidized species (e.g. hematite

  18. Characterization of Offgas Generated During Calcination of Incinerator Ash Surrogates

    SciTech Connect

    Wigent, H.L.; Vienna, J.D.; Darab, J.G.; Luey, J.K.; Autrey, T.S.

    1999-01-28

    The Pacific Northwest National Laboratory (PNNL), in cooperation with the Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC), developed a recommended flowsheet for the processing of plutonium-bearing incinerator ash stored at the Rocky Flats Environmental Technology Site (RFETS) (Lucy et al. 1998). This flowsheet involves a calcination pretreatment step, the purpose of which is to remove carbonaceous material from the incinerator ash. Removal of this material reduced the probability of process upsets, improved product quality, and increases ash waste loading. As part of the continued development of the recommended flowsheet, PNNL performed a series of tests to characterize the offgas generated during the calcination process.

  19. Use of coal ash in highway construction: Georgia demonstration project

    SciTech Connect

    Larrimore, C.L.; Pike, C.W.

    1987-06-01

    EPRI has initiated a program designed to promote ash utilization in roadways, embankments, and backfills - potentially large volume application areas. Included within the EPRI program is a Georgia study involving the development and construction of a demonstration project in which several types of ash were used as major components in highway pavement construction. The primary objective is to plan, design, build and monitor the structural and environmental aspects of a full-scale application of ash in a highway pavement. All planning, design, and construction activities are completed and have been fully described in this report. Both structural and environmental monitorings are in progress and will be reported at the conclusion of study.

  20. Recovery of iron oxide from coal fly ash

    DOEpatents

    Dobbins, Michael S.; Murtha, Marlyn J.

    1983-05-31

    A high quality iron oxide concentrate, suitable as a feed for blast and electric reduction furnaces is recovered from pulverized coal fly ash. The magnetic portion of the fly ash is separated and treated with a hot strong alkali solution which dissolves most of the silica and alumina in the fly ash, leaving a solid residue and forming a precipitate which is an acid soluble salt of aluminosilicate hydrate. The residue and precipitate are then treated with a strong mineral acid to dissolve the precipitate leaving a solid residue containing at least 90 weight percent iron oxide.

  1. K Basin safety analysis

    SciTech Connect

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  2. Best management practices plan for the Chestnut Ridge-Filled Coal Ash Pond at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect

    1996-05-01

    The Chestnut Ridge Filled Coal Ash Pond (FCAP) Project has been established to satisfy Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the Chestnut Ridge Operable Unit 2. FCAP is on Chestnut Ridge, approximately 0.5 miles south of the Y-12 Plant. A 62-foot high earthen dam across Upper McCoy Branch was constructed in 1955 to create a pond to serve as a settling basin for fly and bottom ashes generated by burning coal at the Y-12 Steam Plant. Ash from the steam was mixed with water to form a slurry and then pumped to the crest of Chestnut Ridge and released through a large pipe to flow across the Sluice Channel area and into the pond. The ash slurry eventually overtopped the dam and flowed along Upper McCoy Branch to Rogers Quarry. The purpose of this document is to provide a site-specific Best Management Practices (BMP) Plan for construction associated with environmental restoration activities at the FCAP Site.

  3. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes

    PubMed Central

    Mueller, Sebastian B.; Ayris, Paul M.; Wadsworth, Fabian B.; Kueppers, Ulrich; Casas, Ana S.; Delmelle, Pierre; Taddeucci, Jacopo; Jacob, Michael; Dingwell, Donald B.

    2017-01-01

    Interactions with volcanic gases in eruption plumes produce soluble salt deposits on the surface of volcanic ash. While it has been postulated that saturation-driven precipitation of salts following the dissolution of ash surfaces by condensed acidic liquids is a primary mechanism of salt formation during an eruption, it is only recently that this mechanism has been subjected to detailed study. Here we spray water and HCl droplets into a suspension of salt-doped synthetic glass or volcanic ash particles, and produce aggregates. Deposition of acidic liquid droplets on ash particles promotes dissolution of existing salts and leaches cations from the underlying material surface. The flow of liquid, due to capillary forces, will be directed to particle-particle contact points where subsequent precipitation of salts will cement the aggregate. Our data suggest that volcanically-relevant loads of surface salts can be produced by acid condensation in eruptive settings. Several minor and trace elements mobilised by surface dissolution are biologically relevant; geographic areas with aggregation-mediated ash fallout could be “hotspots” for the post-deposition release of these elements. The role of liquids in re-distributing surface salts and cementing ash aggregates also offers further insight into the mechanisms which preserve well-structured aggregates in some ash deposits. PMID:28361966

  4. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material

    SciTech Connect

    Valle-Zermeño, R. del; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I.

    2013-03-15

    Highlights: ► A concrete formulation was optimized using Bottom Ash and APC ash. ► 10% of APC ash achieves good compromise between economic and performance aspects. ► The crushed concrete was evaluated as secondary building granular material. ► The environmental behavior allows its use as secondary material. ► The abrasion resistance is not good enough for its use as a road sub-base material. - Abstract: The main goal of this paper is to obtain a granular material formulated with Municipal Solid Waste Incineration (MSWI) bottom ash (BA) and air pollution control (APC) fly ash to be used as secondary building material. Previously, an optimum concrete mixture using both MSWI residues as aggregates was formulated. A compromise between the environmental behavior whilst maximizing the reuse of APC fly ash was considered and assessed. Unconfined compressive strength and abrasion resistance values were measured in order to evaluate the mechanical properties. From these results, the granular mixture was not suited for certain applications owing to the high BA/APC fly ash content and low cement percentages used to reduce the costs of the final product. Nevertheless, the leaching test performed showed that the concentrations of all heavy metals were below the limits established by the current Catalan legislation for their reutilization. Therefore, the material studied might be mainly used in embankments, where high mechanical properties are not needed and environmental safety is assured.

  5. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    PubMed

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close.

  6. Fly ash facts for highway engineers. Fly ash use in: Concrete base flowable fill structural fill grout paving. Technical report

    SciTech Connect

    1995-08-01

    Coal fly ash is a coal combustion byproduct (CCB) that has numerous applications as a engineering material; the annual production of CCBs is nearly 82 million metric tons (90 million tons). Since the first edition of Fly Ash Facts for Highway Engineers in 1986, substantial information has been accumulated regarding the use of fly ash. The purpose of this document is to provide technical information about engineering applications to potential users of CCBs and to advance the use of CCBs in ways that are technically sound, commercially competitive, and environmentally safe.

  7. Production of inorganic pellet binders from fly-ash. Technical report, March 1--May 31, 1995

    SciTech Connect

    Kawatra, S.K.; Eisele, T.C.

    1995-12-31

    Fly-ash is produced by all coal-fired utilities, and it must be removed from the plant exhaust gases, collected, and disposed of. While much work has been done in the past to utilize fly-ash rather than disposing of it, we nevertheless do not find widespread examples of successful industrial utilization. This is because past work has tended to find uses only for high-quality, easily-utilized fly-ashes, which account for less than 25% of the fly-ash that is produced. The main factor which makes fly-ashes unusable is a high unburned carbon content. In this project, physical separation technologies are being used to remove this carbon, and to convert these unusable fly-ashes into usable products. The main application being studied for the processed fly-ash is as a binder for inorganic materials, such as iron-ore pellets. In the second quarter, additional fly-ash samples were collected from the E. D. Edwards station (Bartonville, IL). Experimentation was begun to study the removal of carbon from these fly-ashes by froth flotation, and make and test pellets that use fly-ash as binder. During the current quarter, flotation experiments were continued on the fly- ashes. Three types of ashes were studied: 1. Ash from the disposal pond (``wet`` ash); 2. Dry fly-ash collected directly from the standard burners (``low-carbon`` ash); 3. Dry fly-ash collected from the low-NOx burners (``high-carbon`` ash). Each of these was chemically analyzed, and conventional flotation experiments were carried out to determine the optimum reagent dosages for carbon removal. Decarbonized ashes were then made from each ash type, in sufficient quantity to be used in pelletization experiments.

  8. Reduction of metal leaching in brown coal fly ash using geopolymers.

    PubMed

    Bankowski, P; Zou, L; Hodges, R

    2004-10-18

    Current regulations classify fly ash as a prescribed waste and prohibit its disposal in regular landfill. Treatment of the fly ash can reduce the leach rate of metals, and allow it to be disposed in less prescribed landfill. A geopolymer matrix was investigated as a potential stabilisation method for brown coal fly ash. Precipitator fly ash was obtained from electrostatic precipitators and leached fly ash was collected from ash disposal ponds, and leaching tests were conducted on both types of geopolymer stabilised fly ashes. The ratio of fly ash to geopolymer was varied to determine the effects of different compositions on leaching rates. Fourteen metals and heavy metals were targeted during the leaching tests and the results indicate that a geopolymer is effective at reducing the leach rates of many metals from the fly ash, such as calcium, arsenic, selenium, strontium and barium. The major element leachate concentrations obtained from leached fly ash were in general lower than that of precipitator fly ash. Conversely, heavy metal leachate concentrations were lower in precipitator fly ash than leached pond fly ash. The maximum addition of fly ash to this geopolymer was found to be 60wt% for fly ash obtained from the electrostatic precipitators and 70wt% for fly ash obtained from ash disposal ponds. The formation of geopolymer in the presence of fly ash was studied using 29Si MAS-NMR and showed that a geopolymer matrix was formed. X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) imaging showed the interaction of the fly ash with the geopolymer, which was related to the leachate data and also the maximum percentage fly ash addition.

  9. Coal Ash Corrosion Resistant Materials Testing

    SciTech Connect

    D. K. McDonald; P. L. Daniel; D. J. DeVault

    2007-12-31

    In April 1999, three identical superheater test sections were installed into the Niles Unit No.1 for the purpose of testing and ranking the coal ash corrosion resistance of candidate superheater alloys. The Niles boiler burns high sulfur coal (3% to 3.5%) that has a moderate alkali content (0.2% sodium equivalents), thus the constituents necessary for coal ash corrosion are present in the ash. The test sections were controlled to operate with an average surface metal temperature from approximately 1060 F to 1210 F which was within the temperature range over which coal ash corrosion occurs. Thus, this combination of aggressive environment and high temperature was appropriate for testing the performance of candidate corrosion-resistant tube materials. Analyses of the deposit and scale confirmed that aggressive alkali sulfate constituents were present at the metal surface and active in tube metal wastage. The test sections were constructed so that the response of twelve different candidate tube and/or coating materials could be studied. The plan was to remove and evaluate one of the three test sections at time intervals of 1 year, 3 years, and 5 years. This would permit an assessment of performance of the candidate materials as a function of time. Test Section A was removed in November 2001 after about 24 months of service at the desired steam temperature set point, with about 15.5 months of exposure at full temperature. A progress report, issued in October 2002, was written to document the performance of the candidate alloys in that test section. The evaluation described the condition of each tube sample after exposure. It involved a determination of the rate of wall thickness loss for these samples. In cases where there was more than one sample of a candidate material in the test section, an assessment was made of the performance of the alloy as a function of temperature. Test Sections B and C were examined during the November 2001 outage, and it was decided that

  10. How toxic is coal ash? A laboratory toxicity case study

    SciTech Connect

    Sherrard, Rick M.; Carriker, Neil; Greeley, Jr., Mark Stephen

    2014-12-08

    Under a consent agreement among the Environmental Protection Agency (EPA) and proponents both for and against stricter regulation, EPA is to issue a new coal ash disposal rule by the end of 2014. Laboratory toxicity investigations often yield conservative estimates of toxicity because many standard test species are more sensitive than resident species, thus could provide information useful to the rule-making. However, few laboratory studies of coal ash toxicity are available; most studies reported in the literature are based solely on field investigations. In this paper, we describe a broad range of toxicity studies conducted for the Tennessee Valley Authority (TVA) Kingston ash spill, results of which help provide additional perspective on the toxicity of coal ash.

  11. Fly ash based zeolitic pigments for application in anticorrosive paints

    NASA Astrophysics Data System (ADS)

    Shaw, Ruchi; Tiwari, Sangeeta

    2016-04-01

    The purpose of this work is to evaluate the utilization of waste fly ash in anticorrosive paints. Zeolite NaY was synthesized from waste fly ash and subsequently modified by exchanging its nominal cation Na+ with Mg2+ and Ca2+ ions. The metal ion exchanged zeolite was then used as anticorrosive zeolitic pigments in paints. The prepared zeolite NaY was characterized using X-Ray diffraction technique and Scanning electron microscopy. The size, shape and density of the prepared fly ash based pigments were determined by various techniques. The paints were prepared by using fly ash based zeolitic pigments in epoxy resin and the percentages of pigments used in paints were 2% and 5%. These paints were applied to the mild steel panels and the anticorrosive properties of the pigments were assessed by the electrochemical spectroscopy technique (EIS).

  12. Optical properties of the ash from El Chichon volcano

    NASA Technical Reports Server (NTRS)

    Patterson, E. M.; Pollard, C. O.; Galindo, I.

    1983-01-01

    The visible wavelength optical properties of the ash from the 1982 El Chichon eruptions are measured using ash samples collected at three surface sites at distances between 12 and 80 km from the volcano. The most distant sample is assumed to be the most representative of the silicate ash injected into the stratosphere. The measured optical properties are presented as a complex refractive index n, while the aerosol absorption is expressed as the imaginary component of the refractive index, n sub IM. Results show that each of these samples exhibited low values of absorption, with n sub IM at 500 nm ranging from 0.0015 for the 12 km sample to 0.001 for the 80 km sample. Based on these measurements, it is estimated that n for the stratospheric silicate ash is given by n = 1.53 - 0.001i.

  13. Filling abandoned mines with fluidized bed combustion ash grout

    SciTech Connect

    Gray, D.D.; Reddy, T.P.; Black, D.C.; Ziemkiewicz, P.F.

    1998-10-01

    The hydraulic backfilling of abandoned room and pillar coal mines with ash-based grout holds promise as an environmentally beneficial method of ash disposal, capable of preventing acid mine drainage and subsidence. For this scheme to be economically viable, the grout must be sufficiently flowable so that mines can be filled from a small number of boreholes. This paper describes the development and testing of a water-ash-bentonite grout using ash from a coal and gob burning atmospheric pressure fluidized bed combustor. Bentonite was needed to prevent settling which would limit the ability of the grout to spread. Laboratory techniques were devised to measure the rheological parameters of the grout. A static model was developed to predict the maximum distance of spread due to gravity. A field injection of 765 m{sup 3} of grout into an inactive mine panel showed that the grout flows well enough to make hydraulic backfilling feasible.

  14. Optical properties of fly ash. Volume 2, Final report

    SciTech Connect

    Self, S.A.

    1994-12-01

    Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal and Ebert. Volume 2 contains the dissertation of Ebert which covers the measurements of the optical constants of slags, and calculations of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.

  15. John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL FIFTH FLOOR NORTH OFFICE AREA, FACING NORTHEAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  16. John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL SEVENTH FLOOR SOUTH OFFICE AREA SHOWING STRUCTURAL PIERS AND FLORESCENT LIGHTS, FACING NORTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  17. John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL SEVENTH FLOOR SOUTH OFFICE AREA SHOWING WOOD AND GLASS PARTITIONS, FACING SOUTHEAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  18. Recoverable immobilization of transuranic elements in sulfate ash

    DOEpatents

    Greenhalgh, Wilbur O.

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  19. John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL NINTH FLOOR NORTH OFFICE WING SHOWING PARTITIONS, WINDOWS AND RADIATOR, FACING EAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  20. John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL SEVENTH FLOOR SOUTH OFFICE AREA SHOWING RADIATOR AND WINDOWS, FACING EAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  1. John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL TENTH FLOOR NORTH OFFICE WING SHOWING RADIATOR AND WINDOW, FACING EAST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  2. John Ash, ALA., Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, ALA., Photographer August 1997. VIEW OF LOS ANGELES CITY HALL NINTH FLOOR NORTH OFFICE WING SHOWING PARTITIONS, WINDOWS AND RADIATOR, FACING SOUTHWEST - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  3. 2. EAST SIDE; COAL ASH FROM BOILERS WAS BLOWN INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAST SIDE; COAL ASH FROM BOILERS WAS BLOWN INTO TANK AT RIGHT, THEN DROPPED INTO RAIL CARS FOR REMOVAL - Rath Packing Company, Boiler Room, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA

  4. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  5. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  6. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  7. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  8. Factors affecting the shrinkage of fly ash geopolymers

    NASA Astrophysics Data System (ADS)

    Ridtirud, Charoenchai; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2011-02-01

    The shrinkage of fly ash geopolymers was studied in the present study. Fly ash was used as the source material for making the geopolymers. The effects of the concentration of NaOH, sodium silicate-to-NaOH ratio, liquid-to-ash ratio, curing temperature, and curing time on shrinkage were investigated. The geopolymers were cured at 25, 40, and 60°C, respectively. The results indicate that the shrinkage of geopolymers is strongly dependent on curing temperature and liquid-to-ash ratio. The increase in shrinkage is associated with the low strength development of geopolymers. It is also found that NaOH concentration and sodium silicate-to-NaOH ratio also affect the shrinkage of geopolymers but to a lesser extent.

  9. John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. VIEW OF LOS ANGELES CITY HALL TENTH FLOOR SOUTH WING CAFETERIA FOOD LINE, FACING NORTH - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  10. On the visibility of airborne volcanic ash and mineral dust

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D. N.; Minikin, A.; Reitebuch, O.; Dahlkötter, F.; Mayer, B. C.; Emde, C.; Tegen, I.; Gasteiger, J.; Petzold, A.; Veira, A.; Kueppers, U.; Schumann, U.

    2012-12-01

    After the eruption of the Eyjafjalla volcano (Iceland) in April 2010 which caused the most extensive restrictions of the airspace over Europe since the end of World War II, the aviation safety concept of avoiding "visible ash", i.e. volcanic ash that can be seen by the human eye, was recommended. However so far, no clear definition of "visible ash" and no relation between the visibility of an aerosol layer and related aerosol mass concentrations are available. The goal of our study is to assess whether it is possible from the pilot's perspective in flight to detect the presence of volcanic ash and to distinguish between volcanic ash and other aerosol layers just by sight. In our presentation, we focus the comparison with other aerosols on aerosol types impacting aviation: Besides volcanic ash, dust storms are known to be avoided by aircraft. We use in-situ and lidar data as well photographs taken onboard the DLR research aircraft Falcon during the Saharan Mineral Dust Experiments (SAMUM) in 2006 and 2008 and during the Eyjafjalla volcanic eruption in April/May 2010. We complement this analysis with numerical modelling, using idealized radiative transfer simulations with the 3D Monte Carlo radiative transfer code MYSTIC for a variety of selected viewing geometries. Both aerosol types, Saharan mineral dust and volcanic ash, show an enhanced coarse mode (> 1 μm) aerosol concentration, but volcanic ash aerosol additionally contains a significant number of Aitken mode particles (< 150 nm). Volcanic ash is slightly more absorbing than mineral dust, and the spectral behaviour of the refractive index is slightly different. According to our simulations, these differences are not detectable just by human eye. Furthermore, our data show, that it is difficult to define a lower threshold for the visibility of an aerosol layer because the visual detectability depends on many parameters, including the thickness of the aerosol layer, the brightness and color contrast between the

  11. How toxic is coal ash? A laboratory toxicity case study

    DOE PAGES

    Sherrard, Rick M.; Carriker, Neil; Greeley, Jr., Mark Stephen

    2014-12-08

    Under a consent agreement among the Environmental Protection Agency (EPA) and proponents both for and against stricter regulation, EPA is to issue a new coal ash disposal rule by the end of 2014. Laboratory toxicity investigations often yield conservative estimates of toxicity because many standard test species are more sensitive than resident species, thus could provide information useful to the rule-making. However, few laboratory studies of coal ash toxicity are available; most studies reported in the literature are based solely on field investigations. In this paper, we describe a broad range of toxicity studies conducted for the Tennessee Valley Authoritymore » (TVA) Kingston ash spill, results of which help provide additional perspective on the toxicity of coal ash.« less

  12. 8. Front (east) side of incinerator and glove boxes. Ash ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Front (east) side of incinerator and glove boxes. Ash canning hood to the left, combustion chamber in the middle, incinerator hood to the right. Looking west. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  13. Aluminium alloys in municipal solid waste incineration bottom ash.

    PubMed

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  14. John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    John Ash, AIA, Photographer August 1997. DETAIL OF LOS ANGELES CITY HALL TWENTY-SEVENTH FLOOR WEST EXTERIOR GALLERY SOUTHEAST STAIR TO PYRAMID, FACING SOUTH - Los Angeles City Hall, 200 North Spring Street, Los Angeles, Los Angeles County, CA

  15. Immersion freezing of different kinds of combustion ashes

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, Stefanie; Grawe, Sarah; Hellner, Lisa; Wex, Heike; Pettersson, Jan B. C.; Stratmann, Frank

    2015-04-01

    Ice particles in the atmosphere influence both, weather and climate. Therefore it is important to know which kind of particles can act as ice nucleating particles (INP) under atmospheric conditions. In the last years, a lot of effort has been made to investigate the freezing abilities of natural INPs such as dusts and biological particles (Murray et al., 2012, Hoose and Möhler, 2012). However, there are only a few investigations concerning the ice nucleation ability of combustion ashes, which are the remains of fossil fuel and wood combustion and thus a possible source for anthropogenic INPs. Ash particles have similar compositions as mineral dust particles. However, the actual contribution of combustion ash particles to the atmospheric ice nucleation is rather unclear. A recent study by Umo et al. (2014) showed that combustion ashes could have a significant impact on the ice nucleation in clouds and thus should be the focus of further research. Ash particles can be lifted to the atmosphere by wind (bottom ashes) or directly during the combustion process (fly ashes). In the present study we investigated the freezing behavior of bottom ash particles which originated from wood as well as from coal. Additionally we investigated particles from fly ash from a coal-fired power plant. Particles were generated by dry dispersion and afterwards size selected with a differential mobility analyzer (DMA). The immersion freezing ability of the different ash particles was quantified utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS, Hartmann et al., 2011), where exactly one size segregated ash particle is immersed in a droplet. We found significant differences between the freezing abilities of the different ash types. Particles from wood bottom ashes initiate freezing at rather low temperatures near the homogenous freezing point (around -36°C). Particles from coal bottom ashes show significant higher ice nucleation abilities than the wood bottom ash, with

  16. Reserves in western basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  17. South American sedimentary basins

    SciTech Connect

    Urien, C.M.

    1984-04-01

    More than 64 sedimentary basins have been identified on the South American continent. According to their regional structural character and tectonic setting, they are classified in 4 super groups. About 20 interior or intracratonic basins occur on South American cratons (Guayanas, Brazilian, and Patagonian). In most cases, their sedimentary fill is Paleozoic or early Mesozoic. Rift or transverse grabens resulting from incipient sea floor spreading extend towards the continental margin. Seventeen basins are located along the Atlantic stable margin, and consist primarily of half grabens with downfaulted seaward blocks. These rifts (or pull-apart basins) were separated as results of the migration of the African and American continental blocks. Therefore the sedimentation is chiefly Cretaceous and Tertiary. On the western edge of South American cratons, almost 20 basins of downwarped blocks extend from Orinoco down to the Malvinas plateau in a relatively uninterrupted chain of retroarc basins, bordered by the Andean orogen. They lie on a flexured Precambrian and Paleozoic basement, and are highly deformed in the west (Subandean belt) due to the action of compressional forces caused by the tectonic influence of the Mesozoic Andean batholith. Westward, the Pacific margin is bordered by 27 foreland and forearc basins, which alternate from north to south on an unstable or quasistable margin, fringed by a trench and slope complex where the ocean crust is subducted beneath the continental plate.

  18. Multifrequency radar imaging of ash plumes: an experiment at Stromboli

    NASA Astrophysics Data System (ADS)

    Donnadieu, Franck; Freret-Lorgeril, Valentin; Delanoë, Julien; Vinson, Jean-Paul; Peyrin, Frédéric; Hervier, Claude; Caudoux, Christophe; Van Baelen, Joël; Latchimy, Thierry

    2016-04-01

    Volcanic ash emissions in the atmosphere are hazardous to aviation while ash fallout affects people and human activities and may cause damage to infrastructures and economic losses. In the framework of the French Government Laboratory of Excellence ClerVolc initiative, an experiment was carried out on Stromboli volcano (Italy), between 28 September and 4 October 2015. The aim was to retrieve various physical properties of the ash plumes, especially the mass loading parameters which are critical for the modelling of ash dispersal. We used a complementary set of cutting edge techniques recording in different bands of the electromagnetic spectrum. The innovative instrument setup consisted in three radars, hyperspectral thermal infrared and dual-band UV cameras, a mini DOAS-Flyspec and a multigas sensor. A drone equipped with differential GPS was flown near the ash plumes with several sensors including SO2, CO2 and particle counter. We mainly focus on radar measurements of over 200 ash plumes and present some preliminary comparisons at three frequencies. The BASTA Doppler radar at 95 GHz, originally designed for atmospheric studies, was deployed at about 2.2 km in slant distance from the eruptive craters. It was configured to observe volumes above one of the active craters with a spatio-temporal resolution of 12.5 m and 1 s. From the same location, a 1.2 GHz volcano Doppler radar (VOLDORAD) was recording the signature of ballistics and small lapilli at 0.15 s in 60 m-deep volumes. In addition, a commercial 24 GHz micro rain Doppler radar (MRR) simultaneously recorded activity from the Rochette station, at 400 to 650 m from the active craters with a sampling rate of 10 s and a resolution of 25 m. The latter was pointing almost perpendicularly to the other radar beams. Reflectivity factors were measured inside the ash plume above the source vent by the BASTA radar (3 mm wavelength) spanning -9 to +21 dBZ. Fallout could sometimes be tracked during several minutes within

  19. Ice nucleation by combustion ash particles at conditions relevant to mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Umo, N. S.; Murray, B. J.; Baeza-Romero, M. T.; Jones, J. M.; Lea-Langton, A. R.; Malkin, T. L.; O'Sullivan, D.; Neve, L.; Plane, J. M. C.; Williams, A.

    2015-05-01

    Ice-nucleating particles can modify cloud properties with implications for climate and the hydrological cycle; hence, it is important to understand which aerosol particle types nucleate ice and how efficiently they do so. It has been shown that aerosol particles such as natural dusts, volcanic ash, bacteria and pollen can act as ice-nucleating particles, but the ice-nucleating ability of combustion ashes has not been studied. Combustion ashes are major by-products released during the combustion of solid fuels and a significant amount of these ashes are emitted into the atmosphere either during combustion or via aerosolization of bottom ashes. Here, we show that combustion ashes (coal fly ash, wood bottom ash, domestic bottom ash, and coal bottom ash) nucleate ice in the immersion mode at conditions relevant to mixed-phase clouds. Hence, combustion ashes could play an important role in primary ice formation in mixed-phase clouds, especially in clouds that are formed near the emission source of these aerosol particles. In order to quantitatively assess the impact of combustion ashes on mixed-phase clouds, we propose that the atmospheric abundance of combustion ashes should be quantified since up to now they have mostly been classified together with mineral dust particles. Also, in reporting ice residue compositions, a distinction should be made between natural mineral dusts and combustion ashes in order to quantify the contribution of combustion ashes to atmospheric ice nucleation.

  20. A Framework for Uncertainty Quantification for Volcanic Ash Dispersion Phenomena

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Madankan, R.; Stefanescu, E. R.; Pouget, S.; Bursik, M. I.; Webley, P.; Pitman, E. B.; Jones, M.; Singla, P.; Singh, T.; Dehn, J.; Morton, D.; Pavolonis, M. J.

    2013-12-01

    Volcanic ash advisory centers use mathematical models for eruption and ash advection and dispersion to provide insight when forecasting where an ash cloud might travel. These models require input data on source conditions and a forecast of wind fields. Source conditions such as vent radius and vent velocity, and the distribution of ash-particle size are usually not well constrained, and estimates of the uncertainty in the inputs is needed to make accurate predictions of cloud motion. All numerical weather predictions contain substantial uncertainty, and this too must be accounted for in making forecasts of ash dispersion. This presentation describes a framework for ash dispersion forecasting that accounts for uncertainties. The recent eruption of Eyjafjallajokull, Iceland in 2010 is used as a validation study. In the modeling considered here, the PUFF transport and diffusion model is used to hindcast the motion of the ash cloud in the days of the eruption of 14-16 April 2010. Variability in cloud height and mass loading of the eruption column is introduced through sampling of the inputs to volcano column model BENT. Output uncertainty due to uncertain input parameters is determined with the help of a recently developed Conjugate Unscented Transform that samples the multidimensional input space. Output uncertainty due to input uncertainty in winds is determined using ensemble meteorological forecasts within the framework of the Weather Research and Forecasting numerical weather prediction model. Estimates of the uncertain outputs are updated by assimilating satellite imagery data products, using a minimum variance approach. Uncertainty Characterization Framework for Ash transport

  1. Phenolic acids as bioindicators of fly ash deposit revegetation.

    PubMed

    Djurdjević, L; Mitrović, M; Pavlović, P; Gajić, G; Kostić, O

    2006-05-01

    The floristic composition, the abundance, and the cover of pioneer plant species of spontaneously formed plant communities and the content of total phenolics and phenolic acids, as humus constituents, of an ash deposit after 7 years of recultivation were studied. The restoration of both the soil and the vegetation on the ash deposits of the "Nikola Tesla-A" thermoelectric power plant in Obrenovac (Serbia) is an extremely slow process. Unfavorable physical and chemical characteristics, the toxicity of fly ash, and extreme microclimatic conditions prevented the development of compact plant cover. The abundance and cover of plants increased from the central part of the deposit towards its edges (ranging from 1-80%). Festuca rubra L., Crepis setosa Hall., Erigeron canadensis L., Cirsium arvense (L.) Scop., Calamagrostis epigeios (L.) Roth., and Tamarix gallica L. were the most abundant species, thus giving the highest cover. Humus generated during the decomposition process of plant remains represents a completely new product absent in the ash as the starting material. The amount of total phenolics and phenolic acids (38.07-185.16 microg/g of total phenolics and 4.12-27.28 microg/g of phenolic acids) in fly ash increased from the center of the deposit towards its edges in correlation with the increase in plant abundance and cover. Ash samples contained high amounts of ferulic, vanillic, and p-coumaric acid, while the content of both p-hydroxybenzoic and syringic acid was relatively low. The presence of phenolic acids indicates the ongoing process of humus formation in the ash, in which the most abundant pioneer plants of spontaneously formed plant communities play the main role. Phenolic compounds can serve as reliable bioindicators in an assessment of the success of the recultivation process of thermoelectric power plants' ash deposits.

  2. Producing a synthetic zeolite from secondary coal fly ash.

    PubMed

    Zhou, Chunyu; Yan, Chunjie; Zhou, Qi; Wang, Hongquan; Luo, Wenjun

    2016-11-01

    Secondary coal fly ash is known as a by-product produced by the extracting alumina industry from high-alumina fly ash, which is always considered to be solid waste. Zeolitization of secondary coal fly ash offers an opportunity to create value-added products from this industrial solid waste. The influence of synthesis parameters on zeolite NaA such as alkalinity, the molar ratio of SiO2/Al2O3, crystallization time and temperature was investigated in this paper. It was found that the types of synthetic zeolites produced were to be highly dependent on the conditions of the crystallization process. Calcium ion exchange capacity and whiteness measurements revealed that the synthesized product meets the standard for being used as detergent, indicating a promising use as a builder in detergent, ion-exchangers or selective adsorbents. Yield of up to a maximum of 1.54 g/g of ash was produced for zeolite NaA from the secondary coal fly ash residue. This result presents a potential use of the secondary coal fly ash to obtain a high value-added product by a cheap and alternative zeolitization procedure.

  3. Ash Reduction of Corn Stover by Mild Hydrothermal Preprocessing

    SciTech Connect

    M. Toufiq Reza; Rachel Emerson; M. Helal Uddin; Garold Gresham; Charles J. Coronella

    2014-04-22

    Lignocellulosic biomass such as corn stover can contain high ash content, which may act as an inhibitor in downstream conversion processes. Most of the structural ash in biomass is located in the cross-linked structure of lignin, which is mildly reactive in basic solutions. Four organic acids (formic, oxalic, tartaric, and citric) were evaluated for effectiveness in ash reduction, with limited success. Because of sodium citrate’s chelating and basic characteristics, it is effective in ash removal. More than 75 % of structural and 85 % of whole ash was removed from the biomass by treatment with 0.1 g of sodium citrate per gram of biomass at 130 °C and 2.7 bar. FTIR, fiber analysis, and chemical analyses show that cellulose and hemicellulose were unaffected by the treatment. ICP–AES showed that all inorganics measured were reduced within the biomass feedstock, except sodium due to the addition of Na through the treatment. Sodium citrate addition to the preconversion process of corn stover is an effective way to reduced physiological ash content of the feedstock without negatively impacting carbohydrate and lignin content.

  4. Tests and specifications pertinent to coal ash utilization

    SciTech Connect

    Manz, O.

    1994-12-31

    Fortunately, in the United States, most of the test methods and specifications for the use of coal ash in cement, concrete, lime, or soil-related products are found in the American Society for Testing and Materials (ASTM) books of standards. Many of the same or slightly different specifications are also found in the American Association of State Highway and Transportation Officials (AASHTO) books of standards, as well as those of the various Departments of Transportation (DOTs). Other specifications for selected uses are found in publications of the American Petroleum Institute (API), the Sulfur Institute, the mineral wool industry, and West Virginia University. It is difficult to keep up with the most recent printed specifications, particularly in ASTM, since the committees meet twice yearly and have many time-consuming ballots. This paper summarizes the critical engineering properties required to assess the utilization applications of coal ash products. For most uses, both physical and chemical limits are specified. There are specifications for blended cement containing fly ash, for sulfate resistance, and for alkali aggregate reaction, also for fly ash for use in concrete, in oil well cement, and in grout. Coal ash is specified for use in ash-lime stabilization, as lightweight aggregate, and for mineral filler, as well as for structural fill and flowable fill. Other uses include sulfur concrete, high flexural strength ceramics, mineral wool, brick, cenospheres, and filler.

  5. Volcanic ash concentration during the 12 August 2011 Etna eruption

    NASA Astrophysics Data System (ADS)

    Scollo, Simona; Boselli, Antonella; Coltelli, Mauro; Leto, Giuseppe; Pisani, Gianluca; Prestifilippo, Michele; Spinelli, Nicola; Wang, Xuan

    2015-04-01

    Mount Etna, in Italy, is one of the most active volcanoes in the world and an ideal laboratory to improve volcano ash monitoring and forecasting. During the volcanic episode on 12 August 2011, an eruption column rose up to several kilometers above sea level (asl), and the volcanic plume dispersed to the southeast. From the video-surveillance system, we were able to estimate variations in the column height (peak value of 9.5 ± 0.5 km above sea level) with time. We derived the time-varying discharge rate (peak value of 60 m3 s-1) and determined the ash concentration using a volcanic ash dispersal model. The modeled ash concentration was compared with lidar measurements using different particle effective radius, and differences are within the error bars. Volcanic ash concentrations range from 0.5 to 35.5 × 10-3 g m-3. The comparison highlights that to improve volcanic ash forecasting during volcanic crises it is necessary to take into account the time-varying discharge rate of explosive eruptions.

  6. Future Developments in Modeling and Monitoring of Volcanic Ash Clouds

    NASA Astrophysics Data System (ADS)

    Bonadonna, Costanza; Folch, Arnau; Loughlin, Sue

    2011-03-01

    IAVCEI-WMO Workshop on Ash Dispersal Forecast and Civil Aviation; Geneva, Switzerland, 18-20 October 2010; The April-May 2010 Eyjafjallajökull eruption brought to light the harmful effects of volcanic ash on civil aviation and the importance of robust ash forecasting based on the combination of numerical weather prediction (NWP), volcanic ash transport and dispersal models (VATDMs), and data acquisition. The Workshop on Ash Dispersal Forecast and Civil Aviation has produced a consensual document describing the characteristics and range of application of different VATDMs, identifying the needs of the modeling community, investigating new data acquisition strategies, and discussing how to improve communication between the volcanology community and operational agencies. The workshop was held at the World Meteorological Organization's (WMO) Geneva headquarters under the sponsorship of the Faculty of Sciences of the University of Geneva, the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI), and the canton of Geneva and was organized by scientists from the University of Geneva (Switzerland), the Barcelona Supercomputing Center (Spain), the Aeronautical Meteorology Division of the WMO, and the British Geological Survey (United Kingdom). Fifty-two volcanologists, meteorologists, atmospheric dispersion modelers, and space- and ground-based monitoring specialists from 12 different countries were gathered (attendance was by invitation only), including representatives from six Volcanic Ash Advisory Centers (VAACs) and related institutions.

  7. Beneficiation of coal pond ash by physical separation techniques.

    PubMed

    Lee, Sung-Joo; Cho, Hee-Chan; Kwon, Ji-Hoe

    2012-08-15

    In this study, investigations to develop a beneficiation process for separating coal pond ash into various products were undertaken. To this end, coal pond ash samples with different particle size ranges were tested in terms of their washability characteristics in a float-and-sink analysis. It was found that coal pond ash was heterogeneous in nature consisting of particles that varied in terms of their size and composition. However, it can be made more homogenous using a gravity separation method. Therefore, the possibility of separating coal pond ash was tested on standard equipment typically used for gravity concentration. To increase the separation efficiency, coal ash was separated according to the size of the particles and each size fraction was tested using equipment appropriate for the corresponding sizes. A hindered-settling column and a shaking table were tested for their ability to treat the 1.19 × 0.074 mm size fraction, and a Falcon concentrator was evaluated for its ability to treat the -0.074 mm size fraction. The results showed that various marketable products, such as lightweight aggregate, sand and high-carbon fuel, can be recovered from coal pond ash using simple physical separation techniques.

  8. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect

    Robert Hurt; Eric Suuberg; John Veranth; Xu Chen; Indrek Kulaots

    2004-02-13

    The overall objective of the present project was to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific issues addressed included: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity based on pilot-plant studies; and (3) the kinetics and mechanism of ash ozonation. This laboratory data has provided scientific and engineering support and underpinning for parallel process development activities. The development work on the ash ozonation process has now transitioned into a scale-up and commercialization project involving a multi-industry team and scheduled to begin in 2004. This report describes and documents the laboratory and pilot-scale work in the above three areas done at Brown University and the University of Utah during this three-year project.

  9. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.

    PubMed

    Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk

    2009-03-01

    Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.

  10. Removal of pollutants from wastewater by coal bottom ash.

    PubMed

    Lin, Chiu-Yue; Yang, Dong-Hao

    2002-09-01

    Coal bottom ash produced from a thermal power plant was used in a batch experiment to investigate the adsorption characteristic of this bottom ash. The adsorbate solutions were synthetic wastewaters contained copper (Cu2+) or COD and a sanitary landfill leachate. The influences of various factors, such as contact time, pH, initial adsorbate concentration and temperature on the sorption have been studied. Experimental results show that coal bottom ash had a good adsorption capacity for copper and COD and could reduce the concentrations of various pollutants in the leachate. The adsorption capacities of each gram of coal bottom ash were 0.48 mg Cu (at pH 4 and temperature 25 degrees C) and 7.5 mg COD (at pH 5 and temperature 25 degrees C); their adsorption behaviors conformed to Freundlich's adsorption model. In treating leachate, the removal efficiencies of COD, NH3--N, total Kjeldah nitrogen, phosphorus, Fe3+, Mn2+ and Zn2+ were 47, 39.4, 31.1, 92.9, 96.5, 94.3 and 82.2%, respectively. Based on these results we can conclude that it is possible to use coal bottom ash for removing pollutants from wastewaters. The adsorption capacities of coal bottom ash for pollutants were also determined.

  11. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect

    Robert Hurt; Eric Suuberg; John Veranth

    2001-12-26

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; the effect of various low-NOx firing modes on ash properties and adsorptivity; and the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. This first project period, experiments were carried out to better understand the fundamental nature of the ozonation effect on ash. Carbon surfaces were characterized by surfactant adsorption, and by X-ray Photoelectron Spectroscopy before and after oxidation, both by air at 440 C and by ozone at room temperature. The results strongly suggest that the beneficial effect of ozonation is in large part due to chemical modification of the carbon surfaces.

  12. STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH

    SciTech Connect

    Robert Hurt; Eric Suuberg; John Veranth

    2001-06-22

    The overall objective of the present project is to identify and assess strategies and solutions for the management of industry problems related to carbon in ash. Specific research issues to be addressed include: (1) the effect of parent fuel selection on ash properties and adsorptivity, including a first ever examination of the air entrainment behavior of ashes from alternative (non-coal) fuels; (2) the effect of various low-NOx firing modes on ash properties and adsorptivity; and (3) the kinetics and mechanism of ash ozonation. This data will provide scientific and engineering support of the ongoing process development activities. This first project period, experiments were carried out to better understand the fundamental nature of the ozonation effect on ash. Carbon surfaces were characterized by surfactant adsorption, and by X-ray Photoelectron Spectroscopy before and after oxidation, both by air at 440 C and by ozone at room temperature. The results strongly suggest that the beneficial effect of ozonation is in large part due to chemical modification of the carbon surfaces.

  13. Ash level meter for a fixed-bed coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An ash level meter for a fixed-bed coal gasifier is provided which utilizes the known ash level temperature profile to monitor the ash bed level. A bed stirrer which travels up and down through the extent of the bed ash level is modified by installing thermocouples to measure the bed temperature as the stirrer travels through the stirring cycle. The temperature measurement signals are transmitted to an electronic signal process system by an FM/FM telemetry system. The processing system uses the temperature signals together with an analog stirrer position signal, taken from a position transducer disposed to measure the stirrer position to compute the vertical location of the ash zone upper boundary. The circuit determines the fraction of each total stirrer cycle time the stirrer-derived bed temperature is below a selected set point, multiplies this fraction by the average stirrer signal level, multiplies this result by an appropriate constant and adds another constant such that a 1 to 5 volt signal from the processor corresponds to a 0 to 30 inch span of the ash upper boundary level. Three individual counters in the processor store clock counts that are representative of: (1) the time the stirrer temperature is below the set point (500.degree. F.), (2) the time duration of the corresponding stirrer travel cycle, and (3) the corresponding average stirrer vertical position. The inputs to all three counters are disconnected during any period that the stirrer is stopped, eliminating corruption of the measurement by stirrer stoppage.

  14. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1.

    PubMed

    Beisel, Christian; Imhof, Axel; Greene, Jaime; Kremmer, Elisabeth; Sauer, Frank

    2002-10-24

    The establishment and maintenance of mitotic and meiotic stable (epigenetic) transcription patterns is fundamental for cell determination and function. Epigenetic regulation of transcription is mediated by epigenetic activators and repressors, and may require the establishment, 'spreading' and maintenance of epigenetic signals. Although these signals remain unclear, it has been proposed that chromatin structure and consequently post-translational modification of histones may have an important role in epigenetic gene expression. Here we show that the epigenetic activator Ash1 (ref. 5) is a multi-catalytic histone methyl-transferase (HMTase) that methylates lysine residues 4 and 9 in H3 and 20 in H4. Transcriptional activation by Ash1 coincides with methylation of these three lysine residues at the promoter of Ash1 target genes. The methylation pattern placed by Ash1 may serve as a binding surface for a chromatin remodelling complex containing the epigenetic activator Brahma (Brm), an ATPase, and inhibits the interaction of epigenetic repressors with chromatin. Chromatin immunoprecipitation indicates that epigenetic activation of Ultrabithorax transcription in Drosophila coincides with trivalent methylation by Ash1 and recruitment of Brm. Thus, histone methylation by Ash1 may provide a specific signal for the establishment of epigenetic, active transcription patterns.

  15. Monitoring of volcanic emissions of SO2 and ash

    NASA Astrophysics Data System (ADS)

    Theys, Nicolas; Clarisse, Lieven; Brenot, Hugues; van Gent, Jeroen; Campion, Robin; van der A, Ronald; Valks, Pieter; Corradini, Stefano; Merucci, Luca; Van Roozendael, Michel; Coheur, Pierre-François; Hurtmans, Daniel; Clerbaux, Cathy; Tait, Steve; Ferrucci, Fabrizio

    2013-04-01

    Volcanic eruptions can emit large quantities of fine particles (ash) into the atmosphere as well as several trace gases, such as water vapour, carbon dioxide, sulphur species (SO2, H2S) and halogens (HCl, HBr, HF). These volcanic ejecta can have a considerable impact on the atmosphere, human health and society. Volcanic ash in particular is known to be a major threat for aviation, especially after dispersion over long distances (>1000 km) from the erupting volcano. In this respect, the continuous monitoring of volcanic ash from space is playing an essential role for the mitigation of aviation hazards. Compared to ash, SO2 is less critical for aviation safety, but is much easier to measure. Therefore, SO2 observations are often use as a marker of volcanic ash in the atmosphere. Moreover, SO2 yields information on the processes occurring in the magmatic system and is used as a proxy for the eruptive rate. In this presentation we give an overview of recent developments of the Support to Aviation Control Service (SACS). The focus is on the near-real time detection and monitoring of volcanic plumes of ash and SO2 using polar-orbiting instruments GOME-2, OMI, IASI and AIRS. The second part of the talk is dedicated to the determination of volcanic SO2 fluxes from satellite measurements. We review different techniques and investigate the temporal evolution of the total emissions of SO2 for recent volcanic events.

  16. Assessing the potential of coal ash and bagasse ash as inorganic amendments during composting of municipal solid wastes.

    PubMed

    Mohee, Romeela; Boojhawon, Anuksha; Sewhoo, Babita; Rungasamy, Selven; Somaroo, Geeta D; Mudhoo, Ackmez

    2015-08-15

    This study investigates the potential of incorporating inorganic amendments such as coal and bagasse ashes in different composting mixes. 10 different composting mixes were assessed as follows: A-20% bagasse ash (BA) with unsorted municipal solid wastes (UMSW); B-40% BA with UMSW; C-UMSW; D-20% BA with sorted municipal solid wastes (SMSW); E-40% BA with SMSW; F-SMSW; G-20% coal ash (CA) with UMSW; H-40% CA with UMSW; I-20% CA with SMSW and J-40% CA with SMSW. The composting processes were carried out in rotary drum composters. Composting mixes D, F, G and I achieved a temperature above 55 °C for at least 3 days, with the following peak temperatures: D-62 °C, F-57 °C, G-62 °C and I-58 °C. D resulted in the highest average net Volatile solids (VS) degradation of 68.6% and yielded the highest average volume reduction of 66.0%. The final compost from D, G, I, C and F were within range for electrical conductivities (EC) (794-1770 μS/cm) and pH (6.69-7.12). The ashes also helped in maintaining high average water holding capacities within the range of 183-217%. The C/N ratio of sorted wastes was improved by the addition of 20% coal ash and bagasse ash. Higher germination indices, above 0.8 were obtained for the ash-amended compost (D, G, I), indicating the feasibility and enhancement of using bagasse and coal ash as inorganic amendment in the composting process. Regarding heavy metals content, the chromium concentration for the composting mix G was found to be the highest whereas mixes D and I showed compliance with the MS (Mauritian Standards) 164 standards.

  17. What Controls the Sizes and Shapes of Volcanic Ash? Integrating Morphological, Textural and Geochemical Ash Properties to Decipher Eruptive Processes

    NASA Astrophysics Data System (ADS)

    Liu, E. J.; Cashman, K. V.; Rust, A.

    2015-12-01

    Volcanic ash particles encompass a diverse spectrum of shapes as a consequence of differences in the magma properties and the magma ascent and eruption conditions. We show how the quantitative analysis of ash particle shapes can be a valuable tool for deciphering magma fragmentation and transport processes. Importantly, integrating morphological data with ash texture (e.g. bubble and crystal sizes) and dissolved volatile data provides valuable insights into the physical and chemical controls on the resulting ash deposit. To explore the influence of magma-water interaction (MWI) on fine ash generation, we apply this multi-component characterisation to tephra from the 2500BC Hverfjall Fires, Iceland. Here, coeval fissure vents spanned sub-aerial to shallow lacustrine environments. Differences in the size and morphology of pyroclasts thus reflect fragmentation mechanisms under different near-surface conditions. Using shape parameters sensitive to both particle roughness and internal vesicularity, we quantify the relative proportions of dense fragments, bubble shards, and vesicular grains from 2-D SEM images. We show that componentry (and particle morphology) varies as a function of grain size, and that this variation can be related back to the bubble size distribution. Although both magmatic and hydromagmatic deposits exhibit similar component assemblages, they differ in how these assemblages change with grain size. These results highlight the benefits of characterising ash deposits over a wide range of grain sizes, and caution against inferring fragmentation mechanism from a narrow grain size range. Elevated matrix glass S concentrations in hydromagmatic ash (600-1500 ppm) compared to those in magmatic ash and scoria lapilli (200-500 ppm) indicate interrupted vesiculation. In contrast to the subaerial 'dry' deposits, fragmentation during MWI likely occurred over a greater range of depths with quench rates sufficient to prevent post-fragmentation degassing. High

  18. Identifying recycled ash in basaltic eruptions

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-07-01

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These `recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions.

  19. Ceramic glass from flying-ash

    SciTech Connect

    Chiang, J.F.; Xu, You-Wu; Chen, Pinzhen

    1996-10-01

    A ceramic glass composition compromises of mainly SiO{sub 2}, Al{sub 2}O{sub 3}, MgO and with small percent of CaO, TiO{sub 2}, B{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}/FeO, K{sub 2}O, Na{sub 2}O, and P{sub 2}O{sub 5} has been produced. A convenient source of raw materials is a mixture of flying-ash from power plant, borax manufacturing plant waste, and titanium pigment waste. The ceramic glass is formed from an intermediate ceramic mixture which is subjected to heat treatment. The solid is annealed at another temperature for several hours, and then is reduced to a lower temperature at a rate of 20-30{degrees}C/hour. The final product, the ceramic glass possesses many useful mechanical and chemical properties, such as high compressive strength, high bending strength, high hardness, high impact resistance, acid and alkaline resistance, etc. The ceramic glass can be used as laboratory counter-top, reaction still, manufacture of fluid transfer tubing, sandpaper/grit, and many other industrial applications.

  20. Traumatic Inhalation due to Merapi Volcanic Ash.

    PubMed

    Trisnawati, Ika; Budiono, Eko; Sumardi; Setiadi, Andang

    2015-07-01

    Pneumonoultramicroscopicsilicovolcanoconiosis is fibrotic lung diseases of the pulmonary parenchyma following chronic inhalation of inorganic dusts containing crystalline silicon dioxide. The acute manifestations observed after heavy ashfalls include attacks of asthma and bronchitis, with an increased reporting of cough, breathlessness, chest tightness, and wheezing due to irritation of the lining of the airways. The chronic health condition of most concern is silicosis, a diffuse nodular fibrosis of the lungs, develops slowly, usually appearing 10 to 30 years after first exposure. A 35 years old male was admitted to Sardjito Hospital, Yogyakarta with complaints of progressive dyspnoea, right side chest pain since last 3 month and periodic episodes of dry cough. He had history of exposure to volcanic ash at the location around volcano eruption for about 10 month. Examination revealed hyperresonant note, diminished vesicular breath sounds in lower right side of the chest. The chest X-ray presence leads to bleb. Based on the clinical and radiological suspicion of pneumoconiosis the patient was submitted to computed tomography of the chest and revealed bilateral multiple bullae mainly at the right lung field. The biopsy specimen verified the diagnosis of anthrocosilicosis. There is no proven specific therapy for any form of silicosis. Symptomatic therapy should include treatment of airflow limitation with bronchodilators, aggressive management of respiratory tract infection with antibiotics, and use of supplemental oxygen (if indicated) to prevent complications of chronic hypoxemia.

  1. Identifying recycled ash in basaltic eruptions.

    PubMed

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-07-28

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These 'recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions.

  2. Complete survey of German sewage sludge ash.

    PubMed

    Krüger, Oliver; Grabner, Angela; Adam, Christian

    2014-10-21

    The amount of sewage sludge produced worldwide is expected to further increase due to rising efforts in wastewater treatment. There is a growing concern against its direct use as fertilizer due to contamination of the sludge with heavy metals and organic pollutants. Incinerating the sludge degrades organic compounds almost completely and concentrates heavy metals and phosphorus. However, the sewage sludge ash (SSA) is almost completely disposed of and with it all resources are removed from the economic cycle. Comprehensive knowledge of the composition of SSA is crucial to assess the resource recovery potentials. We conducted a survey of all SSA emerging in Germany and determined the respective mass fractions of 57 elements over a period of one year. The median content of phosphorus was 7.9%, indicating an important recovery potential. Important trace elements were Zn (2.5 g/kg), Mn (1.3 g/kg), and Cu (0.9 g/kg). Mass fractions of technology metals such as V, Cr, Ga, Nb, and rare earths were comparatively low. Considering the possible use of SSA as secondary raw material for fertilizer production it should be noted that its Cd and U content (2.7 mg/kg and 4.9 mg/kg respectively) is significantly lower than that of rock phosphate based mineral fertilizers.

  3. Thermal conductivity of coal ashes and slags

    SciTech Connect

    Steadman, E.N.; Benson, S.A.; Nowok, J.W.

    1992-12-01

    Generally, heat in solids is conducted by the free electrons in metals and alloys at low temperatures, by thermal vibrations of atoms that are observed in the stoichiometric dielectrics, by the free electrons and holes as well as lattice vibrations at the sufficiently high temperatures recorded in semiconductors, and also by ions in amorphous materials at high temperatures. In our case, the linear variations of both thermal and electrical conductivities suggest also that ionization of point defects related to nonstoichiometry, impurities, and dopants plays some role in the thermal conductivity at intermediate and high temperatures. They create free carriers, such as electrons and holes, with concentrations that increase with temperature. The magnitude of this electronic component of thermal conductivity is very low, since {sigma}/k is about 10{sup {minus}6}. Also, there is reason to expect the existence of electrically charged ceramic particles in a liquid-phase sintering medium that may introduce free charges. The ionic component in heat transfer, related to the diffusion of alkali ions, does not play any major role in this range of temperature and can be neglected. This component may take place above some critical temperature, across the surface, or through the volume of the material and is strongly dependent on the glass structure. Figure 7 shows the effect of porosity on the thermal conductivity of Beulah coal ash. Thermal conductivity decreases with the increase of porosity.

  4. Thermal conductivity of coal ashes and slags

    SciTech Connect

    Steadman, E.N.; Benson, S.A.; Nowok, J.W.

    1992-01-01

    Generally, heat in solids is conducted by the free electrons in metals and alloys at low temperatures, by thermal vibrations of atoms that are observed in the stoichiometric dielectrics, by the free electrons and holes as well as lattice vibrations at the sufficiently high temperatures recorded in semiconductors, and also by ions in amorphous materials at high temperatures. In our case, the linear variations of both thermal and electrical conductivities suggest also that ionization of point defects related to nonstoichiometry, impurities, and dopants plays some role in the thermal conductivity at intermediate and high temperatures. They create free carriers, such as electrons and holes, with concentrations that increase with temperature. The magnitude of this electronic component of thermal conductivity is very low, since [sigma]/k is about 10[sup [minus]6]. Also, there is reason to expect the existence of electrically charged ceramic particles in a liquid-phase sintering medium that may introduce free charges. The ionic component in heat transfer, related to the diffusion of alkali ions, does not play any major role in this range of temperature and can be neglected. This component may take place above some critical temperature, across the surface, or through the volume of the material and is strongly dependent on the glass structure. Figure 7 shows the effect of porosity on the thermal conductivity of Beulah coal ash. Thermal conductivity decreases with the increase of porosity.

  5. Identifying recycled ash in basaltic eruptions

    PubMed Central

    D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo

    2014-01-01

    Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These ‘recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions. PMID:25069064

  6. BASINS Framework and Features

    EPA Pesticide Factsheets

    BASINS enables users to efficiently access nationwide environmental databases and local user-specified datasets, apply assessment and planning tools, and run a variety of proven nonpoint loading and water quality models within a single GIS format.

  7. Sewage sludge ash to phosphorus fertiliser (II): Influences of ash and granulate type on heavy metal removal.

    PubMed

    Mattenberger, H; Fraissler, G; Jöller, M; Brunner, T; Obernberger, I; Herk, P; Hermann, L

    2010-01-01

    Ashes from monoincineration of sewage sludge suggest themselves as an ideal base for inorganic fertiliser production due to their relatively high phosphorus (P)-content. However, previously they need to be detoxified by reducing their heavy metal content. The core process considered in this paper consists of three steps: mixing of the ashes with suitable chlorine-containing additives, granulation of the mixture and thermochemical treatment in a rotary kiln. Here relevant heavy metal compounds are first transformed into volatile species with the help of the additives and then evaporated from the granules. In this study two chemically different ashes and their mixture were agglomerated to two different granulate types, briquettes and rolled pellets. The resulting six different materials were subjected to thermal treatment at different temperatures. The heavy metals examined were Cu and Zn due to their strong dependence on treatment conditions and their relevance concerning thermal treatment of sewage sludge ashes. Besides, the behaviour of Cl and K was monitored and evaluated. The experiments showed that ash type and temperature are more influential on Cl and heavy metal chemistry than granulate type. Temperature is a primary variable for controlling removal in both cases. Cu removal was less dependent on both ash and granulate type than Zn. The Cl utilization was more effective for Cu than for Zn. Depending on the treatment conditions some K could be retained, whereas always all P remained in the treated material. This satisfies the requirement for complete P recycling.

  8. The effect of fly ash and coconut fibre ash as cement replacement materials on cement paste strength

    NASA Astrophysics Data System (ADS)

    Bayuaji, R.; Kurniawan, R. W.; Yasin, A. K.; Fatoni, H. AT; Lutfi, F. M. A.

    2016-04-01

    Concrete is the backbone material in the construction field. The main concept of the concrete material is composed of a binder and filler. Cement, concrete main binder highlighted by environmentalists as one of the industry are not environmentally friendly because of the burning of cement raw materials in the kiln requires energy up to a temperature of 1450° C and the output air waste CO2. On the other hand, the compound content of cement that can be utilized in innovation is Calcium Hydroxide (CaOH), this compound will react with pozzolan material and produces additional strength and durability of concrete, Calcium Silicate Hydrates (CSH). The objective of this research is to explore coconut fibers ash and fly ash. This material was used as cement replacement materials on cement paste. Experimental method was used in this study. SNI-03-1974-1990 is standard used to clarify the compressive strength of cement paste at the age of 7 days. The result of this study that the optimum composition of coconut fiber ash and fly ash to substitute 30% of cement with 25% and 5% for coconut fibers ash and fly ash with similar strength if to be compared normal cement paste.

  9. Opportunities for multidisciplinary ASH clinical hypertension specialists in an era of population health and accountable care: ASH leadership message.

    PubMed

    Egan, Brent M

    2014-07-01

    The ASH hypertension specialists and ASH clinical and comprehensive hypertension centers represent a continuum of expertise and capacity positioned to play a major role in advancing the Triple Aim, which includes improving the patient care experience, population health, and value in cardiovascular health promotion and disease prevention. The ASH hypertension specialists board is dedicated to testing and designating a broad range of qualified health care professionals as clinical hypertension specialists. A continuing partnership with ASH, recognizing the need for an appropriate firewall between education and testing, is essential in providing the education and training programs required to grow and sustain the specialized workforce required to translate current evidence and future advances in personalized medicine into better care for individuals, better health for populations, and better value for payers. Moreover, growth of the ASH hypertension registry has the potential to accelerate advances in education and patient care as noted previously. The ASH hypertension specialists board is excited about the opportunities available to a well-trained and collaborative multidisciplinary group of clinical hypertension specialists in an era of ACOs pursuing the Triple Aim.

  10. K Basins Hazard Analysis

    SciTech Connect

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  11. K Basin Hazard Analysis

    SciTech Connect

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  12. Toward an integrated Volcanic Ash Observing System in Europe

    NASA Astrophysics Data System (ADS)

    Lee, Deborah; Lisk, Ian

    2014-05-01

    Volcanic ash from the Icelandic eruption of Eyjafjallajökull in April and May of 2010 resulted in the decision by many northern European countries to impose significant restrictions on the use of their airspace. The eruption, extent and persistence of the ash revealed how reliant society now is on a safe and efficient air transport system and the fragility of that system when affected by the impact of complex natural hazards. As part of an EC framework programme, the 2011-2013 WEZARD (WEather HaZARD for aeronautics) consortium conducted a cross-industry volcanic ash capability and gap analyses, with the EUMETNET (network of 29 National Meteorological Services) led Work Package 3 focussing on a review of observational and monitoring capabilities, atmospheric dispersion modelling and data exchange. The review has revealed a patchwork of independent observing capabilities for volcanic ash, with some countries investing and others not at all, and most existing networks focus on space-based products. Existing capabilities do not provide the necessary detail on the geographical and vertical extent of volcanic ash and associated levels of contamination, which decision makers in the aviation industry require in order to decide where it is safe to fly. A resultant high priority was identified by WEZARD Work Package 3 for an enhanced observational network of complementary monitoring systems needed to initialise, validate and verify volcanic ash dispersion model output and forecasts. Thus a key recommendation is to invest in a major pre-operational demonstrator "European volcanic ash observing network", focussing on distal monitoring, and aiming to a) fill R&D gaps identified in instrumentation and algorithms and b) integrate data, where possible in near-real-time, from a range of ground-based, airborne and space-based techniques. Here we present a key WEZARD recommendation toward an integrated volcanic ash observing system in Europe, in context with other related projects

  13. Field studies of the leachability of aged brown coal ash.

    PubMed

    Mudd, G M; Kodikara, J

    2000-09-15

    The environmental management of ash produced from the brown coal power stations of the Latrobe Valley region of Australia has been studied. Current practice consists of slurrying fly and bottom ash, a short distance to an ash disposal pond. However, storage facilities are approaching capacity and alternative ash management strategies are required in the near future. Initially, the ash produced within the power stations is known to possess a large soluble mass, which can leach rapidly to generate a saline leachate with minor trace metal content. After slurrying and deposition within the ash pond, it has been demonstrated that the soluble mass is significantly lower and the ash can be considered as aged or "leached" ash - a more benign waste that meets the criteria for fill material. In order to assess the long-term behaviour of the leached ash and its suitability for co-disposal in engineered sites within overburden dumps, two field cells were constructed and monitored over a period of 1 year. Each cell was 5 x 5 m in area, 3-m deep and HDPE lined with a coarse drainage layer and leachate collection pipe. The first cell only collected natural rainfall and was known as the Dry Cell. The second cell had an external tank of 5000 l installed (200-mm rainfall equivalent) and water was spray-irrigated regularly to simulate higher rainfall and accelerate the leaching process. The cumulative inflow and outflow for each cell has been calculated using a linear relationship and the leachate quality was monitored over time. The results demonstrate that the ash behaves as an unsaturated porous material, with the effect of evaporation through the profile being dominant and controlling the production of leachate. The leachate quality was initially moderately saline in both cells, with the concentration dropping by nearly 95% in the Wet Cell by the end of the field study. The leachate chemistry has been analysed using the PHREEQC geochemical model. The log activity plots of various

  14. Erosional history of Big Horn basin: Mackin revisited

    SciTech Connect

    Palmquist, R.C.

    1983-08-01

    The classic study of the erosional history of Big Horn basin is by Mackin in 1937. In it he studied the terrace levels which ranged in age from Late Tertiary to late Pleistocene. He postulated that the terraces were the product of stream captures or intervals of interglacial stability alternating with glacial incision. More recent studies have revised Mackin's classically simple model. Detailed studies have increased the number of terrace levels, changed the timing of their stability episode, and estimated their ages. The number of terrace levels has been increased to nine along the Greybull and Bighorn Rivers and to six along the Shoshoni River. Because some of the different levels occur along each river, the number of unique levels within the basin is 12. The occurrence of a 600,000 and a 100,000 year old ash on two terrace levels allows the ages of the terraces to be estimated. The estimated ages range from 3 m.y. for the Tatman to 49,000 years for the Himes, which is the lowest level along the Bighorn River. Both ashes were deposited during river stability intervals and indicate that the Bighorn River and its eastern tributaries were stable late in the interglacial episodes. In contrast, the glaciofluvial gravels along the Shoshoni River at Cody indicate a late glacial stability episode for the western tributaries. The terrace cycles along the Bighorn River and its western tributaries are therefore out-of-phase. Comparison of the estimated terrace ages to termination in the marine isotopic record indicates that not all of the Pleistocene climatic cycles are preserved in the Big Horn basin terrace chronology.

  15. Altered tuffaceous rocks of the Green River Formation in the Piceance Creek Basin, Colorado

    USGS Publications Warehouse

    Griggs, Roy Lee

    1968-01-01

    More than 50 ash-fall tuff beds which have altered to analcitized or feldspathized rocks have been found in the upper 500-600 feet of the Parachute Creek Member of the Green River Formation in the Piceance Creek Basin of northwestern Colorado. Similarly altered water-washed tuff occurs as tongues in the uppermost part of this member, and forms most of the lower 400-600 feet of the overlying Evacuation Creek Member of the Green River Formation. 'The altered ash-fall beds of the Parachute Creek Member are all thin and show a characteristic pattern of alteration. Most beds range in thickness from a fraction of an inch to a few inches. One bed reaches a maximum thickness of 5 feet, and, unlike the other beds, is composed of several successive ash falls. The pattern of alteration changes from the outer part to the center of the basin. Most beds in the outer part of the basin contain about 50 to 65 percent analcite,with the interstices between the crystals filled mainly by microlites of feldspar, opal, and quartz, and small amounts of carbonate. At the center of the basin .essentially all the beds -are composed of microlites of feldspar, opal, and quartz, and small amounts of carbonate. The tongues of water-washed tuff in the uppermost part of the Parachute Creek Member and the similar rocks composing the lower 400-600 feet of the Evacuation Creek Mewber are feldspathized rocks composed mainly of microlites of feldspar, opal, and quartz, varying amounts of carbonate, and in some specimens tiny subrounded crystals of analcite. The general trend in alteration of the tuffaceous rocks from analcitization near the margin to feidspathization near the center of the Piceance Creek Basin is believed to have taken place at shallow depth during diagenesis , as indicated by field observations and laboratory work. It is believed that during sedimentation and diagenesis the waters of the central part of the basin were more alkaline and following the breakdown of the original

  16. Correlation of the Rockland ash bed, a 400,000-year-old stratigraphic marker in northern California and western Nevada, and implications for middle Pleistocene paleogeography of central California

    USGS Publications Warehouse

    Sarna-Wojcicki, A. M.; Meyer, C.E.; Bowman, H.R.; Timothy, Hall N.; Russell, P.C.; Woodward, M.J.; Slate, J.L.

    1985-01-01

    Outcrops of an ash bed at several localities in northern California and western Nevada belong to a single air-fall ash layer, the informally named Rockland ash bed, dated at about 400,000 yr B.P. The informal Rockland pumice tuff breccia, a thick, coarse, compound tephra deposit southwest of Lassen Peak in northeastern California, is the near-source equivalent of the Rockland ash bed. Relations between initial thickness of the Rockland ash bed and distances to eruptive source suggest that the eruption was at least as great as that of the Mazama ash from Crater Lake, Oregon. Identification of the Rockland tephra allows temporal correlation of associated middle Pleistocene strata of diverse facies in separate depositional basins. Specifically, marine, littoral, estuarine, and fluvial strata of the Hookton and type Merced formations correlate with fluvial strata of the Santa Clara Formation and unnamed alluvium of Willits Valley and the Hollister area, in northwestern and west-central California, and with lacustrine beds of Mohawk Valley, fluvial deposits of the Red Bluff Formation of the eastern Sacramento Valley, and fluvial and glaciofluvial deposits of Fales Hot Spring, Carson City, and Washoe Valley areas in northeastern California and western Nevada. Stratigraphic relations of the Rockland ash bed and older tephra layers in the Great Valley and near San Francisco suggest that the southern Great Valley emerged above sea level about 2 my ago, that its southerly outlet to the ocean was closed sometime after about 2 my ago, and that drainage from the Great Valley to the ocean was established near the present, northerly outlet in the vicinity of San Francisco Bay about 0.6 my ago. ?? 1985.

  17. Evaluating the provenance of Permian-Triassic and Palaeocene-Eocene ash beds by high precision U-Pb and Lu-Hf isotopic analyses of zircons: linking local sedimentary records to global events

    NASA Astrophysics Data System (ADS)

    Eivind Augland, Lars; Jones, Morgan; Planke, Sverre; Svensen, Henrik; Tegner, Christian

    2016-04-01

    Zircons are a powerful tool in geochronology and isotope geochemistry, as their affinity for U and Hf in the crystal structure and the low initial Pb and Lu allow for precise and accurate dating by U-Pb ID-TIMS and precise and accurate determination of initial Hf isotopic composition by solution MC-ICP-MS analysis. The U-Pb analyses provide accurate chronostratigraphic controls on the sedimentary successions and absolute age frames for the biotic evolution across geological boundaries. Moreover, the analyses of Lu-Hf by solution MC-ICP-MS after Hf-purification column chemistry provide a powerful and robust fingerprinting tool to test the provenance of individual ash beds. Here we focus on ash beds from Permian-Triassic and Palaeocene successions in Svalbard and from the Palaeocene-Eocene Thermal Maximum (PETM) in Fur, Denmark. Used in combination with whole rock geochemistry from the ash layers and the available geochemical and isotopic data from potential source volcanoes, these data are used to evaluate the provenance of the Permian-Triassic and Palaeocene ashes preserved in Svalbard and PETM ashes in Denmark. If explosive eruptions from volcanic centres such as the Siberian Traps and the North Atlantic Igneous Province (NAIP) can be traced to distal basins as ash layers, they provide robust tests of hypotheses of global synchronicity of environmental changes and biotic crises. In addition, the potential correlation of ash layers with source volcanoes will aid in constraining the extent of explosive volcanism in the respective volcanic centres. The new integrated data sets will also contribute to establish new reference sections for the study of these boundary events when combined with stable isotope data and biostratigraphy.

  18. Adsorption of tungsten onto zeolite fly ash produced by hydrothermally treating fly ash in alkaline solution.

    PubMed

    Ogata, Fumihiko; Iwata, Yuka; Kawasaki, Naohito

    2014-01-01

    Fly ash (FA) was hydrothermally treated in an alkaline solution to produce zeolite fly ash (Z-FA). The properties of the FA and Z-FA were investigated. The amounts of tungsten (W) adsorbed onto the FA and Z-FA surfaces were evaluated. Z-FA was produced by hydrothermally treating FA in an alkaline solution. The specific surface area and pore volume of the Z-FA were greater than those of the FA. More W was adsorbed onto the Z-FA surface than onto the FA surface. The adsorption isotherms for W were fitted using both the Freundlich and Langmuir equations. The equilibrium concentrations of W adsorbed onto the FA and Z-FA surfaces were subsequently reached within 20 h. The pseudo-second-order model more accurately described the data than did the pseudo-first-order model. Sodium hydroxide solutions (1-50 mmol/L) were used to easily recover W from Z-FA, indicating that Z-FA was useful for recovering W from aqueous solutions.

  19. Leaching of Mixtures of Biochar and Fly Ash

    SciTech Connect

    Palumbo, Anthony Vito; Porat, Iris; Phillips, Jana Randolph; Amonette, J. E.; Drake, Meghan M; Brown, Steven D; Schadt, Christopher Warren

    2009-01-01

    Increasing atmospheric levels of greenhouse gases, especially CO2, and their effects on global temperature have led to interest in the possibility of carbon storage in terrestrial environments.2, 5, 6 Both the residual char from biomass pyrolysis7-9, 12 (biochar) and fly ash from coal combustion1, 13, 14 have the potential to significantly expand terrestrial sequestration options. Both biochar and fly ash also have potentially beneficial effects on soil properties. Fly ash has been shown to increase porosity, water-holding capacity, pH, conductivity, and dissolved SO42-, CO32-, Cl- and basic cations.10, 11, 16 Adding biochar to soil generally raises pH, increases total nitrogen and total phosphorous, encourages greater root development, improves cation exchange capacity and reduces available aluminum.3, 17 Combinations of these benefits likely lead to the observed increased yields for crops including corn and sugarcane.17 with biochar addition to soil. In addition, it has been found that soils with added biochar emit lower amounts of other greenhouse gases (methane and nitrous oxide) 8, 17 than do unammended soils. Biochar and fly ash amendments may be useful in promoting terrestrial carbon sequestration on currently underutilized and degraded lands. For example, about 1% of the US surface lands consist of previously mined lands or highway rights-of-way.18 Poorly managed lands could count for another 15% of US area. Biochar and fly ash amendments could increase productivity of these lands and increase carbon storage in the soil Previous results showed minimal leaching of organic carbon and metals from a variety of fly ashes.15 Here, we are examining the properties of mixtures of biochar, fly ash, and soil and evaluating leaching of organic carbon and metals from the mixtures.

  20. Transport of Fine Ash Through the Water Column at Erupting Volcanoes - Monowai Cone, Kermadec-Tonga Arc

    NASA Astrophysics Data System (ADS)

    Walker, S. L.; Baker, E. T.; Leybourne, M. I.; de Ronde, C. E.; Greene, R.; Faure, K.; Chadwick, W.; Dziak, R. P.; Lupton, J. E.; Lebon, G.

    2010-12-01

    Monowai cone is a large, active, basaltic stratovolcano, part of the submarine Monowai volcanic center (MVC) located at ~26°S on the Kermadec-Tonga arc. At other actively erupting submarine volcanoes, magma extrusions and hydrothermal vents have been located only near the summit of the edifice, generating plumes enriched with hydrothermal components and magmatic gasses that disperse into the ocean environment at, or shallower than, the summit depth. Plumes found deeper than summit depths are dominated by fresh volcaniclastic ash particles, devoid of hydrothermal tracers, emplaced episodically by down-slope gravity flows, and transport fine ash to 10’s of km from the active eruptions. A water column survey of the MVC in 2004 mapped intensely hydrothermal-magmatic plumes over the shallow (~130 m) summit of Monowai cone and widespread plumes around its flanks. Due to the more complex multiple parasitic cone and caldera structure of MVC, we analyzed the dissolved and particulate components of the flank plumes for evidence of additional sources. Although hydrothermal plumes exist within the adjacent caldera, none of the parasitic cones on Monowai cone or elsewhere within the MVC were hydrothermally or volcanically active. The combination of an intensely enriched summit plume, sulfur particles and bubbles at the sea surface, and ash-dominated flank plumes indicate Monowai cone was actively erupting at the time of the 2004 survey. Monowai cone is thus the fourth erupting submarine volcano we have encountered, and all have had deep ash plumes distributed around their flanks [the others are: Kavachi (Solomon Island arc), NW Rota-1 (Mariana arc) and W Mata (NE Lau basin)]. These deep ash plumes are a syneruptive phenomenon, but it is unknown how they are related to eruptive style and output, or to the cycles of construction and collapse that occur on the slopes of submarine volcanoes. Repeat multibeam bathymetric surveys have documented two large-scale sector collapse

  1. U-Pb zircon ages from the southwestern Karoo Basin, South Africa - Implications for the Permian-Triassic boundary

    USGS Publications Warehouse

    Fildani, A.; Weislogel, A.; Drinkwater, N.J.; McHargue, T.; Tankard, A.; Wooden, J.; Hodgson, D.; Flint, S.

    2009-01-01

    U-Pb ages determined using sensitive high-resolution ion microprobe-reverse geometry on 205 single-grain zircons from 16 ash beds within submarine fan deposits of the Ecca Group provide the first evidence of a marine Permian-Triassic (P-T) boundary in the Karoo Basin of South Africa. These U-Pb ages provide an objective basis for correlating the deep-marine sediments of the southwest Karoo Basin with fluvial-deltaic deposits in the central and eastern parts of the basin where the P-T boundary is recorded in a diverse macrofauna. Furthermore, these new zircon ages and their correlation imply asymmetric subsidence and variable sedimentation rates across the basin. ?? 2009 Geological Society of America.

  2. Perspectives and perils of using U-Pb zircon geochronology to constrain stratigraphic age: lessons from the Permian-Triassic Karoo basin, South Africa

    NASA Astrophysics Data System (ADS)

    Weislogel, A. L.; Mckay, M. P.; Dean, J.; Fildani, A.

    2013-12-01

    The Karoo basin contains an important Carboniferous-Jurassic sedimentary record that chronicles the amalgamation of Pangea, subduction along the southern Panthallasan margin and later opening of the South Atlantic, Southern, and Indian oceans. It also preserves a robust record of the end-Permian extinction, Earth's largest paleobiologic crisis. Fortuitously, this stratigraphic record is interleaved with numerous air-fall volcanic ashes likely derived from a continental magmatic system, part of which is currently exposed in the Choiyoi igneous province of South America. Our U-Pb geochronology of air-fall ash zircon from the Ecca and Beaufort Groups via SHRIMP analysis, along with LA-ICP-MS U-Pb analysis of detrital zircon from interbedded sandstones indicate that magmatic activity of this system likely persisted for at least 50 Ma. Particularly noteworthy is that uppermost Ecca Group detrital zircon signature exhibits few Precambrian ages and abundant Permian-Triassic ages; thus, by the start of marginal marine deposition, Karoo basin clastic influx was primarily sourced by some part of the Permian-Triassic Panthallassic magmatic system (i.e., the Choiyoi igneous province or its southern equivalent). Detrital zircon U-Pb ages suggest initial zircon formed within this magmatic system by ~300 Ma and that the apex of zircon crystallization occurred at ~265-275 Ma, after which, zircon crystallization decreased through time. We hypothesize that over the long duration of magmatic evolution, the melt began to become depleted with respect to zircon, such that by ~260 Ma, the melt became primarily undersaturated with respect to zircon. As a result, zircon was no longer a major accessory phase and ultimately after ~250 Ma was extruded only in scant trace amounts. This interpretation is also supported by U-Pb zircon geochronology on a few dozen Ecca and Beaufort Group ashes from across the Karoo basin. Individual ash ages were determined from statistically-robust, coherent

  3. Sulfur-bearing coatings on fly ash from a coal-fired power plant: Composition, origin, and influence on ash alteration

    USGS Publications Warehouse

    Fishman, N.S.; Rice, C.A.; Breit, G.N.; Johnson, R.D.

    1999-01-01

    Fly ash samples collected from two locations in the exhaust stream of a coal-fired power plant differ markedly with respect to the abundance of thin (???0.1 ??m) sulfur-rich surface coatings that are observable by scanning electron microscopy. The coatings, tentatively identified as an aluminum-potassium-sulfate phase, probably form upon reaction between condensed sulfuric acid aerosols and glass surfaces, and are preferentially concentrated on ash exposed to exhaust stream gases for longer. The coatings are highly soluble and if sufficiently abundant, can impart an acidic pH to solutions initially in contact with ash. These observations suggest that proposals for ash use and predictions of ash behavior during disposal should consider the transient, acid-generating potential of some ash fractions and the possible effects on initial ash leachability and alteration. ?? 1998 Elsevier Science Ltd.

  4. Hierarchical zeolites from class F coal fly ash

    NASA Astrophysics Data System (ADS)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  5. Models of ash-laden intrusions in a stratified atmosphere

    NASA Astrophysics Data System (ADS)

    Hogg, Andrew; Johnson, Chris; Sparks, Steve; Huppert, Herbert; Woodhouse, Mark; Phillips, Jeremy

    2013-04-01

    Recent volcanic eruptions and the associated dispersion of ash through the atmosphere have led to widespread closures of airspace, for example the 2010 eruption of Eyjafjallajokull and 2011 eruption of Puyehue-Cordón Caulle. These episodes bring into sharp focus the need to predict quantitatively the transport and deposition of fine ash and in particular, its interaction with atmospheric wind. Many models of this process are based upon capturing the physics of advection with the wind, turbulence-induced diffusion and gravitational settling. Buoyancy-induced processes, associated with the density of the ash cloud and the background stratification of the atmosphere, are neglected and it is this issue that we address in this contribution. In particular, we suggest that the buoyancy-induced motion may account for the relatively thin distal ash layers that have been observed in the atmosphere and their relatively weak cross-wind spreading. We formulate a new model for buoyancy-driven spreading in the atmosphere in which we treat the evolving ash layer as relatively shallow so that its motion is predominantly horizontal and the pressure locally hydrostatic. The motion is driven by horizontal pressure gradients along with interfacial drag between the flowing ash layer and the surrounding atmosphere. Ash-laden fluid is delivered to this intrusion from a plume source and has risen through the atmosphere to its height of neutral buoyancy. The ash particles are then transported horizontally by the intrusion and progressively settle out of it to sediment through the atmosphere and form the deposit on the ground. This model is integrated numerically and analysed asymptotically in various regimes, including scenarios in which the atmosphere is quiescent and in which there is a sustained wind. The results yield predictions for the variation of the thickness of the intrusion with distance from the source and for how the concentration of ash is reduced due to settling. They

  6. Study on the Volatility of Cesium in Dry Ashing Pretreatment and Dissolution of Ash by Microwave Digestion System - 13331

    SciTech Connect

    Choi, Kwang-Soon; Lee, Chang Heon; Ahn, Hong-Joo; Park, Yong Joon; Song, Kyuseok

    2013-07-01

    Based on the regulation of the activity concentration of Cs-137, Co-58, Co-60, Fe-55, Ni-59, Ni-63, Sr-90, Nb-94, and Tc-99, and the total alpha from the radioactive waste acceptance criteria, the measurement of the activity concentration of these nuclides in low and intermediate levels of radioactive waste such as in paper, cotton, vinyl and plastic samples was investigated. A dry ashing method was applied to obtain a concentration effect of the samples. Owing to the temperature dependence of the volatility for cesium, the temperature of 300 to 650 deg. C was examined. It was found that 450 deg. C is the optimum dry ashing temperature. After dry ashing, the produced ash was dissolved with HNO{sub 3}, HCl, and HF by a high-performance microwave digestion system. The ash sample, for the most part, was completely dissolved with 10 mL of HNO{sub 3}, 4 mL of HCl, and 0.25 mL of HF by a high-performance microwave digestion system using a nova high temperature rotor at 250 deg. C for 90 min until reaching 0.2 g. To confirm the reliability of cesium loss after the performance of the dry ashing procedure, a cesium standard solution for AAS and a Cs-137 standard solution for gamma spectrometry were added to a paper towel or a planchet of stainless steel, respectively. Cesium was measured by AAS, ICP-MS, and gamma spectrometry. The volatility of cesium did not occur until 450 deg. C ashing. (authors)

  7. Mercury capture by selected Bulgarian fly ashes: Influence of coal rank and fly ash carbon pore structure on capture efficiency

    USGS Publications Warehouse

    Kostova, I.J.; Hower, J.C.; Mastalerz, Maria; Vassilev, S.V.

    2011-01-01

    Mercury capture by fly ash C was investigated at five lignite- and subbituminous-coal-burning Bulgarian power plants (Republika, Bobov Dol, Maritza East 2, Maritza East 3, and Sliven). Although the C content of the ashes is low, never exceeding 1.6%, the Hg capture on a unit C basis demonstrates that the low-rank-coal-derived fly ash carbons are more efficient in capturing Hg than fly ash carbons from bituminous-fired power plants. While some low-C and low-Hg fly ashes do not reveal any trends of Hg versus C, the 2nd and, in particular, the 3rd electrostatic precipitator (ESP) rows at the Republika power plant do have sufficient fly ash C range and experience flue gas sufficiently cool to capture measurable amounts of Hg. The Republika 3rd ESP row exhibits an increase in Hg with increasing C, as observed in other power plants, for example, in Kentucky power plants burning Appalachian-sourced bituminous coals. Mercury/C decreases with an increase in fly ash C, suggesting that some of the C is isolated from the flue gas stream and does not contribute to Hg capture. Mercury capture increases with an increase in Brunauer-Emmett-Teller (BET) surface area and micropore surface area. The differences in Hg capture between the Bulgarian plants burning low-rank coal and high volatile bituminous-fed Kentucky power plants suggests that the variations in C forms resulting from the combustion of the different ranks also influence the efficiency of Hg capture. ?? 2010 Elsevier Ltd.

  8. The 1815 Tambora ash fall: implications for transport and deposition of distal ash on land and in the deep sea

    NASA Astrophysics Data System (ADS)

    Kandlbauer, Jessica; Carey, Steven N.; Sparks, R. Stephen J.

    2013-04-01

    Tambora volcano lies on the Sanggar Peninsula of Sumbawa Island in the Indonesian archipelago. During the great 1815 explosive eruption, the majority of the erupted pyroclastic material was dispersed and subsequently deposited into the Indian Ocean and Java Sea. This study focuses on the grain size distribution of distal 1815 Tambora ash deposited in the deep sea compared to ash fallen on land. Grain size distribution is an important factor in assessing potential risks to aviation and human health, and provides additional information about the ash transport mechanisms within volcanic umbrella clouds. Grain size analysis was performed using high precision laser diffraction for a particle range of 0.2 μm-2 mm diameter. The results indicate that the deep-sea samples provide a smooth transition to the land samples in terms of grain size distributions despite the different depositional environments. Even the very fine ash fraction (<10 μm) is deposited in the deep sea, suggesting vertical density currents as a fast and effective means of transport to the seafloor. The measured grain size distribution is consistent with an improved atmospheric gravity current sedimentation model that takes into account the finite duration of an eruption. In this model, the eruption time and particle fall velocity are the critical parameters for assessing the ash component depositing while the cloud advances versus the ash component depositing once the eruption terminates. With the historical data on eruption duration (maximum 24 h) and volumetric flow rate of the umbrella cloud (˜1.5-2.5 × 1011 m3/s) as input to the improved model, and assuming a combination of 3 h Plinian phase and 21 h co-ignimbrite phase, it reduces the mean deviation of the predicted versus observed grain size distribution by more than half (˜9.4 % to ˜3.7 %) if both ash components are considered.

  9. ADVANCED POWER SYSTEMS ASH BEHAVIOR IN POWER SYSTEMS

    SciTech Connect

    ZYGARLICKE, CHRISTOPHER J; MCCOLLOR, DONALD P; KAY, JOHN P; SWANSON, MICHAEL L

    1998-09-01

    The overall goal of this initiative is to develop fundamental knowledge of ash behavior in power systems for the purpose of increasing power production efficiency, reducing operation and maintenance costs, and reducing greenhouse gas emissions into the atmosphere. The specific objectives of this initiative focus primarily on ash behavior related to advanced power systems and include the following: Determine the current status of the fundamental ash interactions and deposition formation mechanisms as already reported through previous or ongoing projects at the EERC or in the literature. Determine sintering mechanisms for temperatures and particle compositions that are less well known and remain for the most part undetermined. Identify the relationship between the temperature of critical viscosity (Tcv ) as measured in a viscometer and the crystallization occurring in the melt. Perform a literature search on the use of heated-stage microscopy (HSM) for examining in situ ash-sintering phenomena and then validate the use of HSM in the determination of viscosity in spherical ash particles. Ascertain the formation and stability of specific mineral or amorphous phases in deposits typical of advanced power systems. Evaluate corrosion for alloys being used in supercritical combustion systems.

  10. Changes in humoral immunologic parameters after exposure to volcanic ash.

    PubMed

    Olenchock, S A; Mull, J C; Mentnech, M S; Lewis, D M; Bernstein, R S

    1983-03-01

    Occupational exposure to volcanic ash from Mount St. Helens continues during the salvaging of trees in the high dust blow-down area of Washington. We studied the effects of volcanic ash exposure on the level of humoral immune factors IgG, IgA, IgM, C3, C4, and ANA (antinuclear antibody) in a group of volcanic ash-exposed loggers shortly after the major eruption and one year later. Comparisons with similar levels in nonexposed, similarly employed, matched loggers were made. C3 and C4 levels were significantly lower at both time periods in the exposed loggers when compared to the reference group. No differences between groups were observed at either time period for the immunoglobulin levels or ANA. The exposed loggers did show a marked decrease (not seen in the reference group) in serum IgG levels after 1 yr of exposure to the volcanic ash. They likewise showed a significant mean increase in IgA, while the reference group had a mean increase in IgM after 1 yr. These data suggest that exposure to volcanic ash may affect humoral immunologic parameters.

  11. Atmospheric Dispersion Modelling of Volcanic Ash using Data Insertion

    NASA Astrophysics Data System (ADS)

    Wilkins, K. L.; Watson, M.; Kristiansen, N. I.; Webster, H. N.; Thomson, D.; Dacre, H.; Prata, F.

    2015-12-01

    Eruption source parameters in volcanic ash dispersion and transport modelling, such as plume height and eruption rate, can often be highly uncertain. This can lead to significant uncertainties in the position and concentration of the modelled ash cloud downwind of the vent. Methods such as inversion modelling have successfully constrained such uncertainties, but in this work estimation of the eruption source parameters for the atmospheric dispersion model NAME is bypassed by implementing data insertion. Using this method under development, ash cloud properties retrieved from satellite imagery are used to create ash sources downwind from the volcano vent, from which dispersion simulations are initialised. Using the satellite retrievals, a set of simulations are initialised from different times and combined to create forecasts. In other experiments the simulations are sequentially updated using a probabilistic cloud / ash / clear classification scheme to correct the model state over time. Simulations from the Eyjafjallajökull and Grímsvötn eruptions compare well against other established modelling methods and satellite observations.

  12. Hail formation triggers rapid ash aggregation in volcanic plumes

    PubMed Central

    Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, Michael; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi L.; Clarke, Amanda B.

    2015-01-01

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits. PMID:26235052

  13. Interaction mechanisms of organic contaminants with burned straw ash charcoal.

    PubMed

    Huang, Wenhai; Chen, Baoliang

    2010-01-01

    Black carbons (e.g., charcoal) have a great impact on the transport of organic contaminants in soil and water because of its strong affinity and ubiquity in the environment. To further elucidate their interaction mechanism, sorption of polar (p-nitrotoluene, m-dinitrobenzene and nitrobenzene) and nonpolar (naphthalene) aromatic contaminants to burned straw ash charcoal under different de-ashed treatments were investigated. The sorption isotherms fitted well with Freundlich equation, and the Freundlich N values were all around 0.31-0.38, being independent of the sorbate properties and sorbent types. After sequential removal of ashes by acid treatments (HCl and HCl-HF), both adsorption and partition were enhanced due to the enrichment of charcoal component. The separated contribution of adsorption and partition to total sorption were quantified. The effective carbon content in ash charcoal functioned as adsorption sites, partition phases, and hybrid regions with adsorption and partition were conceptualized and calculated. The hybrid regions increased obviously after de-ashed treatment. The linear relationships of Freundlich N values with the charring-temperature of charcoal or biochar (the charred byproduct in biomass pyrolysis) were observed based on the current study and the cited publications which included 15 different temperatures (100-850 degrees C), 10 kinds of precursors of charcoal/biochar, and 10 organic sorbates.

  14. MSWI boiler fly ashes: magnetic separation for material recovery.

    PubMed

    De Boom, Aurore; Degrez, Marc; Hubaux, Paul; Lucion, Christian

    2011-07-01

    Nowadays, ferrous materials are usually recovered from Municipal Solid Waste Incineration (MSWI) bottom ash by magnetic separation. To our knowledge, such a physical technique has not been applied so far to other MSWI residues. This study focuses thus on the applicability of magnetic separation on boiler fly ashes (BFA). Different types of magnet are used to extract the magnetic particles. We investigate the magnetic particle composition, as well as their leaching behaviour (EN 12457-1 leaching test). The magnetic particles present higher Cr, Fe, Mn and Ni concentration than the non-magnetic (NM) fraction. Magnetic separation does not improve the leachability of the NM fraction. To approximate industrial conditions, magnetic separation is also applied to BFA mixed with water by using a pilot. BFA magnetic separation is economically evaluated. This study globally shows that it is possible to extract some magnetic particles from MSWI boiler fly ashes. However, the magnetic particles only represent from 23 to 120 g/kg of the BFA and, though they are enriched in Fe, are composed of similar elements to the raw ashes. The industrial application of magnetic separation would only be profitable if large amounts of ashes were treated (more than 15 kt/y), and the process should be ideally completed by other recovery methods or advanced treatments.

  15. Temporal and spatial variations in fly ash quality

    USGS Publications Warehouse

    Hower, J.C.; Trimble, A.S.; Eble, C.F.

    2001-01-01

    Fly ash quality, both as the amount of petrographically distinguishable carbons and in chemistry, varies in both time and space. Temporal variations are a function of a number of variables. Variables can include variations in the coal blend organic petrography, mineralogy, and chemistry; variations in the pulverization of the coal, both as a function of the coal's Hardgrove grindability index and as a function of the maintenance and settings of the pulverizers; and variations in the operating conditions of the boiler, including changes in the pollution control system. Spatial variation, as an instantaneous measure of fly ash characteristics, should not involve changes in the first two sets of variables listed above. Spatial variations are a function of the gas flow within the boiler and ducts, certain flow conditions leading to a tendency for segregation of the less-dense carbons in one portion of the gas stream. Caution must be applied in sampling fly ash. Samples from a single bin, or series of bins, m ay not be representative of the whole fly ash, providing a biased view of the nature of the material. Further, it is generally not possible to be certain about variation until the analysis of the ash is complete. ?? 2001 Elsevier Science B.V. All rights reserved.

  16. Hail formation triggers rapid ash aggregation in volcanic plumes.

    PubMed

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  17. LOW-TEMPERATURE ASH SINTERING AND STRENGTH DEVELOPMENT

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; John P. Kay

    1999-10-01

    The objective of the project is to develop fundamental sintering-viscosity relationships for coal-type ash at relatively low temperatures, with the end result being a simplified soot-blowing index for power systems. This involves correlating several important factors which control the ease of deposit removal, including deposit strength, deposit porosity, chemical composition, and temperature. Testing was performed on ashes derived from three coals and two biomass materials along with a standard soda-lime glass. The coals were selected because detailed analyses as well as ash samples were already available. Sintering characteristics of the ashes were to be determined by observation using an HSM and video recording system, with a stainless steel microscope stage chamber constructed to allow the use of corrosive gas atmospheres. The measurements would allow calculation of the viscosity of liquid phases as the sintering progressed, using the Frenkel and other sintering models. The sintering behavior and viscosity would be correlated with ash mineralogy and chemistry and information on bench-scale deposit strength and porosity to develop an initial relationship to predict deposit removability.

  18. Quick monitoring of pozzolanic reactivity of waste ashes.

    PubMed

    Sinthaworn, Suppachai; Nimityongskul, Pichai

    2009-05-01

    This article proposes a quick method of monitoring for pozzolanic reactivity of waste ashes by investigating the electrical conductivity of the suspension at an elevated temperature. This suspension is obtained by mixing tested pozzolan with an ordinary Portland cement (OPC) solution produced by mixing ordinary Portland cement with water. For comparison, silica fume, metakaolin, rice husk ash and river sand - whose pozzolanic reactivities range from reactive to inert - were used in the experimental investigation. The electrical conductivity of the suspension was continually recorded by using an electrical conductivity meter and stored by using a personal computer for a period of slightly over 1day. The indicative parameters that can be related to pozzolanic reactivity were discussed and analyzed in detail. It was found that it is possible to determine the pozzolanic reactivity of fly ash within 28h by using the proposed technique, as compared to 7 or 28 days for the determination of strength activity index according to ASTM. This technique would help concrete technologists to speedily investigate the quality of fly ash for use as a cement replacement in order to alleviate pollution caused by cement production and solve disposal problems of waste ashes.

  19. ENVIRONMENTAL EVALUATION FOR UTILIZATION OF ASH IN SOIL STABILIZATION

    SciTech Connect

    David J. Hassett; Loreal V. Heebink

    2001-08-01

    The Minnesota Pollution Control Agency (MPCA) approved the use of coal ash in soil stabilization, indicating that environmental data needed to be generated. The overall project goal is to evaluate the potential for release of constituents into the environment from ash used in soil stabilization projects. Supporting objectives are: (1) To ensure sample integrity through implementation of a sample collection, preservation, and storage protocol to avoid analyte concentration or loss. (2) To evaluate the potential of each component (ash, soil, water) of the stabilized soil to contribute to environmental release of analytes of interest. (3) To use laboratory leaching methods to evaluate the potential for release of constituents to the environment. (4) To facilitate collection of and to evaluate samples from a field runoff demonstration effort. The results of this study indicated limited mobility of the coal combustion fly ash constituents in laboratory tests and the field runoff samples. The results presented support previous work showing little to negligible impact on water quality. This and past work indicates that soil stabilization is an environmentally beneficial CCB utilization application as encouraged by the U.S. Environmental Protection Agency. This project addressed the regulatory-driven environmental aspect of fly ash use for soil stabilization, but the demonstrated engineering performance and economic advantages also indicate that the use of CCBs in soil stabilization can and should become an accepted engineering option.

  20. Pulmonary response to Mount St. Helens' volcanic ash.

    PubMed

    Vallyathan, V; Mentnech, M S; Tucker, J H; Green, F H

    1983-04-01

    The pulmonary response to a sedimented sample of Mount St. Helens' volcanic ash from the first eruption was studied at 1, 7, 28, 90, and 180 days postintratracheal administration of 1 or 10 mg of ash in specific-pathogen-free rats. One day administration of volcanic ash all animals exhibited a marked inflammatory cell response centered on respiratory bronchioles in which polymorphonuclear leukocytes predominated. At 7 days the reaction was characterized by mononuclear cellular infiltrates. The macrophages within the respiratory bronchioles and alveoli contained intracytoplasmic ash particles. At 28 days the intraalveolar aggregates of mononuclear cells had condensed to form granulomas. Most of the granulomas contained foreign body-type giant cells and some showed central necrosis. The granulomas enlarged in size from 28 days until the termination of the experiment at 180 days with progressive increase in the amount of collagenous tissue. The results of these studies suggest that the volcanic ash may pose a risk for pneumoconiosis in heavily exposed human populations.

  1. AATSR Based Volcanic Ash Plume Top Height Estimation

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Sundstrom, Anu-Maija; Rodriguez, Edith; de Leeuw, Gerrit

    2015-11-01

    The AATSR Correlation Method (ACM) height estimation algorithm is presented. The algorithm uses Advanced Along Track Scanning Radiometer (AATSR) satellite data to detect volcanic ash plumes and to estimate the plume top height. The height estimate is based on the stereo-viewing capability of the AATSR instrument, which allows to determine the parallax between the satellite's nadir and 55◦ forward views, and thus the corresponding height. AATSR provides an advantage compared to other stereo-view satellite instruments: with AATSR it is possible to detect ash plumes using brightness temperature difference between thermal infrared (TIR) channels centered at 11 and 12 μm. The automatic ash detection makes the algorithm efficient in processing large quantities of data: the height estimate is calculated only for the ash-flagged pixels. Besides ash plumes, the algorithm can be applied to any elevated feature with sufficient contrast to the background, such as smoke and dust plumes and clouds. The ACM algorithm can be applied to the Sea and Land Surface Temperature Radiometer (SLSTR), scheduled for launch at the end of 2015.

  2. An alternative circulating fluid bed bottom ash removal system

    SciTech Connect

    Barsin, J.A.; Carrea, A.

    1999-07-01

    Circulating fluid beds pose two challenges for the removal of spent or unreacted calcined limestone and coal ash from the bottom of the bed. The furnace operates under a positive pressure and thus a seal must be maintained between the ambient and the furnace and secondly the bottom ash is discharged at about 1600 F and must be cooled down before transported into a storage silo. In the higher bottom ash-loaded units (firing lignite or anthracite culm) this cooling represents a significant portion of the latent heat lost to the stream generator, thus affecting the overall heat rate. Also the material is abrasive traditionally which has had a negative effect upon the removal system life and maintenance costs. Now there is an alternative to the existing present water screw or auxiliary bed cooler systems applied in the past. This presentation reviews the successful application of a dry bottom ash removal system to pulverized coal (PC) fired units, the experimental and commercial scale developmental work to determine if that PC concept is applicable to Circulating Fluid Bed Units, and projected savings that might be realized if heat recovery, carbon recovery, reduction in parasitic power and maintenance costs all could be improved. The power generation industry typically demands at minimum a commercial demonstration of new technology prior to application and therefore a host site for dry bottom ash removal technology is sought.

  3. An alternative circulating fluid bed bottom ash removal system

    SciTech Connect

    Barsin, J.A.; Carrea, A.

    1999-11-01

    Circulating fluid beds pose two challenges for the removal of spent or unreacted calcined limestone and coal ash from the bottom of the bed. The furnace operates under a positive pressure and thus a seal must be maintained between the ambient and the furnace and secondly the bottom ash is discharged at about 1600 F and must be cooled down before transported into a storage silo. In the higher bottom ash-loaded units (firing lignite or anthracite culm) this cooling represents a significant portion of the latent heat lost to the steam generator, thus affecting the overall heat rate. Also the material is abrasive traditionally which has had a negative effect upon the removal system life and maintenance costs. Now there is an alternative to the existing present water screw or auxiliary bed cooler systems applied in the past. This presentation reviews the successful application of a dry bottom ash removal system to pulverized coal (PC) fired units, the experimental and commercial scale developmental work to determine if that PC concept is applicable to Circulating Fluid Bed Units, and projected savings that might be realized if heat recovery, carbon recovery, reduction in parasitic power and maintenance costs all could be improved. The power generation industry typically demands at minimum a commercial demonstration of new technology prior to application and therefore a host site for dry bottom ash removal technology is sought.

  4. Fly ash as a liming material for corn production

    SciTech Connect

    Tarkalson, D.D.; Hergert, G.W.; Stevens, W.B.; McCallister, D.L.; Kackman, S.D.

    2005-05-01

    Fly ash produced as a by-product of subbituminous coal combustion can potentially serve as an alternative liming material without negatively affecting corn (Zea mays L.) production in areas where use of conventional liming materials can be uneconomical due to transportation costs. A study was conducted to determine if fly ash produced from the Nebraska Public Power District Gerald Gentleman Power Station located in Sutherland, NE could be used as an alternative liming material. Combinations of dry fly ash (DFA), wet fly ash (WFA), beet lime (by-product of sugar beet (Beta vulgaris L.) processing) (BL), and agricultural lime (AGL) were applied at rates ranging from 0.43 to 1.62 times the recommended lime rate to plots on four acidic soils (Anselmo fine sandy loam, Hord fine sandy loam, Holdrege sandy loam, and Valentine fine sand). Soil samples were collected to a depth of 0.2 m from plots and analyzed for pH before lime applications and twice periodically after lime application. The Hord and Valentine soils were analyzed for exchangeable Ca, Mg, K, Na,and Al for determination of percent Al saturation on selected treatments and sampling dates. Corn grain yields were determined annually. It is concluded that the fly ash utilized in this study and applied at rates in this study, increases soil pH comparable to agricultural lime and is an appropriate alternative liming material.

  5. Genome sequence and genetic diversity of European ash trees.

    PubMed

    Sollars, Elizabeth S A; Harper, Andrea L; Kelly, Laura J; Sambles, Christine M; Ramirez-Gonzalez, Ricardo H; Swarbreck, David; Kaithakottil, Gemy; Cooper, Endymion D; Uauy, Cristobal; Havlickova, Lenka; Worswick, Gemma; Studholme, David J; Zohren, Jasmin; Salmon, Deborah L; Clavijo, Bernardo J; Li, Yi; He, Zhesi; Fellgett, Alison; McKinney, Lea Vig; Nielsen, Lene Rostgaard; Douglas, Gerry C; Kjær, Erik Dahl; Downie, J Allan; Boshier, David; Lee, Steve; Clark, Jo; Grant, Murray; Bancroft, Ian; Caccamo, Mario; Buggs, Richard J A

    2017-01-12

    Ash trees (genus Fraxinus, family Oleaceae) are widespread throughout the Northern Hemisphere, but are being devastated in Europe by the fungus Hymenoscyphus fraxineus, causing ash dieback, and in North America by the herbivorous beetle Agrilus planipennis. Here we sequence the genome of a low-heterozygosity Fraxinus excelsior tree from Gloucestershire, UK, annotating 38,852 protein-coding genes of which 25% appear ash specific when compared with the genomes of ten other plant species. Analyses of paralogous genes suggest a whole-genome duplication shared with olive (Olea europaea, Oleaceae). We also re-sequence 37 F. excelsior trees from Europe, finding evidence for apparent long-term decline in effective population size. Using our reference sequence, we re-analyse association transcriptomic data, yielding improved markers for reduced susceptibility to ash dieback. Surveys of these markers in British populations suggest that reduced susceptibility to ash dieback may be more widespread in Great Britain than in Denmark. We also present evidence that susceptibility of trees to H. fraxineus is associated with their iridoid glycoside levels. This rapid, integrated, multidisciplinary research response to an emerging health threat in a non-model organism opens the way for mitigation of the epidemic.

  6. Durability of incinerator ash waste encapsulated in modified sulfur cement

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Pietrzak, R.; Colombo, P.

    1991-01-01

    Waste form stability under anticipated disposal conditions is an important consideration for ensuring continued isolation of contaminants from the accessible environment. Modified sulfur cement is a relatively new material and has only recently been applied as a binder for encapsulation of mixed wastes. Little data are available concerning its long-term durability. Therefore, a series of property evaluation tests for both binder and waste-binder combinations have been conducted to examine potential waste form performance under storage and disposal conditions. These tests include compressive strength, biodegradation, radiation stability, water immersion, thermal cycling, and leaching. Waste form compressive strength increased with ash waste loadings to 30.5 MPa at a maximum incinerator ash loading of 43 wt %. Biodegradation testing resulted in no visible microbial growth of either bacteria or fungi. Initial radiation stability testing did not reveal statistically significant deterioration in structural integrity. Results of 90 day water immersion tests were dependent on the type of ash tested. There were no statistically significant changes in compressive strength detected after completion of thermal cycle testing. Radionuclides from ash waste encapsulated in modified sulfur cement leached between 5 and 8 orders of magnitude slower than the leach index criterion established by the Nuclear Regulatory Commission (NRC) for low-level radioactive waste. Modified sulfur cement waste forms containing up to 43 wt % incinerator fly ash passed EPA Toxicity Characteristic Leaching Procedure (TCLP) criteria for lead and cadmium leachability. 11 refs., 2 figs., 5 tabs.

  7. Sorbents for CO2 capture from high carbon fly ashes.

    PubMed

    Maroto-Valer, M Mercedes; Lu, Zhe; Zhang, Yinzhi; Tang, Zhong

    2008-11-01

    Fly ashes with high-unburned-carbon content, referred to as fly ash carbons, are an increasing problem for the utility industry, since they cannot be marketed as a cement extender and, therefore, have to be disposed. Previous work has explored the potential development of amine-enriched fly ash carbons for CO2 capture. However, their performance was lower than that of commercially available sorbents, probably because the samples investigated were not activated prior to impregnation and, therefore, had a very low surface area. Accordingly, the work described here focuses on the development of activated fly ash derived sorbents for CO2 capture. The samples were steam activated at 850 degrees C, resulting in a significant increase of the surface area (1075 m2/g). The activated samples were impregnated with different amine compounds, and the resultant samples were tested for CO2 capture at different temperatures. The CO2 adsorption of the parent and activated samples is typical of a physical adsorption process. The impregnation process results in a decrease of the surface areas, indicating a blocking of the porosity. The highest adsorption capacity at 30 and 70 degrees C for the amine impregnated activated carbons was probably due to a combination of physical adsorption inherent from the parent sample and chemical adsorption of the loaded amine groups. The CO2 adsorption capacities for the activated amine impregnated samples are higher than those previously published for fly ash carbons without activation (68.6 vs. 45 mg CO2/g sorbent).

  8. Workability and strength of lignite bottom ash geopolymer mortar.

    PubMed

    Sathonsaowaphak, Apha; Chindaprasirt, Prinya; Pimraksa, Kedsarin

    2009-08-30

    In this paper, the waste lignite bottom ash from power station was used as a source material for making geopolymer. Sodium silicate and sodium hydroxide (NaOH) were used as liquid for the mixture and heat curing was used to activate the geopolymerization. The fineness of bottom ash, the liquid alkaline/ash ratio, the sodium silicate/NaOH ratio and the NaOH concentration were studied. The effects of the additions of water, NaOH and napthalene-based superplasticizer on the workability and strength of the geopolymer mortar were also studied. Relatively high strength geopolymer mortars of 24.0-58.0 MPa were obtained with the use of ground bottom ash with 3% retained on sieve no. 325 and mean particle size of 15.7 microm, using liquid alkaline/ash ratios of 0.429-0.709, the sodium silicate/NaOH ratios of 0.67-1.5 and 7.5-12.5M NaOH. The incorporation of water improved the workability of geopolymer mortar more effectively than the use of napthalene-based superplasticizer with similar slight reduction in strengths. The addition of NaOH solution slightly improves the workability of the mix while maintaining the strength of the geopolymer mortars.

  9. Chloride chemical form in various types of fly ash

    SciTech Connect

    Fenfen Zhu; Masaki Takaoka; Kenji Shiota; Kazuyuki Oshita; Yoshinori Kitajima

    2008-06-01

    Chloride content is a critical problem for the reuse of fly ash as a raw material in cement, and the method used by recyclers to reduce the fly ash chloride content depends on the chemical form of the chlorides. However, limited information is available on the quantitative distribution of chlorides and the identity of some chlorides such as Friedel's salt. We examined chloride forms and percentages using X-ray absorption near edge structure and X-ray diffraction analyses, as well as corresponding washing experiments. Approximately 15% of the chlorine in raw fly ash was estimated to be in the form of NaCl, 10% in KCl, 50% in CaCl{sub 2}, and the remainder in the form of Friedel's salt. Fly ash collected in a bag filter with the injection of calcium hydroxide for acid gas removal (CaFA) contained 35% chlorine as NaCl, 11% as KCl, 37% as CaCl{sub 2}, 13% as Friedel's salt, and the remaining 4% as CaClOH. In fly ash collected in a bag filter with the injection of sodium bicarbonate for acid gas removal (NaFA), approximately 79% of chlorine was in NaCl, 12% was in KCl, and 9% was in Friedel's salt. 25 refs., 4 figs., 4 tabs.

  10. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete.

    PubMed

    Siriruang, Chaichan; Toochinda, Pisanu; Julnipitawong, Parnthep; Tangtermsirikul, Somnuk

    2016-04-01

    The utilization of fly ash as a solid sorbent material for CO2 capture via surface adsorption and carbonation reaction was evaluated as an economically feasible CO2 reduction technique. The results show that fly ash from a coal fired power plant can capture CO2 up to 304.7 μmol/g fly ash, consisting of 2.9 and 301.8 μmol/g fly ash via adsorption and carbonation, respectively. The CO2 adsorption conditions (temperature, pressure, and moisture) can affect CO2 capture performance of fly ash. The carbonation of CO2 with free CaO in fly ashes was evaluated and the results indicated that the reaction consumed most of free CaO in fly ash. The fly ashes after CO2 capture were further used for application as a mineral admixture for concrete. Properties such as water requirement, compressive strength, autoclave expansion, and carbonation depth of mortar and paste specimens using fly ash before and after CO2 capture were tested and compared with material standards. The results show that the expansion of mortar specimens using fly ash after CO2 capture was greatly reduced due to the reduction of free CaO content in the fly ash compared to the expansion of specimens using fresh fly ash. There were no significant differences in the water requirement and compressive strength of specimens using fly ash, before and after CO2 capture process. The results from this study can lead to an alternative CO2 capture technique with doubtless utilization of fly ash after CO2 capture as a mineral admixture for concrete.

  11. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.

    PubMed

    Diaz-Loya, E Ivan; Allouche, Erez N; Eklund, Sven; Joshi, Anupam R; Kupwade-Patil, Kunal

    2012-08-01

    Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5

  12. Nam Con Son Basin

    SciTech Connect

    Tin, N.T.; Ty, N.D.; Hung, L.T.

    1994-07-01

    The Nam Con Son basin is the largest oil and gas bearing basin in Vietnam, and has a number of producing fields. The history of studies in the basin can be divided into four periods: Pre-1975, 1976-1980, 1981-1989, and 1990-present. A number of oil companies have carried out geological and geophysical studies and conducted drilling activities in the basin. These include ONGC, Enterprise Oil, BP, Shell, Petro-Canada, IPL, Lasmo, etc. Pre-Tertiary formations comprise quartz diorites, granodiorites, and metamorphic rocks of Mesozoic age. Cenozoic rocks include those of the Cau Formation (Oligocene and older), Dua Formation (lower Miocene), Thong-Mang Cau Formation (middle Miocene), Nam Con Son Formation (upper Miocene) and Bien Dong Formation (Pliocene-Quaternary). The basement is composed of pre-Cenozoic formations. Three fault systems are evident in the basin: north-south fault system, northeast-southwest fault system, and east-west fault system. Four tectonic zones can also be distinguished: western differentiated zone, northern differentiated zone, Dua-Natuna high zone, and eastern trough zone.

  13. Ash bed level control system for a fixed-bed coal gasifier

    DOEpatents

    Fasching, George E.; Rotunda, John R.

    1984-01-01

    An ash level control system is provided which incorporates an ash level meter to automatically control the ash bed level of a coal gasifier at a selected level. The ash level signal from the ash level meter is updated during each cycle that a bed stirrer travels up and down through the extent of the ash bed level. The ash level signal is derived from temperature measurements made by thermocouples carried by the stirrer as it passes through the ash bed and into the fire zone immediately above the ash bed. The level signal is compared with selected threshold level signal to determine if the ash level is above or below the selected level once each stirrer cycle. A first counter is either incremented or decremented accordingly. The registered count of the first counter is preset in a down counter once each cycle and the preset count is counted down at a selected clock rate. A grate drive is activated to rotate a grate assembly supporting the ash bed for a period equal to the count down period to maintain the selected ash bed level. In order to avoid grate binding, the controller provides a short base operating duration time each stirrer cycle. If the ash bed level drops below a selected low level or exceeds a selected high level, means are provided to notify the operator.

  14. Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash

    NASA Astrophysics Data System (ADS)

    Schill, G. P.; Genareau, K.; Tolbert, M. A.

    2015-07-01

    Ice nucleation of volcanic ash controls both ash aggregation and cloud glaciation, which affect atmospheric transport and global climate. Previously, it has been suggested that there is one characteristic ice nucleation efficiency for all volcanic ash, regardless of its composition, when accounting for surface area; however, this claim is derived from data from only two volcanic eruptions. In this work, we have studied the depositional and immersion freezing efficiency of three distinct samples of volcanic ash using Raman microscopy coupled to an environmental cell. Ash from the Fuego (basaltic ash, Guatemala), Soufrière Hills (andesitic ash, Montserrat), and Taupo (Oruanui eruption, rhyolitic ash, New Zealand) volcanoes were chosen to represent different geographical locations and silica content. All ash samples were quantitatively analyzed for both percent crystallinity and mineralogy using X-ray diffraction. In the present study, we find that all three samples of volcanic ash are excellent depositional ice nuclei, nucleating ice from 225 to 235 K at ice saturation ratios of 1.05 ± 0.01, comparable to the mineral dust proxy kaolinite. Since depositional ice nucleation will be more important at colder temperatures, fine volcanic ash may represent a global source of cold-cloud ice nuclei. For immersion freezing relevant to mixed-phase clouds, however, only the Oruanui ash exhibited appreciable heterogeneous ice nucleation activity. Similar to recent studies on mineral dust, we suggest that the mineralogy of volcanic ash may dictate its ice nucleation activity in the immersion mode.

  15. Clinoptilolite and associated authigenic minerals in Miocene tuffaceous rocks in the Goose Creek Basin, Cassia County, Idaho

    SciTech Connect

    Brownfield, M.E.; Hildebrand, R.T.

    1985-01-01

    Miocene tuffaceous fluviolacustrine deposits in the southeastern part of the Goose Creek basin contain a variety of authigenic minerals, including clinoptilolite, smectite, pyrite, gypsum, and calcite. Clinoptilolite is the primary mineral in the diagenetically altered rhyolitic vitric tuffs in the study area. These zeolitic tuffs locally attain thicknesses of as much as 30 meters. Examinations of samples of the altered tuff beds using the scanning electron microscope reveal that the clinoptilolite usually occurs as clean, well-formed tabular crystals about 0.005 mm across in a matrix of smectite. Prismatic clinoptilolite crystals, as much as 0.06 mm long, are present in the larger vugs. During the Miocene, thick beds of air-fall rhyolitic vitric volcanic ash accumulated in the Goose Creek basin in a coalescing fluviolacustrine depositional setting. In the southeastern part of the basin, the volcanic ash was deposited in a lacustrine fan delta, where it was partly reworked and interbedded with sandstone and siltstone. Diagenetic alteration of the ash beds proceeded in an open hydrologic system. Solution and hydrolysis by ground water initially altered the glass shards to form smectite and silica gel. Clinoptilolite subsequently precipitated on the altered shard surfaces. The paragenesis of pyrite, gypsum, and calcite in the zeolitic tuffs is uncertain.

  16. The characterization of brown coals of Kansk-Achinsk Basin for improved utilization in the coal-burning power stations

    SciTech Connect

    Solntsev, S.I.; Shorokhov, V.P.

    1998-12-31

    Kansk-Achinsk Brown Coal Basin in Siberia is the largest one of Russia. There are several large deposits in the Basin. Two main open cuts currently annually supply 35 million tonnes of brown coal for the pulverized fired boilers operated by number of Power Stations in Central Siberia. The main part of Kansk-Achinsk brown coals are characterized by low sulfur, nitrogen and heavy metal content. However, they differ in the ash content (within the range of 4--12%) and in the ash composition (in Ca, Al, Fe, Na, in particular). This has a major influence on the boiler fouling and slagging tendency. The paper describes the work in defining the geological, chemical and utilization characteristics of the coals from the different cuts and places of Kansk-Achinsk Basin. The emphasis on the ash fouling and slagging on burning brown coals from different places was made. The methods of coal preparation were developed to improve the utilization characteristics and to comply with the emission regulations. The preparation and burning of blended coals and coal-water slurry is the focus of the discussion. The technology of briquetted brown coal both with oil-derived binder and with no binder is described.

  17. River basin management

    SciTech Connect

    Newsome, D.H.; Edwards, A.M.C.

    1984-01-01

    The quality of water is of paramount importance in the management of water resources - including marine waters. A quantitative knowledge of water quality and the factors governing it is required to formulate and implement strategies requiring an inter-disciplinary approach. The overall purpose of this conference was to bring together the latest work on water quality aspects of river basin management. These proceedings are structured on the basis of five themes: problems in international river basins; the contribution of river systems to estuarial and marine pollution; the setting of standards; monitoring; and practical water quality management including use of mathematical models. They are followed by papers from the workshop on advances in the application of mathematical modelling to water quality management, which represent some of the current thinking on the problems and concepts of river basin management.

  18. Delaware River Basin

    USGS Publications Warehouse

    Fischer, Jeffrey M.

    1999-01-01

    Assessing the quality of water in every location of the Nation would not be practical. Therefore, NAWQA investigations are conducted within 59 selected areas called study units (fig. 1). These study units encompass important river and aquifer systems in the United States and represent the diverse geographic, waterresource, land-use, and water-use characteristics of the Nation. The Delaware River Basin is one of 15 study units in which work began in 1996. Water-quality sampling in the study unit will begin in 1999. This fact sheet provides a brief overview of the NAWQA program, describes the Delaware River Basin study unit, identifies the major water-quality issues in the basin, and documents the plan of study that will be followed during the study-unit investigation.

  19. Inhibition of lymphocyte blastogenesis by serum leachates of fly ash.

    PubMed

    Harris, W R; Shifrine, M

    1987-01-01

    Samples of 8 ashes were leached with canine serum for 24 h to remove metal ions from the particle surfaces. The particles were removed by filtration, and the concentrations of 11 metal ions in the serum leachates were determined by atomic absorption spectrophotometry. The leachate samples were evaluated using the canine whole-blood lymphocyte stimulation test (WB/LST). The serum extracts of oil-related ashes were highly inhibitory, while lower biological activity was observed for the extracts of coal ashes. The observed inhibition in the WB/LST was correlated with the concentration of each metal ion using Kendall's rank correlation test. The highest correlations were observed for Mn and V. The results are compared with previous WB/LST studies on pure metal salts.

  20. Dielectric properties of epoxy resin fly ash composite

    NASA Astrophysics Data System (ADS)

    Pattanaik, A.; Bhuyan, S. K.; Samal, S. K.; Behera, A.; Mishra, S. C.

    2016-02-01

    Epoxy resin is widely used as an insulating material in high voltage applications. Ceramic fillers are always added to the polymer matrix to enhance its mechanical properties. But at the same time, filler materials decreases the electrical properties. So while making the fly ash epoxy composite, it is obvious to detect the effect of fly ash reinforcement on the dielectric nature of the material. In the present research work, fly ash is added to four different weight percentages compositions and post-curing has been done in the atmospheric condition, normal oven and micro oven. Tests were carried out on the developed polymer composite to measure its dielectric permittivity and tan delta value in a frequency range of 1 Hz - 1 MHz. The space charge behaviours were also observed by using the pulse electroacoustic (PEA) technique. The dielectric strength and losses are compared for different conditions.

  1. Coal fly ash: a potential resource for aluminium and titanium

    SciTech Connect

    Frederick, J.R.; Murtha, M.J.; Burnet, G.

    1980-01-01

    Two processes are described which utilize fly ash as a source of metals and by-products. The lime-soda sinter process involves sintering of the fly ash and alkaline oxides at 1100-1300/sup 0/C to break the alumina-silica bonds and form soluble aluminate compounds and insoluble calcium silicates. The aluminates are extracted from the sinter by dissolution in sodium carbonate. The calcium silicate sinter extract shows promise as a raw material for the manufacture of portland cement. The HiChlor process uses high temperature chlorination of fly ash in the presence of a reductant to form volatile metal chlorides of aluminium, titanium, iron, and silicon. The HiChlor process extracts aluminium, titanium, and iron, while the sinter process extracts only aluminium.

  2. Atmospheric and environmental impacts of volcanic ash particle emissions

    NASA Astrophysics Data System (ADS)

    Durant, Adam

    2010-05-01

    Globally, at any one time, there may be 20 volcanoes erupting that collectively emit a constant flux of gases and aerosol, including silicate particles (tephra), to the atmosphere which influences processes including cloud microphysics, heterogeneous chemistry and radiative balance. The nature and impact of atmospheric volcanic particle fluxes depend on total mass erupted, emission rate, emission source location, physical and chemical properties of the particles, and the location and residence time of the particles in the atmosphere. Removal of ash particles from the atmosphere through sedimentation is strongly influenced by particle aggregation through hydrometeor formation, and convective instabilities such as mammatus. I will address the following questions: What are the atmospheric impacts of volcanic ash emissions? What controls the residence time of volcanic particles in the atmosphere? What affects particle accumulation at the surface? And what are the human and environmental impacts of ash fallout?

  3. Volcanic ash hazards and aviation risk: Chapter 4

    USGS Publications Warehouse

    Guffanti, Marianne C.; Tupper, Andrew C.

    2015-01-01

    The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.

  4. Cementitious binder from fly ash and other industrial wastes

    SciTech Connect

    Singh, M.; Garg, M.

    1999-03-01

    In this paper, investigations were undertaken to formulate cementitious binder by judicious blending of fly ash with Portland cement as well as by admixing fly ash with calcined phosphogypsum, fluorogypsum, lime sludge, and chemical activators of different finenesses. The effect of addition of calcined clay in these types of binders was studied. Data showed that cementitious binders of high compressive strength and water retentivity can be produced. The strength of masonry mortars increased with the addition of chemical activators. The strength development of binders takes place through formation of ettringite. C-S-H, and C{sub 4}AH{sub 13}. The binders are eminently suitable for partial replacement (up to 25%) of the cement in concrete without any detrimental affect on the strength. The results showed that fly ash can be used in the range from 45% to 70% in formulating these binders along with other industrial wastes to help in mitigating environmental pollution.

  5. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska

    USGS Publications Warehouse

    Sassen, Kenneth; Zhu, Jiang; Webley, Peter W.; Dean, K.; Cobb, Patrick

    2007-01-01

    During mid January to early February 2006, a series of explosive eruptions occurred at the Augustine volcanic island off the southern coast of Alaska. By early February a plume of volcanic ash was transported northward into the interior of Alaska. Satellite imagery and Puff volcanic ash transport model predictions confirm that the aerosol plume passed over a polarization lidar (0.694 mm wavelength) site at the Arctic Facility for Atmospheric Remote Sensing at the University of Alaska Fairbanks. For the first time, lidar linear depolarization ratios of 0.10 – 0.15 were measured in a fresh tropospheric volcanic plume, demonstrating that the nonspherical glass and mineral particles typical of volcanic eruptions generate strong laser depolarization. Thus, polarization lidars can identify the volcanic ash plumes that pose a threat to jet air traffic from the ground, aircraft, or potentially from Earth orbit.

  6. Glass phase in municipal and industrial waste incineration bottom ashes

    NASA Astrophysics Data System (ADS)

    Rafał Kowalski, Piotr; Michalik, Marek

    2015-04-01

    Waste incineration bottom ash is a material with rising significance in waste streams in numerous countries. Even if some part of them is now used as raw materials the great amount is still landfilled. High temperature of thermal processes (>1000°C) together with fast cooling results in high content of glass in bottom ash. Its chemical composition is influenced by various factors like composition of raw wastes and used incineration technique. Most of bottom ash grains are composed of glass with large amount of mineral phases and also metallic constituents embedded into it. Glass susceptibility for alteration processes together with the characteristics of glass-based grains can bring environmental risk in time of improper or long term storage on landfill site. In this study bottom ashes from thermal treatment of municipal and industrial (including hazardous and medical) wastes were studied to determine glass content, its chemical composition with emphasis on metal content (especially potentially hazardous) and its relations to metallic components of grains. Samples were collected from two thermal treatment plants in Poland. Qualitative and quantitative X-ray diffraction (XRD) analyses were used for determination of mineral composition of studied samples. Rietveld method and addition of internal standard for determination of amorphous phase content were used. Scanning electron microscopy fitted with energy dispersive spectrometry (SEM-EDS) were used for detailed analysis of glass and glass associated phases. Waste incineration bottom ash is a multi-components material rich in amorphous phase. It dominant part is represented by Si-rich glass. It is a main component of bottom ash grains but it contains minerals present in large quantities and also various forms of metallic elements. Glass within grains is often porous and cracked. In bottom ashes from thermal treatment of municipal wastes ~ 45-55 wt % of amorphous phase were present, mostly in form of glass with high

  7. BASINS Climate Assessment Tool Tutorials

    EPA Pesticide Factsheets

    The BASINS Climate Assessment Tool (CAT) provides a flexible set of capabilities for exploring the potential effects of climate change on streamflow and water quality using different watershed models in BASINS.

  8. BASINS User Information and Guidance

    EPA Pesticide Factsheets

    This page provides links to guidance on how to use BASINS, including the User’s Manual, tutorials and training, technical notes, case studies, and publications that highlight the use of BASINS in various watershed analyses.

  9. Soda ash treatment of a strontium-90-contaminated groundwater seep

    SciTech Connect

    Spalding, B.P.; Munro, I.I.

    1983-01-01

    A /sup 90/Sr-contaminated groundwater seep on the perimeter of a low-level radioactive solid waste disposal area at the Oak Ridge National Laboratory (ORNL) was treated by burying 315 kg of soda ash in the groundwater flow path leading to the seep, and placing 45 kg of soda ash on the surface of the seep. The concentration of /sup 90/Sr in the seep water fell from an average of 7000 Bq L/sup -1/ to 900 Bq L/sup -1/ for the 90 d after burial, followed by a period of gradual rise back to pretreatment levels over the next 100 d. The electrical conductivity and pH of the seep water increased following soda ash burial, while water hardness fell. Hardness was highly correlated (r = 0.84) with /sup 90/Sr concentrations over the entire 2-year observation period, indicating the similar behavior of /sup 90/Sr and soluble Ca and Mg. This in situ softening of, and /sup 90/Sr precipitation from, the seep water was achieved by coprecipitation of /sup 90/Sr with Ca(Mg)CO/sub 3/ until the buried soda ash was depleted by dissolution in the groundwater. The soda ash treatment of groundwater seeps appears to be most practical as an interim technique for those situations requiring an immediate, but temporary, corrective action. During this limited but effective period, more permanent corrective actions could be planned at the source of contamination. The electrical conductivity, pH, and hardness of the larger surface stream, into which this seep discharges, were not affected by the soda ash burial, most likely due to the approximately 2000-fold dilution effected by this stream.

  10. An aggregation model for ash particles in volcanic clouds

    NASA Astrophysics Data System (ADS)

    Costa, A.; Folch, A.; Macedonio, G.; Durant, A.

    2009-12-01

    A large fraction of fine ash particles injected into the atmosphere during explosive eruptions aggregate through complex interactions of surface liquid layers, electrostatic forces, and differences in particle settling velocities. The aggregates formed have a different size and density compared to primary particles formed during eruption which dramatically changes the dynamics of sedimentation from the volcanic cloud. Consequently, the lifetime of ash particles in the atmosphere is reduced and a distal mass deposition maximum is often generated in resulting tephra deposits. A complete and rigorous description of volcanic ash fallout requires the full coupling of models of volcanic cloud dynamics and dispersion, and ash particle transport, aggregation and sedimentation. Furthermore, volcanic ash transport models should include an aggregation model that accounts for the interaction of all particle size classes. The problem with this approach is that simulations would require excessively long computational times thereby prohibiting its application in an operational setting during an explosive volcanic eruption. Here we present a simplified model for ash particle transport and aggregation that includes the effects of water in the volcanic cloud and surrounding atmosphere. The aggregation model assumes a fractal relationship for the number of primary particles in aggregates, average sticking efficiency factors, and collision frequency functions that account for Brownian motion, laminar and turbulent fluid shear, and differential settling velocity. A parametric study on the key parameters of the model was performed. We implemented the aggregation model in the WRF+FALL3D coupled modelling system and applied it to different eruptions where aggregation has been recognized to play an important role, including the August and September 1992 Crater Peak eruptions and the 1980 Mt St Helens eruption. In these cases, mass deposited as a function of deposit area and the particle

  11. Non traditional uses of coal ash: Steel industry applications

    SciTech Connect

    Hauke, D.

    1997-09-01

    Coal fly ash is used by the steel industry as an insulating cover to retain heat in ladles of molten steel and as a slag foamer in electric arc furnaces (EAFs) to prolong the life of consumable components and to aid extraction of impurities from the molten steel. The fly ashes that are used in the steel industry are generated from stoker boilers and have a relatively wide particle-size distribution. The powder-type materials used by steel mills to insulate ladles of molten metal include rice hull ash, a heat treated montmorillonite clay mineral (calcined clay), a fly ash from a stoker boiler called LadleJacket, and coke breeze. These ladle insulators should be flowable, coarse, and have a wide particle-size distribution. A study to compare the insulating characteristics of ladle insulators, conducted by the American Foundrymen`s Society Cast Metals Institute, indicated that the ladle insulated with LadleJacket exhibited a lower rate of heat loss than either the rice hull ash or calcined clay. To prolong the life of carbon electrodes and refractory in EAFs and to promote extraction of contaminants from the steel, carbon-based ingredients are injected into the slag to cause it to foam. Typically, high-carbon products such as coke breeze (coke fines) are used as slag foamers. A new product called Carbon Plus, which is a coarse, high-carbon fly ash from a coal-fired stoker boiler, is now being used as a slag foamer in the steel industry.

  12. Ordovician ash geochemistry and the establishment of land plants

    PubMed Central

    2012-01-01

    The colonization of the terrestrial environment by land plants transformed the planetary surface and its biota, and shifted the balance of Earth’s biomass from the subsurface towards the surface. However there was a long delay between the formation of palaeosols (soils) on the land surface and the key stage of plant colonization. The record of palaeosols, and their colonization by fungi and lichens extends well back into the Precambrian. While these early soils provided a potential substrate, they were generally leached of nutrients as part of the weathering process. In contrast, volcanic ash falls provide a geochemically favourable substrate that is both nutrient-rich and has high water retention, making them good hosts to land plants. An anomalously extensive system of volcanic arcs generated unprecedented volumes of lava and volcanic ash (tuff) during the Ordovician. The earliest, mid-Ordovician, records of plant spores coincide with these widespread volcanic deposits, suggesting the possibility of a genetic relationship. The ash constituted a global environment of nutrient-laden, water-saturated soil that could be exploited to maximum advantage by the evolving anchoring systems of land plants. The rapid and pervasive inoculation of modern volcanic